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THESIS ABSTRACT

Systematic differences in trace element compositions (rare earth element (REE), heavy
metal, metalloid concentrations) of seafloor vent fluids and related deposits from hydrothermal
systems in the Manus back-arc basin (Eastern Manus Basin, EMB and Manus Spreading Center,
MSC) are used to investigate processes that affect their formation. Processes responsible for
observed differences in fluids and deposits from distinct geologic settings include (a) fluid—rock
interaction (with temperature, pressure and crustal composition as variables), (b) magmatic acid
volatile input and, (c) local seawater entrainment and mixing with hydrothermal fluids, coupled
with sulfide precipitation and metal remobilization. REE distributions in vent fluids in the Manus
Basin exhibit a wide range of chondrite-normalized patterns that contrast with the relatively
uniform distributions observed in mid-ocean ridge vent fluids. This heterogeneity is attributed to
marked differences in fluid pH and fluoride and sulfate concentrations that significantly affect
REE solubility. The data indicate that REES can be used as indicators of the styles of magmatic
acid volatile input in back-arc hydrothermal systems. Anhydrite in deposits record the same range
of REE patterns, suggesting that REE distributions preserved in anhydrite can be used as
indicators of past magmatic acid volatile input. Vent fluid heavy metal and metalloid
concentrations also exhibit considerable differences. High metal concentrations in EMB versus
MSC vent fluids reflect low pH, largely from input of magmatic acid volatiles (indicated by
fluoride concentrations greater than seawater). In EMB, metal concentrations are locally affected
by dissolution of previously deposited sulfide owing to low pH conditions affected by magmatic
acid volatile input or seawater entrainment and mixing with hydrothermal fluid that leads to
sulfide precipitation and secondary acidity generation. Massive sulfide deposits in the Manus
Basin exhibit a wide range of mineral compositions and heavy metal enrichments. The formation
of Zn-rich (sphalerite/wurtzite) deposits in the MSC and of Cu-Fe and Cu-As-rich (chalcopyrite,
tennantite) deposits in the EMB reflects differences in the conditions of sulfide precipitation
(temperature, pH) and in metal concentrations. The data suggest that heavy metal and metalloid
distributions in massive sulfide deposits can be used as indicators of the conditions of vent
deposit formation.
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CHAPTER 1

Introduction

Submarine hydrothermal circulation involves the convection of seawater through
fractured crust at oceanic spreading centers that is driven largely by the availability of a
heat source (e.g., magma intrusion or newly solidified crust) and a permeable medium
(e.q., faulted ocean crust). This process transfers significant heat and mass between the
oceanic lithosphere and the overlying seawater. In the presence of a heat source, seawater
is conductively heated and undergoes chemical interactions with surrounding oceanic
crustal rocks (Alt, 1995). These interactions modify the composition of seawater, forming
high—temperature hydrothermal fluids. At elevated temperatures (in excess of 400 °C)
and pressures (> 200 — 400 bars), these fluids are buoyant and rise rapidly back to the
seafloor where they can exit as high—temperature, focused ‘black—smoker’ vent fluids (up
to ~ 400 °C), lower-temperature focused ‘white smoker’ fluids (~ 250 — 280 °C) and still
lower temperature, less focused and diffuse fluids (< 100 °C) that have cooled
conductively or mixed with cold seawater prior to venting (Corliss et al., 1979; Edmond
et al., 1979a; Spiess et al., 1980). These fluids exit the seafloor from a range of
hydrothermal deposit structures, including metal-rich sulfide chimneys and metalliferous
and oxide sediments (Haymon and Kastner, 1981; Goldfarb et al., 1983).

Hydrothermal processes are of importance to global geochemical cycles because
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they affect the chemical composition of ocean crust (Humphris and Thompson, 1978b;
Alt, 1995) and regulate the flux of many aqueous species to and from seawater (Edmond
et al., 1979b; Palmer and Edmond, 1989; Mottl and Wheat, 1994; Elderfield and Schultz,
1996). The precipitation of precious and heavy metals from evolved hydrothermal fluids
results in the formation of metalliferous sediments and metal-rich sulfide deposits on the
seafloor. These sulfide deposits are likely modern analogs to many economically—
important volcanogenic—hosted massive sulfide deposits (VHMS) exposed on land, and
hence provide key information about the conditions (e.g., temperature, pH, fluid
composition) and processes responsible for the formation of metal-rich deposits in the
geologic past (Franklin et al., 1981; Sawkins, 1990; Hannington et al., 2005). In addition,
dissolved components in hydrothermal fluids provide chemical energy that is exploited
by communities of chemosynthetic microbes that, in turn, provide the basis for diverse

macro—faunal populations (Jannasch, 1983; Grassle, 1986; Tunnicliffe, 1991).

1. SUB-SEAFLOOR HYDROTHERMAL PROCESSES AT OCEANIC SPREADING CENTERS
1.1. Formation of seafloor hydrothermal fluids

The formation and compositions of seafloor hydrothermal fluids are affected by a
range of geochemical processes occurring in the ocean crust that, in turn, are controlled
by several physical parameters. The structure of the ocean crust and the depth and size of
the underlying heat source determines the depth and scale of fluid circulation in the crust
and the temperatures and pressures at which fluid—rock interactions can occur. The

compositions of hot fluids that exit the seafloor, reflecting primarily the integrated of
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effects fluid—rock interactions, are influenced by the temperatures and pressures of fluid—
rock interaction and by the composition of the ocean crust that reacts with circulating
fluids (see review by Alt, 1995). Most mid—ocean ridge vent fields are hosted within
basalt. Our understanding of fluid—rock interactions occurring sub—seafloor is based
largely on observations of alteration mineral assemblages obtained from drill cores of the
crust or from ophiolites representing sections of ocean crust now exposed on land (Alt et
al., 1986; Gillis and Robinson, 1990; Alt, 1995) and from experimental studies that
consider the reactions between seawater and basalt at elevated temperatures and pressures
(Bischoff and Dickson, 1975; Humphris and Thompson, 1978a; Seyfried and Bischoff,
1979; Seyfried and Bischoff, 1981; Seyfried, 1987; Berndt et al., 1989; Seewald and
Seyfried, 1990).

As seawater penetrates into ocean crust in the downwelling limb (“recharge
zone”) and is heated to temperatures ~ 50 to 60 °C, reactions of seawater with basalt
result in alteration of olivine, plagioclase and matrix glass by low temperature oxidation
to Mg- and Fe—bearing micas and clays (e.g., smectite) (Seyfried and Bischoff, 1979;
Alt, 1995). At higher temperatures (above ~ 150 °C), precipitation of anhydrite (CaSO,)
(a mineral that exhibits retrograde solubility) removes all Ca and approximately one-
third sulfate from seawater (Bischoff and Seyfried, 1978). Mg is removed from seawater
during the formation of Mg-rich smectite and chlorite at temperatures less than and
greater than ~ 200 °C, respectively (Alt, 1995). These reactions are important because
they generate significant acidity that is used in later silicate hydrolysis.

At high temperatures (~ 400 °C or greater) and low pH (less than ~ 4 to 5) in the
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hydrothermal “root zone” at depth, these hydrolysis reactions release large amounts of
alkalis (K, Li, Rb, Cs), alkaline earth metals (Ca, Ba, but not Mg), base metals (e.g., Mn,
Fe, Cu, Zn), aqueous SiO, and sulfur from crustal rocks into hydrothermal fluids.
Removal of Ca from crustal rocks can result in precipitation of additional quantities of
anhydrite, further depleting seawater of its initial sulfate. Other reactions that affect fluid
compositions include the generation of H; as a result of reaction between water and
ferrous (Fe(l1)-bearing) minerals in crustal rocks and the reduction of remaining seawater
sulfate to H,S. The integrative result of fluid—rock interactions in the ocean crust is the
removal of Mg, sulfate and alkalinity from seawater and the generation of a high—
temperature acidic, reducing and metal-rich hydrothermal fluid (Von Damm, 1990,
1995).

When buoyant, high—temperature hydrothermal fluids rise toward the seafloor,
they may pass through the boiling curve for seawater (e.g., as a result of reduction in
pressure) and phase separate into a lower salinity fluid and a higher salinity brine
(Bischoff and Rosenbauer, 1984). Evidence for phase separation in many submarine
hydrothermal systems is obtained from chloride concentrations of seafloor vent fluids
significantly less than or greater than that of initial seawater (~ 546 mmol/kg) from which
hydrothermal fluids evolved (e.g., Von Damm, 1995). The formation of lower— and
higher—salinity fluid affects the compositions of hydrothermal fluids because more
volatile species (e.g., Hz, H2S, CO,) are partitioned preferentially into the lower salinity
phase while metals are carried in solution as chloride complexes and partitioned into the

higher salinity brine.
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Other processes that may affect the formation and composition of seafloor
hydrothermal fluids include addition of volatiles degassed from underlying magmas as
evidenced from elevated concentrations of *He and CO; in hydrothermal fluids relative to
seawater (e.g., Lupton and Craig, 1981; Welhan and Craig, 1983) and mixing of rising
high—temperature hydrothermal fluids with locally entrained seawater prior to venting at
the seafloor (Edmond et al., 1995). The extent and overall significance of these processes
for submarine hydrothermal systems along mid-ocean ridge spreading centers is not fully
constrained, but appears to be of lesser importance relative to fluid—rock interaction.

1.2. Formation of seafloor mineral deposits

There are several major factors controlling the formation and composition of
mineral deposits related to submarine hydrothermal activity at and beneath the seafloor,
including the temperature and chemical composition of hydrothermal fluids from which
these deposits precipitate, and the physical structure of upper (approximately 100 — 400
m) oceanic crust (and existing mineral deposits) that determines the pathways of fluid
flow near the seafloor (e.g., Tivey, 2007). The latter affects the styles of interaction and
mixing among rising high—-temperature hydrothermal fluids and locally entrained
seawater in proximity to the seafloor. Differences in temperature, fluid composition (e.qg.,
pH, metal and H,S concentrations) and style of fluid flow significantly affect the
morphology and composition of metal-sulfide vent deposits at the seafloor (Koski et al.,
1985; Fouquet et al., 1993b; Koski et al., 1994; Tivey et al., 1995; Tivey et al., 1999;
Kristall et al., 2006). Overall, metal-sulfide deposits forming at mid-ocean ridge

spreading centers tend to be dominated by Fe—sulfides (pyrite, pyrrhotite), Cu-Fe-
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sulfides (chalcopyrite) and Zn-sulfides (sphalerite, wurtzite).

In general, chalcopyrite (CuFeSy) is present in the highest modal abundance in
open conduit type chimneys precipitating from the highest temperature (> 300 — 350 °C)
“black smoker” fluids. An accepted model for their formation has been proposed by
Haymon and Kastner (1981) and Goldfarb et al. (1983). During initial chimney growth,
moderately acidic, reducing, metal- and Ca-rich hydrothermal fluids exit the seafloor at
velocities of meters—per—second and mix with cold, alkaline and oxic, sulfate— and Ca—
rich and metal-poor seawater, resulting in the precipitation of anhydrite and trace
amounts of sulfide. Growth rates during this stage are up to 30 cm/day (Goldfarb et al.,
1983). The initial framework (wall) of anhydrite is highly permeable, but provides a
substrate onto which minerals can precipitate. Continued mixing between hydrothermal
fluid and seawater and precipitation of sulfate and sulfide reduces permeability across the
chimney wall, isolating high—temperature fluids inside the chimney from seawater
exterior to the chimney wall. As mixing is inhibited and temperatures inside the chimney
increase to that of the hydrothermal fluid, an inner monomineralic layer of chalcopyrite is
precipitated against the inner side of the open pipe-like conduit. Advection and/or
diffusion of hydrothermal fluid and seawater across the chimney wall result in
precipitation of a range of (lower—temperature) sulfide and sulfate minerals within pore
spaces of the wall (Tivey and McDuff, 1990; Tivey, 1995). However, while the conduit
remains open to fluid flow, the fraction of fluid mass migrating across the chimney walls
is minor relative to the fraction of fluid flowing up and out of the central conduit.

Chimneys precipitating from lower—temperature (< 270 — 300 °C) “white smoker”
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and clear fluids often exhibit very different morphologies and compositions relative to
their highest temperature counterparts (Haymon and Kastner, 1981; Koski et al., 1994).
These differences can be related to the different styles of fluid flow and mixing, and to
different conditions of mineral precipitation within lower temperature diffuser—type
chimneys. Fluids with temperatures of ~ 270 — 280 °C may have cooled conductively or
mixed with cold seawater prior to venting. Consequently, they have lower buoyancies
and slower fluid flow rates relative to higher temperature fluids. These slower fluid rates
correlate with the formation of more porous, bulbous chimneys, rather than cylindrical or
pipe—like chimneys (Koski et al., 1994). Mineral textures indicate that fluid flows
through multiple, tortuous micro—channels instead of through a single central open
conduit. Many of these diffuser—type chimneys contain significantly lesser amounts of
anhydrite (or lack anhydrite entirely) relative to open conduit—type chimneys, suggesting
lesser entrainment of seawater and consistent with a greater fraction of fluid flow
outward through permeable chimney walls. Differences in styles of fluid flow lead to
different environments of sulfide mineral precipitation and different mineral
compositions in diffuser—type chimneys. In general, these chimneys contain high modal
abundances of Zn-sulfide and lesser amounts of Cu—Fe-sulfides (Haymon and Kastner,
1981; Koski et al., 1994; Tivey et al., 1995). Petrographic studies suggest that dendritic
sphalerite is precipitated early in chimney genesis, followed by replacement and
overgrowth by colloform sphalerite in exterior portions and subhedral to euhedral
sphalerite and wurtzite in interior portions of chimney walls, and then by chalcopyrite

lining narrow micro—channels (Koski et al., 1994). This sequence is consistent with a
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range of lower, but typically increasing, hydrothermal fluid temperatures during mineral
precipitation. The presence of pyrrhotite (Fe1_«S) and isocubanite (CuFe,S3) in some
diffuser—type chimneys (Haymon and Kastner, 1981; Goldfarb et al., 1983; Koski et al.,
1994) suggest lower oxidation and sulfidation states in these chimneys relative to open
conduit chimneys.

In addition to differences in fluid composition and styles of fluid flow on the
scales of centimeters to meters in chimney deposits, differences in styles of fluid flow
and mixing on the scale of entire deposits (> 100 m) can significantly affect their
evolution. For example, at the TAG active mound at 26 °N along the Mid-Atlantic
Ridge, large scale entrainment of seawater and mixing with hydrothermal fluid beneath
the mound (to depths of ~ 200 meters below seafloor) results in subsurface precipitation
of large quantities of anhydrite, chalcopyrite and pyrite and the dissolution of other
minerals, in particular of Zn—sulfide (Edmond et al., 1995; Tivey et al., 1995).
Remobilized Zn is then re—deposited at the seafloor in a process of on—going zone-
refinement (Tivey et al., 1995). Coupled mineralogical and geochemical studies of both
seafloor vent fluids and related vent deposits at oceanic spreading centers have proved
instructive for better understanding the origins of ancient massive sulfide ore deposits
preserved in the geologic record. For example, the morphology, composition and mineral
zonation of the TAG active mound hydrothermal deposit are similar to that observed in
Cyprus—-type ore bodies (Constantinou and Govett, 1973; Humphris et al., 1995; Tivey et
al., 1995). The processes responsible for the formation of the TAG active mound,

including seawater entrainment, fluid mixing, mineral precipitation and remobilization
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and consequent modification of hydrothermal fluid compositions, may be similar to those
associated with the formation of Cyprus—type massive sulfide deposits (Constantinou and

Govett, 1973; Humphris et al., 1995; Tivey et al., 1995).

2. SUB—SEAFLOOR HYDROTHERMAL PROCESSES IN CONVERGENT PLATE MARGINS

Many detailed field and experimental studies have investigated geochemical
processes associated with the formation of seafloor hydrothermal fluids and related
mineral deposits in basalt—hosted systems at mid-ocean ridge (MOR) spreading centers.
In contrast, relatively few studies have examined geochemical processes associated with
hydrothermal activity occurring associated with convergent plate margin settings,
including within back-arc basins and at submarine arc volcanoes. Such studies are
essential for our understanding of global submarine hydrothermal activity because the
hydrothermal processes occurring at convergent plate margin settings may differ
significantly from those at MORs and may therefore result in a range of different fluid
and vent deposit compositions. For example, convergent plate margin settings are
characterized by diverse crustal compositions, magma types (ranging from mafic (basalt)
to felsic (andesite, dacite and rhyolite)) and crustal thicknesses, variable styles of seafloor
tectonism, and a wide range depths of the seafloor (less than 1000 m to greater than 2500
m below sea level) (e.g., Martinez and Taylor, 2003; Martinez et al., 2006). Accordingly,
the compositions of crustal rocks with which circulating fluids interact, and the

temperatures and pressures at which these interactions occur, can differ significantly from
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those at MORs.

In addition, there is evidence to support that the styles of magmatic volatile
degassing and the compositions of exsolved magmatic volatiles can differ markedly from
that occurring at MORs. Felsic arc magmas in convergent plate margins are likely the
products of partial melting caused by the addition of H,O to the arc mantle from
dehydration of subducting sediments and altered oceanic crust (e.g., Schmidt and Poli,
1998). Fluids released into the mantle result in oxidation of arc magmas and act as agents
for the removal of water soluble species from the subducting plate and the arc mantle,
including volatile species such as HCI, HF and SO, (Burnham, 1979). Degassing of
reactive magmatic acid volatile phases (e.g., H,O-CO,-HCI-HF-SO,) can contribute
significant acidity to seafloor hydrothermal fluids in convergent plate margins, as
evidenced by the very low pH of high—temperature hydrothermal fluids (pH (25 °C) ~ 1 —
3) sampled from some back-arc basin vent fluids relative to those sampled at MORs (pH
(25 °C) ~ 4) (Fouquet et al., 1993a; Gamo et al., 1997; Douville et al., 1999).

Studies of hydrothermal fluid and mineral deposit compositions associated with
convergent plate margin settings have highlighted both similarities and differences
relative to those at mid—ocean ridges. Where data are available, endmember hydrothermal
fluids sampled from back-arc basin hydrothermal systems exhibit a higher oxygen- and
sulfur-fugacity (e.g., lower H,) and are enriched in alkali and alkaline earth metals (e.g.,
K, Rb, Ba) and in many base metals and metalloids (e.g., Zn, Pb, Cd, As, Sb) relative to
those from MORs (Fouquet et al., 1993a; Ishibashi and Urabe, 1995; Douville, 1999).

The observed metal enrichments in back—arc hydrothermal fluids have been attributed to
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interaction of seawater with felsic rocks (e.g., Fouquet et al., 1993a) that contain higher
concentrations of these elements (e.g., Pb, Ba, As, Sb) (Stanton, 1994). However, these
interpretations are complicated by the fact that the pH of these back-arc vent fluids is
lower than that of most MOR vent fluids, likely resulting from the input of reactive
magmatic acid volatiles (i.e., H,O-HCI-HF-SO,) in back-arc basins (e.g., Gamo et al.,
1997). Thus, elevated metal concentrations in back—arc hydrothermal fluids relative to
those from MORs may reflect higher aqueous metal solubilities as a result of more acid
pH. Further, it has been speculated that magmatic acid volatiles degassed from felsic
magmas may directly contribute base and precious metals (e.g., Cu, As, Au) to back-arc
hydrothermal systems independent of fluid—water interaction (Ishibashi and Urabe, 1995;
Yang and Scott, 1996, 2002).

Although differences in back-arc basin vent fluids relative to MOR vent fluids are
recognized, it is difficult to determine which factors affect most their formation and
composition. This is because the possible key factors, (e.g., different crustal rock
composition, lower pH from addition of magmatic acid volatiles, possible addition of
metals with magmatic volatiles) do not occur exclusive of one another. Further
examination of vent fluid compositions in convergent plate margins is critical to resolve
the influence that different geochemical processes, such as fluid—rock interaction with
ocean crust with a range of composition and magmatic acid volatile input, exert in
controlling observed fluid compositions.

Vent deposits found in convergent plate margin settings also exhibit both

similarities and differences relative to those found along MORs. Massive sulfide deposits
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located in back-arc basins display a wide range of mineral compositions and precious
metal concentrations and, in general, have high concentrations of Zn, Pb, As, Sb, Ag and
Ba relative to mid—ocean ridge vent deposits (Halbach et al., 1989; Binns and Scott,
1993; Fouquet et al., 1993a; Ishibashi and Urabe, 1995; Hannington et al., 2005).
Massive sulfide deposits in convergent plate margins, such as those found in the Okinawa
trough (e.g., JADE hydrothermal field), in the Lau Basin along the Valu Fa Ridge (e.g.,
Vai Lili hydrothermal field) and in the Manus Basin (e.g., PACMANUS hydrothermal
system), are enriched in tennantite (Cu;2As4S13), galena (PbS) and barite (BaSO,) and
show a wide range of sphalerite/wurtzite modal abundance relative to mid—ocean ridge
deposits (Halbach et al., 1989; Binns and Scott, 1993; Fouquet et al., 1993a). At the
DESMOS caldera (Manus back-arc basin) and Brothers volcano (Kermadec island-arc),
alteration assemblages are markedly different than those associated with most seafloor
hydrothermal activity and are characterized by advanced argillic alteration (alunite—illite—
pyrophyllite—quartz) and the presence of large quantities of native sulfur and lesser pyrite
(Gamo et al., 1997; de Ronde et al., 2005). These sulfur-rich assemblages appear to
reflect low pH conditions (< 2) likely related to extensive degassing and input of highly—
acidic magmatic volatiles to these vent systems (e.g., Gamo et al., 1997; Seewald et al.,
2006).

As with vent fluids, it is difficult to determine which processes and factors affect
most observed metal enrichment and sulfide mineral compositions of back-arc vent
deposits. Unraveling this is difficult in part because of a paucity of back-arc massive

sulfide deposit composition data that can be directly related to parent hydrothermal fluid
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compositions. It is uncertain, for example, whether elevated enrichments of Pb, As, Sb,
Au and Ba in back-arc vent deposits correlate best with higher metal concentrations in
vent fluids, differences in oxygen- and sulfur—fugacity, styles of fluid flow and the
conditions (e.g., temperature and pH) of sulfide mineral precipitation, or some
combination of these parameters. Further detailed studies of paired vent fluids and
deposits are absolutely necessary to establish the influence that differences in crustal rock
composition, crustal architecture, and input of magmatic acid volatile input exert on the
formation and composition of back-arc massive sulfide deposits.

Finally, such studies will also lead to a better understanding of the evolution and
formation of economically valuable ore deposit preserved in the rock record (e.g., the
Kuroko ore deposits). Kuroko-type ore deposits are associated with felsic rocks and
exhibit compositional similarities to modern submarine back-arc vent deposits,
suggesting that they were formed in convergent plate margin settings (Franklin et al.,

1981; Ohmoto and Skinner, 1983; Halbach et al., 1989; Sawkins, 1990).

3. THESIS DISSERTATION RESEARCH: THE MANUS BACK—ARC BASIN EXAMPLE
3.1. Objectives and rationale

This research examines and characterizes in detail the compositions of a wide
range of seafloor vent fluids and related mineral deposits sampled from hydrothermal
systems in the Manus back-arc basin, Papua New Guinea. These data are used to
constrain the sub—seafloor processes controlling the evolution of both hydrothermal fluids

and metal-rich vent deposits in convergent plate margin settings, to examine directly the
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relationships between vent fluid and vent deposit formation, and to compare these
processes to those occurring at hydrothermal systems along mid-ocean ridge spreading
centers. My dissertation focuses on the rare earth elements (REEs) and base metals and
metalloids (e.g., Fe, Zn, Cu, Pb, Cd, Ag, Au, As, Sb) because these elements are present
in seafloor hydrothermal fluids and in a range of sulfate and sulfide minerals in related
vent deposits. These elements exhibit a wide range of chemical behaviors and previous
studies have demonstrated that these elements can provide important constraints on sub-
seafloor hydrothermal processes. The over—arching objectives of this research are:

1) to determine how and to what extent fluid interaction with crustal rocks with a
range of chemical composition affects the chemical evolution of seafloor hydrothermal
fluids;

(2 to assess the role that varying amounts of magmatic acid volatile input plays in
determining vent fluid composition and whether magmatic acid volatiles contribute a
significant source of base and precious metals;

3) to examine the extent of local seawater entrainment in these back-arc basin
hydrothermal systems and identify whether such seawater entrainment affects the
compositions of seafloor vent fluids and deposits;

4) to examine the geochemical relationships among vent fluids and associated
mineral deposits and assess the processes affecting massive sulfide deposit formation in
these back—arc basin hydrothermal systems

(5) to identify geochemical tracers of vent fluid compositions that are preserved in the

deposits and that can be used as indicators of past conditions of hydrothermal activity.
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The Manus back-arc basin in the Bismarck Sea is an excellent geological
environment in which to examine the key factors that affect submarine hydrothermal
activity in convergent plate margin settings. Present—day tectonic activity involves
subduction of the Solomon Microplate beneath the New Britain volcanic arc and rapid (~
100 mm/yr) opening of the back-arc behind New Britain (Taylor, 1979; Martinez and
Taylor, 1996). A complex history of plate deformation and rotation has resulted in a
range of crustal spreading, including eruption of new mafic—dominated crust along the
Manus Spreading Center and extension and rifting of existing felsic—dominated crust in
the Eastern Manus Basin (Martinez and Taylor, 1996). Prior to 2006, field studies in the
Manus Basin had identified the presence of at least four major active hydrothermal
systems that occur in a range of tectonic settings at different distances to the active
volcanic arc and that are hosted on crustal rocks of different composition.

Vienna Woods is a basalt—hosted hydrothermal system occurring at a depth of ~
2500 meters along the Manus Spreading Center (axial rift valley) distal to the active
volcanic arc (Both et al., 1986; Tufar, 1990). Prior to 2006, existing data for
hydrothermal fluid compositions indicated broad similarities to that of mid—ocean ridge
vent fluids, suggesting that geochemical processes occurring at Vienna Woods may be
comparable to those occurring at mid-ocean ridge spreading centers (Douville, 1999;
Douville et al., 1999). Hydrothermal systems in the Eastern Manus Basin occur in
geologic settings distinct to the Manus Spreading Center. A well-defined spreading axis
is lacking in the Eastern Manus Basin. The PACMANUS, DESMOS and SuSu Knolls

hydrothermal systems in the Eastern Manus Basin are hosted by felsic crustal rocks and
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are located on neo-volcanic ridges and discrete volcanic domes in proximity to the active
volcanic arc (Binns and Scott, 1993; Scott and Binns, 1995; Binns et al., 1997; Gamo et
al., 1997; Parr and Binns, 1997; Yeats et al., 2000). Fluid data collected prior to 2006
showed marked differences relative to those from the Manus Spreading Center and from
mid-ocean ridge spreading centers, including the prevalence of very acidic fluids (pH (25
°C) ~ 2 - 3) and evidence for the addition of magmatic acid volatiles HF and SO, (Gamo
etal., 1997; Douville, 1999). Geologic sampling of hydrothermal mineral deposits and
metalliferous sediment by dredge haul at these vent fields prior to 2006 suggested the
presence of hydrothermal sulfide deposits with compositions different to those at mid-
ocean ridge spreading centers, including abundant Cu—Fe—sulfides (chalcopyrite, bornite,
fukuchilite), Cu—As-sulfosalts (enargite, tennantite), galena, barite (e.g., Binns and Scott,
1993; Scott and Binns, 1995; Moss et al., 2001; Hrischeva et al., 2007) and, at DESMOS,
native sulfur (e.g., Gamo et al., 1997). These data strongly suggested that the key
processes affecting vent fluid and vent deposit formation in the Eastern Manus Basin
differed markedly from those occurring along the Manus Spreading Center and mid—
ocean ridges. However, a detailed understanding of the specific processes affecting vent
fluid formation in back-arc basins (e.g., fluid—rock interaction with crustal rocks of
different composition, input of magmatic acid volatiles, different styles of fluid flow
owing to different crustal architecture), including their relative influence and the extent to
which these processes likely vary, was lacking. Similarly, our understanding of specific
factors affecting the size, structure and composition of mineral deposits in back—arc

basins (e.g., vent fluid composition, styles of sub—seafloor fluid flow and mixing) was
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also incomplete.

In 2006, a suite of vent fluid and deposit samples, including 22 paired fluids and
solids, were sampled from the Vienna Woods, PACMANUS, DESMOS and SuSu Knolls
hydrothermal systems during cruise MGLNO6MYV (Tivey et al., 2007). In this thesis, by
comparing in detail the hydrothermal fluids and related mineral deposits formed at at
these vent systems in a range of distinct geologic environments within the Manus Basin,
it is possible to better constrain the specific factors and processes that control their
evolution and composition. The research presented in this dissertation represents an
attempt to advance our understanding of geochemical process associated with submarine
hydrothermal activity in convergent plate margins, and is valuable for the study of other
hydrothermal systems both active and relict.

3.2. Outline of dissertation research

In Chapter 2, of this thesis the concentrations and relative distributions of rare
earth elements (REES) in seafloor vent fluids sampled from the Vienna Woods (Manus
Spreading Center) and the PACMANUS, DESMOS and SuSu Knolls (Eastern Manus
Basin) hydrothermal systems are examined. It constrains the extent to which REES are
affected by, and can be used as indicators of, (a) the conditions of fluid—rock interaction
and, (b) the styles and extent of magmatic acid volatile degassing.

In Chapter 3, REE concentrations, and Sr and S isotope ratios recorded within the
mineral anhydrite (CaSQ,) recovered from the PACMANUS and SuSu Knolls
hydrothermal systems are characterized. Anhydrite has been recovered at and/or beneath

the seafloor via submersible operations or deep drilling into the upper oceanic crust. Data
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are used to (1) assess the extent to which REE distributions preserved in anhydrite reflect
that of the source hydrothermal fluid from which anhydrite precipitated, and (2)
determine whether these distributions can be used to constrain changes in the conditions
of fluid—rock interaction and styles of magmatic acid volatile degassing that affect the
formation of back—arc mineral deposits. The data are complemented by coupled Srand S
isotope data that provide insights into near—seafloor processes, including local
entrainment of seawater and mixing with hydrothermal fluids, which may overprint
signatures of geochemical processes occurring at depth. This study provides valuable
information about the temporal evolution of seafloor hydrothermal systems that it may
not be possible to obtain by the study of seafloor hydrothermal fluids alone.

In Chapter 4, the concentrations of heavy and precious (ore—forming) metals and
metalloids (e.g., Fe, Zn, Cu, Pb, Ag, As, Sh) in Manus Basin seafloor vent fluids are
characterized. It discusses the extent to which these elements are controlled by, and can
be used as indicators of, the conditions of deep—seated fluid—rock interaction. The data
are also used to (1) examine how differences in the compositions of magmatic acid
volatiles degassed from underlying felsic magmas can affect the behavior and aqueous
mobility of these elements and, (2) assess whether magmatic acid volatiles may be a
significant and direct source for valuable metals. Data are also used to examine the extent
to which transport of heavy metals and metalloids in Manus Basin seafloor vent fluids are
affected by local seawater entrainment and mixing with rising high—temperature fluids,
and subsequent mineral precipitation, secondary acidity formation and subsequent metal

remobilization. This zone refinement process has been shown previously to affect the
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cycling of metals in some mid-ocean ridge hydrothermal systems (e.g., Edmond et al.,
1995; Tivey et al., 1995).

In Chapter 5, the mineralogy and precious metal geochemistry of seafloor massive
sulfide deposits in the Manus Basin are described and compared to those of mineral
deposits found at mid—ocean ridges. In addition, vent deposit compositions are compared
directly to compositions of the vent fluids from which these vent deposits formed. This
enables evaluation of the roles that vent fluid composition (e.g., temperature, pH,
[metals], [H2S]) and styles of fluid flow and mixing (and resulting conditions of mineral
precipitation) play in affecting the composition of seafloor hydrothermal deposits. The
data provide new insights into the processes and conditions that favor the formation of
precious metal-enriched seafloor massive sulfide deposits. The data also demonstrate the
potential for trace elements found in seafloor vent deposits to identify past conditions of
seafloor hydrothermal activity (e.g., temperatures and pH of mineral deposition) in both
active and relict hydrothermal systems. Chapter 6 is a summary of the major conclusions
drawn from this thesis research and identifies areas of priority for future studies that will
provide complementary data to further constrain and better understand geochemical
processes associated with submarine hydrothermal activity in convergent plate margin

settings.
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CHAPTER 2

Sub-seafloor Processes Controlling Rare Earth Element
Compositions of Vent Fluids in Hydrothermal Systems from

the Manus Back-Arc Basin, Papua New Guinea

1. INTRODUCTION

The distribution and behavior of the rare earth elements (REEs) have been used
extensively as a tracer of sub—seafloor processes associated with hydrothermal activity.
The REEs are of interest because they provide information about a wide range of
geochemical processes including fluid—rock interaction and conditions of mineral
precipitation and/or remobilization in hydrothermal environments. Studies have
examined the distributions of REEs in hydrothermal fluids (Michard et al., 1983;
Michard and Albarede, 1986; Michard, 1989; Klinkhammer et al., 1994; Mitra et al.,
1994; Bau and Dulski, 1999; Douville et al., 1999), in associated mineral deposits
(Graf, 1977; Bau and Dulski, 1995; Mills and Elderfield, 1995; Smith et al., 2000; Bach
et al., 2003; Humphris and Bach, 2005) and in hydrothermally—altered volcanic rocks

(Alderton et al., 1980; Humphris, 1984; Lottermoser, 1990; Fulignati et al., 1999).
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Studies of REEs in seafloor vent fluids have focused mostly on basalt—hosted
hydrothermal systems along mid—ocean ridges (MORs). MOR hydrothermal fluids have
remarkably uniform chondrite—normalized REE distributions (REEy pattern shape)
characterized by a light REE enrichment and large, positive Eu anomaly (Michard et al.,
1983; Michard and Albarede, 1986; Klinkhammer et al., 1994; Mitra et al., 1994;
Douville et al., 1999). Although REEs in hydrothermal fluids are derived primarily
from the crust, sub—seafloor processes that regulate their composition in vent fluids are
not well-constrained. It has been hypothesized that dissolution of REEs from
plagioclase controls the pattern shape of these elements in seafloor hydrothermal fluids
because the chondrite-normalized REE compositions of MOR hydrothermal fluids and
of plagioclase in basalt are similar (Campbell et al., 1988; Klinkhammer et al., 1994). In
contrast, results of experimental studies suggest that REE compositions of seafloor vent
fluids are unrelated to primary rock composition (e.g., plagioclase alteration) because
REEy pattern shapes of experimental hydrothermal solutions are different from primary
REE compositions of the volcanic rock or individual minerals with which these fluids
have reacted (Bach and Irber, 1998; Moller, 2002; Allen and Seyfried, 2005). Rather,
experimental studies suggest that seafloor vent fluid REE compositions reflect solubility
controls influenced by aqueous REE speciation/complexation (c.f. Bau, 1991).
Accordingly, REE compositions of hydrothermal fluids may be primarily controlled by
aspects of fluid chemistry (e.g., temperature, pH, ligand concentrations) that can affect
the mobility of REEs and potentially fractionate the REEs during sub—seafloor

hydrothermal processes (e.g., fluid—rock interaction).
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This study reports REE data for a large number of seafloor vent fluids from four
active hydrothermal systems in the Manus back—arc basin, Papua New Guinea. Among
these vent fields, the composition of underlying crustal host rocks differs significantly,
ranging from basalt to rhyolite (Sinton et al., 2003; Bach et al., 2007). In addition, the
compositions of vent fluids (e.g., temperature, pH, salinity, concentrations of
complexing ligands) differ substantially (Seewald et al., 2006). This study examines the
relationship between measured aqueous REE compositions and fluid and host rock
compositions to identify whether aqueous REE distributions are controlled primarily by
the REE composition of the host rock or by aspects of fluid chemistry that affect REE
solubility and mobility during sub—seafloor fluid—rock interactions.

Limited data exists for REE compositions of vent fluids and deposits (anhydrite)
recovered from the Manus Basin (Douville et al., 1999; Bach et al., 2003). Bach et al
(2003) have proposed that heterogeneous chondrite—normalized REE pattern shapes
recorded by anhydrite reflect changes in fluid composition (changes in CI', F~ and SO4*
ligand concentrations) and differences in aqueous REE mobility resulting from varying
inputs of magmatic volatiles (H,O—CO,—HCI-HF-SO,) in the Manus Basin. Using new
fluid data for the REEs, it is possible to test this hypothesis and therefore to better
understand the potential for the REEs in seafloor hydrothermal fluids to constrain a
wide range of sub—seafloor geochemical processes that affect the evolution of vent

fluids in submarine hydrothermal systems.
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2. GEOLOGIC SETTING

The Manus Basin in the Bismarck Sea, Papua New Guinea (Figure 2.1) is a
rapidly—opening (~ 100 mm/yr) back—arc basin associated with subduction of the
Solomon Microplate beneath the New Britain arc (Taylor, 1979; Davies et al., 1987;
Martinez and Taylor, 1996). Crustal extension and spreading are complex and variable
and occur along several distinct lineations.

Toward the west is the Manus Spreading Center (MSC) bounded between the
Willaumez and Djaul transform faults (Martinez and Taylor, 1996). Lavas erupted at the
MSC are dominantly basaltic in composition (Both et al., 1986; Sinton et al., 2003).
Several areas of hydrothermal activity have been identified in the MSC (Figure 2.1a);
Vienna Woods is the largest and most active of the known fields (Tufar, 1990). It is
located slightly south of the major spreading center within an axial rift valley at a water
depth of ~ 2500 m.

To the east, the Eastern Manus Basin (EMB) is bounded by the Djaul and
Weitin transform faults where rapid spreading is accommodated primarily by rifting and
extension of existing crust (Martinez and Taylor, 1996). Lavas are erupted as a series of
discrete en echelon neovolcanic ridges and volcanic domes of felsic (andesite—to—
rhyolite) composition (Sinton et al., 2003). The arc—affinity of volcanic lavas (Sinton et
al., 2003) is consistent with the proximal location (< 200 km) of the EMB to the
actively subducting margin. The EMB hosts several known active hydrothermal

systems (Figure 2.1b). The Papua New Guinea—Australia—Canada—Manus
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Figure 2.1. A) Regional tectonic setting of the Manus Basin, Papua New Guinea, indicat-
ing active plate motion and areas of known hydrothermal activity. Gray arrows indicate
directions of plate motion. B) Distribution of hydrothermal deposits at PACMANUS. C)
Distribution of hydrothermal deposits at SuSu Knolls. Bathymetry based on EM300
SeaBeam sonar (modified from Tivey et al., 2007).
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(PACMANUS) hydrothermal system is located on the crest of the 35 km long, 500 m
high Pual Ridge, between water depths of 1650 and 1740 m (Binns and Scott, 1993).
The ridge is constructed of several sub—horizontal lava flows with compositions
between andesite and dacite (Binns and Scott, 1993; Sinton et al., 2003). There are
several discrete vent fields within the PACMANUS system (Figure 2.1b) that exhibit
varying styles of hydrothermal activity from high—temperature (> 300 °C) black smoker
fluid venting from sulfide—rich chimneys to low—temperature diffuse flows through
cracks in lavas and sedimentary material. Further to the east, the DESMOS and SuSu
Knolls hydrothermal systems are located on individual volcanic domes in environments
markedly different from ridge—hosted hydrothermal fields. DESMOS (Onsen field,
water depth of 1900 — 2000 m) is a collapse caldera that features a roughly crescent—
shaped morphology with felsic pillow flows and hyaloclastite deposits arranged across
several terraces forming the slopes of the caldera (Sakai et al., 1991; Gamo et al., 1997).
Sedimentation and alteration of primary lavas is common and includes Fe—oxide
staining, pervasive bleaching (acid—sulfate alteration), locally abundant native sulfur
flows and extensive microbial mats (Sakai et al., 1991; Gamo et al., 1997). Further east,
SuSu Knolls consists of three discrete volcanic cones (Suzette, North Su and South Su;
Figure 2.1c) at water depths between ~ 1140 and 1510 m (Binns et al., 1997; Tivey et
al., 2007). The North Su and South Su domes are composed of abundant porphyritic
dacite flows showing variable acid—sulfate—type alteration (i.e., alunite, native sulfur)
and sedimentation by mixed volcaniclastic and hydrothermal material (Binns et al.,

1997; Yeats et al., 2000; Hrischeva et al., 2007; Tivey et al., 2007). The dome at Suzette
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is extensively coated in metalliferous sediment and relic sulfide talus that overlies
primary volcanic features (Hrischeva et al., 2007; Tivey et al., 2007) suggesting that
hydrothermal activity has been long—lived.
2.1. Hydrothermal activity
2.1.1. Vienna Woods

Current hydrothermal activity is manifest as both focused and diffuse fluid
venting within an area of ~ 150 m by 100 m (Tufar, 1990; Tivey et al., 2007). Inactive
sulfide chimneys extend across a total area ~ 300 m by 100 m. The vent fluids sampled
are black—gray smoker fluids that have temperatures between 273 and 283 °C and are
mildly acidic (pH (25 °C) ~ 4.2 — 4.7) and that exit from the tops of large sulfide-rich
chimneys up to 7 m in height (Seewald et al., 2006).
2.1.2. PACMANUS

Current hydrothermal activity occurs at several discrete vent fields (Roman
Ruins, Roger’s Ruins, Satanic Mills, Snowcap, Tsukushi and Fenway) that are between
50 and 200 m in diameter (Binns et al., 2007; Tivey et al., 2007). Vent fluids with a
range of temperature and composition were sampled from these fields, including high
temperature fluids (~ 300 — 358 °C) with focused discharges from black smoker
chimneys, lower temperature white/gray smoker fluids (150 — 290 °C) discharging from
“diffuser” chimneys, and low temperature diffuse fluids (< 100 °C) exiting through
cracks in the volcanic basement or metalliferous deposits and sediments. The measured
pH (25 °C) of all vent fluids with temperatures above 240 °C are low and between 2.3

and 2.8 (Seewald et al., 2006).
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2.1.3. DESMOS

Hydrothermal activity occurs at the Onsen field (Gamo et al., 1997), which is a
small (~ 30 m diameter) area of low—temperature fluid discharge located along the
northern interior slope of the DESMOS caldera. Fluid venting is manifest as thick,
milky—white smoke discharging directly through extensively altered volcanic breccia
and hydrothermal sediments composed of abundant native sulfur and anhydrite (Gamo
et al., 1997; Seewald et al., 2006; Bach et al., 2007). Despite the low temperature of
sampled fluids (< 120 °C), the measured pH (25 °C) are very acidic < 1.5 (Seewald et
al., 2006). Hydrothermal activity is markedly different from high—temperature black
smoker fluids. On the basis of aqueous compositions, these fluids have been informally
termed ‘acid—sulfate’ fluids (Gamo et al., 1997).
2.1.4. SuSu Knolls

At SuSu Knolls, hydrothermal activity and vent fluid compositions are
remarkably diverse (Seewald et al., 2006). At North Su, the summit of the dome is
dominated by a large sulfide—rich black smoker complex up to 11 m in height. Vent
fluids sampled from this complex are similar to high—temperature black smoker fluids
sampled from PACMANUS, with temperatures between 300 and 325 °C and
moderately low pH (25 °C) between 2.8 and 3.2 (Seewald et al., 2006). In contrast, the
flanks of the dome are dominated by extensive fluid discharge similar to that of acid—
sulfate fluids sampled from DESMOS. Acid—sulfate fluids from North Su have a
milky—white color, low temperatures (48 — 241 °C) and are very acidic (pH (25 °C) <

1.8) (Seewald et al., 2006) and exit through cracks in hyaloclastite flows, extensively
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altered volcanic breccia and hydrothermal sediments composed of native sulfur and
anhydrite (Yeats et al., 2000; Bach et al., 2007; Tivey et al., 2007).

