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Abstract—This paper describes an investigation into the con-
trol of multiple, cooperating autonomous sensor platforms oper-
ating in a marine sensor network. Distributed sensors allow us to
view phenomena of interest from multiple, simultaneous vantage
points, creating significant processing gain from the spatial
diversity. The major objective of this paper is to describe a frame-
work for adaptive and cooperative control of the autonomous
sensor platforms in such a network. This framework has two
major components, an intelligent sensor that provides high-
level state information to a behavior-based autonomous vehicle
control system and a new approach to behavior-based control
of autonomous vehicles using multiple objective functions that
allows reactive control in complex environments with multiple
constraints. Experimental results are presented for a 2-D target
tracking application in which a pair of fully autonomous surface
craft using simulated bearing sensors acquire and track a moving
target. From these results, it is readily seen that there is the
potential for potent synergy from the cooperation of multiple
sensor platforms.

I. INTRODUCTION

Mobile sensor platforms working in coordination offer

distinct advantages. They may each have different payloads,

sensors, and endurance capabilities. A network of small,

inexpensive platforms with low-performance sensors may be

able to use its spatial diversity to outperform systems using

single, very expensive, high-performance sensors. The use of

multiple platforms also may allow one platform to stay at

the surface, with a higher bandwidth link to other robotic or

human operated vehicles, while one or more other platforms

operate under the surface at varying depths to optimize their

sensor-oriented tasks. Network survivability is also enhanced

as the loss of one or even possibly several inexpensive sensors

can be absorbed with the redundancy inherent in such a

network We are motivated by the following scenario: two

networked sensor vehicles are in operation, both fitted with

passive, towed sensor arrays. Both vehicles will detect and

cooperatively track an unknown target. Both vehicles begin

in patrol mode in separate portions of the operating area in

order to optimize their sensor coverage. The two vehicles work

together to track underwater objects by communicating target

bearing and track estimate information between themselves via

acoustic modem. The vehicles will then position themselves

with respect to the target in a formation designed to minimize

the uncertainty in the target track estimate.

While coordinated marine vehicles have their advantages,

they present challenges in their joint control to reach their

combined potential. Inter-vehicle communication is limited

in bandwidth and carefully allocated. Any kind of central

continuous control is likely infeasible. In multi-vehicle joint

exercises involved with sensing dynamic phenomena, it may

not be practical or effective to think in terms of a single vehicle

state space to which proper actions can be assigned a priori.

In this work we address these challenges by presenting a

novel architecture consisting of a network of sensor platforms

each with an intelligent sensor supplying high-level environ-

mental state data to a new type of behavior-based control

system that is more suited to reactive control with multiple

constraints than previous behavior-based implementations. We

then present experimental validation of this work using three

fully autonomous surface craft.

II. TECHNICAL APPROACH

In this section we present our general autonomy architecture

and how the particular components that reflect the contribution

of this work fit into that architecture. The outline for experi-

mental validation is also discussed.

A. The MOOS-IvP Autonomy Architecture

This work uses the MOOS-IvP architecture for autonomous

marine vehicle control. MOOS-IvP is composed of the Mission

Oriented Operating Suite (MOOS), a open source software

project for coordinating software processes running on an

autonomous platform, typically under GNU/Linux. MOOS-

IvP also contains the IvP Helm, a behavior-based helm that

runs as a single MOOS process and uses multi-objective

optimization with the Interval Programming (IvP) model for

behavior coordination, [1].

A MOOS community contains processes that communicate

through a database process called the MOOSDB, as shown

in Fig. 1(a). MOOS ensures a process executes its “Iterate”

method at a specified frequency and handles new mail on each

iteration in a publish and subscribe manner. The IvP Helm runs

as the MOOS process pHelmIvP (Fig. 1(b)). Each iteration of
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Fig. 1. The IvP Helm runs as a process called pHelmIvP in a MOOS commu-
nity. MOOS may be composed of processes for data logging (pLogger), data
fusion (pNav), actuation (iPWMController), sensing (iGPS), communication
(pMOOSBridge, iMicroModem), and much more. They can all be run at
different frequencies as shown.

the helm contains the following steps: (1) mail is read from

the MOOSDB, (2) information is updated for consumption

by behaviors, (3) behaviors produce an objective function if

applicable, (4) the objective functions are resolved to produce

a single action, and (5) the action is posted to the MOOSDB

for consumption by low-level control MOOS processes. The

behaviors responsible for sensor platform control in the track-

ing application are discussed in Section IV.

