
Analyzing the Web Services and UniFrame Paradigms1

Natasha Gupta2 Rajeev R. Raje2 Andrew Olson2 Barrett R. Bryant 3 Mikhail Auguston4 Carol Burt3

Abstract
The software realization of today�s distributed systems often require combining of heterogeneous software
components, each offering a specialized service. This heterogeneity necessitates a paradigm for the interoperation of
different components. Various models and approaches have been proposed to facilitate a smooth interoperation.
Web Services and UniFrame are two such paradigms. This paper presents analyses of these two alternatives,
thereby, indicating their similarities and differences.

1 Introduction
The evolution in the field of computing has shifted its paradigm from a centralized one to a distributed one. Hence,
the target environment is no more a centrally managed, but concerned with collaboration, data sharing, and other
new modes of interactions involving distributed resources. This necessitates the availability of technologies and
solutions that can effectively and efficiently integrate services across disparate systems. This integration can be
challenging because of the need to achieve various qualities of services when running on top of different native
platforms [1]. Innovations in this field have led to developments of many paradigms including Web Services (WS�s)
[2], and UniFrame [3]. Each of these approaches has associated pros and cons. Web Services have emerged as a new
�Web Development Tool� which enables a web application to become more interactive, by providing means to
make it communicate at the middle-tier lever (business logic level) and provide a new platform to build software for
a distributed environment. UniFrame is a research project that aims to provide a framework that allows a seamless
interoperation of heterogeneous components. The purpose of this paper is to compare and contrast the Web Services
framework and the UniFrame.

2 Related Work

2.1.1 Enterprise Application Integration (EAI) Solutions
The EAI [4] solutions provide the infrastructures for an organization that take the integration technology from the
traditional point-to-point connections to a level that links multiple applications and databases internal to the
organization to share information and business processes. EAI typically uses middleware to connect to different
applications. A custom interface is built to link each separate application in the EAI system. Most EAI systems use
adaptors to connect applications. Several types of EAI exist, including data integration, business process integration
and method integration. However, the integration that EAI solutions provide tends to be complex and expensive,
despite improving the overall communication. In addition, the EAI interfaces are not reusable and cannot be used by
a company to connect to their business partners whose applications fall outside the boundaries of the organization.
Web Services overcome this limitation by providing a set of reusable interfaces to applications, which enables them
to interoperate with any other application (Web Service) using SOAP.

2.1.2 Business-To-Business (B2B) Solutions
The Internet has given birth to a �digital economy� [5]. In such an economy, B2B e-commerce provides a company
with an effective and efficient end-to-end process communication to buy and sell services in an economical way.
B2B relationships are often characterized by stringent requirements for security, auditability, availability, service
level agreements and complex transaction processing flows [1] in addition to the large technical differences that
arise between different organizations. B2B Integration has long been accomplished with the use of technologies like
Enterprise Data Interchange (EDI). EDI is a relatively arcane technology that requires substantial overhead on the

1 This material is based upon the work supported by the U.S. Office of Naval Research under award number N0014-01-1-0746.
2 Department of Computer and Information Science, Indiana University Purdue University Indianapolis, 723 W. Michigan St., SL280,
Indianapolis, IN 46202, USA, {nsgupta, rraje, aolson}@cs.iupui.edu.
3 Department of Computer and Information Sciences, University of Alabama at Birmingham, 1300 University Blvd., CH 115A, Birmingham, AL
35294, USA, {bryant, cburt}@cis.uab.edu.
4 Computer Science Department, Naval Postgraduate School, 833 Dyer Rd., SP517, Monterey, CA 93943, USA, maugusto@nps.navy.mil.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
APR 2003 2. REPORT TYPE

3. DATES COVERED
 00-00-2003 to 00-00-2003

4. TITLE AND SUBTITLE
Analyzing the Web Services and UniFrame Paradigms

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Alabama at Birmingham,Department of Computer and
Information Sciences,Birmingham,AL,35294

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The Proceedings of SESEC 2003, the Southeastern Software Engineering Conference, Huntsville, AL,
April 1-3, 2003

14. ABSTRACT
The software realization of today’s distributed systems often require combining of heterogeneous software
components, each offering a specialized service. This heterogeneity necessitates a paradigm for the
interoperation of different components. Various models and approaches have been proposed to facilitate a
smooth interoperation. Web Services and UniFrame are two such paradigms. This paper presents analyses
of these two alternatives, thereby, indicating their similarities and differences.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

part of the participants, and a clear understanding of the semantics of the messages exchanged. EDI
implementations, despite their �standardized� nature vary dramatically from business to business [6].

