

THE UNIFRAME MOBILE AGENT BASED

RESOURCE DISCOVERY SERVICE

TR-CIS-1122-03

UNIFRAME MOBILE AGENT BASED

RESOURCE DISCOVERY SERVICE (MURDS)

TR-CIS-1122-03

Jayasree Gandhamaneni June 28, 2004

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUN 2004 2. REPORT TYPE

3. DATES COVERED
 00-00-2004 to 00-00-2004

4. TITLE AND SUBTITLE
The Uniframe Mobile Agent Based Resource Discovery Service

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Indiana University/Purdue University,Department of Computer and
Information Sciences,Indianapolis,IN,46202

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

251

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

THE UNIFRAME MOBILE AGENT BASED RESOURCE DISCOVERY SERVICE

A Technical Report

Report Number

TR-CIS-1122-03

Submitted to the Faculty

Of Purdue University

By

Jayasree Gandhamaneni

In Partial Fulfillment of the

Requirements for the Degree

Of

Master of Science

June 2004

ii

To my Parents, Grand Mother, Deepak and Aryan

iii

ACKNOWLEDGMENTS�
�

As a student at the Department of Computer and Information Sciences, Indiana

University-Purdue University-Indianapolis, it has been a wonderfully gratifying

experience realizing the dream of studying Masters in Computer Sciences. I am positive

that the experience and knowledge I gained here will have a tremendous impact on my

life and career.

I would like to take this opportunity to thank many people who have assisted me

in successfully completing this project.

First of all, I would like to thank Professor Rajeev Raje, my advisor, for his

constant support and able guidance through out the course of my graduate studies and

project work.

My special thanks to Professor Andrew Olson and Professor Jeffrey Huang for

being on my advisory committee and providing proper guidance during important periods

of the project work.

I would like to thank the U.S. Department of Defense and the U.S. Office of

Naval Research for supporting this research under the award number N00014-01-1-0746.

Also, I would like to take this opportunity to thank all my friends who rendered

their help in completing this project work when required. I would like to express my great

regards for them.

Many thanks to the faculty, staff and colleagues at the Department of Computer

and Information Science for their timely assistance and co-operation.

Finally, I would have to thank my wonderful parents and beloved husband

Deepak for their constant encouragement and support.