B. The Logical Sonar Sensor

The logical sonar sensor consists of the physical acoustic

sampling hardware as well as algorithms that abstract the

real-time data into higher forms of information suitable for

a behavior-based control system. Because of the distributed

MOOS architecture, the actual sensor and processing algo-

rithms (MOOS processes) may well reside in a separate

vehicle payload from the main vehicle control computer. The

tracking vehicles in this work use a set of tracking algorithms

that run in a single MOOS process called pTracker (see Fig.

1(a)). This process subscribes to target bearing data from

the MOOS database. The bearing data is either produced by

another MOOS process interfaced with a physical bearings-

only sensor, or the bearing data is produced by an alternative

MOOS process that simulates bearings-only sensor data. The

pTracker process then produces and posts track solution infor-

mation to the MOOSDB to be consumed by any other MOOS

process. Feedback from the platform behaviors is available

for dynamically changing the sensor parameters in response

to the platform state. More information on the algorithms for

the pTracking process is given in Section III.

III. BEARINGS-ONLY OBJECT TRACKING

In order to track a moving object from a set of discrete

sensor observations, one must first decide on the kinematic

model used to describe the object’s motion. In this work, a

constant-velocity model was chosen because it is one of the

simplest to describe mathematically and because estimating

the motion of a constant velocity target using a bearings-

only sensor is a classical problem in target motion analysis.

In typical passive ranging applications, however, the state

parameters for the target track are estimated using a set of

observations from a single moving sensor platform. With only

one sensor, both temporal and spatial diversity in the sensor

measurements are needed to estimate the target track. In this

work, we will estimate the target track parameters using simul-

taneous measurements from two spatially distributed sensors

from which an immediate solution of the target position can

be formed. Successive position estimates will then be used to

estimate the target’s velocity components.

A. 2D Target Position Triangulation

Triangulating the position of an object using passive angle

measurements is common in a number of fields including

optics. Most analysis, however, assumes fixed sensors trian-

gulating fixed or moving targets or moving sensors estimating

the position of a fixed target [2]. In this work we now consider

the position estimation for a moving target from a moving

sensor platform. In this section, we will follow the analysis as

developed in [2] for the 2D target position estimation and the

subsequent error analysis. Given the coordinate frame shown

x

y

θi (xt, yt)

(xi, yi)

Fig. 2. Coordinate frame for 2D multi-sensor tracking.

in Fig. 2 with target location (xt[n], yt[n]) and sensor positions
(xi[n], yi[n]) for the discrete time interval n = 0, 1, . . . , N ,

the relationship between the position of the ith sensor and its

measured target bearing θi at time n is given by

tan θi[n] =
xt[n] − xi[n]

yt[n] − yi[n]
(1)

The solution to (1) for the general case of I sensors can be

written in matrix form as




.

xi[n] − yi[n] tan θi

.



 =





. .

1 − tan θi[n]
. .





[

x̂t[n]
ŷt[n]

]

(2)

This system of nonlinear equations can be solved using general

least-squares methods such as Gauss-Newton and Levenberg-

Marquardt. For the problem under consideration in this work,

we limit ourself to the case of two sensors for which the exact

solution at any time step n can be be written as

x̂t =
x2 tan θ1 − x1 tan θ2 + (y1 − y2) tan θ1 tan θ2

tan θ1 − tan θ2

(3)

ŷt =
y1 tan θ1 − y2 tan θ2 + x2 − x1

tan θ1 − tan θ2

(4)



B. Variance of the Target Position Estimate

One of the most important pieces of information needed to

develop the proper behaviors for a sensor-adaptive system is

the relationship between the target motion and the variance

of the parameter estimates for the process under observation.