There is currently limited hydrothermal activity at South Su. This vent field is
characterized by outcrops of both fresh and variably altered volcanics overlain by
mostly inactive sulfide chimneys and scattered oxide—stained hydrothermal sediments
(Yeats et al., 2000; Hrischeva et al., 2007; Tivey et al., 2007). In an area of diffuse
venting toward the NW, extensively altered and bleached volcanic rocks were observed
(Tivey et al., 2007). High—temperature fluid venting from scattered “beehive”—type
chimneys was observed and sampled in two areas toward the S and SE. The
temperatures of these fluids were up to 290 °C. The pH (25 °C) of these fluids is low ~
2.6 — 2.7 (Seewald et al., 2006).

The smaller dome of Suzette, located NW of North Su and South Su, is
extensively covered by volcanic breccia, hydrothermal sediment, mass—wasted sulfide
talus, Fe—oxide crusts and limited exposures of possible hydrothermal stockwork
(Hrischeva et al., 2007; Tivey et al., 2007). The summit is characterized by large
expanses of both relic and scattered, active sulfide chimneys often buried within thick
sediment. Hydrothermal activity is intermittent over broad sections of the Suzette
mound. Five high—temperature fluids venting from sulfide-rich chimney edifices were
sampled. The temperatures range from 226 — 303 °C and measured pH (25 °C) from 3.5
to 3.8 (Seewald et al., 2006). A sixth fluid was sampled from a cracked pavement
structure; this fluid had a temperature of ~ 249 °C and a considerably more acidic pH

(25 °C) of ~ 2.3 (Seewald et al., 2006).
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3. METHODS

3.1. Sample collection and processing

Hydrothermal fluid samples were collected during R/V Melville cruise
MGLNO6MYV (July — September, 2006) using discrete samplers mounted on and
actuated by ROV Jason Il. Samples were collected in 755 ml Ti—syringes (“major”
samplers (Von Damm et al., 1985)) and 160 ml isobaric gas—tight samplers (“I1GT”
samplers (Seewald et al., 2002)) and were selected to represent the range of venting
styles identified. In all cases, fluids were sampled in triplicate allowing an assessment
of uncertainties and calculation of end—member fluid compositions (i.e., extrapolated to
zero Mg (Von Damm et al., 1985)). Temperatures were measured with either the ROV
temperature probe or with a thermocouple mounted directly on the IGT samplers.

Sample aliquots for chemical analysis were extracted immediately after recovery
of samplers at the end of each dive operation. Fluid samples were drawn into clean
polyethylene bottles. Aliquots of fluid drawn for REE and other trace element analysis
were immediately acidified to pH < 2 by addition of Fisher Optima™' grade HCl to
prevent precipitation of metal sulfides and sulfates from solution during storage prior to
on—shore analysis. For Ti—syringe samples, this required addition of ~ 1 ml HCl to a
volume of ~ 500 ml vent fluid and for gas—tight samples ~ 100 pul HCI to a volume of
25 ml vent fluid. These aliquots (“dissolved” fraction) were stored in acid cleaned,

high—density polyethylene (HDPE) Nalgene' " bottles. In nearly all major and gas—tight

samplers, a precipitate (“dregs” fraction) formed on the interior walls of the sampler as
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the hydrothermal fluid cooled. The dregs were collected on a 0.22 pm pore—size, 45 mm
diameter Nylon filter by rinsing with high—purity acetone and Milli—Q water. The
Nylon filters were dried and stored in glass vials for on—shore processing. In addition,
minor precipitates formed within several acidified aliquots during storage (referred to
here as “bottle—filter” fraction). These precipitates were separated from the fluid by
filtering through 0.22 pm pore—size, Nuclepore® filters as part of shore—based sample
processing. The relative proportions of dregs and bottle—filter fractions formed was
non-systematic among samples and was likely related to the variable time delay
between sample collection and shipboard processing.

In order to obtain accurate data for concentrations of many trace elements in
hydrothermal fluids (e.g., Fe, Cu, Zn, Pb, REE, etc.) it is essential to reconstitute the
original sample by analyzing all dissolved, dregs and bottle—filter fractions (Trefry et
al., 1994). This is best achieved by separate determination of element concentrations in
each fraction followed by mathematical reconstitution of the fluid. A mass balance for
REE:s indicates that for fluids analyzed in this study, approximately 90 % of REEs
remained in the dissolved phase.

Dissolved fractions were prepared for analysis by gravimetric dilution of a ~
0.20 g split of each solution using ultra—pure 5% HNO; (Fisher Optima'™ grade nitric
acid). Sample dilutions were normalized to a 6 mM ClI concentration. This equated to
between 80 and 110 times dilution of the original sample and varied as a function of the
chlorinity of the fluid. Normalization to uniform Cl content removed the effect of

variable matrix (e.g., Na") on analyte behavior within the plasma interface of the ICP.
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Dregs and bottle—filter fractions were treated separately. Particles were removed
from filters into 30 ml Savillex™ vials by rinsing with 5 ml concentrated Fisher
Optima™ HNO3. The vials were sealed and placed on a hot—plate overnight (~ 70 °C)
to digest particles. The resulting solutions were then taken to dryness. The acid
digestion/evaporation step was repeated a further two times to achieve complete
dissolution of the sulfide—sulfate mix. The digested particles were taken up in and
quantitatively diluted in 5% HNOs acid for analysis.

3.2. Analytical
3.2.1. Determination of REE

Analyses of REEs were performed on a ThermoElectron Element2 inductively
coupled plasma—mass spectrometer (ICP—MS) at the Woods Hole Oceanographic
Institution. Solutions were injected into the plasma using a Cetac Aridus® desolvating
nebulizer to reduce isobaric interferences (e.g., *"Ba'®0" on '*'Eu’). Ba and REE oxide
formation were monitored throughout the analytical session by periodic aspiration of Ba
and Ce spikes. Ba—oxide formation was significantly less than 1 %. Any isobaric
interference of BaO" on Eu” would bias (decrease) the naturally occurring '*'Eu/'*’Eu
ratio (~ 0.89) measured. In almost all samples no bias was observed and no correction
for BaO interference was required. REE—oxide formation was typically less than ~ 4 %.
Samples were spiked with 1 ppb *Sc and '"°In internal standards to correct for
fluctuations of the plasma during the analytical session. Unknown sample
concentrations were calibrated against matrix—matched, multi-REE-Y standards

prepared from Specpure plasma solution standards. Background intensities were
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measured periodically by aspirating ultra—pure 5% HNOj blanks. External precision,
determined by triplicate analysis of randomly selected samples across multiple
analytical sessions, was ~ 10 %.

3.2.2 Calculation of endmember fluid compositions

Artifacts from sampling of vent fluids can include entrainment of ambient
seawater, entrainment of chimney and other particles, and precipitation of secondary
minerals during cooling and storage of fluids. These artifacts may compromise sample
quality and affect measured REE compositions. Typically, seafloor vent fluid
compositions are calculated assuming that the hydrothermal fluid contains no Mg (Von
Damm, 1983; Von Damm et al., 1985). Calculation of endmember concentrations
allows direct comparison of REE compositions among different vent fluids.
Endmember compositions were calculated by extrapolation of replicate vent fluid
compositions to zero Mg using least—squares linear regression forced to pass through
the composition of ambient seawater (Von Damm, 1983).

Acid—sulfate fluids sampled from DESMOS and SuSu Knolls (North Su) were
excluded from this mathematical treatment. Measured Mg concentrations of all acid—
sulfate fluids venting at the seafloor were consistently high (> 39 mmol/kg). It is
unlikely that high concentrations of Mg reflect dilution of hydrothermal fluid by
seawater during sampling because the pH (25 °C) of all acid—sulfate fluids is extremely
low (< 1.8). Instead, acid—sulfate fluids venting at the seafloor contain significant
amounts of Mg. Accordingly, REE concentrations of acid—sulfate are reported at the

lowest measured Mg concentration of replicate fluid samples.
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3.3. Thermodynamic species distribution calculations

Thermodynamic aqueous species distribution calculations were carried out for
all hydrothermal fluids analyzed in this study to examine the factors that regulate the
aqueous mobility of REEs. The calculations were carried out using the program SpecES
(Geochemist’s Workbench®, version 6.0 (Bethke, 1996)) incorporating a
thermodynamic database for aqueous species calculated using SUPCRT92 (Johnson et
al., 1992) at 50 MPa and 0 to 400°C. We used a SUPCRT92 database that has all
updates for inorganic aqueous species up to November 2007 (see OBIGT database for
detailed documentation: http://affinity.berkeley.edu/predcent/download/obigt). The
extended Debye—Hiickel equation was used to calculate activity coefficients with B—dot
extended parameters and hard core diameters for each species from Wolery (2003).
Dissolved neutral species were assigned an activity coefficient of one, except non—polar
species for which CO, activity coefficients were used (Drummond, 1981). All aqueous
REE species for which thermodynamic properties are known have been considered
(Haas et al., 1995). Inclusion of thermodynamic data for Al-fluoride complexes
(Tagirov and Schott, 2001) enabled us to examine competition between AI’" and REE**
to form complexes with fluoride (Gimeno Serrano et al., 2000). Reaction path models
based on the REACT software package (Geochemist’s Workbench®, version 6.0) and
the thermodynamic database described above were used to assess changes in fluid
composition and REE species distribution due to the titration of HF and SO, gas into
hydrothermal fluids. In all calculations, mineral precipitation and redox reactions

(except H'/H,, Fe3+/Fez+, Mn3+/Mn2+, Cu2+/Cu+, and Eu3+/Eu2+) were suppressed. This
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constraint reflects that calculations are used to predict species distributions prior to
mineral precipitation knowing that these reactions can significantly affect fluid pH,

redox and aqueous species concentrations.

4. ANALYTICAL RESULTS

Calculated concentrations of REEs in hydrothermal fluids recovered from 36
vents (101 total fluid samples) in the Manus basin are reported in Tables 2.1 and 2.2.
Concentrations of REEs in seawater and in mid—ocean ridge hydrothermal fluids (21 °N
East Pacific Rise) are taken from Mitra et al (1994) and Klinkhammer et al. (1994). The
chemical composition (temperature, pH, Na, Mg, Ca, Cl, AL, F, SO4, CO,, H,, H,S) of a
subset of representative seafloor vent fluids used in thermodynamic calculations are
reported in Table 2.3 (E. Reeves and J. Seewald, unpubl. data). Normalization of REE
concentrations to chondrite values (Anders and Grevesse, 1989) is used to compare
REEy pattern shapes and to identify fractionation of REEs among different vent fluids.
4.1. Manus Spreading Center (Vienna Woods)

At Vienna Woods, total REE concentrations are low in all sampled vent fluids
(ZREE ~ 2.6 — 5.8 nmol/kg). Chondrite—normalized REEy pattern shapes are near
parallel, with uniform light—-REE (La—Nd) enrichment and a large positive Eu—anomaly
(Figure 2.2b). The data are consistent with REE compositions in Vienna Woods
hydrothermal fluids determined by previous studies (Douville et al., 1999). The range of

concentrations and pattern shapes are similar to abundances of REEs measured in high—
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temperature (> 280 °C) vent fluids from basalt-hosted, mid—ocean ridge hydrothermal
sites (Figure 2.2a) (Michard et al., 1983; Michard, 1989; Klinkhammer et al., 1994;
Mitra et al., 1994; Douville et al., 1999).

4.2. Eastern Manus Basin (PACMANUS, DESMOS and SuSu Knolls)

Many hydrothermal fluids sampled from the Eastern Manus Basin have high
REE concentrations, enriched by up to two orders of magnitude relative to fluids from
Vienna Woods, and have different REEy pattern shapes. At PACMANUS, total
concentrations of REEs range from ~ 1.5 — 88 nmol/kg. The REEy pattern shapes of
most sampled fluids are variably light-REE enriched with a positive Eu—anomaly
(Figure 2.3). Two vent fluids — Satanic Mills (sample “SM2”) and Fenway (sample
“F17) — have REEy pattern shapes that show heavy—REE (Dy—Yb) enrichments and a
range of positive Eu—anomalies (Figure 2.3).

At DESMOS, REE concentrations in acid—sulfate fluids (XREE ~ 147 — 236
nmol/kg) are significantly greater than those of sampled high—temperature black smoker
fluids (see also Douville et al., 1999), but are similar to those measured in low pH acid—
sulfate fluids from geothermal environments (e.g., Valles Caldera, N.M. (Michard,
1989); Rotokawa and Waiotapu, NZ (Wood, 2001)). Chondrite—normalized REEy
pattern shapes are broadly flat with a slight convex—upward curvature and no clear
positive or negative Eu—anomaly (Figure 2.4a), and are clearly different than REEy
pattern shapes of seafloor smoker—type fluids sampled from the Manus Basin and mid—
ocean ridges.

Rare earth element concentrations and chondrite—normalized REEy pattern
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Figure 2.2. Chondrite-normalized REE patterns of A) modern seawater ( ) and vent fluids
from basalt-hosted, mid-ocean ridge hydrothermal sites, including samples from Escanaba
Trough, Guaymas Basin, 21 °N EPR, 13 °N EPR, 17 °S EPR, Menez Gwen, TAG Active
Mound, Lucky Strike and Snakepit. Data from Mitra et al., (1994); Klinkhammer et al., (1994)
and Douville et al., (1999). B) vent fluids sampled from Vienna Woods, Manus Spreading
Center (this study).
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shapes differ significantly among hydrothermal fluids sampled from vent fields at SuSu
Knolls (Figure 2.4b—d). Total concentrations of REEs in black/gray smoker fluids from
North Su, South Su and Suzette range from ~ 6.5 to 43 nmol/kg. The REEy pattern
shapes of most black/gray smoker fluids are light-REE enriched with pronounced
positive Eu—anomalies (Figure 2.4b, d). Some smoker fluids sampled from Suzette
(sample “SZ5”) and South Su (sample “SS1”’) have REEy pattern shapes that exhibit
greater enrichment of heavy REEs and smaller Eu—anomalies relative to other smoker
fluids sampled from the same vent field (Figure 2.4b, d). Total concentrations of REEs
in acid—sulfate fluids sampled from North Su range from ~ 93 to 350 nmol/kg. These
fluids exhibit REEy pattern shapes that are broadly flat with no clear Eu—anomaly
(Figure 2.4c) and are similar to REEy pattern shapes of acid—sulfate fluids sampled

from DESMOS.

5. DISCUSSION

5.1. Controls on aqueous REE compositions of seafloor hydrothermal fluids

Rare earth elements (REE) in hydrothermal fluids are derived principally from
the oceanic crust during high—temperature fluid—rock interaction. The primary factors
that control the observed chondrite—normalized REEy distribution of seafloor vent
fluids, however, are unclear. It has been hypothesized that REEy pattern shape of vent
fluids directly reflects the REE composition of the crustal host rock (or minerals within

the host—rock, such as plagioclase) subject to alteration and leaching (Campbell et al.,
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Figure 2.3. Chondrite-normalized REE patterns for high- and low-temperature smoker vent
fluids sampled from the PACMANUS hydrothermal area, Eastern Manus Basin: A) Roman
Ruins-Roger’s Ruins, B) Satanic Mills, C) Fenway and, D) Snowcap and Tsukushi.
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B) smoker fluids from Suzette, C) acid-sulfate (filled symbols) and smoker fluids (open
symbols) from North Su, and D) smoker fluids from South Su.
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1988; Klinkhammer et al., 1994). Alternatively, it has been proposed that REEy pattern
shapes of vent fluids are controlled primarily by fluid chemistry (e.g., pH, redox, ligand
concentrations), temperature and alteration mineralogy that control the solubility and
fractionation of REEs during fluid—rock interaction (Bau, 1991; Bach and Irber, 1998;
Allen and Seyfried, 2005).

A plot of total REE concentration in Manus Basin vent fluids versus pH
suggests that, overall, REE solubility in hydrothermal fluids increases with fluid acidity
(Figure 2.5) although some differences between high— and low—temperature fluids are
also apparent. REE concentrations in acid—sulfate fluids from DESMOS and SuSu
Knolls are higher relative to black and gray smoker fluids sampled from all vent fields.
Similarly, REE concentrations are higher in low pH smoker fluids from PACMANUS
and SuSu Knolls relative to high pH smoker fluids sampled from Vienna Woods.
Similar correlations in hydrothermal fluids sampled from a range of geologic
environments, including basalt-hosted mid—ocean ridge (Michard and Albarede, 1986;
Michard, 1989; Douville et al., 1999) and continental geothermal systems (Michard,
1989; Lewis et al., 1997; Wood, 2001) support this relationship. Departures from this
pH relationship occur in several lower—temperature (~ 62 — 288 °C) vent fluids (Figure
2.5). Processes that may affect differences between high and low temperature fluids
including phase separation and mineral precipitation/dissolution resulting from mixing
between hydrothermal fluids and seawater and are discussed in Section 5.3. These
trends support that changes in fluid acidity and temperature affect considerably

mobilization of the REEs (and other elements) during sub—seafloor fluid—rock
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interaction and may affect observed concentrations of REE in seafloor vent fluids.

Chondrite—normalized REEy pattern shapes of vent fluids also correlate with
differences in fluid composition, particularly differences in pH and ligand
concentrations (e.g., chloride, fluoride and sulfate). For a given fluid pH, Lan/Yby and
Eun/Eu*y ratios of high—temperature smoker fluids co—vary with ZCI/ZF (Figure 2.6).
Increasing concentrations of fluoride (relative to chloride) correlate with greater
enrichments of heavy—REEs relative to light—-REEs, and lesser enrichments of Eu
relative to neighboring REEs (Sm and Gd). For a given fluid pH, vent fluids exhibiting
light—-REE enriched pattern shapes and large positive Eu—anomalies have fluid
compositions characterized by the lowest measured fluoride concentrations and highest
YCI/ZF ratios. Conversely, vent fluids with seafloor hydrothermal fluids vent fluids that
have heavy—REE enriched chondrite-normalized pattern shapes (e.g., samples SM2
(Satanic Mills), F1 (Fenway), SZ5 (Suzette) and SS1 (South Su); Figures 2.3 and 2.4)
are consistently correlated with remarkably high fluoride concentrations (> 300 — 500
umol/kg; E. Reeves and J. Seewald, unpubl. data). These data suggest that the presence
of high concentrations of fluoride in several vent fluids sampled from the Eastern
Manus Basin preferentially enhances the aqueous solubility of the heavy—REEs (in
particular relative to vent fluids sampled from Vienna Woods and from mid—ocean
ridge hydrothermal systems).

Acid—sulfate fluids sampled from DESMOS (samples D1 and D2) and SuSu
Knolls (samples NS1, NS2 and NS4) have flat REEy pattern shapes (Figure 2.4), which

are similar to that of acid—sulfate fluids sampled previously from DESMOS (e.g.,
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Douville et al., 1999). Lan/Ybn and Eun/Eu*y ratios of acid—sulfate fluids are near unity
for a wide range of chloride—to—fluoride ratios and varying fluoride concentrations do
not obviously affect aqueous REEy pattern shapes (Figure 2.6). In contrast, the unusual
flat REEN pattern shapes of acid—sulfate fluids are consistently correlated with very low
pH (25 °C) of less than 1 — 1.8 and remarkably high sulfate concentrations (28 — 149
mmol/kg; E. Reeves and J. Seewald, unpubl. data). These data suggest that flat REEx
pattern shapes (and high REE abundances) of acid—sulfate fluids are influenced
significantly by the extremely acidic pH, which likely leads to significantly solubility of
all REEs.

The observed trends are consistent with experimental and thermodynamic
studies that consider the aqueous speciation of the REEs (i.e., ligand complexation with
chloride, fluoride, sulfate and hydroxide) in hydrothermal fluids with a range of
chemical composition (e.g., Wood, 1990a; Wood, 1990b; Haas et al., 1995). These
studies suggest that, for the compositions of most seafloor hydrothermal fluids (i.e.,
high chloride, low fluoride and low sulfate concentrations), REE—chloride complexes
dominate. That REE—chloride complexes are stronger for the light-REEs and for
divalent Eu relative to the mid— and heavy—REEs (Wood, 1990b; Haas et al., 1995) may
enhance the aqueous stability of light—-REEs and divalent Eu leading to their preferential
enrichment in hydrothermal fluids during fluid—rock interaction. For several vent fluids
sampled in the Manus Basin with high fluoride concentrations, REE—fluoride
complexes are likely important aqueous species. The available thermodynamic data

suggest that REE—fluoride complexes are stronger for the mid— and, in particular,
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Figure 2.6. Trends between A) chondrite-normalized La/Yb ratios vs. XCI/ZF ratios, and
B) chondrite-normalized Eu-anomaly (Eu/Eu*) vs. XCI/XF ratios for all vent fluids
sampled from the Manus Basin (Vienna Woods, PACMANUS, DESMOS and SuSu
Knolls). Note the apparent influence of pH on the observed geochemical trends. See text
for discussion.
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heavy—REEs relative to the light—-REEs (Wood, 1990b; Haas et al., 1995). Accordingly,
the presence of significant fluoride to complex REEs likely enhances the aqueous
stability of the heavy—REEs leading to their enrichment in fluoride—rich hydrothermal
fluids. For acid—sulfate fluids with very low pH and high sulfate concentrations, free
ions (REE*") and REE—sulfate complexes are likely important aqueous species (Wood,
1990b; Haas et al., 1995). The aqueous stability of all REEs as free ions and REE—
sulfate complexes is similar, consistent with a high and similar abundance of all REEs
in acid—sulfate fluids. It is apparent from Figure 2.6 that the effect of REE-ligand
complexation is pH dependent. In particular, the relative influence of REE—fluoride
complexation is diminished at lower pH and appears to be unimportant in acid—sulfate
fluids. This is likely explained by the effective formation of competing HF® (and other
fluoride—complexes) at very low pH less than approximately 2, inhibiting the formation
of REE—fluoride complexes in acid—sulfate fluids.

On the other hand, differences in vent fluid REEy pattern shapes are not
obviously correlated to differences in primary host rock composition. Light-REE
enriched pattern shapes of vent fluids from Vienna Woods are very different to whole
rock REE distributions of basalt erupted at the Manus Spreading Center (Sinton et al.,
2003; Figure 2.7). Similarly, the range of REEy pattern shapes measured in vent fluids
from PACMANUS, DESMOS and SuSu Knolls is different relative to the uniform
whole rock REE distributions of dacite and rhyolite erupted in the Eastern Manus Basin
(Sinton et al., 2003; Figure 2.7). In addition, the range of REEy pattern shapes measured

in vent fluids in the Manus Basin are unlike the REE distributions in any specific
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Figure 2.7. Chondrite-normalized REE pattern shapes of unaltered glass erupted at
the Manus Spreading Center (basalt) and in the Eastern Manus Basin (dacite-
rhyolite) compared to those of altered volcanic rocks in the Eastern Manus Basin.
Data for fresh volcanic glasses are from Sinton et al. (2003) and for altered volca-
nic rocks from Beaudoin et al. (2007).
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primary igneous mineral or in the range of alteration phases observed (e.g., Beaudoin et
al., 2007). Significantly, REE concentrations and REEy pattern shapes of Manus Basin
hydrothermal fluids are markedly different within individual vent fields on spatial
scales (< 100 — 500 m) over which the primary REE composition of volcanic rocks are
uniform (e.g., Sinton et al., 2003).

Taken together, the data suggest that although the REEs are derived from
volcanic rocks during fluid—rock interaction, the REE distribution of the volcanic rocks
is a secondary control on the REEy pattern shape of seafloor hydrothermal fluids.
Instead, REEN pattern shapes of vent fluids appear to be controlled primarily by
different composition (i.e., pH and ligand concentrations) and temperature of circulating
hydrothermal fluids, which influences the relative aqueous solubility and selective
removal of REEs from the rock during fluid—rock interaction (e.g., Bau, 1991; Bach and
Irber, 1998; Bach et al., 2003; Allen and Seyfried, 2005). These data suggest that the
REEj pattern shapes of seafloor vent fluids can be used as indicators of sub—seafloor
geochemical processes associated with hydrothermal activity. Of particular significance,
the apparent sensitivity of REEs to differences of fluid pH and elevated fluoride and
sulfate concentrations suggests that REEs can be used as indicators for extensive inputs
of exsolved magmatic acid volatiles (H,O—-CO,-HCI-HF-S0O;) in submarine
hydrothermal systems. This supports the original hypothesis put forward by Bach et al.
(2003) that heterogeneous REEN pattern shapes recorded by mineral deposit samples in
the Manus Basin are related to varying inputs of magmatic acid volatile species.

5.2. Thermodynamic constraints
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Given a lack of thermodynamic data for the behavior and partitioning of REEs
alteration minerals at temperature and pressure conditions relevant to hydrothermal
systems, it is not possible to model specific fluid—rock interactions to evaluate REE
solubilities in different hydrothermal fluids sampled in the Manus Basin. However, it is
possible using thermodynamic calculations to examine the aqueous species distributions
of the REEs for the range of fluid temperature, pH and ligand concentrations measured
for these hydrothermal fluids. Previous calculations suggest that changes of
hydrothermal fluid pH, [2CI], [£F] and [XSO4] significantly affect predicted aqueous
REE species distributions (e.g., Douville et al., 1999; Bach et al., 2003). Differences in
the stability of aqueous REE complexes (Wood, 1990a; Wood, 1990b; Bau, 1991; Haas
et al., 1995) likely influence the solubilities of individual REEs to differing extents,
thereby affecting their relative abundances. Results of representative thermodynamic
species distribution calculations carried out for all Manus Basin hydrothermal fluids are
presented in Figures 2.8 and 2.9. The results of species distribution calculations for
mid—ocean ridge vent fluids from Hanging Garden, 21 °N East Pacific Rise (Von
Damm et al., 1985; Klinkhammer et al., 1994) are provided for comparison.

5.2.1. REE species distributions in seafloor hydrothermal fluids

REEs in all high—temperature vent fluids with mildly—to—moderately acidic pH,
low ZF (<20 — 200 pmol/kg) and low XSOy (< 1 — 10 mmol/kg) are present in solution
predominantly as (trivalent) REE—chloride and REE—oxyhydroxide complexes (Figure
2.8). REE—fluoride complexes are present in varying and lesser amounts, and REE—

sulfate complexes are present at relatively low abundances. REE—chloride complexes
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are more abundant for the light-REEs relative to the heavy—REEs. The opposite is true
of REE—fluoride complexes. Europium is predicted to be present as a divalent chloride
complex, reflecting the stability of Eu** relative to Eu’" at elevated temperatures above
~ 250 °C (Sverjensky, 1984). Small differences in the relative abundance of REE—
chloride, REE-hydroxide and REE—fluoride complexes are due primarily to differences
in aqueous pH; the relative abundances of REE—chloride complexes increase at lower
pH. It has been suggested that theoretically—determined constants (Haas et al., 1995)
over—predict the stability of REE-hydroxide complexes at elevated temperature and
pressure (Gammons et al., 1996; Wood et al., 2002). If correct, predicted REE species
distributions would be influenced even more by REE—chloride complexes. The
predicted REE species distribution for moderately low pH, low XF and low XS04
hydrothermal fluids is similar across a range of geologic environments and host rock
composition (i.e., hydrothermal systems in back—arc basins (Vienna Woods,
PACMANUS and SuSu Knolls) and mid—ocean ridges (21 °N East Pacific Rise); see
also Douville et al., 1999 and Bach et al., 2003). It is inferred from these data that the
predominance of REE—chloride complexes in these fluids primarily controls the
aqueous solubility of REEs (in particular the light-REEs and divalent Eu) and accounts
for the REEy pattern shapes (light-REE enrichment, large positive Eu—anomaly) in
these fluids.

REEs in high—temperature vent fluids with moderately low pH, high XF (> 300
umol/kg) and low £SO, (< 1 — 10 mmol/kg) have predicted REE species distributions

that differ significantly to fluids with low fluoride (Figure 2.9a, b). In general, fluoride
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complexes of all REEs are present in considerably higher abundances relative to low
fluoride and low sulfate fluids. Light-REEs are present predominantly as REE—chloride
complexes; light-REE—fluoride complexes are about a factor of five lower. In contrast,
heavy—REEs are present predominantly as REE—fluoride complexes with lower
abundances of REE—chloride complexes. In these fluids, Eu is again predicted to occur
as a divalent chloride complex. REE-hydroxide and REE—sulfate complexes are present
only at low abundances. It is inferred that the formation of stable REE—fluoride
complexes, in particular of the heavy—REEs in moderately low pH fluoride-rich
hydrothermal fluids, controls the heavy—REE enriched pattern shapes of these vent
fluids.

Lower temperatures, extremely acidic pH, and high sulfate concentrations of
acid—sulfate fluids result in predicted REE species distributions that differ even more
relative to high—temperature smoker fluids from both mid—ocean ridges and back—arc
basins (Figure 2.9¢, d). Calculations indicate that in acid—sulfate fluids REEs are
present dominantly as free REE*", REE—sulfate complexes and REE—chloride
complexes (see also Douville et al., 1999 and Bach et al., 2003). REE—chloride
complexes become more abundant at higher temperatures. Europium is predicted to
exist predominantly as trivalent Eu®" in most acid—sulfate fluids, primarily reflecting the
lower temperature, and to a lesser extent more oxidizing composition, of these fluids
(e.g., Sverjensky, 1984). Accordingly, the species distribution of Eu is similar to
neighboring trivalent REEs (Figure 2.9c, d). REE—fluoride and REE-hydroxide

complexes are insignificant. The low abundance of REE—fluoride complexes persists
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despite remarkably high XF in some of these fluids. This prediction supports the lack of
sensitivity of REEy pattern shapes to changes of ZCI/2F and XSO4/ZF ratios in acid—
sulfate fluids (e.g., Lan/Yby; Figure 2.6). It has been suggested that the absence of
REE—fluoride complexes is related to the competitive formation of Alfluoride
complexes in acid—sulfate fluids (Gimeno Serrano et al., 2000). Acid—sulfate fluids
sampled from the Manus Basin have very high concentrations of dissolved Al (~ 150 —
1640 umol/kg; see Chapter 4). Species distribution calculations indicate that
abundances of Al-fluoride complexes can be important. However, the extent to which
Al complexes with fluoride is dependent on pH and ZAI/ZF. In all acid—sulfate fluids
the most common fluoride species is neutral HF® and the formation of Al-fluoride
complexes occurs at the expense of HF, not REE—fluoride complexes. The presence or
absence of Al—fluoride complexes in extremely low pH acid—sulfate fluids does not
affect the predicted absence of REE—fluoride complexes. pH is the most important
control on the availability of free fluoride to complex with REEs (Figure 2.10). High
REE concentrations and flat REEy pattern shapes of acid—sulfate fluids appear to be
influenced predominantly by the extremely acidic pH of these fluids, which likely
results in substantial solubility and mobility of all REEs.
5.3. Other processes influencing REE compositions of seafloor hydrothermal fluids
5.3.1 Seawater entrainment, fluid mixing and mineral deposition and remobilization
Studies at mid—ocean ridges have demonstrated that local entrainment of
seawater and sub—seafloor mixing with rising high—temperature hydrothermal fluids

affects considerably seafloor vent fluid compositions via mineral deposition and/or
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Figure 2.10. Comparison among measured pH (25 °C) and aqueous species distribution of
REEs with fluoride and chloride predicted by thermodynamic calculations for selected
Manu Basin hydrothermal fluids. Data shown as the ratio of total REE-fluoride and
REE-chloride complex as a function of total fluoride and chloride concentration. As pH
decreases, the fraction of REE complexed with fluoride decreases, likely resulting from
increased association of HF and lower relative availability of fluoride to complex with
REE at low pH. For low pH acid-sulfate fluids, there is essentially no REE-fluoride
complex formation despite a range of fuoride concentations in these fluids. In contrast, the
fraction of REE-fluoride complex formation increases with pH as HF is increasingly
dissociated and free fluoride is present.

79



dissolution (Edmond et al., 1995). Deposition of anhydrite is a common product of this
sub—seafloor mixing (Tivey et al., 1995; Mills et al., 1998; Tivey et al., 1998; Mills and
Tivey, 1999; Humphris and Bach, 2005). Studies have shown that hydrothermal
anhydrites typically contain significant amounts of REEs and may be the major sink of
REEs from solution (Mills and Elderfield, 1995; Humphris, 1998).

Geological sampling has recovered substantial anhydrite in several vent deposits
from the PACMANUS (Binns et al., 2007; Tivey et al., 2007) suggesting that near—
seafloor mixing between locally entrained seawater and rising high—temperature
hydrothermal fluid has impacted significantly the evolution of seafloor hydrothermal
fluids in this system. At Roman Ruins, Satanic Mills and Snowcap, on—going anhydrite
deposition is suggested by Ca and SO4 concentrations in low—temperature (152 — 278
°C) mixed vent fluids (Mg > 16 mmol/kg) that are significantly less than that predicted
by conservative mixing between endmember high—temperature hydrothermal fluid and
seawater (Figure 2.11; E. Reeves and J. Seewald, unpubl. data). At these vent fields,
concentrations of REEs are significantly lower in low—temperature fluids relative to that
predicted by conservative mixing of seawater and endmember hydrothermal fluid,
consistent with the removal of REEs by anhydrite (Figure 2.11). Sub—surface deposition
of anhydrite at Fenway, either occurring at present or in the recent past, is indicated by
the presence of massive anhydrite exposed at the seafloor of the Fenway mound.
Dissolution of previously deposited anhydrite is suggested by relative enrichment of Ca
and SO4 in low—temperature fluids (sample F5; T ~ 78 °C) relative to high—temperature

endmember hydrothermal fluids (Figure 2.11). At Fenway, the low—temperature fluid
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(sample F5) contains significantly higher REE concentrations than predicted by
conservative mixing. The dissolution of REE-bearing anhydrite as predicted by excess
Ca and SOj can explain relatively high concentrations of REEs in this extensively
mixed, low—temperature hydrothermal fluid (Figures 2.6 and 2.11). Although
precipitation and/or dissolution of anhydrite can affect the absolute concentrations of
REE:s in hydrothermal fluids, it does not appear that the precipitation of anhydrite also
affects the relative REEy pattern shape of the fluid. For example, at Roman Ruins there
are no obvious differences among REEy pattern shapes of endmember high—
temperature fluids (samples RMR 1, RMR4) and mixed lower—temperature fluids
(sample RMR2; Figure 2.3) to suggest that the precipitation of anhydrite fractionates
significantly the REEs from solution.
5.3.2. Phase separation and segregation of low— and high—salinity hydrothermal fluids

Phase separation of hydrothermal fluids in the oceanic crust is recognized as a
fundamental process controlling the composition of many seafloor vent fluids (Von
Damm, 1990; Von Damm, 1995). Phase separation and vapor—brine segregation is
suggested by large ranges in chlorinity of seafloor vent fluids. Recent experiments have
indicated that the REEs are not fractionated uniformly between vapor and brine
(Shmulovich et al., 2002). Light-REEs and heavy—REEs are preferentially enriched in
the brine and vapor phase, respectively.

Variable chlorinities of vent fluids sampled from the Manus Basin indicate on—
going phase separation at most vent fields (E. Reeves and J. Seewald, pers. commun.

2008). To a minor extent, fluid phase separation may influence REE compositions
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(REEN pattern shapes) of seafloor hydrothermal fluids. Co—existing and phase separated
low salinity and high salinity fluids were sampled from Fenway field at PACMANUS
(Table 2). At Fenway, higher chlorinity fluids (samples F2, F3) have higher
concentrations of light-REEs relative to lower chlorinity fluids (samples F1, F4; Figure
2.3) consistent with experimental predictions for REE fractionation during fluid phase
separation (Shmulovich et al., 2002). Changes in ZCI/XF ratios are limited among these
fluids and so the effect of varying magmatic volatile degassing is likely not important
for these pairs of fluids. However, phase separation as a process to affect the relative
REEy pattern shapes of seafloor vent fluids appears to be significantly less important
than that of changes in hydrothermal fluid composition resulting from input of exsolved
magmatic acid volatiles (H,O—CO,-HCI-HF-SQO,). Taken together, chondrite—
normalized REE distributions of seafloor hydrothermal fluids appear to be a sensitive

indicator used to track sub—seafloor inputs of magmatic acid volatiles.

6. SUMMARY AND CONCLUSIONS

Rare earth element data are reported for a wide range of seafloor vent fluids
sampled from hydrothermal systems in the Manus back—arc basin. Chondrite—
normalized REEy pattern shapes show a range of variable distributions that is
significantly greater than the relative uniform REEy pattern shapes of mid—ocean ridge
hydrothermal fluids. This variability is well correlated to differences in fluid

composition, in particular pH and chloride, fluoride and sulfate concentrations.
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Different vent fluid REEy pattern shapes are not obviously correlated to differences in
host rock REE compositions. The data suggest that aqueous REE compositions of
hydrothermal fluids are affected primarily by the conditions of fluid—rock interaction, in
particular pH, temperature and the availability of complexing ligands, as suggested by
experimental studies (Bach and Irber, 1998; Allen and Seyfried, 2005).

The implications of these results are that if low pH and high fluoride and/or
sulfate concentrations of seafloor hydrothermal fluids in the Manus Basin reflect inputs
of magmatic volatiles HF and SO, (e.g., Gamo et al., 1997; Seewald et al., 2006), then
REE:s are sensitive to, and therefore can be used as indicators of, extensive magmatic
degassing. This supports the study of Bach et al. (2003), which suggested that
heterogeneous REEy pattern shapes recorded in anhydrite from the Manus Basin
reflected waxing and waning inputs of magmatic volatiles. It has been hypothesized that
REEjy pattern shapes of mid—ocean ridge (MOR) hydrothermal fluids reflect exchange
of REE from plagioclase in basalt and that MOR vent fluid REE compositions are
uniform because crustal host rock composition is similar (Klinkhammer et al., 1994).
Alternatively, the results of this study suggest that REEy pattern shapes of MOR vent
fluids may reflect a fluid composition that is similar at MOR hydrothermal systems, that
is moderately acidic, chloride—rich, and fluoride— and sulfate—poor. Local processes,
including sub—surface fluid mixing and mineral deposition and remobilization, may
affect REE concentrations of seafloor hydrothermal fluids. However, these processes do
not affect the relative REE distributions (REEy pattern shape) of seafloor vent fluids to

the same extent that changes in fluid composition resulting from inputs of exsolved
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magmatic acid volatiles appear to.

This detailed study of REE compositions of seafloor vent fluids indicates that
REEs can provide critical information about fundamental sub—seafloor geochemical
processes associated with hydrothermal activity, in particular the influence of magmatic
volatile input on fluid—rock interaction and REE mobility. A better understanding of
aqueous REE behavior offers important constraints for interpreting REE signatures
recorded in mineral deposits. Future studies of REE-bearing mineral deposits can be
used to gain insight about geochemical processes pertaining to hydrothermal vent
deposit formation and are essential for relict systems where access to hydrothermal

fluids is precluded.
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CHAPTER 3

Anhydrite as a Tracer of Magmatic—-Hydrothermal Processes at
the PACMANUS and SuSu Knolls Vent Fields, Manus Back—

Arc Basin, Papua New Guinea

1. INTRODUCTION

The geochemical compositions of seafloor high—temperature vent fluids and related
mineral deposits are affected by myriad sub—seafloor processes associated with submarine
hydrothermal activity at mid—ocean ridge spreading centers. The fundamental processes
controlling the formation and composition of seafloor hydrothermal fluids include fluid—
rock interaction (Humphris and Thompson, 1978a; 1978b; Seyfried, 1987; Alt, 1995) and
fluid phase separation (boiling) (Von Damm, 1995). Entrainment of seawater at the
seafloor and sub—seafloor mixing with rising high—temperature hydrothermal fluids is
known to significantly affect vent fluid compositions and the formation of associated
mineral deposits on local spatial scales at some hydrothermal systems (Edmond et al.,
1995; Tivey et al., 1995). At convergent plate margins, magmatic acid volatile phases

(H,O0—CO,—HCI-HF-SO) can be exsolved from oxidizing magmas and intersect
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circulating hydrothermal fluids in subduction—related back—arc basins (Gamo et al., 1997;
Seewald et al., 2006). The addition of acid volatile species in back—arc basins can lead to
fundamental changes in fluid chemical characteristics, in particular the formation of
hydrothermal fluids with very low pH relative to mid—ocean ridge hosted hydrothermal
systems (Fouquet et al., 1993; Gamo et al., 1997; Douville et al., 1999; Seewald et al.,
2006). Determining the extent and interplay among these processes is integral to our
understanding of the evolution of hydrothermal systems in a range of geologic
environments and the potential geochemical variability that can be expected in seafloor
vent fluids and mineral deposits.

In the absence of direct and complete access to the sub—seafloor environment, it is
necessary to use geochemical and isotopic information contained in vent fluids and/or
related mineral deposits at the seafloor to infer environmental conditions and hydrothermal
processes occurring at depth. Anhydrite (CaSQy) is recognized is an important constituent
of seafloor hydrothermal deposits, occurring within individual vent chimneys (Goldfarb,
1982; Haymon, 1983) and as veins and massive concretions (Humphris et al., 1995; Tivey
et al., 1995). Anhydrite exhibits retrograde solubility and precipitates from seawater at
temperatures above ~ 150 °C (at seafloor pressures), either from conductive heating of
seawater, or by mixing between seawater and high—temperature hydrothermal fluids
(Bischoff and Seyfried, 1978). Abundant massive anhydrite was first observed and
sampled at the Trans—Atlantic Geotraverse (TAG) active hydrothermal mound at 26 °N,
Mid-Atlantic Ridge (Thompson et al., 1988). Petrographic and geochemical studies of

seafloor vent deposit and vent fluid chemistry suggest that local entrainment of seawater
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and sub—seafloor mixing with rising hydrothermal fluid is occurring within the TAG
mound, and predict the occurrence of significant anhydrite (Edmond et al., 1995; Tivey et
al., 1995). Drilling of the mound (ODP Leg 158) recovered abundant anhydrite from
multiple depths within the TAG mound (Humphris et al., 1995). Trace element (e.g., rare
earth element, REE), isotope (e.g., strontium, 87Sr/%Sr; sulfur, 8348) and fluid inclusion
data of sampled anhydrite (Chiba et al., 1998; Humphris, 1998; Mills et al., 1998; Teagle
et al., 1998; Tivey et al., 1998; Humphris and Bach, 2005) are consistent with local
seawater entrainment, mixing with high—temperature hydrothermal fluid and conductive
heating of these fluid mixtures within the TAG mound. At TAG, sub—seafloor mixing
between locally entrained seawater and rising hot hydrothermal fluids has resulted in
precipitation of high—temperature sulfides (e.g., chalcopyrite, pyrite), generation of
secondary acidity and dissolution of previously deposited sphalerite in a process of zone
refinement (Tivey et al., 1995).

More recently, abundant anhydrite has been recovered from the active Papua New
Guinea—Australia—Canada—Manus (PACMANUS) hydrothermal system, Manus back—arc
basin (Binns et al., 2007). At PACMANUS, samples of anhydrite were recovered sub—
seafloor to depths ~ 300 meters via drilling (ODP Leg 193) and include anhydrite as matrix
within hydrothermal breccia, as well-developed veins often greater than 10 mm thickness,
and as more massive anhydrite in brecciated pore space (Binns et al., 2007). Trace element
(REE) and isotopic (Sr, S) studies of mineral separates from these anhydrite samples have
enables the sub—seafloor processes associated with formation and evolution of

hydrothermal fluids and mineral deposits at back—arc basins and mid—ocean ridges to be
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compared and contrasted (Bach et al., 2003; Roberts et al., 2003; Bach et al., 2005). The
PACMANUS data record significant geochemical and isotopic variability and indicate
heterogeneous fluid mixing regimes during vent deposit formation (Bach et al., 2003;
Roberts et al., 2003). Of particular significance, remarkable differences in REE contents
(Bach et al., 2003) and S isotope compositions (Roberts et al., 2003) recorded in anhydrite
have been interpreted to reflect variable degassing of magmatic acid volatiles at depth
within back—arc basins. Exsolution of magmatic acid volatile phases (H,O—CO,—~HCI-HF-
SO,) and resulting changes in fluid chemistry can impact substantially the processes
associated with metal-rich sulfide deposit formation in back—arc hydrothermal
environments (Sillitoe et al., 1996; Hannington et al., 2005).

