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Abstract— Timing synchronization is a preeminent challenge
in ultra-wideband impulse radios (UWB-IRs). The conventional
all-digital synchronization methods encounter some formidable
implementation difficulties such as high rate sampling and high
complexity RAKE structure. To avoid these challenges, semi-
analog methods have been motivated recently. We have recently
proposed a code-assisted blind synchronization (CABS) algorithm
to realize timing synchronization blindly with the help of the
discriminative property of both time hopping codes and well-
designed polarity codes. The algorithm requires sampling at the
frame rate only and bypasses channel estimation during the
synchronization phase. This paper analyzes the identifiability and
both the probability of acquisition and the the mean square error
performance of CABS analytically. A data-aided code-assisted
synchronization (CAS) algorithm is also proposed and a modified
version of CABS which relies solely on the time hopping code is
investigated.

I. INTRODUCTION

Recently, ultra-wideband (UWB) radio has been attracting
increasing interest due to its unique advantages such as precise
ranging resolution, enhanced obstacle penetration capability,
and low cost transceiver hardware (see [1] and references
therein). All these unique advantages make UWB radio a
good candidate for wireless applications such as location-
aware communications and wireless sensor networks.

To realize the unique theoretical advantages of UWB, many
physical and MAC layer problems have to be overcome.
Timing synchronization is one of the most crucial issues
since its accuracy has a great impact on system throughput,
capacity and bit error rate [2][3][4][5]. Indeed, due to the
transmission of low power and ultra-short duration pulses,
timing synchronization is very challenging in UWB impulse
radios (IRs), especially given the low complexity-low cost
philosophy of UWB. Synchronization algorithms following an
all-digital route have to cope with some prohibitive implemen-
tation hurdles such as the requirement of an extremely high
speed analog-to-digital converter, estimation of a large number
of channel parameters, and a RAKE receiver structure with a
large number of fingers [6]. This motivates the research of
designing low complexity semi-analog methods[7][8]. In [8]
we proposed a code-assisted blind synchronization (CABS)
algorithm based on the discriminative property of a well-
designed polarity code and the time hopping (TH) code of the
desired user. With the discriminative nature of both codes, the

algorithm can achieve fast and accurate synchronization even
in the presence of multi-user interference, while avoiding high
rate sampling and bypassing challenging channel estimation.

The algorithm was validated by both intuitive explanation
and numerical simulations in [8]. In this paper, we extend
our work by providing an extensive analytical performance
analysis. Identifiability is first analyzed. Then, for coarse
symbol-level synchronization, we study the probability of
acquisition, and a lower bound on this probability is derived
in closed-form. The performance of fine synchronization is
assessed using the mean squared error (MSE), and an upper
bound on the asymptotic MSE (AMSE) is derived. We also
propose a data-aided version of CABS, called code-assisted
synchronization (CAS) that provides better performance than
CABS. To relieve the challenging polarity code design in
CABS, we investigate a modified version which relies on the
TH code only, and compare its performance with the initial
CABS algorithm by simulations.

This paper is organized as follows. Section II defines the
models that describe the UWB signal and the propagation
channel. In Section III we review the CABS algorithm and
introduce the CAS algorithm. The identifiability of CABS is
investigated in Section IV, followed by the analytical perfor-
mance analysis in Section V. Numerical simulation results and
discussions are given in Section VI. Finally we conclude our
work in Section VII.
Notation: �·� stands for integer floor operation; 〈·〉B denotes
the modulo operator with base B, E {·} and var {·} represent
the statistical expectation and variance operators, respectively.