From (3) and (4) it is apparent that the uncertainty in the target

position estimates will be influenced by three factors:

1) The uncertainty of the sensor positions (xi[n], yi[n])
2) The uncertainty of the bearing measurements θi[n]
3) The positions of the sensors with respect to the target

The sensor position uncertainties we model as Gaussian

distributions with variance σ2

pos equal and uncorrelated in both

the x and y directions. The measurement uncertainties we also

model as Gaussian distributions with variance σ2

θ equal and

independent of sensor platform. The usual method for finding

the variances of (3) and (4) would be to take the expectation

var(x̂) = E[(x̂ − x)2)] (5)

Given the complexity of the functional forms for (3) and (4)

however, no closed form solution for (5) can be calculated. In

this case, one can derive the error propagation equations by

performing Taylor series expansions of (3) and (4) as given in

detail for this application in [2]. Using the above assumptions

with regards to the uncertainties for sensor position and

bearing measurements, a first-order approximation to the target

position uncertainties can be given as

σ2

xt
≈ C1σ

2

pos + C2σ
2

θ (6)

σ2

yt
≈ C3σ

2

pos + C4σ
2

θ (7)

where C1, C2, C3, and C4 are coefficients given as

C1 =

(

∂xt

∂x1

)2

+

(

∂xt

∂x2

)2

+

(

∂xt

∂y1

)2

+

(

∂xt

∂y2

)2

(8)

C2 =

(

∂xt

∂θ1

)2

+

(

∂xt

∂θ2

)2

(9)

C3 =

(

∂yt

∂x1

)2

+

(

∂yt

∂x2

)2

+

(

∂yt

∂y1

)2

+

(

∂yt

∂y2

)2

(10)

C4 =

(

∂yt

∂θ1

)2

+

(

∂yt

∂θ2

)2

(11)

The derivatives needed to calculate (8) through (11) are

derived in [2]. Coefficients C1 and C3 measure the contri-

bution of the sensor position error to the target location error

while coefficients C2 and C4 measure the contribution of the

bearing measurement error to the target location error. From

an analysis of these equations, the following observations can

be made with regard to the effect of sensor platform motion

on the variance of the target position estimates:

1) The largest influence on σ2
xt
and σ2

yt
is the sensor

separation angle (θ1 − θ2) with minimum variance at
a separation angle of 90 degrees rising to infinity at
separation angles of 0 degrees and 180 degrees.

2) The influence of the bearing measurement error rises

linearly with the sensor to target range. The bearing

measurement error will also rise with the sensor to target

range due to the reduction in the received signal to noise

ratio when using a real acoustic array.

3) The 90 degree rotation between the plots of the co-
efficients for the variances of x̂t and ŷt indicate that

uncertainty in one spatial direction can be minimized

with a corresponding increase in uncertainty in the other

spatial direction.

These observations will be used in Section IV to develop

the autonomous vehicle behaviors designed to cooperatively

track a moving target with two sensor platforms with a goal

of minimizing the target localization errors subject to other

constraints on the platform motion.

C. Target Velocity Component Estimation

Having derived the necessary analysis to be able to estimate

the instantaneous position of a target from two simultaneous

bearing measurements, we would like to filter these noisy mea-

surements as well as estimate the target’s velocity components

from successive position estimates. A number of techniques

are available to do this but the extended Kalman filter was

chosen for its speed, with available CPU cycles being limited

on small, autonomous platforms. Even though this is a non-

optimal estimation technique, good performance was obtained

as shown in Section VI. The full derivation of the Kalman

filter equations can be found in [3].

IV. THE IVP HELM AND VEHICLE BEHAVIORS

Here we describe the use of multi-objective optimization

with interval programming and the primary behaviors used

in this experiment. For further examples of this approach,

although with different missions and behaviors, see [4], [5].

A. Behavior-Based Control with Interval Programming

By using multi-objective optimization in action selection,

behaviors produce an objective function rather than a single

preferred action ( [1], [6], [7]). The IvP model specifies both

a scheme for representing functions of unlimited form as well

as a set of algorithms for finding the globally optimal solution.

All functions are piecewise linearly defined, thus they are

typically an approximation of a behavior’s true underlying

utility function. Search is over the weighted sum of individual

functions and uses branch and bound to search through the

combination space of pieces rather than the decision space

of actions. The only error introduced is in the discrepancy

between a behavior’s true underlying utility function and the

piecewise approximation produced to the solver. This error is

preferable compared with restricting the function form of be-

havior output to say linear or quadratic functions. Furthermore,

the search is much faster than brute force evaluation of the

decision space, as done in [7]. The decision regarding function

approximation accuracy is a local decision to the behavior

designer, who typically has insight into what is sufficient. The

solver guarantees a globally optimal solution.