2.1.3 Open Grid Services Architecture (OGSA) for Distributed Systems Integration
OGSA builds upon the concepts and technologies from the Grid and Web Services communities. It [1] defines
standard mechanisms for creating, naming, and discovering transient Grid service instances; provides location
transparency and multiple protocol bindings for service instances; and supports integration with underlying native
platform facilities. It aligns the Grid technologies with the WS technologies, in particular the WSDL, to provide
mechanisms required for creating and composing sophisticated distributed systems, including lifetime management,
change management, and notification. OGSA has adopted Globus Toolkit as the underlying Grid technology
solution.
Each of these above mentioned approaches have specific objectives and are, aimed typically at particular application
domains. In the next section, two other approaches, Web Services and UniFrame that are generic in nature are
discussed.

3 The UniFrame and Web Services Nexus

3.1 UniFrame Overview
The main focus of UniFrame is to provide a comprehensive framework for the software realization of distributed
computing systems. It consists of (a) a meta-model for components and associated hierarchical set-up for indicating
contracts and constraints of the component, (b) an automatic generation of glue and wrappers, based on designer�s
specifications to achieve interoperability, (c) a formal mechanism for precisely describing the meta-model, and (d)
the formalization of the notion of the quality of service of each component and an ensemble of components.

3.2 Web Services (WS) Overview
WS are based on existing protocols and technologies and provide a greater flexibility with respect to the
interoperability, the reuse and the development of applications in a distributed environment. The underlying idea
behind WS is to promote the �software as a service� paradigm. The use of open standards enables interoperability
between components. These standards are based on XML, which enables WS to communicate with other
applications in a programming language-, programming model-, and system software-neutral manner. XML forms
the basis of the three standards: SOAP (Simple Object Access Protocol), WSDL (Web Services Description
Language) and UDDI (Universal Description, Discovery and Integration) [5].

The next section indicates a comparison between the architectural aspects of the two frameworks, i.e., UniFrame and
Web Services, and then the section 4 describes a model-based comparison.

3.3 Architectural Comparison

The following table shows the architectural comparison between the two paradigms:

 WEB SERVICES FRAMEWORK UNIFRAME

OBJECTIVE

To provide a set of related standards which
allow building of dynamic, loosely coupled
systems composed of services, not bounded to
any implementation and can be published,
described, located and invoked over a
network, more generally World Wide Web

To create a comprehensive framework that
unifies the existing and emerging distributed
component/service models under a common
meta-model that enables the discovery,
interoperability, and collaboration of
components via generative software techniques
[3,7]

GENERAL
ARCHITECTURE

BASIC TASKS/
PROCEDURES
INVOLVED

! Service Development and Deployment
(leveraging different platforms to one
standard of web services using different
Web Services development tools and
software provided by vendors)

! Formal description of services (WSDL)
! Registration of services with UDDI

(publish)
! Discovery of services (Find)
! Binding with the Service (Bind)

! Developing components using different
current and future object models, such as,
Java-RMI/CORBA/.Net/Web Services

! Informal and formal UMM (Unified Meta-
Component Model) specifications of each
component

! Querying the UniFrame for the system with
desired Quality of Service parameters

! Creation of an integrated system made out of
discovered components

! Incorporation of necessary glue and wrappers
for QoS measurements and interoperation

! Checking to see if the test results of the
integrated system satisfy criteria or not

! Refine Query or select alternate components
to re-build and retest the integrated system

SERVICE/
COMPONENT
DEVELOPMET
DEPLOYMENT

! Development using frameworks that
support them (e.g. .NET) or using different
object models, which are then leveraged as
services using the toolkits that support the
technology