iv

TABLE OF CONTENTS

 Page

ACKNOWLEDGMENTS ... iii

TABLE OF CONTENTS... iv

LIST OF TABLES... ix

LIST OF FIGURES .. x

ABSTRACT.. xii

1. INTRODUCTION .. 1

1.1 Problem Definition and Motivation.. 2

1.1.1 Motivation... 3

1.2 Objectives ... 7

1.3 Contributions .. 7

1.4 Organization of this report .. 8

2. BACKGROUND AND RELATED WORK .. 9

2.1 Overview of UniFrame ... 9

2.1.1 The Unified Meta-Component Model (UMM)................................... 9

2.1.1.1 Components ... 9

2.1.1.2 Service and Service Guarantees... 10

2.1.1.3 Infrastructure.. 10

2.1.2 The UniFrame Approach (UA)... 14

2.1.2.1 UMM specification .. 14

2.1.2.2 The UniFrame QoS Framework (UQOS) 18

2.1.2.3 The UniFrame System Level Generative Programming

Framework (USGPF) .. 19

2.2 Resource Discovery protocols .. 20

2.2.1 Directory Services... 20

2.2.1.1 Universal Description, Discovery and Integration (UDDI)21

2.2.1.2 CORBA Trader Services.. 21

v

2.2.1.3 Light Weight Directory Access Protocol (LDAP)............. 22

2.2.1.4 Global Name Service (GNS) and Domain Name Service

(DNS) ……... 22

2.2.2 Discovery Services.. 23

2.2.2.1 JINI .. 23

2.2.2.2 Service Location Protocol (SLP) 24

2.2.2.3 Ninja Project: Secure Service Discovery Service (SSDS). 25

2.2.2.4 Salutation ... 25

2.2.2.5 Universal Plug and Play (UPnP).. 26

2.2.2.6 Bluetooth Service Discovery Protocol............................... 26

2.2.2.7 DReggie ... 27

2.2.2.8 Grid Discovery Service (Globus Toolkit MDS) 27

2.2.3 Characteristics of Resource Discovery protocols 28

2.3 Overview of Agents .. 30

2.3.1 Agent... 30

2.3.2 Mobile Agent .. 30

2.4 Overview of models in an agent ... 30

2.4.1 Agent Model ... 31

2.4.2 Life-cycle Model... 31

2.4.3 Computational Model ... 32

2.4.4 Security Model.. 33

2.4.5 Communication Model ... 34

2.4.6 Navigation Model ... 35

2.5 Overview of Grasshopper ... 35

2.5.1 Agents ... 36

2.5.2 Agency .. 37

2.5.2.1 The Core Agency ... 37

2.5.2.2 Place... 38

2.6 Region... 39

2.7 Region registry.. 39

3. MURDS ARCHITECTURE... 40

vi

3.1 Component Discovery and Component Selection phases 41

3.1.1 Flow of number of messages between HHs and ARs in the

component discovery process ... 43

3.1.2 Heterogeneous policies ... 45

3.1.2.1 Access Control as an example ... 47

3.2 Security Issues .. 49

3.3 Architecture of MURDS... 52

3.3.1 Domain Security Manager (DSM).. 56

3.3.1.1 Algorithm for DSM initialization 57

3.3.1.2 Algorithm for authenticating entities 57

3.3.1.3 Algorithm to withdraw Headhunters from DSM............... 59

3.3.1.4 Algorithm to respond to a Headhunter’s request for list of

active registries ... 59

3.3.1.5 Algorithm to respond to a Query Manager’s request for list

of Headhunters .. 60

3.3.1.6 Algorithm to validate a mobile agent originating from a

Headhunter .. 61

3.3.1.7 Algorithm to update the availability of Headhunters and

Active Registries ... 61

3.3.1.8 Algorithm to detect failure of Headhunters and Active

Registries ………….. 62

3.3.2 Headhunter (HH) .. 63

3.3.2.1 Algorithm for HH initialization ... 64

3.3.2.2 Algorithm to send mobile agent on behalf of a Headhunter

…... 65

3.3.2.3 Algorithm for populating Meta Repository 66

3.3.2.4 Algorithm to Retrieve Search Results from the Meta-

Repository………….. ... 66

3.3.2.5 Algorithm to notify DSM about the Headhunter’s

availability in the system .. 67

3.3.2.6 Algorithm for Headhunter Shutdown 67

vii

3.3.3 Meta-Repository ... 68

3.3.4 Active Registry (AR) .. 68

3.3.4.1 Algorithm for AR Initialization ... 68

3.3.4.2 Algorithm for obtaining UniFrame Specifications of

Registered Components .. 69

3.3.4.3 Algorithm for Parsing the UniFrame Specification 74

3.3.4.4 Algorithm for Introspection of the Registered Component

……….…….. 75

3.3.4.5 Algorithm to notify DSM about the Active Registry’s

availability in the system .. 76

3.3.5 Query Manager (QM) ... 77

3.3.5.1 Algorithm for QM Initialization .. 78

3.3.5.2 Algorithm for handling query requests from clients.......... 78

3.3.5.3 Algorithm to send mobile agent on behalf of a QM 79

3.3.5.4 Algorithm for Generating Structured Query Language

(SQL) Statement ... 80

3.3.5.5 Algorithm to send query results to the QM by the mobile

agent………………….. 80

3.3.6 Services ... 81

4. MURDS IMPLEMENTATION ... 82

4.1 Technology ... 82

4.2 Prototype Implementation... 85

4.2.1 Platform and Environment.. 86

4.2.2 Communication Infrastructure .. 86

4.2.3 Security Infrastructure .. 86

4.2.4 Programming Model ... 87

4.2.4.1 Entity Objects... 87

4.2.4.2 Helper Objects ... 87

4.2.4.2.1 Data Access Objects 88

4.2.4.2.2 Dependent Objects.. 88

4.2.4.3 Persistent Data ... 91

viii

4.2.4.4 Service Components .. 95

4.2.4.5 Mobile Agent Objects .. 98

5. VALIDATION ... 100

5.1 Experimentations .. 101

5.1.1 Experimentation to validate the proposed architecture................... 101

5.1.2 Experimentation to show that the prototype is scalable.................. 103

5.2 Results... 104

5.2.1 Increase in the number of Components .. 104

5.2.2 Increase in the number of Active Registries 106

5.2.3 Increase in the number of Headhunters .. 106

5.2.4 Increase in the number of Queries .. 108

5.2.5 Message Consumption .. 109

5.2.6 Heterogeneous policies ... 110

6. CONCLUSION AND FUTURE WORK ... 114

LIST OF REFERENCES.. 117

APPENDICES .. 121

APPENDIX A: Class Diagrams for the Entity Objects .. 121

APPENDIX B: Class Diagrams for the Data Access Objects 123

APPENDIX C: Class Diagrams for the Dependent Objects................................. 124

APPENDIX D: Schema for the DSM_Repository ... 125

APPENDIX E: Schema for the Meta_Repository .. 126

APPENDIX F: Class Diagrams for the Service Components 127

APPENDIX G: Source Code .. 128

APPENDIX H: Commands To Run the System... 232

ix

LIST OF TABLES

Table Page

Table 2.1 UMM Specification Template ………………………………………………15

Table 2.2 Comparison of the Features of the Directory and Discovery services ……...28

Table 3.1 Functional differences of the entities participating in the MURDS and the

URDS ……………………………………………………………………………….....55

Table 5.1 Policy Association between HH1 and AR1 ………………………….........112

Table 5.2 Policy Association between HH1 and AR2………………………………..112

x

LIST OF FIGURES

Figure Page

Figure 2.1 URDS Architecture……………………………………………………....13

Figure 2.2 Persistent process based life cycle ……………………………………….31

Figure 2.3 Task based life cycle……………………………………………………..32

Figure 2.4 Abstract view of entities in the Distributed agent environment

of Grasshopper……………………………………………………………………….36

Figure 3.1 Messages communication between a HH and an AR in the URDS……...43

Figure 3.2 Mobile agent based message communication between a HH and ‘N’

ARs…………………………………………………………………………………..44

Figure 3.3 Policy relationships between Headhunters and Active Registries ………46

Figure 3.4 MURDS architecture …………………………………………………….54

Figure 4.1 Components and Containers of J2EE Model…………………………….83

Figure 4.2 MURDS Implementation ……………………………………………….85

Figure 5.1 CQRRT vs. Number of Components……………………………………105

Figure 5.2 CQRRT vs. Number of Active Registries ………………………………106

Figure 5.3 CQRRT vs. Number of Headhunters……………………………………107

Figure 5.4 CQRRT vs. Number of Queries………………………………………....109

Figure 5.5 Number of Active Registries vs. Message Consumption……………….110

xi

ABSTRACT

Gandhamaneni, Jayasree, M.S., Purdue University, June, 2004. “UniFrame Mobile Agent

based Resource Discovery Service”. Major Professor: Rajeev Raje

The development of a Distributed Computing System (DCS) using geographically

scattered heterogeneous software components is a growing trend. The UniFrame

paradigm provides an approach for automatic or semi-automatic creation of a DCS by

seamless integration of software components taking into account both functional and

non-functional (such as QoS) requirements. UniFrame uses the UniFrame Resource

Discovery Service (URDS) for dynamic discovery and selection of components that are

deployed on the network. The entities involved in the URDS uses request-reply based

communication to accomplish their tasks. These discovery entities periodically discover

newly registered components from the native registries. They require certain amount of

network resources to effectively discover components. Also, the native registries may

decide to offer differentiated services to different discovery entities based on pre-

determined policies. The UniFrame Mobile Agent based Resource Discovery Service

(MURDS) project addresses the issues related to network resource consumption and

heterogeneous policies by replacing the request-reply based communication in the URDS

with the mobile agent-based communication. A prototype is designed and experimented

with to validate the inclusion of mobile agents in the URDS architecture. The results

obtained indicate that the mobile agent-based communication is comprehensive enough

to reduce network resource consumption and to interoperate with the native registries that

offer differentiated services to different discovery entities.