II. SYSTEM MODEL

In typical UWB-IRs, every information symbol is conveyed
by a sequence of Nf pulses, p(t), each with ultra short
duration, Tp, of the order of nanosecond. During each frame
of duration Tf , one data modulated pulse is transmitted,
resulting in a symbol duration of Ts = NfTf . The two
most popular modulation schemes used in UWB-IRs are
binary pulse amplitude modulation (BPAM) and binary pulse
position modulation (BPPM), which were compared in terms
of performance and implementation complexity in [9][10].
Since BPAM outperforms BPPM in terms of bit error rate
(BER), we focus on BPAM UWB here, and the extension
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of the results to BPPM UWB is straightforward. In order to
smoothen the spectrum as well as to enable multiple access,
periodic pseudo-random TH codes are used to time-shift the
positions of the pulses by integer multiples of chip duration
Tc := � Tf

Nc
�, with Nc denoting the number of chips per

frame within the associated frames. TH was shown to be a
good spectrum smoothing and multiple access scheme [11],
especially for the low data rate applications.

Therefore, in the conventional TH-UWB radios the pulses
across the frames of each symbol have the same polarity. As
pointed out in [8], the polarities of the pulses within each
symbol can also be modified by making use of well-designed
polarity codes to ease synchronization. Thus the transmitted
signal in a point to point link can be expressed as

u(t) =
+∞∑
k=0

ak

Nf−1∑
i=0

dip(t − kTs − iTf − ciTc) (1)

where {ak}’s are the BPAM information symbols taking
values ±1 with equal probability, {di}Nf−1

i=0 is the bipolar
representation of a binary code (i.e. di = ±1), and {ci}Nf−1

i=0 is
the TH sequence whose elements are integer values randomly
chosen from [0, Nh − 1], where Nh < Nc. Note that if
di = 1, ∀i, u(t) reduces to the usual transmitted TH BPAM-
UWB IR signal.

The signal u(t) propagates through an L-path fading chan-
nel with {γl} and {τl} representing the amplitude and the
delay of the lth path, and without loss of generality we assume
τ0 < τ1 < ... < τL−1. The channel is also assumed to be
quasi-stationary, i.e. {γl, τl}L

l=0 are invariant over a burst of
several symbols. Therefore, the channel impulse response can
be denoted by h(t) =

∑L−1
l=0 γlδ(t − τl). The targeted timing

information refers to the delay of the first arriving path τ0.
Thus, we isolate τ0 from the channel impulse response and
define the dispersed pulse as g(t) :=

∑L−1
l=0 γlp(t− τl,0) with

τl,0 := τl−τ0, ∀l ∈ [0, L−1] denoting the relative delay of the
lth path to the first path. Therefore, the maximum dispersion
of the pulse is Tg = Tp + τL−1,0.

The signal at the output of the receive antenna can then be
written as

r(t) =
+∞∑
k=0

ak

Nf−1∑
i=0

dig(t − kTs − iTf − ciTc − τ0)︸ ︷︷ ︸
s(t)

+w(t)

(2)
where s(t) represents the useful signal component and w(t)
accounts for the thermal noise which can be approximated as
a wide sense stationary white Gaussian process with double-
sided power spectral density N0/2.

In this paper, we consider dense multipath propagation
scenarios in which the channel paths are closely spaced. For
analytical tractability we also assume Tf > Tg +NhTc i.e. no
inter-frame-interference (IFI), although CABS was shown by
simulations in [8] to be robust against IFI.

III. REVIEW OF CABS ALGORITHM

CABS algorithm aims at estimating blindly the signal’s
propagation delay, τ0, without channel state information. Blind
synchronization algorithms are desired in many potential
UWB radio applications such as wireless sensor and ad hoc
networks where training may not be available. The complexity
of estimating a large number of parameters of a typical UWB
channel is prohibitive, thus bypassing channel estimation dur-
ing the synchronization phase is desirable. The idea behind
CABS is to rely on the discriminative property of both the
polarity code and the TH code to adjust the candidate time
shift until a maximum received signal energy is captured.