! Registering Services with the UDDI
public/private registry

! Components are developed using different
standard object models

! Deployment also under the same model with
extra infrastructure provided by UniFrame to
support seamless interoperation and system
generation

DESCRIPTION OF
SERVICES/
COMPONENTS

Web Service Description Language
Document (WSDL file � XML)

UniFrame Meta-Component Model Description
(UMM Specifications � informal text and XML)

DISCOVERY

Discovery through the UDDI Business or
private registries (static registries)

Discovery through an search process involving
active entities � headhunters and active
registries [UniFrame Resource Discovery
Service (URDS) Framework]

INTER-
OPERABILITY OF
SERVICES/COMP
ONENTS

XML (standard for data exchange) and SOAP
(Simple Object Access Protocol)

Automatic generation of glues and wrappers

SYSTEM
INTEGRATION

! A hand-crafted approach wherein the
responsibility of integration lies with the
application developer by means of APIs
of the WS

! Need to incorporate WS interfaces and

A comprehensive model-based approach forms
the backbone of the system integration process
right from the initial stages. The model follows
an architecture-centric, domain-based and a
technology-independent approach The process

URDS

System
Builder

Query
Proces

Query|QoS.System

Query|QoS.Components

UMM
Spec

SYS

UMM
Spec

C.r

UMM
Spec

C..net

URDS :
UniFrame esource
Discovery Service
GDMKB:
Generative Domain
Model Knowledge Base

GDMKB

Service provider
business

application

Service consumer
business application

Publish

Links to Web Services Description
Language (WSDL) documents

Search

Universal Description, Discovery
and Integration (UDDI) Registry

Simple Object Access
Protocol (SOAP) Messages

integration capabilities within the
existing �application integrating� tools
and products

may be manual, completely automatic or a mix
of both

RELIABILITY OF
THE COMPOSED
SYSTEM

Reliance on a third party (Web Service
Auditors) which guarantees the reliability of a
web service on basis of testing and
certification during its creation as well as
operational stage

Reliability based on test cases and formalism
and a strong mathematical foundation of event
traces and two level grammar

ADVANTAGES

ADVANTAGES
 (Contd..)

! Builds upon open text-based standards
(XML), thus aiding in interoperability

! Less additional cost involved in adoption,
since employs existing infrastructure
(Internet) and applications can be
repackaged as Web Services

! No requirement of additional software tool to
build components

! Automatic generation of glues and wrappers
! Quality of Service validation and assurance

through event traces and formal domain
knowledge; backed by a mathematical
foundation

! Use of aspect-oriented programming to
weave in the notion of QoS into the
framework distinguishes UniFrame

! Active search process involving the notion of
�headhunters�

LIMITATIONS

! Relatively new; standardization in
progress, hence, Web Services created
with current tools will not be compatible
with the future technologies

! Use of text-based standards, XML, for
communication may affect performance in
some critical applications

! No standardized methods devised for
assuring and validating Quality of Service;
Use of third party �web service auditors�

! No standardization reached yet
! Experimentation and performance evaluation

at a large scale and in a realistic domain not
complete

Some of the important points tabulated above are described in detail in the next few sections.

3.3.1 Discovery Services
Web Services Discovery Process: The term discovery refers to the process of locating �Web Services� by means of
registries. This process is carried out by businesses searching for services offering specific functionalities. WS
Registries and Brokerages facilitate the discovery process and enable interactions between the service providers and
requesters. The discovery process is classified into two categories [4]:

• Direct Discovery: This involves obtaining data from a registry, which is maintained by the service provider
itself.

• Indirect Discovery: This involves obtaining data about a Web Service from a registry, which is maintained
by a third party.

A service provider publishes the WSDL document containing the description of its Web Service, with the UDDI,
which makes locations of such WSDL files available to a service requester. The Service Requester searches the
UDDI based on certain criterion, such as functionality or a Quality of Service (QoS) attribute. Once it discovers a
service, meeting its needs, it knows the method of accessing the Web Service by means of the WSDL file. It can
now communicate with the Web Service directly via SOAP messages.
There are a few other discovery technologies, which support the discovery of Web Services apart from the UDDI
specifications � ebXML and WS-Inspection for example. A Service developer/organization can combine these
technologies with UDDI in order to take advantage of the features of both. For example, UDDI currently does not
support a security model whereas ebXML does and so an organization can advertise its services through UDDI, on
the other hand store its trading agreements and contracts through ebXML.