Studies of anhydrite have the potential to identify sub—seafloor processes
associated with high—temperature hydrothermal fluid activity and mineral deposition.
However, conclusions drawn from previous studies have relied on data obtained via
analysis of bulk homogenized materials (mineral separates). This technique is
disadvantageous for two reasons: (1) data obtained from analysis of mineral separates for
more than one geochemical tracer are typically obtained from multiple grains that may not
have the same history of formation and are chemically unrelated, and (2) sample
homogenization destroys chemical heterogeneity and thereby erases information recorded
by the mineral. This study examines the geochemical signatures of anhydrite recovered
from vent fields in the Manus back—arc basin (PACMANUS and SuSu Knolls) using fully
coupled in situ analytical measurements of REEs and Sr and S isotopes. The results

provide new constraints on sub—seafloor fluid evolution and mineral deposition processes
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in hydrothermal systems in back—arc basins, including deep—seated seawater—rock
interaction, inputs of magmatic volatiles and sub—seafloor fluid mixing. Extensive
geochemical data available for seafloor hydrothermal fluids sampled from the same vent
fields where anhydrite is deposited (see Chapter 2) are used to ground—truth mineral
chemical signatures. The ability to use anhydrite as a recorder of sub—seafloor
hydrothermal processes has particular importance for studies of relict systems where fluids
are no longer present and information pertaining to the evolution of the deposit is

preserved only in minerals.

2. GEOLOGIC SETTING

2.1. Regional setting

The Manus Basin in the Bismarck Sea, Papua New Guinea (Figure 3.1) is a
rapidly—opening (~ 100 mm/yr) back—arc basin associated with subduction of the Solomon
Microplate beneath the New Britain arc (Taylor, 1979; Davies et al., 1987; Martinez and
Taylor, 1996). Crustal rifting and spreading occurs along several distinct lineations,
including the Extensional Transform Zone, Manus Spreading Center and the Eastern
Manus Basin (Martinez and Taylor, 1996; Sinton et al., 2003). The Eastern Manus Basin
(EMB) is bounded by the Djaul and Weitin Transforms. Rapid spreading in the EMB is
accommodated primarily by rifting and extension of existing crust. Lavas are erupted as a
series of discrete en echelon neovolcanic ridges and volcanic cones of felsic composition

(andesite—to—rhyolite) exhibiting distinct arc—affinity (Sinton et al., 2003). The EMB hosts
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Figure 3.1. A) Regional tectonic setting of the Manus Basin indicating active plate motions
and rifting, and areas of known hydrothermal activity in the Manus Basin. B) Distribution of
known hydrothermal vent fields at PACMANUS. C) Known hydrothermal vent fields SuSu
Knolls. Yellow stars indicate the locations where anhydrite was recovered (Roman Ruins,
Snowcap and Fenway and North Su). Bathymetry based on EM300 SeaBeam sonar
(modified from Tivey et al., 2007).
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several active hydrothermal systems, including the PACMANUS (Binns and Scott, 1993;
Scott and Binns, 1995)and SuSu Knolls (Binns et al., 1997), the deposits of which are
examined in this study.

2.2. PACMANUS hydrothermal field

The Papua New Guinea—Australia—Canada—Manus (PACMANUS) hydrothermal
systems is located on the crest of the 35—km long, 500—m high Pual Ridge at water depths
of 1650 — 1740 m (Binns and Scott, 1993). Hydrothermal activity occurs at several discrete
fields, each of the order 50 — 200 m in diameter, along a 3 km long section of Pual Ridge
(Binns and Scott, 1993; Binns et al., 2007; Tivey et al., 2007). Abundant anhydrite has
been recovered from three vent fields (Figure 3.1). Samples of anhydrite were recovered
sub—seafloor by ocean drilling at Snowcap and Roman Ruins during ODP Leg 193 (Binns
et al., 2007). Samples of massive anhydrite currently exposed at the seafloor were
recovered by surface grab sampling at Fenway, which is a mound exhibiting high—
temperature activity discovered during cruise MGLNO6MYV (Tivey et al., 2007).

The Roman Ruins vent field is characterized by numerous discrete columnar
chimneys and clusters of multi—spired chimneys typically 5 — 7 m in height, overlying
mostly fresh volcanic outcrop. Current activity is manifest as high temperature focused
discharge (up to 341 °C) from black and gray smoker chimneys (Seewald et al., 2006;
Tivey et al., 2007). More diffuse fluid, with temperatures ranging from 54 to 106 °C,
discharges from fissures within the volcanic basement and through chimney and volcanic
talus in areas surrounding sulfide deposits. Drilling of the Roman Ruins deposit and

underlying basement (Holes 1189A and 1189B) recovered volcanic rocks and
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hydrothermal material to depths of ~ 200 meters below seafloor (mbsf) (Binns et al.,
2007). Except for relatively fresh lava flows recovered near the seafloor (< 30 mbsf), most
volcanic rocks display moderate—to—extensive alteration, which continues without
interruption to the base of the drill core. Alteration is primarily argillaceous (smectite—
chloritetillitetquartz) (Yeats et al., 2001; Lackschewitz et al., 2004). Hydrothermal
stockwork is present to depths ~ 120 mbsf and is dominated by disseminated and locally
massive veined pyrite (Binns et al., 2007). Anhydrite is a minor mineral interspersed
throughout the drill core, occurring mostly as fine—grained disseminated matrix and locally
as more massive anhydrite veins in both hydrothermal stockwork and alteration
assemblages (Figure 3.2). The total abundance of anhydrite typically decreases with depth,
although anhydrite is present to depths of at least 200 mbsf.

At the Snowcap vent field, hydrothermal activity is currently dominated by low
temperature fluid discharge (< 180 °C) through bulbous sulfide chimneys across heavily—
sedimented and altered terrain (Tivey et al., 2007). Surface outcrops of fresh massive lava
flows are rare. Instead, hyaloclastite flows, volcaniclastic sediments, native sulfur,
bleached alteration products and microbial mats are common (Yeats et al., 2000; Tivey et
al., 2007). Drilling recovered core from two holes (Holes 1188A and 1188F) down to
depths of 210 and 390 mbsf, respectively. Petrographic analyses indicate extensive and
multi—stage alteration, including alternating argillaceous (smectite—chlorite) and advanced
argillic (alunite—illite—pyrophyllite—quartz) assemblages and, with increasing depth,
extensive silicification (Yeats et al., 2001; Lackschewitz et al., 2004). The occurrence of

advanced argillic alteration and native sulfur is consistent with rock alteration by low pH
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Figure 3.2. Photographs of A) massive anhydrite exposed at the seafloor (Fenway
mound, PACMANUS). B) massive anhydrite (sample J2 212 7 R1 from Fenway).
C) semi-massive sulfide (chalcopyrite+pyrite) within a matrix of anhydrite+silica
(ODP drill core sample 193 1189A 12R 1, 120-128 cm, 105 mbsf, from Roman
Ruins, PACMANUS). Photograph modified after Binns et al. (2007). D) cross-section
through composite vein of massive anhydrite with frequent fine-to-medium grained
chalcopyrite-rich sulfide dissemination (samples sample J2 227 7 R2 from North
Su, SuSu Knolls).

102



(less than 3) fluids likely resulting from exsolution of a magmatic acid volatile phase
beneath areas of the PACMANUS hydrothermal system. Anhydrite occurs throughout drill
core to depths of at least 350 mbsf and does not appear associated within any single
alteration stage. Anhydrite occurs commonly as composite veins and as matrix within
brecciated and hydrothermally altered minerals.

At the Fenway vent field, the seafloor is dominated by a central, two—tiered mound
approximately 40 m in diameter and 18 m in relief. The summit of the mound is composed
of an extensive black smoker complex with fluids venting vigorously at temperatures up to
358 °C (Seewald et al., 2006; Tivey et al., 2007). Lower temperature focused fluid venting
from chimneys and diffuse fluid venting from fissures and brecciated sediment are
common from lower tiers and slopes of the mound. The entire mound is covered by
extensive sulfide chimney debris and talus, outcrops of massive anhydrite, and brecciated
sands. Several samples of massive anhydrite have been recovered from the seafloor (Tivey
et al., 2007). Samples from Fenway are large (~ 5-10 kg) and coarse—grained with no
obvious crystallographic zoning (Figure 3.2). Based on textural similarities with massive
anhydrite recovered from the TAG active mound, Mid—Atlantic Ridge (Tivey et al., 1995),
the massive anhydrite at Fenway was also likely precipitated within a porous sulfide-rich
surface dome as a result of either conductive heating of seawater or mixing between
entrained seawater and high—temperature hydrothermal fluids, and exposed following
collapse of the dome. No anhydrite has been sampled from beneath the seafloor at this vent
field.

2.3. SuSu Knolls (North Su) hydrothermal system
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The SuSu Knolls hydrothermal area is located ~ 45 km east of PACMANUS and
consists of three primary areas of activity (North Su, South Su and Suzette) located on
individual volcanic domes at water depths between ~ 1140 and 1510 m (Binns et al.,
1997). At North Su, hydrothermal activity on flanks of the dome is dominated by vigorous
discharge of thick, yellowish—white fluids and liquid native sulfur through volcanic clasts
and hydrothermal sediments. These fluids are hot (T = 48 — 241 °C) and extremely acidic
(pH=10.9 — 1.8, at 25 °C (Seewald et al., 2006)). This activity contrasts strongly with fluid
discharge at the summit of the North Su mound, which is dominated by venting of high—
temperature black smoker fluids (T =296 — 325 °C; pH = 2.8 — 3.4, at 25 °C) from multi—
spired sulfide chimney complexes up to 11 m tall (Seewald et al., 2006; Tivey et al., 2007).
Seafloor rocks are composed of vesicular dacite flows and hyaloclastite flows, overlain by
hydrothermal talus and sediments, abundant native sulfur flows and locally extensive
sulfide deposits (Binns et al., 1997; Tivey et al., 2007). Exposed massive anhydrite was
sampled near the base of the black smoker summit complex within sulfide—sulfate talus.
This sample exhibits complex textures, including crustiform layering of anhydrite veins

(Figure 3.2).

3. METHODS

3.1. Sample collection and preparation

Anhydrite analyzed during this study was recovered either from beneath the

seafloor at the Roman Ruins and Snowcap vent fields during Ocean Drilling Program Leg
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193 (Binns et al., 2007) or at the seafloor from the Fenway and North Su vent fields during
R/V Melville cruise MGLNO6MYV (Tivey et al., 2007). A total of 12 drill core samples were
selected from Roman Ruins and Snowcap and provide a representative down core profile
of anhydrite from different lithologic units and textural settings, including a variety of
veins, composite and cross—cutting growth bands and more massive anhydrite filling vugs
and pore spaces. A total of seven massive anhydrite samples were recovered at the seafloor
from the Fenway mound and a single massive anhydrite sample was recovered from the
base of the black smoker complex at North Su.

Samples were prepared for analysis by one of two methods. Massive anhydrite
samples recovered by ROV were initially sub—sampled using a tile saw and/or a Buehler
Micromet saw. Working sections were impregnated with epoxy resin and cut into thin (~ 2
mm) wafers. These wafers were polished on both sides and mounted onto standard 45 x 25
mm petrographic slides for analysis. Six anhydrite samples from ODP drill core were
provided by D. Vanko at the University of Towson, Maryland prepared using a similar
method (Vanko et al., 2004). Six additional anhydrite samples recovered from ODP Leg
193 drill core were mounted with epoxy in 25 mm aluminum rings, cut to obtain a flat
surface and polished on one side for analysis.

3.2 Analytical methods
3.2.1 Cathodoluminescence imaging

Cathodoluminescence (CL) reconnaissance imaging was performed to obtain semi—

quantitative trace element distributions within each sample. In particular, CL imaging was

used to differentiate chemical heterogeneities (crystal zoning) occurring within and
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between individual anhydrite crystals, which would be a focus for subsequent in situ,
quantitative geochemical analyses. Under excitation by a cathode beam, trivalent REEs
(Sm** and Dy’") fluoresce and emit intense spectra within visible wavelengths with
varying shades of tan (Marshall, 1988). CL was mapped using a Nuclide Corporation
ELM-2B cold cathode generator, operated at ~ 10 keV and 0.8 mA and with a vacuum of
70 — 85 utorr. Each sample was photographed using a Nikon D1x digital camera, mounted
to a Nuclide Corporation ELM—-2E microscope with 10x — 40x magnification. Photographs
were captured using white balance set to fluorescent light and exposure times of 30
seconds. Photomosaics were generated using digital imaging software (Abode Photoshop
CS2) without further manipulation.

3.2.2. Laser—ablation ICP-MS element analyses

Geochemical analyses were coordinated so that elemental and isotopic data were
collected from adjacent locations within the same heterogeneous domains as identified by
CL. Elemental and isotopic data are directly related spatially and texturally, and the full
chemical heterogeneity as identified by CL imaging is faithfully captured.

In situ trace elemental (REE, Sr, Ba, Pb and Mg) analyses were performed using
laser ablation—inductively coupled plasma—mass spectrometry (LA-ICP-MS) at the
Woods Hole Oceanographic Institution (WHOI) and the University of Bremen. Anhydrite
samples were loaded into a NewWave UP213 laser microprobe sample chamber coupled to
a ThermoElectron Element2 high resolution ICP-MS (Balaram, 1996). Operating
parameters for the ICP-MS were configured for each session to obtain optimal signal

response and stability. Laser ablation settings were identical for all elemental analyses. The
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laser was operated in apertured mode, with a spot size of 60 um diameter and a firing
repetition rate of 10 Hz with a laser intensity of 65 %. Line scan (‘raster’) mode was used
in preference to single spot mode, taking advantage of the movable stage beneath the laser.
A line spacing of 15 um and scan speed of 5 pm/s were used across a total raster area of 80
x 180 pum (total 13 lines). Total analysis time for a single measurement, including wash—
out time, was of the order of 7 minutes. The certified reference material NIST SRM612
glass was used as the standard for trace element calibration (Pearce et al., 1997; Kent et al.,
2004). Internal normalization of the data was achieved using CaO as the spike;
concentrations in the standard and in anhydrite are 114000 and 411765 ppm, respectively.
Blanks were monitored repeatedly during analytical sessions and used for data reduction.
The formation of interfering oxides (e.g., "**Ba'°O" on "*'Eu’; "*Nd'°0" on '*Tb") can
greatly degrade the accurate measurement of REEs. Contributions from BaO" were
assessed by monitoring simultaneously isotopes *'Eu and **Eu. No significant bias of the
naturally occurring '*'Eu/"**Eu ratio (~ 0.89) was observed, indicating no significant
formation of oxide interferences during typical analysis. Chondritic values used for
external normalization of REE (REEy) data are taken from Anders and Grevesse (1989).
Reproducibility for the method is typically within 5 — 8 %.
3.2.3. Laser—ablation MC—-ICP-MS isotopic analyses

In situ isotope analyses were performed at WHOI using a ThermoElectron
NEPTUNE multi—collector ICP-MS coupled to a NewWave UP213 laser microprobe.
Strontium isotope ratios (*'St/**Sr) were measured following a revised procedure from

Hart et al. (2005), with laser and mass spectrometer operating parameters optimized for the
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analysis of sulfates. The reference material NIST SRM987 was used as the external Sr
isotopic standard (consensus *’Sr/**Sr ratio = 0.710248). Instrumental mass bias was
calculated from deviation of the measured **St/**Sr ratio from the canonical isotopic ratio
in the standard (**Sr/**Sr = 0.119400) and a mass bias correction applied to measured
¥7Sr/*Sr ratios using the exponential mass law relationship (Albaréde and Beard, 2004).
The calculated mass bias correction was then applied to the unknown anhydrite sample
assuming linear interpolation of mass bias between replicate standards. Long—term
reproducibility of *’Sr/**Sr isotope ratios, as determined by repeat analysis of an aragonite
coral (‘in—house’ standard) grown in contemporaneous seawater, was better than 20 ppm
(Sclerosponge; ¥'Sr/*Sreerifica = 0.70918; *7St/**Stmeas = 0.70919 + 0.00002; n = 15, 20
uncertainty).

Isotopes of sulfur were measured using the analytical procedure detailed by
Craddock et al. (2008). Briefly, the standard—sample bracketing method (Belshaw et al.,
1998) was employed to calibrate unknown samples against isotopically characterized
sulfur standards. Instrumental mass bias was calculated for the S isotopic standard and a
correction applied to the unknown sample using linear interpolation of calculated mass
biases from bracketing standards. Isobaric interferences (dominantly from molecular O,
species) were resolved by operating the instrument in high-resolution mode (Weyer and
Schwieters, 2003). Blank contamination was measured using ultra—clean 2% nitric acid
and corrected by on—peak baseline subtraction. External reproducibility of the data is

within + 0.45 %o for laser ablation analyses.
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4. RESULTS

Trace element (REE, Sr, Ba, Mg and Pb) and isotope (Sr, S) data are reported for
12 drill core samples from PACMANUS (8 from Snowcap and 4 from Roman Ruins) and
7 samples from exposed seafloor massive anhydrite (6 from Fenway and 1 from North Su).
In total, approximately 500 multi—element analyses and 300 isotope analyses were carried
out. A complete data report is provided in Appendix Cl1.

4.1. Trace element concentrations of anhydrite

All anhydrite samples examined exhibit significant variability in concentrations of
trace elements. Detailed high—-resolution analyses demonstrate that this variability exists on
several spatial scales, ranging from sub—millimeter differences within single samples to
differences among vent fields. Total concentrations of REEs (XREE) range from ~ 2 to 550
ppm, although most measurements fall in the range 5 to 70 ppm. Similar ranges and
variability of REE concentrations were demonstrated previously by whole-rock analysis of
anhydrite from PACMANUS (Bach et al., 2003; Bach et al., 2005).These concentrations
are high relative to REE concentrations in anhydrite recovered from the TAG active
mound, 26 °N mid—Atlantic Ridge (XREE ~ 1 — 10 ppm) (Humphris, 1998).

Strontium is a minor element in anhydrite, with concentrations in Manus Basin
samples ranging from ~ 1000 — 5000 ppm. Magnesium and Ba are present in all Manus
anhydrite samples at concentrations between 1 — 80 ppm and 4 — 250 ppm, respectively. In
addition, local enrichments up to 1000 ppm Mg and Ba occur in some anhydrite grain

domains. Lead is present as a trace element at concentrations of 0.01 — 10 ppm in most
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within single samples. There is no clear correlation between the geochemistry of anhydrite
and the depth below seafloor from which it was recovered.

At North Su (SuSu Knolls), composite veins within a single sample of massive
anhydrite also exhibit different REEy pattern shapes, ranging from light-REE depleted to
relatively flat with variable, positive Eu—anomalies (Lan/Ybx = 0.1 — 1.8, Smn/Yby = 0.6 —
4.6, Eun/Eu'y = 1.4 — 8.0; Figure 3.6).

4.2. Sr isotope ratios in anhydrites

Overall, Sr isotope ratios (*’Sr/*°Sr) in anhydrite range from 0.70429 to 0.70881
(Figure 3.7). These data reflect precipitation of anhydrite from a wide range of mixing
ratios between seawater (radiogenic *’Sr/**Sr = 0.70918) and end-member hydrothermal
fluids (*'Sr/**Sr ~ 0.70427; M. Rosner and W. Bach, unpubl. data). The Sr isotope ratio of
end—member black—smoker hydrothermal fluids (*’Sr/**Sr ~ 0.70427 — 0.70460) is similar
to that of host volcanics in the eastern Manus Basin (87Sr/86Sr ~0.7035; Sinton et al.,
2003). Where data exist, new results are compared against Sr isotope ratios for the same
anhydrite samples determined using whole—rock isotope analysis (Roberts et al., 2003). In
general, the data show excellent agreement (Figure 3.7). However, in situ analyses
highlight a range of isotope compositions within individual anhydrite crystals, not
identified by whole—rock isotope analysis and extend the overall range of Sr isotope ratios
measured. The relative proportions of hydrothermal fluid and seawater in the mixture that
precipitated anhydrite can be calculated from measured Sr isotope ratios (Mills et al., 1998;

Mills and Tivey, 1999):
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Figure 3.3. Condrite-normalized REE patterns for massive anhydrite recovered from the
seafloor at Fenway, PACMANUS hydrothermal system. Individual patterns determined in
situ by laser ablation ICP-MS. A) sample J2 210 8 R2, B) sample J2 212 7 R1, C)
sample J2 216 1 R1, D)sampleJ2 216 5 R1, E)sample J2 216 12 R1, F) sample

J2 216 14 RI1. Chondritic values from Anders and Grevasse (1989).
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Figure 3.4. Condrite-normalized REE patterns for anhydrite recovered from site 1189
(Roman Ruins), PACMANUS hydrothermal system. Individual patterns determined in situ
by laser ablation ICP-MS. A) sample 193 1189A 3R 1, 89-93cm, 20 mbsf, B) sample
193 1189A 7R 1, 19-23cm, 58 mbsf, C) sample 193 1189B 10R 1, 42-44cm, 118 mbsf,
D) sample 193 1189B 14R 2, 0-3cm, 158 mbsf. Chondritic values from Anders and
Grevasse (1989).
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Figure 3.5. Condrite-normalized REE patterns for anhydrite from site 1188 (Snowcap), PAC-
MANUS. A) 193 1188A_7R_1, 66-68cm, 50 mbsf, B) 193 1188A 15R_1, 14-20cm, 126
mbsf, C) 193 1188F 16R 2, 109-111cm, 137 mbsf, D) 193 1188A_17R 2, 6-9cm, 146 mbsf,
E) 193 1188F 1Z 2,32-34cm, 219 mbsf, F) 193 1188F 1Z 4, 100-104cm, 223 mbsf, G)
193 1188F 237 2,22-26cm, 289 mbsf, H) 193 1188F 267 1, 62-69cm, 300 mbsf. Chondritic
values from Anders and Grevasse (1989).
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% hydrothermal fluid =

[( TS1/* Sty =" St/*° Sty ) X [ Sty ]
l87 St/* Sty x[Stlgy, J_ l87 St/* Sty x[Stlyye J+ l87 St/ Sty X ([St]e ~[St] )J

where sub—scripts SW, HF and MIX are seawater, hydrothermal fluid and mixed
component, respectively. This calculation assumes that the Sr concentration and isotope
ratio in contemporary end—member hydrothermal fluids is representative of fluids from
which anhydrite precipitated ([St]ur, pacmanus ~ 120 uM, [St]ur, susu knolis ~ 400 M,
[St]seawater ~ 90 uM; see Chapter 4).

At Snowcap (PACMANUS, Hole 1188A, F), in situ analyses demonstrate *’St/*°Sr
ratios of anhydrite cluster mostly in the range 0.7050 to 0.7075, corresponding to fluid
mixes with between ~ 35 and 77 % hydrothermal fluid (Figure 3.7). This variability is
observed on sub—centimeter spatial scales within most individual samples. There are no
clear downhole trends for Sr isotope ratios recorded by anhydrite. A single anhydrite
sample recovered at a depth ~ 50 mbsf has a uniform radiogenic *’St/**Sr ratio ~ 0.7087
and is calculated to have precipitated from a seawater dominated (> 90 — 95 %) fluid mix.
Sr isotope ratios of anhydrite from Roman Ruins (PACMANUS, Hole 1189A, B) cluster
mostly between 0.7055 and 0.7080 (Figure 3.7). Overall *’Sr/**Sr ratios span the range
0.7043 to 0.7082. Remarkable heterogeneity of Sr isotopes is apparent in all samples and
occurs on spatial scales less than 1 mm. Mass balance calculations indicate anhydrite
precipitated mostly from fluid mixes containing between ~ 32 — 83 % seawater (17 — 68 %

hydrothermal fluid). However, the heterogeneity of Sr isotope ratios revealed by in situ
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analyses indicates that the overall contribution of seawater was more variable and in some
instances very low (1 — 5 %) in anhydrite recovered from depth (> 150 mbsf). Sr isotope
ratios of seafloor massive anhydrite from Fenway (PACMANUS) vary between 0.7060
and 0.7082 (Figure 3.7). In most instances, the data indicate anhydrite precipitation from
fluid mixes dominated by seawater (~ 55 to 84 %). Locally, greater contributions of
hydrothermal fluid to the fluid mix precipitating anhydrite (up to 60 % hydrothermal fluid)
are apparent in some samples.

At North Su (SuSu Knolls), Sr isotope ratios recorded in a single anhydrite sample
are remarkably variable, ranging from 0.7046 to 0.7085 and indicating precipitation of
anhydrite from a fluid mix with seawater containing 23 % to 96 % seawater.

4.3. S isotope ratios in anhydrite

At all vent fields, the S isotope compositions (83 4Ssu1fate, hereafter referred to as
8°*S) of anhydrite samples examined cluster mostly around that of contemporary seawater
sulfate (8°*S = +21.0 %o (Rees et al., 1978)). Seafloor massive anhydrite samples from
Fenway have §°*S compositions between +20.1 and +22.0 %o. 8°*S compositions of
anhydrite from Roman Ruins range from +19.6 and +23.1 %o, with most 8**S values equal
to or slightly heavier than seawater sulfate (Figure 3.7). There is no clear downhole trend
of S isotope compositions. Anhydrite samples from Snowcap display the greatest variation
of S isotope compositions, ranging from &**S = +16.6 %o and +21.9 %o. The &°*S ratios of
most anhydrite samples are lighter than seawater, in contrast to anhydrites examined at
other vent fields. In general, 5**S ratios trend toward lighter isotope composition with

increasing depth beneath Snowcap. The data are largely in agreement with previous
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Figure 3.7. Sr isotope (*’Sr/*®Sr) and S isotope (8°*S) values determined by this study (black
crosses) and compared with values determined by Roberts et al. (2003) and Bach et al. (2005)
by whole rock analysis (gray diamonds). Concordance between the datasets is good, however
the overall range of isotope values is greater for in situ analyses, reflecting the local ~ 1 mm
heterogeneity recorded by in situ measurements. A) Fenway (seafloor) and Roman Ruins
(drill core), B) Snowcap (drill core) and North Su (seafloor).
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analyses of S isotope ratios of anhydrite within drill core from Roman Ruins and Snowcap
(Roberts et al., 2003). At North Su, 5**S compositions are all heavier than seawater sulfate,

between +22.4 and +23.6 %o (Figure 3.7).

5. DISCUSSION

5.1. Rare Earth Element geochemistry

Given that REE concentrations in seafloor hydrothermal fluids are several orders of
magnitude enriched relative to seawater (e.g., Mitra et al., 1994), the REEy pattern shape
of a fluid resulting from mixing of the two will record that of the hydrothermal fluid. It has
been shown in previous studies that, to first—order, the REEs (with the exception of Eu in
some fluids) are incorporated into anhydrite without significant fractionation (Mills and
Elderfield, 1995; Humphris, 1998). REE\ patterns preserved in anhydrite therefore record
that of the source hydrothermal fluid. REEy pattern shapes for anhydrites recovered from
the PACMANUS and SuSu Knolls hydrothermal systems in the Manus Basin exhibit
significant heterogeneity, with three patterns dominating: (1) light—-REE enrichment, (2)
light-REE depletion and heavy—REE enrichment, and (3) flat uniform REE enrichment,
each with a range of positive and negative Eu—anomalies (Figures 3.3 to 3.6). These REEy
pattern shapes are similar to those identified by bulk analyses of the same samples (Bach et
al., 2003). The heterogeneity of REEy patterns recorded in anhydrite suggests that the
mixed fluids (and therefore endmember hydrothermal fluids) from which anhydrite

precipitated also exhibited a range of REE distributions.
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Recent measurements of REE concentrations in seafloor vent fluids from
hydrothermal systems in the Manus Basin have demonstrated a range of REEy pattern
shapes (see Chapter 2), which support the idea that differences in REEy patterns recorded
in anhydrite likely reflect differences in aqueous REEy patterns. The range of measured
aqueous REE distributions in Manus Basin vent fluids is consistently correlated with
differences in pH and ligand concentrations (chloride, fluoride and sulfate) of the same
fluids (see Chapter 2). These differences are best explained as a result of varying inputs of
exsolved magmatic acid volatiles (H,O-CO,~HCI-HF-S0O,) into circulating hydrothermal
fluids (e.g., Seewald et al., 2006), which affect significantly the pH, oxidation state and
ligand concentrations (e.g., Cl, F and SO,4%), and the resulting aqueous REE species
distribution and REE solubility in these fluids (Douville et al., 1999; Bach et al., 2003).
The range of REEy pattern shapes preserved in anhydrite analyzed during this study
suggest that anhydrite also records episodes of extensive magmatic acid volatile input. This
supports the original idea by Bach et al. (2003) that different REEy patterns recorded in
anhydrite samples recovered from PACMANUS result from varying contributions of
exsolved magmatic acid volatile phases (H,O-CO,-HCI-HF-S0O,) in back—arc
hydrothermal systems.

5.1.1. REEy pattern shapes of seafloor massive anhydrite relative to hydrothermal fluid

At Fenway (PACMANUS), REEy patterns in massive anhydrite are characterized
by a light-REE enrichment and a positive Eu—anomaly and are similar to those of nearby
high—temperature (> 300 °C) hydrothermal fluids (Figures 3.3 and 3.8). These fluids are

acidic (pH (25 °C) between 2.4 and 2.7) and exhibit a range of elevated fluoride
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concentrations (XF ~ 160 — 285 umol/kg) relative to mid—ocean ridge hydrothermal fluids,
suggesting some direct contribution from an exsolved magmatic acid volatile (H,O—CO,—
HCI-HF-S0O,) phase (Seewald et al., 2006). The REEy patterns preserved in anhydrite
from Fenway are similar to those of neighboring hydrothermal fluids, suggesting that
aqueous REE distributions of hydrothermal fluids in the past as recorded in anhydrite were
similar to present. There are no significant differences in the REEy patterns recorded in
anhydrite to indicate that styles of magmatic acid volatile input or hydrothermal fluid
circulation beneath Fenway were significantly different in the recent past.

At North Su (SuSu Knolls), REEy pattern shapes of seafloor massive anhydrite
exhibit a range of light-REE enrichments and depletions, and variable positive Eu—
anomalies, which are different to those of anhydrite recovered from Fenway (Figure 3.6).
Assuming that REEs are not fractionated during incorporation into anhydrite, it is likely
that this heterogeneity records changes in REE composition and pattern of hydrothermal
fluids from which anhydrite precipitated. REEy pattern shapes measured in hydrothermal
fluids from the North Su vent field show a similar range of REEy patterns that support this
hypothesis. REEy pattern shapes range from light-REE enriched to light-REE depleted
patterns with positive Eu—anomalies in high—temperature black smoker fluids, to flat REE
patterns in milky—white “acid—sulfate” fluids (Figure 3.8). The geochemical and isotopic
compositions of smoker fluids and acid—sulfate fluids suggest very different styles of fluid
evolution. At North Su, the compositions of high—temperature smoker fluids (e.g., low pH,
high F and high K, Li, Rb, Cs concentrations) are consistent with convective circulation of

seawater—derived hydrothermal fluids that have mixed with varying amounts of magmatic
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Figure 3.8. Condrite-normalized REE patterns for seafloor hydrothermal fluids sampled
from the Manus Basin. A) black smoker fluids from Fenway, PACMANUS, B) black
smoker fluids and acid-sulfate fluids from North Su, SuSu Knolls, C) black smoker fluids
from Roman Ruins, PACMANUS, D) white/gray smoker fluids from Snowcap. (Data
reported in Chapter 2.)
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acid volatiles (H,O—CO,—HCI-HF-S0O;) and reacted extensively with crustal host rocks
(see Chapters 2 and 4). In contrast, the compositions of acid—sulfate fluids (e.g., low pH,
high SO4, low K, Li, Rb, Cs concentrations) are more consistent with injection of a
magmatic acid volatile phase into seawater in the absence of typical convecting high—
temperature hydrothermal fluids and without significant interaction with fresh crustal host
rocks (see Chapters 2 and 4). Correlated differences among fluid pH, fluoride and sulfate
concentrations and REEy pattern shapes suggest that aqueous REE distributions are
sensitive to changes in fluid composition resulting from varying styles of magmatic acid
volatile input and fluid evolution (Chapter 2). That REEy pattern shapes preserved in
anhydrite are similar to those of neighboring hydrothermal fluids suggests that anhydrite
also records evidence for these processes at North Su.
5.1.2. REEy pattern shapes of drill core anhydrite from PACMANUS

The geochemical compositions of anhydrite samples recovered in drill core can
provide spatial constraints on the sub—seafloor evolution and chemical composition of
circulating hydrothermal fluids. At Roman Ruins, REEy patterns for anhydrite are light—
REE enriched but with a range of positive and negative Eu—anomalies (Figure 3.4). In
general, these REE distributions are similar to those of fluids sampled from this vent field,
although negative Eu—anomalies are not observed (Figure 3.8). High—temperature
hydrothermal fluids venting at Roman Ruins are characterized by low pH (2.3 — 2.6, at 25
°C) and low—to—moderate fluoride concentrations (92 — 155 umol/kg; Seewald et al.,
2006), suggesting some contribution from an exsolved magmatic acid volatile (H,O-CO,—

HCI-HF-S0O,) phase. Similar patterns for anhydrites and vent fluids suggest that anhydrite
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records sub—seafloor fluid compositions and chemical conditions in the recent geologic
past that were similar to the present. It is unclear if pronounced negative Eu—anomalies
recorded in sub—seafloor anhydrite are related to varying styles of magmatic acid volatile
input or differences in fluid composition. The negative Eu—anomalies may reflect
exclusion of Eu during incorporation of REEs into anhydrite. Changes in temperature and
redox conditions can affect the valency of Eu (Sverjensky, 1984) and may fractionate
divalent Eu from the remaining trivalent REE, but the effects of these redox changes on the
partitioning of REEs between fluids and anhydrite are poorly understood. In general, REEx
patterns recorded in anhydrite from Roman Ruins are similar to Fenway, indicating similar
histories of sub—seafloor fluid evolution. There are no REEy patterns recorded in anhydrite
samples from Roman Ruins that are similar to the flat REEy pattern shapes recorded in
anhydrite samples from North Su. Accordingly, there is no clear evidence to support the
presence of acid—sulfate type fluids or to suggest that styles of fluid flow, compositions of
exsolved magmatic acid volatiles or styles of fluid—rock interaction were also different in
the geologic past at Roman Ruins.

Drill core anhydrite samples at Snowcap exhibit a large range of REEy pattern
shapes (Figure 3.5). The REEy patterns in anhydrite from Snowcap are very different from
those in anhydrite recovered from Roman Ruins and Fenway. Also, REEy patterns in
anhydrite are clearly different from those of hydrothermal fluids actively venting at
Snowcap, which are characterized by light-REE enrichment and positive Eu—anomaly
(Figure 3.8, see also Chapter 2). Present—day fluid activity at Snowcap is characterized by

venting of lower temperature (< 180 °C) and moderately—acidic fluids with pH (25 °C) >
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3.4 (Seewald et al., 2006). However, the range of REEy patterns observed in anhydrite and
differences to REEy patterns in present—day fluids suggest that the provenance and
chemical evolution of sub—seafloor hydrothermal fluids have changed significantly over
time. Significantly, the range of REEy patterns preserved in anhydrite at Snowcap is
similar to that recorded in low pH fluids sampled from other vent fields in the Manus
Basin. Heavy—REE enriched pattern shapes recorded in some Snowcap anhydrites (Figure
3.5e, h) are remarkably similar to REEy patterns in low pH (~ 2.3, at 25 °C), fluoride-rich
(ZF ~ 380 — 530 umol/kg; E. Reeves and J. Seewald, unpubl. data) seafloor hydrothermal
fluids from the Satanic Mills (PACMANUS) and Suzette (SuSu Knolls) vent fields (Figure
3.9b). In addition, flat REEy pattern shapes recorded in other Snowcap anhydrite samples
(Figure 3.5a, g and h) closely resemble those of very acidic (pH (25 °C) < 1.8), sulfate—
rich (ZSO4 ~ 28 — 150 mmol/kg; E. Reeves and J. Seewald, unpubl. data) acid—sulfate
fluids sampled from the DESMOS and North Su (SuSu Knolls) vent fields (Figure 3.9¢;
see also Chapter 2). The range of REEy patterns preserved in Snowcap anhydrite, likely
resulting from different REEy patterns of source hydrothermal fluids from which anhydrite
precipitated, appear to record changes in the compositions of magmatic acid volatiles
injected into the Snowcap hydrothermal system. In particular, the range of REEy pattern
shapes recorded in anhydrite appears to document the past presence of acid—sulfate type
fluids at Snowcap and thereby record fundamental changes in styles of fluid flow and fluid
evolution at this vent field. The occurrence of acid—sulfate fluids in the recent past at
Snowcap, which were likely similar to acid—sulfate fluids observed venting at the seafloor

at DESMOS and North Su (SuSu Knolls), is supported by the presence of advanced argillic
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Figure 3.9. Summary of REEy pattern shapes of Snowcap anhydrite samples (left) and
comparison with REEy pattern shapes of seafloor vent fluids from hydrothermal systems in
the Manus Basin (right) that are variably affected by magmatic volatile degassing. The
similarity between REE compositions of Snowcap anhydrites and of vent fluids is evidence
for magmatic volatile degassing affecting the compositions of mineral deposits at Snowcap.
A) Light-REE enriched patterns of low F and low SO4 fluids from Snowcap, B) Light-REE
depleted, heavy-REE enriched patterns of high F, low pH fluids from Satanic Mills
(PACMANUS) and Suzette (SuSu Knolls), C) Flat REE patterns with no Eu-anomaly of
magmatic vapor-rich low pH acid-sulfate fluids from DESMOS.
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(alunite—illite—pyrophyllite—quartz) alteration and native sulfur in proximity to anhydrite
recovered from this vent field (Lackschewitz et al., 2004; Binns et al., 2007). Advanced
argillic alteration is characteristic of extreme leaching and alteration of crustal host rocks
under highly acidic conditions (pH < 2) resulting from the injection of reactive magmatic
acid volatiles, in particular SO, and HCI (Meyer and Hemley, 1967; Brimhall and Ghiorso,
1983). This result is significant because it appears that REE signatures preserved in
hydrothermal mineral deposits can provide information on the temporal chemical evolution
of submarine hydrothermal systems, which is not necessarily obtainable from the study of
actively circulating hydrothermal fluids.

5.1. Strontium and sulfur isotope geochemistry

Previous studies have demonstrated the use of *’Sr/*°Sr and &**S isotope values of
anhydrite to track the origin and sub—seafloor evolution of hydrothermal fluids (Chiba et
al., 1998; Teagle et al., 1998; Roberts et al., 2003; Bach et al., 2005; Humphris and Bach,
2005). Differences of Sr and S isotope ratios of anhydrite sampled from PACMANUS
(Snowcap, Fenway and Roman Ruins) and SuSu Knolls (North Su) indicate subtle
distinctions in terms of fluid provenance and styles of fluid circulation and mixing at these
vent fields.

The sulfur isotope ratios of most anhydrites from all vent fields cluster around that
of contemporary seawater sulfate (5°*S—sulfate = + 21.0 %o; Figure 3.7), although some
anhydrite grains exhibit deviations from this isotopic ratio. These data indicate that sulfate
required to precipitate anhydrite was supplied predominantly by SO4—rich seawater, likely

as a result of mixing between rising high—temperature hydrothermal fluid and locally
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entrained seawater. This idea is supported by coupled *’St/**Sr ratios (of the same
anhydrite grains) that cluster between that of contemporary seawater (*"St/*°Sr ~ 0.70918)
and end-member hydrothermal fluids for each field (*’Sr/**Sr ~ 0.70427; M. Rosner and
W. Bach, unpubl. data), which suggest anhydrite precipitated from a mix of the two.
Sulfate—sulfur isotopic ratios of drill core anhydrites from Snowcap exhibit sulfate—
sulfur isotope ratios significantly lighter than contemporary seawater in some grains (5°*S
=+ 16.6 %o to + 21.9 %o; Figure 3.7). In this study, the lightest S isotope ratios in anhydrite
were measured in samples that were recovered from the greatest depths in Snowcap drill
core (~ 300 mbsf; Figure 3.7) and that exhibited some of the lowest measured Sr isotope
ratios (*’St/**Sr ~ 0.7050; Figure 3.10). These data suggest that anhydrite carrying a light S
isotope signature had precipitated from a fluid mixture containing a relatively small
proportion of seawater. Potential sources of sulfate with S isotopic ratios less than seawater
include the oxidation of aqueous H,S in hydrothermal fluid (Shanks et al., 1995),
equilibrium isotope exchange between aqueous sulfate and H,S at high temperatures > 360
— 380 °C (Ohmoto and Lasaga, 1982), and sulfate from the disproportionation of magmatic
SO, (Drummond, 1981; Kusakabe et al., 2000). Oxidation of small amounts of H,S in a
fluid mixture containing little seawater—derived sulfate (as suggested by low Sr isotope
ratios) could significantly perturb the S isotope ratio of sulfate. However, reaction path
models that consider batch mixing of hydrothermal fluid and seawater do not predict
significant increases in the oxidation state of the fluid mixture that would support
significant oxidation of H,S (e.g., Janecky and Seyfried, 1984). Indeed, assuming

equilibrium between aqueous sulfate and sulfide, reaction path calculations tend to predict
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reduction of seawater sulfate as a result of sulfide mineral deposition (Janecky and
Seyfried, 1984), rather than oxidation of hydrothermal fluid H,S. Temperatures of
anhydrite formation at Snowcap as determined by fluid inclusion studies are mostly
between 220 and 360 °C (Vanko et al., 2004). Accordingly, it is not clear that the
temperatures of mixtures of hydrothermal fluid and seawater precipitating most anhydrite
were sufficiently high (~ 380 °C) for equilibrium isotope fractionation between sulfate and
H.,S to account for 8**S isotopic ratios of sulfate significantly lighter than seawater.
Alternatively, disproportionation of SO, (8°*S ~ 0 %o), derived from degassing of shallow
felsic magmas, according to a reaction similar to (Holland, 1965)

380, + 2H,0 — S + 2H,S04 (— 2H" + 2HSOy)
yields sulfate with an isotope composition (8**S—sulfate ~ + 10 to + 15 %) significantly
lighter than that of modern seawater (e.g., Kusakabe et al., 2000) and may account for the
source of isotopically—light sulfate recorded in anhydrite from PACMANUS, as suggested
previously by Roberts et al. (2003). These data are supported by the measurement of S
isotope ratios in anhydrite grains sampled from sulfide chimney vent deposits, also from
PACMANUS, that are lighter than seawater sulfate and that have been attributed to the
input and disproportionation of magmatic SO, (Kim et al., 2004). The presence of
significant amounts of sulfate of likely magmatic origin supports inferences from REE data
recorded in the same anhydrites that low pH, acid—sulfate type fluids previously migrated
through the Snowcap hydrothermal system. That the lightest 8°*S ratios are recorded in
anhydrites sampled at depths several hundred meters beneath the seafloor in Snowcap drill

core is consistent with a deep source for isotopically light sulfate from input of magmatic—
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Figure 3.10. Sr isotopic ratios (87St/%6Sr) versus S isotopic ratios (53*S) for anhy-
drite samples from PACMANUS (Snowcap and Roman Ruins drill core samples)
and SuSu Knolls (North Su massive anhydrite). Mixing lines show predicted isoto-
pic evolution of hydrothermal fluids during mixing between seawater ([Sr] = 87
umol/kg, 87Sr/86Sr = 0.70918, [SO,*"] = 28 mmol/kg, §3*S = +21.0 permil) and
magmatic-hydrothermal fluid containing different concentrations of magmatic SO,
(1, 3 and 100 mmol/kg sulfate). The isotopic composition of the magmatic-
hydrothermal fluid is 87St/3Sr = 0.7043 (the composition of endmember hydrother-
mal fluids in the Manus Basin; W. Bach, unpubl. data) and §°*S =+10.0 permil (the
estimated composition of sulfate from disproportionation of magmatic SO,
(Kusakabe et al., 2000). See also Roberts et al. (2003).
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derived SO,. The absence of anhydrite sulfate with light S isotope ratios (<< + 21 %o) in
drill core samples recovered at shallower depths (< 50 — 200 mbsf) does not necessarily
indicate an absence of magmatic acid volatiles (i.e., an SO,—bearing aqueous fluid) at the
seafloor (Figure 3.7). Rather, greater extents of seawater entrainment in proximity to the
seawater—crustal interface (as suggested by more seawater—like Sr isotopic ratios in
anhydrites recovered from shallower depths; Figures 3.7) may contribute greater amounts
of seawater—sulfate that overprints the isotopic signatures of magmatic sulfur species at the
seafloor in most instances.