1

1. INTRODUCTION

Development of component-based software applications using Commercial off

the shelf (COTS) software components is becoming a trend in the field of Distributed

Computing Systems (DCS). Some of the reasons for this trend could be attributed to

decreased development time and the cost of an application due to readily available

components, and increased reliability of systems with the usage of well built and well

tested components. However, many issues arise during the development of component-

based solutions to DCS. One of these issues is that the components used in the

development of a particular DCS may follow different component models such as Java

Remote Method Invocation (RMI) [1], Distributed Component Object Model (DCOM)

[2], Common Object Request Broker Architecture (CORBA) [3], and .NET [4]. Most of

these models provide interoperability in terms of underlying hardware, and operating

systems, but do not provide interoperability with components that belong to different

distributed component models because of differences in the implementation language or

the underlying object model. Hence, an approach is required for seamless interoperation

of components developed under different models.

Another issue that needs to be addressed is the Quality of Service (QoS) of

individual components as well as DCS developed from those components. ISO [5]

defines QoS as “The totality of features and characteristics of a product or a service that

bare on its ability to satisfy stated or implied needs”. This implies that the QoS assurance

of individual components plays a critical role in developing DCS with predictable

quality. Composing systems out of COTS poses the need for a standardized mechanism

that not only guarantees the QoS of each component, but also of DCS composed out of

them. Hence, a framework is needed that incorporates QoS as an inherent part of software

components and provides for quantification, verification, validation and specification of

both software components and DCS built out of them.

The Unified Meta-component Model Framework (UniFrame) [6, 7] provides an

approach for a seamless integration of heterogeneous software components taking into

account both functional and non-functional (such as QoS) requirements to build a DCS.

2

The key concepts of this framework are as follows: a) a meta-component model (the

Unified Meta Model – UMM [8]), with a hierarchical setup for indicating the contracts

and constraints of the components and an associated discovery mechanism for locating

components used in the creation of a distributed system, b) an integration of the QoS at

the individual component and distributed application levels, c) the validation and

assurance of the QoS, based on the concept of event grammars, and d) generative rules,

along with their formal specifications, for assembling an ensemble of components out of

available component choices. This project focuses on providing an architecture and

implementation, based on mobile agents, for the discovery aspect of UniFrame.

1.1 Problem Definition and Motivation

With the advent of the Internet and its related technologies, a new trend has

started towards publishing service provider components on the Internet and the

subsequent discovery of these components using directory-based discovery services to

build distributed computing applications. Several directory-based discovery services,

such as Universal Description, Discovery and Integration (UDDI) [10] registry, CORBA

Trader Services [11], Lightweight Directory Access Protocol (LDAP) [12], Domain

Name Service (DNS) [14], JINI [25], Service Location Protocol (SLP) [26,27], Ninja

Project [28,29], and Universal Plug and Play (UpnP) [32,33] are available to discover

service provider components on the Internet. Most of these discovery services use a

publish-subscribe model where service providers register their services with a central

directory and service consumers discover services by querying respective directories.

However, most of these discovery services assume the presence of a homogeneous

environment in terms of the component model used to develop the components to be

discovered. In a realistic scenario, such might not be the case. Hence, there is a need of a

discovery service that uses a publish-subscribe model and at the same time addresses

heterogeneity by enabling discovery of components belonging to different existing

distributed component models.

UniFrame Resource Discovery Service (URDS), defined under Unified Meta-

Component Model (UMM) [8], provides the necessary infrastructure for dynamic

3

discovery of heterogeneous software components that offer and utilize services as well as

the selection of components meeting the necessary functional and non-functional

requirements (such as desired levels of Quality of Service) [9]. The URDS infrastructure

consists of a component broker, zero or more service discovery entities associated with

the component broker, a set of native registries/lookup services, service provider

components, data repositories, services and adapter entities. The component broker is

analogous to an object request broker in other architectures. It is not a single entity, but is

a collection of sub-entities. The component broker consists of the following sub-entities:

the query handling entity, the domain security manager, the link manager and the adapter

manager. A formal description of these entities involved in the URDS is given in chapter

2. The users of the URDS system can be the Component Assemblers, System developers

or System Integrators and are responsible for developing a DCS based on client

requirements. This research proposes a mobile agent-based version of the URDS, called

MURDS (The UniFrame Mobile Agent-based Resource Discovery Service).

1.1.1 Motivation

 The motivation for the MURDS is as follows:

The discovery of heterogeneous software components and their selection for a

particular client request consists of two phases of the URDS. These phases are described

below.

 Phase 1: Discovering heterogeneous software components

The Service Discovery Entity (SDE) and the Native Registry/Lookup Service

(NR/LS) are the two participants that perform the dynamic discovery of heterogeneous

software components in the URDS architecture.

The purpose of the SDE is to detect the presence of heterogeneous software

components in the network, to register the functionality of these components in its data

repository and to return a list of components that matches the requirements specified in

the query for building a particular DCS.

The purpose of the NR/LS is to register components developed under a particular

distributed component model such as Java RMI, CORBA, and .NET. The discovery

4

process is based on the propagation of multicast messages between the SDE and various

Native Registries/Lookup Services (NRs/LSs). Hence, the functionality of these NRs/LSs

is extended to listen and respond to multicast messages from the SDE.

Upon initialization, service provider components register their services with their

NRs/LSs. Each SDE periodically multicasts its presence in the network. All the NRs/LSs,

which listen for multicast messages, respond to the respective SDE multicast messages

by passing their contact information. Service Discovery Entities (SDEs) query those

NRs/LSs that respond to their announcements for the list of components registered with

them. The NRs/LSs respond to the SDE by passing the list of components registered with

them and the detailed service description of these components. The SDEs store this

information in its data repository [9].

Phase 2: Selecting appropriate components

 The SDE and the Query Handling Entity (QHE) are the two participants that are

involved in the selection of appropriate software components based on the requirements

provided by various clients.

 The purpose of the QHE is to handle client requests by passing on their

requirements to the SDEs. The SDEs process the requests that they receive from various

Query Handling Entities (QHEs) and return the lists of software components that match

the search criteria to the respective QHEs.