UniFrame Resource Discovery Service (URDS) Framework: The URDS architecture [8] provides a mechanism for
an automated discovery and the selection of components meeting necessary QoS requirements. URDS is designed to
act as a Discovery Service wherein new services are dynamically discovered while providing clients with a directory
style access to services. The discovery process in URDS is �administratively scoped�, i.e., it locates services within
an administratively defined logical domain � in UniFrame a domain refers to industry specific markets such as
Financial Services, Medical domain and Manufacturing Services, etc. The URDS infrastructure consists of two
parts: (a) the Internet Component Broker (ICB) and (b) Headhunters.
The ICB, in addition to performing the functions of a conventional broker, also ensures the authentication of the
principals of the system (Headhunters and Active Registries); cooperates with other ICB�s deployed on the network
to provide matchmaking between service producers and consumers; and acts as a mediator between two components
adhering to different component models. A Headhunter is equivalent to a binder or trader in other models. However,
unlike the trader, here the onus of registering components lies with the headhunter and not on the components
themselves. Hence, the headhunter is capable of detecting the presence of service providers on the network, register
the functionality of these service providers and return a list of service providers, which matches the requirements of
the consumer requests forwarded by the Query Manager, to the ICB. The services are discovered by means of
Active Registries (discussed later), with which the services are registered. The discovery process employed could
vary from standard search techniques to broadcasts and multicasts to specific machines.

3.3.2 Service Descriptions
Web Service Description Language (WSDL) Document: It is an XML document for describing WS as a set of
endpoints operating on messages containing either document-oriented (messaging) or RPC-payloads. Service
interfaces are defined abstractly in terms of message structures and sequences of simple message exchanges and
then bound to a concrete network protocol and data-encoding format to define an end-point. Related concrete end-
points are bundled to define abstract end-points (services). The WSDL is extensible to allow description of end-
points and the concrete representation of their messages for a variety of different message formats and network
protocols [4].
UniFrame Meta-Component Model (UMM) Description: In UniFrame, components are autonomous entities. The
UniFrame description of a component is more comprehensive and specified in a natural language-like manner. It
indicates the functional (i.e., computational, cooperative and auxiliary aspects) and non-functional (i.e., QoS
constraints) features of the component. These specifications are then refined into a formal specification based on the
theory of Two-Level Grammar (TLG) and natural language specifications [9]. TLG specifications allow for a multi-
level interface for the component. These levels are: Syntactic, Behavioral, Synchronization and QoS.

3.3.3 Registries/Repositories
Web Services Registries: The Web Services framework supports two kinds of repositories - UDDI and WS
Brokerages.
UDDI: The UDDI standardization provides for �searchable Web Services Registries� which facilitate the storage,
discovery and exchange of information about businesses and their Web Services. UDDI is implemented in two
forms:
UDDI Business Registry: publicly accessible and maintained by Microsoft, IBM, Hewlett Packard and SAP.
UDDI Private Registry: accessible only to authorized users.
The various entities involved during the utilization of UBR (UDDI Business Registry) [4] are:
 Operator Nodes: The organizations that host the implementation of the UDDI Business Registry are
Microsoft, IBM, SAP, and Hewlett Packard. UBR operates on the principle of �register once and publish
everywhere�. This in turn implies a replication of the data within the operator nodes so that all instances of records
are identical with each node. Operator nodes synchronize their information at least every 12 hours.
 Custodian: The custodian for a company is the operator node with which it publishes its web services. A
company can register and update its information only through its custodian. This prevents multiple versions of the
data from entering in the four different operator nodes.
 Registrar: These organizations do not host implementations of the UDDI but act as assistants for
organizations in creating data (such as business and service descriptions) and publishing in the UBR.

Structure and Information Model of UDDI: XML forms the basis of the overall information structure of UDDI
which can be broadly divided into following information levels:

White Pages: General information about the provider, such as its name, contact information and identifiers.
Yellow Pages: Categorization of the providers� information based on their services.