At other vent fields examined (Roman Ruins, Fenway and North Su), sulfur isotope
ratios heavier than seawater are exhibited in some anhydrite grains (up to + 23.6 %o; Figure
3.7). Similar S isotope ratios in the same anhydrite samples from Roman Ruins were
measured by Roberts et al. (2003). At these vent fields, sulfate sulfur isotope ratios in
anhydrite heavier than seawater likely reflect either partial reduction of seawater sulfate to
sulfide (H,S) by action of ferrous iron in hydrothermal fluid (Shanks et al., 1981; Janecky
and Shanks, 1988) or equilibrium isotope exchange between aqueous sulfate and H,S at
temperatures less than ~ 350 °C (Ohmoto and Lasaga, 1982). The sluggish kinetics for
equilibrium isotope exchange between sulfate and H,S at relatively low temperature
(Ohmoto and Lasaga, 1982) suggests that partial reduction of seawater sulfate is the more
likely explanation (see also Roberts et al., 2003). However, there is no obvious relationship
between the extent of mixing between hydrothermal fluid and seawater (as determined by
Sr isotope ratios between hydrothermal fluid and seawater) and the extent of seawater

sulfate reduction predicted at these vent fields to confirm this idea (Figure 3.10). The study
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of multiple S isotopes (**S, **S and **S; that is 8°°S and §**S) show significant promise to
better discriminate the geochemical processes affecting the cycling and isotope
fractionation of sulfur among sulfate and sulfide in submarine hydrothermal systems (e.g.,
Ono et al., 2007). This is because sulfur isotope fractionation during equilibrium sulfur
isotope exchange and sulfur oxidation—reduction, for example, follow measurably different
8°°S vs. 6°*S systematics that enable these processes to be distinguished.

There are no S isotope ratios recorded in anhydrite at Roman Ruins or Fenway
from PACMANUS or at North Su from SuSu Knolls that are significantly lighter than
seawater sulfate. Sulfur isotope ratios do not, therefore, provide evidence to support
extensive inputs of magmatic acid volatiles (i.e., SO,) that these vent fields. This is despite
evidence to the contrary as inferred from heterogeneous REEy patterns in the same
anhydrite grains and from active venting of low pH and fluoride— and sulfate-rich
hydrothermal fluids at these fields (Seewald et al., 2006). These data suggest that sulfate—
sulfur isotopic ratios in anhydrite do not necessarily record signatures of inputs of
magmatic acid volatiles (H,O-CO,-HCI-SO,—HF). This likely reflects that most sulfate
cycled through submarine hydrothermal systems, in particular close to the seawater—crustal
interface, is derived from seawater, which overprints the weaker geochemical signatures
contributed by magmatic acid volatiles. This is supported by the range of Sr isotopic ratios
recorded in anhydrite, which demonstrate significant entrainment and mixing of seawater
with hydrothermal (or hydrothermal-magmatic) fluids during the precipitation of anhydrite

at all vent fields in the Manus Basin (Figure 3.10).
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6. CONCLUSIONS

Coupled elemental (rare earth element) and isotopic (Sr, S) data for anhydrite are
used to constrain the evolution and present and past sub—seafloor interactions of exsolved
reactive magmatic acid volatiles (H,O—CO,—HCI-HF-SO0,), circulating hydrothermal fluid
and locally entrained seawater within the active PACMANUS and SuSu Knolls
hydrothermal systems in the Manus back—arc basin. Distributions of REEs (REEy pattern
shapes) in anhydrite samples from PACMANUS (Roman Ruins, Snowcap and Fenway)
and SuSu Knolls (North Su) show remarkable heterogeneity and are very different to
relatively uniform REEy patterns in anhydrites from mid—ocean ridge deposits (e.g.,
Barrett et al., 1990; Mills and Elderfield, 1995; Humphris, 1998). To first—order, REEyx
pattern shapes of anhydrite can be related to different REE compositions of the
hydrothermal source fluids, as shown by similar ranges of REEy pattern shapes measured
in seafloor vent fluids from the same hydrothermal systems (see Chapter 2). The detailed
measurements described here are supported by studies of REE in seafloor hydrothermal
fluids, which have suggested that aqueous REE species distributions and REE solubility
are affected by changes in pH and fluoride and sulfate ligand concentrations contributed by
degassing of acid volatiles from felsic magmas (Bach et al., 2003; see also Chapter 2).

At SuSu Knolls (North Su), input of magmatic acid volatiles inferred from a range
of REEy pattern shapes in anhydrite are directly supported by the presence of low pH and
fluoride— and sulfate-rich hydrothermal fluids (Seewald et al., 2006) that have similar REE

distributions. The range of REEy patterns in anhydrite sampled from PACMANUS
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(Roman Ruins,. Snowcap and Fenway) suggest a history of hydrothermal activity
characterized by differences in the styles of magmatic volatile degassing and in the
compositions exsolved magmatic acid volatiles. In particular, flat enriched REEy pattern
shapes recorded in anhydrites from Snowcap are similar to REEy patterns in low pH, acid—
sulfate type fluids from DESMOS and SuSu Knolls and suggest that acid—sulfate fluids
previously migrated through the Snowcap vent field. This is supported by the occurrence
of advanced argillic (alunite—illite—pyrophyllite—quartz) alteration at Snowcap
(Lackschewitz et al., 2004; Binns et al., 2007) characteristic of acid leaching of crustal host
rocks under highly acidic aqueous conditions (Meyer and Hemley, 1967). The
compositions of hydrothermal fluids exiting the seafloor presently at Snowcap, including
moderately acid pH and low fluorine and/or sulfate concentrations relative to other vent
fluids in the Manus Basin (Seewald et al., 2006), indicate different styles of, and less
extensive, magmatic acid volatile degassing. Significantly, the REEy patterns recorded in
anhydrite can be used to infer past processes associated with hydrothermal activity that
cannot be obtained from the study of present—day fluids alone. The REEy patterns recorded
in anhydrite also demonstrate the spatial heterogeneity in styles of magmatic acid volatile
degassing beneath seafloor hydrothermal systems because there is no evidence to support
similar occurrence of acid—sulfate type fluids at Roman Ruins or Fenway located only
several hundreds of meters away from the Snowcap vent field.

Elemental data are complemented by those of S and Sr isotopes. The *Sr/**Sr
ratios of all anhydrite grains are between that of contemporary seawater and end—member

hydrothermal (or magmatic—hydrothermal) fluids indicating that anhydrite was deposited
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upon mixing of the two. Most 8°*S values of anhydrite from PACMANUS and SuSu
Knolls cluster around that of contemporary seawater, suggesting that sulfate precipitating
anhydrite was sourced from locally entrained seawater that mixed with rising hydrothermal
fluids. Sulfate—sulfur isotope ratios in anhydrite lighter than that of modern seawater do
support a magmatic component to some circulating hydrothermal fluids, specifically at
Snowcap (c.f. Roberts et al., 2003). Light S isotope values of anhydrite recovered within
drill core from Snowcap are consistent with disproportionation of SO, that was degassed
from underlying felsic magmas. Similar S isotope ratios are not recorded in anhydrite from
Roman Ruins or Fenway, despite that low pH, fluoride—rich hydrothermal fluids exit the
seafloor (Seewald et al., 2006) indicating current degassing of magmatic acid volatiles at
these vent fluids. The same true of S isotopes in anhydrite recovered from the seafloor at
North Su, SuSu Knolls. Local entrainment of seawater and mixing (dilution) with rising
magmatic—hydrothermal fluids likely overprints the weaker geochemical signatures of
deep—seated magmatic acid volatile input at these, and potentially other, hydrothermal
systems. However, the data indicate that REE distributions preserved in anhydrite are a
sensitive indicator of these processes, likely reflecting that REE concentrations in evolved
hydrothermal fluids are significantly higher that of seawater and are not therefore by
dilution with seawater to a similar extent.

Sub—seafloor processes, including high—temperature hydrothermal fluid circulation,
different styles and compositions of reactive magmatic acid volatile (H,O—CO,—HCI-HF-
SO,) degassing, seawater entrainment and fluid mixing have affected fluid evolution and

mineral deposition at the PACMANUS and SuSu Knolls hydrothermal fields. Coupled

134



elemental and isotopic studies of mineral deposits, in this instance anhydrite, can identify
interactions among these processes. In addition, elemental and isotopic signatures
preserved in anhydrite can provide information about the temporal history of seafloor
hydrothermal systems that are clearly variable over time and cannot be inferred from the

study of seafloor vent fluids alone.
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samples, with local enrichments of up to 20 — 400 ppm Pb. Concentrations of Sr, Mg, Ba
and Pb show no obvious systematic differences among samples either within or between
PACMANUS and SuSu Knolls vent fields. In drill core samples from Snowcap and
Roman Ruins (PACMANUS), there are no obvious downhole trends or correlation of
alteration lithology with concentrations of Sr, Mg, Ba and Pb. Neither are there obvious
correlations among Sr, Mg, Ba and Pb concentrations and Sr and S isotope ratios related to
different mixtures of hydrothermal fluid and seawater. Accordingly, the distributions of
these elements in anhydrite are not discussed further.

Chondrite—normalized REE (REEy) pattern shapes for anhydrite sampled from the
Manus Basin exhibit remarkable heterogeneity. These data are supported by previous
results of bulk REE analysis of the same anhydrite samples (Bach et al., 2003). REEy
patterns for seafloor massive anhydrite samples from Fenway show the most homogeneity
with uniform light-REE enrichment and positive Eu—anomaly (Lax/Ybyn = 3.2 — 76,
Smn/Yby = 3.0 — 32, EuN/Eu*N = 2.6 — 23; Figure 3.3). At Roman Ruins, measured REEyx
pattern shapes for drill core anhydrite grains show a range of light-REE enrichment. Most
grains have a positive Eu—anomaly, but some REE-rich domains show a pronounced
negative Eu—anomaly (Lan/Yby = 7.8 — 108, Smn/Yby = 2.8 — 23, EuN/Eu*N =04-6.5;
Figure 3.4). Measured REEy patterns for Snowcap anhydrite samples exhibit a range of
shapes including light-REE enrichments, light-REE depletions and flat REE pattern
shapes with both positive and negative Eu—anomalies (Lax/Ybx = 0.3 — 74, Smy/Ybn = 0.9

—12.5, Eun/Eu’n = 0.5 — 14.3; Figure 3.5). Multiple REEy pattern shapes can be observed
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CHAPTER 4

Controls on the Concentrations of Trace Metals in Manus

Back—Arc Basin Hydrothermal Fluids

1. INTRODUCTION

Combined results of field studies, laboratory experiments and theoretical
calculations demonstrate that aqueous trace metal concentrations in hydrothermal fluids
are affected by temperature, pH, redox and the availability of aqueous ligands such as
chloride and sulfide. These factors are intimately related to high—temperature
interaction between seawater and crustal host rock, and fluid phase separation and
segregation (Bischoff and Dickson, 1975; Seyfried and Bischoff, 1981; Rosenbauer and
Bischoft, 1983; Bischoff and Rosenbauer, 1987; Seyfried, 1987; Bowers et al., 1988;
Seewald and Seyfried, 1990; Von Damm, 1990; Butterfield and Massoth, 1994;
Butterfield et al., 1994; Metz and Trefry, 2000; Von Damm, 2000; Von Damm et al.,
2003). It has been demonstrated at some vent fields that sub—seafloor mixing between
locally entrained seawater and rising hot hydrothermal fluids can modify the

concentrations of trace metals in solution through sulfide mineral precipitation and/or
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dissolution reactions (Trefry et al., 1994; Edmond et al., 1995; Tivey et al., 1995). To
date, these studies have largely focused on the effects of geochemical processes
occurring at hydrothermal systems located along basalt—-dominated mid—ocean ridge
spreading centers.

In convergent plate margins (e.g., back—arc basins and island—arcs), a range of
different geochemical processes associated with hydrothermal activity that can affect
vent fluid compositions. For example, circulating seawater can interact with crustal
rocks with different compositions ranging from basalt to rhyolite. Felsic crustal rocks
are enriched in some trace elements (e.g., Pb, Ba, Sb) and depleted in others (e.g., Co,
Ni) relative to basalt erupted along the mid—ocean ridges (e.g., Stanton, 1994; Sinton et
al., 2003), and studies of back—arc basins vent fluids have shown that aqueous metal
enrichments may directly reflect these differences (e.g., Fouquet et al., 1993a). Also,
field studies have reported low pH and high CO,, fluoride and sulfate (proxies for HF
and SO,) concentrations in many back—arc basin vent fluids, which have been attributed
to input of magmatic acid volatile phases (i.e., HHO-CO,—HCI-HF-SO,) degassed from
felsic magmas (Sakai et al., 1990; Gamo et al., 1997; Douville et al., 1999; Seewald et
al., 2006). Significant differences in the mode and composition of magmatic acid
volatile input in convergent plate margins relative to that at mid—ocean ridges may
significantly affect aqueous metal solubility during fluid—rock interaction as a result of
the more acid pH. Further, it has been proposed that water and other magmatic volatiles
degassed from felsic magmas can act as agents for the transport of heavy and precious

metals (e.g., Cu) directly from the magma and may contribute significant quantities of
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metals to seafloor metal-rich sulfide deposits (Yang and Scott, 1996; Kamenetsky et al.,
2001). There is general acceptance that massive sulfide deposits found in felsic—
dominated convergent plate margins may represent a modern submarine analog for
volcanogenic hosted massive sulfide deposits preserved in the geologic record (e.g., the
Kuroko formations (Halbach et al., 1989; Ohmoto, 1996; lizasa et al., 1999)) and for
epithermal—style Cu—Au mineralization in volcanic arcs (e.g., Tabar—Feni—Lihir ore
deposits, Papua New Guinea (Petersen et al., 2002; Gemmell et al., 2004)). However,
few studies have examined in detail the metal compositions of seafloor vent fluids from
which these deposits may have formed (e.g., Fouquet et al., 1993a), and the specific
factors affecting the evolution and composition of seafloor hydrothermal fluids and
related deposits in convergent plate margins are not fully constrained.

Concentrations of trace metals and metalloids (Fe, Zn, Cu, Pb, Cd, As, Sb, Co,
Ag and Au) in a comprehensive suite of seafloor hydrothermal fluids sampled from the
Manus back—arc basin, Papua New Guinea, are presented in this study. The data are
used to assess the roles that different sub—seafloor processes (e.g., interaction between
seawater and crustal rocks with a range of compositions, differing extents and styles of
magmatic acid volatile degassing, and local seawater entrainment and sub—seafloor
mixing with high—temperature hydrothermal fluid) play in controlling the formation and
composition of seafloor vent fluids in a back—arc basin. The results have particular
relevance for understanding the processes responsible for the formation of many
volcanogenic hosted massive sulfide deposits, which have been interpreted as forming

within convergent margin settings.
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2. GEOLOGIC SETTING AND DESCRIPTION OF VENT FIELDS IN THE MANUS BASIN

The Manus Basin in the Bismarck Sea, Papua New Guinea (Figure 4.1) is a
rapidly—opening (~ 100 mm/yr) back—arc basin associated with subduction of the
Solomon Microplate beneath the New Britain arc (Taylor, 1979; Martinez and Taylor,
1996). Crustal extension is complex, involving spreading and generation of new oceanic
crust extension toward the west and rifting of existing crust in the east. Toward the west
is the Manus Spreading Center (MSC) bounded between the Willaumez and Djaul
Transforms (Martinez and Taylor, 1996). Lavas erupted along the MSC are dominantly
basalt and have mid—ocean ridge—like chemical affinity (Both et al., 1986; Sinton et al.,
2003). Several areas of hydrothermal activity have been identified in the MSC. Vienna
Woods is the largest and most active of the known fields (Figure 4.1) (Tufar, 1990). It is
located slightly south of the major spreading center within an axial rift valley at a water
depth of ~ 2500 m.

To the east, the Eastern Manus Basin (EMB) is bounded by the Djaul and
Weitin Transforms where rapid spreading is accommodated primarily by rifting and
extension of existing crust (Martinez and Taylor, 1996). Lavas are erupted as a series of
discrete en echelon neovolcanic ridges and volcanic domes of felsic (andesite—to—
rhyolite) composition (Sinton et al., 2003). The arc—like affinity of ocean crust (Sinton
et al., 2003) is consistent with the proximal location (< 200 km) of the EMB to the
actively subducting margin. The EMB hosts several known active hydrothermal

systems (Figure 4.1). The Papua New Guinea—Australia—Canada—Manus
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Figure 4.1. A) Regional tectonic setting of the Manus Basin, Papua New Guinea,
indicating active plate motion and areas of known hydrothermal activity. Gray
arrows indicate directions of plate motion. B) Distribution of hydrothermal deposits
at PACMANUS. C) Distribution of hydrothermal deposits at SuSu Knolls.
Bathymetry based on EM300 SeaBeam sonar (modified from Tivey et al., 2007).
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(PACMANUS) hydrothermal system is located on the crest of the 35 km long, 500 m
high Pual Ridge, between water depths of 1650 and 1740 m (Binns and Scott, 1993;
Scott and Binns, 1995). The ridge is constructed of several sub—horizontal lava flows
with compositions between andesite and dacite (Binns and Scott, 1993; Sinton et al.,
2003). There are several discrete vent fields within the PACMANUS system (Figure
4.1) that exhibit varying styles of hydrothermal activity. Further to the east, the
DESMOS and SuSu Knolls hydrothermal systems are located on individual volcanic
domes in environments markedly different from ridge—hosted hydrothermal fields.
DESMOS (Onsen field, water depth of 1900 to 2000 m) is a collapse caldera that
features a roughly crescent—shaped morphology with felsic pillow flows and
hyaloclastite deposits arranged across several terraces forming the slopes of the caldera
(Sakai et al., 1991; Gamo et al., 1997). Sedimentation and alteration of primary lavas is
common and includes Fe—oxide staining, pervasive bleaching (acid—sulfate alteration),
locally abundant native sulfur flows and extensive microbial mats (Sakai et al., 1991;
Gamo et al., 1997). Further east, SuSu Knolls consists of three discrete volcanic cones
(Suzette, North Su and South Su; Figure 4.1) at water depths between ~ 1140 and 1510
m (Binns et al., 1997; Tivey et al., 2007). The North Su and South Su domes are
composed of abundant porphyritic dacite flows showing variable advanced argillic
alteration (e.g., alunite—illite—pyrophyllite—quartz and native sulfur) and sedimentation
by mixed volcaniclastic and hydrothermal material (Binns et al., 1997; Auzende et al.,
2000; Yeats et al., 2000; Hrischeva et al., 2007). The dome at Suzette is extensively

coated in metalliferous sediment and relict sulfide talus (Binns et al., 1997; Hrischeva et
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al., 2007) that mask primary volcanic features.
2.1. Hydrothermal activity
2.1.1. Vienna Woods

Current hydrothermal activity is manifest as both focused and diffuse fluid
venting within an area ~ 150 m by 100 m (Tufar, 1990; Tivey et al., 2007). Inactive
sulfide chimneys extend across a total area of ~ 300 m by 100 m. Black—gray smoker
fluids were sampled exiting from the tops of large sulfide—rich chimneys up to 7 m in
height; they have temperatures between 273 and 283 °C and are mildly acidic, with
measured pH (25°C) between 4.2 and 4.7 (Douville et al., 1999; Seewald et al., 2006).
2.1.2. PACMANUS

Current hydrothermal activity occurs at several discrete vent fields (Roman
Ruins, Roger’s Ruins, Satanic Mills, Snowcap, Tsukushi and Fenway) that are between
50 and 200 m in diameter (Binns and Scott, 1993; Auzende et al., 1996; Binns et al.,
2007; Tivey et al., 2007). Focused high temperature fluids (~ 300 — 358 °C) exiting
black smoker chimneys, focused lower temperature white smoker fluids (150 — 290 °C)
discharging from diffuser—type chimneys, and low temperature diffuse fluids (< 100 °C)
exiting through cracks in the crust or metalliferous deposits and sediments were
sampled from these vent fields. The measured pH (25 °C) of high—temperature vent
fluids (= 250 °C) exiting sulfide chimney edifices ranges from 2.3 to 2.8 (Douville et
al., 1999; Seewald et al., 2006).
2.1.3. DESMOS

Hydrothermal activity occurs at the Onsen field (Gamo et al., 1997), which is a
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small (~ 30 m diameter) area of low—temperature fluid discharge located along the
northern interior slope of the DESMOS caldera (Sakai et al., 1991; Auzende et al.,
1996). Fluid venting is manifest as thick, milky—white smoke discharging directly
through extensively altered volcanic breccia and hydrothermal sediments composed of
abundant native sulfur and anhydrite (Gamo et al., 1997; Bach et al., 2007). Despite the
low temperatures (< 120 °C) and high Mg concentrations (~ 40 — 50 mmol/kg) of
sampled fluids, the measured pH (25 °C) are very acidic (< 1.5 to 2) (Gamo et al., 1997;
Seewald et al., 2006). The compositions of these fluids are markedly different to those
of high—temperature black smoker fluids. On the basis of aqueous composition, these
fluids have been informally termed ‘acid—sulfate’ fluids (Gamo et al., 1997).
2.1.4. SuSu Knolls

On—going hydrothermal activity at SuSu Knolls is remarkably diverse,
exhibiting a range of crustal rock alteration, mineral deposit composition and vent fluid
compositions (Binns et al., 1997; Yeats et al., 2000; Seewald et al., 2006; Bach et al.,
2007). The summit of the volcanic domes at North Su and South Su is characterized by
high—temperature black and gray smoker fluids venting from scattered sulfide chimney
edifices (Binns et al., 1997; Tivey et al., 2007). Black smoker fluids at North Su have
temperatures between 300 and 325 °C and are relatively acidic with pH (25 °C) ranging
from 2.8 to 3.2 (Seewald et al., 2006). High—temperature smoker fluids were sampled in
two areas south and south—east of the South Su summit. Vent fluid temperatures were
up to 290 °C. The measured pH (25 °C) of these fluids is low, approximately 2.6 to 2.7

(Seewald et al., 2006). The flanks of the North Su and South Su domes are
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characterized by outcrops of volcanic rocks and breccia, some of which have been
subject to extensive alteration and bleaching (Binns et al., 1997). Milky—white fluids
exit through cracks in these brecciated volcanic flows and extensively altered material
at North Su. These fluids exhibit a range of lower temperatures (48 — 241 °C), but are
very acidic with measured pH (25 °C) of < 1.8 (Seewald et al., 2006). These fluids show
considerable similarity to acid—sulfate fluids sampled at DESMOS (e.g., Gamo et al.,
1997).

The smaller dome of Suzette, located NW of North Su and South Su, is
extensively covered by thick metalliferous sediment, mass—wasted sulfide talus, Fe—
oxide crusts and limited exposures of possible hydrothermal stockwork (Binns et al.,
1997; Moss and Scott, 2001; Hrischeva et al., 2007; Tivey et al., 2007). The summit is
characterized by large expanses of relict and scattered active sulfide chimneys that are
typically buried within sulfide-rich metalliferous sediment (Binns et al., 1997; Tivey et
al., 2007). Five high—temperature fluids venting from sulfide-rich chimney edifices
were sampled. Measured temperatures range from 226 — 303 °C and pH (25 °C) varies
between 3.5 and 3.8 (Seewald et al., 2006). A sixth fluid was sampled from a cracked
pavement structure. This fluid had a temperature of ~ 249 °C and was much more acidic

with measured pH (25 °C) of 2.3 (Seewald et al., 2006).

3. METHODS

3.1. Sample collection
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Hydrothermal fluid samples were collected in August and September 2006
during R/V Melville cruise MGLNO6MYV (Tivey et al., 2007) using discrete samplers
actuated by ROV Jason Il. Samples were collected in 755 ml Ti—syringes (“major”
samplers (Von Damm et al., 1985)) and 160 ml isobaric gas—tight samplers (“I1GT”
samplers (Seewald et al., 2002)). Fluid sampling was coordinated to represent the range
of fluid types identified at each vent field. In all cases, sampling of fluids in triplicate
was attempted to obtain replicate analyses for quality assurance and to enable
calculation of “endmember” fluid compositions. Temperatures were measured with
either the ROV temperature probe or with a thermocouple mounted directly onto IGT
fluid samplers. Because samples were taken during ROV dives, the location of fluid
samples and their relations to geologic samples are known accurately. In total, 101 fluid
samples were collected from 36 discrete vents.

Sample aliquots for chemical analysis were extracted immediately after recovery
of samplers following the end of dive operations. Splits of each fluid sample were
extracted for analysis of pH, gaseous species (e.g., H2S, H,, CO,, F) and major aqueous
species (e.g., Cl, Mg, Na, Ca, SOy, Si0;). Details of the chemical analysis for these
species are provided in a separate study (E. Reeves and J. Seewald, in prep). Aliquots
for metal analysis were also drawn from the samplers. These were collected in acid—
washed, high—density polyethylene (HDPE) Nalgene™ bottles and immediately
acidified to pH < 2 by addition of Fisher Optima"™ grade HCI.

3.2. Sample processing

Dissolved fractions were prepared for analysis by gravimetric dilution of a ~
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0.20 g split of each solution with Fisher Optima™ grade 5 % HNOs. For analysis of
alkali metals (Li, K, Rb, Cs), alkaline earth metals (Sr, Ba), Fe and Mn fluid aliquots
were diluted 5000 times. For analysis of trace elements (Al, Cu, Zn, Pb, Sb, Cd, Co, Ag
and Au), fluid aliquots were diluted, normalizing to a chloride concentration of 6
mmol/kg. This equated to between 80 and 110 times dilution of the original sample and
varied as a function of the chlorinity of the fluid. Normalization to uniform Cl
concentrations minimized the effect that variable analyte matrix (predominantly from
changes in Na™ concentration in the fluid) exerted on the ionization and transmission of
ions within the instrument. This enabled determination of trace elements without the
need for extensive chemical purification to remove the complex analyte matrix.
Differences in matrix composition resulting from other elements (e.g., different
concentrations of Ca®" and Mg”" among hydrothermal fluid samples) are significantly
less than differences in chlorinity (Na" and C1") and are assumed not to impact analyte
behavior in the instrument.

In nearly all fluid samples, a precipitate (“dregs” fraction) formed as the
hydrothermal fluid cooled prior to extraction. The dregs were collected on a 0.22 um
pore—size, 45 mm diameter Nylon filter by rinsing with Milli—Q water and high—purity
acetone. The Nylon filters were dried and stored in glass vials for on—shore processing.
In addition, minor precipitates formed within several acidified aliquots during storage
(“bottle—filter” fraction). These bottle—filter fractions were separated from aqueous
samples by filtering through 0.22 um pore—size, Nuclepore® filters as part of shore—

based sample processing. The relative proportions of dregs and bottle—filter fractions
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formed was variable among samples, likely related to the differences in time between
sample collection and shipboard extraction. In order to obtain accurate data for trace
metal concentrations (e.g., Fe, Cu, Zn, Pb) it is essential to reconstitute the original
sample by analyzing all dissolved, dregs and bottle—filter fractions (Trefry et al., 1994).
This is best achieved by separate determination of element concentrations in each
fraction followed by mathematical reconstitution of the fluid.

Particle fractions were removed from filters into acid—washed 30 ml Savillex™
vials by rinsing with 5 ml concentrated Fisher Optima™ grade HNOs. The vials were
sealed and heated overnight on a hot—plate (~ 70 °C) to digest particulates. The
resulting solutions were then evaporated to dryness. The acid digestion + evaporation
step was repeated a further two times to achieve complete dissolution of the
precipitates. The digested particles (dregs and bottle—filter fractions) were quantitatively
diluted (100 times) in 5% HNOj acid ready for analysis.

3.3. Analytical
3.3.1. Inductively couple plasma—mass spectrometry

Metal concentrations were determined by inductively coupled plasma—mass
spectrometry (ICP-MS) using a ThermoElectron Element2 instrument at Woods Hole
Oceanographic Institution. Metals were analyzed separately in the dissolved, dregs and
bottle—filter fractions. The mass scan setup for determination of major and minor
cations (5000 times diluted aliquots) was Li, 25Mg, 85Rb, 88Sr, 133Cs, 137Ba, 3¥Baq (low
resolution) and 27Al, >>Mn, 56Fe, 66Zn, 68Zn, 63Cu, %Cu (medium resolution) and K

(high resolution). The mass scan setup for determination of base metals and metlloids (~
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100 fold diluted aliquots) was "Li, *Co, '''Cd, '"*Cd, '**Cs, *"Ba, '’ Au, ***Pb (low
resolution) and 27Al, >>Mn, *°Fe, *Co, ©Cu, ®°Cu, °°Zn, ®*Zn, 107Ag, 1OgAg, me, 1238p,
17 Au (medium resolution). All samples were spiked with 1 ppb **Sc and '"°In internal
standards to correct for plasma fluctuations during analysis. Sample concentrations
were determined against a six—point linear calibration. The external multi—element
standard used for calibration was prepared from Specpure® plasma solutions. The
chlorinity (NaCl content) of the standard was the same as for unknown samples (i.e., Cl
= 6 mmol/kg) and concentrations of other elements in the standard (containing K, Li,
Rb, Cs, Mg, Ca, Sr, Ba, Al, Mn, Fe, Cu, Zn, Pb, Cd, Co, Ni, Mo, Sb, Ag, Au) reflected
the approximate distributions of these elements measured in seafloor hydrothermal
fluids. Accordingly, the difference in matrix composition between fluid samples and
standards was minimized as much as possible (see section 3.2). Bottom seawater
sampled several kilometers away from known areas of hydrothermal activity was
analyzed as an unknown sample. Baseline intensities were measured by aspirating a 5%
HNO; acid blank and used for off-line data reduction. External precision of the
analytical method determined by triplicate analysis of randomly selected fluids across
multiple analytical sessions was approximately 10 %.
3.3.2. Hydride generation—atomic fluorescence spectrometry

Total arsenic concentrations in vent fluids were determined using hydride
generation—atomic fluorescence spectrometry by Roy Price and Thomas Pichler
(University of South Florida Center for Water and Environmental Analysis). Complete

details on sample processing and analytical measurements are provided by Price and
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Pichler (2005). Briefly, undiluted aliquots of dissolved and particle fractions were
volumetrically mixed with solutions of concentrated HCI and saturated potassium
iodide (KI) to obtain final fluid samples containing 30 % HCl and 2 % KI. The
additions of HCI and KI were to quantitatively reduce As(V) to As(III) prior to analysis
on a PSAnalytical 10.055 Milliennium Excalibur AFS system.
3.4 Calculation of vent fluid compositions

Vent fluid compositions were determined by addition of the concentrations
determined in separate dissolved and particle fractions (Trefry et al., 1994). The fraction
of trace elements contributed by residual particles varied considerably, from less than 1
% to greater than 95 %, similar to that shown in previous studies (Trefry et al., 1994;
Metz and Trefry, 2000). Experimental studies have demonstrated quantitative removal
of seawater Mg during high—temperature interaction with basalt (Seyfried and Mottl,
1982; Seyfried, 1987) and the highest temperature (> 300 — 350 °C) black—smoker
hydrothermal fluids sampled from mid—ocean ridges typically contain close to zero Mg
(Edmond et al., 1982; Von Damm et al., 1985; Campbell et al., 1988; Butterfield et al.,
1994). When measured Mg concentrations are not zero, it reflects either the true Mg
concentration in vent fluid at the seafloor (e.g., resulting from sub—seafloor mixing
between zero—Mg hydrothermal fluid and seawater), or artifacts during sampling owing
to entrainment of seawater into hydrothermal fluid at the sampler snorkel. When
replicate vent fluid samples yield identical Mg concentrations, it can be assumed that
the quality of samples is good and that measured Mg concentrations reflect those of the

fluid exiting the vent orifice (at the seafloor).
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In this study, Mg concentrations are reported at the lowest measured values of
replicate fluids sampled from each vent orifice. Most sampled fluids exiting the seafloor
in the Manus Basin contain measurable Mg. The concentrations of other elements in
seafloor vent fluids are calculated by extrapolation of measured element concentrations
in replicate samples to the lowest measured Mg concentration, using least—squares
linear regression forced to pass through the composition of ambient seawater (Figure
4.2) (Von Damm, 1983). Vent fluid replicates characterized by anomalously low
concentrations were assumed not to have fully recovered residual precipitates. Fluid
samples with anomalously high trace metal concentrations were assumed to contain
entrained chimney particles. These data were not used for regressions.

Metal concentrations of “smoker fluids” (sampled from Vienna Woods,
PACMANUS and SuSu Knolls) are also reported by extrapolating data using least—
squares linear regression to zero Mg to obtain “endmember” fluid compositions (Von
Damm, 1983). The concept of a zero Mg, endmember hydrothermal fluid composition
is useful for understanding the processes occurring in the sub-seafloor (i.e., high-
temperature fluid-rock interaction) affecting the formation of high-temperature smoker
fluids, prior to mixing between hydrothermal fluid and seawater (at or close to the
seafloor). Reporting of endmember fluid compositions also allows for direct
composition of fluids sampled from different vent orifices.

In contrast, metal concentrations of “acid—sulfate” fluids (sampled from
DESMOS and SuSu Knolls) are not extrapolated to zero Mg. Acid—sulfate fluids

sampled in triplicate contain similar and consistently high Mg concentrations (> 24
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Figure 4.2. Concentrations of trace metals Fe, Zn and Cu in replicate fluids
samples from vent “RMR1” (Roman Ruins, PACMANUS hydrothermal system)
plotted versus Mg. Open and closed symbols denote fluid concentrations before
and after correction for residual precipitates, respectively. For some samples
complete recovery of metals from precipitates is not achieved and are excluded
from regressions (solid black line) used to determine ‘endmember’ (zero Mg)
concentrations.



mmol/kg), in contrast to high—temperature black smoker fluids that typically contain
little or no Mg (see also Gamo et al., 1997). It is unlikely that high Mg concentrations
are an artifact of seawater entrainment during vent fluid sampling because of the similar
Mg concentrations and extremely low pH of these fluids. The data suggest that acid—
sulfate fluids exiting the seafloor contain elevated Mg concentrations. Importantly, the
concept of an endmember acid-sulfate hydrothermal fluid does not necessarily apply.
There is no evidence to suggest that a zero Mg acid-sulfate fluid existed beneath the
seafloor because acid-sulfate fluids do not appear to have formed during reaction of
fresh crustal rocks with convecting seawater-derived hydrothermal fluids. Instead acid-

sulfate fluids (the implication are discussed in Section 5).

4, RESULTS

4.1. Trace metals and metalloids
4.1.1. Manganese, lron, Zinc and Copper
4.1.1.1. Vienna Woods

Endmember Mn (< 370 pumol/kg), Fe (< 170 umol/kg), Zn (< 35 pmol/kg) and
Cu (< 10 pmol/kg) concentrations of Vienna Woods vent fluids are low (Table 4.1a, b)
but within the range measured in vent fluids with similar temperature (273 — 285 °C)
and slightly acidic pH (4.2 — 4.7, at 25 °C) sampled from basalt-hosted mid—ocean
ridge vent fields (Von Damm et al., 1985; Butterfield and Massoth, 1994; Trefry et al.,

1994; Seyfried et al., 2003). Mn, Fe, Zn and Cu concentrations are low relative to those
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from other vent fields in the Manus Basin.
4.2.1.2. PACMANUS

Substantially higher endmember concentrations of Mn (1813 — 4600 pmol/kg),
Fe (70 — 14,400 pmol/kg), Zn (25 — 2970 pumol/kg) and Cu (6 — 800 pmol/kg) are
observed in vent fluids at PACMANUS relative to Vienna Woods (Table 4.1a, b; Figure
4.3). In general, endmember concentrations of Mn, Fe and Cu are highest in high
temperature black smoker fluids (295 — 358 °C) relative to lower—temperature fluids.
The exceptions are fluid samples SM2 (Satanic Mills) and RGR2 (Roger’s Ruins),
which have high concentrations of Cu (475 — 800 umol/kg) despite their relatively low
temperatures (241 °C and 274 °C, respectively). Endmember concentrations of Zn are
relatively uniform (~ 400 — 450 umol/kg) in high temperature black smoker fluids
sampled at all vent fields. Considerably higher Zn concentrations are measured in lower
temperature fluids (~ 270 — 280 °C) at Roman Ruins (RMR2, RMR3; up to 2970
pumol/kg) and Roger’s Ruins (RGR2; up to 566 pmol/kg). On a chloride—normalized
basis, endmember Mn concentrations show little scatter among sampled vent fluids. In
contrast, significant differences are still clear for Fe, Zn and Cu among sampled vent
fluids, both within and between different vent fields.
4.2.1.3. DESMOS and SuSu Knolls

Concentrations of Mn, Fe, Zn and Cu in high—temperature smoker fluids
sampled at SuSu Knolls vent fields are characterized by a high degree of variability
(Table 4.2a, b). The concentration of Mn, Fe, Zn and Cu in acid-sulfate fluids are

considerably different (Table 4.3). Endmember concentrations of Mn in smoker fluids
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from SuSu Knolls range from 265 — 550 pmol/kg (Table 4.2b), but on a chloride—
normalized basis are similar. Concentrations of Mn in acid—sulfate fluids from SuSu
Knolls and DESMOS (~ 26 — 201 umol/kg; Table 4.3) are lower than in smoker fluids.
The abundance of Mn in vent fluids at DESMOS and SuSu Knolls are significantly
lower than vent fluids at PACMANUS (Figure 4.3).

Endmember concentrations of Fe, Zn and Cu are low in most sampled Suzette
vent fluids (Fe =405 — 916 pmol/kg, Zn =22 — 35 umol/kg, Cu = 10 — 53 pmol/kg).
The exception is the low pH fluid sample SZ5, which has order of magnitude higher Fe
(4571 pmol/kg), Zn (340 pmol/kg) and Cu (1170 umol/kg) concentrations. In general
endmember Fe and Cu concentrations are higher in smoker fluids at North Su and South
Su relative to those from Suzette (up to 5858 umol/kg and 480 umol/kg, respectively).
At South Su, fluid sample SS1 has a higher endmember concentration of Cu (~ 390
pumol/kg) relative to other black smoker fluids, despite the lower temperature (271 °C)
of this fluid. Endmember Zn concentrations of high—temperature smoker fluids at North
Su and South Su (15 — 38 pmol/kg) are low and similar to vent fluids from Suzette.
Acid—sulfate fluids sampled from North Su and DESMOS have uniformly low
concentrations of Cu (4 — 14 pmol/kg). In contrast, and despite high Mg concentrations,
acid—sulfate fluids have high Zn (55 — 230 pmol/kg) and Fe (1627 — 12,400 pmol/kg)
concentrations relative to smoker fluids from SuSu Knolls (Table 4.3; Figure 4.3).
4.1.2. Lead, Cadmium, Cobalt, Silver and Gold
4.1.2.1. Vienna Woods

Endmember Pb (0.25 — 0.35 pmol/kg), Cd (< 60 nmol/kg), Co (< 45 nmol/kg)
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and Ag (< 40 nmol/kg) concentrations in Vienna Woods vent fluids are enriched
relative to seawater but are low relative to hydrothermal fluids sampled from other vent
fields in the Manus Basin (Table 4.1b; Figure 4.4). Concentrations of Au were below
the detection limit (~ 0.2 nmol/kg) of the analytical method.
4.1.2.2. PACMANUS

Concentrations of Co, Pb, Cd, Ag and Au are high in most PACMANUS vent
fluids relative to those of vent fluids from Vienna Woods and mid—ocean ridge
hydrothermal systems (Table 4.1a, b; Figure 4.4). Endmember Co concentrations are
highest (234 — 517 nmol/kg) in high temperature fluids (> 300 — 358 °C), and
significantly less (29 — 132 nmol/kg) in lower temperature fluids. The aqueous
distribution of Co is similar to Cu. Endmember Pb, Cd and Ag concentrations show a
narrow range of relatively high concentrations in the highest temperature fluids sampled
from PACMANUS vent fields (Pb =4 — 18 umol/kg, Cd = 440 — 720 nmol/kg, Ag =
124 — 290 nmol/kg). Significant enrichments of Pb (up to 137 pmol/kg), Cd (up to 4000
nmol/kg) and Ag (up to 3233 nmol/kg) are observed in lower temperature fluids from
Roman Ruins (RMR2 and RMR3) and Roger’s Ruins (RGR2; Table 4.1b), relative to
higher temperature fluids. The distributions of Pb, Cd and Ag are generally similar to
that of Zn. Endmember concentrations of Au are generally in the range 1 — 3 nmol/kg in
all PACMANUS vent fluids, although significantly higher concentrations of Au are
observed in low temperature fluids from Roger’s Ruins (RGR2; T =274 °C, Au=10.8
nmol/kg), Satanic Mills (SM2; T =241 °C, Au = 18 nmol/kg) and Snowcap (SC1; T =

152 °C, Au = 17 nmol/kg). Au enrichment of fluids from Roger’s Ruins and Snowcap
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are correlated with relative enrichments of Zn, Pb, Cd and Ag. High Au concentrations
in Satanic Mills vent fluids are not correlated with high concentrations of Zn, Pb, Cd
and Ag, but are correlated with high concentrations of As and Sb and fluoride (see
below).
4.1.3.2. DESMOS and SuSu Knolls

In sampled black/gray smoker fluids, endmember concentrations of Co range
from 28 — 173 nmol/kg in samples with temperatures below 300 °C, and from 230 —
2570 nmol/kg in samples with temperature above 300 °C (Table 4.2b). Endmember Co
concentrations are generally higher in SuSu Knolls vent fluids relative to those from
PACMANUS (Figure 4.4). In contrast, endmember concentrations of Pb (1.2 — 3.4
nmol/kg), Cd (80 — 125 nmol/kg), Ag (25 — 70 nmol/kg) and Au (1 — 4 nmol/kg) are
generally lower in SuSu Knolls vent fluids compared to those from PACMANUS. Fluid
sample SZS5 is different and has significantly higher endmember concentrations of Pb
(15.5 pmol/kg) , Cd (800 nmol/kg) and Ag (1400 nmol/kg; Table 4.2). Fluid sample
SS1 is also different, having somewhat elevated Ag (270 nmol/kg) and much higher Au
(17 nmol/kg) than other smoker fluids from SuSu Knolls.

Acid-sulfate fluids from DESMOS and North Su exhibit concentrations of Pb,
Cd, Ag and Au that are low relative to most black/gray smoker fluids from SuSu Knolls
and PACMANUS (Table 4.3). In contrast, Co concentrations are variable but
remarkably high (50 — 9630 nmol/kg) relative to most smoker fluids from all vent
fields.

4.1.3. Arsenic and Antimony
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4.1.3.1. Vienna Woods

Endmember As concentrations (0.4 — 0.9 pmol/kg) in fluids from Vienna Woods
are the lowest of all sampled fluids in the Manus Basin (Figure 4.4). Concentrations of
Sb exhibited significant scatter among replicate samples and the reproducibility of data
obtained was not better than 25 %; however, calculated endmember concentrations in
all Vienna Woods fluids are less than 30 nmol/kg.
4.1.3.2. PACMANUS

Endmember concentrations of As and Sb are high in vent fluids from
PACMANUS relative to fluids from Vienna Woods and to mid—ocean ridge
hydrothermal fluids (Von Damm et al., 1985; Trefry et al., 1994; Metz and Trefry,
2000). Endmember As and Sb concentrations of most high—temperature black/gray
smoker fluids sampled from PACMANUS are in the range ~ 10 to 20 umol/kg and 176
to 415 nmol/kg, respectively. High concentrations of As (up to 47.7 umol/kg) and Sb
(up to 5717 nmol/kg) are observed in lower temperature fluids from Roman Ruins and
Roger’s Ruins and are correlated with high concentrations of Zn. As is the case for Cu
and Au, the Satanic Mills sample SM2 is an exception, having a very high concentration
of both As (~ 110 pmol/kg) and Sb (2800 pmol/kg; Figure 4.4)
4.1.3.3. DESMOS and SuSu Knolls

In most black/gray smoker fluids sampled from SuSu Knolls, endmember As
(12 — 28 pumol/kg) and Sb (105 — 265 nmol/kg) concentrations are similar to those of
fluids from PACMANUS (Table 4.2b). Again, the exceptions are fluids SZ5 and SS1,

which exhibit considerable enrichments of both elements (As = 105 — 116 pmol/kg; Sb
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=750 — 13,000 nmol/kg; Table 4.2b, Figure 4.4), relative to other vent fluids

Acid-sulfate fluids from North Su and DESMOS have variable concentrations
of As (3.2 — 18.4 umol/kg) and Sb (< 163 nmol/kg) and there is no evidence of
systematically higher or lower concentrations of As or Sb in acid—sulfate fluids relative
to smoker fluids (Table 4.3).

