
                                       AD__
                                           (Leave blank) 

_______________ 

 
 
Award Number:  
W81XWH-04-1-0818 
 
  
TITLE: 
Castration Induced Neuroendocrine Mediated Progression of 
Prostate Cancer 
 
  
PRINCIPAL INVESTIGATOR: 
Christopher P. Evans, M.D.                                       
         
                           
CONTRACTING ORGANIZATION:  
University of California, Davis 
Sacramento, CA  95817 
  
 
REPORT DATE: September 2008 
 
 
TYPE OF REPORT: 
Final Addendum 
 
 
PREPARED FOR:  U.S. Army Medical Research and Materiel Command 
               Fort Detrick, Maryland  21702-5012 
                 
 
DISTRIBUTION STATEMENT: (Check one) 
 
     X  Approved for public release; distribution unlimited 
      
       Distribution limited to U.S. Government agencies only;  
        report contains proprietary information  
 
 
The views, opinions and/or findings contained in this report are 
those of the author(s) and should not be construed as an official 
Department of the Army position, policy or decision unless so 
designated by other documentation. 

                                                                                                       



 

 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing 
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-
4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 
30/09/08 

2. REPORT TYPE 
Final Addendum  

3. DATES COVERED (From - To) 
 1 SEP 2007 - 31 AUG 2008 

4. TITLE AND SUBTITLE 
 

5a. CONTRACT NUMBER 
- 

Castration Induced Neuroendocrine Mediated Progression of 
Prostate Cancer 

5b. GRANT NUMBER 
W81XWH-04-1-0818 

 
 

5c. PROGRAM ELEMENT NUMBER 
- 

6. AUTHOR(S) 
 

5d. PROJECT NUMBER 
- 

Christopher P. Evans, M.D. 
 

5e. TASK NUMBER 
- 

 Email: cpevans@ucdavis.edu
 

5f. WORK UNIT NUMBER
- 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
 

8. PERFORMING ORGANIZATION REPORT   
    NUMBER 

University of California, Davis
Department of Urology 
4860 Y Street, Suite 3500 
Sacramento, CA  95817 
 

 
 
 
 
 

- 
 
 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 
   - 
United States Army Medical   

Research and Material Command  11. SPONSOR/MONITOR’S REPORT  
        NUMBER(S) 
  - 
12. DISTRIBUTION / AVAILABILITY STATEMENT 
 
Approved for Public Release 
 
 

13. SUPPLEMENTARY NOTES 
- 

14. ABSTRACT 
We explored the relationship between androgen withdrawal as an event that initiates a cascade 
promoting the development of androgen-independent prostate cancer through neuroendocrine 
progression.    We define the early post-castration molecular events and linked androgen-
deprivation therapy to the activation of non-receptor tyrosine kinases that promote androgen-
independent growth and migration.  We developed an animal model to validate this hypothesis 
that metastasize in SCID mice.  We found that deregulation through non-receptor tyrosine 
kinases was blocked by Src-specific inhibitor AZD0530.  We found this inhibited 100% of 
metastasis in an animal model.  The translational benefit of this study was that through a 
National Cancer Institute sponsored trial, the drug is being tested for hormone refractory 
prostate cancer.   

15. SUBJECT TERMS 
Prostate Cancer, Neuroendocrine, Progression, Androgen-Independence 

16. SECURITY CLASSIFICATION OF: 
U 

17. LIMITATION  
OF ABSTRACT 

18. NUMBER 
OF PAGES 

19a. NAME OF RESPONSIBLE PERSON 
Christopher P. Evans, MD 

a. REPORT 
U 

b. ABSTRACT 
U 

c. THIS PAGE 
U 

UU 107 
 

19b. TELEPHONE NUMBER (include area 
code) 
916-734-5154 

 Standard Form 298 (Re . 8-98) v
Prescribed by ANSI Std. Z39.18 

 



 
 
 

Table of Contents 
 

 
                                                                                                                           Page 

 

 

Introduction…………………………………………………………….…………....4 

 
Body…………………………………………………………………………………….4-9 
 
Key Research Accomplishments………………………………………….………9 
 
Reportable Outcomes………………………………………………………….. …10 
 
Conclusions………………………………………………………………………….14 
 
References…………………………………………………………………………...14 
 
 
Appendices…………………………………………………………………………..14   
          

 



Principal Investigator:  Christopher P. Evans, M.D. 

DOD Final Progress Report 2008 
 
Introduction 

We believe that androgen withdrawal is an event that initiates a cascade 
promoting the development of androgen independence through NE progression. To date 
we know of no adjuvant therapies targeting castration initiated molecular events in 
clinical practice. As such, we seek to better define these early post-castration molecular 
events. We hypothesize that a small population of neuropeptide expressing AI CaP cells 
generated by castration can support the AI survival and growth of androgen sensitive 
cells in a paracrine fashion. This concept is a novel one regarding the early propagation 
of CaP following castration. Secondly, we hypothesize that neuropeptide mediated non-
receptor tyrosine-kinase signaling activates androgen regulated genes both through AR 
and GRP dependent, and AR and GRP independent mechanisms. Demonstration of this 
concept establishes the rationale for neuropeptide pathway inhibition as singular and 
combination therapy at the time of castration.   
 
Body 
Aim 1. To determine the paracrine effect of NE cells on androgen sensitive CaP cells. 
a.   Determine the in vitro ability for NE cells to support androgen sensitive CaP cell 
survival and growth (paracrine effect) in androgen-deprived conditions.  Work on this 
section was replaced by the soft agar assay as results in soft agar are more definitive. 

 
b. Determine the paracrine effect in soft agar tumorgenesis.  LNCaP-Zeo cells 
(green) do not form colonies when plated in androgen deprived soft-agar.  Colony 
formation of LNCaP-Zeo cells (green) in soft agar assay was promoted when plated 
chimerically with LNCaP-GRP cells (red) (bottom left).  Due to the paracrine effect of 
GRP expression from the GRP cells, the androgen sensitive Zeo cells formed twenty-four 
fold more colonies in androgen-deprived soft agar compared to when growing alone.  
This stimulation may be partially inhibited by a battery of Src kinase inhibitors, PP2, 
AZM475271, and AZD0530 (bottom right). 
 

c. Determine the paracrine effect on migration in recombinant NE cells.  
Stimulation of migration of LNCaP-Zeo cells by GRP cells was assessed by scratch 
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migration assay.  This assay was conducted with the help of fluorescence tags and 
microscopes.  LNCaP-Zeo cells do not migrate in an unstimulated environment to any 
significant degree. LNCaP-Zeo-GFP migrated 1.7 fold more to the scratch region when 
plated together with LNCaP-GRP-Red cells than alone (bottom left).   MEK1 inhibitor, 
PD98059 and Src kinase inhibitors, AZM475271 and AZD0530 all partially inhibited this 
stimulated migration of LNCaP-Zeo-GFP cells (bottom right). 

 
d. Study the paracrine effect using the in vivo xenograft model with regard to growth 
and metastasis.  Co-injection of LNCaP-Zeo cells with LNCaP-GRP cells in castrated 
SCID mice produced tumors in the prostate regions.  LNCaP-Zeo cells are not normally 

tumorigenic in the in vivo castrate 
environment.  The Zeo cells were tagged 
with green fluorescence protein (GFP) and 
the GRP with red (Red).  Frozen sections 
of tumor vividly showed patches of green 
and red colors under the fluorescent 
microscope.  Taken together, both 
overexpression of GRP may stimulate 
growth of androgen sensitive Zeo cells 
both in vitro and in vivo through paracrine 
effect.  
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Aim 2. To evaluate the mechanisms of AR involvement in our NE model.  
a. Testing of inhibition of neuropeptides, signaling molecules and AR inhibitors 
individually and in combination on soft agar growth of GRP clones and xenograft cells.  
Tumors harvested from GRP implanted 

mice were re-cultured in vitro to establish xenografts termed as GRP-Pro (derived from 
Prostate).  The expression of human AR, PSA and GRP in tumor xenograft GRP-Pro was 
analyzed by RT-PCR analysis and supports the authenticity of the clones.  Soft agar assay 
using GRP-Pro showed their aggressive nature as manifested by their androgen- and 
anchorage- independent growth in 2 weeks.  This growth was partially inhibited by the 
mAb specific to bombesin, 2A11, the androgen inhibitor, bicalutamide, and in 
combinations (with significant difference p≤ 0.05) supporting that the growth is 
dependent on both the neuropeptide GRP and AR.  When synthetic androgen was added 
with 2A11, the colony formation ability of GRP-Pro resumed to a level similar to control.  
This further supports the overlapping effect of GRP and AR to the growth of GRP-Pro.    
Based on the tyrosine kinase display, Src kinase is present in LNCaP cells and involved 
in signaling via phosphorylation upon bombesin stimulation.  Src kinase was 
constitutively active in LNCaP GRP and its xenograft GRP-Pro when cultured in 
androgen-free CS serum media.  We thus subjected growth of LNCaP GRP-Pro to the 
inhibitors for Src kinases, AZM475271 from AstraZeneca and PP2.  Since MEK1/2 is 
downstream to Src activation, we also tested the effect of PD98059.  Finally, we included 
the MAPK P38K inhibitor SB203580 because P38 displayed activation in LNCaP cells 
upon androgen withdrawal.  All kinase inhibitors tested decreased the growth 60-80% of 
control, with significant differences (p≤ 0.05).  This suggests that the androgen-
independent growth of GRP-Pro involves both Src and MEK in a GRP stimulated AR-
dependent manner. 
 
The mechanisms of neuropeptide-mediated AR activation were then investigated in more 
detail.  We performed chromatin immunoprecipitation (ChIP) assay and discovered that 
bombesin-stimulated AR binds preferentially to the proximal ARE site in the promoter 
region rather than the enhancer region bound by the androgen-stimulated AR.  GRP-Pro 
cells constitutively expressing GRP have the AR occupied on the proximal ARE 
constantly.  This bombesin/GRP-stimulated preferential binding of AR to the proximal 
site of the PSA promoter is assisted by the AR co-activator ACTR 30 min from addition 
of bombesin. 
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As reported last year, growth of GRP cells in soft agar may be inhibited by the specific 
Src inhibitor AZD0530.  We performed a dose-response growth inhibition curve using 
GRP-Pro cells grown in CS media and treated with various doses of AZD0530.  The 
IC50 for this inhibition is slightly higher than 1 µM.  The LNCaP GRP cell lines have 
demonstrated promoted migratory activities than their parental cells.  Src kinase inhibitor 
AZD0530 inhibits the migration assayed by the Boyden chamber assay to the levels 
similar to the basal activity in the LNCaP cells. 
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LNCaP GRP cells showed 
translocalization of AR into 
the nuclei in the absence of 
androgen stimulation (in 
CS growth media) 
compared to the mock-
transfected LNCaP Zeo 
cells.  Addition of Src 
kinase inhibitor AZD0530 
abolished the AR nuclear 
translocalization as shown 
in the left.  This result 
suggests that AR is 
activated through autocrine 
stimulation of GRP that is 
dependent of Src activation.  

We surveyed the status  
of Src and FAK in the LNCaP and GRP subclones and found similar levels of 
phosporylated Src and FAK kinases.  However, when these two kinases were co-
immunoprecipitated by anti-FAK antibodies, stronger phospho-Src levels were detected 
in GRP subclones than their mock control Zeo cells.  These findings confirm our 
hypothesis that in the absence of AR, bombesin/GRP bind to their receptors, activate Src 
and FAK kinases in the complex and activate AR through phosphorylation. 
 
b. Small hairpin RNA (shRNA)-based silencing of NE cells in vitro and in vivo. We 
are in the process of designing the shRNA.  Once we get the shRNA construct, we will 
start experiments in this section.  We have requested the no-cost one-year extension to 

complete this and the in 
vivo study. 
 
c. Testing of 
inhibitory treatments on 
chimeric tumors in soft 
agar and in vivo.  We 
have demonstrated 
inhibition of paracrine 
migration.  We are 
presently testing 
inhibition of chimeric 
tumor growth and 
metastasis in vivo. 
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d. In vivo testing of inhibitory treatments at different time points.  Since we have 
identified Src kinase as the key player in neuropeptide-mediated AR activation, we tested 
the effect of Src kinase inhibitor 
AZD0530 in vivo with LNCaP GRP-
Pro cells.  After almost two months of 
AZD0530 administration to castrated 
mice injected with LNCaP GRP-Pro 
cells, we observed a complete 
inhibition of metastasis by AZD0530.  
Although inhibition of primary tumor 
growth was not significant as reported 
by other researchers working on 
various cancers, AZD0530 
demonstrated potent inhibition on 
tumor metastasis.  None of the treated 
animals had metastases to regional 
lymph nodes but both surviving control animals did.  The PSA, tumor weight and 
metastasis data are summarized in the control and treated animals below. 

 
 
Other Research Accomplishments 
 We have characterized the expression of the NE induced expression of src, FAK 
and STAT3 in all major prostate cancer cell lines.  We have also validated the action of 
Src kinase inhibitor AZD0530 through the Src signaling pathway in two androgen-
independent prostate cancer cell lines PC-3 and DU-145 by examining the status of 
phosphorylation of the downstream kinases and substrates.  Through this study, we have 
identified the molecular mechanism of AZD0530.  In vivo inhibitions of tumor 
progression by AZD0530 are also underway.  These data were recently published in 
Oncogene (Aug 4, 2008, epub). 
 We have determined the downstream signaling cascades from NE activation and 
delineated the effect of a novel oral src kinase inhibitor AZD0530 at these signaling 
points.  This data is under revised review for publication in Cancer Research.   
 
Key Research Accomplishments 

We have demonstrated that Src kinase is the key player in neuropeptide-mediated 
AR activation.  Together with our studies in the chimeric growth of androgen-sensitive 
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and androgen-insensitive cells, we are more confident with our proposed hypothesis.  A 
paracrine effect exists for androgen insensitive CaP cells to support the survival and 
proliferation and migration of androgen sensitive CaP cells in a castrated environment.  
We have further delineated the impact of NE differentiation in prostate cancer.  Most 
importantly, the NCI CTEP has selected AZD0530 for clinical trials, to include AICaP 
and based upon the above data, we were awarded this trial. Also, another Phase II 
AZD0530 international trial is underway in patients with prostate and breast cancer with 
bone metastases. 
 
Reportable Outcomes 
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prostate cancer. European Journal of Cancer 2(8) p.121, No. 405. (NCI/AACR/EORTC 
joint Molecular Therapeutics in Cancer meeting, Geneva, Switzerland). 
2.  2005   Yang, J.C., Busby, J.E., Kung, HJ, Evans, C.P. Src inhibition of neuropeptide-
induced androgen-independent prostate cancer. Proceedings of the American Association 
for Cancer Research, 46: p.748, No. 3180. 
3.  2005  Evans, C.P., Busby, J.E., Kung, HJ, Yang, J.C. Androgen-sensitive prostate 
cancer survival and progression is supported by neuroendocrine prostate cancer cells.  
Proceedings of the American Association for Cancer Research, 46: p.1033, No. 4369. 
4. 2005 Yang, J.C., Busby, J.E., Kung, HJ, Evans, C.P. Src kinase inhibition of 
neuropeptide-induced androgen-independent prostate cancer. Proceedings of the 
American Urological Association, 173: p.127, No. 464. 
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review.  Prostate Cancer and Prostatic Diseases, 7:93-8. 
2. 2004  Penson, D.F., Moul, J.W., Evans, C.P., Doyle, J.J., Gandhi, S., Stern, L, 
Lamerato, L. The economic burden of metastatic and prostate specific antigen 
progression in patients with prostate cancer: findings from a retrospective analysis of 
health plan data. J. Urol., 171:2250-2254. 
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STATEMENT: REDEFINING THE MANAGEMENT OF HORMONE-REFRACTORY 
PROSTATE CARCINOMA.  Cancer 2005;103:11-21. 
6. 2005  Evans, C.P., Fleshner, N., Fitzpatrick, J. and Zlotta, A. An evidence based 
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1.  2006   Chang, Y-M., Bai, L.,Yang, J.C., Kung, H-J., and Evans, C.P. Survey of Src 
activity and Src-related growth and migration in prostate cancer lines. Proceedings of the 
American Association for Cancer Research, 47: 2505. 
2.  2006   Yang, J.C., Bai, L., Kung, H-J., and Evans, C.P. Androgen-sensitive prostate 
cancer survival and progression is supported by neuroendocrine prostate cancer cells. 
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AZD0530.  Proceedings of the American Urological Association, 177: p.221, No. 659. 
 
Publications 2007 
1.  2007   Nelson, E.C., Cambio A.J., Yang, J.C., Ok, J., Lara, P.N., Evans CP.  Clinical 
Implications of Neuroendocrine Differentiation in Prostate Cancer. Prostate Cancer and 
Prostatic Diseases. 2007;10:6-14. 
2.  2007   Nelson, E.C., Evans C.P., Lara, P.N. Renal cell carcinoma: current status and 
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Conclusions 
 We have made headway into understanding the paracrine relationship between 
neuropeptide expressing, androgen-insensitive CaP cells and their ability to support the 
proliferation and migration of androgen sensitive CaP cells.  Critically, we have 
identified src kinase as a molecule central to the process.  We have been awarded a NIH 
CTEP phase II trial to study a novel, oral src kinase inhibitor AZD0530 in androgen-
insensitive prostate cancer patients based upon our work. We also are involved in a Phase 
II trial to evaluate AZD0530 in prostate and breast cancer patients with bone metastasis. 
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REVIEW

Clinical implications of neuroendocrine differentiation in

prostate cancer

EC Nelson, AJ Cambio, JC Yang, J-H Ok, PN Lara Jr and CP Evans

Department of Urology, Davis Medical Center, University of California at Davis, Sacramento, CA, USA

The cellular signaling pathways of the prostate play a central role in the induction, maintenance,
and progression of prostate cancer (CaP). Neuroendocrine (NE) cells demonstrate attributes that
suggest they are an integral part of these signaling cascades. We summarize what is known
regarding NE cells in CaP focusing on NE cellular transdifferentiation. This significant event in
CaP progression appears to be accelerated by androgen deprivation (AD) treatment. We examine
biochemical pathways that may impact NE differentiation in a chronological manner focusing on
AD therapy (ADT) as a central event in inducing androgen-independent CaP. Our analysis is
limited to the common adenocarcinoma pattern of CaP and excludes small-cell and carcinoid
prostatic variants. In conclusion, we speculate on the future of treatment and research in this area.
Prostate Cancer and Prostatic Diseases (2007) 10, 6–14. doi:10.1038/sj.pcan.4500922; published online 31 October 2006

Keywords: androgen-independent prostate cancer; hormone refractory; neuroendocrine cells;
neuroendocrine differentiation

Introduction

Prostate cancer (CaP) is the most common non-cutaneous
malignancy in American men and is predicted to be the
third leading cause of cancer deaths for 2006.1 Although
local therapy for CaP is relatively effective, androgen
deprivation therapy (ADT) remains the mainstay of
treatment for disseminated disease and is principally
palliative in nature. Introduced in the 1940s,2 ADT
removes androgen stimulation, initially inducing apop-
tosis in CaP. However, the disease eventually progresses
to an androgen-independent (AI) state with an asso-
ciated life expectancy of only 15–20 months. Despite
continuous research efforts, limited progress has been
made in the treatment of advanced CaP in the last 50
years and life expectancy associated with metastatic
disease has not changed significantly.3 ADT, while
extending length and quality of life for many patients,
also induces biological changes in CaP that may promote
progression to an AI state.

The role of prostatic neuroendocrine (NE) cells in this
biologic process has recently become the focus of much
attention. Known changes in the number, histology, and
functions of NE cells during CaP progression indicate
that they may play a regulatory role. The fact that the
majority of NE cells may not exhibit androgen receptors
(ARs) is of special interest in the androgen-deprived

patient.4,5 In these patients, NE cells may allow con-
tinued CaP growth through paracrine stimulation of
neoplastic epithelial cells. Indeed, mitogenic and onco-
genic activity has been demonstrated for many of the
factors NE cells are known to produce.

The purpose of this review is to summarize the latest
developments in understanding the role of NE cells in
the normal prostate, in CaP, and the effects on potential
treatment modalities related to this. Data suggest that
ADT may facilitate NE differentiation (NED) and thereby
accelerate cellular mechanisms that contribute to the AI
state. This review will be structured chronologically
around this central event.

NE histology and differentiation

The normal prostate contains a glandular epithelium
within intervening fibromuscular stroma. The epithe-
lium can be further subdivided into tall columnar
cells that secrete into the lumen of the gland, and
cuboidal cells forming a basal layer against the base-
ment membrane. A third type of epithelial cell was first
described by Pretl in 1944.6 These cells are identified by
their neurosecretory granules and expression of neuron
peptide hormones such as bombesin/gastrin-releasing
peptide (GRP), neurotensin (NT), serotonin, calcitonin
and parathyroid hormone-related peptide (PTHrP).7,8

Based on these findings, they were labeled NE cells, part
of the larger amine precursor uptake and decarboxy-
lation (APUD) lineage.

In other organs, the origin of NE cells has been shown
to be endodermal stem cells,9,10 and a similar model was
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thought to apply to prostatic NE cells. Bonkhoff et al.11

demonstrated a possible development progression
for NE cells from stem cells using immunohisto-
chemical staining to demonstrate intermediate pheno-
types. Recently, neural crest cells have re-emerged as the
putative source for NE cells.12 Although disagreement
exists regarding the embryonic source of NE cells in the
prostate, it is clear that prostatic epithelial cells are
remarkably plastic and have the capability to differenti-
ate into NE cells. As described below, the NE cells
associated with CaP are phenotypically dissimilar to
normal NE cells and function in different ways leading
to the conclusion that they probably emerge from
transdifferentiation of epithelial cells rather than malig-
nant NE precursors.

Normal function of NE cells

Many secreted types of NE granules are identified by
immunohistochemical staining and indicate that differ-
ent subsets of NE cells exist. This introduces much
complexity to the question of their normal function. A
general understanding may be obtained by comparisons
to NE cells in other organ systems and examination of
the individual products secreted by prostatic NE cells.

Prostatic NE cells are part of a larger histological genre
known as the APUD system, present in many organs
of the body. For example, stomach D cells and G cells
produce somatostatin and gastrin, respectively, and
many intestinal NE cells secrete various hormones that
regulate gut function. In a similar way, it may be inferred
that the factors produced by prostatic NE cells regulate
prostatic growth, function, and cellular differentiation.
Indeed, many of the factors shown to be produced by NE
cells are known to support growth and differentiation in
the prostate (Table 1). For example, bombesin/GRP
receptors are members of the superfamily of hetero-
trimeric G-protein-coupled transmembrane-spanning
receptors.13 Binding of these receptors elicits calcium
mobilization, thereby promoting growth and cell inva-
siveness through proteolytic activities in cell lines.14–17

If NE cells exert regulatory control over prostatic
tissue, the question arises as to what regulates the NE
cells. Although some NE cells may express AR,18 many
are AI as they do not contain ARs.4,5 However, they do
have receptors for epidermal growth factor (EGF) and
ErbB2, which suggests they are controlled more by local
growth factors from the prostatic stroma than systemic
hormones.19 The expression of the EGF receptor itself is
under the control of PTHrP produced by both epithelial
cells and NE cells. It has been reported that interleukin

(IL)-1b and IL-6 upregulate CgA expression in CaP cell
lines,20 and IL-6 has been shown to induce morphologic
change toward an NE phenotype in epithelial cells.21

To summarize, NE cells express potent neuropeptides
that mediate diverse biological processes such as cell
growth, differentiation and transformation. In addition,
their morphology and distribution within the prostate
epithelium suggest a regulatory role similar to APUD
cells in other organs of the body. In contrast to other
epithelial cells, they are generally AR negative and
probably rely on paracrine growth factor control.

Role of NE cells in early CaP

The NE cells in CaP appear morphologically different
than those seen in benign tissue and co-express epithelial
markers such as prostate-specific antigen (PSA) and NE
markers (CgA).22,23 It is believed that these cells are the
result of transdifferentiation of epithelial cells.24 Such
NED has been experimentally demonstrated in several
CaP cell lines using cyclic AMP (cAMP), epinephrine,
forskolin, the cytokines IL-1 and IL-6, and as will be seen
later, AD conditions.20,21,25,26 These changes were shown
to be reversible when the substances were removed,27

emphasizing the incredible degree of plasticity exhibited
by prostatic epithelial cells. Based on this likely mechan-
ism for generating malignant NE cells, some NE cells
may express neuropeptide growth factors before chan-
ging morphologically and/or expressing CgA, NSE, etc.
In support of this, Iwamura et al.28 showed increased
PTHrP in high-grade prostatic intraepithelial neoplasia
before much NED had taken place as measured by
common NE markers.

NED is very common in CaP specimens. For example,
Bostwick et al.29 reported a prevalence of 92%. Although
wide ranges have been reported (30–100%), this is
probably due to different sampling techniques and
testing methods.30 Several varieties of prostatic NED
have been described. Two very rare types are small-cell
carcinoma and carcinoid tumor, both of which express
large numbers of malignant NE cells. The most common
type is the typical adenocarcinoma with individual NE
cells surrounded by small foci of epithelial CaP cells.
This arrangement (Figure 1) suggests that the NE cells
are producing growth factors supporting surrounding
(proliferating) cells.31,32

The prognostic significance of NED is controversial.
Many studies before 1990 showed a worse prognosis
with increasing NED, but subsequent examinations
failed to find any correlation independent of tumor

Table 1 Selected NE cellular products

Products Action in CaP References

Calcitonin gene family Growth modulation, in vitro resistance to apoptosis, stimulates PTHrP release 45,66

GRP AI growth factor, mediates migration, in vitro resistance to apoptosis, activates NF-kB 66,94,95

Neuropeptide Y Possible angiogenic effect through MAP kinase 96

Parathyroid hormone-related protein Mitogenic, regulates EGF receptor, overexpressed early in CaP 28,77

Proadrenomedullin N-terminal peptide Angiogenesis and GRP actions through GRP receptor binding 97,98

Serotonin Mitogen, facilitates AI growth 24,66,99

VEGF Angiogenesis, promotes growth and motility in AI manner 48,100

Abbreviations: AI, androgen-independent; CaP, prostate cancer; GRP, gastrin-releasing peptide; MAP, mitogen-activated protein; NF-kB, nuclear factor-kappa B;
PTHrP, parathyroid homone-related peptide; VEGF, vascular endothelial growth factor.
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grade or androgen responsiveness.7 The controversy
continues with some recent studies showing an inde-
pendent negative correlation between serum CgA and
survival in AI CaP,33,34 but others showing no prognostic
correlation,35 or improved outcomes with higher CgA.36

These authors all agree that the serum CgA continues to
be a valid marker of progression, but the complex
biology of NED makes direct correlation with prog-
nosis difficult. Cussenot et al.37 studied CgA and NSE
serum levels in CaP patients before ADT. Although most
elevations of serum markers were found in AI tumors,
some were not, leading them to theorize a role for
NED in the progression of CaP before AD. Their

study corroborated findings by Hoosein et al.38 that
NED markers correlated more with metastasis than
locally advanced disease.

The role of NE cells in the development and progres-
sion of CaP is suggested by their central role in cell
signaling pathways and several of these will be
briefly outlined including bombesin/GRP, serotonin,
PTHrP and possible pathways involved in angiogenesis
(Figure 2). A negative regulator of proliferation, soma-
tostatin, will also be discussed.

Bombesin/GRP is a potent mitogenic neuropeptide
shown to stimulate CaP growth in cell culture,39

probably through its ability to induce c-fos and c-myc,
thereby deregulating the cell cycle.40 GRP receptors are
known to be distributed throughout the human prostate
and Markwalder and Reubi41 showed they are over-
expressed in CaP. Bombesin/GRP also causes CaP cell
lines PC-3 and LNCaP to acquire greater invasive
potential.42

Serotonin is produced by most NE cells and is known
to be associated with malignant transformation.7,43

Dizeyi et al.44 showed several types of serotonin
receptors exist in CaP tissue and cell lines. Higher grade
cancer was shown to express a greater number of
receptors and tissue growth was regulated by serotonin
agonists and antagonists. The pathways by which
serotonin acts are complex due to multiple receptor
binding capabilities. It has been suggested that serotonin
may be related to the potent oncoprotein ras10 down-
stream from EGF receptors.