Since blind methods can only provide synchronization up
to a symbol duration, we restrict τ0 in the interval [0, Ts).
Then, the CABS algorithm can be expressed as the following
optimization

τ̂0 = arg max
τ∈[0,Ts)

J(τ) (3)

with

J(τ) =
1
K

K∑
k′=1

∫ TI

0

∣∣∣∣∣∣
Nf−1∑
j=0

djgr(t)r(t + tk′,j + τ)

∣∣∣∣∣∣
2

dt

where tk′,j := k′Ts +jTf +cjTc, K is the number of symbol-
long segments of the received waveform used for synchro-
nization, djgr(t), t ∈ [0, Tf ), with an effective support smaller
than Tf , is the correlation template for the jth frame, and TI is
the integration interval. It is obvious that the shape of djgr(t)
and the value of TI affect the amount of the signal energy
and the noise energy which are captured by each integration
output, and thus affect the estimation accuracy. For simplicity
of both implementation and analysis, we choose djgr(t) as
a non-return-to-zero gate (NRZG) with polarity decided by
dj , i.e. djgr(t) = dj , t ∈ [0, Tf ]. The optimization of TI is
dependent on the actual channel and the operating signal-to-
noise ratio (SNR) value, and thus analytically untractable. If
the receiver has the knowledge of the exact maximum channel
delay spread, TI can be set as Tg . Otherwise, TI can be set to
an upper bound of the maximum pulse dispersion T̄g , or even
to Tf − NhTc.

It is worth pointing out that if training is allowed, a
data-aided version of CABS (a.k.a. CAS), which can further
improve the performance, is also feasible. By transmitting a
training sequence with pattern of ak = (−1)k, CAS can be
formulated as

τ̂0 = arg max
τ∈[0,Ts)

JCAS(τ) (4)

with

JCAS(τ) =
∫ TI

0

∣∣∣∣∣∣
Nf−1∑
j=0

djgr(t)r̄(t + jTf + cjTc)

∣∣∣∣∣∣
2

dt

where r̄(t) := 1
K

∑K
k′=1(−1)k′

r(t + kTs + τ), t ∈ [0, Ts]
is a symbol-long segment of the averaged received waveform.
Although analytical analysis for CAS is possible, in this paper
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we only focus on CABS; extensions of these results to CAS
can be obtained using the same reasoning.

IV. IDENTIFIABILITY ANALYSIS FOR CABS

In [8], the validity of CABS was verified via an intuitive
illustration and numerical simulations, and in this section
we provide an analytical verification of the identifiability of
CABS. Since the analysis when the pseudo random TH code
is included is untractable, to simplify the noise-free part of
the objective function, we assume {cj}Nf−1

j=0 . For analytical
simplicity, we also assume TI = Tg; the ambiguity introduced
by choosing TI �= Tg will be discussed later on.

Therefore, the objective function given in (3) can be split
into three terms by substituting r(t) by (2)

J(τ) = Js(τ) + Jn1(τ) + Jn2(τ), (5)

where

Js(τ) =
1
K

K∑
k′=1

∫ Tg

0

∣∣∣∣∣∣
Nf−1∑
j=0

djs(t + k′Ts + jTf + τ)

∣∣∣∣∣∣
2

dt,

(6)

Jn1(τ) =
2
K

K∑
k′=1

∫ Tg

0

Nf−1∑
j1=0

dj1s(t + k′Ts + j1Tf + τ)

×
Nf−1∑
j2=0

dj2w(t + k′Ts + j2Tf + τ)dt (7)

and

Jn2(τ) =
1
K

K∑
k′=1

∫ Tg

0

∣∣∣∣∣∣
Nf−1∑
j=0

djw(t + k′Ts + jTf + τ)

∣∣∣∣∣∣
2

dt.

(8)
Since the time delay τ0 and the candidate time-shift τ are

both within the range of [0, Ts), the relative misalignment
between them is τ −τ0 ∈ (−Ts, Ts). For clarity of exposition,
we consider two cases: τ ≤ τ0 and τ ≥ τ0, separately.
Under each case, we show that the noise-free term Js(τ) is
maximized if and only if (iff) τ = τ0, which verifies the
identifiability of CABS algorithm.