4.2. Alkali metals

Endmember concentrations of alkali metals (Li, K, Rb and Cs) in black/gray
smoker fluids sampled at all vent fields in the Manus Basin are enriched by an order of
magnitude relative to seawater (Tables 4.1b and 4.2b). At Vienna Woods, endmember
concentrations of Li (1062 — 1157 pmol/kg), K (20.1 — 21.2 mmol/kg), Rb (17.0 — 18.4
pmol/kg) and Cs (259 — 290 nmol/kg) are relatively uniform and are comparable to
those of high—temperature vent fluids from unsedimented mid—ocean ridge
hydrothermal systems (Von Damm et al., 1985; Von Damm, 1990). The small amount
of variability in the concentrations of these species (Figure 4.5) is reduced when the
concentrations are normalized to chloride.

At PACMANUS, endmember Li (472 — 1308 umol/kg), K (34.7 — 95.7
mmol/kg), Rb (42.3 — 95.7 umol/kg) and Cs (1229 — 3306 nmol/kg) concentrations
show more variability among sampled smoker fluids and are quite different to alkali
concentrations of Vienna Woods fluids (Figure 4.5). This degree of variability is
eliminated when the alkali concentrations are normalized to chloride.

Endmember Li (622 — 900 umol/kg), K (48.0 — 64.5 mmol/kg), Rb, (48 — 65

umol/kg) and Cs (2025 — 2969 nmol/kg) concentrations of sampled smoker fluids at
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SuSu Knolls are slightly lower than at PACMANUS (Figure 4.5). After normalization
to chloride, it is apparent that alkali metal concentrations at SuSu Knolls fall on a
chemical trend that is distinct from PACMANUS. Alkali concentrations are low in
acid—sulfate fluids from DESMOS and SuSu Knolls and clearly different than smoker
fluids sampled from all vent fields in the Manus Basin (Figure 4.5). Except for fluid
sample NS4 (North Su), Li, Rb and Cs concentrations are elevated only slightly relative
to local seawater and K concentrations are lower than local seawater (Table 4.3; Figure
4.5). Fluid sample NS4 has a fluid composition that is intermediate between acid—
sulfate fluids and typical black smoker fluids.
4.3. Aluminum

In smoker fluids from Vienna Woods, PACMANUS and SuSu Knolls,
endmember Al concentrations are similar and with few exceptions are less than 10
umol/kg (Tables 4.1 and 4.2). This range is comparable to concentrations of dissolved
Al measured in high—temperature mid—ocean ridge fluids (Von Damm, 1983, 1990;
Seyfried et al., 2003). In contrast, acid—sulfate fluids sampled from DESMOS and North
Su have remarkably high concentrations of Al ranging from 150 to 1640 umol/kg

(Table 4.3).

5. DISCUSSION

5.1. Formation of seafloor hydrothermal fluids during fluid-rock interaction

Experimental studies have shown that metal enrichments in seafloor
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hydrothermal fluids from mid—ocean ridge spreading centers relative to seawater reflect
the removal of metals from crustal rocks during alteration of primary silicates at
elevated temperature and pressure (Bischoff and Dickson, 1975; Seyfried and Bischoff,
1977; Mottl and Holland, 1978; Mottl et al., 1979; Seyfried and Bischoff, 1981;
Seyfried and Janecky, 1985; Seewald and Seyfried, 1990). The concentrations of mobile
elements (such as Li, Rb, and to a lesser extent K) in seafloor hydrothermal fluids are
primarily controlled by their concentrations in unaltered crustal rocks, the extent of
previous rock alteration and the effective fluid/rock mass ratio (Mottl and Holland,
1978; Seyfried and Mottl, 1982; Seyfried et al., 1984). In contrast, concentrations of
base and precious (‘heavy’) metals (e.g., Mn, Fe, Zn, Cu) in seafloor hydrothermal
fluids are controlled by the aqueous solubility of these elements during fluid—rock
interaction and secondary mineral precipitation, and are affected by changes in
temperature, pressure and fluid composition (e.g., pH) in addition to primary rock
composition (Bischoff and Dickson, 1975; Mottl et al., 1979; Seyfried and Bischoff,
1981; Rosenbauer and Bischoff, 1983; Seyfried and Janecky, 1985; Seewald and
Seyfried, 1990).

The concentrations of alkali metals, alkaline earth metals and heavy metals and
metalloids in high—temperature smoker fluids and acid—sulfate fluids sampled from vent
fields in the Manus back—arc basin exhibit considerable differences. These differences
reflect, in part, the influence of changes in host-rock composition (ranging from matfic
(mid—ocean ridge—like) in the Manus Spreading Center to felsic (arc—like) in the Eastern

Manus Basin), differences in the extent of previous crustal rock alteration, and marked
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differences in the conditions (e.g., temperature, pressure, pH) of on—going fluid—rock
interactions.
5.1.1. Factors affecting the formation of high—temperature black/gray smoker fluids
Alkali concentrations in vent fluids from Vienna Woods are consistent with
interaction of circulating seawater and basalt at elevated temperatures and pressures.
Ratios of Rb/K, Cs/Rb and Rb/Li (Figure 4.6) are similar to average ratios of fresh
basalts erupted in the MSC (Sinton et al., 2003). Alkali ratios in Vienna Woods fluids
(Cs/Rb molar ratio ~ 15 x 10_3) are also similar to those from unsedimented mid—ocean
ridge hydrothermal systems (Cs/Rb molar ratio ~ 11 x 10°) where hydrothermal fluids
have interacted with basalt at depth (e.g., 21 °N East Pacific Rise (Von Damm et al.,
1985); 11 — 13 °N East Pacific Rise (Von Damm, 1990)). Based on the enrichments of
alkali metals relative to seawater and knowing the concentrations of the alkalis in
primary basalts ([Li] ~ 6 ppm, [Rb] ~ 2 ppm; Sinton et al. 2003), an effective water/rock
ratio (Seyfried and Mottl, 1982) of between 1 and 1.7 is calculated, indicating rock—
dominated conditions for the formation of Vienna Woods fluids. That the measured pH
(25 °C) of Vienna Woods fluids is mildly acidic (~ 4.2 — 4.7) is consistent, in part, with
equilibrium fluid-basalt interaction under rock—dominated conditions. At low
water/rock ratios, the acidity generated during uptake of Mg into secondary alteration
minerals (e.g., Mg—smectite and Mg—chlorite) is effectively titrated by exchange of H"
with Ca, Na and other cations during primary silicate hydrolysis (Seyfried and Bischoff,
1977; Seyfried and Mottl, 1982), thereby maintaining a relatively high fluid pH.

Experimental studies have also demonstrated that fluid pH is a sensitive function of the
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Figure 4.6. Concentrations of A) Rb versus K, B) Rb versus Cs, C) Rb versus Li
and D) Mn versus Li in seafloor vent fluids from the Vienna Woods, PACMANUS,
DESMOS and SuSu Knolls hydrothemal systems in the Manus Basin. Concentra-
tions of alkali metals in mid-ocean ridge hydrothermal fluids are indicated by gray
crosses; data from Palmer and Edmond (1989) and You et al. (1994). The shaded
gray areas show the ratios of these elements in basalt erupted in the Manus Spread-
ing Center ("mafic” line) and dacite/rhyolite erupted in the Eastern Manus Basin
("felsic” line); data from Sinton et al. (2003) and D. Niedermeier and W. Bach
(unpubl. data) . Symbols as given in Figure 4.3.
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temperature and pressure of fluid—rock interaction, with more acid fluids evolved at
higher temperatures (Seyfried and Mottl, 1982; Seewald and Seyfried, 1990). The
relatively high pH of Vienna Woods fluids relative to other hydrothermal fluids
interacting with basalt along unsedimented mid—ocean ridge spreading centers (see Von
Damm, 1990) likely reflects the combined effects of fluid—basalt interaction at lower
temperatures (< 400 °C) and rock—dominated conditions. Concentrations of heavy
metals (e.g., Mn, Fe, Cu, Zn, Pb) in Vienna Woods fluids are low relative to most high—
temperature (~ 300 °C) mid—ocean ridge black smoker fluids, reflecting the low
aqueous solubility of these metals as a result of moderate temperatures (~ 280 °C) and
high pH (Mottl et al., 1979; Rosenbauer and Bischoff, 1983; Seyfried and Janecky,
1985).

Alkali concentrations in high—temperature smoker fluids from PACMANUS and
SuSu Knolls in the Eastern Manus Basin are more consistent with fluid—rock interaction
with felsic crustal rocks having arc—like chemical affinity. Higher concentrations of
alkalis in PACMANUS and SuSu Knolls vent fluids relative to those from Vienna
Woods likely reflect the higher concentrations of these elements in felsic crustal rocks
erupted in the Eastern Manus Basin ([Li] ~ 10 ppm, [Rb] ~ 13 ppm; Sinton et al., 2003).
Effective water/rock ratios calculated for high—temperature smoker fluids at
PACMANUS and SuSu Knolls range from 1.5 to 2.5 and 2.2 to 3.5, respectively,
indicating rock—dominated conditions at these hydrothermal systems. Similarly,
elevated Cs/Rb and Rb/Li ratios in vent fluids from PACMANUS and SuSu Knolls

relative to those from Vienna Woods (Figure 4.6) are likely related to higher primary
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ratios in felsic crustal rocks (Sinton et al. 2003; D. Niedermeier and W. Bach, unpubl.
data). However, it is apparent that Cs/Rb ratios in seafloor hydrothermal fluids (Cs/Rb
molar ratio ~ 45 — 50 x 10) at SuSu Knolls (and to a lesser extent at PACMANUS) are
elevated relative to primary Cs/Rb ratios in fresh felsic crustal rocks (Cs/Rb molar ratio
~25—30x 10%) sampled in the Eastern Manus Basin (D. Niedermeier and W. Bach,
unpubl. data). The higher Cs/Rb ratios in sampled vent fluids may reflect the presence
of a more enriched crustal source that is interacting with circulating fluids. Possibly,
this may be weathered oceanic crust because low—temperature (~ 200 °C) fluid—rock
interaction results in the formation of secondary minerals with Cs/Rb ratios higher than
in primary igneous phases (e.g., Palmer and Edmond, 1989). Alternatively, fluids at
SuSu Knolls may have reacted with terrigenous sediments resulting in elevated Cs/Rb
ratios, similar to the high Cs/Rb ratios measured in seafloor vent fluids from sedimented
hydrothermal systems such as Guaymas Basin (Cs/Rb molar ratio ~ 70 — 105 x 107)
(e.g., You et al., 1994). Elevated thermogenic methane concentrations in SuSu Knolls
fluids support significant interaction with organic—bearing sediments that at this vent
system (Seewald et al., 2006; E. Reeves and J. Seewald, unpubl. data).

Heavy metal and metalloid concentrations in high—temperature smoker fluids
from PACMANUS are enriched by one to two orders of magnitude relative to those
from Vienna Woods. Heavy metal concentrations in high—temperature smoker fluids
from SuSu Knolls are similarly enriched, but to a lesser and more variable extent.
Considering that alkali metal distributions in high—temperature smoker fluids are

affected by interaction with crustal rocks of different composition, it is possible that
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heavy metal concentrations also reflect the influence of source composition. Higher
concentrations of some trace metals (e.g., Pb) and metalloids (e.g., As, Sb) in vent
fluids from PACMANUS and SuSu Knolls (in the Eastern Manus Basin) can be
correlated directly with considerable enrichments of these trace elements in
differentiated felsic rocks relative to mafic rocks (Stanton, 1994; Sinton et al., 2003).
Similar concentrations of Pb (up to 7 umol/kg) and As (up to 11 umol/kg) have been
measured in high temperature, low pH seafloor vent fluids from the felsic—hosted Vai
Lili hydrothermal system in the Lau back—arc basin (e.g., Fouquet et al., 1993a). The
high concentrations of Pb and As are inferred to reflect directly the influence of fluid
interaction with enriched felsic rocks (Fouquet et al., 1993a). However, higher
concentrations of most heavy metals (including Mn, Fe, Cu and Zn) in PACMANUS
and SuSu Knolls black fluids cannot be explained by higher contents of these elements
in felsic rocks (dacite and rhyolite) erupted in the Eastern Manus Basin relative to basalt
because their primary concentrations in basalt may exceed that of dacite and rhyolite
(c.f. Sinton et al., 2003).

The concentrations of most heavy metals (e.g., Mn, Fe, Cu, Zn, Cd, Co, Ag, Au)
appear to be solubility controlled and are therefore influenced by temperature, pressure
and fluid composition (e.g., pH) during mineral alteration and precipitation.
Endmember Mn concentrations in PACMANUS black smoker fluids up to 4 mmol/kg
and in SuSu Knolls black smoker fluids up to 500 umol/kg indicate temperatures of
fluid—rock interaction of 450 — 500 °C and 400 — 450 °C, respectively, based on

experimental results of basalt, dacite and rhyolite alteration at low water/rock ratios
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(Mottl et al., 1979; Hajash and Chandler, 1981; Seewald and Seyfried, 1990). The low
measured pH (25 °C) of high—temperature smoker fluids from PACMANUS (pH = 2.3
—2.8) and SuSu Knolls (pH = 2.6 — 3.8) relative to vent fluids from Vienna Woods
(Seewald et al., 2006) likely reflects, in part, the higher temperatures of fluid—rock
interaction inferred at PACMANUS and SuSu Knolls relative to Vienna Woods. While
higher temperatures during fluid-rock interaction result in higher aqueous metal
concentrations owing to differences in resultant pH (Mottl et al., 1979; Seewald and
Seyfried, 1990), the considerably lower fluid pH and higher metal concentrations in
vent fluids from PACMANUS and (to a lesser extent) SuSu Knolls vent fluids relative
to Vienna Woods do not appear to result only from difference in temperatures of crustal
rock alteration.

The measured pH of vent fluids from PACMANUS and SuSu Knolls are
significantly more acidic than the quench pH (25 °C) of hydrothermal fluids evolved
during equilibrium reaction between seawater and dacite or rhyolite (pH ~ 3.5 — 4.5) at
similar temperatures (400 — 500 °C) and water/rock ratios (w/r <5) (e.g., Hajash and
Chandler, 1981). These data suggest that other factors must be affecting the pH of
hydrothermal fluids in the Eastern Manus Basin. High—temperature smoker fluids
sampled from PACMANUS and SuSu Knolls show a range of elevated CO, (up to ~
300 mmol/kg) and fluoride concentrations (~ 65 — 527 umol/kg; in excess of local
seawater ~ 68 pmol/kg) relative to vent fluids from Vienna Woods (E. Reeves and J.
Seewald, unpubl. data). Volatile enrichments of this magnitude are consistent with there

being extensive degassing from underlying felsic magmas. Input of reactive magmatic
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acid volatile phases (i.e., HHO-HCI-CO,~HF-SO) into hydrothermal systems in the
Eastern Manus Basin (Douville, 1999; Seewald et al., 2006) is likely an important
process affecting the acidity of seafloor vent fluids at PACMANUS and SuSu Knolls.
The acidity contributed by the input of magmatic acid volatiles can significantly
increase the solubility of heavy metals during fluid—rock interaction, thereby likely
influencing the higher measured concentrations of these elements in seafloor
hydrothermal fluids in the Eastern Manus Basin. If acidity generation owing to input of
magmatic acid volatiles is important for the evolution of metal-rich hydrothermal
fluids, this places valuable constraints on the geologic environments in which precious
metal-rich mineral deposits can be expected to form. The occurrence of extensive
magmatic acid volatile input may be one reason why many economically important,
volcanogenic—hosted massive sulfide deposits preserved in the geologic record occur in
tectonic settings similar to modern submarine island—arc and back—arc basins (Franklin
et al., 1981; Sawkins, 1990; Hannington et al., 2005).
5.1.2. Evolution of low pH acid-sulfate fluids

Low concentrations of alkali metals in acid—sulfate fluids sampled at DESMOS
and SuSu Knolls (North Su vent field) are a key difference relative to neighboring black
smoker fluids from SuSu Knolls (Table 4.3; Figure 4.6). In contrast, acid—sulfate fluids
have concentrations of Mg (~ 24 — 51 mmol/kg) significantly higher than in typical
high—temperature smoker fluids. These fluids are characterized by a range of fluoride
and extremely high sulfate (up to 150 mmol/kg) concentrations, and despite the high

Mg concentration have a very low pH (25 °C) of less than 1.8 (E. Reeves and J.
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Seewald, unpubl. data). That concentrations of alkalis (and other major metals Ca®",
Sr*"; E. Reeves and J. Seewalf, unpubl. data) are depleted in acid—sulfate fluids relative
to ambient seawater suggests the absence of typical convective hydrothermal circulation
and a lack of interaction between seawater—derived fluids and fresh crustal rocks at
elevated temperatures and pressures. The compositions of acid—sulfate fluids are more
consistent with mixing between exsolved magmatic fluids (H,O-HCI-CO,~HF-SO,—
bearing) and seawater. The exceptionally low pH and high sulfate concentrations of
these fluids support the extensive input of magmatic SO, that disproportionates upon
condensation with water (e.g., Holland, 1965);

480, + 4H,0 — H,S + 3HSO, + 3H', or 4.1)

6SO; + 4H,0 —> 2S° + 4HSO, +4H" (4.2)
Aqueous sulfate in these fluids has an isotopic composition (8348504 ~+ 10 to + 17 %o;
W.C. Shanks III, unpubl. data) that is significantly lighter than seawater sulfate (~ + 21
%o; Rees et al. (1978)), which is consistent with disproportionation of magmatically—
derived SO; (e.g., Kusakabe et al., 2000).

The extremely low pH of acid—sulfate fluids indicates that there has not been
significant titration of acidity owing to hydrothermal fluid—rock interaction with fresh
crustal rocks. Low concentrations of fluid mobile elements, such as the alkalis, support
this. Instead, very high concentrations of Fe and relatively immobile metals, including
Al and the rare earth elements (see Chapter 2), suggest that very acid fluids containing
residual magmatic volatiles migrate through and interact with previously altered and

metal-depleted mineral assemblages. Measured Fe and Al concentrations are up to
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12,400 umol/kg and 1640 umol/kg, respectively. If these concentrations are
extrapolated to zero Mg, as is typically the case for high—temperature black smoker
fluids, then Fe and Al concentrations would be even higher, up to ~ 70 mmol/kg and 17
mmol/kg, respectively. The occurrence of advanced argillic alteration (alunite—
pyrophyllite—illite—quartz) and native sulfur in proximity to acid—sulfate discharges at
the seafloor at both DESMOS and SuSu Knolls (Binns et al., 1997; Gamo et al., 1997,
Auzende et al., 2000; Bach et al., 2007) is consistent is extreme metal leaching related
to extensive crustal rock alteration at very low pH, much less than 2 to 3 (Hemley and
Jones, 1964; Meyer and Hemley, 1967). In many respects, the chemical evolution of
acid—sulfate fluids at DESMOS and North Su (SuSu Knolls) is similar to that described
at continental epithermal hydrothermal systems where extensive acid alteration occurs
owing to degassing of magmatic volatile (H,O-HCI-CO,—SO,-bearing) fluids from
felsic magmas (Heald et al., 1987; Stoffregen, 1987).

The concentrations of heavy metals and metalloids in acid—sulfate fluids are
markedly different from high—temperature black/gray smoker fluids (Table 4.3).
Relative to neighboring high—temperature smoker fluids, acid—sulfate fluids from both
DESMOS and SuSu Knolls are significantly enriched in some metals (e.g., Fe, Co), but
are depleted in others (e.g., Cu, Sb, Ag, Au). In part, different heavy metal
concentrations in acid—sulfate fluids relative to smoker fluids reflect the very low pH
and lower temperature of these fluids, and their influence on aqueous metal solubility.
In addition, these differences must also affected by the markedly different compositions

of crustal rocks with which acid—sulfate fluids interact. Low concentrations of some
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heavy metals reflect that acid—sulfate fluids interact with previously altered crustal
rocks that have likely been variably depleted of primary metal enrichments. There is an
absence of typical high temperature and pressure interaction between convecting
hydrothermal fluid and fresh crustal rocks. The lack of an available trace metal
“reservoir” in extensively altered crustal rocks limits the potential for acid—sulfate fluids
to gain significant heavy metal enrichment. The influence this exerts on the capacity of
acid—sulfate fluids to form large metal-rich mineral deposits is not easy to assess.
5.2. Magmatic acid volatile degassing and metal input

The low pH and high concentrations of volatile species (e.g., CO», F) in
seafloor vent fluids from PACMANUS, DESMOS and SuSu Knolls relative to those
from Vienna Woods indicates that all vent fluids in the Eastern Manus Basin are
affected by degassing of magmatic acid volatiles, although the styles and compositions
of magmatic volatile input differ considerably (Gamo et al., 1997; Seewald et al., 2006).
The evidence presented suggests that magmatic acid volatile input affects the styles and
conditions of interaction between fluids and crustal rocks and the resulting solubility of
heavy metals. Studies of co—existing brine and low salinity, vapor inclusions preserved
in magmatic—hydrothermal Cu—Au-rich deposits have shown that more volatile
elements (e.g., Cu, Cd, Se, As and Au) can be partitioned and concentrated in low—
salinity fluids and segregated from refractory elements (e.g., Fe, Zn, Mn, Pb, Ag) that
are preferentially retained within more saline fluids (e.g., Audétat et al., 1998; Heinrich
et al., 1999; Ulrich et al., 1999; Baker et al., 2004). These observations are generally

supported by experimental data that predict higher vapor partition coefficients for Cu,
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As and Au relative to Fe, Zn, Ag and other refractory elements during separation of low
salinity vapors and high salinity brines. There are two distinct mechanisms through
which this fractionation can occur: (1) by exsolution of a low—salinity fluid phase (e.g.,
H,0-C0O,-H,S-S0,) from a silicate melt—vapor—brine—sulfide assemblage (i.e.,
magmatic acid volatile degassing) at near magmatic temperatures and pressures (Simon
et al., 2006, 2007) and, (2) by segregation of low— and high—salinity fluids during
aqueous phase separation (i.e., boiling or condensation) of rising high—temperature
hydrothermal fluids in the oceanic crust (Pokrovski et al., 2002; Pokrovski et al., 2008).
It has been proposed that degassing magmatic acid volatiles (pathway #1) can act as
agents for the direct transport of heavy metals from felsic magmas and may contribute a
significant source of precious metals in both sub—aerial and submarine hydrothermal
systems in convergent plate margins (e.g., Franklin et al., 1981; Hedenquist and
Lowenstern, 1994).

If degassing of magmatic acid volatiles provides a direct and significant source
of metals to seafloor hydrothermal systems, this should be most clearly expressed by the
enrichment of “volatile” metals in acid—sulfate fluids at DESMOS and SuSu Knolls.
Based on alkali metal data, these fluids appear not to have interacted with fresh crustal
rocks, which are the primary source for metal enrichments in most seafloor
hydrothermal fluids, but with extensively altered, metal-depleted mineral assemblages.
Accordingly, acid—sulfate fluids are likely to carry a significantly lesser signature of
heavy metal enrichment related to metal mobilization from crustal sources, which may

overprint direct magmatic contributions. Heavy metals that are most enriched in acid—
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sulfate fluids relative to high—temperature smoker fluids are Fe and Co, (and to a lesser
extent Zn and Pb), which are elements considered more refractory and less likely to
partition with an exsolved magmatic volatile fluid. In contrast, those elements
considered more volatile and that are considered likely to partition with exsolved
magmatic volatile fluids, including Cu, As, and Au, are generally depleted in acid—
sulfate fluids relative to neighboring black smoker fluids (Table 4.3). At face value, the
compositions of magmatic volatile-rich acid—sulfate fluids at DESMOS and SuSu
Knolls do not support a significant and direct contribution of heavy metals within
degassed magmatic acid volatile phases (c.f. Yang and Scott, 1996). Alternatively, it
can be speculated that “volatile” heavy metals have been removed from acid—sulfate
fluids resulting from temperature and pH controlled equilibrium sulfide precipitation
reactions. Owing to the low temperatures of acid—sulfate fluids, Cu—bearing sulfides
and sulfosalts are significantly less soluble (Crerar and Barnes, 1976; Barnes, 1979) and
may have precipitated much of the aqueous Cu shallow within the crust prior to fluid
discharge at the seafloor, thereby masking the fingerprints of a direct magmatic metal
contribution.

Although acid—sulfate fluids evolve from mixing of magmatic acid volatiles and
seawater, there are also smoker fluids that retain signatures of considerable magmatic
acid volatile input. Vent fluids from Satanic Mills (SM2) at PACMANUS and from
Suzette (SZ5) and South Su (SS1) at SuSu Knolls have low pH and the highest
concentrations of fluoride (> 380 — 527 umol/kg) relative to other smoker fluids

sampled from the Eastern Manus Basin (Tables 4.1 and 4.2). These fluids show
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consistent, and in some cases significant, enrichments of Cu, As, Sb and Au relative to
neighboring smoker fluids with lower fluoride concentrations (Figure 4.7). High metal
concentrations in fluoride—rich fluids may reflect vestiges of metals partitioned into
degassed magmatic acid volatile (H,O—HCI-CO,—~HF-SO,—bearing) phases, which
have subsequently intersected convecting high—temperature hydrothermal fluids. The
factors that should enable the transport of metals to the seafloor within magmatic acid
volatiles in fluoride—rich black smoker fluids, but apparently not in acid—sulfate fluids,
are not clear. These may be related to differences in temperature and fluid composition
(i.e., pH, availability of metal-complexing ligands) among these distinct fluid types
owing to different chemical evolution in oceanic crust. Clearly, further study is required
to assess the factors affecting both the compositions of magmatic acid volatiles during
migration through oceanic crust (e.g., decoupling between HF and SO,) and the
resulting aqueous mobility of heavy metals in these fluids.
5.3. Remobilization of previously deposited metal sulfides

Experimental studies have demonstrated that Mn is a good indicator of the
maximum temperatures of fluid—rock interaction in the reaction zone because of
sluggish kinetics for Mn precipitation (Seewald and Seyfried, 1990). Endmember
concentrations of Mn are similar among all high—temperature smoker fluids sampled
within each hydrothermal system (Figure 4.3), suggesting that the reaction zone
conditions influencing fluid—rock interaction at depth are similar, as also suggest by
similar endmember alkali concentrations within each hydrothermal system. However,

endmember concentrations of Fe, Cu, Zn and most other heavy metals and metalloids
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Figure 4.7. Concentrations of A) Cu versus F, B) Au versus F, C) As versus F, and D)
Sb versus fluid in seafloor black/gray smoker fluids sampled from the Manus Basin.
Measured temperatures of identified fluid samples are provided. Symbols as given in
Figure 4.3.
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show a considerable range of concentrations within the PACMANUS and SuSu Knolls
hydrothermal systems (Figures 4.3 and 4.4). This variability can be related to processes
other than interaction between circulating seawater and oceanic crust occurring on a
local scale. Specifically, differences in heavy metal abundances appear to reflect
localized sulfide mineralization and remobilization.

5.3.1. Magmatic volatile input, secondary acidity formation and metal remobilization
5.3.1.1. Acid-sulfate fluids

Pyrite is typically the most abundant sulfide associated with intermediate— and
advanced—argillic alteration (illite—kaolinite and alunite—illite—pyrophyllite—silica),
occurring predominantly as disseminated grains and veins within extensively altered
host—rocks (Heald et al., 1987; Stoffregen, 1987). Pyrite precipitated within this
environment is a product of reaction between H,S derived from magmatic SO,
disproportionation and Fe—bearing minerals within the host-rock. Although pyrite
precipitation likely occurs at greater depths beneath the seafloor within more reducing
fluids, disseminated and veined pyrite has been described in advanced—argillic
alteration assemblages at seafloor at both DESMOS and SuSu Knolls (Binns et al.,
1997; Gena et al., 2001; Bach et al., 2007).

While the considerable enrichment of Fe in acid—sulfate fluids can be largely
attributed to extensive dissolution of Fe—bearing minerals from crustal rocks, it is
possible that remobilization of pyrite may also contribute metals. Dissolution of pyrite
may explain the considerable enrichment of Co (up to ~ 10 pmol/kg) in acid—sulfate

fluids relative to black smoker fluids (Figure 4.4). Studies of seafloor massive sulfide
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deposits have shown that Co is predominantly associated with Fe— and Cu—Fe—sulfides
and occurs in pyrite at concentrations up to 0.5 wt % (Hannington et al., 1991; Tivey et
al., 1995), although Co concentrations in wall-rock pyrite at DESMOS and SuSu
Knolls are unknown. Minor enrichment of other metals (e.g., Zn, Pb) relative to high—
temperature smoker fluids may also reflect pyrite re—working because analyses of pyrite
grains have also demonstrated variable enrichment of Zn (< 0.07 — 0.93 wt%) and Pb
(up to 1 —4 wt%; see Chapter 5). The lack of H,S, which should accompany pyrite
dissolution, in acid—sulfate fluids is problematic, but may reflect oxidation of H,S. A
shift to more oxidizing conditions (i.e., SOs—dominant) can result from continued
degassing of SO, and alteration of crustal rocks that exhausts the capacity of the rock to
buffer H,S/SO,>, similar to supergene alteration processes described for continental
magmatic—hydrothermal processes (Giggenbach, 1997).
5.3.1.2. High—temperature smoker fluids

Variations in the concentrations of F and CO, in high—temperature smoker fluids
from the Manus Basin (e.g., Douville et al., 1999; Seewald et al., 2006) indicate that
magmatic acid volatile input does not affect equally the compositions of seafloor
hydrothermal fluids. It has been hypothesized that heavy metal (Cu, As, Sb and Au)
enrichments in low pH, fluoride-rich vent fluids (i.e., Suzette (SZ5), South Su (SS1)
and Satanic Mills (SM2)) may reflect metals contributed by transport within degassing
magmatic acid volatile phases (Section 5.2). Alternatively, varying enrichments of Cu,
As, Sb and Au (and Fe, Zn, Pb, Cd) in these fluids may reflect local remobilization of

previously deposited sulfide near the seafloor in response to the greater acidity that
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results from a greater contribution of magmatic acid volatile input to these fluids, for

example:
2H™ + ZnS — Zn*" + H,S (4.3)
(sphalerite)
7.5H" + Cuj2As4S13 + 17H,0 — (4.4)
(tennantite) 12Cu” + 4As(OH), + 12.75H,S + 0.25S0,*

Seafloor drilling operations at the Suzette vent field (Nautilus Minerals Inc., Media
Release 2007; http://www.nautilusminerals.com/i/pdf/2007-09—24 NR.pdf) indicates
the presence of a large copper-rich (chalcopyrite + tennantite + sphalerite) seafloor
massive sulfide deposit that could support extensive metal remobilization and re—
working.
5.3.2. Near—seafloor seawater entrainment, fluid mixing and metal sulfide re—working
At PACMANUES, the presence of abundant anhydrite at and beneath the seafloor
(see Chapter 3, and references therein) and discharge of smoker fluids at the seafloor
containing non—zero Mg and sulfate (E. Reeves and J. Seewald, pers. commun. 2007)
provides evidence for widespread sub—seafloor entrainment of seawater by ascending
hydrothermal fluids. Theoretical calculations that consider the effects of temperature
and pH changes on the solubilities of various Fe—, Cu—Fe— and Zn—sulfide minerals
demonstrate that sub—seafloor mixing between high—temperature hydrothermal fluids
and seawater can result in deposition of high—temperature Cu—Fe—sulfide, generation of
secondary acidity and the dissolution and re-working of previously deposited sulfide in

a process of zone refinement (Tivey et al., 1995). This process was first described at the
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TAG active mound, 26 °N Mid—Atlantic Ridge, and results in significant sub—seafloor
deposition of chalcopyrite, pyrite and anhydrite and remobilization of previously
deposited sphalerite (Edmond et al., 1995; Tivey et al., 1995). For example, deposition
of chalcopyrite,

2Cu" + 2Fe’" + 3.75H,S + 0.25S04” — 2CuFeS; + 5.5H" + H,0 (4.7)
results in acidity formation that can subsequently dissolve previously deposited
sphalerite (and/or wurtzite; Eqn 5). According to this process, mixed vent fluids should
exhibit lower concentrations of Cu, Fe and H,S, lower pH and, depending on the extent
of sphalerite or wurtzite remobilization, significant enrichment of Zn relative to
endmember vent fluids.

Based on similar criteria, there is consistent evidence to support sub—seafloor
fluid mixing and Fe— and Cu—Fe—sulfide precipitation accompanied by subsequent
remobilization and re—working of previously deposited sulfide at the Roman Ruins and
Roger’s Ruins (PACMANUS) vent fields (Figure 4.8). At Roman Ruins, mixed
hydrothermal fluids (RMR2; Table 4.2) contain significantly lesser Cu, Fe and H,S but
greater Zn relative to endmember black smoker fluids, consistent with the chalcopyrite
deposition and sphalerite dissolution described (Figure 4.8). Mixed hydrothermal fluids
contain significantly lesser Co relative to endmember black smoker fluids, likely
reflecting incorporation of Co into high—temperature sulfides (Hannington et al., 1991;
Tivey et al., 1995). In contrast, mixed fluids contain an order of magnitude higher Pb,
Cd, Ag, As and Sb concentrations relative to endmember black smoker fluids, which

can be explained by enrichment of these trace elements in sphalerite and other sulfides
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Figure 4.8. Correlation of A) Fe/Mn versus Mg, D) sulfide versus Mg, A) pH versus Mg, A)
Zn versus Mg for seafloor hydrothermal fluids from PACMANUS (Roman Ruins, Roger’s
Ruins and Fenway vent fields). Sub-seafloor mixing between endmember (zero Mg) hydro-
thermal fluid and seawater can result in precipitation of Fe- and Cu-Fe-sulfides (e.g., pyrite,
chalcopyrite) that lowers the Fe/Mn ratio, sulfide concentration and pH. The formation of
secondary acidity can remobilize previously deposited sulfide (e.g., sphalerite/wurtzite) as
shown by the increase in Zn concentration in mixed fluids with high Mg concentrations at
Roman Ruins (RMR2) and Roger’s Ruins (RGR2). On-going remobilization of previously
deposited sulfide is not clear at other vent fields.
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such as galena (PbS) (Hannington et al., 1991; Fouquet et al., 1993b; Koski et al., 1994;
Tivey et al., 1995) and subsequent remobilization of these elements during ZnS (+ PbS)
dissolution (Chapter 5).

At Roger’s Ruins, mixed hydrothermal fluids (RGR2; Table 4.2) also contain
lesser Fe and H,S, and higher Zn, Sb, Ag and Au relative to highest-temperature
endmember black smoker fluids from PACMANUS (e.g., RMR1, RGR2, F2, F3; Table
4.2). However, these fluids also contain high concentrations of Cu. Assuming removal
of Fe and H,S via deposition of pyrite (or chalcopyrite), requires remobilization of both
Zn— and Cu-bearing sulfides to account for elevated Zn and Cu in mixed hydrothermal
fluids. Enrichment of Zn in mixed hydrothermal fluid relative to endmember black
smoker fluids can be explained by dissolution of sphalerite. Mineralogical and
geochemical studies of seafloor vent deposits at PACMANUS and SuSu Knolls have
shown the presence of abundant Cu—sulfosalts including tennantite, tetrahedrite and
enargite (Binns and Scott, 1993; C. Yeats, pers. commun. 2007; see also Chapter 5). It
is possible that Cu enrichments reflect the remobilization of one or more of these
minerals. Remobilization of Cu—sulfosalts can also explain enrichment of Zn, Ag, As,
Sb and Au in these fluids, because geochemical analyses of sulfosalts have shown
significant enrichment of these elements in tennantite, tetrahedrite and enargite (C.

Yeats, pers. commun. 2007; see Chapter 5).

6. SUMMARY AND CONCLUSIONS
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Concentrations of heavy metals and metalloids (Fe, Mn, Zn, Cu, Cd, Pb, Co, Ag,
Au, As and Sb) in seafloor vent fluids from the Manus back—arc basin are affected by
deep—seated seawater—rock interaction, magmatic volatile input and near—seafloor
sulfide deposition and re—working. Vent fluid metal concentrations show considerable
differences among the different hydrothermal systems examined (Vienna Woods in the
Manus Spreading Center and PACMANUS, DESMOS and SuSu Knolls in the Eastern
Manus Basin), reflecting that these geochemical processes occur to differing extents at
each vent field.

Alkali concentrations in seafloor vent fluids at Vienna Woods are consistent
with fluid—rock interaction with fresh basalt. The pH (25 °C) of these vent fluids are
high (> 4.2) relative to most seafloor vent fluids suggesting seawater—rock interaction
under rock—dominated conditions (low water/rock ratio) and low temperatures (< 400
°C) (e.g., Seyfried and Bischoff, 1977; Hajash and Chandler, 1981; Seyfried and Mottl,
1982). Concentrations of heavy metals (e.g., Mn, Fe, Cu, Zn) are low in all Vienna
Woods fluids, reflecting the moderate temperature and mildly acidic pH of these. In the
Eastern Manus Basin, alkali and Mn concentrations in vent fluids from PACMANUS
and SuSu Knolls are consistent with interaction between circulating seawater and felsic
rocks with arc—like chemical affinities under rock dominated conditions and at high
temperatures (> 400 — 500 °C). The measured pH of these vent fluids is considerably
lower than that predicted by equilibrium reaction between seawater and dacite/rhyolite
at these conditions, consistent with input of magmatic acid volatiles (H,O—HCI-CO,—

HF-SO,) in the Eastern Manus Basin. Degassing of magmatic acid volatiles is further
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indicated by the high concentrations of fluoride and CO,. In general, heavy metal
concentrations are considerably higher in vent fluids from PACMANUS and SuSu
Knolls relative to those at Vienna Woods and mid—ocean ridges, reflecting the low pH
of these fluids and suggesting considerably greater metal solubility during seawater—
rock interaction affected by magmatic volatile degassing.

Low concentrations of alkali metals in acid—sulfate fluids at DESMOS and SuSu
Knolls are a key difference relative to high—temperature smoker fluids. The data do not
support interaction between seawater—derived convecting hydrothermal fluids and fresh
crustal rock. Acid—sulfate fluids appear to form from a magmatic vapor (i.e., H;O-HCI-
HF-S0,-CO0,) that mixed with seawater, and is interacting with extensively altered and
metal depleted rocks. This is consistent with the occurrence of advanced—argillic
alteration at DESMOS and SuSu Knolls. The range of heavy metal concentrations (e.g.,
high Fe and Co, low Cu, As and Sb) appear to reflect the influence of interaction with
extensively altered and trace metal depleted crustal rocks, but may also be related to
dissolution of previously deposited sulfide. In particular high concentrations of Fe and
Co may reflect dissolution of wall-rock pyrite that is commonly associated advanced—
argillic alteration (Heald et al., 1987; Stoffregen, 1987).

Dissolution and remobilization of previously deposited sulfide variably impacts
metal concentrations in smoker fluids sampled from PACMANUS and SuSu Knolls.
Two mechanisms for local remobilization and re-working of an existing sulfide deposit
are proposed. First, variable and locally greater contributions of magmatic acid volatiles

in some vent fluids having low pH and high concentrations of magmatic gas species can
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generate considerable fluid acidity. Local remobilization of previously deposited sulfide
near the seafloor can occur in response to the greater acidity that results from a greater
contribution of magmatic acid volatile input. Second, sub—seafloor mixing between
locally entrained seawater and rising high—temperature hydrothermal fluid can result in
a more acidic fluid, owing to the precipitation of high—temperature Cu—Fe— and Fe—
sulfides (e.g., chalcopyrite) as fluid temperature decreases. The secondary acidity can
then remobilize existing sulfides (in particular sphalerite and/or wurtzite), that are
sensitive to changes in fluid pH. On—going modification of the Roman Ruins and
Roger’s Ruins vent deposits at PACMANUS are similar to the zone refinement process
proposed for the TAG active mound, 26 °N Mid—Atlantic Ridge (Tivey et al., 1995).
From the data available, it does not appear that degassed magmatic acid volatiles
contribute a direct and significant source of ore—forming metals to hydrothermal
systems in the Eastern Manus Basin. Rather, magmatic acid volatile input primarily
contributes acidity, which enhances significant metal solubility during alteration of
crustal rocks (and possibly leaching of metal condensates trapped in vesicles (c.f. Yang
and Scott, 1996)). A better understanding of the processes affecting metal cycling in
seafloor hydrothermal systems in convergent plate margins is key to identifying the
processes responsible for the formation of many economically—important volcanogenic
massive sulfide deposits, because these deposits are thought to have been deposited

within arc environments (Franklin et al., 1981; Sawkins, 1990).
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CHAPTERS

Processes Affecting the Formation and Composition of Massive

Sulfide Vent Deposits in the Manus Basin, Papua New Guinea

1. INTRODUCTION

Many economically important, volcanogenic—hosted massive sulfide (VHMS)
deposits preserved in the geologic record are hosted by felsic rocks and occur in tectonic
settings similar to modern submarine island—arc or back—arc marginal basins (Franklin et al.,
1981; Ohmoto and Skinner, 1983; Sawkins, 1990; Hannington et al., 2005). It is the
consensus that such deposits formed on the seafloor as a result of metal sulfide precipitation
from high—temperature hydrothermal fluids, which gained at least some of their metal
inventory during interaction with underlying crustal rocks (Franklin et al., 1981; Ohmoto and
Skinner, 1983). Studies of actively—forming seafloor hydrothermal deposits in convergent
plate margins are therefore integral to understanding the processes relevant to formation of
these deposits. In particular, studies of active systems allow relations among source—rock
lithology and composition, fluid source, fluid composition and vent deposit composition to be
assessed, and the processes and conditions (e.g., temperature, pressure, pH, fO,—fS,) relevant

to the formation of metal-rich sulfide deposits investigated.
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This chapter discusses the processes controlling the chemical composition of actively—
forming hydrothermal sulfide deposits in the Manus back—arc basin. Vent deposits in the
Manus basin are ideal candidates for such a study because the seafloor hydrothermal fluids
from which the deposits are forming have been studied in detail (see Chapter 4). The
compositions of hydrothermal fluids (i.e., temperature, pH, [metals], [H,S]) are known to vary
significantly among the vent fields examined, reflecting different sub—seafloor processes of
hydrothermal fluid formation and circulation (see Chapter 4). Accordingly, differences in vent
deposit mineralogical and chemical composition and deposit morphology can be directly
compared to differences in vent fluid composition and conditions of metal—sulfide deposition
at these vent fields. This study provides further insight into the processes relevant to the
formation of ancient volcanogenic massive sulfide deposits associated with hydrothermal

activity in back—arc settings.

2. GEOLOGIC SETTING OF THE MANUS BASIN AND DESCRIPTION OF VENT DEPOSITS

The Manus Basin in the Bismarck Sea, Papua New Guinea (Figure 5.1) is a rapidly—
opening (~ 100 mm/yr) back—arc basin associated with subduction of the Solomon Microplate
beneath the New Britain arc (Taylor, 1979; Davies et al., 1987; Martinez and Taylor, 1996). A
complex history of plate deformation and rotation has resulted in a range of crustal spreading,
including eruption of new oceanic crust along the Manus Spreading Center (MSC) toward the
west and rapid extension and rifting of existing crust in the Eastern Manus Basin toward the
east. The MSC is bounded between the Willaumez and Djaul transform faults (Martinez and

Taylor, 1996) where new lavas with basalt compositions are erupted along a well-defined
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spreading axis (Both et al., 1986; Sinton et al., 2003). Several areas of hydrothermal activity
have been identified in the MSC (Figure 5.1a). Vienna Woods is the largest and most active
of the known fields and is located slightly south of the major spreading center within the axial
rift valley at a water depth of ~ 2500 m (Tufar, 1990).