 A client who wants to build a particular DCS submits a functional and QoS

requirement specification to the system integrators/component assemblers. The system

integrators/component assemblers contact the QHE and submit the client’s request to

retrieve a list of software components that match that request. The QHE, which has a list

of SDEs, randomly picks a SDE as a ‘Chief Service Discovery Entity’ (CSDE) and

delegates the job of selecting appropriate components from the remaining list of SDEs to

the CSDE. The CSDE searches its data repository to find out components that matches

the search criteria. Also, it selects a random subset of the remaining SDEs, delegating

each SDE a list containing a portion of the remaining SDEs along with the query to be

transmitted. The portion allocated is a ratio of the remaining SDEs to the number of

SDEs in the chosen subset. Each of the subset SDEs is a CSDE and is responsible for

5

transmission of the query among the list of SDEs allocated to it and retrieval of the

results back to the CSDE that spawned them. The transmission of the query includes

selecting a subset of CSDEs and passing of the remaining SDE list and the query to the

subset. The CSDE finally combines the result before sending it back to the QHE.

The periodic discovery of newly registered components involves repeated

interactions between SDEs and NRs/LSs. The task of selecting appropriate service

provider components based on particular search criteria involves multiple interactions

between QHE and the list of SDEs. All the interactions are based on a request-reply

protocol that is synchronous in nature. Therefore, these entities not only make several

separate requests but also maintain network connections over an extended period of time

until the corresponding requests are fulfilled. In the event of network failure, these

entities would have to send their requests more than once to get a reply. This results in

increased utilization of network and server side resources. Making use of asynchronous

modes of communication and remote event notification relieves the respective entities

from maintaining network connections over an extended period of time.

Also, an increase in the number of entities participating in the discovery phase

increases the network resource utilization. If the available network bandwidth decreases,

fewer entities would be able to discover components at a given point of time. This

implies that the network bandwidth would become a bottleneck to the discovery process.

A possible solution to avoid this scenario is to make the discovery mechanism less

dependent on the network bandwidth. This can be achieved by reducing the number of

transactions between the SDEs and the NRs/LSs as well as by making asynchronous

calls.

Another issue that is related to the component discovery phase is as follows:

In the URDS, the nature of services provided by NRs/LSs is considered to be

independent of the nature of the SDEs requesting services from them. A SDE requesting

software components will be provided all the components that are available with

NRs/LSs. An important fact that needs to be considered is to limit the services provided

to the SDEs based upon a decision-making process that considers, among other things,

the type of SDEs requesting the services. Various sets of distinguishing parameters, such

as cost and security, can be used to determine the nature of the SDE groups. As these can

6

be heterogeneous by nature, an elegant mechanism is needed to seamlessly overcome

these differences.

In order to address all of the above mentioned issues, this project evaluates the

mobile agent paradigm as a possible enhancement of the UniFrame resource discovery

mechanism. A mobile agent is a program that represents a user in a computer network

and can migrate autonomously from node to node to perform some computation on

behalf of the user [15].

According to the literature [16], mobile agents offer the following advantages

• They reduce the network load by sending the code to the data host instead of sending

the data over the network.

• They overcome network latency by executing the code locally and hence they do not

need a lot of bandwidth.

• They encapsulate protocols by carrying their own protocol code with them to the

visiting host system.

• They execute asynchronously and autonomously, and are therefore independent of a

continuously open network connection.

• They adapt dynamically to new environments.

• They are naturally heterogeneous and work well in a heterogeneous network.

• They are robust and fault-tolerant.

 The introduction of mobile agents to discover software components and to select

appropriate service provider components in the URDS architecture changes the

interaction pattern between associated entities by sending mobile agents to execute their

tasks locally, autonomously and asynchronously. Asynchronous mode of communication

relieves the entities from maintaining network connections over an extended period of

time. Local executions of the tasks reduce the consumption of network bandwidth to

discover and to select components. In order to obtain component information from

NRs/LSs, the SDEs must specify information about their identity or nature. A Mobile

agent achieves this task by carrying information with it during the discovery process.

7

1.2 Objectives

The specific objectives of this project are:

• To provide a mobile agent-based architecture, MURDS, thereby enhancing the URDS

architecture [9].

• To develop a prototype for MURDS using Java and Java-based agent development

platform – Grasshopper.

• To validate the principles behind MURDS by conducting experiments on the

MURDS prototype.

1.3 Contributions

The contributions of this project are:

• It provides a survey of the issues associated with the component discovery and

component selection phases of the URDS and establishes the benefit of introducing

mobile agents to address these issues in the MURDS architecture.

• It presents a framework for MURDS by adding mobile agents into the URDS

architecture.

• It provides an access control model that allows mobile agents to get access to the

resources associated with the NRs/LSs involved in the component discovery phase of

the MURDS.

• It compares the perfomance of mobile agent based resource discovery service with

the non-mobile agent based resource discovery service to prove that the mobile agent

based resource discovery service provides better service when compared to the non-

mobile agent based resource discovery service.

8

1.4 Organization of this report

This project report is organized into 6 chapters. The introduction of the project,

along with problem definition and motivation, objectives and contributions were

presented in this chapter. Chapter 2 provides related work. Chapter 3 provides an

overview and design details. Chapter 4 provides implementation of the project. Chapter 5

describes the prototype validation by experimentation. Chapter 6 concludes this project

with a discussion of what was accomplished and future work.

9

2. BACKGROUND AND RELATED WORK

This chapter starts with a brief overview of UniFrame, which is a basis for URDS

and subsequently to MURDS. Section 2.2 describes various directory services and

discovery services, whose shortcomings lead to the introduction of URDS for service

discovery aspect in UniFrame. Section 2.3 gives an argument for mobility in the URDS

architecture and a brief overview of mobile agent architecture. In order to implement

mobile agents in MURDS, an agent implementation tool is required. Section 2.4 gives an

overview of Grasshopper agent platform used for implementing mobile agents in

MURDS.

2.1 Overview of UniFrame

UniFrame [6] is a framework for developing distributed computing systems based

on an integration of heterogeneous software components that adhere to different

distributed component models. The UniFrame consists of the Unified Meta-Component

Model (UMM) and the UniFrame Approach (UA). The UMM described in [6] is the core

part of UniFrame. The UA is a component based software engineering process based on

UMM for creating a DCS out of available heterogeneous distributed software

components. The following sub-sections describe UMM and UA.

2.1.1 The Unified Meta-Component Model (UMM)

UMM is divided into three parts namely Components, Service and Service

Guarantees, and Infrastructure.

2.1.1.1 Components

UniFrame is a component-based framework where components form the building

blocks of a DCS built out of it. Components, as defined in [8], are autonomous entities

that adhere to different distributed component models and maintain a state, an identity

10

and a behavior with them. In addition, each component in UMM has three aspects namely

Computational Aspect, Cooperative Aspect and Auxiliary Aspect.