Green Pages: Technical information about the provider�s services or products. Usually contains references
to the WSDL documents of the services enabling the client to know as to how to interact with the Web
Service.

UDDI supports certain APIs for the clients to use the registry. These include:
Publishing API � It supports the publish operation on the UDDI Registry. The access to this API is restricted to
authorized users only. Operator nodes implement a form of Authentication protocol to allow legal organizations to
access this API. By means of publishing API, an organization is able to execute commands to create and update
information in its operator node.
Inquiry API: Supports the find operation in three different patters (browse, drill-down and invocation). This API is
accessible to any individual on the UBR who wishes to locate a service or a kind of service.

WS Brokerages: The WS brokerages are web sites that house information about the available WS in the form of a
list, along with their web addresses. These brokerages can also supply additional services, which can include
advanced search capabilities based on category, organization name or schema type, service monitoring and service
support, which can include services-related resources such as a tool that validates WSDL documents. Examples of
some of the current Web Services Brokerages are: Allesta Web Service Agency, SalCentral Service, Xmethods and
serviceFORGE.

UniFrame Registries: In the case of UniFrame, the entity that houses the information about components developed
using a particular model is local to that component model. This entity is named �Active Registry�, and is an
enhanced version of the native registry of the corresponding object model. It has features such as Activeness (an
ability to listen to multicast messages), Introspection and a Capability to detect failures of the Headhunters.

The conceptual difference that exists between registries of the two frameworks is in the way the registries participate
in the discovery process of the components. In the case of the WS framework, the onus of locating components lies
in the hands of the service requesters. While in UniFrame, the emphasis is on the automated discovery process
provided by means of the URDS. Whether an organization needs to deploy one active registry per machine or one
per many, is not decided and could vary depending on the size and necessity of the organization. While a service
requester and publisher has to confirm to the underlying implementation of the UDDI registry as preferred by the
company hosting it, the Active Registry is not as rigid and constraint since it builds upon the same native technology
used for the development of components registered with it.

3.3.4 Quality of Service Assurances
Quality of Service Assurances in Web Services: Currently, service providers typically employ third parties to audit
their web services during the creation stage as well as for reevaluation of the service on regular basis. An auditor
achieves this in the form of testing and certification. Auditors may also be employed by the service requestors in
order to gain a kind of guarantee about the level of service offered by the Web Service. The entire scenario employs
�Service Level Agreements (SLA)� [4]. These are �legal contracts in which a service provider outlines the level of
service it guarantees for a specific Web Service�. When customers purchase the Web services subscription, they
receive the services according to the quality-related contents specified by the SLAs. The service developer may
maintain the SLAs. As the contents of the SLA are determined by the participating entities, there are no formal
guidelines to specify the level of service a particular Web Service provides. The QoS requirements, which SLAs of
WS�s outline, include availability, accessibility, integrity, performance, reliability, conformance to standards and
security.
Quality of Service framework of UniFrame: The approach followed by UniFrame can be stated as: building a
precise model of the system�s behavior (based on event traces) and then providing a programming formalism to
describe the computations over these event traces. These are then applied in order to define different kinds of QoS
metrics. UniFrame�s iterative approach to system assembly from components meeting user�s query specifications is
based on constructive calculations of QoS metrics on representative set of test cases.
Quantifying the quality of service of the individual Commercial Off The Shelf (COTS) components, which compose
to form an integrated system with a predictable quality, is one of the critical part of the UniFrame Approach.
UniFrame provides a QoS Framework [5] for selecting, specifying and validating the QoS of components. The
features of the UniFrame QoS framework are:
• An existence of a QoS catalog [10] containing detailed descriptions about QoS attributes, their classifications,

their evaluation methodologies and the interrelationships with the other attributes.

• An integration of QoS at the individual component and distributed system levels.
• The validation and assurance of QoS, based on the concept of event grammars [11].
• An investigation of the effects of component composition on QoS; involving the estimation of the QoS of an

ensemble of software components given the QoS of individual components.
• A QoS-centric iterative component-based software development process to ensure that the end product matches

both the functional and QoS specifications.
UniFrame takes a domain-based approach in the classification and the discovery of components. Since every domain
has its own constraints with respect to the QoS attributes, the QoS catalog aims to act as a checklist for any
component developer/user interested in identifying and validating QoS attributes.