To the east, EMB is bounded by the Djaul and Weitin transform faults (Martinez and
Taylor, 1996) where lavas are erupted as a series of en echelon neovolcanic ridges and
volcanic domes with felsic (andesite to rhyolite) composition (Sinton et al., 2003). The arc—
affinity of volcanic lavas (Sinton et al., 2003) is consistent with the proximal location (< 200
km) of the EMB to the actively subducting margin. The EMB hosts several known active
hydrothermal systems (Figure 5.1). The Papua New Guinea—Australia—Canada—Manus
(PACMANUS) hydrothermal complex is located on the crest of the 35 km long, 500 m high
Pual Ridge, between water depths of 1650 and 1740 m (Binns and Scott, 1993). The ridge is
constructed of several sub—horizontal lava flows with compositions ranging from andesite to
dacite (Binns and Scott, 1993; Sinton et al., 2003). The PACMANUS system hosts several
vent fields (Roman Ruins, Roger’s Ruins, Satanic Mills, Fenway, Snowcap and Tsukushi)
distributed over a 1 km long section of the Pual Ridge (Figure 5.1b) (Binns and Scott, 1993;
Tivey et al., 2007). Further to the east, SuSu Knolls is a series of three northwest trending
volcanic cones (Suzette, North Su and South Su; Figure 5.1c) at water depths between ~ 1140
and 1510 m (Binns et al., 1997; Auzende et al., 2000; Tivey et al., 2007). The North Su and
South Su domes are composed of abundant pyroclastic dacite showing variable advanced—
argillic alteration (alunite—illite—pyrophyllite—quartz and native sulfur) and sedimentation by
mixed volcaniclastic and hydrothermal material (Binns et al., 1997; Tivey et al., 2007). The

dome at Suzette is extensively coated in metalliferous sediment and massive sulfide talus that
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Figure 5.1. A) Regional tectonic setting of the Manus Basin indicating active plate motions
and rifting, and areas of known hydrothermal activity in the Manus Basin. B) Distribution of
known hydrothermal vent fields at PACMANUS. C) Known hydrothermal vent fields at
SuSu Knolls. Bathymetry based on EM300 SeaBeam sonar (modified from Tivey et al.,
2007).
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mask primary volcanic features (Binns et al., 1997; Tivey et al., 2007).
2.1. Hydrothermal activity and vent deposit compositions
2.1.1. Vienna Woods

Hydrothermal activity at Vienna Woods is manifest as both focused and diffuse flows
within an area of ~ 150 m by 100 m (Tufar, 1990; Tivey et al., 2007). The vent deposits at this
field are characterized by numerous, mostly inactive, columnar sulfide spires up to 8 m tall
that grow directly on the volcanic substrate (Figure 5.2a). The active sulfide chimneys
recovered are cylindrical conduits for focused high temperature, mildly acidic fluid discharge
(T up to 285 °C, pH (25 °C) ~ 4.2 — 4.7). The chimney deposits are notably zinc—rich but
copper—poor, with an average of ~ 20 — 25 wt% in Zn and < 2 wt% in Cu reported (Tufar,
1990; Lisitsyn et al., 1993). Relict sulfide deposits have been observed and sampled at three
other locations in the Manus Spreading Center, and have mineralogical compositions that are
also Zn-rich (Tufar, 1990).
2.1.2. PACMANUS

Hydrothermal activity occurs at several discrete vent fields (Roman Ruins, Roger’s
Ruins, Satanic Mills, Snowcap, Tsukushi and Fenway; Figure 5.1), each between 50 and 200
m in diameter (Binns and Scott, 1993; Binns et al., 2007; Tivey et al., 2007). There are
multiple styles of on—going seafloor vent fluid discharge. The Roman Ruins, Roger’s Ruins
and Satanic Mills vent fields consist of numerous large (up to 7 m tall) active and inactive
sulfide chimneys. Many have complex morphologies, including peripheral spires growing
around a central edifice. Several of these edifices form clusters of coalesced multi—spired
chimneys (Moss and Scott, 2001; Tivey et al., 2007). Active chimneys discharge focused

black—gray smoker fluids with a range of temperatures between 240 and 340 °C and low pH
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Figure 5.2. Jason Il photographs of relict and active vent deposits at hydrothermal
vent fields in the Manus Basin. (A) Approximately 5 m tall relict columnar chimney
from the Vienna Woods vent field (top of chimney removed by prior sampling). (B)
Contrasting venting characteristics of high-temperature black smoker fluids from
open conduit chimneys (background) and lower-temperature gray smoker fluids from
diffuser-type chimneys (foreground). From top of 3 m tall multi-spired, coalesced
chimneys at the Roman Ruins vent field (PACMANUS). (C) Vigorous black smoker
discharge from cracks and small open conduit orifices at the base of the black smoker
complex at the Fenway vent field (PACMANUS). Field of view ~ 2 m. (D) Lower-
temperature venting through multiple diffuser (“beehive”) chimneys at Roman Ruins
(PACMANUS). Field of view ~ 2 m. (E) Vigorous milky-white acid-sulfate fluid
discharge (pH < 2, at 25 °C) from brecciated and altered rocks at the North Su vent
field (SuSu Knolls). Field of view ~ 1.5 m. (F) Oxide-crusted sulfidic pavement (top
of frame) on top of brecciated hydrothermal sulfidic sediment at the Suzette vent
field (SuSu Knolls).
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(25 °C) between 2.3 and 2.7 (Seewald et al., 2006). Seafloor hydrothermal activity at the
Fenway mound consists of high—temperature (up to 358 °C) and acidic (pH (25 °C) ~2.3 —
2.8) black smoker discharge (Seewald et al., 2006) localized at a central ~ 10 m tall sulfide
chimney complex (Figure 5.2¢; Tivey et al., 2007). Substantial amounts of exposed massive
anhydrite and massive sulfide talus were observed and recovered at the base and lower flanks
of the black smoker complex (Tivey et al., 2007). The Snowcap vent field covers a volcanic
knoll composed of dacite that has been variably altered and bleached (Binns et al., 2007;
Tivey et al., 2007). Hydrothermal activity is limited to lower temperature fluid discharge (up
to 180 °C) through diffuser—type chimneys located on the southern reaches of the knoll.

The sulfide chimney deposits from PACMANUS exhibit a wide range of
mineralogical compositions, including a chalcopyrite + anhydrite (+ bornite) assemblage in
chimneys venting high—temperature (> 300 °C) black smoker fluids and a tennantite + bornite
+ sphalerite + barite (+ galena) assemblage in diffuser chimneys venting lower temperature (~
240 — 280 °C) gray smoker or clear fluids (Moss and Scott, 2001; Kim et al., 2004; Tivey et
al., 2006; Craddock et al., 2007). Both active and relict chimney deposits at PACMANUS are
enriched in Cu, Pb and Ba (average 8 wt% Cu, 1.5 wt% Pb, 7 wt% Ba and 22 wt% Zn (Moss
and Scott, 2001)) relative to those from Vienna Woods. The mineralogical composition of
chimney samples at PACMANUS is similar to that of massive sulfides recovered from felsic—
hosted hydrothermal systems in the Lau back—arc basin (Fouquet et al., 1993a).

2.1.3. SuSu Knolls

On—going hydrothermal activity at SuSu Knolls is remarkably diverse, exhibiting a

range of crustal rock alteration, mineral deposit composition and vent fluid compositions

(Binns et al., 1997; Yeats et al., 2000; Seewald et al., 2006; Bach et al., 2007). The summit of
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the North Su volcanic dome is characterized by high—temperature black and gray smoker
fluids venting from scattered sulfide chimney edifices (Binns et al., 1997; Auzende et al.,
2000; Tivey et al., 2007). Black smoker fluids at North Su, exiting primarily from multiple
open conduit chimneys within a large ~ 11 m tall sulfide complex (Tivey et al., 2007), have
temperatures between 300 and 325 °C and are relatively acidic with pH (25 °C) ranging from
2.8 to 3.2 (Seewald et al., 2006). Chimney deposits are located mostly on top of a convex
shield of mixed sulfide—sulfate (chalcopyrite—pyrite—anhydrite) cemented material. Relict
chimneys are observed in areas close to high—temperature black smoker fluid activity. The
flanks of the North Su dome are characterized by extensive discharges of milky—white acid—
sulfate fluids that have lower temperatures (48 — 241 °C) but very acidic pH (25°C) < 1.8
(Seewald et al., 2006). These fluids exit through cracks in hyaloclastite and altered breccia
(Figure 5.2e) (Bach et al., 2007; Tivey et al., 2007). Hydrothermal breccias are commonly
bleached, do not retain primary volcanic textures and are mixed with broken anhydrite
sediment, abundant native sulfur flows and contain interstitial veins of minor pyrite (Binns et
al., 1997; Bach et al., 2007).

The South Su dome is a crescent—shaped volcanic feature characterized by outcrops of
both fresh massive and variably altered volcanic (dacitic) rocks overlain by scattered, mostly
inactive sulfide chimney deposits and oxide—stained hydrothermal sediments (Tivey et al.,
2007). Altered material ranges from oxide—stained volcanic rock to more intensely bleached
breccia, similar to that recovered from the flanks of North Su. Present—day hydrothermal
activity occurs as black and gray smoker fluid discharge from scattered sulfide chimneys
located along the summit ridge of the South Su dome (Tivey et al., 2007). Fluid temperatures

are up to 290 °C and have moderately acidic pH (25 °C) approximately 2.6 (Seewald et al.,
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2006).

The smaller Suzette dome, located NW of North Su and South Su, is extensively
covered by thick metalliferous sediment, mass—wasted sulfide talus, Fe—oxide crusts and
limited exposures of possible hydrothermal stockwork (Binns et al., 1997; Moss and Scott,
2001; Hrischeva et al., 2007; Tivey et al., 2007). The summit is characterized by large
expanses of relict and scattered active sulfide chimneys that are typically buried within
sulfide—rich metalliferous sediment (Binns et al., 1997; Tivey et al., 2007). The temperatures
of hydrothermal fluids exiting from the tops of sulfide chimneys and from cracks in sulfide
crusts (Figure 5.2f) range from 226 — 303 °C and have mildly—to—moderately acid pH (25 °C)
between 2.3 and 3.8 (Seewald et al., 2006).

Sulfide mineralization at SuSu Knolls is generally Cu—rich and Zn—poor relative to
other seafloor vent deposits from PACMANUS and, in particular, Vienna Woods (Binns et
al., 1997; Kim et al., 2004; Craddock et al., 2007). Chimney deposits exhibit a range of
mineralogical composition ranging from a high—temperature chalcopyrite + anhydrite
assemblage (Figure 5.3c) to a lower temperature bornite + tennantite + barite (+ sphalerite +

galena) assemblage (Tivey et al., 2006; Craddock et al., 2007).

3. METHODS

3.1. Sample processing and analysis

All vent deposit samples were recovered from the seafloor by Remotely Operated

Vehicle (ROV Jason Il) during cruise MGLNO6MYV (R/V Meville, July — September, 2006),

allowing the relative locations of these samples at each vent field and relationship to present—
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Figure 5.3. Cross sections of chimneys sampled from vent fields in the Manus Basin.
A) Relict diffuser-type chimney from Vienna Woods, composed of a fine-grained
Zn-sulfide matrix (gray) hosting minor amounts of pyrite and chalcopyrite (yellow) that
are locally coarse-grained and form continuous rims around narrow channelways.
Amorphous silica is present as a major (~ 25 wt% Si0O,), late mineral (sample

J2 200 5 R1). B) Open conduit smoker from Roman Ruins (PACMANUS) with a
central channel enclosed by an inner monomineralic chalcopyrite layer (yellow) and
outer anhydrite-rich layer (light gray) and a thin exterior pyrite-marcasite and Fe-oxide
rim (sample J2 213 2 R1). C) Open conduit smoker from North Su (SuSu Knolls)
with two chalcopyrite-lined channelways coalesced by a fine-grained anhydrite-
chalcoyprite matrix (sample J2 223 1 R1). D) Tennantite-lined (purple-gray) chimney
from North Su (SuSu Knolls) with conduit infill of fine-grained tennantite and an outer
layer of mixed barite and fine-grained tennantite and pyrite (dark gray) (sample

J2 223 13 R1). Scale bar in figures is 1 cm.

222



day fluid activity to be determined. Sulfide-rich deposit samples were classified according to
morphology, macroscopic texture and mineral composition. Samples of all types were cut and
sub—sampled for petrographic, X—ray diffraction and geochemical studies. Mineral
identifications were made using X—ray diffraction. Petrographic analyses, including mineral
identification and textural interpretation, were made by examining singly—polished thin
sections (30 pm or 40 um) using reflected and transmitted light microscopy. Sphalerite and
wurtzite were distinguished based on grain isotropy in transmitted light under crossed nicols
and also by X-ray diffraction spectra.

Bulk geochemical analyses of all samples were performed by Activation Laboratories
Ltd, Ontario (ActLabs) or ALS Laboratory Group, Brisbane (ALS Chemex). At ActLabs,
concentrations of Cu, Pb, Mn, Cd, Ca, Sr and Ba were determined by inductively coupled
plasma—emission spectroscopy (ICP-ES) following acid digestion and concentrations of Fe,
Zn, Au, Ag, As, Sb, Co, Mo, Hg and Se were determined by instrumental neutron activation
analysis (INAA). At ALS Chemex, concentrations of Au were determined by fire assay and
atomic adsorption spectroscopy (AAS) and concentrations of Fe, Zn, Cu, Pb, Ag, As, Sb, Mn,
Cd, Co, Mo, Hg, Se, Ca, Sr, Ba and SiO; were determined by ICP—ES following acid
digestion. Quantitative analyses of trace elements in sulfide and sulfosalt grains (e.g.,
chalcopyrite, pyrite, sphalerite/wurtzite, tennantite) were carried out by electron probe micro—
analysis using a JEOL 733 Superprobe equipped with Tracer Northern software at
Massachusetts Institute of Technology (MIT). Natural and synthetic stoichiometric mineral
standards were used for S, Fe, Cu, Zn, As, Sb, Pb, Cd, Ag, Se and Co. Analyses were made
using an accelerating potential of 15 keV and a beam current of 10 nA. For analysis of Fe—

and Cu—Fe—sulfides and sulfosalts, counting times were 20 s (S), 60 s (Fe, Zn, Cu and Cd),
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120 s (Pb, As and Sb) and 180 s (Se, Co and Ag). For Zn— and Pb—sulfides, counting times
were 20 s (S), 60 s (Fe, Cu, Zn and Pb), 120 s (Cd and Sb) and 180 s (As, Ag, Se and Co).
3.2. Thermodynamic Calculations

Thermodynamic calculations were performed for Manus Basin vent fluid
compositions (see Chapter 4) to determine the equilibrium distribution of aqueous species and
pH at in situ temperature and pressure, the saturation state (log Q/K) of sulfide minerals at in
situ temperature and pressure, and the temperature at which various sulfides would be
saturated (log Q/K > 0) if the fluid cooled via conduction. Mineral precipitation was
suppressed during all calculations (see Tivey, 1995). Predicted mineral saturation states are
compared to observed mineral assemblages in paired vent deposit samples.

Calculations were carried out using the computer program EQ3/6 (Wolery, 1992;
Wolery and Daveler, 1992). The thermodynamic database used was generated by SUPCRT92
(Johnson et al., 1992), with thermodynamic properties of minerals, aqueous species and gases
calculated at 250 bars and a temperature range of 25 to 350 °C. Modifications to the
SUPCRT92 database included addition of aqueous species Na,SO4 and MgSO4 (McCollom
and Shock, 1997), HCl,q) (Sverjensky et al., 1991), and FeCly,q) and CuCl,q) at temperatures
above 300 °C (Ding and Seyfried, 1992). Thermodynamic properties for the mineral
tennantite taken from Knight (1977) were also added to the database. In the absence of
thermodynamic properties of tennantite at in situ pressure (250 bars), vapor saturation data up
to 350 °C were incorporated. The compositions of dissolved gases and major aqueous species
used in thermodynamic calculations are from E. Reeves and J. Seewald (unpubl. data) and the
compositions of dissolved trace metals are from Chapter 4. Activity diagrams to determine the

stability relationships among sulfide minerals at various temperatures and fluid compositions
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(e.g., aCu'/aH’, aF ez+/a2H+, fO,) were constructed using the thermodynamic data in

SUPCRT92 and Knight (1977) (Appendix E1).

4. MINERALOGY AND GEOCHEMISTRY OF SULFIDE DEPOSITS IN THE MANUS BASIN

The morphology of the highest temperature open conduit, lower temperature diffuser
and relict deposit samples are similar among all vent fields in the Manus Basin. However, the
mineral contents and textures of open conduit, diffuser and relict samples differ. The mineral
and chemical compositions of vent deposits in the Manus Basin exhibit some clear and
considerable differences relative to seafloor deposits at mid-ocean ridge spreading centers
4.1. Open conduit chimneys
4.1.1. Vienna Woods

The few open conduit smokers sampled at Vienna Woods are composed of an interior
lining of wurtzite with minor fine—grained chalcopyrite and trace pyrite, and an exterior layer
of mixed wurtzite and anhydrite, with minor pyrite. Wurtzite in the interior layer forms
coarse—grained (~ 1 mm) euhedral, hexagonal aggregates. Chalcopyrite occurs in minor
amounts as fine—grained triangular inclusions (< 50 — 100 um) along crystallographic
boundaries in most wurtzite and in lesser amounts as subhedral grains (up to 250 pm)
interstitial to wurtzite aggregates (Figure 5.4a). Euhedral chalcopyrite is present in one sample
lining a ~ 1 cm” area of the interior conduit. Subhedral grains of chalcopyrite contain
inclusions of fine—grained (most < 50 um) euhedral pyrite. Wurtzite is honey-red in color
when viewed in transmitted light (40 um thick polished section; Figure 5.4b). The exterior

layer is characterized by intergrowths of fine—grained wurtzite and tabular anhydrite (~100
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Figure 5.4. Photomicrographs of chimney samples from the Manus Basin. (A) Sample
J2_207_1 R1 (Vienna Woods). Coarse-grained wurtzite (Wtz) and chalcopyrite (Cpy)
lining high-temperature (285 °C) open conduit chimney typical of deposits at Vienna
Woods. Common fine-grained inclusions of chalcopyrite are intergrown with or exsolved
from wurtzite along crystallographic boundaries of wurtzite grains. (B) Sample
J2_207_1 R1 (Vienna Woods). Cross-section through hexagonal platelets of wurtzite
showing deep-red color, indicating elevated FeS content (6 — 7 mol% FeS) in ZnS.
Transmitted light. (C) Sample J2_213 6 R1 (Roger’s Ruins). Coarse-grained
monomineralic chalcopyrite lining of high-temperature (320 °C) open conduit chimneys.
(D) Sample J2_213_6_R1 (Roger’s Ruins). Boundary between interior lining of
monomineralic chalcopyrite and outer chimney wall layer of fine-grained tabular
anhydrite (Anh) and anhedral and dendritic sphalerite (Sph). Trace amounts of bornite
(Bn) are present at the outer edge of the chalcopyrite lining in some open conduit
chimneys. (E) Sample J2_223 13 R1 (North Su). Interior monomineralic lining of
coarse-grained tennantite (Tn) from low temperature (~ 212 °C) smoker. Trace amounts
of acicular barite is plated on tennantite. (F) Sample J2_222 1 R1 (Roger’s Ruins).
Interior portion of active (274 °C) diffuser-type chimney. Anhedral sphalerite and tabular
barite (Ba) present in exterior portions of diffuser chimneys at Roman Ruins and Roger’s
Ruins, succeeded toward interior portions of chimney walls by bornite (often rimmed by
chalcopyrite) and tennantite. (G) Sample J2_208 2R3 (Roman Ruins). Interior portion
of active (272 °C) diffuser-type chimney. Dendritic low-Fe sphalerite forming a porous
chimney framework that is plated by euhedral galena projecting into cavities and
rimming micro-channels. (H) Sample J2_209_6_R1 (Satanic Mills). Cu-Fe-sulfide
(chalcopyrite + bornite) rich lining around micro-channels from interior portions of
diffuser type chimneys from the Satanic Mills vent field. (I) Sample J2_209 6 R1.
Active 249 °C diffuser chimney. At Satanic Mills, Snowcap and Fenway vent fields, Zn-
sulfide occurs only in trace-to-minor amounts in most sampled diffuser chimneys, as
fine-grained dendrites of low-Fe sphalerite intergrown with fine-grained tabular barite in
exterior portions of more massive diffuser chimney walls. (J) Sample J2_224 6 R1
(South Su). Cu-Fe-sulfide (bornite + chalcopyrite) and Cu-As-sulfosalt (tennantite)
dominate the interior portions of most diffuser vent deposit samples recovered from SuSu
Knolls vent fields. (K) Sample J2_226 2 R1 (Suzette) is different to most diffuser
chimney samples from SuSu Knolls, being characterized by a high modal abundance of
sphalerite, intergrown with tabular barite and plated by trace amounts of tennantite and
rare fine-grained chalcopyrite around micro-channels through which fluid flow is likely
focused. (L) Sample J2_210_1_R1 (Snowcap). Relic chimney exhibiting mineral textures
and composition similar to active diffuser chimneys. Interior portions of relic chimneys at
Satanic Mills, Snowcap and Fenway vent fields are mostly characterized by intergrown
bornite, lesser chalcopyrite and tennantite, succeeded toward exterior chimney wall
sections by fine-grained dendritic low-Fe sphalerite and minor amounts of fine-grained
tabular barite.

<<
-
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pum). Minor amounts of subhedral fine—grained pyrite (< 40 um) are disseminated within this
layer, and in places colloform pyrite forms a discontinuous rim (< 200 pm thick) on the
exterior of the chimney wall.

The mineralogy of Vienna Woods open conduit smokers is dominated by wurtzite, as
reflected by modal mineral proportions calculated from bulk geochemical data (Table 5.1;
Figure 5.5). Anhydrite is common, particularly in immature chimneys. Pyrite, chalcopyrite
and barite are present only in trace—to—minor amounts. Galena is absent or present only in
very trace amounts. Bulk chemical analyses of open conduit smokers show variable
concentrations of Cd and low concentrations of Ag, Au, As, Sb, Mo, Co and Se (Figure 5.6).
Electron microprobe analyses of active chimney samples document measurable Cd and Pb in
wurtzite (Appendix E2). The Fe content of wurtzite in active samples is 3.2 to 4.2 wt % (6.1 —
7.3 mole % FeS). Chalcopyrite and pyrite grains in the same samples contain varying
concentrations of Zn and Pb, while concentration of Ag, Sb, As, Se and Co are below
detection in all grains analyzed (Figure 5.7; Appendix E2).

4.1.2. PACMANUS

The majority of open conduit chimneys at PACMANUS are lined with chalcopyrite
and exhibit an exterior layer of anhydrite mixed with varying amounts of sulfides (Figure
5.3). Monomineralic chalcopyrite lining the open conduits is consolidated with grain size up
to 1 mm (Figure 5.4c). Trace amounts of bornite are present in some samples rimming
chalcopyrite at the boundary between the chalcopyrite lining and anhydrite—dominated layer
(Figure 5.4d). The contact between the interior lining and exterior layer is sharp in most
samples with only a thin (< I mm) mid-layer of mixed fine—grained chalcopyrite and

anhydrite. Anhydrite in the outer layer is coarse—grained and tabular (> 500 um, increasing
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amounts of disseminated, fine—grained (< 50 — 100 pm) subhedral galena and pyrite.

Modal mineral abundances of diffuser chimneys as calculated from bulk geochemical
analyses are consistent with polished section mineral identification. Diffuser chimneys
recovered from PACMANUS have higher concentrations of Zn and Ba and lower
concentrations of Cu relative to high—temperature open conduit chimneys (Figure 5.5). They
also exhibit higher concentrations of Pb, Cd, As, Sb, Ag and Au and lower concentrations of
Co, Se and Mo relative to open conduit chimneys (Table 5.2, Figure 5.6). Diffuser chimneys
show higher concentrations of Zn, Pb, Cd, Sb and Ag in samples from Roman Ruins and
Roger’s Ruins relative to those from other PACMANUS (Satanic Mills, Fenway and
Snowcap) vent fluids (Figures 5.5 and 5.6). Overall, diffuser chimneys from PACMANUS are
enriched in Cu, As and Pb (occurring as bornite, tennantite and galena) relative to low—
temperature chimney deposits from mid-ocean ridge spreading centers (see Hannington et al.,
1991).

Electron microprobe analyses document measurable Cu, Pb and Cd in sphalerite in
diffusers from all PACMANUS vent fields, and rarely of Ag, As and Sb in sphalerite from
Roman Ruins and Roger’s Ruins (Figure 5.7; Appendix E2). The Fe content of sphalerite is
low (< 0.1 — 1.3 mol % FeS). At Roman Ruins and Roger’s Ruins, electron microprobe
analyses also document measurable concentrations of Zn, Pb, Ag and rarely of As in
chalcopyrite, of Zn, Pb and Ag in bornite, and more variable concentrations of Zn, Cd, Ag, Sb
and Cu in galena. At Satanic Mills, Snowcap and Fenway, electron microprobe analyses
document the presence of Pb and rarely of Zn, As and Ag (in one or two grains) in
chalcopyrite, of Zn, Pb and Ag in bornite, of Sb, Fe, Zn, Pb and Ag in tennantite, of Pb, Zn,

As and rarely of Ag in pyrite, and of Zn and Cd in galena (Figure 5.7; Appendix E2).
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with thickness of layer). At Roman Ruins and Roger’s Ruins, colloform and dendritic
sphalerite (up to 600 um in length) and trace amounts of fine—grained pyrite (< 100 um) are
intergrown with anhydrite. At Satanic Mills and Fenway, subhedral bornite (+ covellite)
typically 200 — 300 um in size are intergrown with anhydrite. Sphalerite is absent or present
in only trace amounts in open conduit samples from Satanic Mills and Fenway. At all vent
fields, a thin (~ 50 — 200 pm) discontinuous rim of colloform pyrite and/or marcasite and
trace amounts of X—ray amorphous Fe—oxyhydroxide dendrites are present at the exterior of
the chimney wall of some samples.

Bulk geochemical analyses of open conduit chimneys are consistent with observed
mineral compositions (Table 5.1; Figure 5.5). Relative to open conduit samples from Vienna
Woods, those from Roman Ruins and Rogers Ruins are enriched in Cu, Sb, Pb, Ag and Au
but depleted in Zn and Cd, and those from Satanic Mills and Fenway are enriched in Cu, Co,
Se, Sb and Au, but depleted in Zn, Cd and Ag. On average, Roman Ruins and Roger’s Ruins
samples are enriched in Zn, Pb, Cd, Ag and depleted in Co and Se relative to Satanic Mills
and Fenway samples (Figure 5.6). Electron microprobe analyses show variable concentrations
of Zn and Pb in chalcopyrite at Roman Ruins and Roger’s Ruins and also of Se in
chalcopyrite at Satanic Mills and Fenway. Within chalcopyrite, Se is present only in grains
lining the highest—temperature conduits, whereas Zn and Pb are more abundant in grains
toward the outer edge of the interior lining. Electron microprobe analyses also document
measurable but variable concentrations of Pb, Cd, As, Sb and Ag in sphalerite, of Pb in
bornite and of Zn, Pb and As in pyrite/marcasite in exterior sections (Figure 5.7; Appendix
E2).

4.1.3. SuSu Knolls
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Open conduit chimneys recovered from SuSu Knolls are similar to those from
PACMANUS being composed of an interior lining of consolidated chalcopyrite and an
exterior anhydrite—dominated layer (Figure 5.3). Rarely bornite and covellite are present
rimming chalcopyrite at the boundary with the outer anhydrite—dominated layer. Anhydrite in
the outer layer is intergrown with minor amounts of barite and sulfide minerals,
predominantly fine—grained chalcopyrite and bornite and lesser pyrite. Sphalerite and galena
are absent or present only in trace amounts. In some samples, trace—to—minor amounts of
fine—grained tennantite (Cu—As—sulfosalt) are present in exterior sections of open conduit
samples.

Bulk chemical analyses are consistent with modal mineral abundances dominated by
chalcopyrite and anhydrite with lesser barite and trace tennantite (Table 5.2, Figure 5.5). They
document enrichments of Mo, Co, Se and Sb relative to open conduit chimneys from other
vent fields. Bulk concentrations of Zn, Pb, Cd and Ag are low relative to open conduit
chimneys from PACMANUS, in particular Roman Ruins and Roger’s Ruins (Table 5.2,
Figure 5.6). Electron microprobe analyses document measurable Se in chalcopyrite, Zn and
Pb in bornite and Fe, Zn and Sb in tennantite (Figure 5.7; Appendix E2).

4.2. Diffuser Smokers
4.2.1. Vienna Woods

Active diffuser smokers were not recovered from Vienna Woods. The morphology
and composition of relict diffuser—type chimneys sampled from this vent field are discussed
below (Section 4.3.1.)

4.2.2. PACMANUS

Examination of polished sections reveals that diffuser smokers at Roman Ruins and
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Roger’s Ruins are composed of a porous exterior framework of dendritic and anhedral
sphalerite, intergrown with minor amounts of barite. In most sections examined, anhydrite is
absent or present only in trace amounts. Galena is a trace—to—minor constituent of these
chimneys, occurring as fine—grained disseminated euhedral grains in outer portions of walls.
Sphalerite is over—plated by sulfide minerals within interior portions of chimneys,
predominantly by subhedral grains (~ 200 to 250 um) of bornite, covellite and trace
chalcopyrite that form rims around anastomosing micro—channels (Figure 5.4f). In one section
(J2-208-2-R3, Roman Ruins), galena is abundant (~ 33 wt % Pb) and forms consolidated
aggregates up to 400 — 500 um around narrow micro—channels (Figure 5.4g).

Examination of polished sections of diffusers from Satanic Mills, Snowcap and
Fenway reveals that they are characterized by thick chimney walls composed of a porous
framework of fine—grained Cu—Fe—sulfide (bornite + chalcopyrite), with minor tennantite and
sphalerite, intergrown with minor amounts of barite laths in exterior portions of chimneys
walls. Cu—Fe—sulfides are most abundant in interior portions of chimneys, locally forming
rims up to 200 to 250 pm thick around numerous tortuous micro—channels (Figure 5.4h).
Bornite is rimmed by chalcopyrite, and in places exsolved with chalcopyrite. Bornite is also
intergrown and rimmed with trace amounts of covellite, chalcocite and digenite in some
samples, particularly at the exterior of Cu—Fe—sulfide dominated inner portions. Tennantite is
present in minor amounts as fine—grained subhedral grains (< 20 — 140 um) disseminated
within subhedral bornite distal from fluid conduits. Sphalerite is limited to exterior layers of
chimney walls where Cu—Fe—sulfides are absent or present only in trace amounts. Sphalerite
forms small dendrites (< 100 pm to 300 um in length) that are over—grown by later colloform

Fe—poor sphalerite (Figure 5.41). Interstices between sphalerite dendrites contain trace
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4.2.3. SuSu Knolls

In general, diffuser smokers recovered from SuSu Knolls are composed of a thick
outer chimney wall of fine-to—-medium grained (~ 200 — 250 um) subhedral Cu—Fe—sulfide
(as bornite and lesser chalcopyrite) and minor Cu—As—sulfosalt (tennantite), intergrown with
minor amounts of acicular barite laths (mostly <300 pum in length; Figure 5.4j). Sphalerite is
present only in minor amounts and galena present in only trace amounts in most diffuser
samples. In some samples, sphalerite and galena are absent entirely. In larger samples,
tennantite and, to a lesser extent, bornite form consolidated thin rims around anastomosing
channelways in interior portions of diffusers. At SuSu Knolls, only one active lower—
temperature (249 °C) sample (J2-226—2-R1, Suzette) forming at the cusp of a sulfide-rich
crust or pavement contains significant sphalerite. The sample is composed predominantly of
dendritic low—Fe sphalerite intergrown with minor acicular barite (Figure 5.4k). Sphalerite in
interior portions of sample is over—plated by trace amounts of tennantite and sphalerite in
outer portions contains disseminated fine—grained euhedral galena.

Bulk chemical analyses show that, on average, diffuser chimneys at SuSu Knolls are
Cu— and Ba-rich and Zn— and Pb—poor relative to those from PACMANUS (Roman Ruins
and Roger’s Ruins) and contain variable As (Figure 5.5). Bulk chemical analyses show
variable concentrations of Se, Co, Mo and Sb, but low concentrations of Cd, Ag and Au
(Table 5.2; Figure 5.6). Sample J2-226—2-R1 exhibits high concentrations of Zn, Pb, Cd and
Ag, and low concentrations of Cu, Co, Se, As and Sb relative to other SuSu Knolls diffuser
samples. Electron microprobe analyses document measurable concentrations of Pb and rarely
of Zn, As, Sb and Ag in chalcopyrite, of Zn and Ag in bornite and of Fe, Sb, Zn, Pb and Ag in

tennantite. Electron microprobe analyses also document the presence of Pb, Cd and, in some
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grains, of Cu, As, Sb and Ag in sphalerite, and variable concentrations of Zn and Cd in galena
(Figure 5.7; Appendix E2).

4.3. Relict Chimneys

4.3.1. Vienna Woods

As presented in hand specimen, most relict chimney structures comprise a porous
framework of Zn—sulfide (sphalerite and wurtzite) forming thick walls containing multiple
tortuous micro—channels typically < 5 mm in diameter (Figure 5.3). These channelways are
commonly lined by thin (mostly < I mm) layers of pyrite or chalcopyrite that, in turn, may
also be enclosed in Zn—sulfide, the hexagonal crystal habit of which indicates likely wurtzite
in some samples. Chalcopyrite and pyrite are present in lesser amounts in the Zn—sulfide
matrix away from obvious channelways. Anhydrite and barite are absent in most relict
chimneys, or occur in only trace amounts. X—ray amorphous silica is common. Polished
sections are not available for relict chimneys sampled from Vienna Woods and so
unambiguous identification of sulfide and other minerals, and of textural and paragenetic
relationships among minerals, is precluded. These samples appear similar in morphology and
mineralogy to Zn—rich chimneys forming from lower—temperature (< 280 °C) white smoker
fluids sampled at the Cleft Segment, Juan de Fuca Ridge (Koski et al., 1984; Koski et al.,
1994) and TAG active mound, 26 °N Mid-Atlantic Ridge (Tivey et al., 1995).

Bulk chemical and XRD analyses are consistent with mineralogical compositions
dominated by sphalerite and/or wurtzite, lesser amounts of pyrite and/or marcasite and
amorphous silica, and trace amounts of chalcopyrite, galena, anhydrite and barite (Table 5.1;
Figure 5.5). Bulk geochemical analyses show lower concentrations of Pb, Co, Se, As, Sb and

Au in relict chimneys from Vienna Woods relative to relict and diffuser chimney deposits
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from PACMANUS and SuSu Knolls (Table 5.1, Figure 5.6). Relative to high—temperature
open conduit chimneys recovered from Vienna Woods, concentrations of Pb, Ag, As, Sb and
Au are higher and concentrations of Co and Se lower in relict deposits (Figure 5.5 and 5.6).
4.3.2. PACMANUS

In general, the morphology and composition of relict deposits at PACMANUS are
similar to active diffuser smokers recovered from the same vent field (Section 4.2.2.). At
Roman Ruins and Roger’s Ruins, most relict chimneys are composed of an exterior wall of
dendritic and colloform sphalerite intergrown with minor amounts of barite laths (200 — 400
um in length) and containing trace amounts of disseminated fine—grained (< 100 um)
euhedral galena. Minor amounts of Cu—Fe—sulfides (bornite + chalcopyrite + covellite £
chalcocite) are present in interior portions of relict chimneys, in places forming rims around
former micro—channels for fluid flow. Bulk chemical analyses are consistent with modal
mineral assemblages dominated by sphalerite and/or wurtzite, minor Cu—Fe—sulfides and
barite, and trace galena (Table 5.2; Figure 5.5). Concentrations of As, Sb, Cd, Ag and Au are
similar in relict samples relative to active diffuser samples, but high relative to active open
conduit smokers (Figure 5.6). In contrast, concentrations of Co, Mo and Se are lower in relict
deposits relative to active open conduit chimney samples (Table 5.2; Figure 5.6).

At Satanic Mills, Snowcap and Fenway, most relict chimneys comprise a porous
exterior framework of mixed fine—grained anhedral bornite and tennantite intergrown with
minor amounts of fine—grained acicular barite and very variable amounts of dendritic and
colloform sphalerite (Figure 5.41). Bulk chemical analyses show that relict deposits from
Satanic Mills, Snowcap and Fenway have higher Cu and lower Zn and Pb relative to relict

deposits from Roman Ruins and Roger’s Ruins (Figure 5.5). Relict deposits exhibit lower
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concentrations of Sb, Cd, Ag and Au relative to those from Roman Ruins and Roger’s Ruins.
Electron microprobe analyses document measurable concentrations of Pb, Zn and Ag in some
chalcopyrite and bornite grains, Fe, Cu, Cd, Pb and variable Ag in sphalerite grains, Fe, Zn,
Pb, Sb and Ag in tennantite grains, and Cu and Zn in galena (Figure 5.7; Appendix E2).
4.3.3. SuSu Knolls

Relict samples recovered from SuSu Knolls are similar in morphology and texture to
active diffuser—type chimney samples from the same vent field. Relict chimneys are
composed of a several cm thick exterior framework of variable amounts of fine—grained
subhedral Cu—Fe—sulfide (bornite) and/or dendritic Zn—sulfide (sphalerite), intergrown with
minor amounts of barite laths. In some inner portions of relict chimneys Cu—Fe—sulfides
(bornite + chalcopyrite) and Cu—sulfosalts (tennantite) plate the sulfide framework forming
discontinuous rims around anastomosing micro—channels in the absence of a well-defined
central open conduit (Figure 5.4). Bulk chemical analyses are consistent with modal mineral
compositions dominated by Cu—Fe—sulfides (bornite, chalcopyrite) and barite, minor and
variable sphalerite and tennantite, and trace pyrite and galena (Table 5.2). At SuSu Knolls,
chemical compositions of relict samples are comparable to those of active diffuser samples
(Figure 5.5). Bulk chemical analyses of relict samples document concentrations of Zn, Pb, As,
Sb, Ag and Au similar to active diffuser smokers, but higher than open conduit smokers. In
contrast, relict samples have lower concentrations of Cu, Co and Se relative to open conduit
smokers (Table 5.2, Figure 5.6). Where electron microprobe analyses are available, the data
document measurable concentrations of Cu, Pb, As, Cd and Ag in sphalerite grains, Fe, Zn,
Sb, Pb and Ag in tennantite grains and Cu, Pb, Zn and rarely Ag in pyrite (Figure 5.7;

Appendix E2).
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5. DIscussioN

5.1. Mineral chemistry of Manus Basin vent deposits: Influence of fluid composition and
conditions of mineral precipitation

Open conduit chimneys recovered from all vent fields are cylindrical and composed of
an inner sulfide lining and an outer more porous mixture of anhydrite and lesser finer—grained
sulfide (e.g., Figure 5.3b, c). These chimneys are conduits for focused high—temperature
seafloor fluid venting. The physical characteristics of the growth of these chimneys have been
discussed in detail previously (Goldfarb et al., 1983; Haymon, 1983; Tivey and McDulff,
1990). In contrast, diffuser chimneys are typically composed of a porous framework of fine—
grained sulfide and minor barite, with different sulfide minerals forming linings along
networks of narrow anastomosing micro—channels (Figure 5.3a). The morphology of these
chimneys is consistent with the formation of these chimneys from lower temperature, less
focused fluids (e.g., Fouquet et al., 1993b; Koski et al., 1994) with styles fluid flow and
conditions of sulfide precipitation very different to those for open conduit smokers. Relict
chimneys have textures, morphologies and mineral compositions similar to diffuser chimneys,
and the conditions of formation relevant to relict chimneys are inferred to be similar to active
diffusers.
5.1.1. Vienna Woods Open Conduit and Diffuser-type chimneys

Active high—temperature open conduit chimneys from Vienna Woods are Zn-rich but
Cu—poor relative to most high—temperature deposits from basalt-hosted mid—ocean ridge

systems (Haymon and Kastner, 1981; Goldfarb et al., 1983; Fouquet et al., 1988; Fouquet et
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al., 1993b; Tivey et al., 1995). The presence of wurtzite and trace amounts of co—precipitated
chalcopyrite lining open conduit chimneys at Vienna Woods indicates saturation of Zn—
sulfide at relatively high—temperatures, approximately that of hydrothermal fluids exiting
from these chimneys (~ 270 — 280 °C). A temperature for wurtzite precipitation can be
estimated from the FeS content in ZnS knowing the activity (or fugacity) of sulfur (fS,) in the
fluid (Scott, 1976, 1983). The sulfur fugacity can be calculated using thermodynamic
calculations that predict aqueous species distributions at in situ temperatures and pressures.
For Vienna Woods fluid compositions (sample VW 1; Table 5.3), the calculated log fS, is
approximately — 10.7 to — 10.5. This sulfur fugacity occurs in the region of FeS activity
buffered by chalcopyrite—pyrite stability (as opposed to pyrite—pyrrhotite, for example), as
supported by the presence of minor chalcopyrite and trace pyrite in Vienna Woods open
conduit chimneys. For a measured FeS content of ~ 6 — 7 mol% in wurtzite from Vienna
Woods and sulfur fugacity of — 10.5, a temperature of between 275 and 285 °C for the
precipitation of wurtzite is calculated (see Figure 1 of Scott, 1983). This is in the range of
measured temperatures of hydrothermal fluids exiting from wurtzite—lined chimneys at
Vienna Woods (~ 273 — 282 °C).

Geochemical calculations that consider the VW1 fluid composition (Table 5.3) also
indicate fluid pH at in situ temperature (280 °C) and pressure (~ 250 bars) of ~ 5.1 (Figure
5.8a). (In situ pH was calculated by obtaining total proton concentration by distributing
aqueous species at 25 °C using measured pH and then re—distributing aqueous species using
the resulting proton—balanced composition at in situ temperature and pressure with mineral
saturation suppressed; e.g., Tivey and McDuff (1990), Tivey(1995)). At this pH, sphalerite is

calculated to be saturated at temperatures less than ~ 290 °C (Figure 5.8b), similar to
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Table 5.3. Chemical compositions of vent fluids used for aqueous species distribution calculations

V. Woods PACMANUS DESMOS SuSu Knolls
Roman Ruins Satanic Mills North Su Suzette
VW1 RMR2 RMR4 SM1 SM2 D1 NS2 SZ5
Temperature (°C) 282 272 341 295 241 117 215 249
pH (25 °C) 4.4 2.3 2.6 2.6 2.4 1.0 0.9 2.3
Mg (mmol/kg) 0.0 16.5 3.2 8.8 17.4 46.0 38.8 6.4
Cl (mmol/kg) * 663 529 625 499 437 475 425 586
S0, (mmol/kg) * 0.6 3.0 1.1 2.1 71 147 149 41
Na (mmol/kg) ¥ 512 435 495 407 374 391 340 493
K (mmol/kg) 21.2 50.5 77.2 60.5 38.6 8.3 7.8 44.3
Ca (mmol/kg) ' 80.0 10.5 22.3 125 5.9 9.4 8.9 24.2
Ba (umol/kg) * 55 18 92 20 16 1 N.D. 16
Mn (umol/kg) 349 2271 2830 2145 1853 40 81 243
Fe (umol/kg) 159 990 6468 2790 1045 12400 3103 3961
Zn (umol/kg) 33 2200 440 300 223 230 63 305
Cu (umol/kg) 4.0 44 190 120 580 41 5.6 1030
Pb (umol/kg) 0.3 80.0 8.0 5.8 5.0 6.5 16 14.7
Si0, (mmol/kg) * 15.3 13.5 17.8 12.2 12.8 8.1 10.0 14.1
H,S (mmol/kg) ¥ 2.0 2.9 6.3 8.0 45 0.0 0.0 48
H, (umol/kg) * 42,0 28.5 53.0 25.0 43 4.0 20.0 7.4
CO, (mmol/kg) * 4.4 18.8 9.5 181 112 26.7 93 15.8
F (umol/kg) * 21 92 125 167 287 137 103 480

* Data for dissolved gases and major aqueous species provided by E. Reeves and J. Seewald (inpublished data). Metal data
are taken from Chapter 4. N.D. denotes no data.