PTHrP is predominantly expressed in fetal tissues
but is also produced by NE cells. It is overproduced by
CaP tissue lines and can stimulate growth in a paracrine
manner.45 PSA cleaves PTHrP destroying its ability to

Figure 1 NED in Gleason 7 CaP specimen (courtesy of Dr
Gandour-Edwards).
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Figure 2 Summary of possible pathways involving NE cellular products in the development and progression of CaP. Neuropeptides
activate G-protein-coupled receptors activating Src and NF-kB. In addition to their direct downstream effects, they may transactivate growth
factor receptors. Abbreviations: CAM, cell adhesion molecule; EGFR, epithelial growth factor receptor; ERK1/2, extracellular signal-regulated
kinase 1/2; FAK, focal adhesion kinase; GPCR, G-protein-coupled receptor; NF-kB, nuclear factor-kappa B; RTK, receptor tyrosine kinase;
VEGF, vascular endothelial growth factor.
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bind receptors. This has led to the suggestion that as PSA
expression decreases with ADT and CaP progression,
PTHrP’s growth-promoting activity increases.19

Angiogenesis is a necessary component of neoplastic
growth because of increased energy requirements.
NED is correlated with overall microvessel density in
CaP. In addition, increased microvessel density is seen
surrounding areas of NED and this effect is independent
of tumor grade.46 Several products of NE cells are
possible mediators of this effect. Vascular endo-
thelial growth factor (VEGF) is produced by some
NE cells,47 and VEGF staining NE cell density correlates
with microvessel density.48 Although bombesin/GRP
probably does not directly stimulate angiogenesis
through tyrosine kinases,49 it may stimulate the nuclear
factor-kappa B (NF-kB) angiogenesis pathway or
enhance the angiogenic effects of growth factors by trans-
activating the EGF receptor.50–52 The fact that the EGF
receptor is overexpressed in CaP may enhance
this effect.53

Somatostatin is the one neuropeptide that may have a
restraining influence upon prostatic growth and possibly
neoplastic transformation. NE cells not only produce
somatostatin, they also have receptors indicating auto-
crine as well as paracrine function.54 In CaP cells,
somatostatin induces cell-cycle arrest and apoptosis,55

perhaps through receptor type 3, which induces Bax.56

Somatostatin may inhibit neovascularization and pro-
static growth both directly and through indirect
effects mediated by insulin-like growth factor (IGF)-1.
Somatostatin decreases growth hormone (GH) release
by the liver, which in turn decreases IGF-1 release.56

Acromegalic patients have increased GH and IGF-1,
and the somatostatin agonist octreotide has been
shown to decrease prostate size in a cohort of these
patients.57

To summarize, NE cells express potent neuropeptides
that mediate diverse biological processes such as cell
growth, differentiation, transformation and invasion.
Although NE cells do not stain for proliferative
antibodies, they may be a source of paracrine factors
that support CaP growth and progression. All of these
complex interactions between signal-transduction path-
ways are undoubtedly involved in prostatic homeostasis.
This fine balance may be disturbed not only by pre-
existing genetic faults but also via environmental toxins
and carcinogens, diet, and the stress response, all of these
acting through the microcellular hormonal milieu. Many
of these microcellular environmental pathways converge
through G-protein-coupled receptors via cAMP, protein
kinase A and tyrosine kinases to activate mitogen-
activated protein (MAP) kinases. Increasing aberrant
activation of these pathways is independent of andro-
gens, utilizing instead a complex interplay between
classical growth factors and neuropeptides.

NE cells during ADT

The current treatment of metastatic CaP consists of
medical or surgical AD. The prostatic microenviron-
mental conditions brought on by ADT apparently play a
central role in the progression of CaP to the AI state. NE
cells are thought to play an important part in effecting

this change based on several lines of evidence from both
in vitro and in vivo studies.

Jongsma et al.58 demonstrated that PC310 cells differ-
entiate along NE lines when they are androgen deprived.
AD of LNCaP cells results in NED (Figure 3), with the
addition of IL-6,21 IL-859 and neuropeptides.60 Human
prostatic epithelial cells are similarly plastic and undergo
NED in an AD mouse xenograft.61 CaP patients treated
with ADT demonstrate higher levels of CgA compared to
androgen normal controls.62 When patients undergo
surgical resection, prostatic specimens showed signifi-
cantly increased NED in patients treated with neo-
adjuvant ADT compared to surgery only.63 Examination
of gene expression shows higher levels of CgA mRNA in
androgen-deprived CaP vs benign tissue.62

Feldman and Feldman64 have described a system
for classifying mechanisms of AI growth during ADT
into five categories. These are by no means mutually
exclusive and may all be operative. Two of their
categories form a useful framework for discussing the
various possible actions of NE cells in the larger tissue
microenvironment, specifically their possible role in
supporting AI growth of CaP epithelial cells.

The ‘outlaw receptor pathway’ causes androgenic
effects via crosstalk between the AR and other signaling
pathways. The final common pathway for these effects
seems to be phosphorylation of residues on the AR
causing activation of downstream effects, probably
through stimulation of MAP kinase.59,65 Theoretically,
these signaling pathways can be activated by various
biogenic amines produced by NE cells.7 Jongsma et al.66

showed that some androgen-depleted CaP cell lines can
proliferate when stimulated by GRP, a neuropeptide
produced by NE cells.

The gradual shift of normal to uncontrolled stimula-
tion of proliferation may be accelerated by ADT through
stimulation of greater growth factor production as
shown by Culig et al.67 for EGF. Alternatively, decreased

-- androgensandrogens

+ IL+ IL -- 66

+ androgen+ androgen

Figure 3 Morphological changes in LNCaP undergoing NED. In
the presence of androgen, cells show normal fusiform morphology
with unbranched cellular processes. Under AD conditions, cell
bodies become compact and cellular processes lengthen and
demonstrate a branching morphology.
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binding protein production may increase available
growth factors. Androgens may regulate bioavailability
of neuropeptides through regulation of binding proteins
as has been shown for IGF/insulin-like growth factor-
binding protein (IGFBP).68,69

The ‘bypass pathway’ includes mechanisms that no
not require androgens or the AR. The inhibition of
apoptosis is an important mechanism for the progression
of neoplasia and several mechanisms in CaP have been
studied. Bcl-2 is a gene product that blocks apoptosis and
is not normally expressed by prostate epithelium.70 The
expression of this gene directly correlates with androgen
responsiveness and has been shown to be induced
upon ADT in a mouse xenograft model.71,72 Epithelial
cells surrounding NE cells have higher levels of Bcl-2,
suggesting that the microcellular environment produced
by them induces greater cell survival.73 In addition,
the NE cells express survivin, another antiapoptotic
substance.74

Growth factors may not only promote growth
through outlaw receptor pathways, they may also inhibit
apoptosis. Neuropeptides endothelin-1, bombesin,
and growth factor IGF-1 activate the IGF-1 receptor,
which phosphorylates AKT, a serine/threonine kinase.
Activated AKT induces a strong antiapoptotic cellular
signal.75 The activity of AKT is opposed by PTEN
(phosphatase and tensin homolog) and loss of PTEN
is correlated with high-grade CaP.76 If IGF-1 activity
is increased because of the AD-mediated decrease in
IGFBP, the AKT pathway would overcome the inhibition
of PTEN even if it has not been lost to mutation.
Activation of the AKT pathway is probably important in
AI progression.77

To summarize the role of NE cells in the AI state, it
has been demonstrated that the products of NE cells
stimulate AI growth and increasing anaplasia. All CaP
cells from cell lines and patient samples have receptors
for bombesin or NT.41 PC-3 cells display a growth
response to NT16 and invasive/motility responses to
bombesin.17,42,78 Elevated expression of GRP receptors
are found in CaP specimens.41,79 Likewise, androgen-
sensitive LNCaP cells were shown to become invasive
after bombesin treatment.42 These and other findings
suggest that NED of CaP cells may be a central link in
supporting AI CaP growth under AD conditions.

NE cells after ADT

Following ADT, NE features are an independent
prognostic factor for progression of CaP.80 Following
neoadjuvant ADT, surgical specimens showed greater
NED compared to non-treated controls.63 In a retro-
spective study of CaP patients treated with chemother-
apy, Cabrespine et al.35 showed that CgA serum levels
following ADT were independently related to treatment
duration and were helpful in assessing patient response
to chemotherapy.

It is unlikely that ADT always initiates NED or that
this is an important feature in all CaP patients. However,
if it is true that ADT of CaP tends to promote NED and
supports continued progression of the tumor towards AI,
then the natural question arises, can CaP associated with
NED be treated?

Treatment

Treatment of AI CaP is the focus of intense research.
Only those strategies that directly impact NE cellular
signaling will be discussed here. These treatments
can be separated into adjunctive and salvage categories.
The former combines with ADT to prevent NED from
taking place, while the latter attempts to block the
biochemical pathways that result from existing NED
tumors.

Adjunctive treatment strategies are very limited. We
are not aware of any currently used adjunctive medica-
tions intended to prevent NED. So far, the only
treatments intended to do this involve variations in the
method or temporal aspects of AD. Sciarra and Di
Silverio81 have randomized patients with biochemical
progression following prostatectomy into two mono-
therapy groups: medical castration or antiandrogen.
They showed a significantly lower CgA level in the
group treated with antiandrogen, although both groups
showed significant increases.

Intermittent androgen deprivation (IAD) was devel-
oped as an attempt to delay the biochemical events that
lead to AI during continuous ADT. The known side
effects of ADT and concern for quality of life in advanced
CaP have also fueled interest. At least one study has
shown that IAD may also prevent or delay NED in
locally advanced disease when compared to CAD.82

Metastatic disease also showed a trend toward lower
serum CgA levels.

There are many treatments attempting to inhibit NED
or at least block pathways NE cells use to drive CaP
progression. Three known pathways that have excited
interest are bombesin/GRP, serotonin and somatostatin.
Antibodies against bombesin/GRP were shown to
inhibit prostate cell line growth through MAP kinase
pathways.83 Several studies have shown in vitro inhibi-
tion of CaP growth using serotonin inhibitors.44,84,85

Somatostatin has been used for various endocrine
tumors for some time with varied success.7 The actions
of somatostatin in CaP are more complex and the
treatment effect may be through secondary mediators
such as decreasing certain growth factors from NE
cells.86 In addition, multiple somatostatin receptor types
exist and different medications show different affinities.
A recent review of the literature including seven studies
using somatostatin analogues as monotherapy showed
‘negative results’.87 Direct growth factor antagonists of
many varieties have been tested with mixed results. For
example, suramin binds several growth factors and has
shown moderate activity in CaP.88

Targeting downstream effectors of the pathways listed
above may allow inhibition of multiple growth factors
with one treatment. Src, a non-receptor tyrosine kinase
activated by G-protein-coupled receptors, activates sig-
nal transducers and activator of transcription 3, which
in turn activates transcription of VEGF, cyclinD1 and
c-myc. Research at our institution has demonstrated
the importance of Src as a central signal-transduction
molecule in NED.60 An NCI-sponsored phase II trial of
the Src inhibitor AZD0530 as treatment for AI CaP is
planned to start by early 2007.

Another indirect method of targeting growth factors
is growth hormone-releasing hormone (GHRH) anta-
gonists. These medications have recently undergone
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improvements in efficacy and duration of action and
have shown activity in vitro and in xenografts.89

Several combination therapy protocols have been
used. GHRH antagonists in conjunction with bombesin/
GRP antagonists showed additive interference with IGF
and EGF pathways in PC-3 cell lines and xenografts.89

The authors suggest this may allow future adjuvant use
of these types of medication. Sciarra et al.90 suggest that
somatostatin may influence the microenvironment in
which CaP cells reside, allowing other treatments to
more effectively destroy the malignancy. Recognizing the
direct cytotoxic effects of estrogen on CaP,91 they used
the somatostatin agonist lanreotide in combination with
ethinyl estradiol, theorizing a synergistic effect. Fourteen
of 20 stage D3 patients demonstrated extended response
time and symptomatic improvement. In addition, serum
CgA decreased significantly, suggesting that a decrease
in NE cell number or activity may be partially respon-
sible for their results.

Chemotherapy targets dividing cells to induce geno-
mic damage and apoptosis. Although NE cells are
typically thought to be post-mitotic,5 at least one paper
claims otherwise.92 Modern chemotherapy regimens
may be useful according to a recent report,35 which
demonstrated significant decreases in CgA in treated AI
CaP patients.

One tremendous difficulty in developing new treat-
ment strategies is assessing effectiveness in reaching the
intended target. The focal nature of NED makes direct
tissue analysis less accurate than serum markers such
as CgA.93 However, all currently used serum markers
are expressed by non-NE cells and therefore are affected
by overall prostatic tissue volume rather that only NE
cell number. Measuring patient outcomes, although
helpful in identifying useful treatments, gives no
information on specific pathways. Development of new
markers for NED is a needed area of research. Other
potential methods include radiolabeled monoclonal
antibody imaging studies such as somatostatin receptor
scintigraphy. Non-invasive visualization of various
receptors in NE tissue shows great promise in treatment
assessment.

Conclusions

In summary, AR-negative NE cells are present in normal
prostatic tissue and may play a role in supporting initial
neoplastic changes. ADT may induce microenvironmen-
tal changes that increase the activity of these cells. It is at
least certain that they are selected for due to the lack of
androgen. NE cells are capable of inducing transdiffer-
entiation toward an NE phenotype in surrounding
epithelial cells. The substances excreted by the increasing
number of NE cells support the proliferation of existing
CaP in an AI manner progressively increasing indepen-
dence from androgen control. Greater understanding of
these early post-castration molecular events will allow
targeted adjunctive treatment of NED, thus decreasing
the number of CaP cells that escape from hormonal
control. New markers and associated imaging techniques
for NED will allow molecular expression profiling, thus
individualizing treatment based on the patient’s unique
microcellular environment.
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Abstract

BACKGROUND: Carcinoma of the prostate (CaP) is the

most commonly diagnosed cancer in men in the United

States. Signal transduction molecules such as tyrosine

kinases play important roles in CaP. Src, a nonreceptor

tyrosine kinase (NRTK) and the first proto-oncogene

discovered is shown to participate in processes such

as cell proliferation andmigration in CaP. Underscoring

NRTK’s and, specifically, Src’s importance in cancer is

the recent approval by the US Food and Drug Admin-

istration of dasatinib, the first commercial Src inhibi-

tor for clinical use in chronic myelogenous leukemia

(CML). In this review we will focus on NRTKs and

their roles in the biology of CaP. MATERIALS AND

METHODS: Publicly available literature from PubMed

regarding the topic of members of NRTKs in CaP was

searched and reviewed. RESULTS: Src, FAK, JaK1/2,

and ETK are involved in processes indispensable to the

biology of CaP: cell growth, migration, invasion, angio-

genesis, and apoptosis. CONCLUSIONS: Src emerges

as a common signaling and regulatory molecule in mul-

tiple biological processes in CaP. Src’s relative impor-

tance in particular stages of CaP, however, required

further definition. Continued investigation of NRTKs

will increase our understanding of their biological

function and potential role as new therapeutic targets.

Neoplasia (2007) 9, 90–100

Keywords: Nonreceptor tyrosine kinase, prostate cancer, Src, FAK, ETK.

Introduction

Carcinoma of the prostate (CaP) is the most commonly

diagnosed cancer in American men, consisting of more

than 33% of all new cancer cases. Though many patients

are diagnosed with CaP, it has a relatively low mortality

rate when compared to other cancers. Nevertheless, it re-

mains the third leading cause of cancer-related deaths in

men in the United States, with about 27,350 estimated CaP-

related deaths in 2006 in the United States [1]. Because

CaP growth is facilitated by androgen exposure and be-

cause androgen withdrawal leads to apoptosis of CaP

cells, the current treatment of choice for recurrent or meta-

static CaP includes castration through chemical or surgical

means. Nearly all patients, however, relapse with androgen-

independent (AI) disease after androgen ablation therapy.

Ultimately, the uncontrolled growth of AI metastatic tumors

leads to patient mortality.

Tyrosine kinases (TKs) are signaling molecules well known

for their roles in human diseases such as diabetes and cancer.

Indeed, v-Src sarcoma (Schmidt-Ruppin A-2) viral oncogene

homolog (Src), a nonreceptor tyrosine kinase (NRTK), was

the first proto-oncogene discovered. More than a quarter of

a century has passed since the discovery of Src, and the

studies on TKs are coming to fruition with the development

and use of tyrosine kinase–based target-specific therapy

such as Gleevec, Iressa, and Herceptin for therapy against

chronic myelogenous leukemia (CML), lung cancer, and breast

cancer, respectively. Dasatinib, a dual Src/v-Abl Abelson mu-

rine leukemia viral oncogene homolog (Abl) inhibitor with anti-

migratory activity in prostate cancer cells in culture was recently

approved by the US Food and Drug Administration for use in

patients with CML [2]. Further underscoring the importance of

NRTKs, AZD0530 is another dual Src/Abl inhibitor that is

currently in multicenter phase II clinical trials for multiple types
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of malignancies, including prostate cancer. In this review we

will focus on each of theNRTKsandwhat is known about their

respective roles in the biological processes of cell prolifera-

tion,migration, invasion, apoptosis, and angiogenesis in CaP.

There are several NRTK families. These are classified

based on their structural similarities (Figure 1): Abl, tyrosine

kinase nonreceptor (TnK), C-terminal Src kinase (CSK),

focal adhesion kinase (FAK), feline sarcoma oncogene/

fujinami avian sarcoma viral oncogene homolog (FeS),

Janus kinase (JaK), Src, Tec protein kinase (Tec), and

spleen tyrosine kinase (SYK). Though these NRTK families

are extensively and individually reviewed elsewhere, this

Figure 1. NRTK families and their members in a guide tree. Protein sequences are obtained from Entrez Gene and aligned using Vector NTI Advance software

(Invitrogen, Carlsbad, CA). Vector NTI Advance uses the neighbor-joining method of phylogenetic tree construction by Saitou and Nei [127]. The numbers in

parentheses after each kinase reflect the calculated distance values between pairs of analyzed sequences.
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is the first time they are summarily discussed in relation

to CaP.

Profiles of NRTKs in CaP

In 1996, Robinson et al. [3] led the first attempt at profiling the

expression of TKs in CaP. Using a modified and improved

reverse transcriptase–polymerase chain reaction approach,

they identified nine NRTKs expressed in CWR22, a CaP

xenograft. NRTKs include lymphocyte-specific protein tyro-

sine kinase (LcK), v-Yes-1 Yamaguchi sarcoma viral on-

cogene homolog 1(Yes), Abl, Abelson-related gene (ARG),

JaK1, tyrosine kinase 2 (TyK2), and endothelial/epithelial

tyrosine kinase/bone marrow X kinase (ETK/BMX). Fur-

thermore, ARG was found in several other CaP cell lines,

which include PC-3, DU145, and LNCaP. In a similar study,

Moore et al. [4] used degenerate polymerase chain reaction

against conserved kinase catalytic subdomains and found

that Abl, JaK1, JaK2, and TyK2 are expressed in surgically

removed CaP tissues. In CWR22Rv1, DU145, LNCaP and

PC3 cell lines, 18 NRTKs are expressed. This was confirmed

by our internal data and also cross-referenced with several

published reports (Figure 2).

Src Family

As the first human proto-oncogene discovered, Src’s

history spans nearly a century and has been extensively re-

viewed [5–22]. Members of the Src family include B lymphoid

Figure 2. Summary of NRTK mRNA or protein expression in CWR22Rv1, DU145, LNCaP, and PC3 cell lines based on internal data and published reports. NRTK

domain drawings and domain information were derived from Simple Modular Architecture Research Tool (SMART, Heidelberg, Germany).
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tyrosine kinase (BLK), breast tumor kinase/protein tyrosine

kinase 6 (BrK/PTK6), Gardner-Rasheed feline sarcoma

viral oncogene homolog (FGR), Fyn oncogene related to

Src, FGR, Yes (Fyn), hemopoietic cell kinase (HCK), LcK,

v-Yes-1 Yamaguchi sarcoma viral-related oncogene homolog

(Lyn), Src, Src-related kinase lacking C-terminal regulatory

tyrosine and N-terminal myristoylation sites (SRMS),Yes,

and Yes-related kinase (YRK). Of these, FGR, Fyn, LcK,

Lyn, Src, and Yes are expressed in either CaP tumor samples

or cell lines. Src, FGR, Fyn, LcK, and Lyn in particular have

been the most widely studied in CaP.

Src The premier member of its namesake family, Src is

extensively studied in cancer biology. Less is known, how-

ever, about Src biology in CaP. Though there are no pub-

lished reports of Src expression or activation levels in clinical

CaP specimens, Src is implicated in CaP through its asso-

ciation with factors that correlate positively with the pres-

ence or the progression of CaP disease, such as protein

kinase C (PKC) q, endothelial-derived gene 1 (EG-1), and

a truncated form of c-kit [23–25]. As further evidence of

Src’s possible involvement in CaP, DRS, a negative Src

regulator, is down-regulated in CaP tissues and in prostate

intraepithelial neoplasia relative to normal and benign pros-

tate hyperplasia (BPH) tissues [26]. Thus, there is circum-

stantial clinical evidence that Src plays a role in CaP through

its interactions with other factors of significance in CaP.

More is known about Src inCaP in vitro. Src is expressed in

commonly used CaP cell lines CWR22Rv1, DU145, LAPC-4,

LNCaP, and PC-3 (Figure 3). At first glance, Src protein

expression levels in CaP cell lines do not positively corre-

late with the aggressiveness, AI state, or the proliferation

rates of these cell lines. It is important to note, however,

that wild-type cellular Src is not normally constitutively ac-

tive. Its main role is to transduce signals of upstream activa-

tors. In cancer, the upstream signals may be aberrant, thus

leading to improper activation of Src and its downstream

pathways. One such pathway in CaP is Src activation by

neuroendocrine ligands [27].

Neuroendocrine differentiation in CaP is theorized to be in

part responsible for the development of AI CaP through the

secretion of neuroendocrine ligands. There is evidence that

Src takes part in AI cell proliferation. Cyclic adenosine mono-

phosphate (cAMP) analogs are able to activate Src fol-

lowing neuroendocrine differentiation, perhaps secondary to

secreted neuroendocrine factors such as gastrin-releasing

peptide and lysophosphatidic acid (LPA) [28–31]. LPA is

thought to promote cell proliferation through the v-Ha-ras

Harvey rat sarcoma viral oncogene homolog (Ras)–v-raf-1

murine leukemia viral oncogene homolog 1 (Raf)–ERK1/2

pathway in Src-dependent fashion. Bombesin, a Xenopus

gastrin-releasing peptide homolog, can also activate ERK1/2

through Src, possibly through epidermal growth factor (EGF)

receptor transactivation [32]. Once ERK1/2 has been acti-

vated, it can then activate the androgen receptor (AR) in an

AI manner, which promotes cell growth [27,33]. In addition

to LPA and bombesin, non-neurotrophic factors such as

interleukin-8 (IL-8) and insulin-like growth factor-1 (IGF-1)

also promote AI cell growth through Src [34,35].

In addition to cell proliferation, Src also takes part in

antiapoptotic pathways in CaP. Bombesin, endothelin

(ET1), met proto-oncogene (Met), and dihydrotestosterone-

activated AR all inhibit apoptosis through Src activation

[26,36–38]. There is, however, no consensus mechanism

by which Src promotes cell survival. Nuclear factor nB
(NF-nB)–v-akt murine thymoma viral oncogene homolog 1

(Akt)–p21-associated kinase 1 (PAK1) pathway, MEK1/2–

ERK1/2–CREB pathway, and signal and transducer of

transcription 3 (STAT3)–dependent down-regulation of

B-cell lymphoma leukemia (BCL-xL) and myeloid cell leuke-

mia sequence 1 (MCL-1) are all pathways by which Src

inhibits apoptosis [39].

Src is involved in other aspects of CaP biology: cell migra-

tion and adhesion. Src interacts with the extracellular signals

through the IL-8 receptor, Met, b1 integrins, Kangai 1/cluster

designation 82 (KAI1/CD82), and CD44 [23,34,40,41]. CD44

is a cell surface glycoprotein involved in cell–cell and cell–

matrix adhesions. KAI1/CD82 functions as a metastasis

suppressor, disrupting integrin-induced Src activation [42].

Intracellularly, Src modulates cell migration and adhesion

through its interaction with FAK and p130 CRK-associated

substrate (p130CAS) [2].

In addition to cell migration, Src also assists in tumor in-

vasion through its regulation of matrix metalloproteinases

(MMPs). MMPs aid in invasion through the degradation of

the extracellular matrix. Bombesin promotes Src-dependent

tumor progression and metastasis through the activation of

MMP9 in conjunction with b1 integrins [43]. Src inhibition, on

the other hand, decreases MMP9 activity levels [2,44].

Induction of angiogenesis bymalignant cells is required for

continued cell proliferation and metastasis, and vascular

endothelial growth factor (VEGF) is a critical angiogenic

factor. Src participates in angiogenesis in CaP through the

JaK1–STAT3–VEGF pathway [45]. Src activation is also

required for VEGF expression in simulated hypoxia environ-

ment through increased levels of hypoxia-inducible factor 1a

(HIF-1a) and activation of STAT3; as additional evidence of

Src’s involvement in angiogenesis, overexpression of active

Src leads to increased VEGF expression [46]. Expression

of the melanoma-differentiation–associated gene-7, a Src

Figure 3. Western blot analysis of total Src protein expression levels in

prostate cancer cell lines. Src is shown as a doublet upon probing in most cell

lines. Internal overexpression data (not shown) indicate that both bands are

Src and that the doublet is not a result of nonspecific probing of other Src

family kinase members.
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inhibitor, on the other hand, inhibits the subsequent down-

stream STAT3–VEGF pathway [46,47].

Src is also of particular interest in CaP in part because

of its interaction with steroid receptors. There is evidence

that low amounts of AR and androgen lead to Src activation

in the cytoplasm, thereby triggering downstream signaling

events independent of AR’s transcriptional and DNA-binding

activity [38,48]. In fact, dominant negative Src can inhibit

DNA synthesis following stimulation with low amounts of

synthetic androgen. AR overexpression and higher con-

centrations of androgen, however, seem to bypass the Src

pathway, leading to AR translocation to the nucleus and AR-

transcriptional activity–based DNA synthesis.

In addition to the aforementioned activation of Src by

androgen-activated AR, Src also associates with AR and

estrogen receptor (ER) upon stimulation with estradiol, ulti-

mately resulting in increased cell proliferation [38,49,50]. It

is thought that Src serves as a scaffolding protein for the

AR–ER complex. Steroidal ligand, however, is not necessary

for AR–Src complex formation. Upon EGF stimulation, pre-

formed heterodimers of ERa and AR form a complex with

EGF receptor and Src, resulting in the activation and phos-

phorylation of EGF receptor, DNA synthesis, and cytoskeletal

changes [51]. On the other hand, DOC-2/DAB2, a tumor

suppressor and a negative Src regulator protein, is reported

to inhibit AR’s mitotic effects through the disruption of the

AR–Src complex [52,53]. Thus, taken together with reports

of AI AR activation by Src, AR and Src seem to be able to

reciprocally transactivate, depending on the concentration

and type of stimulatory ligand.

There are few published reports on cellular elements

that negatively regulate Src in CaP. In addition to DOC-2/

DAB2, tumor growth factor (TGF) b is reported to decrease

both Src expression and its corresponding activity. This is

shown by the accumulation of unphosphorylated form of

SH2-containing protein (SHC) and a subsequent decrease

in complex formation between SHC and growth factor

receptor–bound protein 2 (Grb2) [54].

BrK/PTK6 BrK is an Src family member, and little is known

about it in CaP. In patient samples, BrK is detected in

the nuclei of normal luminal epithelial tissues and well-

differentiated tumors, but not in poorly differentiated tumors

[55]. Localization of BrK in CaP cell lines LNCaP, which is

poorly tumorigenic, and PC-3, which is more aggressive, is

primarily nuclear and cytoplasmic, respectively. ThoughPC-3

expressed more BrK than LNCaP did, BrK is less active in

PC-3 cells. Thus, the localization of BrKmay play a role in the

differentiation of CaP and its aggressiveness.