3.4 Model-based Comparison
• WS are all about XML and it being a text-based standard implies delays involved in parsing it, which may

prove vital in performance-critical applications. XML uses two sets of redundant tags to mark up every piece of
information it represents. The tags are usually written to be humanly readable, which makes the actual tags a lot
longer than they need to be. Also, one character in a Unicode document can be up to four bytes. Four bytes in
some other proprietary binary format used by technologies such as DCOM or RMI can hold a lot more
information than just one character. The ability to serialize the data over a connection, parse it quickly and
efficiently is what plays a vital role in applications interacting over the network [12]. UniFrame, on the other
hand, leverages the components in a way so that they are a part of an application while remaining within their
own object-model. This allows for more efficient ways of electronic communication.

• HTTP is the preeminent protocol to transfer WS content and is allowed a free access through firewalls. HTTP,
although used almost everywhere because of its reliability and ubiquity, is also not the most efficient transport
protocol [12]. HTTP relies on a constant connection between the client and server when a request is made. This
constant connection causes an overhead in cases when the data that needs to be transferred is quite small.
However, in the WS�s universe, many transactions are essentially asynchronous. This in turn implies that the
response of a web service request is not guaranteed. HTTP was not meant to deal with this kind of
asynchronicity. It also relies on only one side initiating communication and the other side only responding to the
request. This approach inhibits true peer-to-peer exchanges through Web services. A newer version of HTTP
aims to fasten communications by making use of compression, but some of the previous issues still need to be
pondered upon. Other protocols such as SMTP, over which Web Services can be implemented, still do not
provide a major breakthrough in this respect. As UniFrame does not attach itself to a specific protocol, it avoids
some of the drawbacks related to the usage of HTTP.

• The only guarantee that a service requester has about a Web Service is through its SLA. No other explicit
mechanisms are mandatory in the WS world. Thus, the user of WS may or may not have a mechanism to
validate the QoS claims made by the creator of WS. Hence, a requester can terminate its contract if the WS�s
fail to deliver what it claimed in its SLA. In contrast, UniFrame makes the notion of quality explicit during the
creation of components. It also provides the user means (by the use of event grammars, glues and wrappers) to
validate the QoS of any component made available by a supplier.

• In the world of B2B, Web Services prove to be a major benefit since they provide the needed flexibility and
ability to operate across the Internet on completely disparate systems owned by completely independent entities.
However, in EAI solutions, the major drivers are not only interoperability but also speed and efficiency, and
with those requirements, Web services don�t really seem to meet the need. Organizations globally are becoming
aware of the importance and need of integration across disparate platforms. An organization with numerous
applications needs EAI solution and corporations that are extending their processes with partners need B2B.
The future holds potential for a solution set that provides the functionality for both the requirements
frameworks. The UniFrame with its unbiased approach is an attempt in this direction.

• Although UDDI registries, both public and private, offer a great deal of advantage in terms of an application
integration of the participating companies, they have their own set of limitations too. Firstly, because UDDI is
fairly new, it has not reached standardization in a complete way, which holds true for UniFrame as well.
Secondly, the UDDI Business Registry poses the question of data reliability. UniFrame does not involve the
notion of publicly accessible registries. The Active Registries only allow authorized entities to publish
components and interacts with the headhunter, thereby reducing the threats of data compromise. The discovery
mechanism of the UMM Framework involves the headhunter storing the data about the components after it
retrieves it from the Active Registries. The duration of the time interval after which this process repeats itself
can be controlled so as to guarantee the freshness of the data within the meta-repository of the headhunters.

UDDI registries, although describe web services, do not evaluate them [4]. It does not house the Quality-of-
Service information about a web service and requires an extensive search on the service-consumers part to do
so. UniFrame on he other hand, provides an extensive Quality-of-Service framework to do so.