A. τ ≤ τ0

In this case, the relative misalignment between τ0 and τ can
be denoted as τ̃0 := τ0− τ , with τ̃0 ∈ [0, Ts), and can be split
into a frame-level misalignment quantity and a sub-frame-level
misalignment quantity as: ñ0 = � τ̃0

Tf
�, ñ0 ∈ [0, Nf − 1], and

ε̃0 = τ̃0 − ñ0Tf , ε̃0 ∈ [0, Tf ). After some manipulations and
algebra, Js(τ) can be simplified to:

Js(τ) =
N2

f

K

K∑
k′=1

[
R2

d[−ñ0; k′]
∫ Tg

0

g2(t − ε̃0)dt (9)

+R2
d[−ñ0 − 1; k′]

∫ Tg

0

g2(t + Tf − ε̃0)dt

]
,

where Rd[n; k′] := 1
Nf

∑Nf−1
j=0 djd〈j+n〉Nf

ak′+� j+n
Nf

�. If the

two consecutive BPAM symbols ak′ and ak′+� j+n
Nf

� are the

same, Rd[n; k′] = R+
d [n] := 1

Nf

∑Nf−1
j=0 djd〈j+n〉Nf

. Other-

wise, Rd[n; k′] = R−
d [n] := 1

Nf

∑Nf−1
j=0 djd〈j+n〉−Nf

where

〈n〉−N = (−1)�n/N�〈n〉N . Since ñ0 ∈ [0, Nf − 1] and ε̃0 ∈
[0, Tf ), it is obvious that Js(τ |τ ≤ τ0) is maximized iff ñ0 = 0
and ε̃0 = 0, i.e. τ = τ0, and the maximum equals N2

f Eg where

Eg :=
∫ Tg

0
g2(t)dt is the energy of each channel-dispersed

pulse.

B. τ ≥ τ0

The relative misalignment, in this case, can be denoted as
τ̃0 := τ − τ0. Keeping the definitions for the other parameters
involved the same as those in the above case, and following a
similar derivation, we obtain:

Js(τ) =
N2

f

K

K∑
k′=1

[
R2

d[ñ0; k′]
∫ Tg

0

g2(t + ε̃0)dt (10)

+R2
d[ñ0 + 1; k′]

∫ Tg

0

g2(t − Tf + ε̃0)dt

]
,

and with the same arguments made in the first case we can
conclude that Js(τ |τ ≥ τ0) reaches its maximum N2

f Eg iff
ñ0 = 0 and ε̃0 = 0, i.e. τ = τ0.

Combining these two cases together, the CABS algorithm
proposed in (3) can be corroborated identifiable if Tg is known.
In practice, however, the exact value of Tg is unavailable at the
receiver. In this case, the value of TI can be set as either T̄g or
a value which is smaller than Tg. If TI > Tg , an uncertainty
area of [−(TI − Tg) + τ0, τ0] exists, and if TI < Tg , the
uncertainty area depends on the actual channel delay profile.

V. PERFORMANCE ANALYSIS

A. Probability of Acquisition

In UWB IRs, coarse timing acquisition aims at finding
the boundaries between symbols in the received waveform.
In fact, the autocorrelation-based detection schemes such as
transmitted reference (TR) [12], and differentiate decoding
(DIFF) [13] are more sensitive to the frame-level timing
mismatch [14] than the sub-frame timing mismatch. Therefore,
the probability of acquiring the coarse timing synchronization
is more of interest than the exact MSE of the delay estimate
for autocorrelation based receivers. Here we derive the lower
bounds on the probability of acquisition of CABS for the
coarse timing acquisition.