FGR/Src-2 FGR is an Src kinase family member. It is a

negative regulator of phosphatase and tensin homolog

(PTEN) and a positive regulator of both Ras and Raf1, thus

inhibiting apoptosis and stimulating cell growth, respectively

[56]. Though little is known about FGR in CaP, FGR may be

overexpressed in CaP, as shown by FGR DNA amplifica-

tion in patient tumor tissues transitioning from androgen-

dependent to AI states [56]. Thus, FGR may play a role in

CaP growth and survival.

Fyn Fyn is an Src family kinase member. It is involved in

LNCaP mitogenesis following prolactin stimulation [57].

Though it is suggested that Fyn participates in prolactin-

induced cell proliferation through K+ ion channels, further

studies are necessary in order to elucidate the mechanism of

Fyn-modulated prolactin-induced cell proliferation in CaP.

LcK LcK is an Src family kinase member. It is expressed

in CWR22 xenograft cells [3]. Little else is known about the

role of LcK in CaP.

Lyn Lyn is an Src family kinase member expressed in

normal prostate, 95% of primary CaP, and AI PC-3 and

DU145 cells [58]. Lyn knockout mice have abnormal prostate

gland development. Treatment with KRX-123, a Lyn-specific

inhibitor, results in the inhibition of cell growth in DU145

and PC-3 cell lines. DU145 explants in mice treated with

KRX-123 were found to also undergo apoptosis. Thus, Lyn

seems to play a role in the proliferation and the apoptosis

of CaP.

Lyn may also be an important regulator of cell migration in

CaP. DU145 cells treated with dasatinib, an Src family kinase

inhibitor, have reduced migratory activity [2]. On the other

hand, Lyn can bind with neutral endopeptidase (NEP) and

act as a competitive inhibitor to the PI3K–FAK complex, re-

sulting in decreased cell migration [59]. Lyn’s role in CaP cell

migration is therefore inconclusive.

In CaP, Lyn is down-regulated by TGFb and up-regulated

by KAI1/CD82 [54,60]. Despite its elevated expression fol-

lowing KAI1/CD82 stimulation, however, Lyn’s overall kinase

activity was unchanged.

FAK Family

FAK As the predominate member of its namesake family

of kinases, FAK is well studied in CaP. Several general re-

views of FAK are available [61–71]. Though FAK may play

roles in growth, apoptosis, and angiogenesis in CaP, FAK is

known primarily for its role in cell motility and cytoskeletal

rearrangement, as supported by in vivo and in vitro evidence.

In clinical specimens, FAK expression and activation are

uniformly higher in metastatic CaP than in normal and BPH

tissues [72,73]. In vitro comparison between highly meta-

static CaP cell lines and LNCaP, a cell line with lower

metastatic potential, shows similar results, with increased

expression and activation of FAK in the more aggressive cell

lines [74]. FAK’s association with molecular mediators of cell

migration and adhesions are indicative of its function as well.

Activated FAK complexes with b1 and a(v)b3 integrins, mole-

cules involved in cell adhesion [75–78]. As further evidence

of FAK’s function as a cell motility factor, inhibition of FAKwith

anti-FAK (pY397) antibody or FAK-related nonkinase (FRNK)

resulted in significantly decreased cell migration [79].

Bombesin and IL-8 are both G protein–coupled receptors

(GPCR) that activate FAK and stimulate cell migration
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[34,79–81]. This is not surprising given FAK’s reciprocal

transactivation relationship with Src and both IL-8 and bomb-

esin’s abilities to activate Src. For bombesin to activate FAK,

however, both PKC and an intact cytoskeleton are required

[80,82]. Following its activation, FAK then phosphorylates

p130CAS, leading to p130CAS–v-crk avian sarcoma virus

CT10 oncogene homolog (CRKII) complex formation. Dis-

ruption of the p130CAS–CRKII complex by overexpressing

KAI1/CD82 results in decreased cell motility [60].

Extracellularly, FAK is activated by integrins, ET1, bomb-

esin, IL-8, and urokinase plasminogen activator (uPA),

an invasion and metastasis factor in CaP [83,84]. Intra-

cellularly, it is modulated by Src. It is important to note that

Src and FAK activation often go hand in hand. They couple

and reciprocally transactivate each other. There are, how-

ever, exceptions. FAK activation by autophosphorylation of

tyrosine 397 is not Src-dependent; it is adhesion-dependent

[74]. On the other hand, phosphorylation of tyrosine 861,

which leads to increased FAK activity, is Src-dependent but

not adhesion-dependent.

Though FAK is primarily a cell motility regulator, it is

also involved in cell proliferation. Similar to cell migration,

bombesin-induced FAK-mediated proliferation requires an

intact cytoskeleton [80]. A signal downstream of FAK is

ETK/BMX, an NRTK critical for bombesin-induced growth

[27]. Following FAK activation of ETK/BMX, ETK/BMX sub-

sequently activates AR, thereby inducing cell growth. Inter-

estingly, not only can FAK indirectly activate AR, it can

also be activated by membrane-associated AR in a PI3K-

dependent manner [85].

In addition to migration and proliferation, FAKmay also be

involved in CaP angiogenesis and apoptosis. There is evi-

dence that FAK induces VEGF transcription in an ERK1/

2–dependent, Rap1-dependent, and Raf-dependent but

Ras-independentmanner [86]. IncreasedVEGF transcription

may then lead to an increased level of its secreted protein

and, thus, angiogenesis. In regard to apoptosis, treatment of

cells with proapoptotic factors FTY720 and doxazosin both

down-regulate FAK expression for reasons that are not

currently known [87,88].

There are few known ways in which FAK is negatively

regulated in CaP. Negative FAK regulators include PTEN,

a tumor suppressor gene with dual phosphatase activity

that is frequently deleted in aggressive CaP [89]. FAK may

also be indirectly negatively regulated through the forma-

tion of the Lyn–PI3K–NEP complex instead of the PI3K–

FAK complex [59].

Proline-rich tyrosine kinase 2/cell adhesion kinase � (PYK2/

CAK�) PYK2/CAKb is a member of the FAK family of

tyrosine kinases. A general review of PYK2 is available

[90]. It is expressed in normal prostate epithelia and BPH,

but its expression level decreases with increasing grade

in CaP [91]. The gene is located on chromosome 8p21.1,

a site of frequent deletion in CaP [92].

Though in vivo evidence suggests that PYK2 plays a

tumor suppressive role in CaP, the in vitro evidence of this

hypothesis is inconclusive. In vitro experiments show that

PYK2 is activated by LPA and tumor necrosis factor a.

PYK2 plays a role in the activation of ERK1/2 following LPA

stimulation and may thus stimulate cell proliferation [93].

In addition, cells expressing dominant negative PYK2 have

decreased proliferation rates. On the other hand, PYK2

indirectly inhibits AR activation through the inactivation of

an AR-associated protein, ARA55 [94]. Thus, PYK2’s role

in CaP may depend on the androgen sensitivity status of

the cells in question and requires further investigation

and clarification.

FeS Family

The FeS family of NRTKs consists of two members: FeS/

FpS and FpS/FeS–related tyrosine kinase (FeR). Little is

known about the FeS family in CaP. An examination of CaP

cell lines PC-3, PC133, and PC135 failed to detect FeS

transcript [95]. FeR expression, on the other hand, was found

in CaP cell lines PC-3, DU145, and LNCaP and positively

correlated with CaP versus normal and BPH tissue samples

[96]. Consistent with patient sample data, cells transfected

with antisense FeR grew at a slower rate and were unable to

grow in an anchorage-independent fashion. In the dogmodel,

a higher FeR expression was found in dividing versus resting

prostate epithelial cells and in cells displaying basal cell

hyperplasia and metaplasia following postcastration estro-

gen treatment [96]. Thus, FeR is likely a proliferation factor

in CaP.

JaK Family

JaK1 The JaK family of kinases is well known for its role

in signaling events in cells following cytokine stimulation

and its association with the STAT family of kinases. Though

JaK1 is present in some clinical CaP specimens, JaK1 is

reported to be either negatively regulated or mutated in

many CaP cell lines [4,97,98]. LNCaP is found to have both

nonsense mutation and repressed JaK1 transcription where-

as CWR22Rv1 and LAPC-4 have only nonsense mutations

and no known transcriptional repression.

In DU145 cells, which have wild-type JaK1, there are

reports that JaK1 associates with breast cancer susceptibility

gene 1 (BRCA1) [99]. When BRCA1 is overexpressed, JaK1

and STAT3 become activated. Subsequent inhibition of

STAT3 activation results in decreased cell proliferation as

well as in apoptosis. Interestingly, inhibition of JaK1 in wild-

type DU145 does not result in apoptosis [100]. Thus, it may

be possible that although JaK1 activation by BRCA1 leads

to increased JaK1 and STAT3 activation, STAT3 may in fact

not be directly downstream of JaK1 in CaP, and their con-

current activation is coincidental.

JaK1may also play a role in the inhibition of CaPmigration

and invasion following IL-10 stimulation [101]. Tissue inhibitor

of metalloproteinases (TIMP) 1 is an anti-invasion factor.

IL-10 is known to activate the JaK1–IL-10E1–TIMP-1 path-

way in CaP [102].

JaK2 JaK2 is expressed in someCaP tissues [4]. Similar to

JaK1, JaK2 is also activated by BRCA1 in DU145 cells [99]. It
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is interesting to note that although JaK1 inhibition does not

result in apoptosis in wild-type DU145 cells, inhibition of JaK2

does [100]. Thus, STAT3 activation in DU145 may be de-

pendent on JaK2 rather than on JaK1. Whether STAT3 is

activated by JaK1 or JaK2 in CaP, however, seems to be

cell line–dependent [103].

JaK2 may also be involved in cell proliferation in CaP.

Tyrosine kinase inhibitor peptide (TKIP) directly inhibits

JaK2 autophosphorylation, decreases STAT3 activation,

and slows CaP proliferation [104]. Consistent with decreased

cell proliferation and STAT3 activation, cyclin D1 level is de-

creased and cells are arrested in the G1 phase of the cell

cycle following TKIP treatment. Thus, JaK2may be important

for CaP growth through the STAT3 pathway. In addition

to STAT3, JaK2 may be of particular importance in CaP

through its regulation of STAT5, a factor that positively

correlates with the histological grade of CaP [105,106].

TyK2 TyK2 is expressed in some CaP tissues [4]. Though

TyK2 may also be involved in CaP migration and invasion

and similarly participates in the activation of IL-10E1 fol-

lowing IL-10 stimulation of CaP cells as JaK1, its temporal

regulation profile is different from that of JaK1 [101,102].

Members of Other NRTK Families

Abl Abl is well known for its role in the etiology of CML

following the formation of the Philadelphia chromosome

(t(9:22)) and the breakpoint cluster region (Bcr)–Abl hybrid

gene product. Less is known, however, about Abl in CaP.

It is known that Abl is expressed in some CaP specimens

and that Abl is necessary for retinoblastoma-mediated g-

radiation– induced apoptosis in DU145 cells [4,107]. There

is indirect evidence that Abl may be important in CaP. Human

spectrin SH domain–binding protein 1 (Hssh3bp1) is a gene

that binds to Abl, possibly as a negative regulator [108]. A

majority (9 of 17) of CaP tumor samples analyzed failed

to express Hssh3bp1. Furthermore, Hssh3bp1 is found on

chromosome 10p, a region frequently deleted in CaP. Thus,

Abl may be circumstantially implicated in CaP through its

association with Hssh3bp1.

Imatinib mesylate (Gleevec; Novartis, East Hanover, NJ)

is a Bcr–Abl inhibitor that is clinically used for the treatment

of CML. It also has activity against Kit kinase and platelet-

derived growth factor (PDGF) receptor. In vitro, Gleevec in-

hibits CaP cell growth with IC50 in the 10-mM range [109]. In

mice models, however, Gleevec’s efficacy against CaP

growth is inconclusive with some, but not all, studies showing

growth inhibition [110–113].

Similarly, preliminary results from clinical studies also paint

a mixed picture. A phase I clinical trial of Gleevec in combi-

nation with docetaxel in AI CaP showed a prostate-specific

antigen (PSA) decline in 14 of 21 patients, although it is un-

known whether the decline can be attributed to Gleevec or

docetaxel [114]. In another AI CaP study, Gleevec in com-

bination with zoledronic acid (Zometa, Novartis) showed

no clinical effect in 15 CaP patients [115]. Lastly, as mono-

therapy in 16 patients with androgen-sensitive CaP, Gleevec

treatment resulted in nine patients with stable PSA levels

and seven patients with PSA progression [116]. Thus, clinical

use of Gleevec as monotherapy in CaP may be ineffective.

The efficacy of using Gleevec as an adjuvant therapy to other

treatment modalities is presently unknown.

CSK CSK is a well known negative Src regulator [117].

Little is directly known about CSK in CaP other than that it

complexes with FAK inmetastatic tumors and PC-3 cells [73].

ETK/BMX Discovered in 1994, ETK/BMX belongs to the

Tec family of NRTK [118]. In CaP, ETK is downstream of

PI3K in the induction of the neuroendocrine differentiation

of LNCaP cells following IL-6 stimulation [119]. It is also re-

ported to function as an antiapoptotic factor. Overexpression

of ETK confers resistance to apoptosis in CaP cells through

its interaction with PI3K [120]. PI3K is not, however, required

for ETK activation [27]. Another mechanism by which ETK

may protect against apoptosis is through its interaction with

p53 [121]. Interestingly, ETK also participates in the apoptotic

cascade in CaP cells. Introduction of ETK’s C-terminal frag-

ment into PC-3 cells can lead to apoptosis following proteo-

lytic cleavage of ETK by caspases [122].

ETK is also critical for cell proliferation following bombesin

stimulation and AR activation in CaP [27]. ETK serves as a

signal transducer between Src and FAK upstream and AR

downstream. ETK alone, however, is insufficient for AR ac-

tivation. ETK must be able to reciprocally transactivate with

Pim1 before AR activation [123,124].

Other NRTKS SYK and TNK1 are other NRTKs that have

been studied in CaP. Virtually nothing is known about their

properties and functions in prostate cancer except that the

promoter region of SYK is hypermethylated and TNK1 tran-

script is found in prostate tissues [125,126]. SYK expression

may thus be down-regulated in CaP, whereas TNK1 protein

expression level remains to be investigated.

Conclusion

Much is known regarding specific NRTKs in CaP (Src, FAK,

JaK1/2, and ETK), whereas less is known about the other

NRTKs. Perhaps it is not a coincidence that the well-studied

Src, FAK, JaK1/2, andETK kinases are involved in processes

indispensable to the pathology of CaP: cell growth, migration,

invasion, angiogenesis, and apoptosis. It is therefore im-

perative that we learn more about these NRTKs through

future studies. Although Src, FAK, JaK1/2, and ETK are im-

portant in CaP biology, we should not neglect the other

NRTKs that may also play important roles in CaP and should

also investigate the lesser known NRTKs.

Looking at the current literature of NRTKs in CaP, there

emerges a picture of Src being an ubiquitous player in

multiple biological processes interacting with numerous play-

ers in multiple signaling pathways. Src transduces signals

from upstream receptors such as IL-8, EGF, IGF-1, neuro-

tensin, ET1, and HGF/SF to downstream molecules such as

FAK, ETK, JAK1/2, STAT3, Ras, ERK1/2, Akt, HIF-1a, and,

of particular significance in CaP biology, AR (Figure 4). Given
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the preponderance of evidence in multiple biological pro-

cesses linking Src to CaP, Src is likely an important point

of pathway convergence in CaP. Perhaps it is not sur-

prising then that Src is currently the only NRTK target in

clinical trials for CaP, whereas no NRTK-specific therapy is

available for general clinical use in CaP. What remains

unclear, however, is Src’s relative importance in particular

stages of CaP: oncogenesis, growth, survival, AI growth,

angiogenesis, and metastasis. Nevertheless, with cancer

treatments moving toward targeting specific pathways, it

is important that we continue investigating signaling path-

ways so that we can develop novel therapies through con-

tinued research.
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REVIEW

Inhibition of Akt pathways in the treatment of prostate cancer

EC Nelson1, CP Evans1,2, PC Mack2, RW Devere-White1,2 and PN Lara Jr2

1Department of Urology, University of California at Davis, Sacramento, CA, USA and 2Cancer Center, University of California
at Davis, Sacramento, CA, USA

Akt is a serine/threonine kinase mediating multiple intracellular pathways involved in prostate
cancer (CaP) biology. Increased understanding of the molecular mechanisms of Akt activation and
signaling have led to the development of an increasing number of Akt inhibitors. These biologic
agents demonstrate activity against a wide range of cancers in preclinical studies. Clinical studies of
Akt inhibition in CaP are in progress, including agents such as celecoxib, perifosine and genistein.
How best to integrate Akt inhibitors with standard CaP therapy or select patients most likely to
benefit is the subject of ongoing research.
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Introduction

Akt, or protein kinase B, is a serine/threonine kinase that
plays an important role in intracellular signaling
cascades. A variety of neoplasms show perturbations in
the biochemical pathways affected by Akt. Prostate
cancer (CaP) specifically shows biochemical abnormal-
ities related to Akt that may be of importance in
sustaining tumor growth by preventing apoptosis and
promoting proliferation and angiogenesis.

CaP is the most common noncutaneous malignancy in
American males and is predicted to be the third leading
cause of cancer deaths for 2006.1 While local therapy for
CaP is relatively effective, androgen deprivation therapy
remains the mainstay of treatment for disseminated
disease and is principally palliative in nature. Introduced
in the 1940s,2 androgen deprivation removes androgen
stimulation, initially inducing apoptosis in CaP. How-
ever, the disease eventually progresses to an androgen
independent (AI) state with an associated life expectancy
of only 15–20 months. Androgen deprivation, while
extending length and quality of life for many patients,
also induces tumor-specific biochemical changes of
many intracellular factors including Akt. These changes
may promote progression to an AI state.3

Novel treatments for AI CaP are needed. Increasing
understanding of the many biochemical changes asso-
ciated with neoplastic progression and androgen inde-
pendence has led to the identification of novel targets for
therapeutic intervention. In this review, we discuss

pathways relating directly to Akt, focusing on those
showing the greatest relevance to current and possible
future therapeutic strategies.

Pathways affected by Akt

Akt form and function
Akt was originally identified as an oncogene within the
AKT8 retrovirus. This retrovirus was isolated from the
AKR strain of mice that have a high incidence of
leukemia and lymphoma.4 Subsequent genetic analysis
demonstrated that Akt is an important intracellular
signaling moiety highly conserved across species. A
member of the AGC kinase family, it is very similar to
protein kinase A and protein kinase C. When first
discovered, it was therefore named ‘protein kinase B’
and is sometimes called RAC (related to A and C).

In humans, Akt is a family of three homologous
members out of which Akt1 and Akt2 are more widely
distributed than Akt3.5 Akt has three domains with
specific functions. The N-terminal domain is a pleckstrin
homology (PH) domain, which can bind phosphoino-
sitides (PI) in the cellular membrane. The C-terminal
domain is a regulatory domain and the central portion of
the protein is the catalytic domain.6 Complete activation
of the catalytic activity of Akt requires phosphorylation
of a threonine residue at 308 and a serine residue at 473.
It is possible that Akt shows partial activation with
phosphorylation at the threonine 308 position.7

Akt activation
Akt activation occurs in response to multiple extracel-
lular signals acting through tyrosine kinase and G-
protein coupled receptors (see Figure 1). These receptor
types activate phosphoinositol-3-kinase (PI3K) class IA
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and IB, respectively. In turn, PI3K phosphorylates the
membrane phospholipid, phosphatidylinositol-4,5-bispho-
sphonate (PI(4,5)P2), which then acts as the second-
messenger phosphatidylinositol-3,4,5-trisphosphonate
(PI(3,4,5)P3) for a variety of pathways. This event
promotes recruitment of Akt from the cytoplasm to the
cellular membrane where phosphoinositide-dependent
kinase-1 (PDK1) phosphorylates the threonine 308 posi-
tion of Akt. Phosphorylation of the serine 473 position
also occurs, although the kinase responsible has not been
definitively identified. This step appears to be tightly
regulated and may require multiple intracellular mes-
sengers including integrin-linked kinase, PDK2 and
others.7

Upstream inhibitors
An intricate web of inhibitory factors opposing the
actions of PI3K and subsequent second messengers
control regulation of Akt activation. Most notably,
‘phosphatase and tensin homolog deleted on chromo-
some 10’ (PTEN) directly opposes PI3K by removing the
30-phosphate from PI(3,4,5)P3. A recently discovered
class of phosphatases called SHIP phosphatases also
may play a role in controlling levels of PI(3,4,5)P3, and
thus subsequent Akt activation. However it appears that
as SHIP removes the 5-phosphate from PI(3,4,5)P3, the
resultant PI(3,4)P2 may still recruit Akt to the plasma
membrane. Therefore, PTEN is probably the more
important inhibitor.5 Other recently discovered phos-
phatases include C-terminal modulator protein and PH
domain leucine-rich repeat protein phosphatase, both of
which may be significant in Akt regulation.8

Direct deactivation of Akt is also possible. Protein
phophatases (PP1 and PP2a) both govern the regulatory
activity of many intracellular messengers including Akt
through dephosphophorylation. The complex activity of
these regulatory proteins is controlled through cell wall
constituents including palmitate, integrin and caveolin.5

Heat shock protein 90 may oppose the actions of these
phosphatases, thereby promoting Akt activity.9

Akt downstream effects
Following activation, Akt moves from the cellular
membrane to the cytoplasm where it exercises broad
control over a variety of intracellular pathways generally
supporting survival, proliferation, and other activities
necessary for neoplastic disease progression.

Apoptosis and the cell cycle. Cancer cells escape normal
biochemical systems regulating the balance between
apoptosis and survival. Akt generally acts to promote
survival through inhibition of proapoptotic factors and
activation of anti-apoptotic factors. For example, the Bcl-
2 family of proteins consists of both proapoptotic and
anti-apoptotic factors, the balance of which is critical for
maintaining cellular homeostasis. Through phosphoryla-
tion, Akt inhibits the activity of proapoptotic members
such as BAD, BAX and BID while activating anti-
apoptotic members such as Bcl-xL.10–12

Another family of apoptotic regulators is the forkhead
family. In general, Akt phosphorylates various members
of this family causing translocation from the nucleus to

Figure 1 Simplified diagram of Akt activation and selected downstream effector pathways. Multiple extracellular signaling factors activate
intracellular receptor domains. Activated PI3K promotes the 30 phosphorylation of PI(4,5)P2. The resulting PI(3,4,5)P3 recruits Akt and PDK1 to
the cell membrane through interactions with their PH domains. Akt is activated by phosphorylation resulting in multiple downstream effects.
Abbreviations: GFR, growth factor receptor; GPCR, G-protein coupled receptor; NFkB, nuclear factor kappa B; PDK, phosphoinositide-
dependent kinase-1; PI3K, phosphoinositide-3-kinase; PI(3,4,5)P3, phosphatidylinositol-3,4,5-trisphosphate; PI(4,5)P2, phosphatidylinositol-
4,5-bisphosphate; PTEN, phosphatase and tensin homolog deleted on chromosome 10.
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the cytoplasm, thus inhibiting the transcription of
proapoptotic genes.7

Other biochemical pathways affected include apopto-
sis-signal-regulating kinase cyclic AMP response ele-
ment binding protein, and the oncoprotein MDM2.
Effects through these include inhibition of jun N-
terminal kinase and p53. In addition, Akt may block
apoptosis after it has been initiated. For example, Akt can
prevent the activation of caspase-9 despite mitochondrial
cytochrome c release.5

Cancer cells also escape normal cellular controls over
the cell cycle, generally resulting in increased, deregu-
lated proliferation. Akt activation may promote this
process through multiple pathways. Three central
regulators of the cell cycle affected by Akt are cyclin D,
p21 and p27. Cyclin D is necessary for cyclin-dependent
kinase (CDK) activity regulating entry into the cell cycle.
p21 and p27 are CDK inhibitors, which oppose cell-cycle
progression. Akt phosphorylates and inactivates p21 and
p27 thereby eliminating a critical negative regulator of
CDK activity and promoting progression through the
cell cycle.5

Other/multiple pathways

Other necessary cellular characteristics for neoplastic
growth include angiogenesis, invasion and metastasis.
Biochemical pathways affected by Akt may accomplish
these effects with significant changes noted when Akt
signaling intensity changes. In addition, three pathways
discussed here have multiple or complex effects.

Akt activation may lead to increased angiogenesis
through phosphorylation of endothelial nitric oxide
synthase and subsequent production of nitric oxide.13,14

In addition, Akt is a key activator of the mammalian
target of rapamycin (mTOR) which, through stabilization
of the hypoxia inducible factor, induces expression of
pro-angiogenic genes such as vascular endothelial
growth factor. mTOR also promotes cell survival and
proliferation through other pathways. Examples of these
include activation of p70 ribosomal S6 kinase and
inhibition of 4E-BP1, thus promoting ribosomal transla-
tion in general, and increased expression of cyclin D,
which promotes cellular cycling and proliferation.5

One cellular pathway affected by Akt with multiple
effects is the nuclear factor kappa-B (NFkB) pathway. Akt
causes the NFkB binding protein, IkB, to release NFkB,
which then translocates to the nucleus where it tran-
scribes multiple genes involved with proliferation,
inflammation, cell adhesion, stress response and anti-
apoptosis.15 NFkB also increases expression of matrix
metalloproteinases, which are frequently elevated in CaP
specimens and may play a role in promoting invasion
and metastasis.

p53 is a tumor suppressor showing aberrant regulation
or mutation in many neoplasms. Akt may play a role in
regulating its activity through activation of its binding
protein, MDM2. Phosphorylation of MDM2 causes
translocation to the nucleus where it inactivates p53
resulting in cell-cycle progression and inhibition of
apoptosis.16

Of special interest in CaP is the observation that Akt
can directly phosphorylate the androgen receptor on

serine residues at positions 210 and 790. The results of
this are controversial with some authors reporting
activation while others report suppression of androgen
receptor signaling.17,18 The reason for this may relate to
different cell passage numbers, which is an interesting

concept in the context of a rapidly dividing neoplasm.19

Alterations of Akt activity in CaP
Increased Akt activity in CaP may be caused by genetic
overexpression of Akt or altered expression of its
upstream-positive and upstream-negative regulators. In
CaP, several such mechanisms are probably active.

Akt overexpression has been demonstrated in CaP.20

However, the most consistent finding in this disease is
the silencing of PTEN and subsequent increase in Akt
signaling.8 PTEN may be lost by deletion, mutation or
epigenetic mechanisms.5 Up to half of the patients CaP
tissue specimens show inactivation of PTEN with
increasing incidence of this finding in metastatic deposits
and AI disease, emphasizing its possible importance in

tumor progression.21–23 Other genetic overexpression or
underexpression of factors upstream of Akt have also
been demonstrated in CaP. Various growth factor
receptors including the fibroblast growth factor, epider-
mal growth factor, and insulin-like growth factor are
overexpressed in some CaP leading to increased Akt
signaling.5 In addition, PI3K may be overexpressed in
CaP,5 and may be important in the progression to AI
disease.24

Regardless of the molecular mechanisms responsible,
the excessive activation of Akt is a poor prognostic factor
in CaP. In one report, phosphorylation of Akt was
superior to measurements of cellular proliferation and
even Gleason grade for predicting biochemical recur-
rence following radical prostatectomy.25

Treatments for CaP may also upregulate Akt pathways
through activation of cellular stress responses. In CaP
specifically, androgen withdrawal may lead to biochem-
ical changes ultimately supporting the emergence of AI
disease. Although Akt itself may not be directly involved
in causing this transition, some of these pathways signal
through Akt.3,26 For example, emergence of a neuroen-
docrine phenotype in CaP may be important in disease
progression. Such neuroendocrine cells may convert CaP
cells to a dependence on survival signals through G-
protein coupled receptors and growth factor receptors
upstream of Akt, bypassing the usual androgen receptor
signaling.26

These data cumulatively provide a rationale for Akt
inhibition as a therapeutic paradigm in CaP.