3.5 Integrating Web Services into UniFrame
As outlined above, the WS and UniFrame differ in their approaches and associated implementation techniques.
However, they can complement each other to provide solutions for future distributed systems. UniFrame uses the
Generative Domain Model [13] to describe the properties of domain-specific components and to elicit rules for
assembling heterogeneous components. One possible approach to integrate WS in UniFrame could be to use WS as
a mechanism to wrap heterogeneous components. Due to the open nature of WS, such an approach will ease the task
of assembling heterogeneous components adhering to existing and new object models. Furthermore, since WS are
weak in representing the business semantics of application domains, this will also lead to the enrichment of WS
technology in terms of semantic representation by following a model driven approach for specific domain-specific
component models. UniFrame can then automatically generate WSDL from the models with the help of generators.

4 Conclusion
Developing component-based software solutions for distributed systems is an inherently complex task. Any
approach to tame these complexities must account for disparities that exist due to the existence of different object
models. Web Services and UniFrame are two approaches that propose effective solutions for future component-
based distributed systems. In this paper, an analysis of these two approaches has been presented. Although these two
approaches differ from each other, they can also complement each other and provide a comprehensive solution for
the creation of distributed systems. The proposed approach to integrate Web Services into UniFrame needs further
investigation and is being currently explored.

5 References
[1] Foster, I., Kesselman, C., Nick, J., Tuecke, S., The Physiology of the Grid: An Open Grid Services Architecture
for Distributed Systems Integration, Open Grid Service Infrastructure WG, Global Grid Forum, 2002.
[2] World-Wide Web Consortium (W3C), �Web Services Activity�, 2002, http://www.w3.org/2002/ws.
[3] Raje R., Bryant B., Auguston M., Olson A., Burt C., 2001, �A Unified Approach for Integration of Distributed
Heterogeneous Software Components,� Proceedings of the 2001 Monterey Workshop Engineering Automation for
Software Intensive System Integration, pp. 109-119.
[4] Dietel, H., Dietel, P., DuWaldt, B., Trees, L., Web Services � A Technical Introduction, 2003, Prentice Hall,
Upper Saddle River, New Jersey 07458
[5] Dhingra, V., �Business-to-Business Ecommerce,� http://projects.bus.lsu.edu/independent_study/vdhing1/b2b.
[6] A Darwin Partners and ZapThink Insight, �Using Web Services for Integration",
http://www.xml.org/xml/wsi.pdf
[7] Raje, R. R., Auguston, M., Bryant, B. R., Olson, A. M., Burt, C. C., 2002, A Quality of Service-based
Framework for Creating Distributed Heterogeneous Software Components, Concurrency and Computation: Practice
and Experience, vol. 14, pp. 1009-1034.
[8] Siram, N. N., Raje, R. R., Olson, A. M., Bryant, B. R., Burt, C. C., and Auguston, M., An Architecture for the
UniFrame Resource Discovery Service, Proceedings of the 3rd Int. Workshop Software Engineering and
Middleware, Springer-Verlag Lecture Notes in Computer Science, Vol. 2596, 2002.
[9] Bryant, B. R. and Lee, B.-S., �Two-Level Grammar as an Object-Oriented Requirements Specification
Language,� Proceedings of the 35th Hawaii International Conference on System Sciences, 2002,
http://www.hicss.hawaii.edu/HICSS_35/HICSSpapers/PDFdocuments/STDSL01.pdf.
[10] Brahnmath, G. J., Raje, R. R., Olson, A. M., Auguston, M., Bryant, B. R., Burt, C. C., A Quality of Service
Catalog for Software Components, Proceedings of the 2002 Southeastern Software Engineering Conference, pp.
513-520.
[11] Auguston, M., Tools for Program Dynamic Analysis, Testing, and Debugging Based on Event Grammars,
Proceedings of the 12th International Conference on Software Engineering and Knowledge Engineering, 2000, pp.
159-166.
[12] Hudson, M. J., The Web Services Placebo,
http://www.intelligententerprise.com/020917/515e_business1_1.shtml
[13] Czarnecki, K., Eisenecker, U.W., Generative Programming: Methods, Tools, and Applications, Addison-
Wesley, 2000.