During the coarse timing synchronization, Nf candidate
time offsets τ = nTf with integer n ∈ [0, Nf − 1] are
tested, which is the same as setting the search step T� = Tf .
If the synchronizer can lock the receiver onto a candidate
offset that is closest to the actual delay, we then say that
coarse acquisition is achieved. This coarse acquisition problem
can then be formulated as estimating n0 by the following
optimization

n̂0 = arg max
n=0...Nf−1

J(nTf ),
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so that |τ0 − n0Tf | <
Tf

2 . The probability of acquisition can
be defined as:

Pa(n0) = Pr{n̂0 = n0} (11)

= 1 − Pr


 ⋃

n�=n0

J(nTf ) > J(n0Tf )




or

Pa(n0) =
∫ +∞

−∞
fn0(x0)

(∫
· · ·
∫ x0

−∞
(12)

×fn�=n0(x1, . . . , xNf−1)dx1 · · · dxNf−1

)
dx0

where
⋃

stands for the union of sets, fn0(x) is the proba-
bility density function (pdf ) of the random variable J(n0Tf )
and fn�=n0(x1, . . . , dxNf−1) is the joint pdf of the random
variables J(nTf ), n ∈ [0, Nf − 1], and n �= n0. Using
the central limit theorem, J(nTf ), n = 0 . . . Nf − 1 can
be modeled as Gaussian random variables. For analytical
tractability, we assume they are independent to each other,
although the independence of these random variables is not
actually valid due to the long channel delay spread and the
overlap among the observation windows. We also assume that
ε̃0 = 0 to simplify the derivation.

The first lower bound on Pa is derived based on Bonferroni
Inequality [15] and is referred to as the ‘Union Lower Bound’
(PUB). Denoting Yn := J(nTf ) − J(n0Tf ), n �= n0, and
with the Gaussian assumption on J(nTf ), the Yn’s are also
Gaussian random variables with mean mYn

and variance
σ2

Yn
). The Bonferroni Inequality states that for a countable

set of events: A1, . . . , AN , Pr {⋃i Ai} ≤ ∑i Pr {Ai} where
the equality holds iff these events are mutually exclusive
(or independent). Substituting Yn into (11) and invoking the
Bonferroni Inequality, we obtain:

Pa(n0) ≥ PUB = 1 −
∑

n�=n0

Q


−mYn√

σ2
Yn


 , (13)

where Q(x) = 1
2

(
1 − erf

(
x√
2

))
, with erf(x) =

2√
π

∫ x

0
e−(t2)dt denoting the error function.

Since the J(nTf ) are assumed independent and ε̃0 = 0, the
mean and the variance of Yn can be readily derived as:

mYn
= N2

f Eg

(∣∣R+
d [+ñ0]

∣∣2 − ∣∣R−
d [−ñ0]

∣∣2
2

− 1

)
(14)

and

σ2
Yn

=
N4

f E2
g

8K

(∣∣R+
d [−ñ0]

∣∣2 − ∣∣R−
d [−ñ0]

∣∣2)2

(15)

+
(2K − 1)

∣∣R+
d [−ñ0]

∣∣2
K2

σ2
w

+

∣∣R−
d [−ñ0]

∣∣2 + 2K

K2
σ2

w +
2N2

f Tg

K
σ4

w

where ñ0 := n−n0. Noticing that, due to the periodic property
of R+

d [j] and R−
d [j], we have that

∣∣R+
d [j]

∣∣ = ∣∣R+
d [j + Nf ]

∣∣

and
∣∣R−

d [j]
∣∣ = ∣∣R−

d [j + Nf ]
∣∣ and thus in (13) the summation

over ∀n ∈ [0, Nf − 1] and n �= n0 is equivalent to the
summation over −ñ0 ∈ [1, Nf − 1].

Since it is well known that this PUB derived based on the
Bonferroni Inequality is very loose, we resort to the Jensen’s
Inequality instead, and derive another lower bound which is
named Jensen Lower Bound (P JB). With the assumption of
independence, the (Nf −1)−fold joint probability distribution
in (12) can be written as the product of the probability
distribution of each random variable, and (23) can be modified
as

Pa(n0) =
∫ +∞

−∞
fn0(x0)


 ∏

n �=n0

∫ x0

−∞
fn(xn)dxn


 dx0.