Feedback mechanisms
In light of the pathways and effects of Akt activation
discussed above, it seems that Akt inhibition would
naturally lead to positive therapeutic benefits in CaP and
other neoplasms. Unfortunately, feedback mechanisms
inherent in this complex biologic system may cause
paradoxical responses to inhibition at various levels of
Akt pathways. Two recently discovered feedback me-
chanisms demonstrate that inhibition of mTOR may, in
fact, increase signaling through the Akt pathway.27

Although not yet demonstrated in vivo, the existence of
such complexity demonstrates a clear need for future
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clinical trials to carefully measure the biologic effects of
new therapies at the molecular level. Another factor
complicating treatment using Akt inhibitors is one of the
most important pathway for normal cellular physiology.
It is not yet clear that developing treatment will demon-
strate significant efficacy with acceptable levels of
toxicity. These facts may lead to the use of Akt inhibition
as adjunctive treatment rather than monotherapy.

Akt inhibition as a therapeutic strategy

Data demonstrating the importance of increased Akt
signaling pathways in supporting prostatic growth and
the neoplastic progression of CaP have stimulated efforts
to modulate these pathways through direct and indirect
Akt inhibition. In view of the increased activation of Akt
during some treatments for CaP, inhibition of Akt may be
an important strategy for adjunctive therapy. Multiple
inhibitors have been developed using a variety of
mechanisms. Inhibition of PDK1 prevents activation of
Akt and several effective agents are available (see
Table 1). Direct inhibition of Akt may target any of the
three domains discussed above using competitive,
allosteric, pseudosubstrate or other mechanisms (see
Table 2). Preclinical data on many Akt inhibitors are
available and are reviewed in detail elsewhere.28–31

Additional data regarding the Akt inhibitory properties
of several nutriceuticals is emerging and may prove
important in the future. Examples include quercetin,32

diallyl trisulfide,33 curcumin34 and silymarin.35 This
review will be limited to agents for which clinical data
are now available.

Selective inhibitors of Akt

Celecoxib
Celecoxib is a potent inhibitor of the inducible enzyme
cyclooxygenase-2 (COX-2). By selective inhibition of
COX-2 and avoidance of interference with the constitu-
tively active COX-1, it was thought that celecoxib and
other selective COX-2 inhibitors might be an effective
treatment for inflammatory conditions while avoiding
the gastric complications of long-term COX-1 inhibition.
Although subsequent testing revealed an association
with adverse cardiac outcomes leading to cessation of
some ongoing trials, the drug remains on the market.

Celecoxib is currently of interest as preclinical experi-
ments demonstrate significant proapoptotic effects in
CaP cell lines. The biochemical activity of the drug is due
to prevention of Akt phosphorylation by inhibiting the

action of PDK127,36 and this activity is independent of the
COX-2 inhibitory effects.37 In addition, COX-2 inhibitors
may have other cellular functions potentiating the
apoptotic response.38 A therapeutic window for celecox-
ib might exist as the COX-2 enzyme is preferentially
expressed in cancer tissue in response to tumor
promoters, cytokines and growth factors.36 However,
some experiments show expression of induced COX-2
in CaP to be low if present, especially compared to
other epithelial malignancies.39 Although controversy
exists on this point, COX-1 and -2 expression might be
higher in the prostate in general regardless of disease
processes.40

Outcomes data up to 20 years ago indicated a cancer
chemopreventive effect for anti-inflammatory medica-
tions.41 Large epidemiologic studies have examined this
effect in celecoxib in a variety of cancers.42 Specifically,
the rationale for CaP chemoprevention using COX-2
inhibition was reviewed by Basler and Piazza.43

Although no current clinical chemoprevention data are
available, the use of celecoxib as adjunctive therapy
merits attention.

A phase II study by Pruthi et al.44 of celecoxib
monotherapy to modify prostate-specific antigen (PSA)
doubling time (PSADT) in patients with biochemical
relapse following definitive therapy has been reported.
Forty patients were enrolled, ninteen of whom had a
PSADT of less than 6 months. Following treatment, 36 of
40 patients showed a declining PSADT, and 11 of 40 had
their PSA decline with an additional 8 of 40 showing
stable PSA values. A following randomized, placebo-
controlled trial of this effect was terminated early based
on the question of celecoxib safety. An ad hoc analysis of
existing data on 78 randomized patients revealed a
greater than 200% increase in PSADT in 40% of patients
receiving celecoxib compared to 20% receiving placebo
(P¼ 0.08).45

Recent phase II studies demonstrate the use of
celecoxib in combination with docetaxel and zolendro-
nate.46,47 Both the studies demonstrated biochemical and
objective tumor responses. Another randomized, blinded
trial of celecoxib as neoadjuvant therapy before prosta-
tectomy showed activity in the disease. Significant effects
on cellular signaling, oxidative stress and cell-cycle
regulation were apparent upon blinded in comparison
of the pathology specimens.48

In summary, preclinical data suggest a role for
celecoxib in the treatment of CaP. Its apoptotic effects
are mediated through inhibition of Akt phosphorylation
by antagonism of PDK1. A therapeutic window may
allow efficacy and development of derivatives will
further refine the specificity of this medication.27

Table 1 Select PDK-1 inhibitors

Name IC50/L Comment Selected citations

Celecoxib 3.5–48mM COX-2 inhibitor 36,37,72,73

DMC 38mM Celecoxib analog w/o COX-2 activity 73

OSU-03012/3 3mM Celecoxib derivatives 37

UCN-01 33 nM 7-hydroxy staurosporine analog, Phase I/II studies available 55,74

BX�795, �912, �320 11–30 nM Aminopyridines 75

Abbreviations: COX-2, cyclooxygenase-2; PDK, phosphoinositide-dependent kinase.
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Perifosine
Phospholipid analogues have been in use as medications
for some time. Miltefosine demonstrated activity against
many cancers and is still approved in Europe for use in
cutaneous lymphoma and cutaneous breast cancer
metastases. High rates of gastrointestinal toxicity and
low bioavailability led to efforts to discover further
modifications of phospholipid analogues with enhanced
pharmaceutical potential.

Perifosine is a substituted alkylphosphocholine with
oral bioavailability. In preclinical experiments, it causes
cell-cycle arrest in G1/S or G2/M, probably through
effects mediated by p21 upregulation.49 These effects
appear to occur through inhibition of Akt activation,
although the mechanism is incompletely understood. As
a phospholipid analogue, perifosine incorporates into the
cell wall where it prevents Akt phosphorylation in a
PDK1-independent manner.50 This apparently involves
interference with the normal association of PH domains
with 3-PI moieties.

Phase I trials established the tolerability of perifosine
with most frequent side effects being nausea, vomiting
and diarrhea.51,52 Two recent phase II trials of perifosine
in CaP have been reported. A California Cancer

Consortium trial in 25 patients with biochemical recur-
rence following definitive therapy demonstrated bio-
logical and chemical activity, with 23% of patients having
a decrease in PSA, although none were 450%.53 A
National Cancer Institute study of 19 men with meta-
static AI CaP and average PSA of 180 ng/ml showed no
objective or PSA responses, and four patients with PSA
stabilization for 12 weeks.54

Although perifosine is apparently relatively ineffective
as monotherapy, the strong preclinical rationale com-
bined with preclinical results showing synergism with
other Akt inhibitory drugs suggest the need for more
trials examining its role in an adjunctive setting.55 Phase I
trials are already underway for perifosine combined with
docetaxel, paclitaxel, gemcitabine and radiation therapy.
Future phase II trials at our institution will examine the
combination of perifosine with other inhibitors of the Akt
pathway in CaP.

Genistein
Genistein is a naturally occurring isoflavone found in
soy-based products. Gastric and intestinal hydrolytic
reactions convert it to a well-absorbed aglyconic form. In

Table 2 Select Akt inhibitors by class

Name IC50 Comments Selected
citations

ATP competitive inhibitors
Balanol analogs 4–5 nM Rationally designed 76

H-89 2.5mM Protein kinase A inhibitor 77

NL-71-101 3.7 mM Developed from H-89 78

Lipid-based/phosphatidylinositol analog inhibitors
PIA 5/6/23/24/25 o5 mM Ether lipid analogs, prevent translocation of Akt 79–81

Perifosine 5 mM Prevents Akt translocation, phase II data available 50

PX-316 1.7 mM Binds to PH domain of Akt 82

PX-866 16.8 nM Inhibits PI signaling

Pseudosubstrate Inhibitors
AKTide-2T 12 mM

83,84

FOXO3 hybrid 1.1 mM Hybrid with AKTide-2T 30

FOXO3 hybrid modification 0.11 mM Replaced Ser w Ala 30

Allosteric inhibitors of AKT kinase domain
Compound 12 AKT1¼ 4.6mM

AKT2¼4250mM

First isozyme specific AKT inhibitor 85,86

Compound 13 AKT1¼ 2.1 mM

AKT2¼ 21 mM

Dual activity 85,86

Compounds 14-29 Iterative improvements with greater specificity 85,86

Akt antibodies
GST-anti-Akt1-MTS Cell-permeable antibody, blocks catalytic site 87

Interaction with PH domain of AKT
Triciribine/API-2 May interact with PH domain (?) Prior phase II trials at

high doses showed high toxicity

88,89

TCN-P Triciribine monophosphate 90

Akt-in Synthesized peptide 84

Unknown/multiple mechanism(s)
KP372-1 91

N10-substituted
phenoxazines

1–2mM May bind ATP-binding site or act as allosteric inhibitors 92

Genistein Inhibits multiple intracellular kinases 56,59,63

Abbreviation: PH, pleckstrin homology.
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addition, some Asian forms of fermented soy, such as
miso, nattou and tempeh, are rich in isoflavone agly-
cones. Speculation regarding the CaP-inhibitory effects
of soy isoflavones exists because of significant epide-
miologic differences in CaP incidence mirroring the
consumption of, among other things, soy products.56

Preclinical data demonstrate truly remarkable biochem-
ical characteristics of genistein. In many different cell
lines and xenografts, the tyrosine kinase inhibitory
characteristics of genistein induce apoptosis, cell-cycle
arrest, hinders proliferation, prevents angiogenesis, and
blocks androgen and estrogen-stimulated transcrip-
tion.56–60 In addition, studies demonstrate genistein
may oppose many cellular survival mechanisms induced
by radiation, chemotherapy or androgen deprivation,
suggesting the usefulness of this agent as adjunctive
therapy.61,62

Subsequent analysis of these favorable biochemical
changes reveal that many of them are mediated through
Akt pathways (see Figure 1). For example, NFkB, an
upstream regulator of the apoptotic Bcl-2 family and the
inhibitors of cyclin dependent kinases, p21 and p27, is
activated by many cellular stimuli. Li and Sarkar63

demonstrated that NFkB activation in PC3 cells is
mediated by Akt. In prostate cell lines, experiments at
our institution confirm that genistein inhibits activation
of Akt, thereby inducing apoptosis similar to other
inhibitors of Akt (see Figure 2).64 Inhibitors such as
LY294002, although completely blocking Akt phosphor-
ylation through PI3K inhibition, are too toxic for human
use. Genistein may provide a non-toxic alternative while
maintaining sufficient activity to effect a clinical re-
sponse.

Some of the cellular effects of genistein seen in vitro
cannot be initiated at attainable concentrations in hu-
mans, even when consuming large amounts of soy.
Concentrated aglycone-rich food supplements, such as
genistein combined polysaccharide (GCP), may allow
higher plasma levels of isoflavones.58 Recently, a
prospective randomized study by Rannikko et al.65 found
that prostate tissue concentrates phytoestrogens includ-

ing genistein, thus suggesting that plasma concentrations
underestimate tissue concentrations by over 50%.

Given the promising preclinical data, studies are
ongoing examining the activity of genistein in vivo
against CaP. Phase I studies demonstrate general toler-
ability.66 A phase II pilot study at our institution
examined the ability of GCP to decrease PSA in men
with histologically proven CaP. Sixty-two patients with
elevated PSA were enrolled. Patients were categorized by
prior treatment. Nine, seventeen and six had received
prior prostatectomy, radiation therapy, or both, respec-
tively. Fourteen were receiving intermittent hormone
ablation and were currently off-cycle. Finally, 16 patients
were on an active surveillance protocol. All patients
received GCP supplements to be taken orally three times
daily for 6 months. Three patients discontinued because
of grade 2 diarrhea and seven patients discontinued for
personal reasons. Of the 52 remaining patients, 8 had
PSA reductions and 1 of them greater than 50%.
Interestingly, all of these patients were in the watchful
waiting subgroup. In analysis of the responding patients
vs others, there did not appear to be any correlation with
Gleason score. In addition, estrogenic effects of genistein
were probably not the causative factor as testosterone
was increased in five responders, decreased in one, and
unchanged in two.67

On the basis of these results, further randomized
studies are currently ongoing at our institution. In
addition to examination of GCP as monotherapy in
patients on watchful waiting protocols, we plan to study
GCP in conjunction with androgen deprivation therapy
in patients with biochemical relapse following definitive
therapy.

Patient selection

Biologic therapies modifying cellular signaling pathways
generally show modest responses in most cases. This
suggests the need to test such therapies in the adjunctive
setting, possibly increasing the response to radiation,
chemotherapy or androgen deprivation.3 For ethical
reasons, many existing studies will use Akt inhibitors
in conjunction with docetaxel-based chemotherapy. This
is a rational strategy as chemotherapy upregulates

survival pathways that involve Akt activity.68,69

Further efforts to predict patient response to biologic
agents by pretreatment measurements of activated path-
ways through direct tissue or serum analysis may allow
individualized treatment. One method involves profiling
the entire proteome in patients’ serum using matrix
assisted laser desorption ionization-time-of-flight mass
spectrometry. Multiple bioinformatics analyses of CaP
patient serum and normal controls allows for proteomic
‘fingerprints’ with high discriminatory power. Once such
profiles are produced, patients on clinical studies may be
compared, allowing characterization of treatment effects
on proteome profiles. Examination of the entire pro-
teome may allow more efficient sorting of possible tumor
markers. Eventually, exact identification of identified
tumor markers is carried out by 2-D electrophoresis or
liquid chromatography.70,71 In the future, biopsy samples
analyzed for expression of such markers may allow ex
vivo modeling of diseased pathways. Subsequent study

Figure 2 Western blot demonstrating the inhibition of Akt
phosphorylation in the presence of GCP compared to LY294002
(Courtesy of Dr Clifford Tepper). GCP, genistein combined
polysaccharide; DMSO, dimethylsulfoxide.
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will eventually lead to individualized and targeted
biologic therapy.

Conclusions

Akt inhibition is a rational therapy in CaP treatment.
Upregulation of this pathway is involved in initial
neoplastic changes in some patients. An increasing
number of patients show overexpression or overactivity
of Akt as metastatic and AI diseases develop. Preclinical
studies demonstrate the importance of this pathway in
CaP and the possibility of targeting this pathway with
any of an increasing number of inhibitors. In addition to
preventing activation by blocking upstream signaling,
strategies include allosteric inhibition, small molecule
competitive inhibitors, pseudosubstrate inhibitors and
others with multiple or unknown activity.

Clinical studies with agents known to act through Akt
inhibition show some promise. Further studies examin-
ing vertical inhibition strategies to block Akt pathways
more completely should be performed. More impor-
tantly, efforts to extend the activity of current therapeutic
options through combination with Akt inhibitors and
more accurate methods to select those patients most
likely to benefit from Akt inhibition are needed.
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Abstract Knowledge of bone metastases complicating
advanced prostate cancer (CaP) is increasingly relevant in
patient selection for novel therapies. Current nuclear bone
scintigraphy imaging has limited speciWcity for prostate
metastases. As serum bone markers do correlate with bony
lesions, they may play multiple roles in patients with
advanced CaP. Currently, these markers play a role in prog-
nostic nomograms for CaP. Recent studies suggest an
expanding role for bone markers in the diagnosis and selec-
tion of patients for novel therapies. In the future, therapeu-
tic roles for some of these marker pathways will emerge,
eventually allowing greater individualization of patient
care.

Keywords Androgen-independent prostate cancer · 
Bone markers · Bone metastases · Osteoprotegerin · 
Prostate cancer

Introduction

In advanced prostate cancer (CaP), metastatic deposits in
bone are common and are the most frequent source of pain
and morbidity [1]. “Skeletal related events” or SREs
include vertebral compression fractures, complete vertebral
collapse, spinal cord or spinal nerve entrapment, pathologic
fractures, bone pain, and signiWcant serum calcium abnor-
malities. These may be directly related to metastatic depos-
its in the bone, or be secondary to medical or surgical
castration, which forms the foundation of current treatment
strategies for metastatic CaP [2]. Osteoporosis due to cas-
tration is the more common cause, with only 7–16% of
fractures being caused directly by metastatic lesions [3]. In
addition, an association exists between the diagnosis of
CaP and baseline osteopenia and osteoporosis prior to treat-
ment or the development of metastatic disease [4]. Overall,
yearly incidence of SREs is about 12% in patients with
metastatic androgen-independent CaP [5].

Bone metabolism overview

Normal bone metabolism is distinguished by two opposing
activities, which are coupled in both space and time and
subject to tight control. The formation of new bone by
osteoblasts and the resorption of old bone by osteoclasts are
both constitutively active and the balance of these activities
ultimately determines bone mass.

Bony metastatic lesions in CaP are classically thought of
as osteoblastic or sclerotic lesions caused by a relative
increase in bone formation. Though this is true for the
majority of lesions, recent studies have indicated a therapeu-
tic role for osteoclast inhibition in the prevention of SREs.
SpeciWcally, zoledronic acid has been shown to be the only
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eVective bisphosphonate for decreasing SREs in patients
with advanced CaP [6]. This activity by an osteoclast inhibi-
tor in what are typically osteoblastic lesions emphasizes the
close coupling of the action of these two cells.

Current diagnostic strategies for metastatic CaP in bone
rely on nuclear bone scintigraphy scans. Unfortunately,
these are expensive, require special equipment, are rela-
tively cumbersome and expose the patient to radiation. As
these scans detect increased bone formation, they are highly
sensitive for detecting metastatic CaP lesions. However,
they lack speciWcity and do not accurately measure treat-
ment response as increased bone formation may correlate
with healing areas of lytic lesions [7]. The need for more
speciWcity in diagnostic algorithms for CaP bone metasta-
ses suggests the possibility of using bone markers, either
alone, or in combination with imaging studies to increase
the accuracy of diagnosis.

Bone markers are typically biologically inactive peptide
fragments or small proteins cleaved from larger proteins
and released into the blood during the formation or resorp-
tion of bone. A list of bone markers used in CaP appears in
Table 1. Only those with most clinical relevance will be
discussed here.

Formation markers

Among the markers of bone formation are alkaline phos-
phatase, procollagen peptide fragments (which are cleaved
at the time of bone collagen formation), and osteocalcin
(OC). Total alkaline phosphatase (tALP) has also tradition-
ally been used as a marker for bone formation because of its
wide availability as part of the comprehensive metabolic
panel. However, it lacks true speciWcity for bone due to its
presence in biliary, hepatic, and intestinal tissues. The bone
isoenzyme form of alkaline phosphatase (bALP), a tetra-
meric protein located in the plasma membrane of osteo-
blasts, has been used to overcome this deWciency. The
procollagen peptide fragments, on the other hand, are by-
products of the extracellular cleavage of pro-collagen dur-
ing bone formation and are speciWc for bone formation.
These fragments are released into the circulation and are
detected clinically using antibodies directed against the
amino- (PINP) and carboxy- (PICP) terminal ends of pro-
collagen I, or against the amino-terminal end of procollagen
III (PIIINP) [8]. Finally, OC is a vitamin K-dependent,
non-collagenous low molecular weight protein produced
and released by osteoblasts. OC, also known as Gla protein,
is widely deposited in the bony matrix and is the most
abundant organic component of bone after collagen. Its
presence in human sera is believed to be an index of osteo-
blastic activity and has been proposed as a useful marker
for treatment response in metastatic CaP [9].

Resorption markers

Among the markers for bone resorption are the pyridinium
compounds pyridinoline and deoxypyridinoline, both of
which are found in Type I collagen and are amino acid
derivatives. It has long been known that the tensile strength
of bone is largely due to cross-linking of these derivatives
in Type I collagen [10]. The deoxypyridinoline crosslink is
felt to be speciWc to bone since it is only found in Type I
collagen. On the other hand, pyridinoline is also present in
Type II collagen, a component of articular cartilage. During
bone resorption, these pyridinium cross-links are released
into the circulation. Once released by the resorptive pro-
cess, the pyridinium cross-links are not metabolized fur-
ther; therefore, they represent degradative end products of
mature collagen [11]. Another resorption marker is the col-
lagen degradative product telopeptide, on which pyridinium
cross-links are attached [12]. These include the amino- or
carboxy-terminal telopeptide assay called N-telopeptide
(NTx) and C-telopeptide (CTx) fragments, respectively.
The commercial assay employs an antibody against the
alpha-2 chain of Type I bone collagen Wbrils. A related
marker of a slightly larger telopeptide of the carboxy ter-
minal is abbreviated ICTP [13]. Though some of these

Table 1 Selected markers of bone metabolism relevant to CaP

bALP Bone alkaline phosphatase; BSP bone sialoprotein; CaP prostate
cancer; CTx carboxy-terminal telopeptide; ICTP pyridinoline cross-
linked carboxy-terminal telopeptide; NTx amino-terminal telopeptide;
OC osteocalcin; OPG osteoprotegerin; PICP procollagen I carboxy-
terminal propeptide; PIIINP procollagen III amino-terminal propep-
tide; PINP procollagen I amino-terminal propeptide; RANKL receptor
activator of NF�B ligand; tALP total alkaline phosphatase; TRAP tar-
trate resistant acid phosphatase

Markers Measured in

Markers of formation tALP Serum

bALP Serum

PINP/PIIINP Serum

OC Serum

PICP Serum

Markers of resorption BSP Serum

ICTP Serum

CTx Serum

NTx Serum

TRAP Serum

Deoxypyridinoline Serum/Urine

Pyridinoline Serum/Urine

Hydroxyproline Urine

N-terminal telopeptide 
of type I collagen

Serum/Urine

Calcium:Creatinine ratio Urine

Markers of 
osteoclastogenesis

OPG Serum

RANKL Serum
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markers may also be measured in urine, serum collection
allows simultaneous measurement of other markers, is con-
venient in the setting of clinical trials, and may be more
reproducible.

Osteoclastogenesis markers

A new class of bone markers may more closely reXect the
biochemistry of the metastatic site by giving insights into
cellular signaling. Osteoprotegerin (OPG), receptor activa-
tor of NF�B (RANK), and receptor activator of NF�B
ligand (RANKL) are thought to belong to an important
cytokine system controlling the process of osteoclastogene-
sis. Preclinical data conWrms the importance of the relative
concentration of these cellular signaling molecules in con-
trolling the balance of bone formation and breakdown [14].
These markers may not only serve as a surrogate for osteo-
clastic activity but may prove to be important in future ther-
apeutic interventions.

Bone markers: potential diagnostic applications

Because nearly all the bone markers discussed above show
strong correlation with bone scan results in multiple stud-
ies, the use of bone markers as diagnostic instruments has
been proposed. Various studies have shown promising
results for ICTP [15], PINP [16, 17], CTx [17] and OPG
[18]. Most studied markers demonstrate a wide range of
results, which negatively impacts sensitivity and speciWc-
ity. In addition, other conditions such as arthritis or bone
healing secondary to trauma may further decrease speciWc-
ity. Therefore, though mean bone marker concentration is
of diagnostic signiWcance for a population, individual
patient counseling is diYcult.

As mentioned previously, bone scintigraphy scans have
high sensitivity but low speciWcity. Any eVort to increase
the speciWcity of diagnostic testing requires a highly spe-
ciWc “gold standard” for comparison. In this setting, only
biopsy of each metastatic deposit would qualify as such a
gold standard and this is obviously not feasible. Increase in
lesion size on imaging of untreated patients may provide a
surrogate marker but is also rather unhelpful, as most
patients will be treated. Lesion shrinkage may not be seen
on imaging with treatment as bone scans cannot discrimi-
nate between bone formation activity of metastatic disease
and the healing process following response to treatment.

The strong rationale supporting bone markers as a diag-
nostic modality encourages eVorts to Wnd a surrogate
marker verifying adequate speciWcity. One strategy is to
acquire an ability to predict future metastatic deposits on
imaging. If bone markers are able to do this, it may provide
the needed proof of concept. At least one small study has
demonstrated that increases in bone markers precede evi-

dence of bony metastatic lesions on bone scan by about
3 months [19]. This study measured urinary pyridinolines
normalized by creatinine and should be repeated using
other markers to conWrm the concept. In the future, algo-
rithms using bone scintigraphy in combination with pros-
tate speciWc antigen (PSA) and various bone markers will
maximize sensitivity and speciWcity in the diagnosis of
CaP.

Bone markers: prognostic implications

Compared to proving diagnostic speciWcity, it is easier to
demonstrate the ability of bone markers to stratify patients
into prognostic categories. The use of bone markers in
prognostic nomograms is well known. At least since 1992,
tALP has been included in many nomograms predicting
outcomes for diVerent patient populations with CaP [20–
23]. As discussed above, other bone markers demonstrate
the ability to predict future bone metastases. This suggests
they might have a prognostic role in predicting overall sur-
vival.

Correlative studies conWrm the prognostic capabilities
of some bone metabolism markers. Brown et al. [24] retro-
spectively examined bALP and NTx in large patient
cohorts from phase III studies examining zoledronic acid
in metastatic CaP and other neoplasms [25, 26]. In patients
in the placebo arms of the trials, both NTx and bALP were
statistically signiWcant predictors of outcome, though NTx
was superior [24]. Because of the results of the prospective
phase III trial, zoledronic acid treatment is likely to be
given to many patients with metastatic hormone refractory
CaP [25]. As zoledronic acid signiWcantly aVects NTx lev-
els, a second study by Cook et al. [27] examined all CaP
patients using only baseline NTx and bALP levels. They
found both markers were signiWcantly associated with
overall survival and progression-free survival, but only
bALP was independently associated with overall survival
on multivariate analysis. Dividing patients into quartiles
based on bALP correlated strongly with overall survival
and thus may be a useful prognostic tool for clinicians and
patients.

Our group prospectively evaluated the prognostic and
predictive signiWcance of selected markers of bone metab-
olism in the context of a randomized phase II clinical trial
of a matrix metalloproteinase inhibitor in hormone refrac-
tory CaP [28]. Markers of bone formation (OC, PINP
and PIIINP) and resorption (NTx, pyridinoline and deoxy-
pyridinoline) in serum were measured using commercial
enzyme immunoassays. Marker values were dichoto-
mized at the median and correlated with overall survival
and progression-free survival by log-rank testing. Of
eighty patients enrolled, 69 had evaluable baseline serum
specimens.
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We found that lower levels of tALP, NTx, deoxypyridin-
oline, OC, PINP, and PIIINP were all signiWcant predictors
of improved median and progression-free survival. In our
study population, the signiWcant prognostic value of these
markers was not aVected by bisphosphonate treatment. On
multivariate analysis, log PINP and PIIINP remained sig-
niWcant as part of a model including hemoglobin and log
PSA [29].

These retrospective and prospective clinical results
should be prospectively validated in the phase III setting.
Toward that end, we have initiated a molecular correlative
study of the prognostic and possible predictive value of
bone markers in patients with bone-metastatic hormone
refractory CaP in conjunction with Southwest Oncology
Group trial S0421. This phase III, placebo-controlled trial
of docetaxel/prednisone with or without Atrasentan will
randomize 706 patients with hormone refractory CaP and
bone metastases, and provides an ideal setting to study
bone markers. Earlier trials indicate Atrasentan’s modest
therapeutic eVect is most signiWcant in patients with bone
metastases [30]. Serial measurements of bone markers will
hopefully allow creation of validated prognostic nomo-
grams. In addition, discovery of bone marker parameters
predicting a beneWcial response to Atrasentan will in the
future allow appropriate patient selection for therapy.