 The Computational Aspect, as described in [8], reflects the task(s) carried out by

each component; the Cooperative Aspect of a component, as described in [8], indicates

its interaction with other components; and the Auxiliary Aspect of a component, as

described in [8], addresses the features required to build a distributed computing system

such as mobility, security and fault tolerance.

2.1.1.2 Service and Service Guarantees

A Service, as defined in [8], could be a computational effort or an access to

underlying resources. Any component that offers services must provide certain quality of

service guarantees in order to be selected for the development of a particular DCS in the

UniFrame. The quality of service of a component is an indication of its ability to carry

out a specified service in spite of the constantly changing execution environment and a

possibility of partial failures. The QoS offered by each component is dependent upon the

computation performed, algorithm used, expected computational effort and resources

required, the cost of each service, and the dynamics of supply and demand.

2.1.1.3 Infrastructure

UniFrame Resource Discovery Service (URDS) provides the necessary

infrastructure to discover components as well as to select and integrate components that

adhere to different component models in order to develop a distributed computing

system. URDS infrastructure comprises of the following entities to carry out their

specified tasks: a) Internet Component Broker (ICB) b) Headhunters (HHs), c) Meta-

Repositories, d) Active Registries, e) Services (S1..Sn), and f) Adapter components

(AC1...ACn). The following subsections give a description of all the entities specified in

the URDS infrastructure. Figure 2.1 shows interaction of these components in the URDS

architecture.

11

• Internet Component Broker (ICB): The ICB, which was referred as a ‘Component

Broker’ in chapter 1, is not a single entity but a collection of the following services –

Query Manager (QM), the Domain Security Manager (DSM), Link Manager (LM),

and Adapter Manager (AM). The ICB acts as an all-pervasive component broker in an

interconnected environment. It constitutes the communication infrastructure

necessary to identify and locate services, enforce domain security and handle

mediation between heterogeneous components. All of the services provided by an

ICB are accessible at well-known addresses. It is expected that there will be a fixed

number of ICBs deployed at well-known locations hosted by corporations or

organizations supporting UniFrame.

o Domain Security Manager (DSM): The URDS discovery protocol is based on

periodic multicast announcements. The multicast communication exposes

URDS to various security threats such as eavesdropping, uncontrolled group

access and masquerading. The DSM is responsible to provide security and

integrity of multicast announcements that take place between respective

entities in the URDS discovery process. The DSM handles the generation and

distribution of secret keys for the ICB and enforces multicast group address

and access control to multicast resources through authentication and use of

access control lists.

o Query Manager (QM): The QM, which was referred as a ‘Query Handling

entity’ in chapter 1, is responsible to translate a system integrator’s/component

assembler’s component requirement data into a structured query language

(SQL) statement and to dispatch this query to the ‘appropriate’ HHs in order

to receive a list of service provider components that match the search criteria

specified in the query. ‘Appropriate’ HHs are selected based on the domain

specified in the query. The QM and the LM are responsible for propagating

the queries to other linked ICBs.

o Link Manager (LM): The LM is responsible to establish links between ICBs to

form a federation and to propagate queries received from the QM to the linked

ICBs. An ICB administrator configures the LM with the location information

of other ICBs with which links are to be established.

12

o Adapter Manager (AM): The AM acts as a registry/lookup service for clients

seeking adapter components. The adapter components register with the AM

by specifying the component models that they can bridge efficiently. Clients

contact AM to search for adapter components that match their requirements.

• Headhunters (HHs): The HHS, which were referred to as ‘Service Discovery entities’

in chapter 1, are responsible for detecting the presence of service providers,

registering the functionality of these service providers and returning a list of service

providers to the ICB that matches the requirements of the component

assembler’s/system integrator’s request forwarded by the QM.

• Meta-Repository (MR): The MR, which was referred as a ‘data repository’ in chapter

1, is a database that is associated with a Headhunter to store the UniFrame

specification information of exporters adhering to heterogeneous component models.

• Active Registry (AR): The AR, which was referred as a ‘native registry/lookup

service’ in chapter 1, serves as a native registry/lookup service of a particular

distributed computing model such as RMI, CORBA, .NET, etc., and is extended to

listen and respond to multicast announcements from Headhunters. ARs also have

introspection capabilities to discover not only the instances, but also the specifications

of the components registered with them.

• Services (S1…Sn): The services that are deployed on the network may be

implemented in different distributed component models such as RMI, CORBA, .NET,

etc. Each of these services identify themselves by the service type name and the

XML description of the component’s informal UMM specification.

• Adapter Components (AC1…ACn): The ACs, which were referred to as ‘adapter

entities’ in chapter 1, are responsible to serve as bridges between components

developed in different distributed component models.

• Users (C1…Cn): The users of the URDS system can be Component Assemblers,

System Integrators or System developers searching for services matching certain

functional and non-functional requirements. However, in complete UniFrame, there

will be no direct interaction between human users and the URDS. The interaction

would be via the interface of the system integrator.

13

Figure 2.1 URDS Architecture (from [9])

The URDS architecture is organized as a federated hierarchy of ICBs and

Headhunters in order to achieve scalability. Each ICB that is participating in the URDS

consists of one level of Zero or more Headhunters attached to it and all ICBs are linked to

one another with unidirectional links to form a federated group. The URDS discovery

protocol is based on periodic multicast announcements. The URDS discovery process

uses an administratively defined logical domain such as Financial Services, Health Care

Services, etc. to locate services and these domains are determined by the organizations

providing the URDS. The URDS architecture handles failures through periodic

announcements (incase of headhunters), heartbeat probes (in case of link managers), and

information caching.

14

2.1.2 The UniFrame Approach (UA)

The UniFrame Approach (UA) proposed in [6] is a technique for the automatic or

semi-automatic generation of a DCS based on the integration of heterogeneous software

components. The UA specifies two levels for the generation of a DCS namely

Component Level and System Level. The Component Level allows component

developers to create components based on UMM specifications, test and verify QoS of

components and then deploy them on the network. The System Level allows system

integrators/application programmers to select and generate a software solution for a

particular DCS under consideration in an automatic or semi-automatic fashion to the

maximum possible extent. The UMM specification, the UniFrame Quality of Service

(UQOS) framework and the UniFrame System-Level Generative Programming

Framework (USGDP) realizes the component level and the system level aspects of UA.