Applying the Jensen’s Inequality, we obtain that

Pa(n0) =
∫ +∞

−∞
fn0(x0)


Nf−1∏

n=0
n �=n0

∫ x0

−∞
fn(xn)dxn


 dx0

≥
Nf−1∏
n=0

n �=n0

∫ +∞

−∞
fn0(x0)

∫ x0

−∞
fn(xn)dxndx0

=
∏

−ñ0∈[1,Nf−1]

Q


 mYn√

σ2
Yn


 = P JB . (16)

B. Asymptotic MSE

Since J(τ) is a nonlinear function of τ , the finite-sample
MSE analysis of τ̂0 is extremely complicated. However, with
sufficiently large SNR and/or K, a closed form upper bound
on the MSE can be derived. Due to the page limitation, the
details of the derivation are omitted here (see [16]), and the
upper bound can be expressed as

E
{
τ̃2
0

}
= Pr(τ̃0 ∈ [0, ξ])E

{
τ̃2
0 |τ̃0 ∈ [0, ξ]

}
+Pr(τ̃0 ∈ [−ξ, 0])E

{
τ̃2
0 |τ̃0 ∈ [−ξ, 0]

}
(17)

≤ σ4
w

KN2
f min{g2(ξ)ġ2(ξ), g2(Tg − ξ)ġ2(Tg − ξ)}

where τ̃0 := τ̂0−τ0, τ̃0 ∈ [0, ξ], and ξ < Tp is a small positive
scalar. This reveals that the MSE of τ̂0 converges to zero as
K → ∞ and/or SNR → ∞. It is worth pointing out that to
reach (17), or in other words to achieve the convergence of
the MSE of τ̂0, a specific shape of the elementary pulse p(t)
is required. However, conventional pulses such as the second
derivative of a Gaussian pulse which is used in the ensuing
simulations also enable CABS to realize accurate estimate of
τ0.

VI. SIMULATIONS AND DISCUSSIONS

In this section, we verify our analysis by numerical simu-
lations. In all the ensuing simulations, p(t) is chosen as the
second derivative of a Gaussian pulse i.e. p(t) =

√
Ep[1 −

4π( t−0.5
τp

)2] exp{−2π( t−0.5
τp

)2}, where τp = 0.4ns is the
delay parameter of the pulse. The energy of this pulse is
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normalized to unity, i.e. Ep = 1. Each symbol consists of
Nf = 13 frames with frame duration Tf = 60ns. Each
frame is composed of Nc = 30 chips and the chip duration is
Tc = � Tf

Nc� = 2ns. The user specific TH codes are generated
by randomly taking integer values from the range of [0, Nh−1]
with Nh = 16, and the codes are periodic with period Nf . The
binary polarity code we used is the same as the one we used
in [8]. The multipath channel model simulated is ‘CM1’ from
the IEEE 802.15 working group [17] with maximum excess
delay of 39ns, and normalized unity energy. When evaluating
the normalized (with respect to T 2

s ) MSE (NMSE), we set the
interval of each discrete time bin to be T� = � Tf

N�
� = 4ns

where N� = 15 is the number of grid search per frame.
To evaluate the coarse acquisition performance of CABS,
the time interval between two consecutive discrete search is
T� = Tf = 60ns, i.e. N� = 1.

In the above sections, we assumed the pulses are not
time-shifted by the TH code in order to make the analytical
derivations tractable. In this section, we first show by simu-
lations that the performance of CABS when TH is adopted
is consistent to that when TH is absent. The NMSE and Pa

of both cases are plotted versus Ep/No in Fig.1 and Fig.2,
respectively. It can be seen that the two schemes have very
similar performance. Therefore the analytical results obtained
can also be used to evaluate the performance of CABS when
TH is adopted. In Fig.2, the lower bounds of Pa derived in
Section V are also shown. As expected, compared with PUB ,
P JB is tight especially at low and medium SNR values, and
can be used to analytically predict the acquisition performance
of CABS.

We then compare the NMSE of CABS with that of CAS
in Fig. 3. CAS offers higher estimation accuracy than CABS
especially at low SNR values, and medium to large values
of K. Thanks to the special training pattern, extra averaging
of the analog signal is possible before the integration for
CAS, which further eliminates the noise. The price paid for
achieving this performance gain, however, is some extra analog
delay lines and the loss of data rate to enable training sequence
transmission.