In addition to predicting survival, bone markers may be
able to predict response to treatment with androgen abla-
tion. As discussed below, studies show a clear correlation
of bone markers with treatment response on imaging and
clinical improvement. With further reWnement, new mark-
ers more closely reXecting actual bone biochemistry may
predict not only overall survival for patient populations, but
may allow for individualized treatment.

Bone markers: disease activity monitoring

As early as 1992, studies have examined the ability of bone
markers to monitor the metastatic CaP response to andro-
gen deprivation [9]. Clear correlation of bone marker
changes on serial measurements with clinical response,
whether based on imaging or PSA, has been conclusively
demonstrated. Urinary pyridinolines [19], PICP [31], ICTP
[15] and PINP [32] have all shown signiWcant correlations.
In addition, Koizumi et al suggest that the ratios of markers
of bone formation may be helpful in following response to
treatment [32].

In the future, bone markers may play a role in monitor-
ing disease in patients with or without clear metastatic dis-
ease on bone scan. Though further studies are needed
before this occurs, a strong rationale exists for using bone
markers in this setting. As mentioned above, elevations in
bone markers may precede evidence of bony metastatic
lesions by up to three months. Thus, the useful of these

markers for monitoring disease is suggested, even in
patients with no corroborating imaging.

Bone markers: therapeutic

The novel bone marker OPG, in contrast to most other
markers, is a biologically active member of the tumor
necrosis factor (TNF) superfamily [33]. As a decoy recep-
tor for RANKL, it inhibits downstream signaling activating
osteoclasts [14]. It may prevent apoptosis by inhibiting
TNF related apoptosis inducing ligand or TRAIL [34]. Pre-
clinical studies also suggest a role for OPG in promoting
angiogenesis [35]. The variety of eVects apparently related
to this cytokine system suggest it not only provides a
marker of diagnosis and prognosis, but may suggest thera-
peutic interventions [14, 34, 35].

A fully human monoclonal antibody against RANKL
has recently entered clinical trials. Denosumab may be con-
sidered an OPG analogue in that it binds and inactivates
RANKL. A phase III randomized, double blind, multicenter
comparison of denosumab with the current reference stan-
dard, zoledronic acid, in patients with metastatic CaP began
in April 2006. Results are eagerly anticipated.

The superiority of OPG as a marker, discussed below,
may be due to the fact that it represents not only a byprod-
uct of bone metabolism, but also an active participant in the
microenvironment aVecting metastatic growth and related
bone turnover.

Bone marker comparisons

Few head to head comparisons of the various bone markers
have been performed and those studies listed in Table 2
may sometimes yield contradictory results. This may be
due to diVerent patient populations and the fact that diVer-
ent bone markers measure diVerent stages of bone metabo-
lism and are aVected diVerently by androgen deprivation
[13, 16]. Nevertheless, some conclusions can be drawn.
tALP and bALP have been the most studied and consis-
tently demonstrate equivalent, and sometimes superior
prognostic value compared to other markers [13, 27]. Of
the other markers of bone formation, PINP may be prefera-
ble to use as a marker [16, 17, 29]. OC is clearly inferior to
other markers [5, 13, 18].

Deciding which of the markers of bone resorption is most
accurate is more diYcult. One study comparing multiple
bone markers suggests that OPG is most helpful for prognos-
tic use [18]. As a marker of osteoclastogenesis, it may serve
as a marker for osteoclast action while giving additional
prognostic information based on tumor biochemistry. How-
ever, OPG is not, strictly speaking, a marker of bone resorp-
tion. Future studies should prospectively assess OPG in
comparison to CTx, NTx, ICTP, and the pyridinolines.
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Conclusions

Markers of bone metabolism play a role in current prognos-
tic nomograms for CaP. In the future, their role will
increase, especially in the areas of earlier diagnosis of bony
metastatic disease and the monitoring of therapeutic inter-
ventions. Bone markers will extend the speciWcity of cur-
rent diagnostic imaging techniques and panels of bone
markers may reach suYcient accuracy to be used alone.
Serial measurements of bone markers will allow greater
insight into the action of novel therapies currently under
development for CaP. Finally, bone markers of metabolic
activity, such as OPG, will suggest future strategies that
will allow individualization of oncologic therapy.
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Src family kinase oncogenic potential and pathways in prostate cancer as
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Prostate cancer is the most frequently diagnosed cancer in
American men. We have previously demonstrated that Src
mediates androgen-independent proliferation in prostate
cancer. We sought to investigate the Src-mediated
oncogenic pathways and tumor biology using AZD0530,
a novel Src family kinase/Abl dual-kinase inhibitor that is
entering phase II clinical trials. We show that while both
Src and Abl are expressed in all prostate cancer cell lines,
Src but not Abl is activated in the prostate. Furthermore,
Src activation is inhibited by AZD0530 in a rapid and
dose-dependent manner. We show that Src mediates cell
proliferation in DU145 and PC3 cells at the G1 phase of
cell cycle. Src inhibition resulted in decreased binding of
b-catenin to the promoters of G1 phase cell cycle
regulators cyclin D1 and c-Myc. C-Myc may also be
regulated at the protein level by extracellular signal-
regulated kinase 1/2 and GSK3b. Cell motility factors
focal adhesion kinase, p130CAS and paxillin activation in
DU145 and PC3 cells were also inhibited. Administration
of AZD0530 in mice reduced orthotopic DU145 xenograft
growth by 45%. We have further delineated the Src-
mediated oncogenic growth and migration pathways in
prostate cancer and established mechanistic rationale for
Src inhibition as novel therapy in the treatment of prostate
cancer.
Oncogene advance online publication, 4 August 2008;
doi:10.1038/onc.2008.250
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proliferation; migration

Introduction

Prostate cancer is the second leading cause of cancer
death in men in the United States (Jemal et al., 2008).
Though prostate cancer growth is hormonally regulated,
antiandrogen therapy inevitably results in disease

progression with uncontrolled growth and metastasis.
An important mediator of this process is Src, a
prototypical non-receptor tyrosine kinase (Lee et al.,
2001; Desai et al., 2006).

The role of Src in human malignancies has not been
fully appreciated in part because of the lack of frequent
mutations in human cancers. Nevertheless, Src over-
expression and activation are associated with numerous
types of cancers (Biscardi et al., 2000; Yeatman, 2004;
Zhu et al., 2007). Increasing evidence connects Src
activity to prostate carcinogenesis. Src activity is
required for androgen-independent activation of andro-
gen receptor mediated by neuropeptide (Lee et al., 2001;
Desai et al., 2006), epidermal growth factor (Guo et al.,
2006) and interleukin-8 (Lee et al., 2004). Src and focal
adhesion kinase (FAK), a Src substrate, are also
involved in interleukin-8-induced migration of LNCaP.
The application of pan-Src inhibitor 4-amino-5-(4-
chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine
(PP2) leads to significant suppression of androgen-
independent growth and migration of LNCaP (Lee
et al., 2001, 2004), as well as migration of PC3 and
DU145 (Slack et al., 2001). Dasatinib, a Src family
kinase (SFK)/Abl dual-inhibitor, inhibits cell adhesion
and migration of DU145 (Nam et al., 2005b). Besides
growth (Lee et al., 2001, 2004; Kotha et al., 2006),
survival (Unni et al., 2004; Nam et al., 2005a; Kotha
et al., 2006) and metastasis (Lee et al., 2004; Nam et al.,
2005b), Src is also implicated in angiogenesis (Gray
et al., 2005) and neuroendocrine differentiation (Bang
et al., 1994). Overall, these studies suggest that Src plays
pleiotropic roles in prostate cancer, often in a cell
context-dependent manner and that Src is a promising
target for intervention.

Src is an integrator of divergent signals. In prostate
cancer cells, Src is activated by growth factors,
cytokines, chemokines and gastrin-releasing peptide.
Src activation leads to the activation of FAK and Etk
(endothelial/epithelial tyrosine kinase), kinases consis-
tently activated or overexpressed in prostate cancer cells
(Rovin et al., 2002; Guo et al., 2006). The pleiotropic
effects of Src activity are almost certainly due to the
multiple signal pathways engaged by Src and its
accompanying kinases. Src is able to channel phosphor-
ylation signals through Ras/Raf/extracellular signal-
regulated kinase (ERK) 1/2 and in certain cells,Received 20 February 2008; revised 3 June 2008; accepted 10 June 2008
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phosphatidylinositol 3-kinase (PI3K)/AKT pathways.
Somewhat selective to SFKs is their ability to activate
signal and transducer of transcription (STAT) 3 and
b-catenin, which leads to the activation of c-Myc (Bowman
et al., 2001; Furstoss et al., 2002; Farkas et al., 2005) and
consequently cyclin D1 (Steiner et al., 1998; Taj et al.,
2001; Devi et al., 2002). Although STAT3 was shown to
regulate cyclin D1 levels in prostate cancer, it remains
unclear whether Src is an upstream regulator of STAT3 in
prostate cancer cells, as some Src inhibitors do not
diminish STAT3 activation and STAT3 can also be
activated by Janus family kinases (Nam et al., 2005b;
Kotha et al., 2006). The role of b-catenin activation in
prostate carcinogenesis has been extensively documented
(de la Taille et al., 2003; Chen et al., 2004; Cronauer et al.,
2005; Verras and Sun, 2006). The importance of
c-Myc activation in prostate cancer is underscored by
recent reports that c-Myc overexpression in mice prostate
epithelial tissues gives rise to malignant lesions and that a
significant fraction of prostate cancers amplify region 8q24
encompassing c-Myc (Bromann et al., 2004; Dong, 2006).
What is not well understood is the role of Src in the
activation of b-catenin and c-Myc in prostate cancer. As
for signaling pathways of migration and invasion in
prostate cancer, it was shown that Src, through activated
FAK, phosphorylates p130CAS (CRK-associated sub-
strate) and upregulates matrix metalloproteinase (MMP)-9
(Hauck et al., 2002; Planas-Silva et al., 2006). In summary,
Src transmits multiple signals including Ras/Raf/ERK1/2,
PI3K/AKT, b-catenin/c-Myc/cyclin D1 and FAK/
p130CAS/MMP-9 to induce growth, survival and migra-
tion in various types of cancer cells. Whether Src directly
mediates cellular changes in prostate cancer through these
signals remain unclear.

Recent interest in Src as a target for molecule-specific
therapy has led to the development of small molecule
inhibitors (Golas et al., 2003; Lombardo et al., 2004; Lee
and Gautschi, 2006). Dasatinib inhibits PC3 growth
(Lombardo et al., 2004; Park et al., 2008) and DU145
migration (Nam et al., 2005b). Although Dasatinib is
shown to inhibit growth in vitro in prostate cancer and
has been suggested to inhibit proliferation through Lyn
not Src, its mechanism of action in inhibiting cell
proliferation remains unclear. AZD0530 (AstraZeneca,
Alderley Park, UK), a 5-, 7-substituted anilinoquinazo-
line, is another novel SFK/Abl dual-inhibitor
(Figure 1a) (Hennequin et al., 2006; Lee and Gautschi,
2006). An oral compound with clinical therapeutic
potential and low toxicity in phase I trials, it is highly
specific with most kinases having in vitro kinase IC50

values greater than 10 mM. AZD0530 has antimigratory
and modest antiproliferative effects in vitro in breast
cancer (Hiscox et al., 2006). AZD0530 has not, however,
been previously studied in prostate cancer nor have Src-
mediated signal pathways inhibited by this compound
been defined. This study provides the first characteriza-
tions of the molecular and biological effects of
AZD0530 in prostate cancer.

We show in this study that Src inhibition leads to
growth suppression and cell cycle arrest in prostate
cancer, which is accompanied by inactivation of ERK1/

2 and AKT, activation of GSK3b and downregulation
of b-catenin, c-Myc and cyclin D1. Focal adhesion
kinase and p130CAS phosphorylation are also attenu-
ated as Src activity is inhibited, leading to significantly
reduced cell migration. We also extended the analysis of
AZD0530 as an antitumor agent in vivo. Using DU145
as our orthotopic mouse model, we show that AZD0530
is an inhibitor of growth in vivo. These studies provide
important information regarding this small molecule
inhibitor and set the stage for NCI approved phase II
trials, using AZD0530 in advanced prostate cancer.

Results

Src is expressed and activated in prostate cancer cell lines
Autophosphorylation of Src at tyrosine 419 (Y419) is a
surrogate marker of its activity (Bjelfman et al., 1990).
Src is expressed in LNCaP, DU145 and PC3 cell lines
and increased Src activity correlates with more aggres-
sive phenotypes (Bang et al., 1994; Lee et al., 2001, 2004;
Nam et al., 2005b; Kotha et al., 2006). Src activity and
expression levels in CWR22Rv1, LAPC-4 and immor-
talized normal prostate epithelial cell lines such as
RWPE-1 and PZ-HPV7, however, have not previously
been characterized. We therefore sought to compare and
contrast the relative Src activation and expression levels
in these cell lines. As Abl is also an AZD0530 target, we
sought to characterize Abl in prostate cell lines as well.

Two Src isoforms were detected (Figure 1b) and were
confirmed as Src through transfection experiments with
wild-type Src cDNA constructs (data not shown). Src is
expressed and activated in prostate cell lines. Notably,
DU145 and PC3, cell lines with higher rates of
proliferation and increased cell motility demonstrate
an increased activated-to-total Src ratio when compared
to other phenotypically less aggressive cell lines.
Accounting for a-tubulin levels, immortalized cells
express more Src but have lower activated-to-total Src
ratio than cancer cells. Although Abl is expressed in all
prostate cell lines, it is not activated.

Our analysis with other SFKs suggests that Src is the
predominant species expressed in prostate cancer cell
lines (data not shown). As AZD0530 inhibits all SFKs at
comparable concentrations, our data apply to all
members. For simplicity, we will describe our results
in the context of Src.

AZD0530 is a potent and rapid inhibitor of cellular Src
activation
We were interested in characterizing cellular Src
inhibition by AZD0530. In DU145 and PC3,
AZD0530 inhibited Src activation in a dose-dependent
manner (Figure1c, left, right). Src inhibition by
AZD0530 was also rapid, within 5 min of treatment
(Figure 1c, center).

AZD0530 inhibits growth and induces cell cycle arrest
of prostate cancer
Src is involved in prostate cancer cell proliferation. We
were therefore interested in the effectiveness of
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AZD0530 against mitogenesis. Single treatment with
AZD0530 resulted in dose-dependent decrease of the
number of cells in all cell lines (Figure 2a). LAPC-4,
which has the smallest relative active-to-total Src ratio,
is the most resistant against AZD0530 among prostate
cancer cell lines. Immortalized nonmalignant cell lines
PZ-HPV7 and RWPE-1 are also on average more
resistant to Src inhibition than cancer cell lines.
Figure 2b shows the kinetics and the dose–responses
of growth inhibition for DU145 and PC3 cells. These
analyses substantiate the growth inhibitory effects of
AZD0530 on prostate cancer cells.

Although AZD0530 decreased the number of prostate
cancer cells over time, it was unclear whether this is
secondary to apoptosis or decreased cell proliferation.
Studies of other Src inhibitors on DU145 induced
apoptosis and cell cycle arrest at the G0/G1 phase of the
cell cycle (Nam et al., 2005a; Kotha et al., 2006). We

thus sought to clarify the effects of AZD0530 using
DU145 and PC3 as our models (Figure 2c). AZD0530
treatment of DU145 and PC3 respectively increased the
proportion of G0/G1 cells by 21 and 11% and
concurrently decreased S cells by 22 and 10% in the
cell cycle, respectively. The fraction of apoptotic cells
(sub-G1) is very low in both treated and untreated
DU145 and PC3 samples. Furthermore, there is no
significant caspase 3 cleavage following AZD0530
treatment (Figure 2d). Thus, the decreased numbers
of cells is not due to apoptosis but to cell cycle arrest at
G1/S.

Inhibition of c-Myc and cyclin D1 expression
and downregulation of b-catenin by AZD0530
The effect of AZD0530 on G1/S transition prompted
us to study its effect on c-Myc, an Src target gene

Figure 1 AZD0530 inhibits Src activation through inhibition of Y419 phosphorylation. (a) The chemical structure of AZD0530. (b)
Commonly used cell lines were harvested and probed with Abl, p-Abl, phospho-Src Y419 and Src antibodies demonstrating relative
increased ratio of activated-to-total Src in DU145 and PC3 cells. (c) Src autophosphorylation in DU145 and PC3 cells were inhibited in
a dose-dependent manner by AZD0530 following 30-min treatment (left and right, respectively) or rapid manner by 1 mM of AZD0530
(middle).
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(Barone and Courtneidge, 1995) and cyclin D1, the rate
limiting factor for cellular proliferation (Quelle et al.,
1993; Albanese et al., 1995; Watanabe et al., 1996). Both
were downregulated upon AZD0530 treatment
(Figure 3a). Since c-Myc is more resistant to AZD0530
than Src, we sought to examine the kinetics of AZD0530
on c-Myc. Although both c-Myc and phospho-Src

levels decrease after AZD0530 treatment, they both
rebound over time, with relatively small changes in
phospho-Src levels corresponding to larger changes
seen in c-Myc. Cyclin D1 and c-Myc in DU145 cells
are more sensitive to Src inhibition than PC3 cells. We
further show corresponding reductions in transcripts
(Figure 3b).

Figure 2 AZD0530 inhibits cell proliferation at G0/G1-S transition. (a) Single administration of AZD0530 inhibited cell proliferation
in a dose-dependent manner in 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide assay showing immortalized cells on
average being more resistant than malignant cell lines. (b) AZD0530 inhibited DU145 and PC3 proliferation in a dose-dependent
manner over time. (c) AZD0530 induced G1/S cell cycle arrest but not apoptosis in DU145 and PC3 cells. (d) AZD0530 did not induce
apoptosis in DU145 and PC3 cells after 2 days, as shown by the lack of caspase 3 cleavage. Columns, mean; bars, standard error;
*Po0.05 (n¼ 3); **Po0.01 (n¼ 3).

Src potential and pathways in prostate cancer
Y-M Chang et al

4

Oncogene



To study the upstream effectors that regulate c-Myc
and cyclin D1 transcription, we noted that both STAT3
and b-catenin are Src targets and key transcriptional
factors of c-Myc and cyclin D1 (Morin, 1999; Pratha-
pam et al., 2006). We previously showed that Src
enhances STAT3 tyrosine phosphorylation through
Etk (Tsai et al., 2000). Other studies also showed
that STAT3 mediates signals between Src and cyclin D1
in some prostate cancer cells (Gao et al., 2005; Kotha
et al., 2006). Since PC3 does not express STAT3 (Yuan
et al., 2005), we focused on DU145. In DU145,
AZD0530 treatment does not affect STAT3 phosphory-

lation, indicating its activation via a Src-independent
pathway (Figure 3c, top).

We then turned our attention to b-catenin. b-catenin
is a Src substrate (Roura et al., 1999) and its synthesis is
activated by Src (Karni et al., 2005). It has also been
shown to mediate both c-Myc and cyclin D1 transcrip-
tion (Morin, 1999; Prathapam et al., 2006). The protein
level of b-catenin is highly sensitive to AZD0530
treatment (Figure 3c, top). Furthermore, AZD0530
treatment results in decreased binding of b-catenin to
both cyclin D1 and c-Myc promoters (Figure 3c,
bottom). These data taken together suggest that Src
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mediates cell cycle progression by the induction of
c-Myc and cyclin D1 transcription through increased
b-catenin expression.

Inhibition of ERK1/2 and GSK3b phosphorylation
by AZD0530
In addition to transcriptional regulation by b-catenin,
c-Myc protein is regulated by ERK1/2 and AKT-GSK3b.
GSK3b phosphorylation of c-Myc at T58 leads to
ubiquitin-mediated proteosomal degradation, whereas
ERK1/2-mediated phosphorylation at S62 stabilizes
c-Myc (Dominguez-Sola and Dalla-Favera, 2004; Sears,
2004). GSK3b in turn is inactivated by AKT and ERK1/
2 (Cross et al., 1995; Cheng et al., 2005; Kim et al.,
2007). Likewise, GSK3b negatively regulates the stabi-
lity of b-catenin. We therefore wondered if AZD0530
inhibits ERK1/2 and AKT. ERK1/2 was inhibited by
AZD0530 treatment, whereas AKT is constitutively
inactive DU145 (Figure 3d). The lack of AKT activity is
consistent with the presence of intact phosphatase and
tensin homolog pathway in DU145, which diminishes
PI3K-mediated AKT activation. This may also account
for the lack of regulation of survival pathway by
AZD0530 in DU145. ERK1/2 in PC3 cells on the other
hand is not constitutively activated. AKT in PC3,
however, is inhibited by AZD0530. AZD0530 treatment
results in the removal of the inhibitory phosphorylation
of GSK3b at S9 in both cell lines (Figure 3d) and
therefore increased GSK3b activity, although at a higher
concentration than that of b-catenin and ERK1/2
inhibition seen in DU145. These results suggest that in
DU145 and PC3, ERK1/2 and AKT contribute to Src-

mediated stabilization of c-Myc, respectively. Further-
more, GSK3b is not responsible for Src-mediated
stabilization of c-Myc and b-catenin in DU145.

AZD0530 is an inhibitor of cell migration
Src is an integral part of cell migration signaling pathway.
We were therefore interested in whether AZD0530
effectively inhibits cell migration. We show that
AZD0530 inhibits DU145 and PC3 migration in the
Boyden chamber in a dose-dependent manner (Figure 4a).

Src and FAK are known to cross-activate, and
enhanced migratory activity is linked to increased
FAK expression and activation (Schaller, 2001; Slack
et al., 2001). Although autophosphorylation of FAK
Y397 is necessary for its activity, Src phosphorylation of
FAK Y576/Y577 is important in enhancing downstream
signaling pathways (Parsons, 2003). AZD0530 treat-
ment inhibited phosphorylation of Y576/577 but not
Y397 (Figure 4b), indicating that AZD0530 targets Src
but not FAK.

P130CAS is also an Src substrate involved in the
formation of focal adhesion complexes. As shown in
Figure 4b, p130CAS phosphorylation is inhibited by
AZD0530. Furthermore, phosphorylation of paxillin, an
adaptor protein and an Src-FAK substrate important in
recruiting other proteins to the focal adhesion complex,
is also inhibited by AZD0530, although at a higher of
AZD0530 concentration than Src or FAK. This may
reflect the fact that AZD0530 does not inhibit FAK
autokinase activity (as reflected by the same level of
Y397 phosphorylation), which continues to phosphory-
late paxillin.

Figure 4 AZD0530 inhibits cell migration through Src-mediated FAK activation. (a) DU145 (top) and PC3 (bottom) treated with
AZD0530 shows dose-dependent decrease in cell migration. (b) Paxillin, p130CAS and p-FAK (Y576/577) phosphorylation were
inhibited in DU145 and PC3, following AZD0530 treatment for 30min. Columns, mean; bars, standard error; *Po0.05 (n¼ 3);
**Po0.01 (n¼ 3).
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AZD0530 is a promising inhibitor of prostate cancer
growth in orthotopic SCID mice model
Utilizing the data we gathered regarding the effects of
AZD0530 on in vitro growth and migration of prostate
cancer cells, we tested its efficacy in vivo using
orthotopically implanted DU145 in mice as our
xenograft model. Xenograft mice receiving daily
AZD0530 starting 2 days after the implantation have
on average 45% smaller (Po0.01) tumor than control
mice (Figure 5a). Src inhibition in vivo by AZD0530 was
verified by immunohistochemistry (Figure 5b). Since
AZD0530 treatment started shortly after implantation,
the decreased tumor size xenograft mice treated with
AZD0530 is consistent with the in vitro data of growth
inhibition versus apoptosis. This is significant, as
previous studies with other Src inhibitors revealed
mostly inhibitory effects on metastasis rather than
growth. We were unable to study the effect of
AZD0530 on metastasis, as orthotopically implanted
DU145 does not metastasize to any significant extent.

Discussion

Src is involved in prostate cancer growth and migration
(Lee et al., 2001, 2004; Nam et al., 2005b; Kotha et al.,
2006). We previously reviewed Src’s role (Chang et al.,
2007) in prostate cancer and wished to further char-
acterize it. We therefore utilized AZD0530 to facilitate
identification of Src-driven cell proliferation and migra-
tion signaling pathways in prostate cancer. Our data
provide further understanding to foster correlative
studies and translational research initiatives.

We found an association between higher relative Src
activation and aggressive cell phenotypes. There are two
Src isoforms and their expression levels are cell line-
dependent. The origin of these isoforms is presently
unclear. Also interesting is that cells with the lowest
activated/total Src ratios (LAPC-4, PZ-HPV7, RWPE-
1) also express the most Src. A possible explanation is
that highly active Src is polyubiquitinated and thus
quickly degraded (Hakak and Martin, 1999).

In our studies with AZD0530, we see a temporal
sequence of its effects. As AZD0530 inhibits Src,
changes to phosphorylation signals downstream oc-
curred within minutes. The inhibited phosphorylation of
FAK, p130CAS and paxillin quickly decreased cell
migration. Taking into account the time it takes for
transcriptional inhibition and protein degradation,
changes in cyclin D1 and c-Myc levels are relatively
late events seen hours post-treatment. Finally, consistent
with cell doubling times, cell cycle changes and
differential proliferation rates are observed days post-
treatment.

We inhibited cell migration and proliferation using
AZD0530. Although mechanistic studies of cell migra-
tion signaling did not reveal significant mechanistic
differences between DU145 and PC3, they appear to
regulate cell proliferation through c-Myc and cyclin D1
in different ways. Both cyclin D1 and c-Myc levels are
more responsive to AZD0530 in DU145 than PC3. This
is attributable to ERK1/2 being active and sensitive to
AZD0530 in DU145 but not PC3. Since PC3 has no
constitutively active ERK1/2, it alternatively regulates
cyclin D1 and c-Myc through the Src–Ras–AKT–
GSK3b pathway (Diehl et al., 1998; Morin, 1999;
Daaka, 2002). Interestingly, b-catenin but not GSK3b
is affected in a dose-dependent manner by AZD0530 in
DU145. Possible explanations of this finding include
Src-mediated b-catenin synthesis (Karni et al., 2005) and
phosphorylation (Bjelfman et al., 1990), thus resulting in
increased stability (Roura et al., 1999). Common to both
cell lines, however, is that Src does not regulate cyclin
D1 and c-Myc through STAT3.

Although our studies show that AZD0530 inhibits cell
proliferation and migration through various signaling
factors, they have relatively higher IC50 values than
Src autophosphorylation. Dose-dependent inhibition
demonstrated in these assays suggests that Src contributes
to their regulation. Nonspecific AZD0530 inhibition,
however, cannot be excluded. Nevertheless, there are
alternative explanations for these findings. Since phos-
phorylation status of proteins are dynamic systems
dependent on the summative velocities of kinases and
phosphatases, partial inhibition of kinase activity may

Figure 5 AZD0530 inhibits tumor growth in vivo. (a) 25mg/kg of AZD0530 was administered orally daily starting 2 days after
orthotopic injection of 2 million DU145 cells. Mice were euthanized after 54 days. Established tumors were harvested and weighed.
(b) Immunohistochemical analysis of tumor samples from (a) using specific phospho-Src Y419 antibody as described. Dots and
triangles, tumor samples; columns, mean; bars, standard error; *Po0.05 (n¼ 10).
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not be sufficient to allow phosphorylation status
changes if phosphatase velocity remains less than kinase
velocity. Furthermore, as shown through c-Myc in
DU145 (Figure 3a), the accuracy of determining IC50

values is dependent on the timing of the assay if Src is
not the sole regulator of the factor in question, as 1 mM

of AD0530 decreases c-Myc levels by 90% at 8 h but
50% at 24 h. Actual c-Myc AZD0530 IC50 is therefore
less than 1 mM. Another explanation is that very little Src
may be required to activate downstream signals.
Individual kinases, such as ERK1/2, have been shown
to display cooperative kinetics, which cumulatively in a
signal-transduction chain is ultrasensitive to activation,
akin to an on-off switch response (Li and Qian, 2003).
In other words, very low initial activation of the
upstream factor in a signal-transduction chain can be
amplified and lead to changes downstream. Our kinetics
study of c-Myc, which is regulated by ERK1/2, supports
this hypothesis as very small amount of Src activation
correlates with a relatively large rise in c-Myc levels
(Figure 3a). The combination of ultrasensitivity and
dose-dependent residual Src activity at mM AZD0530
concentrations (data not shown) suggests that the effect
of Src inhibition on downstream factors decreases
exponentially with increasing AZD0530, and therefore
increases the IC50 values of Src downstream factors.
Extrapolating this further, we can see how the IC50

values of transcription/translation and cell proliferation
and migration involving a multitude of factors, many of
which are not regulated by Src, can be significantly
higher than Src.