252



50 f
§ VW1
40 B easured fluid >
:IQ:_ | xmperatures
3 O B ‘_’//
i RMR4
2.0 . - -
B -6
Q,VW1
| i
T
Tlx "8 ' qRuRs
& |© i
5
-10 }
g Keq,Sph
-
_12 . . . ) . )
0 100 200 300

Temperature (°C)

Figure 5.8. Results of species distribution calculations for high-temperature vent
fluids exiting Open Conduit chimneys from from Vienna Woods (VW 1) and PAC-
MANUS (RMR4). (A) pH as a function of temperature. pH is calculated up to 350 °C
by speciating the fluid composition at incremental temperatures with mineral precipi-
tation suppressed. (B) Equilibrium constant (K) for sphalerite (thick black line)
compared with the reaction quotient (Q) for each fluid for a range of temperature.
The reaction quotient is calculated as the product of the Zn?* and HS- activity divided
by the proton activity for each vent fluid. Sphalerite is predicted to be saturated at all
temperatures where Q > K. Owing to the high pH of vent fluids from Vienna Woods,
sphalerite is saturated at significantly higher temperature despite lower concentrations
of Zn in these fluids relative to those from PACMANUS. Fluid compositions used in
calculations are shown in table 5.3.
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temperatures estimated using the ZnS geobarometer and similar to the temperatures of fluids
exiting the seafloor at Vienna Woods. Chalcopyrite is calculated to be saturated at
temperatures < 300 — 310 °C (i.e., saturated at temperature at which Vienna Woods fluids
exit the seafloor). Saturation of sphalerite occurs at high temperatures despite the low
concentrations of Zn in Vienna Woods vent fluids (< 33 umol/kg; see Chapter 4). When
Vienna Woods chimney deposit compositions are compared to those of the fluids from which
chimneys are precipitating (Figure 5.9a), it is clear that Vienna Woods deposits are Zn—rich,
but not because the fluids are also Zn—rich. The lack of correlation between Zn concentrations
in vent deposits and Zn concentrations in vent fluids with high pH has been described for the
Main Endeavour and Mothra vent fields (Tivey et al., 1999; Kristall et al., 2006).

Experimental studies (e.g., Ruaya and Seward, 1986; Barrett and Anderson, 1988) and
theoretical calculations (e.g., Janecky and Shanks, 1988; Tivey and McDuft, 1990; Tivey,
1995) have shown that Zn—sulfides are under—saturated in most seafloor hydrothermal fluids
to temperatures ~ 220 — 240 °C. Primarily, this reflects the influence of moderately acid pH
(25 °C), between 3.5 and 4, of many seafloor vent fluids (Von Damm, 1990, 1995). In
contrast, at Vienna Woods measured fluid pH (25 °C) is higher (> 4.2 — 4.7) and in situ pH is
greater than 5. The prevalence of wurtzite in high—temperature vent deposits at Vienna Woods
reflects higher pH, which results in saturation of Zn—sulfide (sphalerite and wurtzite) at
significantly higher temperatures, as it does at the Main Endeavour and Mothra vent fields
along the Endeavour Segment, Juan de Fuca Ridge (Tivey et al., 1999; Kristall et al., 2006).
The high pH of the Vienna Woods vent fluids, relative to that of most mid—ocean ridge fluids,
is likely related to fluid—rock interaction occurring at lower temperatures (< 400 °C) and

rock—dominated conditions (low effective water/rock ratio; see chapter 4). The pH of evolved
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Figure 5.9. Comparison of bulk metal compositions in seafloor chimney deposit
samples from Vienna Woods (Manus Spreading Center) and PACMANUS and
SuSu Knolls (Eastern Manus Basin) compared to metal concentrations in paired
fluids from which chimney deposits precipitated. Gray shaded boxes (left panel)
denote the area enlarged on the right panel of each figure. Tie lines relate low
temperature (< 280 °C) mixed fluids to high-temperature (> 300 °C) endmember
hydrothermal fluids at the same vent field. (A) Zn, (B) Pb, (C) Cd, (D) As, (E) Sb,
(F) Ag, (G) Cu, (H) Co and (I) Au.
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hydrothermal fluids has been shown experimentally to be a sensitive function of the
maximum temperature and pressure conditions of fluid—rock interaction (Seyfried and Mottl,
1982; Seewald and Seyfried, 1990).

The formation of Zn—rich, Cu—poor vent deposits at Vienna Woods is significantly
affected by pH, reflecting precipitation from metal—poor, high pH fluids. The absence of
significant amounts of Cu—Fe—sulfide minerals reflects low Cu concentrations (< 5 pumol/kg)
in Vienna Woods vent fluids. Low Cu concentrations are likely owing to the limited aqueous
solubility of Cu in Vienna Woods fluids at temperatures below ~ 300 °C (e.g., Crerar and
Barnes, 1976). That the mineral chemistry of relict (diffuser—type) deposits is similar to open
conduit deposits and dominated by Zn—sulfide suggests that relict deposits may have formed
from vent fluid with similar compositions.

5.1.2. PACMANUS and SuSu Knolls Open Conduit and Diffuser—type chimneys

Active open conduit chimneys from all PACMANUS and SuSu Knolls vent fields are
characterized by linings of monomineralic chalcopyrite indicative of mineral precipitation at
temperatures above 300 °C (Crerar and Barnes, 1976). In general, low—temperature mineral
assemblages (e.g., low—Fe sphalerite, colloform pyrite and marcasite; Koski et al., 1994) are
absent or present only in trace amounts at the exterior of these chimneys. The thick walls of
diffuser and relict samples are characterized by a predominance of Cu—Fe—sulfides (bornite +
chalcopyrite + covellite) and lesser tennantite (Cu—As—sulfosalt) within interior portions, and
minor tennantite with variable amounts of trace—to—minor sphalerite in exterior portions. The
mineral compositions of diffuser and relict chimneys from PACMANUS and SuSu Knolls
contrast markedly with that of low temperature vent deposits at most mid—ocean ridges, where

compositions characterized by sphalerite (+ wurtzite), pyrite, pyrrhotite and minor cubanite
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dominate (e.g., Koski et al., 1984; Koski et al., 1994; Tivey et al., 1995).

Geochemical calculations were used to examine the significance of differences in
observed mineral compositions of PACMANUS and SuSu Knolls vent deposits. The stability
of Fe— and Cu—Fe-sulfides in representative fluid samples from each vent field (Table 5.3) is
plotted in Figure 5.10 as a function of log [a(Fe*")/a(H")*] versus log [a(Cu")/a(H")] for
temperatures of 325, 275 and 250 °C. The compositions of the highest—temperature vent
fluids (300 — 358 °C) exiting open conduit chimneys at PACMANUS and SuSu Knolls plot
within the chalcopyrite field, consistent with chalcopyrite lining open conduits (e.g., samples
RMR4 and SM1; Figure 5.10a). The highest temperature fluids do not plot in the stability
fields of pyrite or lower temperature Cu—Fe—sulfides such as bornite. The compositions of
Vienna Woods fluids also plot within the chalcopyrite stability field (e.g., sample VW1;
Figure 5.10b), although the temperatures of fluids venting at this field are slightly lower (~
280 °C). The general lack of low—temperature minerals in open conduit chimneys is a
function of the composition of high—temperature fluids and the dynamics of fluid flow in open
conduit chimney edifices (Tivey and McDuff, 1990; Tivey, 1995). Following early
precipitation of quenched anhydrite and formation of a porous chimney framework during
mixing of hydrothermal fluid and seawater, continued precipitation of anhydrite and minor
sulfide in pore space reduces porosity and permeability across the chimney wall. Chalcopyrite
precipitates along the interior of (and possibly replacing) the anhydrite framework and results
in the development of a low permeability monomineralic chalcopyrite conduit lining (e.g.,
Goldfarb et al., 1983; Haymon, 1983). Hydrothermal fluid discharge is focused through the
open conduit (flow rates approximately 1 — 2 m/s) and the flux of fluid across the chimney

wall due to diffusion and/or advection (approximately 10" m/s) is low (Tivey, 1995). Low
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temperatures and low fluxes of metal-bearing fluid across exterior portions of open conduit
chimney walls are unlikely to favor significant amounts of low—temperature sulfide
precipitation. The low abundance of sulfide minerals precipitating at lower temperatures in
these chimney walls relative to significantly greater amounts of sulfide mineral precipitating
at high temperature along the conduit lining affects considerably the incorporation and
enrichment of heavy and precious metals (e.g., Pb, Cd, Ag, Au) in these deposit types
(discussed in Section 5.2).

The compositions of lower temperature fluids (~ 250 — 280 °C) exiting from the tops
of diffuser type chimneys plot within the bornite and chalcocite stability fields (e.g., samples
RMR2, SM2 and SZ5; Figure 5.10b). This contrasts markedly with mid—ocean ridge fluids of
similar temperature (e.g., TAG white smoker (Edmond et al., 1995), 21°N East Pacific Rise
(Von Damm et al., 1985) fluids), which plot within the pyrite stability field (Figure 5.10b).
The predicted stability of bornite in most lower temperature vent fluids is consistent with the
presence of abundant bornite in interior portions of diffuser chimneys from which these fluids
exit, and reflects the high Cu™/H" activity and low Fe**/(Cu”)* activity (high Cu
concentrations) and high fO, conditions (low Hx(aq) concentrations; E. Reeves and J.
Seewald, unpubl. data) of low—temperature vent fluids from PACMANUS and SuSu Knolls
relative to those of mid—ocean ridge vent fluids. The presence of minor chalcopyrite (with
bornite) in many diffuser samples lining micro—channels within interior portions of the
chimney wall suggests temperatures of precipitation in the interior of diffuser chimneys
locally higher than that of measured temperatures of fluids exiting the tops of these chimneys
(~ 280 °C). However, bulk compositions of diffuser samples are characterized by the

predominance of lower—temperature mineral assemblages including bornite (+ chalcocite),
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tennantite (at Satanic Mills, Snowcap, Fenway and SuSu Knolls) and dendritic low—Fe
sphalerite (at Roman Ruins and Roger’s Ruins), occurring in a range of modal mineral
abundance. This suggests that the bulk mass of sulfide is precipitated at a range of lower
temperatures (~ 250 °C or below). The range of mineral textures and compositions can be
related to different dynamics of fluid flow and conditions of mineral precipitation in diffuser
chimney walls relative to open conduit chimneys (Fouquet et al., 1993b; Koski et al., 1994).
Diffuser chimneys are characterized by sluggish vertical fluid flow rates relative to black
smoker chimneys (referred to here as open conduit chimneys) and significant advective fluid
flux across more permeable, fine—grained mineral frameworks. The high lateral permeability
of diffuser chimneys relative to open conduit chimneys favors significant lateral (radial) fluid
flow through chimney walls (Koski et al., 1994); ponding of hydrothermal fluid in interstices
can result in conductive cooling of these fluids and the precipitation of a range of minerals at
lower temperatures in exterior portions of chimney walls before fluids exit through the sides
of these chimneys. This idea provides an explanation for the predominance of lower
temperature minerals present in diffuser chimneys.

Geochemical calculations do not predict saturation of tennantite or sphalerite at in situ
temperature and pressure for most fluids exiting tops of diffuser chimneys. The stability of
tennantite relative to Fe— and Cu—Fe—sulfides is plotted in Figure 5.11 as a function of log
[a(Cu")/a(H")] and temperature. As indicated, most fluids exiting from the tops of diffuser
chimneys are stable with respect to bornite, but are in equilibrium with tennantite if fluids are
conductively cooled within the chimney edifice. The extent of cooling required is a function
of the initial Cu, Fe and As activity (Figure 5.11). For compositions of most sampled vent

fluids exiting diffuser chimneys at PACMANUS and SuSu Knolls (pH (25 °C) ~2.3 - 2.8,
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[Cu] ~ 40 — 580 pmol/kg, [As] ~ 14 — 19 umol/kg), geochemical calculations predict that
conductively cooling vent fluids between 5 and 50 °C (to temperatures ~ 220 — 270 °C) is
sufficient to saturate vent fluids with respect to tennantite (Figure 5.12a). Precipitation of
bornite and tennantite owing to cooling of hydrothermal fluid likely explains the presence of
bornite and tennantite in both active diffuser and relict chimney deposits from Satanic Mills,
Snowcap, Fenway and SuSu Knolls. That tennantite is observed also in the very interior of
some diffuser—type chimneys or in one sample from North Su (SuSu Knolls) lining an interior
conduit (Figures 5.3 and 5.4) suggests that some chimneys are deposited at low temperatures
(~ 220 °C) or, if deposited at higher temperatures, that concentrations of Cu and As in these
vent fluids can be even higher than those measured (see Chapter 4). Sphalerite is absent from
these diffuser chimneys, or is present only in trace amounts, despite concentrations of Zn up
to an order of magnitude higher in Satanic Mills, Snowcap, Fenway and SuSu Knolls vent
fluids relative to those from Vienna Woods (see Chapter 4). This is likely related to the effect
of low pH of Eastern Manus Basin vent fluids on sphalerite saturation. Geochemical
calculations predict that sphalerite is saturated in vent fluids at Satanic Mills, Snowcap,
Fenway and SuSu Knolls only at temperatures below ~ 170 °C, and considerably less than the
temperatures at which tennantite is predicted to be saturated in these fluids (Figure 5.12).
Diffuser (and relict) chimneys recovered from the Roman Ruins and Roger’s Ruins
vent fields are the most enriched in sphalerite (+galena). The likely explanation for the higher
modal abundance of sphalerite and galena in these samples is that the vent fluids from which
Roman Ruins and Roger’s Ruins diffuser deposits are precipitating exhibit considerably
higher concentrations of Zn and Pb relative to other PACMANUS vent fluids (Figure 5.9; see

Chapter 4). The high concentrations of Zn in low temperature vent fluids from Roman Ruins
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Figure 5.11. Temperature versus Log [a(Cu™)/a(H")] diagrams for the system S-Cu-Fe-As.
Aqueous species distributions of Manus Basin vent fluids super-imposed on diagrams.
Fluid compositions relevant to most PACMANUS and SuSu Knolls high-temperature black
and gray smoker vent fluids are for diagrams (A) and (B). Highest-temperature fluids
exiting open conduit chimneys plot in the boundary of chalcopyrite stability. Lower-
temperature fluids exiting diffuser chimneys plot within the bornite stability field and with
conductive cooling pass to equilibrum with tennantite. (Py = pyrite, Cpy = chalcopyrite, Bn
= bornite, Tn = tennantite).

Fixed activity ratios are:

(A) Log [a(Fe2)/a(H")2] = 2, Log [a(As(OH)47)*a(H)] = -12, Log a(H,S) = -2
(B) Log [a(Fe2")/a(H)2] = 2, Log [a(As(OH)4")*a(H")] = -16, Log a(H,S) = -2
(C) Log [a(Fe2)/a(H")2] = 4, Log [a(As(OH)47)*a(H)] = -12, Log a(H,S) = -2
(D) Log [a(Fe2t)/a(H")?] = 4, Log [a(As(OH)4)*a(H')] = -16, Log a(H,S) = -2
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and Roger’s Ruins have been attributed to remobilization of previously deposited Zn—sulfide
owing to a more acidic fluid pH resulting from sub—seafloor entrainment of seawater, mixing
with high—temperature hydrothermal fluid and precipitation of high—temperature Cu—Fe—
sulfides (see Chapter 4). The higher abundance of sphalerite is not related to a higher fluid pH
(c.f., Vienna Woods) because the pH (25 °C) of all vent fluids exiting from diffuser chimneys
at Roman Ruins and Roger’s Ruins are low (~ 2.3 — 2.6) and similar to those at other
PACMANUS vent fields. Geochemical calculations support that sphalerite is saturated at
higher temperatures in vent fluids exiting diffuser chimneys at Roman Ruins and Roger’s
Ruins (~ 200 °C) relative to other PACMANUS and SuSu Knolls vent fluids (Figure 5.12)
owing to the significantly higher dissolved Zn concentrations. Significantly, sphalerite is
predicted to be saturated at temperatures similar to tennantite in the Roman Ruins and Roger’s
Ruins low temperature fluids (Figure 5.12). Tivey (1995) has suggested that the association
constant for ZnCI" in the SUPCRT92 database is too large (compare with Bourcier and
Barnes (Bouricer and Barnes, 1987)) and thus under—estimates the temperature of sphalerite
and wurtzite precipitation. Accordingly, sphalerite may be saturated at temperatures higher
than tennantite in Roman Ruins and Roger’s Ruins fluids.

Similarly, a sulfide crust recovered from a large pavement—type edifice at Suzette
(SuSu Knolls, sample J2-226-2—-R1) exhibits significantly higher modal abundance of
sphalerite relative to other SuSu Knolls vent deposit samples. The precipitation of abundant
sphalerite in this sample also reflects the markedly higher concentrations of Zn in vent fluids
exiting this edifice (sample SZ5; Table 5.3). The order of magnitude higher concentrations of
Zn (and Cu and As) in vent fluids exiting through the crust are also attributed to

remobilization of previously deposited sphalerite (and tennantite) owing to interaction with a
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267



fluid with a lower pH than that at which the sulfides originally precipitated. In this case, the
significantly lower measured pH (25 °C) of fluids venting through the sulfide crust (~ 2.3)
relative to high—temperature fluids exiting sulfide chimneys (3.4 — 3.8) is hypothesized to
have resulted from locally higher contributions of degassed magmatic acid volatiles (i.e.,
H,0-HCI-CO,-HF-S0,) beneath some areas of the Suzette mound (see Chapter 4). The
remobilization of sulfide minerals within these existing sulfide bodies suggests that on—going
zone-refinement is a process that affects significantly the evolution and spatial distribution of
metal sulfides in seafloor vent deposits in the Manus Basin, as has been described previously
for vent deposits at the TAG active mound, 26 °N mid—Atlantic Ridge (e.g., Tivey et al.,
1995).
5.2. Factors affecting precious metal enrichment in Manus Basin vent deposits: Effect of
fluid composition and conditions of mineral precipitation

The different morphology and mineral composition of cylindrical, pipe-like open
conduit chimneys versus more uniformly porous diffuser chimneys reflects differences in
fluid composition and dynamics of fluid flow, both of which affect conditions (e.g.,
temperature, pH, fO,—fS,, metal concentrations) of mineral precipitation. These factors affect
significantly the incorporation and enrichment of trace and precious metals (e.g., Ag, Au, Cd,
Se) in sulfide minerals and leads to large differences in observed trace metal concentrations
among the Manus Basin vent deposits.
5.2.1. Trace metal enrichment in Vienna Woods vent deposits

In general, concentrations of trace elements in both open conduit and relict (diffuser—
type) chimneys are low in Vienna Woods vent deposit samples relative to those from

PACMANUS and SuSu Knolls (e.g., Co, Se, Pb, Sb, Ag and Au; Figure 5.6). To first—order
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the low concentrations of most trace and precious metals in vent deposit samples from Vienna
Woods (excluding Cd, see below) can be directly correlated with low concentrations of these
elements in Vienna Woods vent fluids (Figure 5.9). This correlation suggests that fluid
composition is a key variable influencing precious metal enrichment in seafloor hydrothermal
mineral deposits.

Within Vienna Woods chimney deposits, however, there are considerable differences
in trace element concentrations among active open conduit and relict (diffuser—type)
chimneys. Concentrations of Co are higher and concentrations of Pb, As, Sb, Ag and Au
considerably lower in open conduit chimneys relative to relict chimney samples (Figures 5.5
and 5.6). In general, Co is positively correlated with Cu (Table 5.4), indicating that Co is
likely distributed primarily with or in chalcopyrite, within higher—temperature sulfide mineral
assemblages, although absolute concentrations are too low to be determined by electron
microprobe data (< 350 ppm; Appendix E2). This correlation is similar to that observed and
described in most mid—ocean ridge seafloor vent deposits (Hannington et al., 1991; Fouquet et
al., 1993b; Koski et al., 1994; Tivey et al., 1995). In contrast, Cd is positively correlated with
Zn (Table 5.4). Electron microprobe analyses have documented that Cd is precipitated
predominantly in Zn—sulfide (up to 0.9 wt% Cd in wurtzite; Appendix E2). Owing to the fact
that Cd behaves similar to Zn and partitions effectively into Zn—sulfide during mineral
precipitation (Fleischer, 1955) results in significant Cd enrichment in the Zn—rich Vienna
Woods vent deposits, even though Cd concentrations in Vienna Woods vent fluids from
which the deposits form are low relative to other vent fluids in the Manus Basin.

The lack of correlation between Zn and Pb, As, Sb, Ag and Au in active or relict

deposits from Vienna Woods (Table 5.4) contrasts with Zn—rich chimneys sampled from most
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mid—ocean ridge vent fields, where Zn, Cd, Pb, As, Sb, Ag and Au are generally positively
correlated (Hannington et al., 1991; Fouquet et al., 1993b; Tivey et al., 1995). At most mid—
ocean ridge vent fields, Pb, As, Sb, Ag and Au are precipitated predominantly in, or with, Zn—
sulfide, during deposition of low—temperature Zn—rich mineral assemblages (< 200 — 250 °C).
The distributions of Pb, Ag, As, Sb and Au at Vienna Woods are similar to those of Zn—rich
vent deposits at the Endeavour Segment, Juan de Fuca Ridge (Tivey et al., 1999) (Kristall et
al., 2006). At Endeavour, Zn—sulfide is precipitating at high temperatures (~ 280 °C) owing to
the high measured pH (25 °C) of Endeavour fluids between 4.2 and 4.5 (Butterfield et al.,
1994). The lack of a correlation between Zn and Pb, As, Sb, Ag and Au within Endeavour
vent deposits has been attributed to exclusion of these trace elements during Zn—sulfide
precipitation at high temperatures (Tivey et al., 1999). Similarly, the lack of correlation
between Zn and Pb, As, Sb, Ag and Au at Vienna Woods likely reflects precipitation of Zn—
sulfide at higher temperatures (~ 280 °C) also owing to high pH, as demonstrated by the
thermodynamic calculations presented, and the resultant exclusion of these trace elements
from Zn—sulfide. The good correlations among Pb, As, Sb, Ag and Au in Vienna Woods vent
deposit samples (Table 5.4) suggest that these trace elements are likely incorporated together
with or in sulfide minerals, other than wurtzite/sphalerite, that precipitated at a range of lower
temperatures. The low concentrations of trace metals (Pb, As, Sb, Ag and Au) in Vienna
Woods open conduit chimneys reflect the absence of significant amounts of sulfide minerals
precipitating at low temperature. In contrast, the higher concentrations of trace metals in relict
diffuser—type chimneys reflects the higher modal abundance of sulfide minerals (e.g., pyrite,
marcasite) likely precipitated at lower—temperatures as a result of ponding and cooling of

hydrothermal fluid within diffuser chimney edifices, explaining both their higher
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concentrations in diffuser chimneys and lack of correlation with Zn.
5.2.2. Trace metal enrichment in PACMANUS and SuSu Knolls vent deposits

The different mineralogical compositions of vent deposits in the PACMANUS and
SuSu Knolls (e.g., Cu— and As-rich) relative to Vienna Woods (e.g., Zn-rich, Cu— and As—
poor) are explained by the markedly different compositions of vent fluids (i.e., pH,
temperature, metal concentrations) sampled at these vent fields (see Chapter 4) and the
resulting differences in conditions of sulfide mineral precipitation. The differences in fluid
compositions and in the conditions of sulfide mineral precipitation also both affect the
enrichment of base and precious metals in these sulfide deposits. In general, the
concentrations of trace elements (e.g., Pb, Ag, As, Sb, Au and Co) are significantly higher in
all types of sulfide chimneys sampled at PACMANUS and SuSu Knolls (i.e., open conduit,
diffuser and relict chimneys) relative to sulfide chimneys sampled from Vienna Woods
(Figure 5.9). This enrichment can be correlated directly with the higher concentrations of
trace elements in seafloor vent fluids from the PACMANUS and SuSu Knolls relative to
those in vent fluids from Vienna Woods (Figure 5.9). The higher concentrations of trace
metals in hydrothermal fluids from PACMANUS and SuSu Knolls reflect the higher
temperatures and considerably lower pH of vent fluids in the Eastern Manus Basin; the latter
resulting, in large part, from input of magmatic acid volatiles exsolved from underlying felsic
magmas in this area (see Chapter 4). To first—order, trace metal concentrations in seafloor
hydrothermal fluids do control the resulting trace metal enrichment in related massive sulfide
deposits.

The influence that fluid composition exerts is also apparent when the compositions of

vent deposits within PACMANUS and SuSu Knolls are compared. Lower temperature Zn—
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rich diffuser chimneys from Roman Ruins and Roger’s Ruins (e.g., samples J2-208—-2-R2
and J2-222—1-R1) are enriched in trace elements Pb, Cd, Ag, As and Sb relative to most
diffuser chimneys from Satanic Mills, Fenway and Snowcap (the PACMANUS hydrothermal
system). Likewise, the low temperature Zn—rich sulfide crust deposited at Suzette (J2-226—2—
R1) is significantly enriched in Pb, Ag and Cd relative to all other lower temperature diffuser—
type chimneys sampled within SuSu Knolls. In general, the enrichments of trace metals in
these Zn-rich deposits can be directly correlated with high concentrations of Pb, Cd, Ag, As
and Sb in seafloor hydrothermal fluids from which these deposits are forming (c.f., fluid
samples RMR2 (Roman Ruins), RGR2 (Roger’s Ruins) and SZ5 (Suzette) shown in Figure
5.9). As discussed earlier, the enrichment of Zn in these same fluids likely reflects
remobilization of previously deposited Zn—sulfide beneath the seafloor at Roman Ruins and
Roger’s Ruins (PACMANUS) and Suzette (SuSu Knolls). Remobilization of Zn also appears
to correlate with remobilization of Pb, Cd, Ag, As and Sb resulting in their higher
concentrations in these fluids and is likely related to enrichment of these trace metals in Zn—
sulfide. Positive correlations among Zn, Pb, Cd, Sb and Ag in Roman Ruins and Roger’s
Ruins vent deposit samples (Table 5.5) indicate that Pb, Cd, Sb and Ag are re—precipitated
predominantly in sphalerite (as demonstrated by electron microprobe analyses; Figure 5.7),
during zone-refinement of the Roman Ruins and Roger’s Ruins sulfide deposits. High
concentrations of Pb also reflect the presence of trace—to—minor galena occurring with
sphalerite in low temperature diffuser chimneys at Roman Ruins and Roger’s Ruins. The
absence of significant amounts of sphalerite and galena in most chimney deposits recovered
from other fields in the Eastern Manus Basin (i.e., at Satanic Mills, Fenway and Snowcap and

at SuSu Knolls) reflects lower concentrations of Zn and Pb in the vent fluids from which these
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deposits are precipitating. There does not appear to be significant on—going zone refinement
at these vent fields. Lower concentrations of trace and precious elements (e.g., Cd, Ag, Au
and Sb) in chimney samples from these vent fields, relative to those at Roman Ruins and
Roger’s Ruins, likely reflect lower concentrations of these trace elements in vent fluids from
which they are forming (owing to the absence of on—going zone refinement).

Concentrations of Co and Se are significantly higher in open conduit chimneys
precipitating from the highest—temperature fluids, relative to diffuser chimneys forming at
lower temperatures (Tables 5.2a, b). High concentrations of Co and Se in open conduit
chimneys reflect both higher concentrations of Co and Se in high—temperature fluids, but also
temperature effects because Co and Se are effectively incorporated into chalcopyrite that is
precipitated as temperature decreases below ~ 300 °C owing to the markedly decreased
solubility of Cu in lower temperature fluids (e.g., Crerar and Barnes, 1976). Bulk
concentrations of Co and Se (up to 125 and 2000 ppm, respectively) in a few chimney
sampled from Fenway (PACMANUS) and SuSu Knolls are considerably higher than those of
most deposits in back—arc hydrothermal systems (c.f., Lau Basin; Fouquet, et al., 1993). The
presence of high Co in the deposits is correlated with high concentrations vent fluids from
which these deposits are forming. Possibly, high concentrations of Se in these deposits also
reflect high concentrations of Se in parent hydrothermal fluids from which the deposits
formed, however no fluid data for Se are available to confirm this.

In contrast, average concentrations of Pb, Cd, As, Sb, Ag and Au are higher in diffuser
and relict chimney deposits relative to open conduit smokers at PACMANUS and SuSu
Knolls (Figure 5.6). This is similar to the relative concentrations of Pb, As, Sb, Ag and Au in

diffuser versus open conduit chimneys at Vienna Woods (section 5.2.1.). The higher
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concentrations of Pb, As, Sb, Ag and Au in diffuser—type chimneys likely reflect the
preferential incorporation of these trace elements in sulfide minerals precipitating at a range
of lower temperatures (~ 200 — 250 °C), and their exclusion from sulfide minerals (e.g.,
chalcopyrite and wurtzite) precipitated at high temperatures (~ 280 °C). Likewise, higher
concentrations of Pb, Cd, As, Sb, Ag and Au in diffuser chimneys relative to open conduit
chimneys at PACMANUS and SuSu Knolls reflect their effective incorporation into sulfide
minerals precipitated at a range of lower—temperatures. The differences in metal enrichment
between open conduit and diffuser chimneys at each vent field does not appear to be
obviously related to different metal enrichments in the fluids from which they precipitated
(the trace metal rich low—temperature deposits from Roman Ruins and Roger’s Ruins are
excluded from the following discussion, these deposits having precipitated from remarkably
Pb, Cd, Sb, As and Ag rich hydrothermal fluids). As shown in Figure 5.9 (enlarged panels on
the right), bulk concentrations of Pb, Cd, Sb, As and Ag are higher in diffuser type chimneys
relative to most open conduit chimneys from the same vent field, even though concentrations
of these trace elements are similar in both low—temperature and high—temperature fluids from
which the respective deposits are forming. Indeed, trace metal concentrations of lower—
temperature fluids from which diffuser chimneys precipitate are mostly lower than in high—
temperature vent fluids from the same vent field (Figure 5.9). These data strongly support that
the conditions of sulfide mineral precipitation, affecting the mineralogical composition of the
vent deposits (e.g., chalcopyrite versus sphalerite), also affect trace metal enrichment. The
good correlations among Pb, Cd, Ag and Zn and between Sb and As in vent deposits at
PACMANUS and SuSu Knolls (Tables 5.6 and 5.7) support that Pb, Cd and Ag are

distributed within sphalerite and Sb within sphalerite and tennantite (as documented at
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electron microprobe data; Figure 5.7). Geochemical calculations have indicated that the
saturation and precipitation of sphalerite and tennantite occurs at a range of lower
temperatures (< 200 — 260 °C) in diffuser—type deposits but not at high temperatures of ~ 300
°C (the conditions dominating precipitation in open conduit chimneys). The association of Pb,
Cd and Ag (and to a lesser extent Sb) with sphalerite at PACMANUS and SuSu Knolls (but
not at Vienna Woods, as discussed) reflects that sphalerite is precipitated at significantly
lower temperatures at PACMANUS and SuSu Knolls (e.g., Figure 5.12) relative to sphalerite
and wurtzite precipitated at Vienna Woods (e.g., Figure 5.8). This results from the affect of
low pH on sphalerite saturation at PACMANUS and SuSu Knolls. The precipitation of large
quantities of sulfide assemblages at low temperature in diffuser—type chimneys (e.g.,
sphalerite, tennantite, bornite) versus at high temperature sulfide assemblages in open conduit
chimneys (e.g., chalcopyrite) significantly affects the bulk enrichment of trace metals (i.e., Pb,
Cd, As, Sb, Ag versus Co, Se). This is despite that metal concentrations in lower temperature
fluids are often lower than in higher temperature “endmember” hydrothermal fluids (see

Chapter 4).

6. SUMMARY AND CONCLUSIONS

Mineralogical and chemical compositions of vent deposits show considerable
differences among different vent fields in the Manus Basin and among different chimney
deposit types. At Vienna Woods in the Manus Spreading Center, both active (high—
temperature ~ 280 °C open conduit chimneys) and relict (diffuser—type) deposits are

dominated by Zn—sulfide (wurtzite and sphalerite) and contain only trace—to—minor amounts
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of Cu and Pb. In the Eastern Manus Basin, vent deposits at PACMANUS and SuSu Knolls
contain significantly more Cu and less Zn relative to those from Vienna Woods. At all
PACMANUS and SuSu Knolls vent fields, open conduit chimneys (precipitating from highest
temperature > 300 °C focused fluids) are dominated by chalcopyrite and anhydrite and
contain only trace—to—minor amounts of lower temperature sulfide assemblages. Diffuser—
type chimneys from Roman Ruins and Roger’s Ruins (PACMANUS) vent fields
(precipitating from lower temperature ~ 240 — 280 °C less focused fluids) are dominated by
Cu—Fe—sulfides (bornite and chalcopyrite), with minor sphalerite and trace galena. At Satanic
Mills, Fenway and Snowcap (PACMANUS) and at SuSu Knolls, diffuser chimneys are
dominated by Cu—Fe—sulfides (bornite and chalcopyrite), minor tennantite and, in general,
significantly lesser sphalerite and galena.

Differences in chimney morphology and mineral composition can be explained by
differences in fluid composition and styles of fluid flow and interaction with seawater within
chimney edifices where sulfides are precipitated. Open conduit chimneys are characterized by
the precipitation of an impermeable lining that focuses fluid flow vertically up through a
central conduit and greatly reduces radial fluid flow through chimney walls (Goldfarb et al.,
1983; Tivey and McDuff, 1990; Tivey, 1995). In contrast, diffuser chimneys are precipitated
from fluids with lower vertical advection rates and higher lateral fluid flow through a porous
and often thicker chimney wall without a well-defined central open conduit, which likely
leads to some ponding and conductive cooling of hydrothermal fluid within chimney edifices
(Fouquet et al., 1993b; Koski et al., 1994).

At Vienna Woods, predominance of Zn—sulfide in both active open conduit and relict

deposits reflects mineral precipitation from high pH (> 4 — 5), metal-poor vent fluids. The
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high pH of these fluids relative to those from the Eastern Manus Basin allows for precipitation
of Zn—sulfide at high temperatures (~ 280 °C), despite low concentrations of Zn in Vienna
Woods fluids. Similar conditions of mineral precipitation have been described to explain the
precipitation of abundant Zn—sulfide in seafloor vent deposits at the Endeavour Segment, Juan
de Fuca Ridge (Tivey et al., 1999; Kristall et al., 2006).

At PACMANUS and SuSu Knolls, high—temperature (> 300 °C) open conduit
chimneys are rich in Cu—Fe—sulfides but lacking in sphalerite, even though concentrations of
Zn in parent hydrothermal fluids are up to an order of magnitude enriched relative to those
from Vienna Woods. This reflects the low pH (25 °C) of high—temperature black smoker
fluids (~ 2.3 — 3.8) and the lack of saturation of sphalerite in these fluids. The predominance
of bornite (£ chalcopyrite) with minor tennantite and/or sphalerite in diffuser and relict
chimneys at PACMANUS and SuSu Knolls reflects formation from lower—temperature fluids
(<280 °C) coupled with conductive cooling of hydrothermal fluid within more porous
chimney walls. The higher modal abundance of sphalerite (+ galena) in vent deposits from
Roman Ruins and Roger’s Ruins (PACMANUS) and one sample at Suzette (SuSu Knolls)
relative to other PACMANUS and SuSu Knolls chimney deposits reflects the very high
concentrations of Zn and Pb in vent fluids from which these deposits are precipitating. It has
been proposed (see Chapter 4) that high Zn and Pb concentrations in low temperature vent
fluids at Roman Ruins and Roger’s Ruins and at one vent at Suzette reflect dissolution and
remobilization of previously deposited sulfide beneath the seafloor. These data suggest that
on—going zone—-refinement is significantly affecting the composition and distribution of the
seafloor massive sulfide deposits at Roman Ruins and Roger’s Ruins and to a lesser extent at

Suzette. The presence of minor tennantite in vent deposit samples from Satanic Mills,
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Snowcap and Fenway (PACMANUS) and from North Su and South Su (SuSu Knolls) reflects
that tennantite is saturated at temperatures significantly higher than sphalerite in vent fluids
from which these deposits are precipitating. This can be related to the low vent fluid pH and
lower Zn concentrations in the absence of significant on—going zone refinement at these vent
fields.

Differences in fluid composition and style and condition of mineral precipitation
significantly affect trace and precious metal enrichments. Vent deposits at PACMANUS and
SuSu Knolls are enriched in trace elements (e.g., Co, Se, Sb, Ag, Au) relative to those at
Vienna Woods. To first—order, these enrichments reflect higher concentrations of heavy and
precious metals in seafloor vent fluids at PACMANUS and SuSu Knolls from which the vent
deposits are forming. However, there are also considerable differences among open conduit
and diffuser and relict chimneys at each vent field, with open conduit chimneys more enriched
in Co and Se and less enriched in Pb, Sb, Ag and Au. Precipitation of wurtzite (at Vienna
Woods) and chalcopyrite (at PACMANUS and SuSu Knolls) at high temperatures in open
conduit chimneys does not favor the incorporation of most heavy and precious metals. In
contrast, precipitation of a range of sulfide minerals at significantly lower temperatures in
diffuser chimneys provides more suitable hosts for the enrichment of economically valuable
ore metals. The trace metal compositions of diffuser—type chimney deposits are more
representative of the compositions of vent fluids from which they precipitated. Consequently,
trace metal distributions within diffuser—type chimneys may provide important information
about the processes and conditions (e.g., temperature, pH) influencing the formation of
seafloor massive sulfide deposits. Sulfide deposits forming at lower temperatures from low

pH, metal-rich seafloor hydrothermal fluids, in particular those having experienced
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significant zone—refinement of an existing sulfide deposit, are particular enriched in precious
metals and may present the most attractive targets for the exploration of economically

valuable massive sulfide deposits.
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CHAPTER 6

Summary and Concluding Remarks

This thesis examines in detail and characterizes the chemical compositions of a
range of seafloor hydrothermal fluids and related vent mineral deposits recovered from
hydrothermal systems in the Manus back—arc basin, Papua New Guinea, including from
the Vienna Woods vent field (Manus Spreading Center, MSC) and the PACMANUS,
DESMOS and SuSu Knolls vent fields (Eastern Manus Basin, EMB). The important
processes affecting the formation and composition of seafloor vent fluids and related vent
deposits in back—arc basin hydrothermal systems are (1) deep—seated fluid—rock
interactions at a range of elevated temperature and pressure and rock composition,
overprinted by (2) varying magmatic acid volatile (H,O—CO,-HCI-HF-S0O,) input
beneath the seafloor and (3) local near—seafloor seawater entrainment and mixing with
rising high—temperature hydrothermal (or magmatic—hydrothermal) fluids. Magmatic
volatile inputs contribute significant acidity, thereby considerably increasing metal
mobility during fluid—rock interaction. In addition, the acidity that accompanies
magmatic volatile input may lead to remobilization of previously deposited metal
sulfides. Local entrainment of seawater and mixing with hydrothermal fluids can result in
sub—seafloor mineral deposition, formation of secondary acidity and subsequent sulfide
remobilization.

In this thesis, concentrations and distributions of rare earth elements (REEs) and
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heavy metals (Mn, Fe, Cu, Zn, Pb, Ag, Cd, Au, As, Sb, Co) in seafloor vent fluids and
related vent deposits are used as indicators of these processes. Seafloor vent fluids from
the MSC and EMB exhibit a range of chondrite—normalized REEy pattern shapes distinct
from the uniform pattern shape of mid—ocean ridge vent fluids (Michard and Albarede,
1986; Klinkhammer et al., 1994; Mitra et al., 1994). The REEs are solubility controlled
and their concentrations are affected by the conditions (e.g., temperature, pressure and
resulting pH) of fluid—rock interaction and by hydrothermal fluid composition. In
particular, vent fluid REE concentrations and REEy pattern shapes are affected by
differences in fluid pH and ligand concentrations (e.g., CI', F~, SO4%) related to different
styles and compositions of magmatic acid volatile input (HF, SO;) in back—arc
hydrothermal systems (c.f., Douville et al., 1999; Bach et al., 2003). The REEy pattern
shapes of seafloor hydrothermal fluids are not sensitive indicators of the extent of sub—
seafloor mixing between rising hydrothermal fluid and locally entrained seawater,
because the concentrations of REEs in seafloor vent fluids are orders of magnitude more
enriched relative to seawater.

To first-order, REEy pattern shapes preserved in anhydrite vent deposit samples
are the same as those of hydrothermal fluids from which anhydrite precipitated (see also
Mills and Elderfield, 1995), suggesting that anhydrite is a faithful recorder of the REE
composition of the hydrothermal fluid. Of significance, the range of REEy pattern shapes
preserved in anhydrite sampled from vent fields in the Eastern Manus Basin records a
history of varying extent and composition of magmatic acid volatile input. REE
compositions preserved in anhydrite are particularly useful for inferring the temporal

evolution of seafloor hydrothermal systems, or the conditions of vent deposit formation
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in relict systems where hydrothermal fluids from which the vent deposit formed no
longer exist. Sulfur isotope ratios (5**S—sulfate) of the same anhydrite samples are used
to provide complementary evidence to support the input of magmatic volatiles (i.e., SO,)
(e.g., Roberts et al., 2003). However, isotopic signatures of magmatic sulfur input appear
to be often overprinted by mixing of magmatic—hydrothermal fluids with sulfate-rich
seawater sulfate at or close to the seafloor where seafloor hydrothermal fluids and related
vent deposits are sampled. The available data suggest that sulfur isotopic compositions in
anhydrite are less sensitive indicators of magmatic acid volatile input than are REEx
pattern shapes.

Concentrations of heavy metals and metalloids (e.g., Mn, Fe, Cu, Zn, Pb, Cd, As,
Sb) in seafloor hydrothermal fluids are also solubility controlled and affected by
conditions of fluid—rock interaction (e.g., temperature, pressure, and resultant pH).
Similar to the REEs, higher concentrations of heavy metals in seafloor vent fluids from
the EMB relative to those from the MSC reflect their higher solubility during fluid-rock
interaction owing to a lower pH of fluid—rock interaction. In part, the lower pH can be
related to higher temperatures of fluid—rock interaction; however, the input of magmatic
acid volatiles significantly affects metal solubility during alteration of oceanic crust.
Magmatic acid volatile input may also locally affect aqueous metal concentrations
because the acidity that accompanies input of magmatic vapors can result in dissolution
of previously deposited sulfide. From the data available, there is no clear evidence to
support that the degassing of magmatic acid volatile fluids contributes a direct and
significant source of metals to seafloor hydrothermal systems. In contrast to the REEs,

concentrations and distributions of ore—forming metals are sensitive to local entrainment
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of seawater and mixing with high—temperature hydrothermal fluids because mixing can
result in substantial precipitation of high—temperature Cu—Fe—sulfides (e.g., chalcopyrite)
and generation of secondary acidity, which leads to remobilization of previously
deposited sulfide (e.g., sphalerite and/or wurtzite). This process of zone—refinement, as
described at the TAG active mound, 26 °N Mid—Atlantic Ridge (Tivey et al., 1995),
appears to be important for the chemical evolution of at least some seafloor hydrothermal
fluids and massive sulfide deposits in the Manus Basin.