The following sub sections give a brief description of the UMM specification, the UQOS

and the USGPF.

2.1.2.1 UMM specification

Every component participating in the UniFrame must specify a set of QoS

parameters based on UMM specification and it is the responsibility of a component

developer to specify these parameters during the component development and

deployment phase. Table 2.1 gives the UMM specification template for a component.

• Component Name: This entry specifies the name used to identify a component in the

UMM specification.

• Component Subcase: This entry indicates information related to communication

patterns of functions of the component.

• Domain Name: This entry specifies the domain scope for the component, for

example, finance domain.

• System Name: This entry indicates the system family to which this component

belongs to.

15

• Description: This entry provides an informal description of the services provided by

the component. This information may include unique characteristics of the

component that cannot be described in other entries.

UMM Specification

1.Component Name: <component name>
2.Component Subcase: <component subcase name>
3. Domain Name: <domain name>
4. System Name: <system family name>
5.Informal Description: <natural language description>
6. Computational Attributes:

6.1 Inherent Attributes:
6.1.1 id: <internet address for a concrete component, or N/A for an

abstract component>
6.1.2 Version: <version exression>
6.1.3 Author: <developer name for a concrete component, or N/A for an

abstract component>
6.1.4 Date: <deployment time for a concrete component, or N/A for an

abstract component>
6.1.5 Validity: <valid time for a concrete component, or N/A for an

abstract component>
6.1.6 Atomicity: <Yes/No>
6.1.7 Registration: <the registering headhunter for a concrete component,

or N/A for an abstract component>
6.1.8 Model: <component model for a concrete component, or N/A for an

abstract component>
6.2 Functional Attributes:

6.2.1 Function description: <natural language description of component
functions>

 6.2.2 Algorithm: <list of algorithms>
6.2.3 Complexity: <component complexity for a concrete component, or

N/A for an abstract component>
6.2.4 Syntactic Contract:

 6.2.4.1 Provided Interface: <list of provided interfaces>
 6.2.4.2 Required Interface: <list of required interfaces>

6.2.5 Technology: <technology name for a concrete component, or N/A
for an abstract component>

6.2.6 Expected Resources: <expected resources expression, NONE if not
available for a concrete component, or N/A for an
abstract component>

6.2.7 Design Patterns: <list of used design patterns separated by a
comma, or NONE>

6.2.8 Known Usage: <list of known usage separated by a semi-colon, or
NONE>

16

 6.2.9 Alias: <list of aliases separated by a comma, or NONE>

7. Cooperation Attributes:

7.1 Preprocessing Collaborators: <list of Preprocessing Collaborators separated
by comma, or NONE>

7.2 Postprocessing Collaborators: < list of Postprocessing Collaborators
separated by comma, or NONE>

8. Auxiliary Attributes:
 8.1 Mobility: <Yes/No>
 8.2 Security: <security level>
 8.3 Fault Tolerance: <fault tolerance level>
9. Quality of Service:

9.1 QoS Metrics: <list of QoS metrics separated by comma for an abstract
component, or list of detailed QoS metrics separated by
semicolon for a concrete component.

 9.2 QoS Level: <level of QoS>
 9.3 Cost: <compensation level>

9.4 Quality Level: <level of quality>

Table 2.1 UMM Specification Template (from [20])

• Computational Attributes: This entry describes the computational aspect of the

component in terms of the following parameters.

o Inherent Attributes:

� ID: This is a unique string consisting of the host name and the port on

which the component is running along with the name with which the

component binds itself to a registry, for example:

intrepid.cs.iupui.edu:8080/AccountServer.

� Version: This entry indicates the version of the component.

� Author: This entry indicates the authors of the component.

� Date: This entry indicates the deployment time for a concrete

component. It is not applicable for an abstract component.

� Validity: This entry indicates whether a concrete component is valid. It

is not applicable for an abstract component.

� Atomicity: This entry indicates whether a component is atomic.

17

� Registration: This entry indicates the registration of a component with

a particular headhunter participating in the UniFrame system. It is not

applicable for an abstract component.

� Model: This entry indicates the component model that the component

adhered to.

o Functional Attributes:

� Function Description: This entry provides a description of each of the

functions supported by the component.

� Algorithm: This entry indicates the algorithms utilized by the

component to implement its functionality if the type of the

specification is concrete component. If the specification type is

abstract component, then this entry means the corresponding concrete

components must implement the indicated algorithms, e.g., Quick

Sort.

� Complexity: This entry describes the order of complexity of the above-

mentioned algorithms implemented by the component.

� Syntactic Contract: This entry provides the computational signature of

the component’s service interface. These interfaces are well defined in

the process of generative domain engineering. Each component must

specify its provided interfaces and required interfaces.

� Technology: This entry indicates the component technology utilized to

implement the component, e.g., J2EE, CORBA etc.

� Expected Resources: This entry indicates the expected resources for

the component, e.g., CPU, memory

� Design Patterns: This entry indicates the design patterns employed by

the component.

� Known Usage: This entry indicates the known usages of the

component.

� Alias: This entry indicates the alias names for the component.

18

• Cooperation Attributes

o Preprocessing Collaborators: This entry indicates the dependency of this

component on other components.

o Postprocessing Collaborators: This entry indicates other components that may

depend on this component.

• Auxiliary Attributes

o Mobility: This entry indicates whether the component is mobile or not.

o Security: This entry indicates the security level of the component.

o Fault Tolerance: This entry indicates the fault tolerance level of the

component.

• Quality of Service

o QoS Metrics: Each abstract component should list the QoS metrics that should

be provided by the implementation components (Concrete components). For a

concrete component, provided information for each QoS metrics includes: a)

QoS parameter name, b) type of parameter: static/dynamic, c) min/max limit.

If the QoS metric is dynamic, also provide information about: d) environment

values for the min/max ratings, and e) variation in parameter values according

to environment.

o QoS Level: A component developer may offer several possible levels of QoS.

This entry is not applicable to an abstract component.

o Cost: This entry indicates the compensation level for the component.

o Quality Level: This entry provides an overall assessment of a concrete

component. It is not applicable to an abstract component.

During the component development and deployment phase, the natural language

specification is converted into a standard XML-based specification, which can be

automatically discovered by URDS.