The complexity of linking dose inhibition of Src
phosphorylation with linear dose inhibition of other
molecules and biological events is evident in the dosing
and temporal data we present. Although AZD0530 may
have other effects, we show it essential to the pathways
and events presented. The decreased in vivo tumor
growth correlates with significant inhibition of
Src autophosphorylation by immunohistochemistry,
demonstrating biological and translational relevance.
AZD0530 represents an oral drug of low toxicity
potentially of high value in the targeted therapy of
prostate cancer. The mechanistic differences between the
two androgen-independent prostate cancer cell lines
DU145 and PC3 highlight the importance of an
individualized, pharmacogenomic approach to patients.
Studies such as ours are important in linking disease,
detailed oncogenic pathway analysis and a targeted
therapy in vitro and in vivo. These data have direct
translational application to prostate cancer patients
entering clinical trials using AZD0530.

Materials and methods

Cells and reagents
LNCaP, DU145, PC3, RWPE-1, PZ-HPV7 were obtained
from American Type Culture Collection (Manassas, VA,
USA). LAPC-4 was provided by Dr Sawyers (Department of
Medicine, University of California at Los Angeles, Los
Angeles, CA, USA). CWR22Rv1 was provided by Dr Pretlow

(Department of Pathology, Case Western Reserve University,
Cleveland, OH, USA). Cell cultures were maintained
in RPMI-1640 (Life Technologies Inc., Rockville, MD,
USA) with 10% (LNCaP, RWPE-1), 5% (DU145, PC3,
CWR22Rv1) fetal bovine serum, Dulbecco’s Modified Eagle’s
Medium with 10% fetal bovine serum (LAPC-4) or keratino-
cyte serum-free medium with 5 ng/ml human recombinant
epidermal growth factor and 50mg/ml bovine pituitary extract
(PZ-HPV7) supplemented with 100 U/ml penicillin and 100 mg/
ml streptomycin at 37 1C with 5% CO2. Polyclonal antibodies
to AKT, p-AKT (S473), caspase 3, ERK1/2, p-FAK (Y576/
577), p-GSK3a/b (S21/9), p-p130CAS (Y410), paxillin,
p-paxillin (Y118), p-Src (Y419) and STAT3 were obtained
from Cell Signaling Technologies (Cambridge, MA, USA).
Polyclonal antibodies to FAK and cyclin D1 were obtained
from Upstate Biotechnology (Lake Placid, NY, USA) and
Santa Cruz Biotechnology (Santa Cruz, CA, USA), respec-
tively. Monoclonal antibodies to p-ERK1/2 (T202/Y204) and
p-STAT3 (Y705) were obtained from Cell Signaling Techno-
logies. Monoclonal antibodies to c-Myc and a-tubulin were
obtained from Santa Cruz Biotechnology. Monoclonal anti-
bodies to p-FAK (Y397) and p130CAS were obtained from
BD Biosciences (San Jose, CA, USA). Monoclonal antibodies
to c-Myc and b-catenin were obtained from Santa Cruz
Biotechnology. Monoclonal antibodies to GSK3b, Src and
b-actin were obtained from Cell Signaling Technologies,
Upstate Biotechnology and Sigma-Aldrich (St Louis, MO,
USA), respectively. AZD0530 was obtained from AstraZeneca
International (Alderley Park, UK). 3-[4,5-dimethylthiazol-2-
yl]-2,5-diphenyl tetrazolium bromide was obtained from
Sigma-Aldrich. The DAKO Envisionþ Kit was obtained
from DAKO North American Inc. (Carpinteria, CA, USA).
Diff-Quick set was purchased from Dade Behring Inc.
(Newark, DE, USA). Dimethyl sulfoxide was obtained
from Fisher Scientific (Pittsburgh, PA, USA). DNase-free
RNase was obtained from Fermentas (Hanover, MD, USA).
Fibronectin was obtained from Roche Applied Science
(Indianapolis, IN, USA). Propidium iodide was obtained from
Boehringer Mannheim Corporation (Indianapolis).

Boyden chamber cell migration assay
Cell migration assay was performed as described previously
and performed in triplicates (Evans et al., 1991). Lower wells
of the microchamber were filled with 50mg/ml of fibronectin in
0.1% BSA phenol-red free RPMI-1640 media as chemoat-
tractant. Both chambers contained varying concentrations of
AZD0530 (0–2mM). Cells were allowed to migrate for 4 h
followed by Diff-Quick stain and counted as an average of five
fields.

Cell cycle analysis
Cells were plated in triplicate in 60 mm dishes followed by
AZD0530 (1 mM) treatment for 48 (DU145) and 72 (PC3)
hours, accounting for slower proliferation rate in PC3 cells.
Growth media were removed and saved. Cells were washed
with phosphate-buffered saline (PBS) and the wash saved with
the growth media. Remaining cells were trypsinized and placed
together with growth media and PBS. Cells were pelleted and
resuspended in 75% ethanol followed by overnight storage at
�20 1C. Cells were centrifuged, washed with PBS, resuspended
in PBS containing 10mg/ml DNase-free RNase, and incubated
in 37 1C for 45 min. Final propidium iodide concentration of
0.05mg/ml was added and incubated at room temperature for
20 min. Cell clumps were filtered. Cell DNA content was
measured on Coulter Epics XL flow cytometer (Beckman
Coulter, Miami, FL, USA) and cell cycle phase was analysed
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using Phoenix Multicycle (Phoenix Flow Systems, San Diego,
CA, USA).

Chromatin immunoprecipitation assay
Chromatin immunoprecipiation assay was performed as
described previously (Vinall et al., 2006). Primers for cyclin
D1 and c-Myc promoter regions are as follows: 50-GCTC
TCCACTTGCCCCTTTTA-30 (c-Myc, forward), 50-GTTCCC
AATTTCTCAGCC-3 (c-Myc, reverse), 50-GGGAGGAATT
CACCCTGAAA-30 (cyclin D1, forward), 50-CCTGCCCCA
AATTAAGAAAA-30 (cyclin D1, reverse).

3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide
cell proliferation assay
Cells were seeded overnight 2000 cells per well in triplicate in
96-well plates followed by single treatment of AZD0530
(62.5 nM–16 mM). On post-treatment days 1, 3 and 5, growth
medium was removed followed by addition of 0.2ml dimethyl
sulfoxide per well and continuous shaking of plates at 200
rotations per minute for 15 min. Colorimetric measurement
was performed at 450 nm.

Orthotopic mouse model
Severe combined immunodeficiency (CB17) mice 4 weeks of
age were obtained from Harlan Sprague-Dawley and housed
in pathogen-free conditions. Mice were placed in anesthesia
with 2% isoflurane air. Two million DU145 cells were mixed
with Matrigel in 1:1 ratio by volume and injected into a lateral
lobe of the prostate as previously described (Stephenson et al.,
1992). Twenty-five milligrams per kilogram of AZD0530
dissolved in 0.5% hydroxypropyl methylcellulose (Sigma-
Aldrich), 0.1% Tween 80 (Sigma-Aldrich) was orally given
daily 2 days post-operation. Mice were euthanized 54 days
post-operation and tumors harvested. Animal housing and
experimental conditions were in compliance with the protocol
approved by the Institutional Animal Care and Use Commit-
tee at the University of California, Davis.

Reverse transcription–PCR
The Versagene RNA purification kit (Qiagen USA, Valencia,
CA, USA) was used for mRNA extraction as per the
manufacturer’s instructions. RNA was reverse transcribed to
cDNA using oligo-dT primers and Moloney murine leukemia
virus reverse transcriptase (Promega, Madison, WI, USA) as
per the manufacturer’s instructions. Reverse transcriptase
products were used as templates for PCR. The primers
are as follows: 50-ACCGAGGAGAATGTCAAGAGGC-30

(c-Myc, forward), 50-CGTCGTTTCCGCAACAAGTC-30

(c-Myc, reverse), 50-TGTTTGCAAGCAGGACTTTG-30 (cyclin
D1, forward), 50-TCATCCTGGCAATGTGAGAA-30 (cyclin
D1, reverse).

Statistics
Data were analysed using Statview version 5.1 (SAS, Cary,
NC, USA).

Western blotting
Western blotting was performed as described previously (Qiu
et al., 1998). Membranes were incubated overnight in 4 1C with
primary antibodies in 5% non-fat milk tris-buffered saline
Tween-20 followed by wash and 1-h room temperature
incubation with respective horseradish peroxidase-conjugated
secondary antibodies. Antibody-epitope binding was detected
using SuperSignal West Pico Chemiluminescent Substrate
(Pierce, Rockford, IL, USA).
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Abstract

Deregulated activation of the Src tyrosine kinase and
heightened Id1 expression are independent mediators of
aggressive tumor biology. The present report implicates Src
signaling as a critical regulator of Id1 gene expression.
Microarray analyses showed that Id family genes were among
the most highly down-regulated by incubation of A549 lung
carcinoma cells with the small-molecule Src inhibitor
AZD0530. Id1 transcript and protein levels were potently
reduced in a dose-dependent manner concomitantly with the
reduction of activated Src levels. These effects were conserved
across a panel of lung, breast, prostate, and colon cancer cell
lines and confirmed by the ability of PP2, Src siRNA, and Src-
blocking peptides to suppress Id1 expression. PP2, AZD0530,
and dominant-negative Src abrogated Id1 promoter activity,
which was induced by constitutively active Src. The Src-
responsive region of the Id1 promoter was mapped to a region
1,199 to 1,360 bps upstream of the translation start site and
contained a Smad-binding element. Src was also required for
bone morphogenetic protein-2 (BMP-2)–induced Id1 expres-
sion and promoter activity, was moderately activated by BMP-
2, and complexed with Smad1/5. Conversely, Src inhibitors
blocked Smad1/5 nuclear translocation and binding to the
Src-responsive region of the Id1 promoter. Consistent with a
role for Src and Id1 in cancer cell invasion, Src inhibitors and
Id1 siRNA decreased cancer cell invasion, which was increased
by Id1 overexpression. Taken together, these results reveal that
Src positively interacts with the BMP-Smad-Id pathway and
provide new ways for targeted inhibition of Id1. [Cancer Res
2008;68(7):2250–8]

Introduction

The Src family of nonreceptor protein tyrosine kinases contains
nine members, including Src, Yes, Fyn, Lyn, Lck, Hck, Fgr, Blk, and
Yrk (1). Src is activated by growth factor receptors, cytokine
receptors, protein tyrosine phosphatase 1B, CAS, and focal
adhesion kinase (FAK). Src interacts with a network of intracellu-
lar signaling pathways, including the integrin/FAK pathway,
h-catenin/Wnt, RAS-MEK, phosphatidylinositol-3-OH kinase–AKT

and Janus-activated kinase–STAT pathways. These complex
interactions explain why Src is involved in a large number of
cellular functions including adhesion, migration, invasion, survival,
proliferation, differentiation, inflammation, and angiogenesis.
Activated Src induced transformation in fibroblasts, and Src
kinases were found frequently to be overexpressed and activated
in human cancer (2). This prompted the development of a number
of small-molecule Src kinase inhibitors that reduced cancer
invasion and metastasis in preclinical models. For example,
AZD0530, a potent and selective small-molecule inhibitor of Src
kinase, is currently being tested in phase II clinical trials in patients
with cancer (3, 4). Apart from their promising clinical utility, small-
molecule inhibitors of Src possess the potential to identify genes
regulated by Src signaling and putative effector molecules.

The inhibitor of DNA binding/differentiation (Id) family of helix-
loop-helix (HLH) proteins comprises four members (Id1-4) that all
lack a DNA-binding domain (5). Id proteins associate with and
inhibit the function of basic HLH transcription factors, including
MyoD and E-proteins, to regulate normal cell fate determination,
differentiation, and angiogenesis (6–9). Expression of Id1 is induced
by bone morphogenetic proteins (BMP), which activate Smad1/5
via the BMP-receptors (10–13). Activated Smad1/5 binds Smad4,
translocates to the nucleus, binds to Smad-binding elements in the
Id1 promoter, and recruits transcription factors and coactivators
that induce Id1 transcription (14–16). In contrast, transforming
growth factor (TGF)h can repress the Id1 promoter by activation of
Smad3 (17). BMPs and Id1 are overexpressed in various cancer
types and are associated with an aggressive, invasive phenotype
(18–22). Expression of Id gene family expression is mediated
by oncogenic RAS, MYC, and TP53 gain of function mutation
(12, 23–25). Id1 promotes invasion by production of a 120-kDa
gelatinase, mediates tumor angiogenesis by production of vascular
endothelial growth factor, facilitates hormone-independent growth,
and is involved in the resistance of cancer cells against cytotoxic
drugs (19, 26, 27). Due to its role in cell differentiation and in
vascular endothelial cells, Id1 has also been implicated in the
biology of cancer stem cells and tumor angiogenesis (8, 28, 29).
Altogether, there is strong evidence that Id1 is an interesting drug
target in cancer (30). However, strategies of Id targeting have thus
far been limited to methods of gene silencing in the laboratory.
Thus, the availability of pharmaceutical methods to inhibit Id1
in vivo may greatly advance the understanding of the role of Id1 in
the biology, therapy, and prevention of cancer.

Here, we show that Src interacts with and is a positive
modulator of the BMP-2/Smad1/Id1 signaling pathway in lung
cancer cells, suggesting an important role for Id1 in Src-mediated
invasion. We also provide evidence that Src inhibition by small

Note: Supplementary data for this article are available at Cancer Research Online
(http://cancerres.aacrjournals.org/).
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molecules significantly reduces the level of Id1 in lung, breast,
prostate, and colon cancer cells, thereby providing a potential way
to target Id1 in vivo .

Materials and Methods

Cell lines and reagents. The following cell lines were obtained from the

American Type Culture Collection: A549, H460, LNCaP, PC-3, T47D, MDA-

MB231, HCT-116, and HT-29. Cells were cultured in RPMI (LNCaP and PC-3)
or DMEM (all other cell lines) plus 10% filtered, heat-inactivated fetal

bovine serum (FBS). PP2 (Calbiochem) and AZD0530 (AstraZeneca) were

solubilized in DMSO to obtain a 10 and 1 mmol/L stock solution, respec-

tively. The Src-blocking peptides CpraYKYY-hAla-r7 and CpraYKYY-hAla-k7
(provided by Dr. Kit Lam, University of California Davis Cancer Center,

Sacramento, CA) were solubilized in sterile H2O to obtain a 25 mmol/L

stock solution (31). Recombinant human BMP-2 (R&D Systems) was
reconstituted in 4 nmol/L HCl containing 0.1% bovine serum albumin (BSA)

to obtain a 10 Ag/mL stock solution. Stock solutions were stored at �20jC
and diluted in DMEM for each experiment.

Microarray gene expression profiling. RNA isolation, RNA purification,

and genome-wide expression profiling using Human Genome U133 Plus 2.0

GeneChip arrays (Affymetrix) was performed according to the manufac-
turer’s protocols and as described previously (24). Initial data processing

(e.g., signal detection and scaling) for each chip was performed using

Affymetrix GeneChip Operating Software. Model-based expression analysis

(using the perfect match-mismatch model) was used to identify differen-
tially expressed genes using DNA-Chip Analyzer software (dChip; ref. 32).

For this, signals from all of the arrays were normalized to the array that had

the median overall intensity. Criteria for the selection of genes exhibiting

significant expression changes included an average fold change of z2.0
(AZD0530/DMSO), P values of V0.05, and at least 100 units of change

between the two treatments being tested.

Reverse transcription-PCR. Total RNA was extracted using the Trizol
protocol (Invitrogen) and cDNA was generated using M-MuLV reverse

Figure 1. Id gene expression is
down-regulated by Src inhibition in cancer
cells. A549 cells were incubated with
increasing concentrations of AZD0530,
and control cells were incubated with
DMSO. A, RNA was isolated after 24 h,
and real-time RT-PCR for Id1 RNA and
18S rRNA was performed in triplicates
using Sybr Green. Id1 levels were normal-
ized
for 18S rRNA. Columns, mean relative to
control; bars, SEs. B, protein was isolated
after 48 h of incubation with AZD0530,
and Western blotting was performed
to determine the levels of pY419-Src, Src,
Id1, and actin. C, lung (A549 and H460),
breast (T47D and MDA-MB231), prostate
(LNCaP and PC-3), and colon (HCT-116
and HT-29) cancer cells were selected
according to their reported invasive
potential, and Western blotting
was performed to compare the basal levels
of pY419-Src, Src, Id1, and actin. D,
cells were incubated for 48 h with PP2
(10 Amol/L) or AZD0530 (1 Amol/L; AZD).
Control cells were incubated with DMSO.
Western blotting was performed
to determine the levels of pY419-Src,
Id1, and actin.

Regulation of Id1 Expression by Src
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transcriptase (Fermentas). For PCR primer sequences and annealing

temperatures, see Supplementary Fig. S2. PCR products were loaded onto

1% agarose gels and run at 110 V for 1 h.

Real-time RT-PCR. Quantitative real-time PCR was performed using iQ
Sybr Green Supermix and the iCycler detection system (Bio-Rad). Primer

sequences were as follows: ID1 forward, 5¶-CTCTACGACATGAACGGCTGT-
3¶; ID1 reverse, 5¶-TGCTCACCTTGCGGTTCTG-3¶; 18S forward, 5¶-CGCCGCT-
AGAGGTGAAATTCT-3¶; and 18S reverse, 5¶-CGAACCTCCGACTTTCGTTCT-3¶.
Standard dilutions, melting curve analysis, and agarose gel electrophoresis of

PCR products were performed to confirm accuracy. Triplicate Id1 expression

valueswere normalized for 18S rRNA, and datawere processed using Q-GENE
software (33).

Western blotting. Cells were lysed in radioimmunoprecipitation assay

(RIPA) buffer on ice for 30 min and protein concentrations were determined

using the bicinchoninic acid protein assay (Pierce Biotechnology). Equal
amounts of protein were electrophoresed on polyacrylamide gradient gels

(4–20%) and transferred onto nitrocellulose membranes by semidry

blotting. Membranes were blocked for 1 h with TBS containing 5% nonfat

dry milk and incubated overnight with antibodies against Src (Upstate),
phospho-Src family (Cell Signaling), Id1 (Biocheck), pS463/465-Smad1/5

(Upstate), Smad1/5/8 (Santa Cruz Biotechnology), and h-Actin (Santa Cruz

Biotechnology). Membranes were washed in TBS and incubated for 1 h with

horseradish peroxidase–conjugated secondary antibodies (Promega). Visu-
alization was performed using enhanced chemiluminescent (ECL) detection

reagent and ECL X-ray films (Amersham).

Immunoprecipitation. Cells were lysed with RIPA buffer as described
above. Equal amounts of protein were processed using the ExactaCruz kit

(Santa Cruz Biotechnology) following the manufacturer’s protocol. Briefly,

anti-Src antibody (Upstate) was mixed with immunoprecipitation matrix

and incubated overnight at 4jC. The mix was centrifuged, and cell lysates
were added and incubated overnight at 4jC on a rotator. After

centrifugation, pellets were washed in PBS, resuspended in Laemmli buffer,

and boiled at 95jC for 5 min. Samples were subjected to SDS-PAGE and

Western blotting for Smad1/5/8 (Santa Cruz Biotechnology) and Src
(Upstate).

RNA interference. Standard siCONTROL (D-001210-02), on-target plus

SMART pool human Src (L-003175-00), and on-target plus SMART pool

human Id1 (L-005051-00) were purchased (Dharmacon). Oligonucleotides

were complexed with Lipofectamine in Opti-MEM (Invitrogen) according to
the manufacturer’s protocol and delivered to cells at a final concentration of

100 nmol/L.

Id1 promoter assays. A549 cells were transfected in 96-well plates for

24 h with previously described ID1pGL-luc reporter and SV40pRL
coreporter plasmids at a ratio of 10:1 in the presence of Effectene (Qiagen)

in 10% FBS DMEM (34). For Src inhibitor assays, cells were then incubated

for 24 h with DMSO, PP2, or AZD0530 in 10% FBS DMEM. Samples were
lysed and analyzed using the Dual-Luciferase Reporter Assay system

(Promega) on a MicroLumat luminometer (EG & G Berthold). For Src

mutant assays, cells were triple transfected for 24 h with ID1pGL, SV40pRL

plus PCI vectors containing wild-type human Src, dominant-negative
human SrcK298M (provided by Dr. Don Fujita, University of Calgary,

Alberta, Canada), or constitutively active chicken SrcY527F (provided by

Dr. June Zhou, University of California Davis Cancer Center, Sacramento,

CA; ref. 35). Cells were then incubated in fresh 10% FBS DMEM for 18 h
followed by serum starvation in DMEM for 6 h. For promoter region assays,

cells were triple-transfected for 24 h with Src-Y527F, SV40pRL, plus full-

length ID1pGL or one of seven previously described ID1 promoter 5¶
deletion constructs (34). Cells were then incubated in fresh 10% FBS DMEM
for 18 h followed by serum starvation in DMEM for 6 h. Assays were

performed in triplicates, firefly luciferase activity was normalized for Renilla

luciferase activity, and relative Id1 promoter activity
was calculated based on the mean value of the respective control.

Chromatin immunoprecipitation. A549 cells were incubated with

DMSO, PP2, or AZD0530 for 23 h followed by stimulation with BMP-2

(10 ng/mL; 1 h). Cells were cross-linked with 1% formaldehyde for 10 min
and incubated in 0.125 mol/L glycine for 5 min. Plates were scraped and

cells were centrifuged. Pellets were resuspended in swelling buffer

containing 100 mmol/L Tris, 10 mmol/L KOAc, 15 mmol/L MgOAc,

and protease-inhibitor cocktail (Roche); incubated for 20 min on ice; and
dounce homogenized 15 times. Nuclei were centrifuged; resuspended in

Figure 2. Reduction of Id1 mRNA and protein
levels by Src siRNA and blocking peptides.
A, A549 cells were incubated with Src siRNA, Id1
siRNA, or nontargeting control siRNA (each at
100 nmol/L; 24 h). RNA was isolated and RT-PCR
was performed using specific primers for Src
mRNA, Id1 mRNA, and 18S rRNA. B, protein was
isolated for Western blotting and probing for Src,
Id1, and actin. C, A549 cells were incubated
with the Src-blocking peptides CpraYKYY-hAla-k7
and CpraYKYY-hAla-r7 at the concentrations
indicated for 24 h. RNA was isolated and RT-PCR
was performed using specific primers for Src
mRNA, Id1 mRNA, and 18S rRNA. D, Western
blotting was performed to determine the levels of
pY419-Src, Src, Id1, and actin.
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buffer containing 10 mmol/L EDTA, 50 mmol/L Tris-HCl, 0.5% SDS, and
protease inhibitor cocktail; and sonicated using a BioRuptor (Diagenode).

Lysates were diluted in buffer containing 150 mmol/L NaCl, 2 mmol/L

EDTA, 20 mmol/L Tris-HCl, 1% Triton-X, and protease inhibitor cocktail,

and split into two aliquots for overnight incubation with 5 Ag of anti-
Smad1/5/8 antibody (Santa Cruz Biotechnology) or rabbit IgG (Oncogene

Science). Samples were then incubated with 5 Ag of sonicated salmon

sperm DNA (Sigma-Aldrich) and 50 AL of protein G agarose (Upstate) for

2 h. After centrifugation, supernatant was stored (input control) and
pellets were washed in TSE buffer [1% TritonX-100, 0.1% SDS, 2 mmol/L

EDTA, and 20 mmol/L Tris-HCl (pH 8.1)], eluted in TE buffer (10 mmol/L

Tris-HCl and 1 mmol/L EDTA), and incubated at 65jC overnight to

reverse the cross-linking. Samples were incubated with 1 AL of Proteinase
K (Fermentas) for 1 h at 55jC, and DNA was isolated using the QIAquick

PCR purification kit (Qiagen). PCR for the Src-responsive region was

performed using forward primer 5¶-AATTGTTGGGATTACAGGCGTG-3¶
and reverse primer 5¶-CTGGGAATGCGTTTCTTGCG-3¶ at an annealing

temperature of 55jC for 35 cycles. PCR products were separated on 1.5%

agarose gels.

Immunofluorescence. A549 cells in chamber slides were incubated with
DMSO, PP2, or AZD0530 for 23 h followed by stimulation with BMP-2

(10 ng/mL; 1 h). Cells were then fixed with 3.7% formaldehyde,

permeabilized with Triton-100, blocked with 0.5% BSA in PBS, and

incubated with anti-Smad1/5/8 antibody (Santa Cruz Biotechnology)
overnight. Cells were washed and incubated with Alexa-647–conjugated

secondary antibody and Hoechst dye. After washing, slides were analyzed
using a BX61 microscope and SlideBook 4.1 imaging software (Olympus).

Establishment of a stable Id1-overexpressing A549 subline. The full-

length Id1 cDNA sequence was subcloned from pBabe-Id1 (26) into pLNCX2

retroviral vector (BD Clontech) for cytomegalovirus promoter–driven
expression. For production of retrovirus, pLNCX2-Id1 and pLNCX2-empty

expression constructs (2 Ag) were transfected into LinX-A amphotropic

packaging cells using FuGENE 6 transfection reagent. Cultures were

incubated at 32jC. After 72 h, virus-containing supernatant was collected,
centrifuged at 3,000 � g for 15 min at 4jC, and filtered through a 0.45-Am
surfactant-free cellulose acetate membrane (Corning, Inc.). A549 cells were

then infected with a mix of DMEM, virus-containing supernatant (1:1), and

polybrene (4 Ag/mL). After incubation for 24 h at 32jC, cells were selected
in 10% FBS DMEM with 400 Ag/mL of Geneticin (JR Scientific) at 37jC
for 3 wk.

Invasion assays. Cell culture inserts with polyethylene terephthalate
membranes and 8-Am pores were coated with 60 AL Matrigel (BD

Biosciences). Top chambers were filled with A549 cells in 5% FBS DMEM

containing siRNA, DMSO, PP2, or AZD0530. Bottom chambers were filled

with 10% FBS DMEM. After 24 h, cells in the top chamber were removed with
cotton swabs, and cells on the bottom side of the insert were fixed

with 3.7% formaldehyde, stained with 0.5% methylene blue, and counted on

an IX50 microscope (Olympus).

Statistical analysis. All experiments were performed at least thrice;
values represent the mean of triplicate samples and SEs of the mean.

Figure 3. Identification of an
Src-responsive region in the Id1 promoter.
A, A549 cells were transfected for 24 h with
ID1pGL firefly luciferase reporter plus
SV40pRL Renilla luciferase coreporter
followed by incubation for 24 h with DMSO,
PP2, or AZD0530 at the concentrations
indicated. Triplicate samples were
measured using the dual luciferase reporter
assay. B, A549 cells were triple-transfected
with ID1pGL reporter, SV40pRL coreporter
plus wild-type (wt ) Src, constitutively
active (ca ) Src, or dominant-negative (dn)
Src. Cells were then incubated in 10% FBS
DMEM for 18 h followed by serum
starvation for 6 h. C, A549 cells were
triple-transfected for 24 h with constitutively
active Src, and SV40pRL coreporter plus
either the ID1 full-length promoter reporter
construct or one of the Id1 promoter
deletion reporter constructs (5¶del-1 to
5¶del-7 ). Cells were then incubated in 10%
FBS DMEM for 18 h followed by serum
starvation for 6 h.
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Results

Id gene expression is down-regulated by Src inhibition in
cancer cells. To identify novel downstream effectors of Src
signaling in cancer, we performed genome-wide expression
profiling of cells subjected to Src kinase inhibition. To this end,
A549 lung adenocarcinoma cells were incubated for 24 hours with
AZD0530 (750 nmol/L) in DMSO or with DMSO alone followed by
RNA extraction and expression analysis using Affymetrix U133 plus
2.0 arrays. A total of 175 genes were differentially regulated
(z2-fold) in response to incubation with AZD0530. The genes most
dramatically down-regulated by AZD0530 were the inhibitors of
differentiation gene family members (ID1-4), inhibitory Smads
(SMAD6 and SMAD7), TGFB1, and SERPINE1/PAI-1 (Supplemen-
tary Fig. S1). These findings were confirmed by standard reverse
transcription PCR (RT-PCR), and the specificity of the effect of
AZD0530 was shown by the fact that levels of Src and of 18S rRNA
transcripts were unchanged (Supplementary Fig. S2). Taken
together, these expression changes suggested that AZD0530-
mediated Src inhibition leads to suppression of the Smad-Id
signaling pathway.