Related seafloor massive sulfide deposits in the Manus Basin exhibit a wide range
of chimney morphologies and mineral compositions. On the Manus Spreading Center
(Vienna Woods), both active open conduit and relic diffuser—type deposits are dominated
by Zn—sulfide (as wurtzite and/or sphalerite). In the Eastern Manus Basin (PACMANUS
and SuSu Knolls), active high—temperature open conduit chimneys are dominated by Cu—
Fe—sulfides (as chalcopyrite), and lower—temperature diffuser chimneys are dominated by
Cu—Fe—sulfides (as bornite + chalcopyrite) with different amounts of lesser Cu—As—
sulfosalts (as tennantite) and Zn—sulfide (as sphalerite). Comparison to paired
hydrothermal fluids suggests that differences in chimney morphology and mineral
composition are related to differences in styles of fluid flow and to differences in fluid
composition. In particular, the high pH of vent fluids from Vienna Woods and low pH of
vent fluids from PACMANUS and SuSu Knolls affects considerably the solubility of
sulfide minerals (e.g., sphalerite) and their resulting chimney mineralogical compositions.
Although high concentrations of heavy and precious metals (e.g., Ag, Pb, Co, Au) in
seafloor vent deposit samples reflect high concentrations in parental hydrothermal fluids,

enrichment of trace metals is affected significantly by the conditions of mineral sulfide
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precipitation. In particular, precipitation of sulfides at low temperatures (< 200 — 220 °C)
within diffuser—type chimneys appears to favor the enrichment of trace metals versus
deposition at high—temperatures in open conduit chimneys, even though metal
concentrations in high—temperature fluids exiting open conduit chimneys may be higher.
The available data suggest that the distributions of trace metals in a range of sulfide
minerals in high—and low—temperature mineral assemblages (e.g., open conduit versus
diffuser—type chimneys) can be used to infer the temperature and pH conditions of
massive sulfide deposit formation in this and other active and relict submarine
hydrothermal systems.
6.1. Future research directions

There are several topics of scientific interest and debate that have not been fully
addressed in this thesis research and that are recommended as a foci for future studies.
The first concerns the use of stable isotopes as tracers of magmatic volatile input to
seafloor hydrothermal systems. The isotopes of sulfur (sulfur being a primary constituent
of seafloor hydrothermal vent (sulfide—sulfate) deposits) can provide considerable
information about the sources of S in seafloor vent fluids and related mineral deposits,
and about the geochemical processes affecting the cycling of S and, by association, of
other elements (Shanks et al., 1995; Shanks, 2001). Experimental studies have shown that
isotopes of S are affected significantly by input and disproportionation of SO, to H,S (or
S°) and H,SO4 (Kusakabe et al., 2000). Sulfate—sulfur and sulfide—sulfur of direct
magmatic origin have isotope compositions distinct (isotopically lighter) than sulfur
derived from sulfate—sulfur in seawater or reaction of sulfide—sulfur in volcanic rocks

(Kusakabe et al., 2000). Although the data for sulfate—sulfur isotope ratios of anhydrite
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(8°*S—sulfate) recovered from vent fields in the Manus Basin (PACMANUS and SuSu
Knolls) suggest that sulfate—sulfur isotopes can be used to track deep—seated magmatic
volatile input (Chapter 2, see also Roberts et al., 2003), sulfate—sulfur isotope
compositions in the near—seafloor hydrothermal environment can be significantly
compromised by input by large volumes of seawater sulfate, which overprint the isotopic
signatures of magmatic sulfate—sulfur contributions . In contrast, isotope ratios of
sulfide—sulfur, as measured in seafloor hydrothermal fluids (as H,S,aq) and in sulfide and
sulfosalt minerals (e.g., chalcopyrite, pyrite, tennantite), should provide a better
indication of magmatic acid volatile inputs into hydrothermal systems in convergent plate
margins, because sulfide is absent from ambient seawater. Indeed, recent studies
examining the sulfide—sulfur (5**S—sulfide) ratios of chimney sulfides recovered from
vent fields in the Lau back—arc basin (e.g., Herzig et al., 1998) and the Manus back—arc
basin (e.g., Kim et al., 2004) have identified isotopically light 8**S—sulfide ratios (< 0
%o0). The data are consistent with direct and significant contributions of magmatic acid
volatiles to these hydrothermal systems. However, other processes including equilibrium
isotope exchange between seawater sulfate and sulfide at low temperatures (< 300 °C)
(Ohmoto and Lasaga, 1982) and microbial sulfate reduction (Canfield, 2001) can result in
isotopically light 5**S—sulfide ratios that can resemble those of magmatically—derived
sulfide—sulfur. Recent advances in analytical capabilities have now made it possible to
determine precisely multiple sulfur isotope compositions (8°*S, 8°°S and 8°°S) of seafloor
vent fluid H,S and of related sulfide minerals (e.g., Ono et al., 2007). Preliminary studies
suggest that multiple sulfur isotope compositions reflecting different geochemical and

biological processes in hydrothermal systems follow measurably different isotope
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fractionation pathways (Ono et al., 2007). Future studies should focus on the multiple
sulfur isotope ratios as a means to characterize the multiple sulfur isotope compositions
of magmatic sulfur (both sulfate and sulfide) and to distinguish the sulfide—sulfur isotope
compositions arising from chemical disproportionation of magmatic S versus other
processes.

The second, and perhaps most controversial, unresolved issue concerns the
possible sources of ore—forming metals to seafloor hydrothermal systems in back—arc
basins. Evidence for the addition of metal-bearing (e.g., Cu, Zn) magmatic volatile fluids
to submarine hydrothermal fluids in the Manus Basin is centered on the presence of
metal-bearing precipitates within vesicles of erupted felsic volcanic rocks (Yang and
Scott, 1996, 2002). Experiments have shown that volatile elements (such as Cu, Au, As)
can be effectively partitioned into volatile-rich fluids exsolving from melts at magmatic
conditions (Simon et al., 2006, 2007). Heavy metal concentrations in Manus Basin
seafloor hydrothermal fluids examined as part of this thesis do not provide clear and
definitive evidence to support a direct and significant input of metals carried within an
exsolved magmatic volatile-rich fluids (Chapter 4). The available data suggest that
enhanced removal of metals from crustal rocks (or metal condensates; c.f., Yang and
Scott, 1996) or from previously deposited sulfide, owing to low pH conditions as a result
of magmatic volatile input, is the predominant source for metals in these seafloor
hydrothermal fluids.

Non—traditional stable metal isotope studies, in particular of Cu, may provide
constraints on the sources of Cu and associated heavy metals in Manus Basin seafloor

hydrothermal fluids that cannot be obtained from determinations of metal concentrations
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alone. In particular, theoretical calculations (e.g., Seo et al., 2007) predict significant
fractionation of Cu isotopes during exsolution and segregation of low salinity vapors and
higher salinity liquids (between ~ 0.8 and 2.9 %o, as a function of decreasing temperature
from 500 to 150 °C). It is possible that if Cu is partitioned preferentially into a degassing
magmatic acid volatile fluid from a melt, there may measurable isotopic fractionation of
Cu associated with this process. Further, studies of Cu isotope ratios in Cu—Fe—sulfides
from both ancient (e.g., Larson et al., 2003) and modern (e.g., Rouxel et al., 2004)
hydrothermal systems have indicated Cu isotopes to be fractionated significantly during
hydrothermal weathering and sulfide remobilization (resulting mineral deposits enriched
in heavy Cu isotopes). Cu isotope studies of paired seafloor hydrothermal fluids and
related vent sulfide deposits may provide valuable constraints on the extent to which
these processes affect the sources and cycling of Cu in seafloor hydrothermal systems in
back—arc basins. In particular, it should be a priority to determine the Cu isotope
compositions of fluoride—rich (380 — 530 umol/kg; E. Reeves and J. Seewald, unpubl.
data), magmatically—influenced vent fluids and related vent deposits from the
PACMANUS and SuSu Knolls hydrothermal systems (e.g., vent fluids from Satanic
Mills, Suzette and South Su), because it is unclear if marked Cu—enrichments (up to 1100
umol/kg; Chapter 4) in fluoride—rich seafloor vent fluids reflect remobilization of
previously deposited Cu—bearing sulfides and/or sulfosalts as a result of low pH, or
reflect a direct contribution of Cu (and Au, As and Sb) in exsolved magmatic vapors. In
addition, it should be a priority to determine the Cu isotope ratios of high—temperature
vent fluids exiting open conduit black smoker chimneys and apparently related low—

temperature vent fluids exiting diffuser—type chimneys at the Roman Ruins and Roger’s
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Ruins vent fields (PACMANUS hydrothermal system) because seafloor vent fluids and
related vent deposits at these vent fields appear to be impacted significantly by sub—
seafloor mineral precipitation and sulfide remobilization (Chapters 4 and 5) and may
carry with them Cu isotope compositions diagnostic of such sulfide re—working. Stable
metal isotope studies can provide further insights and complementary information to
support the ideas put forward in this thesis regarding the fundamental processes affecting

the formation and composition of seafloor vent fluids and related mineral deposits.
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Appendix B-1.

Complete listing of analytical data for rare earth element concentrations measured in
seafloor hydrothermal fluids sampled from the Manus Basin (Vienna Woods, PACMANUS,
DESMOS and SuSu Knolls vent fields) during cruise MGLNO6MYV (Tivey et al., 2007).
Analytical measurements were performed separately on dissolved and particle fractions
(“bottle-filter” and “dregs’) and mathematically re-constituted to obtain the precipitate- and
contaminant-corrected fluid composition.

The following abbreviation(s) is used in the tables:

N/A = fraction not available for analysis.
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Appendix C-1.

Complete listing of element concentrations (rare earth element, Mg, Sr, Ba and Pb)
and isotope (*’Sr/**Sr and §**S) ratios measured in anhydrite grains by in situ laser ablation
ICP-MS. Samples recovered from subsurface via sub-seafloor drilling during ODP Leg 193
(Binns et al., 2007) or from seafloor by submersible operations during cruise MGLNO6MV
(Tivey et al., 2007).

The following abbreviation(s) is used in the tables:

N.D. = element and/or isotope analysis not performed on sample.
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Appendix D-1.

Complete listing of analytical data for trace metal concentrations measured in seafloor
hydrothermal fluids sampled from the Manus Basin (Vienna Woods, PACMANUS,
DESMOS and SuSu Knolls vent fields) during cruise MGLNO6MYV (Tivey et al., 2007).
Analytical measurements were performed separately on dissolved and particle fractions
(“bottle-filter” and “dregs’) and mathematically re-constituted to obtain the precipitate- and
contaminant-corrected fluid composition. Blank spaces for concentrations below element
limit of detection for analytical method.

The following abbreviation(s) is used in the tables:

N/A = fraction not available for analysis.
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Appendix E-1.

List of equilibrium constants (log K) for sulfide and sulfosalt minerals used to
construct temperature-activity diagrams for the system Cu-Fe-As-S. Thermodynamic data for
sulfides taken from the SUPCRT92 database (Johnson et al., 1992) and for sulfosalts
(tennantite) taken from Knight (1977). In the absence of data for the thermodynamic
properties of tennantite at elevated pressure, vapor saturation pressures are adopted.
Differences in log K values for sulfides at vapor saturation pressure, 170 bar pressure and 250
bar pressure (applicable for depths of hydrothermal systems in the Manus Basin) are the same
within error (+ 0.5 — 1.0 log units). It can be assumed that the thermodynamic properties of

tennantite do not change appreciably over the same range of pressure.
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Appendix E-2.

Complete listing of electron microprobe data for chalcopyrite, bornite, sphalerite,
tennantite, pyrite and galena grains in chimney vent deposit samples from the Manus Basin
(Vienna Woods, PACMANUS and SuSu Knolls vent fields) during cruise MGLNO6MV

(Tivey et al., 2007). Data given in wt %.

354



Appendix E2. Electron Microprobe Analysis of Chalcopyrite in Open Conduit Smokers

S Fe Cu Zn Pb As Sh Cd Ag Se Co Total
J2_207_1_R1 (Vienna Woods, fluid pair "VW1")
Spot #1 3540 3074 3461 0.18 100.93
Spot #2 36.24 3045 34.68 0.77 102.14
Spot #3 3543 3095 35.08 0.21 0.17 101.84
Spot #4 3556 2996 34.37 0.22 100.11
Spot #5 36.07 30.83 3515 102.05
Spot #6 35.37 30.25  34.87 0.10 0.18 100.77
Spot #7 3553 3043  35.00 0.11 101.07
Spot #8 35,53  30.87 34.08 0.10 100.58
Spot #9 3591 3032 34.66 0.33 0.16 101.38
Spot #10 35.37 30.64  34.60 0.16 0.17 100.94
Spot #12 3536 3016 35.22 0.24 0.16 101.13
Spot #14 3484 3041 34.26 0.63 100.14
Spot #15 3527 3040 3472 0.45 100.84
Spot #16 35.63 30.21  34.90 0.44 101.18
Spot #17 3596 30.26  34.80 0.52 0.21 101.75
Spot #18 3580 2999 33.98 1.14 100.91
Spot #19 3593 3059 3457 0.17 101.26
Spot #20 36.15 3040 34.28 0.64 101.47
Spot #21 3513 30.87 3445 0.16 0.14 100.75
Spot #22 3473 2996  33.87 0.12 0.15 98.83
J2_213 3 R1 (Roman Ruins, PACMANUS, fluid pair "RMR3")
Spot #1 35,53 30.70 34.75 100.98
Spot #2 3550 3042  34.66 100.58
Spot #3 35.12 2997 3441 0.12 99.62
Spot #4 3523 30.82 3458 100.63
Spot #6 3516 30.83 3559 0.12 0.18 101.88
Spot #8 3512 3090 34.49 0.22 100.73
Spot #9 3544 30.80 34.68 0.12 0.18 101.23
Spot #10 35.62 3047 3541 0.13 0.19 101.82
Spot #11 3551 30.06 35.01 0.10 0.20 100.89
Spot #12 3554 30,76 3501 101.31
Spot #13 3523  30.27 34.76 0.09 100.35
Spot #14 3544 3119 3439 0.15 101.17
Spot #15 3423 30.69 35.07 0.17 100.16
Spot #16 35.09 3057 34.64 0.22 100.52
Spot #17 35.09 30.75 3454 0.08 0.14 100.60
Spot #21 3554 3022 34.66 0.53 100.95

Values given in wt %. Detection limits are 0.05 for Zn, 0.04 for Co, 0.04 for Cd, 0.04 for Ag, 0.04 for As, 0.03 for Se, 0.09 for
Pb, 0.04 for Sh.
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Appendix E2. Electron Microprobe Analysis of Chalcopyrite in Open Conduit Smokers

S Fe Cu Zn Pb As Sh Cd Ag Se Co Total
J2_222_4_R1 (Roman Ruins, PACMANUS, fluid pair "RMR4" )
Spot #1 3513 3046  34.67 100.26
Spot #2 3530 30.27 3461 100.18
Spot #3 3501 3051 34.66 0.22 100.40
Spot #4 3522 30.15 34.78 100.15
Spot #5 3494 3062 3474 100.30
Spot #6 3520 3054 3479 0.15 100.68
Spot #7 3498 3038 3477 100.13
Spot #8 3451 30.38 3457 0.14 99.60
Spot #9 35.09 3047 3456 100.12
Spot #10 3549 30.64 3481 0.13 0.22 101.29
Spot #11 3483 2995 3511 0.27 100.16
Spot #12 5332 4594 0.59 0.11 0.36 100.32
J2_213 6_R1 (Roger's Ruins, PACMANUS, fluid pair "RGR1" )
Spot #1 35.64 3043 35.23 0.15 101.45
Spot #2 3554 30,73 3511 101.38
Spot #3 35.67 3054 3524 0.23 101.68
Spot #4 3594 30.70 3546 102.10
Spot #5 3484 30.84 35.40 101.08
Spot #6 3524 3055 35.63 0.23 101.65
Spot #7 36.12 30.72 3525 102.09
Spot #10 3555 3038 35.72 0.19 101.84
J2_209_1_R1 (Satanic Mills, PACMANUS, fluid pair "SM1" )
Spot #1 3584 3024 35.09 0.09 101.26
Spot #2 35.09 3041 35.08 100.58
Spot #3 3565 3039 3451 100.55
Spot #4 35.92  30.27 34.80 100.99
Spot #5 3573 3015 34.95 100.83
Spot #6 35.60 30.15 34.83 100.58
Spot #7 3556 3046  34.82 100.84
Spot #8 35,54  30.07 34.87 100.48
J2_216_16_R1 (Fenway, PACMANUS, fluid pair, "F3")
Spot #1 3531 3046  35.27 0.19 101.23
Spot #2 3520 3070 35.00 0.09 100.99
Spot #3 3523 30.36 3544 0.13 101.16
Spot #4 3561 3050 34.98 0.20 101.29
Spot #5 3555 3051 3513 0.15 0.22 101.56
Spot #6 3556 29.82 35.83 0.19 101.40
Spot #8 3520 30.16 35.15 0.18 100.69

Values given in wt %. Detection limits are 0.05 for Zn, 0.04 for Co, 0.04 for Cd, 0.04 for Ag, 0.04 for As, 0.03 for Se, 0.09 for

Pb, 0.04 for Sh.

356



Appendix E2. Electron Microprobe Analysis of Chalcopyrite in Open Conduit Smokers

S Fe Cu Zn Pb As Sb Cd Ag Se Co Total
J2_217_2_R1 (Suzette, SuSu Knolls, "SZ1" )
Spot #1 34.57 30.10 34.66 0.35 99.68
Spot #2 3470 3022 35.16 0.29 0.40 100.77
Spot #3 3405 29.65 34.92 0.45 99.07
Spot #4 3446  30.01 3497 0.27 99.71
Spot #5 3488 3041 3456 0.35 100.19
Spot #6 3493 3042  34.67 0.60 0.29 100.91
Spot #7 3436 2992 3461 0.30 99.19
Spot #9 3483 3036 3451 0.25 99.95
Spot #10 35.34  30.27 35.15 0.46 101.22
Spot #11 3563 30.67 34.88 041 101.59
J2_223_1_R1 (North Su, SuSu Knolls, "NS3" )
Spot #1 3459 3035 34.26 0.27 99.47
Spot #2 3540 30.29 34.69 0.29 100.67
Spot #3 3488 3058 34.68 0.36 100.50
Spot #4 35.17 3046  34.43 0.36 100.42
Spot #19 3499 3038  34.63 0.18 100.18
Spot #5 3476 3041 3441 0.40 99.98
Spot #6 3566 3031  34.23 0.31 100.51
Spot #7 3536 2999 3471 0.38 100.44
Spot #8 3522 3060 34.27 0.33 100.42
Spot #9 3536 30.21 34.95 0.31 100.83
Spot #10 3514 3039 3443 0.32 100.28
Spot #21 34.62 30.61  34.37 0.14 0.20 99.94
Spot #12 35.32 30.02 3454 0.31 100.19
Spot #23 3529 3043 3461 0.13 100.46
Spot #13 35.08 30.23  34.60 0.39 100.30
Spot #14 3510 30.26  34.62 0.19 100.17
Spot #24 3442 30.06 34.68 0.20 0.30 99.66
Spot #15 3546 3050 34.74 0.07 100.77
Spot #16 3576 3031 34.78 0.25 101.10
J2_224 12 _R1 (South Su, SuSu Knolls, fluid pair "SS2" )
Spot #1 35.02 3056 3544 0.15 101.17
Spot #2 3516 30.26 34.79 0.15 100.36
Spot #3 3495 3032 3474 100.01
Spot #4 3448 2945 3533 0.18 0.37 99.81
Spot #5 3541 3032 3524 0.16 101.13

Values given in wt %. Detection limits are 0.05 for Zn, 0.04 for Co, 0.04 for Cd, 0.04 for Ag, 0.04 for As, 0.03 for Se, 0.09 for
Pb, 0.04 for Sh.
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Appendix E2. Electron Microprobe Analysis of Chalcopyrite in Diffuser Smokers

S Fe Cu Zn Pb As Sh Cd Ag Total
J2_208_2_R3 (Roman Ruins, PACMANUS, fluid pair "RMR2" )
Spot #1 3471 3058 34.85 0.11 0.18 100.43
Spot #2 35.95 30.62 3547 0.19 0.12 102.35
Spot #3 3573 30,73 3530 0.18 0.06 102.00
Spot #4 33.71 30.16  35.62 0.08 0.17 99.74
Spot #5 3564 31.00 3543 0.20 0.05 102.32
J2_222_1_R1 (Roger's Ruins, PACMANUS, fluid pair "RGR2" )
Spot #1 3489 2956  35.69 0.08 0.13 0.19 100.54
Spot #3 3419 2836 3599 0.09 0.28 0.84 0.14 99.89
Spot #7 3444 2856  36.02 0.31 0.05 0.20 99.58
J2_209_5_R1 (Satanic Mills, PACMANUS )
Spot #11 3479 3020 3556 0.11 0.12 100.77
Spot #15 3491 2953 36.29 0.15 0.05 100.94
Spot #16 3499 3013  34.88 0.21 100.21
Spot #21 3463 2947 3537 0.15 99.62
J2_209_6_R1 (Satanic Mills, PACMANUS, fluid pair "SM2" )
Spot #2 3535 2919 35.89 0.33 100.76
Spot #5 35.06 29.02 37.16 0.15 101.39
Spot #7 3533 3032 3529 100.94
Spot #8 3459 2811 3596 98.66
Spot #10 35.60 30.81 35.38 101.79
Spot #12 3525 3040 3542 101.07
Spot #13 3454 2879 3434 0.14 97.81
J2_216_2_R1 (Fenway, PACMANUS, fluid pair "F4" )
Spor #1 3453 30.03 34.65 0.13 99.36
Spor #4 3474 3043  34.67 0.13 99.97
Spor #11 3435 2886  36.28 0.19 0.13 100.32
J2_219 10_R1 (Suzette, SuSu Knolls, fluid pair "SZ4" )
Spor #5 3453 3047 3518 0.16 100.34
Spor #6 3453 29.83 3520 99.61
Spor #7 34.62 30.34  35.32 0.12 100.55
J2_226_2_R1 (Suzette, SuSu Knolls, fluid pair "SZ5" )

Spot #18 34.97 29.72 3521 0.23 100.25
Spot #19 3489 2936 35.76 0.25 100.42
J2_224 6_R1 (South Su, SuSu Knolls, fluid pair "SS1" )

Spot #6 3568 2959 35.20 0.12 100.58
Spot #9 3539 2992 3517 0.12 100.60
Spot #13 3537 29.62  34.67 99.95

Values given in wt %. Detection limits are 0.07 for Zn, 0.04 for Co, 0.04 for Cd, 0.04 for Ag, 0.04 for As, 0.03 for Se, 0.10 for
Pb, 0.04 for Sb.



Appendix E2. Electron Microprobe Analysis of Chalcopyrite in Relict Spires

S Fe Cu Zn Pb As Sb Cd Ag Se Co Total
J2_210 1 _R1 (Snowcap, PACMANUS)

Spot #4 3426 2833 36.90 0.25 0.06 99.80
Spot #9 3452 2999 3554 0.15 0.13 0.05 100.37
J2_210_4 R1 (Fenway, PACMANUS)

Spot #6 3463 2932 35.88 0.17 100.00
Spot #8 3499 30.04 3537 0.11 100.51
Spot #10 3479 28.89 3530 0.11 0.17 0.61 0.05 99.92
Spot #15 26.06 11.38  63.56 0.13 101.13
Spot #16 2579 11.04 63.61 0.12 0.19 100.75

Values given in wt %. Detection limits are 0.07 for Zn, 0.03 for Co, 0.05 for Cd, 0.04 for Ag, 0.04 for As, 0.04 for Se, 0.10 for
Pb, 0.04 for Sh.
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Appendix E2. Electron Microprobe Analysis of other Cu-Fe-sulfides in Open Conduit Smokers

S Fe Cu Zn Pb As Sh Cd Ag Se Co Total
J2_222_4_R1 (Roman Ruins, PACMANUS, fluid pair "RMR4" )
Spot #13 26.30 11.38  64.61 0.09 0.13 102.51
Spot #14 26.49 11.63 63.64 0.17 101.93
Spot #15 26.47 1140 63.62 0.16 101.65
J2_213_6_R1 (Roger's Ruins, PACMANUS, fluid pair "RGR1" )
Spot #9 2583 1057 65.62 102.02
J2_216_16_R1 (Fenway, PACMANUS, fluid pair, "F3")
Spot #7 2733 11.00 62.60 0.15 101.08
J2_224_12_R1 (South Su, SuSu Knolls, fluid pair "SS2" )
Spot #6 27.49 552  70.12 0.09 0.20 103.42
Spot #7 27.58 12.64 61.27 101.49
Spot #8 27.21 786 67.54 0.09 0.14 102.84
Spot #9 27.90 12.15 62.24 0.08 102.37
Spot #10 26.39 391 7257 102.87

Values given in wt %. Detection limits are 0.07 for Zn, 0.03 for Co, 0.05 for Cd, 0.04 for Ag, 0.04 for As, 0.03 for Se, 0.09 for

Pb, 0.04 for Sh.
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Appendix E2. Electron Microprobe Analysis of other Cu-Fe-sulfides in Diffuser Smokers

S Fe Cu Zn Pb As Sh Cd Ag Se Co Total
J2_222_1_R1 (Roger's Ruins, PACMANUS, fluid pair "RGR2" )
Spot #2 26.25 1148  62.73 0.09 0.13 1.09 101.77
Spot #4 26.43 11.33  62.78 0.17 0.70 101.42
Spot #8 20.42 79.68 0.08 0.04 0.05 0.46 100.76
Spot #9 20.62 80.91 0.08 0.09 0.47 102.16
Spot #10 20.60 81.23 0.19 0.50 102.52
J2_209_5_R1 (Satanic Mills, PACMANUS )
Spot #9 33.40 258  66.03 0.07 0.11 0.11 102.30
Spot #12 33.81 996  56.99 0.47 0.28 0.12 101.63
Spot #17 3432 1010 56.53 0.11 0.23 0.29 101.58
J2_209_6_R1 (Satanic Mills, PACMANUS, fluid pair "SM2" )

Spot #3 2720 11.03 6251 0.14 100.88
Spot #4 27.40 10.20  64.62 0.13 102.35
J2_216_2 R1 (Fenway, PACMANUS, fluid pair "F4" )

Spor #2 26.23 11.36  61.93 0.17 0.11 99.80
Spor #5 2839 1260 59.27 0.17 100.43
Spor #10 26.86 11.88  62.96 0.11 0.12 0.35 102.28
J2_224 6_R1 (South Su, SuSu Knolls, fluid pair "SS1" )

Spot #5 25.47 11.09  63.32 0.13 0.59 100.61
Spot #7 25.61 11.15 63.44 0.13 0.57 100.89
Spot #8 25.64 1092  63.60 0.10 0.46 100.72
Spot #12 27.17 11.83  62.25 0.18 0.25 101.68

Values given in wt %. Detection limits are 0.07 for Zn, 0.03 for Co, 0.05 for Cd, 0.04 for Ag, 0.04 for As, 0.03 for Se, 0.09 for
Pb, 0.04 for Sh.
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Appendix E2. Electron Microprobe Analysis of other Cu-Fe-sulfides in Relict Spires

S Fe Cu Zn Pb As Sh Cd Ag Se Co Total

J2_210_1_R1 (Snowcap, PACMANUS)

Spot #2 26.32 1146  62.89 0.05 0.13 100.85

Spot #3 23.63 255 7478 0.07 0.15 0.19 101.37

Spot #6 26.23 11.38  63.16 0.05 0.14 100.97

Spot #8 26.14 1145  62.55 0.07 0.12 100.37

Spot #11 2766 10.81  60.22 0.07 0.12 0.11 0.04 98.99

Spot #13 24.04 1.90 75.05 0.34 0.27 0.08 101.69

Spot #14 22.92 117 74.46 0.92 0.19 0.42 100.08
J2_210_4 R1 (Fenway, PACMANUS)

Spot #5 26.18 11.26  63.89 0.11 0.04 101.48

Spot #11 26.11 11.26  63.60 0.11 0.21 101.29

Values given in wt %. Detection limits are 0.07 for Zn, 0.03 for Co, 0.05 for Cd, 0.04 for Ag, 0.04 for As, 0.03 for Se, 0.10 for

Pb, 0.04 for Sh.
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Appendix E2. Electron Microprobe Analysis of Wurtzite/Sphalerite in Open Conduit Smokers

S Fe Cu Zn Pb As Sh Cd Ag Se Co Total
J2_207_1_R1 (Vienna Woods, fluid pair "VW1" )
Spot #26 33.19 4.15 60.96 0.14 0.66 99.10
Spot #27 32.83 3.89 63.02 0.14 0.69 100.57
Spot #28 33.28 3.69 63.44 0.90 101.31
Spot #29 33.31 391 63.40 0.12 0.59 101.33
Spot #30 33.23 3.50 62.91 0.17 0.53 100.34
Spot #31 33.48 3.25 0.08 63.13 0.17 0.37 100.47
J2_213_3_R1 (Roman Ruins, PACMANUS, fluid pair "RMR3")
Spot #21 33.25 4.99 0.38  61.37 0.15 0.09 1.12 101.36
Spot #22 33.24 2.60 235 60.28 0.55 0.33 1.30 0.50 0.13 101.28
Spot #23 34.12 6.63 0.38  62.13 0.22 0.50 104.00

Values given in wt %. Detection limits are 0.03 for Fe, 0.06 for Cu, 0.03 for Co, 0.04 for Cd, 0.04 for Ag, 0.04 for As, 0.03 for
Se, 0.10 for Pb, 0.04 for Sh.
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Appendix E2. Electron Microprobe Analysis of Wurtzite/Sphalerite in Diffuser Smokers

S Fe Cu Zn Pb As Sb Cd Ag Se Co Total
J2_208_2_R3 (Roman Ruins, PACMANUS, fluid pair "RMR2" )
Spot #9 32.42 0.23 053 67.15 0.19 0.40 0.29 0.05 101.26
Spot #10 33.18 0.06 68.61 0.16 0.18 102.19
Spot #12 32.93 0.11 67.90 0.48 101.42
Spot #13 31.08 63.87 3.23 98.18
J2_222_1_R1 (Roger's Ruins, PACMANUS, fluid pair "RGR2" )
Spot #11 31.99 0.49 396 6235 0.49 117 0.05 100.51
Spot #12 32.16 0.38 3.05 6332 0.89 0.25 0.52 100.56
Spot #14 32.05 0.49 238 6227 1.24 0.50 0.72 0.09 99.73
Spot #17 32.57 0.33 1.44  64.66 0.45 0.97 0.06 100.47
Spot #18 32.24 0.22 187  64.28 0.42 0.86 99.88
J2_209_5_R1 (Satanic Mills, PACMANUS )
Spot #1 32.04 210 6365 0.70 1.01 99.50
Spot #2 32.29 0.04 117  65.59 0.51 0.15 99.76
Spot #3 3181 214 6370 1.63 0.35 99.63
Spot #4 32.30 0.44  65.03 1.18 0.12 99.08
Spot #5 32.28 0.24 301 6350 0.67 0.37 100.06
Spot #6 31.95 64.38 1.65 97.98
Spot #7 3281 0.06 65.08 0.96 98.91
J2_216_2_R1 (Fenway, PACMANUS, fluid pair "F4" )

Spor #9 31.86 0.12 079 6364 3.30 0.24 99.95
Spor #12 32.81 0.60 095 65.11 0.93 0.07 0.21 0.06 100.74
J2_219 10_R1 (Suzette, SuSu Knolls, fluid pair "Sz4" )

Spot #1 31.85 0.19 61.15 4.19 1.34 0.17 98.89
Spot #2 3141 0.33 0.50  56.08 5.51 111 0.58 0.87 96.39
Spot #3 30.66 1.22 56.80 5.69 0.92 0.43 0.27 95.99
J2_226_2_R1 (Suzette, SuSu Knolls, fluid pair "SzZ5" )

Spot #3 32.30 0.15 0.88  65.91 1.07 0.06 0.11 100.47
Spot #5 33.14 0.11 015 67.12 0.72 0.05 101.29
Spot #6 33.06 65.98 0.73 99.77
Spot #10 32.60 62.55 1.16 1.00 97.31
Spot #12 32.48 65.02 151 99.01
Spot #13 31.90 64.67 1.19 0.47 98.24
Spot #14 32.82 65.93 1.02 0.10 99.87
Spot #15 31.99 63.39 0.94 0.86 97.18
J2_224 6_R1 (South Su, SuSu Knolls, fluid pair "SS1" )

Spot #14 31.67 61.81 2.98 0.50 0.07 97.03
Spot #15 32.47 63.65 221 0.97 0.42 99.72
Spot #16 32.16 61.89 391 1.48 111 100.55
Spot #17 32.32 0.12 62.20 3.20 117 99.02

Values given in wt %. Detection limits are 0.03 for Fe, 0.07 for Cu, 0.03 for Co, 0.04 for Cd, 0.04 for Ag, 0.04 for As, 0.03 for
Se, 0.10 for Pb, 0.04 for Sb
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Appendix E2. Electron Microprobe Analysis of Wurtzite/Sphalerite in Relict Spires

S Fe Cu Zn Pb As Sh Cd Ag Se Co Total

J2_210_4 R1 (Fenway, PACMANUS)

Spot #12 3251 0.29 042 6536 150 0.28 100.36

Spot #13 32.47 0.53 1.88  63.98 1.01 0.61 0.09 100.56

Spot #17 32.14 0.55 293 6317 1.02 0.47 0.05 100.34
J2_224 5 R1 (South Su, SuSu Knolls )

Spot #8 31.37 0.36 151  59.75 4.14 0.86 0.73 98.71

Spot #9 33.15 66.22 1.13 0.27 0.68 101.44

Spot #10 32.60 0.04 62.72 3.62 1.48 0.47 100.92

Spot #13 30.70 0.05 1.34 60.16 6.43 0.66 0.36 99.71

Spot #14 30.78 0.04 201 59.16 6.37 0.63 0.51 0.07 99.56

Values given in wt %. Detection limits are 0.03 for Fe, 0.07 for Cu, 0.03 for Co, 0.04 for Cd, 0.04 for Ag, 0.04 for As, 0.03 for
Se, 0.10 for Pb, 0.04 for Sb
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Appendix E2. Electron Microprobe Analysis of Tennatite in Open Conduit Smokers

S Fe Cu Zn Pb As Sb Cd Ag Total
J2_223_13 _R1 (North Su, SuSu Knolls )
Spot #1 32.17 134 50.16 16.14 1.24 101.05
Spot #2 31.43 055 49.88 17.43 0.73 100.03
Spot #3 31.07 0.13  49.78 0.08 17.04 2.02 100.12
Spot #4 31.08 0.08 49.84 0.09 17.73 141 100.23
Spot #7 31.62 1.09 4957 17.77 100.05

Values given in wt %. Detection limits are 0.06 for Zn, 0.03 for Co, 0.04 for Cd, 0.04 for Ag, 0.03 for Se, 0.10 for Pb, 0.04 for Sb

Appendix E2. Electron Microprobe Analysis of Tennatite in Diffuser Smokers

S Fe Cu Zn Pb As Sh Cd Ag Total
J2_209_5_R1 (Satanic Mills, PACMANUS )
Spot #10 32.89 113  50.37 0.07 17.50 101.96
Spot #13 32.76 219  50.77 014 16.37 0.18 102.40
Spot #14 32.92 0.23  50.64 0.12 18.25 0.07 0.05 102.29
Spot #20 32.66 518 4833 0.52 024 1268 0.14 99.75
J2_216_2_R1 (Fenway, PACMANUS, fluid pair "F4")

Spor #3 28.47 6.63  45.09 0.52 012 1856 2.10 0.13 101.63
Spor #6 27.74 6.19  43.60 0.60 0.12 13.31 8.83 100.40
J2_226_2_R1 (Suzette, SuSu Knolls, fluid pair "SZ5" )

Spot #1 32.36 099 51.30 0.11 0.41 12.31 1.97 99.44
Spot #2 32.73 279 5149 0.21 020 1256 1.02 100.99
Spot #8 32.61 212 52.88 0.26 0.26 11.72 1.92 101.78
Spot #9 32.35 350 50.37 0.25 039 1208 2.46 101.40
Spot #11 32.38 354 5011 1.15 0.42 12.14 243 102.17
J2_224 6_R1 (South Su, SuSu Knolls, fluid pair "SS1" )

Spot #1 28.89 516  46.55 0.44 19.01 1.54 0.08 101.68
Spot #2 28.78 506  46.43 0.47 19.97 0.09 100.80
Spot #10 28.89 516  45.84 1.16 20.07 0.15 0.28 101.55
Spot #11 2891 489  46.16 1.19 0.20 19.86 0.23 0.12 101.56
Spot #14 29.07 5.08  46.29 1.14 0.28 19.89 0.05 0.16 101.96

Values given in wt %. Detection limits are 0.06 for Zn, 0.03 for Co, 0.04 for Cd, 0.04 for Ag, 0.03 for Se, 0.10 for Pb, 0.04 for Sb
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Appendix E2. Electron Microprobe Analysis of Tennatite in Relict Spires

S Fe Cu Zn Pb As Sh Cd Ag Se Co Total

J2_210_1_R1 (Snowcap, PACMANUS)

Spot #5 2812 507 4476 172 014 1981  0.05 0.11 99.79
Spot #7 2849 520 4503 148 017 1883 150 0.08 100.78
Spot#10 2861 547 4573 121 013 1969  0.64 0.13 101.61
Spot#12 2878 535 4554 127 012 19.77 0.06 100.89
J2_210_4_R1 (Fenway, PACMANUS)
Spot #1 2869 627 4512 071 1970  0.64 101.13
Spot #2 2856 625 4461 057 013 1878 177 100.67
Spot #3 2853 619 4494 069 19.03 155 100.92
Spot #4 2841 613 4583  0.63 1955 0.9 101.50
Spot #7 2835 616 4435 072 012 1710 429 101.08
Spot #9 27.84 601 4432 067 012 1714 434 100.43
Spot#14 2868 626 4539 067 017 1946  0.75 101.38

J2_224 5 R1 (South Su, SuSu Knolls )

Spot #1 28.61 1.04 4526 7.12 0.14  19.76 0.42 0.06 0.21 102.63
Spot #4 28.03 0.95 4443 7.33 19.75 0.25 0.05 0.20 101.00
Spot #6 28.39 0.86  44.45 6.83 024  19.77 0.13 0.09 0.27 101.04
Spot #11 28.68 0.79 4510 7.20 0.44  19.92 0.17 0.09 0.21 102.60
Spot #12 28.30 0.68  45.05 7.31 056  19.75 0.19 0.20 102.04

Values given in wt %. Detection limits are 0.06 for Zn, 0.03 for Co, 0.04 for Cd, 0.04 for Ag, 0.03 for Se, 0.10 for Pb, 0.04 for Sh
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Appendix E2. Electron Microprobe Analysis of Pyrite in Open Conduit Smokers

S Fe Cu Zn Pb As Sh Cd Ag Se Co Total
J2_207_1_R1 (Vienna Woods, fluid pair "VW1" )
Spot #11 55.18  47.56 0.31 0.25 103.30
Spot #13 5497  47.44 0.22 102.63
Spor #23 55.12  47.47 0.05 0.22 102.86
Spor #24 55.05  48.40 0.22 0.18 103.85
Spor #25 5446  46.64 0.73 0.17 102.00
J2_213_3_R1 (Roman Ruins, PACMANUS, fluid pair "RMR3")

Spot #18 52.84 4573 0.78 2.53 1.28 103.16
Spot #20 53.04  45.99 0.79 2.53 0.67 103.02
J2_222_4_R1 (Roman Ruins, PACMANUS, fluid pair "RMR4" )

Spot #16 52.44 4513 212 0.11 0.29 100.09
Spot #17 5417  47.11 0.47 0.10 101.85
J2_223 1 R1 (North Su, SuSu Knolls, "NS3" )

Spot #17 53.84 4577 0.23 0.18 0.15 0.56 100.73
Spot #26 53.06 46.24 0.18 0.08 99.55
Spot #27 51.80 44.03 131 0.17 0.27 1.00 98.58
J2_223 13 R1 (North Su, SuSu Knolls )

Spot #5 53.11 4490 0.70 98.70
Spot #9 53.25  46.47 0.37 0.23 100.31
Spot #10 53.79  46.73 0.25 100.77

Values given in wt %. Detection limits are 0.06 for Zn, 0.03 for Co, 0.05 for Cd, 0.04 for Ag, 0.04 for As, 0.03 for Se, 0.09 for

Pb, 0.04 for Sh.
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Appendix E2. Electron Microprobe Analysis of Pyrite in Diffuser Smokers

S Fe Cu Zn Pb As Sb Cd Ag Se Co Total
J2_209_6_R1 (Satanic Mills, PACMANUS, fluid pair "SM2" )

Spot #15 54.00 43.78 0.30 3.59 0.12 0.06 101.85

Spot #16 53.00 42.89 0.66 5.39 031 102.25

Spot #17 55.33  47.67 0.21 0.44 103.65
J2_219_10_R1 (Suzette, SuSu Knolls, fluid pair "Sz4" )

Spor #4 5041 4292 0.20 0.44 5.16 1.21 0.12 100.45

Spor #8 52.67  44.67 2.06 0.16 1.00 0.70 0.05 101.32

Spor #9 52.74 4577 1.42 0.56 0.90 101.39
J2_224 6_R1 (South Su, SuSu Knolls, fluid pair "SS1" )

Spot #18 53.36  44.06 0.36 2.08 0.06 99.92

Spot #19 53.70  45.07 0.22 0.31 99.31

Spot #14 53.72  46.68 0.07 0.10 0.44 101.01

Spot #15 52.99  45.08 0.07 1.06 99.21

Values given in wt %. Detection limits are 0.10 for Zn, 0.03 for Co, 0.05 for Cd, 0.04 for Ag, 0.04 for As, 0.03 for Se, 0.13 for Pb

Appendix E2 Electron Microprobe Analysis of Pyrite in Relict Spires

S Fe Cu Zn Pb As Sh Cd Ag Se Co Total
J2_224 5 R1 (South Su, SuSu Knolls )
Spot #2 53.14  44.98 0.60 0.11 1.97 0.05 100.85
Spot #3 5247 4232 1.14 0.23 4.69 100.86
Spot #5 5342 4464 0.81 0.12 2.30 101.28
Spot #7 54.27 4484 0.59 0.93 2.27 102.90

Values given in wt %. Detection limits are 0.07 for Cu, 0.06 for Zn, 0.03 for Co, 0.04 for Cd, 0.04 for Ag, 0.04 for As, 0.03 for

Se, 0.10 for Pb, 0.04 for Sb
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Appendix E2. Electron Microprobe Analysis of Galena in Diffuser Smokers

S Fe Cu Zn Pb As Sh Cd Ag Se Co Total
J2_208_2_R3 (Roman Ruins, PACMANUS, fluid pair "RMR2" )
Spot #6 14.39 86.58 0.11 0.23 101.31
Spot #7 14.83 0.19 83.26 1.01 99.29
Spot #8 14.13 86.16 0.98 0.07 0.05 101.38
Spot #11 13.64 87.03 0.10 0.11 100.88
J2_222_1_R1 (Roger's Ruins, PACMANUS, fluid pair "RGR2" )

Spot #15 13.76 0.13 143  86.95 0.08 102.35
Spot #16 13.51 0.14 0.72  87.15 0.07 101.59
J2_209_5_R1 (Satanic Mills, PACMANUS )

Spot #18 13.75 072 8793 0.08 102.48
Spot #19 13.72 031 87.80 0.09 101.92
J2_216_2 R1 (Fenway, PACMANUS, fluid pair "F4" )

Spor #7 13.83 151  87.99 0.06 103.39
J2_226_2_R1 (Suzette, SuSu Knolls, fluid pair "Sz5" )

Spot #4 13.48 0.63  87.82 0.11 102.04
Spot #7 13.80 0.10 87.92 0.05 101.87
Spot #16 13.79 87.85 0.09 101.73
Spot #17 14.12 88.00 102.12

Values given in wt %. Detection limits are 0.03 for Fe, 0.07 for Cu, 0.06 for Zn, 0.03 for Co, 0.04 for Cd, 0.04 for Ag, 0.04 for

As, 0.03 for Se, 0.04 for Sh

Appendix E2. Electron Microprobe Analysis of Galena in Relict Spires

S Fe Cu Zn Pb As Sh Cd Ag Se Co Total
J2_210_1_R1 (Snowcap, PACMANUS)
Spot #1 13.71 0.24 0.63 87.61 102.19

Values given in wt %. Detection limits are 0.03 for Fe, 0.07 for Cu, 0.06 for Zn, 0.03 for Co, 0.04 for Cd, 0.04 for Ag, 0.04 for

As, 0.03 for Se, 0.04 for Sh
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