2.1.2.2 The UniFrame QoS Framework (UQOS)

The concepts of the service and service guarantees are an integral part of every

component in UMM and they also pay an important role in the system generation phase

19

of the UniFrame. The UniFrame QOS (UQOS) framework is an implementation of the

services and service guarantees aspect of the UMM.

In order to utilize the Service and Service guarantees of UMM to assure the QoS

of a DCS, following issues have to be addressed: a) a framework to objectively quantify

the QoS of software components, b) a standardized QoS catalog for reference by software

component developers and application engineers, c) a standard to incorporate the effect

of the environment on the QoS of software components into the component development

process, d) a standard approach to incorporate the effect of usage patterns on the QoS of

software components into the component development process, and e) a QoS

specification scheme to specify the QOS of software components. The UQOS framework

consists of four parts to solve these issues:

• The QoS catalog.

• The approach for accounting the effect of the environment on the QoS of software

components.

• The approach for accounting the effect of usage patterns on the QoS of software

components.

• The specification of the QoS of software components.

Detailed description of these parts can be found at [21, 22, 23].

2.1.2.3 The UniFrame System Level Generative Programming Framework (USGPF)

The QoS is an integral part of every component in UMM and is inherent in any

system generated from these components. Thus, the QoS plays an important role in the

entire UniFrame approach and helps to create QoS-aware DCS from heterogeneous

distributed software components. The UniFrame approach also shifts from the traditional

software development paradigm of developing single DCS to the paradigm of developing

a DCS family.

The USGPF [20] realizes the UniFrame Approach on the system level. More

specifically, it addresses the generative domain engineering and the generative

application engineering aspects of the software development process in the UniFrame

approach. The USGPF is composed of three parts:

20

• The UniFrame Generative Domain Model (UGDM), which defines the common and

variable properties of a DCS family.

• The UniFrame UGDM Development process (UGDP), which defines the procedure

to efficiently create a UGDM for a DCS family with QoS constraints.

• The UniFrame System Generation Framework (USGI), which facilitates the

automatic generation of QoS-aware DCS from a DCS family by integrating

heterogeneous software components.

Detailed information on UGDM, UGDP and USGI can be found at [20].

The above discussion shows that the URDS provides a unique feature of automatic or

semi-automatic generation of a DCS by composing components belonging to different

distributed computing models. Most of the discovery services that are available in the

market does not provide this feature and consider components belonging to a particular

model. The following section provides a survey of various directory services and

discovery services that are available in the market.

2.2 Resource Discovery protocols

Resource discovery refers to the process of identifying resources on a network

and making these resources available to users and applications. Resources are defined to

be any piece of hardware or software that provides a service to users and applications.

Resource discovery protocols are classified into two categories namely Directory services

and Discovery services. The following subsections provide a brief description of different

resource discovery protocols available under these two categories.

2.2.1 Directory Services

A service that stores collection of bindings between names and attributes and that

looks up entries that match attribute-based specification is called a directory service [24].

Directory services are also called yellow pages services. Some of the discovery protocols

that come under Directory Services are Universal Description, Discovery and Integration

21

(UDDI) [10], CORBA Trader Services [11], Light Weight Directory Access Protocol

(LDAP) [12], X.500 [13], Domain Name Service (DNS) [14], and Global Name Service

(GNS) [24]. The following sub-sections provide a brief overview of these services.

2.2.1.1 Universal Description, Discovery and Integration (UDDI)

Universal Description, Discovery and Integration (UDDI) [10] specification

defines a standard way to describe, to publish and to discover information about web

services developed by different business providers. The term “web service” refers to

“specific business functionality exposed by a company, usually through an internet

connection, for the purpose of providing a way for another company or software program

to use the service” [10]. The UDDI architecture uses Simple Object Access Protocol

(SOAP), which is built on top of Extensible Markup Language (XML), to allow a

program invoke service interfaces across the Internet in a language independent and

distributed manner. SOAP defines a simple way to package information for exchange

across system boundaries. The UDDI architecture consists of three components namely

Web Service Providers, Service Requesters and Service Brokers and it follows a

centralized model where service providers register their services to a common UDDI

service registry or service broker, service requestors search for services at service registry

using Web Service Description Language (WSDL).

2.2.1.2 CORBA Trader Services

The CORBA Trader service [11] serves as a “yellow pages” lookup service for

service providers and service consumers in the distributed computing environment. It

consists of three key components namely Exporters, Importers and Traders. The

Exporters, which are service provider objects, advertise their services to traders. The

Traders, which act as lookup services, register service description as well as service

location of services advertised by exporters in their directory. The Importers, which are

service consumers, specify their search criteria to their local Trader to retrieve a list of

22

services registered with it or make a request for a particular service by providing service

description to it. The local Trader searches in its local directory and also propagates the

query to other traders participating in the CORBA trading service to find a service

matching the search criteria. Traders are defined as CORBA interfaces, and all

advertisements, requests, and replies are CORBA objects. CORBA interfaces are defined

using Interface Definition Language. Since the Traders depend on CORBA, all

participants must be cast as CORBA objects and use CORBA protocols.

2.2.1.3 Light Weight Directory Access Protocol (LDAP)

The LDAP [12] is a lightweight version of the Directory Access Protocol and is a

part of X.500, which is a standard for directory service in a network. It defines a

lightweight access mechanism in which clients send requests to and receive responses

from LDAP servers. The LDAP information model is a directory service that follows a

scalable hierarchical tree like structure and each node in the tree contains information

about some object in terms of an entry, which is analogous to a record in a relational

database. Each entry carries some attributes where each attribute consists of types with

one or more values. The attribute type describes what the information is about and the

attribute value specifies the actual information in text format. LDAP’s query model

allows for search and retrieval of entries stored in the LDAP directory server. Since

LDAP is organized as a hierarchy, the queries can be limited to particular parts of the

hierarchy. Though the design is scalable queries over very large domains are likely to be

very inefficient. LDAP does not have any built in security model and relies on other

network services for this purpose. LDAP does not specify protocols for “spontaneous”

discovery and because of the complexity; it may not be well suited for either near real-

time discovery, or for very large numbers of services.