Based on its (a) strong association with cancer progression and
(b) well-defined regulation by Smad signaling, we chose to focus on
better defining the mechanism responsible for Id1 as a target of Src
inhibition. To characterize further the effect of AZD0530 on Id1
mRNA levels, A549 cells were incubated with increasing concen-
trations of AZD0530 (1 nmol/L–10 Amol/L) for 24 hours.

Quantitative real-time RT-PCR showed a dose-dependent reduction
of Id1 expression by AZD0530, which reached a nadir at 100 nmol/L
(Fig. 1A). Western blot analysis of companion cultures treated with
AZD0530 for 48 hours was performed to show a correlation between
AZD0530-mediated Src inhibition and down-regulation of Id1. The
results confirmed a dose-dependent reduction in Id1 expression
that corresponded with decreased levels of activated pY419-Src,
whereas the levels of total Src were unchanged (Fig. 1B). The anti–
phospho-Src family antibody detected multiple bands between 55
and 70 kDa, consistent with the presence of multiple Src family
members in A549 cells. Reprobing with Src-specific antibody
confirmed that the 60-kDa band represented the phosphorylated
pp60c-Src protein.

To investigate the functional relationship between Src and Id1
and its therapeutic implications, we examined a panel of human
cancer cell lines from four types of cancer, including lung (A549
and H460), breast (T47D and MDA-MB231), prostate (LNCaP and
PC-3), and colon (HCT-116 and HT-29), each represented by a pair
of cell lines with different invasive potential (36–39). Protein
extracts of cells grown under normal conditions were subjected to
Western blotting for pY419-Src, total Src, Id1, and actin (Fig. 1C).
Immunoblot analysis showed that basal Src activity (pY419-Src)
was easily detectable in six of eight cell lines. The levels of pY419-
Src corresponded with the reported invasive potential in each pair.
Similarly, Id1 levels corresponded with the reported invasive
potential and level of pY419-Src level in six of eight cell lines.

Figure 4. Cooperation of Src with the BMP/Smad
signaling pathway. A, A549 cells were transfected for
24 h with ID1pGL reporter and SV40pRL coreporter
followed by incubation with DMSO, PP2 (10 Amol/L),
or AZD0530 (1 Amol/L) for 23 h and then stimulated
with BMP-2 (10 ng/mL; 1 h). Triplicate samples
were analyzed using the dual luciferase reporter
system. B, A549 cells were incubated with DMSO,
PP2 (10 Amol/L), or AZD0530 (1 Amol/L) for 23
h followed by stimulation with BMP-2 (10 ng/mL; 1 h).
ChIP was performed using anti-Smad1/5 antibody or
normal rabbit IgG. DNA was extracted and the
proposed Src-responsive region of the Id1 promoter
was amplified by PCR. C, A549 cells were incubated
for 23 h with DMSO, PP2 (10 Amol/L), or AZD0530
(1 Amol/L) followed by stimulation with BMP-2
(10 ng/mL; 1 h). Western blotting was performed
to determine the levels of pY419-Src, Src,
phospho-Smad1/5, Smad1/5, Id1, and actin. D, A549
cells were incubated for 1 h with BMP-2 at the
concentrations indicated. Western blotting was
performed to determine the levels of pY419-Src, Src,
and actin.
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Although Id1 was highly expressed in the colon cancer cells HCT-
116 and HT-29, an inverse relationship between pY419-Src and Id1
levels was observed. This suggests that Src is a major regulator of
Id1 but that other pathways exist to activate Id1. Next, the effect of
Src inhibition on Id1 expression in each cell line was determined
(Fig. 1D). Incubation of the cells with PP2 (10 Amol/L) or AZD0530
(1 Amol/L) for 48 hours reduced the levels of pY419-Src and Id1 in
all cell lines. These results showed an association between Src and
Id1 expression, and that Src inhibitors can effectively mediate Id1
down-regulation.
Reduction of Id1 mRNA and protein levels by Src siRNA and

blocking peptides. In addition to small-molecule inhibitors, two
alternative approaches to Src-targeting were used to confirm the
role of Src in the regulation of Id1 expression. In the first approach,
A549 cells were transfected with an Src-specific siRNA pool, as well
as an Id1-specific siRNA and a nontargeting control siRNA. After
24 hours, RNA and protein was isolated and RT-PCR and Western
blotting was performed, respectively (Fig. 2A and B). The expected
effect of each siRNA on its respective target was confirmed.
Moreover, Src siRNA also reduced Id1 mRNA and protein levels.
The levels of 18S rRNA and actin protein remained unchanged. Src
siRNA had no visual effect on other members of the Src family
tested (Supplementary Fig. S3). In the second approach, A549 cells
were incubated for 24 hours with cell-permeable Src-blocking
peptides CpraYKYY-hAla-k7 and CpraYKYY-hAla-r7 at the concen-
trations indicated (Fig. 2C and D ; ref. 31). Target specificity of these
peptides has been shown earlier (31). Both peptides reduced Id1
transcript levels in a dose-dependent manner. Western blotting
showed a reduction in pY419-Src levels and Id1 protein levels,
whereas total Src levels remained unchanged. These results

confirmed that inhibition of Src activity or expression leads to
reduced Id1 levels.
Identification of an Src-responsive region in the human Id1

promoter. To define further the role of Src in the regulation of Id1
expression, we used dual-luciferase reporter assays to monitor the
activity of the Id1 promoter. A549 cells were cotransfected with
ID1pGL firefly luciferase reporter (34) and SV40pRL Renilla
luciferase coreporter for 24 hours followed by incubation with
DMSO, PP2, or AZD0530 for an additional 24 hours. As a control,
serum starvation for 24 hours decreased the Id1 promoter signal by
54% (Fig. 3A). In comparison, both PP2 and AZD0530 significantly
reduced the Id1 promoter signal in a dose-dependent manner. Of
note, AZD0530 (1 Amol/L) in serum-stimulated A549 cells reduced
Id1 promoter activity by >90%, suggesting that the promoter is
strongly Src dependent. To investigate this further, we tested if Id1
promoter activity could be modulated by enforced expression of
wild-type or mutant forms of Src. Under conditions of serum-
deprivation, a constitutively active Src mutant resulted in a 3.7-fold
induction in Id1 promoter activity, compared with a 3.2-fold
induction by serum (Fig. 3B). In contrast, wild-type Src did not
significantly alter Id1 promoter activity, whereas dominant-
negative Src decreased endogenous (serum deprived) Id1 promoter
activity by 85%. In an effort to map the region in the Id1 promoter
that was responsible for Src-mediated activation, each of a set of
5¶-deletion constructs (5¶del-1 to 5¶del-7) generated from the full-
length (2.2 kbp) Id1 promoter and cloned into the pGL-luciferase
reporter (34) were cotransfected with SV40pRL coreporter plus
constitutively active Src (Fig. 3C). Again under conditions of serum
deprivation, the greatest decrease in the Id1 promoter signal
occurred with construct 5¶del-3 (60% of the signal of the full-length

Figure 5. Inhibition of Src blocks Src-Smad interaction
and nuclear translocation of Smad. A, H460 cells were
incubated with DMSO or AZD0530 (1 Amol/L) for 23 h
followed by stimulation with BMP-2 (10 ng/mL) for the
time periods indicated. Immunoprecipitation for Src and
Western blotting for Smad1/5 and Src was performed.
B, A549 cells in chamber slides were incubated with DMSO,
PP2 (10 Amol/L), or AZD0530 (1 Amol/L) for 23 h followed by
stimulation with BMP-2 (10 ng/mL; 1 h). Immunofluorescent
staining was performed using anti-Smad1/5/8 antibody,
Alexa-647–conjugated secondary antibody, and Hoechst dye
(bars, 10 Am).
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promoter construct), corresponding to a region between positions
1,360 and 1,199 in the Id1 promoter. Analysis of the sequence of
this newly characterized Src-responsive region revealed the CAGC
motif (positions 1,352–1,349), representing a putative Smad-
binding element.
Cross-talk between Src and BMP-Smad signaling pathway.

BMP-2 is a well-known inducer of Id1 via Smad binding to
consensus elements within the Id1 promoter. The findings above
suggest that Src is required for Smad-mediated Id1 activation. To
address this, we examined the effect of Src inhibitors on BMP-
induced signaling and Id1 expression. In reporter assays, stimula-
tion of A549 cells with BMP-2 (10 ng/mL; 1 h) induced a 3.4-fold
increase in Id1 promoter activity above basal, serum-stimulated
activity (Fig. 4A). Incubation with PP2 (10 Amol/L) or AZD0530
(1 Amol/L) reduced BMP-mediated Id1 promoter activity by 40% or
completely blocked the response, respectively. Chromatin immu-
noprecipitation (ChIP) of unstimulated and BMP-stimulated A549
cells was performed using Smad1/5 antibody followed by DNA
extraction and PCR using primers spanning the newly identified
Src-responsive region of the Id1 promoter (Fig. 4B). BMP-2
(10 ng/mL; 1 hour) markedly induced Smad binding to the Src-
responsive region of the Id1 promoter, and this process was
completely blocked in the presence of PP2 (10 Amol/L) or AZD0530
(1 Amol/L). Consistently, BMP-induced Smad1/5 phosphorylation
and Id1 expression was inhibited by PP2 and AZD0530 (Fig. 4C).
This experiment also suggested Src activation by BMP-2, and
indeed, a separate experiment confirmed that BMP-2 increased
pY419-Src levels in a dose-dependent manner (Fig. 4D). Analysis of
the blots with Scion Image software (Scion Corp.) and normaliza-
tion for total Src revealed an average increase of the pY419-Src
levels by 26% to 28% compared with baseline (data not shown).

To determine a physical interaction between Src and Smad,
and to confirm the findings in another cell line, H460 lung cancer
cells were stimulated with BMP-2 (10 ng/mL) for 30 or 60
minutes followed by immunoprecipitation of Src and Western
blotting for Smad1/5 and Src (Fig. 5A). The amount of Smad1/5
present in immune complexes was increased in protein lysates
from cells stimulated with BMP-2 (10 ng/mL; 1 hour), and this
was blocked in the presence of AZD0530 (1 Amol/L). Interestingly,
a small (3–5 kDa) shift in the size of the Smad protein band
occurred by stimulation with BMP-2, suggesting that phosphor-
ylated Smad is recruited into the complex with Src. Next, the
effect of Src inhibition on Smad1/5 nuclear translocation was
studied. A549 cells were grown on chamber slides and incubated for
23 hours with DMSO, PP2 (10 Amol/L), or AZD0530 (1 Amol/L).
Cells were then stimulated with BMP-2 (10 ng/mL; 1 hour).
Immunofluorescent staining for Smad1/5 was performed and
Hoechst dye used to visualize the nuclei (Fig. 5B). In unstimulated
cells, Smad1/5 localization was primarily cytoplasmic. Although
BMP-2 induced prominent nuclear accumulation of Smad1/5 in
f30% of the cells, which was consistent with a previous report
(40), PP2 and AZD0530 almost completely blocked Smad nuclear
translocation. In summary, the data showed the existence of cross-
talk between Src and Smad pathways, and that Src is involved in
BMP-2–mediated Smad activation and nuclear translocation.
Involvement of Id1 in cancer cell invasion. The cellular

consequence of the Src-Id1 interaction was investigated by
determining the effects of Id1 modulation on the invasiveness of
A549 lung carcinoma cells. First, the efficacy of different methods
of Id1 and Src antagonism to inhibit invasion was examined
(Fig. 6A). Id1 siRNA reduced invasion by 50%, whereas PP2

(10 Amol/L) and AZD0530 (1 Amol/L) reduced invasion by 68% and
73%, respectively. Next, the dominant role of Id1 in conferring a
more aggressive phenotype was tested by generating Id1-over-
expressing A549 cells (A549-Id1), using retroviral gene transfer.
Western blotting confirmed that Id1 expression was increased
markedly in A549-Id1 cells compared with empty vector control
cells (Fig. 6B). Matrigel assays revealed that Id1 overexpression
enhanced invasion at 24 hours by 7.2-fold compared with vector
control (Fig. 6C and D). These results confirmed the involvement of
Id1 in lung cancer cell invasion.

Discussion

The connection between BMP-2, Smad1, Id1, and cancer cell
invasion is well-established. BMP-2 was found to be overexpressed
in primary human lung cancer compared with normal tissue (18)
and was shown to activate Smad1/5, to increase Id1 expression,
and to promote invasion in lung cancer cells (40, 41). Critical
regulatory elements in the Id1 promoter include a BMP-responsive
region, a serum-responsive region, and a region associated with
constitutive expression in breast cancer cells (14–16, 34).
Consistent with previous data from noncancerous cells, the present

Figure 6. Involvement of Id1 in lung cancer cell invasion. A, Matrigel invasion
assays were performed in triplicates using A549 cells incubated for 24 h with
control si RNA, Id1 siRNA (100 nmol/L), DMSO, PP2 (10 Amol/L), or AZD0530
(1 Amol/L). After 24 h, cells in the top chambers were removed, and cells in the
bottom chambers were fixed with formaldehyde, stained with methylene blue,
and counted. B, Id1 overexpressing A549 cells (Id1 ) and empty vector control
cells (vector ) were generated by retroviral infection and Geneticin selection as
described under Materials and Methods. Western blotting was performed to
determine the levels of Id1 and actin. Next, Matrigel invasion assays were
performed in triplicates (C and D ). After 24 h, cells in the upper chambers were
removed, and cells in the bottom chambers were fixed with formaldehyde,
stained with methylene blue, and counted (bars, 50 Am).
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study implicates the crosstalk of Src tyrosine kinase signaling with
the BMP-Smad pathway as an additional regulator of Id1
expression in cancer (42–45). Importantly, this was also associated
with a substantial diminution in invasion. This was shown by the
ability of multiple methods of Src inhibition (i.e., small-molecule
antagonists, peptide inhibitors, and siRNA) to markedly reduce Id1
expression and promoter activity. Conversely, transient, enforced
expression of a constitutively active Src mutant induced the Id1
promoter signal independently of serum or BMP-2. Using a series
of Id1 promoter deletion constructs, we identified a novel Src-
responsive region in the human Id1 promoter. This region contains
the Smad-binding motif CAGC, and we provided evidence for the
binding of Smad1/5 to the Src-responsive region. Consistent with
the demonstration of a functional interaction between Src and
BMP-Smad1/5, and temporal association of BMP-mediated activa-
tion of Src and Smad1/5, the formation of a signaling complex of
Src and Smad1/5 was shown by coimmunoprecipitation experi-
ments. Further work is expected to reveal the molecular
mechanisms by which Src is recruited to the BMP receptor
complex and is activated in response to BMP signaling, and by
which Src may activate Smad1/5. In this context, previous work by
others showed that PP1 (and to a lesser extent, PP2) significantly
inhibited TGFh receptor kinase activity and blocked subsequent
Smad2/3 signaling; this suggested the that some effects seen in our
study may have resulted from direct inhibition of TGFh receptor
kinase by the small-molecule kinase inhibitors used (46). We used
several different molecular approaches to Src targeting (RNA
interference, small molecules, dominant-negative mutant, and
inhibitory peptides) and the consistent results make it unlikely
that off-target effects account for the main observations. Support-
ing this view, other studies showed that TGFh did not activate, but
rather inhibited, Id1 expression (14, 29, 47). Taken together, these
data suggest a model of balanced Id1 regulation in which BMP acts
positively on Id1 transcription via Smad1/5 and TGFh acts as
negative regulator via Smad2/3. Aberrant activation of Src may
shift the balance toward increased Smad1/5 signaling, resulting in
Id1 overexpression. However, the present report also supports the

existence of other undefined mechanisms of Id1 regulation because
HT-29 and HCT-116 cells lacked a positive association between Src
activation and Id1 expression. Because missense mutations in
Smad4 exist in some colorectal cancer cells, including HT-29, Id1
expression may be driven by Smad-independent pathways in these
cells (48). In this regard, the observation that Src inhibition
reduced Id1 levels in MDA-MB231 cells, which constitutively
express high levels of Id1 in a serum-independent manner, is
encouraging (34).

Our study has several clinical implications. First and most
important, it points toward a new molecular mechanism of action
for Src inhibitors and suggests the use of Id1 as a biomarker. In line
with this notion are gene expression signatures in breast and lung
cancer, which include both Id1 and Src, and which are associated
with tumor aggressiveness and responsiveness to Src inhibition,
respectively (49, 50). Second, we speculate that therapeutic
strategies based on Src inhibitor–mediated Id1 down-regulation
may reduce tumor recurrence, angiogenesis, and metastasis.
Beyond this, based on the implication of Src and BMP in
osteogenesis, the findings described in the present report may
lead to advances in the biology and treatment of malignant and
nonmalignant bone disease.
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ABSTRACT 

Neuroendocrine differentiation of CaP cells is often detected under androgen-deprived 

conditions.  Neuropeptides released by these neuroendocrine-differentiated CaP cells may 

facilitate the development of androgen independence.  Exemplified by GRP (gastrin-releasing 

peptide), these neuropeptides transmit their signals through G-protein coupled receptor (GPCRs), 

which are often overexpressed in prostate cancer.  We developed an autocrine neuropeptide 

model by overexpressing GRP in LNCaP cells to attain their androgen-independence.  LNCaP-

GRP cells were evaluated for proliferation, migration and tumorigenesis in androgen-free 

environments in vitro and in vivo.  LNCaP-GRP cells orthotopically implanted in castrated nude 

mice produced significant tumors, with expression of GRP, prostate-specific antigen, and 

androgen receptor nuclear localization.   Chromatin immunoprecipitation studies of LNCaP-GRP 

clones suggest that expressed GRP signals, activates and recruits AR to the cognate promoter in 

the absence of androgen.  Recultured LNCaP-GRP xenografts (GRP-Pro cells) showed enhanced 

androgen independent growth and motility.  A Src family kinase (SFK) inhibitor, AZD0530 

inhibits not only androgen-independent growth and migration but also AR nuclear translocation 

of the GRP and GRP-Pro cell lines, demonstrating its potential in the treatment of hormone 

refractory CaP.    In vivo study showed AZD0530 profoundly inhibits tumor metastasis in severe 

combined immunodeficient (SCID) mice implanted with GRP-Pro cells.  This xenograft model 

demonstrates autocrine, neuropeptide- and Src kinase-mediated progression of androgen-

independent CaP post-castration, and is potentially useful for testing novel therapeutic agents. 

 

INTRODUCTION 

Prostate cancer is the most frequently diagnosed cancer in American men and the second 

leading cause of cancer deaths (1).  Androgen withdrawal initially induces apoptosis and cell 
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cycle arrest in CaP; however, CaP eventually loses its dependence on androgens and progresses 

to an androgen-independent state.  Various mechanisms have been postulated to account for the 

conversion of CaP into hormone-refractory state, including the aberrant activation of androgen 

receptor by peptide growth factors and ligands for GPCRs (2-4).  If true, these mediators and 

components of their signal pathways are potential targets for therapeutic intervention of 

hormone-refractory CaP.  It has been reported that androgen withdrawal from androgen-

dependent CaP cells (5) or treatment with stimuli such as IL-6 and forskolin in vitro promotes 

acquisition of the neuroendocrine phenotype through transdifferentiation (6).  Cumulative 

evidence suggests that neuroendocrine differentiation of CaP may be a cofactor involved in 

tumor progression and androgen independence (7). 

Neuroendocrine cells are identified by their neurosecretory granules and expression of 

neuron specific markers including chromogranin A, neuron-specific enolase and mitogenic 

neuropeptides such as bombesin/GRP, somatostatin, calcitonin, and parathyroid hormone-related 

peptides (7).  Neuropeptides have been identified as potent paracrine and autocrine growth 

factors in human cancers to include lung, gastrointestinal,  pancreatic, brain, and prostate (8-13).  

In prostate cancer, previous studies by others and by us have shown that neuropeptides promote 

cell growth (14), migration and protease expression (15) in PC-3 cells, and androgen-

independence in LNCaP cells (3, 5).  Androgen independence in CaP patients is shown to 

correlate well with elevated serum levels of chromogranin A (16).  Elevated expression of GRP 

receptors are often detected in CaP specimens (17, 18). 

 The bombesin/GRP family is among the most studied neuropeptide group in CaP.  

Bombesin/GRP transduces signals by engaging heterotrimeric G protein-coupled receptors 

located on the cell surface (19).  Upon binding to its receptors, bombesin/GRP elicits calcium 

mobilization in PC-3 and DU 145 cells (20, 21) and promotes growth and cell invasiveness via 
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proteolytic activities of MMP’s in LNCaP and PC-3 cells (15).  We have previously shown that 

exogenous bombesin/GRP activates AR and supports androgen-independent growth in LNCaP 

through signaling mediated by non-receptor tyrosine kinases such as Src, FAK and Etk (3).  In 

vivo androgen withdrawal following establishment of LNCaP tumors results in increased 

neuroendocrine cells (5).  Together, these data suggest that castration induced neuroendocrine 

differentiation may release soluble factors, which sustain the growth and survival of androgen-

deprived cells, contributing to tumor androgen-independence and metastasis.   

 In this paper, we describe a neuropeptide xenograft model and use it to test inhibition of 

the tyrosine kinase pathway implicated in the development of androgen-independence.  We 

introduced the GRP-expressing vector into LNCaP cells to establish an autocrine neuroendocrine 

model.  The GRP clones exhibited enhanced proliferation and migration properties under 

androgen-depleted conditions, and developed significant tumors in castrated nude mice, 

providing evidence for GRP’s role in androgen-independent growth through modulation of AR.  

We tested the effect of a SFK inhibitor AZD0530 on recultured xenograft cells both in vitro and 

in vivo.  Our results showed that AZD0530 effectively blocked the androgen-independent 

growth and migration of LNCaP cells mediated by autocrine GRP, through inhibiting activation 

of the Src/FAK/Etk complex.  SCID mice implanted with GRP-autocrine LNCaP cells and 

treated with AZD0530 showed a complete inhibition of tumor metastasis. 

 

MATERIALS AND METHODS 

Cell culture.  LNCaP cells (ATCC, passages 38-43) were kept in RPMI1640 with 10% 

regular FBS.  When stimulated, cells were switched to phenol-red free RPMI1640 with 5% 

charcoal-stripped androgen-free (CS) serum. 
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Proliferation assays.  Cells were grown in CS medium alone or with supplemented with 

100 nM of bombesin, with 1 µg/ml of bombesin/GRP specific monoclonal antibody 2A11 (22), 5 

µM of GRP receptor antagonist RC3095 (23) or transfection of 100 µM of small inhibitory RNA 

(siRNA, sense sequence GGAAACAGUUCAACACUCAUU, validated by RT-PCR for 

inhibition, Dharmacon) for GRP receptor.  Cells were tryspinized and counted by trypan blue 

exclusion method after 48 hours or over 6 days for siSrc transfection.  

Chemotaxis migration assay.  Migration assays were performed in a Boyden chamber 

with 8 μm Nucleopore membrane coated with human plasma fibronectin (50 μg/ml).  2 x 104 

LNCaP cells were placed in the upper wells with testing agents in the lower wells, and incubated 

at 37°C for 4 hours to allow cell migration.  At the end of incubation, the membrane was stained 

by Diff-Quik Stain Kit and mounted on microscopic slides for counting.  Each experiment was 

performed in triplicate.  AZD0530 (500 nM) or siSrc transfection was used for inhibitor studies. 

GRP-expressing construct and transfection.  GRP cDNA was amplified from the small 

cell lung carcinoma DMS53 cell line (ATCC), which expresses GRP.  The amplified cDNA was 

inserted into mammalian expression vector pcDNA3.1-Zeocin (Invitrogen).  LNCaP cells were 

transfected with this GRP construct or the empty vector and stable transfectants were selected 

with Zeocin (100µg/ml) as GRP or Zeo (the mock transfectant).  Presence of the GRP gene in 

selected clones was confirmed by Northern blotting and RT-PCR.  

Quantitation of secreted GRP.  CM collected from LNCaP, LNCaP-zeo, GRP1-1, 

GRP4-9 and DMS53 cells was concentrated by passing through PrepSep C18 reverse columns 

(Fisher) and the retainee was eluted with acetonitrile:water:acetic acid (59:40:1) mixture (24).  

The reconstituted solvent-free eluents were assayed for bombesin/GRP with a Bombesin EIA kit 

(Peninsula Lab). 
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Soft Agar Assay.   2 x 104 cells were plated in the midst of 0.3% agar in  CS medium 

with or without  2A11 (1 μg/ml).  Colony formation was examined after 4 weeks.  For the 

recultured GRP xenograft bicalutamide (5 μM) was used additionally. 

In vivo tumor biology.  Animal studies were conducted in accordance with institutional 

ethical guidelines for the care and use of experimental animals.  Surgical castration was 

performed and immediately following castration, 2x106 LNCaP-Zeo and GRP cells co-

suspended with 30% matrigel were injected orthotopically into twenty and twelve castrated nude 

mice, respectively.  At the end of 4 months, mice were sacrificed and their prostates were 

collected for pathological analyses.  Tumor sections were immunohistochemically stained with 

antibodies for GRP (RGG7130, Peninsula Laboratories), AR (PG21, Millipore) and PSA (ER-

PR8, Dako) and detected using the DAKO Envision+ Kit.  PSA levels were determined by the 

Micro PSA ELISA kit (Fitzgerald Industries). 

 Tumors were dissociated into singe-cell suspensions with collagenase and plated in CS 

media.  The derived LNCaP GRP sublines termed GRP-Pro (derived from Prostate) were pooled 

together and subjected to soft agar assay to examine their androgen-independent and tumorigenic 

characteristics. 

 For inhibitor study, fourteen castrated SCID mice were orthotopically implanted with 

4x106 re-cultured GRP-Pro cells.  SCID mice were used to better study tumor metastasis.  Two 

weeks after surgery, mice are divided into two groups, with 7 treated with 50mg/kg/day via 

esophageal gavaging (AZD0530-treated) and 7 with buffer only (control).  The study was 

terminated when one of the control mice succumbed to tumor burden.  All the mice were 

euthanized, their primary tumors excised for weighing and IHC staining with p-Src (Cell 

Signaling), p-FAK (ABR) or AR antibodies and lymph nodes examined for metastasis.   
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Transient transfection assays.  Zeo, GRP4-9 and GRP Pro cells were seeded in 24-well 

plates, transfected with 0.2 µg of PSA-Luc (promoter region, 630 bp) with the internal control 

pTK-RL using Effectene® (Qiagen).  Transactivation was examined by the dual-luciferase assay 

(Promega).  For RNA interference, standard siCONTROL (D-001210-02, SC) and on-target plus 

SMART pool human Src (L-003175-00, SiSrc, Dharmacon) were complexed with Lipofectamine 

2000 (Invitrogen) and delivered to cells grown in CS media at a final concentration of 100 nM.   

Chromatin Immunoprecipitation.  LNCaP-Zeo, GRP, and GRP-Pro cells grown to sub-

confluency were switched to CS media for 3 days.  Treatment with R1881 was performed 6 

hours before harvesting.  Chromatin immunoprecipitation was performed as described (4, 25, 26) 

with 6 µg of anti-AR antibody (PG-21, Millipore).  Standard PCR cycling protocol was 

performed with 58ºC for annealing for 30 cycles.  Primers for AR enhancer region are: 

5’catgttcacattagtacaccttg3’ and 5’tctcagatccaggcttgcttac3’; for proximal ARE region: 

5’tcctgagtgctggtgtcttag3’ and 5’agccctataaaaccttcattcc3’; and for intervening region: 

5’tcatccactcatcatccagcatc3’ and 5’ggagagcaatagacttgggaaacc3’. 