In practice, the synchronizer has no knowledge about the
starting time of each frame during the coarse acquisition stage,
and the time positions at which J(τ) is evaluated can be
anywhere within each frame, i.e. ε̃0 = 0 does not hold true
in general. In this case, the definition of acquiring the coarse
timing synchronization given in the previous sections needs to
be modified. In fact, if the synchronizer can lock the receiver
onto the time whose difference to the actual start of each sym-
bol is smaller than one frame, i.e. |τ̂0 − τ0| < Tf , the coarse
timing acquisition is considered successful. Fig.4 illustrates the
probability of τ̂0 ∈ (τ0−Tf , τ0+Tf ) when CABS algorithm is
exploited for coarse timing synchronization with ε̃0 ∈ [0, Tf ).

Since one of the gists of CABS algorithm is the symbol-
periodic repetitive time position pattern of the received wave-
form, we are motivated to investigate a modified version of
CABS which requires no need for the polarity code. Fig.5
and Fig.6 show the comparison of performance between the

0 5 10 15 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
p
/N

o
 [dB]

N
M

S
E

TH,pola K=4
TH,pola. K=16
TH,pola. K=32
pola. only, K=4
pola. only, K=16
pola. only, K=32

Fig. 1: NMSE of CABS with TH vs. without TH

−15 −10 −5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
p
/N

o
 [dB]

P
a

P
JB

 K=4

P
JB

 K=16

P
JB

 K=32

P
UB

 K=4

P
UB

 K=16

P
UB

 K=32

no TH, K=4
no TH, K=16
no TH, K=32
with TH, K=4
with TH, K=16
with TH, K=32

Fig. 2: Pa of CABS with TH vs. without TH

original and the modified CABS. Surprisingly, the two have
almost identical NMSE. The coarse acquisition performance
of the modified CABS is slightly degraded by removing
the polarity code. This is intuitively explainable. The NMSE
predicts the performance of the synchronizer during the fine
timing synchronization stage, and the probability of acquisition
reflects the performance of the synchronizer during the coarse
timing synchronization stage. When the coarse timing acquisi-
tion is achieved, the discriminative effect of the polarity code
disappears during the fine synchronization phase. However,
the polarity code does affect the coarse timing performance
of CABS. With this exposition, the challenge of designing
good polarity codes is relieved and CABS can be enabled
for conventional TH-UWB systems. However, if the TH code
has the property that there exists any shifted version of the
TH code which is identical to the code itself, there will be
ambiguity. Nevertheless, the chance for the TH code to have
such property is very small since the value of Nf is usually
several tens or hundreds.

VII. CONCLUSIONS

In this paper, we extended our work on CABS algorithm
which was initially proposed in [8] by providing an exten-
sive analysis. We analytically verified the identifiability of
CABS, and evaluated the asymptotic MSE and probability
of acquisition during the coarse timing synchronization stage.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings. 
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A data-aided version of code-assisted synchronization (CAS)
algorithm which outperforms CABS was also proposed. To
relieve the polarity code design challenge and to enable CABS
in a conventional TH-UWB system, we also investigated a
modified version of CABS which requires no polarity code.

REFERENCES

[1] Liuqing Yang and G. B. Giannakis, “Ultra-wideband communications:
An idea whose time has come,” IEEE Signal Processing Magazine,
vol. 21, no. 6, pp. 26–54, November 2004.

[2] W. M. Lovelace and J. K. Townsend, “The Effects of Timing Jitter
and Tracking on the Performance of Impulse Radio,” IEEE Journal
on Selected Areas in Communications, vol. 20, no. 9, pp. 1646–1651,
December 2002.

[3] Dana Porrat and D. N. C. Tse, “Bandwidth Scaling in Ultra Wideband
Communication,” in Proc. of 41st Allerton Conf. Univ. of Illinois at U-C,
Monticello IL, 1-3 October 2003.