Although the use of objective functions is designed to

coordinate multiple simultaneously active behaviors, helm



behaviors can be easily conditioned on variable-value pairs in

the MOOS database to run at the exclusion of other behaviors.

Likewise, behaviors can produce variable-value pairs upon

reaching a conclusion or milestone of significance to the

behavior. In this way, a set of behaviors could be run in a plan-

like sequence, or run in a layered relationship as originally

described in [8].

B. The Waypoint Behavior

The waypoint behavior is responsible for moving the sensor

platform from one point to another along the shortest path. The

behavior is configured with a list of waypoints and produces

objective functions that favorably rank actions with smaller

detour distances along the shortest path to the next waypoint.

This behavior is used by the target vehicle in the experiments

to form a constant velocity motion, for example, and multiple

waypoints can be sequenced together to form platform mo-

tion along arbitrary polygons.The objective function for this

behavior is three-dimensional over course, speed, and time.

C. The Orbit Behavior

The Orbit behavior is responsible for providing a patrol

capability in which the vehicle will orbit a fixed point. Given

an orbit center, the behavior dynamically determines a list of

waypoints to form the orbit. Parameters to this behavior allow

the choice of clockwise/counter-clockwise orbits as well as the

number of waypoints in the orbit path and the vehicle speed.

The objective functions for this behavior are identical to the

standard waypoint objective functions described in Section IV-

B.

D. The ArrayTurn Behavior

The ArrayTurn behavior is responsible for providing a

vehicle turning motion such that sensor platforms with acous-

tic line arrays can determine which side of the array the

target is on. This behavior requires tight integration with the

acoustic sensor which signals when the left/right ambiguity

has been cleared. The objective function for this behavior is

one-dimensional over course and bimodal, with the modes

centered around the two possible course choices which are

ninety degrees from the vehicle’s course when the behavior

is activated (he course fix). The mode that is centered at the

course closest to the vehicle’s current course is weighted in

order to prevent frequent oscillation between the two modes.

E. ArrayAngle Behavior

The ArrayAngle behavior is responsible for holding a

vehicle course such that sensor platforms with acoustic line

arrays will have the array as close as possible to broadside

with the target given the other constraints on vehicle motion.

The objective function for this behavior is one-dimensional

over course and bimodal, with the modes centered around the

two possible course choices that keep the array oriented at

broadside with respect to the target. The mode that is centered

at the course closest to the vehicle’s current course is weighted

in order to prevent frequent oscillation between the two modes.

F. Formation Behavior

The formation behavior is responsible for maintaining two

sensor platforms in formation in a track and trail scenario

behind the target using the current target position estimate as

a virtual leader. The optimal formation consists of the sensor

platforms maintaining a ninety degree angle with respect to the

target position estimate while trailing at a fixed trail distance r.

The objective functions for this behavior are three dimensional

over course, speed and time. It should be noted that the

separation is computed using the current position of the other

sensor platform which is also calculating the separation angle.

This can lead to dynamic instability problems if there is not

enough damping in the vehicle motion.

V. EXPERIMENTAL SCENARIO AND CONFIGURATION

Experimental validation of the architecture and algorithms

for cooperative sensor platform control in the sensor-adaptive

tracking application was conducted using two autonomous

kayaks as mobile sensor platforms and a third kayak acting

as a moving object to be tracked. The kayaks are proxies for

autonomous underwater vehicles (AUVs) used in upcoming

follow-on experiments. The experiments were conducted using

a test range available on the Charles River near MIT.

A. Simplifying Assumptions

Two significant simplifying assumptions were made. First,

as a proxy for the towed acoustic array sensor, the GPS

position of the sensed vehicle was communicated over an

802.11b wireless connection to the sensor vehicles. The sensor

vehicles converted this information into bearings-only sensor

data using a simulator which provided bearing data to the

MOOS database just as the intelligent sensor currently in use

on the AUVs would do. The second simplification was the use

of the 802.11b wireless connection as a proxy for communi-

cations via acoustic modem between the sensor vehicles.