Immunofluorescent staining of AR.  Cells (2,500) were plated in 4-well chamber slides 

in CS media a day before fixing with 2% paraformaldehyde for staining.  Anti-AR (N-20, Santa 

Cruz) and anti-rabbit Alexa Fluor 647 (Invitrogen) were used as the primary and secondary 

antibodies for staining, respectively.  Immunofluorescent cells were visualized using an Olympus 

BX61 motorized reflected fluorescence microscope system with an AMCA filter for DAPI and a 

Cy5 filter for Alexa Fluor647 using the SlideBook4.1 software (Intelligent Imaging Innovations). 

Immunoprecipitation and Western blot.  LNCaP-Zeo, GRP and GRP-Pro cells were 

subjected to androgen withdrawal for 3 days with or without exposure to AZD0530 (1 µM).  Cell 

lysates were collected in IP buffer containing proteinase and phosphatase inhibitors, incubated 

with anti-FAK and subsequently protein G agarose beads for immunoprecipitation.   
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Phosphorylation of the respective precipitated proteins was detected by anti-p-Src family (Cell 

Signaling), p-FAK (Invitrogen) and p-Etk (Cell Signaling) antibodies after Western blotting 

analysis.  Signals were detected by ECL system (Amersham) followed by exposure to X-ray 

film. 

Statistics.  All in vitro data were from at least three independent experiments and 

subjected to paired t-tests using Statview program. 

 

RESULTS 

It has been shown that bombesin confers androgen-independent growth of LNCaP cells 

(3).  We validated that bombesin signals through the GRP receptor with specific inhibitors such 

as bombesin/GRP specific monoclonal antibody 2A11 and GRP receptor antagonist RC3940-II.  

Bombesin also stimulated cell migration as compared to the negative control (supplementary 

data #1).  

Expression of GRP enhances proliferation and migration of transfected LNCaP 

cells.  We established an autocrine model by introducing a GRP overexpressing vector to 

androgen-sensitive LNCaP cells to study the signaling pathways involved in androgen 

independence in vitro and in vivo.  Stable LNCaP-GRP transfectants were established by 

overexpressing GRP cDNA and screened by Northern blotting and RT-PCR (Figure 1A).  

Positive clones (e.g. GRP1-1 and GRP4-9) were isolated and characterized.  Bombesin/GRP 

enzyme immunoassay performed on CM collected from parental LNCaP, the vector-transfected 

control LNCaP-zeo, GRP1-1 and 4-9, as well as the GRP expressing DMS53 cells confirmed 

GRP expression in the two GRP clones (Figure 1B).   GRP1-1 and 4-9 cells produce almost 5 

fold more GRP than the control lines, but comparable to DMS53 cells.   Antibody 2A11, GRP 

receptor antagonist RC3905 and siRNA for the GRP receptor effectively inhibited the androgen-

 8



 

independent growth of GRP1-1 and 4-9 to 20-60% of the control (Figure 1C).  Negative control 

using siRNA targeting green fluorescence protein showed no effect on growth (data not shown).  

These data support the notion that GRP/bombesin is able to confer androgen-independent growth 

of LNCaP through binding to its membrane receptor.  If the androgen independent growth is due 

to the autocrine release of GRP into the media, we would expect a chemotactic effect from GRP 

CM.  As expected, LNCaP-Zeo migration was stimulated by bombesin (Figure 1D).  GRP CM 

stimulated LNCaP-Zeo migration by more than 3-fold and this migration was significantly 

reduced by 2A11 (p ≤0.001), suggesting GRP’s involvement.  Migration of GRP1-1 and 4-9 

towards ctlCM was two-fold greater than that of LNCaP-zeo, and could be further stimulated by 

GRP CM, and significantly inhibited by 2A11 (p ≤0.001).  These data showed that LNCaP-GRP 

cells release GRP, which confers androgen-independent growth and migration on themselves 

through autocrine loop as well as on the control LNCaP-Zeo cells.  

GRP promotes in vitro and in vivo tumorigenesis in androgen-free environments.  

Soft agar assay was performed to assess in vitro tumorigenicity.  GRP1-1 and 4-9 produced 

significantly more colonies than LNCaP-Zeo in CS medium, suggesting that the autocrine GRP 

induces both androgen- and anchorage-independent growth (Figure 2A).  2A11 significantly 

inhibited colony formation of both GRP1-1 and 4-9 (p≤0.05 and p≤0.0005).  We then used the 

GRP clones for in vivo tumor study.  Orthotopic prostatic implantation of GRP4-9 cells into 

prostates of castrated nude mice resulted in tumor growth in 8 of 12 mice.  In contrast, 0 of 20 

castrated mice implanted with LNCaP-zeo cells displayed any tumor growth.  To generalize this 

finding, GRP1-1 was also orthotopically implanted and 4 of 5 mice produced tumors.  H and E 

staining of the tumors showed characteristic human CaP tumors adjacent to normal mouse 

prostate tissue (Figure 2B).  IHC staining (Figure 2C) showed staining of GRP (a and b) was 

evident throughout the cytoplasm of the tumor regions, yet minimally detected in the normal 
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mouse prostate epithelium of the tumor, despite the fact that the GRP antibody used reacts with 

both human and mouse GRP.  Staining with anti- AR antibody (c and d) demonstrated its nuclear 

translocalization in tumor cells, indicative of GRP ligand activation.  PSA expression (e and f) 

was extensive in the tumor specimens, again supporting GRP-mediated AR activation.  Mean 

serum PSA level in castrated LNCaP-GRP tumor mice was 208.9±24.6 ng/ml serum, as 

compared to 6.13x10-5 ng/ml in castrated LNCaP-zeo mice. 

 Tumors harvested from GRP implanted mice were re-cultured in vitro to establish a 

xenograft cell line, labeled GRP-Pro.  Expression of PSA, AR and GRP in GRP-Pro cells was 

analyzed by RT-PCR analysis for the authenticity of the clones (supplementary data #2).  RT-

PCR for the endogenous PSA mRNA for all clones is shown in the supplementary data.  Soft 

agar assay using GRP-Pro cells showed their aggressive nature as manifested by their androgen- 

and anchorage- independent growth in 2 weeks (Figure 3A).  This growth was partially inhibited 

by 2A11 and the androgen inhibitor, bicalutamide, individually or in combination (with 

significant difference p≤ 0.05) suggesting that growth is dependent on both GRP and AR.  

GRP modulates activation of the androgen receptor.  We further sought to illustrate 

GRP-mediated AR activation at the molecular level.  Transactivation assay was performed with 

LNCaP-Zeo, GRP-4-9 and GRP-Pro cells in CS media using promoter PSA-Luc as the reporter.  

Expression of PSA-Luc in GRP4-9 and GRP-Pro is 1.8 and 4.5 fold higher than in LNCaP-Zeo 

cells (Figure 3B).  This suggests GRP secreted from GRP cells is driving the expression.  

Addition of synthetic androgen R1881 induced PSA-Luc expression in LNCaP-Zeo cells more 

than 6 fold, but much less in GRP4-9 and GRP-Pro cells probably because the GRP-activated 

AR, through post-translational modification, already adopted an active conformation and may 

not be further stimulated by R1881.  If GRP activates AR in GRP-Pro cells, AR should be 

recruited to ARE sites in the PSA promoter.  We therefore performed the ChIP assay on LNCaP-
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Zeo, GRP4-9 and GRP-Pro cells in CS or CS+R1881 conditions.  AR binding was analyzed by 

PCR using respective primers against enhancer (E) and proximal (P) ARE regions, and an 

intervening (I) region void of any ARE sites.  Figure 3C shows AR binds to PSA P region in 

GRP4-9 and GRP-Pro even in the absence of androgen.   When treated with R1881, AR binds 

preferentially to the E site in LNCaP-Zeo; whereas in GRP4-9 and GRP-Pro, AR binding was 

evenly detected at both P and E sites. 

Src and FAK tyrosine kinases play important roles in GRP-mediated androgen-

independent growth and migration.  Exogenous bombesin induces AR nuclear translocation, 

and this induction is inhibited by Src inhibitor PP2 (25).  In our LNCaP GRP mouse model, AR 

is localized to the nuclei as shown in the tumor IHC staining (Figure 2C).  We further compared 

the GRP cells with the mock control by immunofluorescent staining to confirm AR nuclear 

localization in GRP cells through autocrine GRP-mediated activation (Figure 4).  Staining of AR 

is limited to the cytoplasm in Zeo cells grown in CS media but concentrated to the nuclei of GRP 

cells (counted 65% nuclei with AR).  This localization was inhibited by AZD0530, a selective 

SFK inhibitor demonstrating significant effects on prostate cancer cells (27).  Almost half of 

GRP cells (35% nuclei with AR remaining) lost nuclear staining of AR when Src activity is 

inhibited.  These data confirm that GRP activates AR through Src and promotes its nuclear 

translocation, consistent with recent data that Src directly phosphorylates AR at Y534 resulting 

in nuclear translocation (28).  

Among all the tyrosine kinases expressed in LNCaP cells, we previously showed that Src 

and FAK are most prominently activated by bombesin (3).  Activated Src and FAK engage Etk, a 

tyrosine kinase shown to be involved in prostate carcinogenesis (3, 29).  Src and FAK form a 

complex through binding between the phosphorylated Y397 in FAK and the SH2 domain in Src 

(30), whereas FAK associates with Etk via the FERM domain of FAK and the PH domain of Etk 
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(31).  These three kinases cross activate one another with increased tyrosine phosphorylation of 

the complex.  Using AZD0530, we examined whether the androgen-independent growth and 

migration stimulation observed in our autocrine model is mediated through the Src/FAK 

signaling pathway.  In LNCaP cells, in addition to Src, another member of SFK, Lyn, is also 

significantly expressed. We thus examined the phosphorylation status of Src, Lyn and FAK 

kinases in all cell lines grown in CS medium.    We immunoprecipitated Src and Lyn proteins 

with their respective antibodies, then probed with anti-p-Src or anti-p-Y antibodies.  For FAK, 

we used anti-p-FAKY861, residue phosphorylated by Src, which is another indicator of the 

activity of SFKs.  All the GRP and GRP-Pro lines displayed higher levels of kinase 

phosphorylations compared to Zeo cells after exposure to CS serum for 3 days and the 

phosphorylations were inhibited by AZD0530 (Figure 5A).  The data showed that 1) autocrine-

GRP indeed activates the SFKs; and 2) AZD0530, a pan-Src inhibitor, effectively blocks the 

activity of Src family members. Thus, while in the ensuing studies we will focus on the 

molecular characterizations of Src, the biological effects observed are likely due to the combined 

inhibition of all SFKs expressed in LNCaP cells. We previously reported that when activated, 

Src forms a complex with FAK and Etk and these kinases cross activate one another.  Co-

immunoprecipitation of Src, FAK and Etk kinases with the anti-FAK antibody confirms the 

complex formation and showed elevated activation of the three kinases in GRP and GRP-Pro 

cells compared to Zeo cells.  Treatment with AZD0530 significantly reduced the degree of 

tyrosine phosphorylation of all three kinases but to a much less extent, the association between 

FAK and Src. (Figure 5A).   

Regarding proliferation, AZD0530 reduced GRP-Pro cell growth in a dose-dependent 

manner and inhibited the anchorage- and androgen-free growth of GRP-Pro cells (supplementary 

data #3).  To ensure AZD0530 targets Src through which GRP mediates AR activation, RNA 
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interference experiment for Src (siSrc) was performed.  Transfection of siSrc into GRP4-9 and 

GRP-Pro cells greatly impaired their ability to grow in CS media compared to their respective 

non-target controls (SC, scramble RNA); whereas the LNCaP-Zeo cells do not grow well in the 

androgen-deprived condition with or without siSrc (Figure 5B).  These data support that Src is a 

major target in neuropeptide-mediated AR activation, possibly through it downstream kinases 

such as FAK and Etk.  Both FAK and Etk function in cell adhesion and migration, and inhibition 

of Src would reduce LNCaP-GRP and GRP-Pro cell migration.   As a result, motility of GRP4-9 

(p≤0.05) and GRP-Pro (p≤0.0005) cells was significantly inhibited by AZD0530 (500 nM) 

(Figure 5C).  Knocking down Src with siSrc transfection into GRP4-9 and GRP-Pro cells also 

reduced cell migration to the comparable level as Zeo cells.  These data support the notion that 

the GRP-mediated androgen-independent growth and migration is principally through SFK, 

especially Src kinase. 

SFK inhibitor AZD0530 prevents tumor metastasis in SCID mice.  With the 

encouraging results of AZD0530 inhibition in vitro, we evaluated it in our orthotopic GRP 

mouse model.  Fourteen castrated SCID mice implanted with GRP-Pro cells; half of them were 

administered 50 mg/kg/day of AZD0530 (treatment) beginning two weeks after surgery (to 

permit tumor establishment) and half with buffer only (control) for eight weeks.  All control 

animals grew tumor with lymph node metastasis (Figure 6A).  H & E staining (insert) of the 

lymph node validated its human prostate cancer origin.  Five of seven treated animals produced 

primary tumors, but none had metastasis.  IHC staining using anti-p-Src  and anti-p-FAK 

antibodies showed reduced phosphorylation levels in the treatment samples (Figure 6B) 

confirming the effect of AZD0530 in tumors.  When probed with anti-AR antibody, the control 

tumor showed AR nuclear localization as in Figure 2C.  AR staining became undetectable in 

AZD0530 treated tumor since castrated animals were used.  As a result, PSA levels from sera of 
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AZD0530 treated mice showed significant reduction (p=0.02) compared to controls (Figure 6C). 

Primary tumor sizes  in the treated animals were smaller, although not statistically significant 

(p=0.104) when compared to control animals.  AZD0530 however completely blocks tumor 

metastasis possibly through inhibiting SFK and FAK. 

DISCUSSION 

 In this study, we report the development of a neuropeptide-autocrine model for androgen-

insensitive CaP.  This model was not designed to study neuroendocrine tumors of prostate, which 

are relatively rare, but to study the effect of neuropeptides released from neuroendocrine prostate 

cells on CaP progression following androgen ablation. There is abundant literature documenting 

the correlation of increased number of post-mitotic neuroendocrine cells with the development of 

castration-resistant CaP and reports showing overexpression of neuropeptides and neuropeptide 

receptors in advanced CaP (16-18).  Yet, the biological effect of neuropeptides on CaP has not 

been clearly demonstrated.  We present in vitro and in vivo data that the GRP autocrine loop is 

sufficient to establish androgen independence in LNCaP cells by inappropriate activation of the 

androgen receptor. We also show that GRP activates Src, Lyn, FAK and Etk tyrosine kinases, 

which confer motility and invasiveness to CaP.  Our in vivo inhibitor study demonstrates that 

administration of Src inhibitor AZD0530 completely blocks tumor metastasis in the androgen-

independent environment. 

There are numerous reports on growth factors (32), cytokines, chemokines (2, 4) and 

neuropeptides (3, 25) promoting androgen-independent growth of LNCaP cells. While the 

ligands inducing AR activation are different, many of them transmit signals through SFK (3, 4, 

25).  In the present model, we focused on neuropeptides which are coupled to GPCRs and as we 

showed before, activate the tyrosine kinase complex Src/FAK/Etk (3).   We hypothesized that 

induced expression of GRP in LNCaP cells may facilitate a more aggressive phenotype via 
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autocrine stimulation.  Our engineered LNCaP GRP cells demonstrated androgen- and anchorage 

-independent growth and superior migration compared to control LNCaP-Zeo cells, and the 

bombesin/GRP specific antibody 2A11 partially inhibited the increased growth and migration.   

This incomplete inhibition by 2A11 may be due to secretion of other neuropeptides such as 

neurotensin from the GRP clones (data not shown).  These other factors also activate GPCRs, 

thus there is greater inhibition with GRP receptor inhibition compared to 2A11.  Consistent with 

the in vitro properties, autocrine GRP activity supports androgen-independent tumorigenesis of 

LNCaP-GRP clones in castrated mice.  IHC staining demonstrated nuclear localization of AR 

and PSA expression in tumor cells, supporting GRP stimulation of AR in the absence of 

testicular androgens, which is the sole source of androgen in mice.  These observations build 

upon those reported by Burchardt and colleagues who demonstrated that androgen withdrawal of 

established in vivo LNCaP tumors resulted in enrichment of neuroendocrine cells (5).  Herein we 

demonstrate that Src mediates the nuclear-translocation and target recruitment of AR induced by 

GRP, based on in vitro (ChIP assay) and in vivo (tumor IHC) analyses.  A related report using a 

neuroendocrine mouse prostate allograft also showed neuroendocrine secretions were sufficient 

to support androgen-independent growth of LNCaP and PSA expression in vivo (33).  These data 

together firmly establish the potential of neuropeptides secreted by neuroendocrine differentiated 

cells to induce androgen independence, and this process involves Src activation.  

 Elevated tyrosine phosphorylations, especially Src activation were shown in hormone-

refractory prostate cancer xenografts derived from castrated animals (28).  In this study, we 

showed that Src (and likewise, Lyn) is activated both in the free form as well as in the 

Src/FAK/Etk complex form. As expected, FAK and Etk are also activated as indicated by their 

heightened phosphorylation status.  Impressively, AZD0530 treatment completely blocked these 

activations. The exact mechanism how bombesin/GRP activates AR to induce androgen 
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independent growth of LNCaP is not fully understood.  Although GRP has been reported to 

mediate MAPK and Src activation through epidermal growth factor receptor (EGFR) in some 

human malignancies (34), we observed no increased tyrosine phosphorylation of EGFR in 

LNCaP cells upon bombesin stimulation (data not shown).   Despite reports implicating Src 

kinase in the development, growth, progression and metastasis of human cancers,  only one 

report correlates elevated Src activation and AR phosphorylation to hormone-refractory CaP 

(28).  This report elegantly showed that tyrosine residue Y534 of AR is the direct target of Src 

phosphorylation, which effectively translocates AR into the nucleus for gene transcription in the 

absence of androgen.  Another report relates expression of a truncated c-kit tyrosine kinase, 

which is a strong activator of Src, to advanced stages of CaP (35), suggesting the importance of 

Src activity in CaP progression.  Here we show that reversion of androgen-independent growth 

of GRP lines by knocking out Src with siRNA supports a significant role for Src in GRP-

mediated cell proliferation.  It is speculated that modification of AR or its co-activators by 

phosphorylation (36) or acetylation (37) mimics the conformation change caused by androgen 

binding to activate AR in the absence of its cognate ligand.  Src may potentially phosphorylate 

AR directly or through an intermediate molecule (28).   Yet, since no tyrosine-phosphorylated 

AR was detected in bombesin-treated LNCaP cells (25), the exact mechanism how Src is 

involved still remains to be elucidated.  In the ChIP assay, GRP mediated AR recruitment 

preferentially to the proximal ARE site in the PSA promoter, rather than to the enhancer ARE.  

This observation may reflect conformational modification of AR by Src or a downstream kinase, 

which facilitates AR activation by assembling a different co-activator complex to elicit gene 

transactivation in the absence of its natural ligand.  Similarly, the reason why addition of R1881 

to GRP clone did not increase the reporter activity further may be that GRP-activated AR is 

already in active conformation and may not be further stimulated by androgen.  Our studies also 
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revealed that post-translationally activated AR may be conformationally different from ligand 

bound AR, a finding supported by previous studies (4, 25).  Further structural analysis will be 

required to substantiate this notion. 

LNCaP cells are usually not very migratory, but overexpression of GRP under androgen-

free conditions enhances LNCaP-GRP cell migration.  Another reported mechanism is that 

bombesin activates RhoA and Rho-associated coiled-coil forming protein kinase to promote CaP 

cell migration and invasion (38).  Since RhoA can be activated by Etk (39) which is activated by 

Src (40), our data are consistent with their findings.   FAK phosphorylation in bombesin-

stimulated PC-3 cells is linked to cell motility and invasion (41).  In collaboration with FAK, Etk 

is also involved in integrin signaling and promotes PC-3M migration (31).  Knocking down Etk 

expression with its specific siRNA inhibits LNCaP cell proliferation (29, 42), and prostates from 

Etk transgenic mice exhibit pathological changes resembling human prostate intraepithelial 

neoplasia (29).  Complexing of these three kinases results in synergistic activation and may 

transduce GRP modulated signaling in CaP cell proliferation, migration and survival. 

Targeting the bombesin/GRP receptor for cancer therapy is undergoing early clinical 

trials (43).  Other clinical trials have reported promising results using tyrosine kinase inhibitors 

in cancer therapy; for instances, imatinib (Gleevec, STI571) for chronic myelogenous leukemia 

and gastrointestinal stromal tumors (44, 45) and trastuzumab (Herceptin, Her-2 antibody) for 

breast cancer (46).  Our approach suggests using a SFK inhibitor to target the activation of non-

receptor tyrosine kinases.  Through inhibiting Src, AZD0530 prevents the Src-specific activation 

of FAK, AR and possibly Etk and effectively blocks tumor metastasis in our GRP autocrine 

model.  Complex growth factors available in tumor microenvironments and the compensatory 

pathways involving cell proliferation downstream to Src may be factors why AZD0530 alone 

could not halt primary tumor growth.  IC50’s for inhibiting FAK, paxillin and P130Cas 
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responsible for migration were 4-64 fold lower than those for cyclin-D1 and c-Myc for 

proliferation (27).  AZD0530 has been tested in tamoxifen-resistant breast cancer cells to 

suppress tumor cell migration through modulating FAK (47).  Treating A549 lung carcinoma 

cells with AZD0530 results in down regulation of Id1 gene expression possibly through BMP-

Smad-Id pathway involved angiogenesis and metastasis (48).  The other small molecule Src 

inhibitor Dasatinib (49), displays similar inhibitory mechanism as AZD0530 with more 

inhibition on metastasis than tumor growth in vivo (50).  Lyn, a member of SFK, found to play a 

role in PC-3 tumor progression, was also inhibited by AZD0530 (data not shown). 

In addition to neuropeptides, we have previously shown Src kinase activation as central 

to IL-8-induced androgen-independent prostate cell growth (4).  Importantly, IL-8 is also a 

ligand for GPCRs.  As such, inhibition of signaling transduction through Src kinase as a 

downstream target may block the oncogenic stimulation for more than one ligand.  The specific 

mechanisms activating AR remain to be elucidated, but the pathways identified suggest Src 

kinase inhibition may prove useful in the treatment of androgen-independent CaP.   
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Figure legends 

Figure 1.  The model of an androgen-independent GRP expressing prostate cancer line, with 

evidence of enhanced proliferation and migration:  A, Northern blot and RT-PCR assays verified 

expression of GRP gene into LNCaP GRP clones compared to the parental LNCaP / mock-

transfected Zeo cells (negative controls) and DMS53 (positive control) cells.  B, Quantitation of 
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secreted GRP in CM collected from LNCaP, LNCaP-zeo, GRP1-1, GRP4-9, and small cell lung 

carcinoma DMS53 cells.  C, Androgen-independent growth of GRP1-1 and 4-9 was targeted by 

inhibitors for GRP and its receptor.  All inhibitors reduced the GRP cell growth in CS media 

with significance.  D, Boyden chamber migration assay.  Conditioned media (CM) were 

collected from cells by overlaying SF media on sub-confluent plates for 48 hr and the amount to 

use was normalized by the total protein concentration of each plate.  CM from LNCaP-Zeo 

(ctlCM) or GRP (GRPCM) cells were used as the chemo-attractants.  GRP-specific monoclonal 

antibody 2A11 (1 μg/ml) was introduced as the inhibitor.  Bombesin (100 nM) was the positive 

control.  Migration assay was conducted as described in the Materials and Methods.  Means of 

data from at least three independent experiments were plotted and bars represent standard error 

of the mean. 

Figure 2.  In vitro (soft agar assay) and in vivo (nude mice) tumorigenesis in androgen-deprived 

conditions:  A, Soft agar assay was performed in CS medium as described in Materials and 

Methods.  The experiment has been performed independently three times and the error bars 

represent standard error of the mean.  B, Example of orthotopic implanted LNCaP-GRP tumor 

grown in a castrated nude mouse.  Top: whole tumor after 4 months.  Bottom: H and E staining 

showed LNCaP-GRP tumor on left side, mouse prostate stroma in the middle, and normal mouse 

prostate gland on the right.  C, IHC staining of GRP (a and b), AR (c and d) and PSA (e and f) in 

the tumor specimens:  Slides on the left (a, c and e) showed most of the normal mouse prostate 

region; while on the right (b, d and f) showed predominately prostate tumors. 

Figure 3.  A, Soft agar assay of the re-cultured GRP-Pro xenograft:  Soft agar assay was 

performed as described in the Materials and Methods.  Treatments include monoclonal antibody 

to bombesin/GRP, 2A11 (1 µg/ml), anti-androgen bicalutamide (BIC, 5 µM), combination of 

2A11 and BIC and synthetic androgen R1881 (1 nM).  B, Transactivation assay:  LNCaP-Zeo, 
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GRP 4-9 and GRP-Pro cells were plated in CS medium and transfected with the PSA-Luc (630 

bp) and pTK-RL.  R1881 (1 nM) was added to some wells 24 hours post transfection and dual-

luciferase assay was conducted after another 24 hours.  Means of triplicate experiments were 

plotted and bars represent standard error of the mean.   C, Chromatin immunoprecipitation assay: 

AR binding to both the enhancer and proximal ARE in the PSA promoter was revealed through 

PCR analysis using ChIP assay coupled with amplification with primers described in the 

Materials and Methods.  “E”, “P”, and “I” designate for the upstream enhancer region, proximal 

ARE region, and the intervening region, respectively. 

Figure 4.  Immunofluorescent staining of AR in LNCaP-Zeo and GRP4-9 cells in response to 

AZD0530 treatment.  AR localization in the nuclei of GRP4-9 cells under androgen-deprived 

conditions is inhibited by AZD0530.  Numbers on the right represent the percentage of cells with 

AR nuclear localization. 

Figure 5.  A, Effect of AZD0530 on Src/FAK/Etk complex: Phosphorylation status of Src, Lyn 

and FAK kinases in LNCaP-zeo and GRP subclones was shown in the upper panel.  Treatment 

of all cells with 1 µM of AZD0530 for 2 hours diminishes kinase activations in all cells without 

affect the total protein levels.  Association of Src/FAK/Etk complex was illustrated by co-

immunoprecipitation with the anti-FAK antibody.  Cell lysates from Zeo and GRP cells were 

immunoprecipitated with anti-FAK antibody and probed for p-Etk, p-FAK, total FAK p-Src and 

total Src antibodies.  Numbers under the untreated samples represent the densitometric 

quantification for phosphorylation after normalized by the total protein loading.   B, Knocking 

down Src with siSrc transfection impaired the androgen-independent growth of GRP4-9 and 

GRP-Pro cells in CS media.  LNCaP-Zeo cells were used as the control for GRP cells and SC 

(scramble control) was used as the control for siSrc.  Western blots validated the siSrc 

transfection.  C, Effect of AZD0530 and siSrc transfection on migration: AZD0530 (500 nM) or 
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knocking down Src kinase with siSrc inhibited GRP4-9 and GRP-Pro cell migration.  SC 

(scramble control) was used as the control for siSrc.  The experiment has been performed 

independently at least three times and the error bars represent standard error of the mean.   

Figure 6.  In vivo inhibition study in SCID mice: A, The representative picture showed primary 

prostate tumor with lymph node metastasis in an animal from the control group.  H&E staining 

of the lymph node sample validates its prostate cancer origin.  B, IHC staining of the control and 

AZD0530 treated tumor samples with anti-p-Src (Y419), anti-p-FAK (Y861) and anti-AR (PG-

21) antibodies.  C, Means of PSA levels in sera, primary tumor weight and metastasis incidents 

were plotted between the control and AZD0530 treatment groups. 
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