[4] Zhi Tian and G. B. Giannakis, “BER sensitivity to mistiming in
ultra-wideband impulse radios, Part I: Nonrandom channels,” IEEE
Transactions on Signal Processing, vol. 53, no. 4, pp. 1550 – 1560,
April 2005.

[5] ——, “BER Sensitivity to Mistiming in Ultra-Wideband Impulse Radios
Part II: Fading channels,” IEEE Transactions on Signal Processing,
vol. 53, no. 5, pp. 1897 – 1907, May 2005.

[6] Moe Z. Win and Robert A. Scholtz, “On the Energy Capture of
Ultrawide Bandwidth Signals in dense multipath Environments,” IEEE
Communications Letters, vol. 2, no. 9, pp. 245–247, September 1998.

[7] Liuqing Yang and G. B. Giannakis, “Timing Ultra-Wideband Signals
with Dirty Templates,” IEEE Transactions on Communications,
vol. 53, no. 11, November 2005. [Online]. Available:
http://www.yang.ece.ufl.edu/publist.htm

0 5 10 15 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
p
/N

o
 [dB]

N
M

S
E

with pola. K=4
with,pola. K=16
with,pola. K=32
no pola., K=4
no pola., K=16
no pola., K=32

Fig. 5: NMSE of CABS with pola. vs. without pola. codes

−15 −10 −5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
p
/N

o
 [dB]

P
a

no Pola, K=4

no Pola, K=16

no Pola, K=32

with Pola, K=4

with Pola, K=16

with Pola, K=32

Fig. 6: Probability of acquisition with sub-frame
misalignment,with/without pola. code

[8] Mounir Ghogho and Yeqiu Ying, “Code-Assisted Blind Synchronization
for UWB Systems,” in Proc. IEEE ICC’06, Istambul, Turkey, June 2006.

[9] I. Guvenc and H. Arslan, “On the modulation options for UWB sys-
tems,” in Military Communications Conference, 2003. MILCOM 2003.
IEEE, vol. 2, 13-16 Oct. 2003, pp. 892–897Vol.2.

[10] G. Durisi and S. Benedetto, “Performance evaluation and comparison
of different modulation schemes for UWB multiaccess systems,” in
Communications, 2003. ICC ’03. IEEE International Conference on,
vol. 3, 11-15 May 2003, pp. 2187–2191vol.3.

[11] M. Win and R. Scholtz, “Ultra-wide bandwidth time-hopping spread-
spectrum impulse radio for wireless multiple-access communications,”
Communications, IEEE Transactions on, vol. 48, no. 4, pp. 679–689,
April 2000.

[12] R. Hoctor and H. Tomlinson, “Delay-hopped transmitted-reference RF
communications,” in Ultra Wideband Systems and Technologies, 2002.
Digest of Papers. 2002 IEEE Conference on, 21-23 May 2002, pp. 265–
269.

[13] M. Ho, V. Somayazulu, J. Foerster, and S. Roy, “A Differential Detector
for an Ultra-Wideband Communication System,” in Proc. IEEE VTC’02,
vol. 4, 6-9 May 2002, pp. 1896–1900.

[14] Ning He and Cihan Tepedelenlioglu, “Performance Analysis
of Non-coherent UWB Receivers at Different Synchronization
levels,” in Proc. IEEE GLOBECOM’04, vol. 9, 29 November
- 3 December 2004, pp. 3517–3521. [Online]. Available:
http://www.eas.asu.edu/ cihan/papers.htm

[15] J. Proakis, Digital Communications, 4th ed. McGraw-Hill, New York,
2001.

[16] Yeqiu Ying, Mounir Ghogho, and Ananthram Swami, “Code-Assisted
Synchronization for UWB Systems: Algorithms and Performance Anal-
ysis,” IEEE Transactions on Signal Processing, (submitted).

[17] I. P. Working group for WPANs, Channel Modeling Sub-committee
Report Final, November 2002.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings. 


	Select a link below
	Return to Main Menu

	Select a link below
	Return to Main Menu