B. The Marine Vehicle Platforms

The autonomous surface craft used in this experiment are

based on a kayak platform. Each is equipped with a GPS unit

providing position and trajectory updates at 1 Hz. The vehicles

are also equipped with a compass but the GPS provides

more accurate heading information, and is preferred, at speeds

greater than 0.2 m/s. Each vehicle is powered by 5 lead-acid

batteries and a Minn Kota motor providing both propulsion and

steerage. The vehicles have a top speed of roughly 2.5 meters

per second. See [9] for more details on this platform. Each

kayak is equipped with the distributed MOOS architecture and

IvP Helm as described in Section II-A.

C. Scenario

The experimental scenario begins with the deployment of

two sensor vehicles into separate patrol orbits where they

remain until a target detection occurs. At some point, the target

kayak begins its motion into the target area. When it enters

into the target area (Fig. 3), it will begin broadcasting its GPS

location to the sensor vehicles whose sensor simulators will



convert the position information into target bearings. Vehicle

two’s bearing data will then be transmitted to vehicle one

where it will be combined with vehicle one’s bearing informa-

tion to form the target track. The target track information will

then be broadcast back to vehicle two and both vehicles will

use the track information to position themselves with respect

to the target using the formation described in Section IV-F.

After a predetermined amount of tracking time, tracking will

be declared over and the sensor vehicles will return to their

patrol orbits to await another target.

VI. EXPERIMENTAL RESULTS

Fig. 3 shows the vehicle motion for an experimental tracking

mission with autonomous kayaks with two tracking vehicles

and one target vehicle. The objective of this mission is to

execute the scenario described in Section V-C where two

sensor vehicles cooperatively track the target vehicle.

Fig. 4 depicts the target position estimates produced by

the MOOS process pTracker overlaid onto the actual target

track for the period in which the target vehicle was operating

in a constant velocity scenario. As can be seen, excellent

position estimates were obtained, especially compared with

the tracking results obtained using a single sensor platform

to track a constant velocity target as detailed in [10]. The

gaps in the estimates as seen in the figure were due to com-

munications breaks when no bearing estimates from vehicle

two were received by vehicle one. As can be seen, even with

the communications breaks, position estimation results were

generally very good.

VII. CONCLUSIONS

We have demonstrated a method for sensor-adaptive control

of autonomous marine vehicles in an autonomous oceano-

graphic sampling network and shown its suitability for con-

trolling multiple, cooperating heterogeneous sensor platforms.

The results show that our proposed method combining a

behavior-based, multiple objective function control model with

a sensor providing high-level state information about the pro-

cess being sampled is a viable method for adaptive sampling

of transitory ocean phenomena in which fast reaction time is

necessary. In complex environments where such vehicles may

have to contend with unknown and situations like obstacle

avoidance while still maintaining sensing performance, the

state space for the vehicle control is much too large for a

world-model approach and a behavior-based approach such

as described in the paper is indicated. This approach does

not come without penalty, however. The parameter tuning and

weighting needed for multiple, interacting behaviors to provide

reasonable performance under complex conditions is not trivial

at this stage. Our work in this area continues with an applica-

tion requiring autonomous underwater vehicles with real array

sensors to detect and track moving underwater targets as well

as tracking applications using N sensor platforms possibly

tracking multiple simultaneous contacts.
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Fig. 3. A rendering of the experimental results. In (a) two tracking vehicles (both autonomous kayaks) are deployed and executing their Orbit behaviors
to patrol in two separate regions. Note that tracking vehicle two is exhibiting signs of a rudder control problem. In (b) the target vehicle is deployed and
has just entered the “sensor region” where it begins to transmit its position data to the tracking vehicles for use in the bearing simulators. The tracking
vehicles have just activated their ArrayTurn behaviors for determining which side of the sensor array the target is on. In (c) the tracking vehicles have just
sufficiently resolved the left-right ambiguity and have begun executing their Formation behaviors using the target position estimate as a virtual leader. In
(d) both the tracking vehicles have moved into formation behind the target. In (e), the target unexpectedly turned for home before the sensor vehicles have
finished tracking, violating the constant velocity assumption and confusing the tracking system. In (f) both vehicles are back on-station and awaiting any
further unknown objects or vehicles to come through its sensor field. The target vehicle has returned to the dock.
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