2.2.1.4 Global Name Service (GNS) and Domain Name Service (DNS)

Global Name Service (GNS) [24] was designed and implemented by Lampson

and colleagues at the DEC Systems Research Center to provide facilities for resource

23

location, mail addressing and authentication. GNS manages a naming database that is

composed of a tree of directories holding name and values. Directories are named by

multi-part pathnames referred to a root, or relative to a working directory, much like

filenames in a UNIX file system.

 Domain Name Service (DNS) [14] is an Internet service that translates

domain names into IP addresses. The DNS protocol provides static database of name-

address maps, which is hierarchically partitioned. The naming data is replicated and

cached in order to achieve scalability. Recent extensions to DNS support a very limited

set of service types and a few attributes that can be used to search. The types of queries

supported by DNS include host name resolution and reverse resolution, mail host

location, host information and well-known services information [19]. DNS is a trusted

service, security is provided by controlling access to a few privileged users. Arbitrary

user applications may not add or modify the DNS database.

2.2.2 Discovery Services

A discovery service is a directory service that registers the services provided in a

spontaneous networking environment [24]. In spontaneous networks, devices are liable to

connect without warning and without administrative preparation. Some of the discovery

protocols that come under Discovery Services are JINI [25], Service Location Protocol

(SLP) [26,27], Ninja Project: Secure Service Discovery Service (SSDS) [28,29],

Salutation [30,31], Universal Plug and Play (UPnP) [32,33], Bluetooth Service Discovery

Protocol [34], DReggie [31] and UniFrame Resource Discovery Service (URDS) [9]. The

following sub-sections provide a brief overview of these services.

2.2.2.1 JINI

JINI is a distributed service architecture developed by Sun Microsystems [25].

JINI is developed in Java and uses Java Remote Method Invocation (RMI) to achieve

communication among services and clients. Service, Client and Lookup Service are the

key components involved in the discovery related activities of JINI. A service represents

24

a hardware device, a software program or their combination utilizing the Java language.

A service registers the “service object” or “service proxy” associated with it at the lookup

service. A client who is looking for a particular service contacts the lookup service to get

the list of services available with it. A lookup service acts as a directory to both services

and clients to register and locate services respectively. JINI’s discovery protocol provides

multicasting and directed modes of operation to its key components to locate other

relevant components in the network.

2.2.2.2 Service Location Protocol (SLP)

Service Location Protocol (SLP) is an Internet Engineering Task Force (IETF)

standard for dynamically discovering network resources [26,27]. SLP discovery

mechanism uses a set of predefined attributes to describe both software and hardware

services. SLP architecture consists of three types of agents namely User Agents (UA),

Service Agents (SA) and Directory Agents (DA). UAs are responsible for discovering

resources on behalf of clients that request services, SAs are responsible to advertise

available services to DAs, and DAs are responsible to maintain the list of all services

advertised by service agents and to respond to user agent requests.

SLP provides Active Discovery, Passive Discovery and Dynamic Host

Configuration Protocol (DHCP) mechanisms to UAs and SAs to discover directory

agents in the network. In Active Discovery, UAs and SAs use multicasting to send SLP

requests to discover DA in the network where as in Passive Discovery, DAs periodically

multicast its presence to UAs and SAs in the network. In Dynamic Host Configuration

Protocol (DHCP)[14], UAs and SAs can use DHCP servers that are configured to

distribute Directory Agents information to the sources that request the information.

SLP uses the following two modes of operation depending upon the availability of

a DA on the network:

When a DA is available on the network, SAs and DAs multicast their messages to

a well-known multicast address to locate DAs and upon receiving unicast messages in

response from DAs, SAs register their service with the DA by sending a registration

message where as UAs send a service request message when a client needs a service.

25

When a DA is unavailable on the network, UAs multicast their service messages

to a well-known multicast address and SAs send a unicast message when a match is

found.

2.2.2.3 Ninja Project: Secure Service Discovery Service (SSDS)

The SSDS is a component of the Ninja research project at University of

California, Berkeley [28, 29]. It is similar to other discovery protocols but provides

significant improvements in reliability, scalability and security. SSDS is implemented in

Java and uses XML for service description and location, rather than java objects.

The main components of SSDS architecture are Service Discovery Service (SDS)

servers, services, capability managers, certificate authorities and clients. SDS servers

periodically multicast authenticated messages containing a list of domains that they are

responsible for sending service announcements and caches the service descriptions that

are advertised in the domain.

Services participating in the SDS system continuously listen for SDS server

announcements to determine the appropriate SDS server for its service descriptions and

multicasts its service descriptions to the multicast address using authenticated, encrypted

one-way service broadcasts. Clients listen to a well-known SDS global multicast address

to identify SDS servers related to their domains and submit a query in the form of an

XML based service description.

The SDS uses certificates signed by a well-known certificate authority to

authenticate between principles and their public keys. It uses capabilities generated and

distributed by capability managers as an access control mechanism to enable services to

control the set of users that are allowed to discover their existence.

2.2.2.4 Salutation

Salutation [30, 31] is an open standard, communication, operating system and

platform-independent service discovery and session management protocol. The

architecture provides a standard method for applications, services and devices to describe

26

and to advertise their capabilities to other applications, services and devices. The

architecture defines three components namely client, server and Salutation Lookup

Manager (SLM). The SLM serves as a service broker for services in the network and it

classifies services into a collection of Functional Units (FU) where each functional unit

represents some essential feature such as fax, print, scan, etc. The SLM uses Sun’s RPC

to communicate with other SLMs and it can be discovered by both unicast and broadcast

methods. When a client submits a query for a particular service to the local SLM, it

searches the SLM directory associated with it for a list of services based on a comparison

of the required service type specified in the query and also propagates the query to other

SLMs, where one SLM is a client to another SLM.

2.2.2.5 Universal Plug and Play (UPnP)

Universal Plug and Play (UPnP) [32, 33] is a standard for spontaneous discovery

from Microsoft Corporation. UPnP uses Simple Service Discovery Protocol (SSDP) [34]

to discover services in the network. SSDP operates on top of the existing open standard

protocols utilizing HTTP over both unicast (HTTPU) and multicast UDP (HHTPMU).

UPnP uses XML to describe service features and capabilities. When a service wants to

join the network, it sends out a multicast message to advertise its services to lookup

services. If a lookup service is available in the network, it can record this advertisement

to be subsequently used to satisfy the client’s service discovery requests. Additionally,

each service on the network may also observe these advertisements. When a client wants

to discover a service, it can either contact the service directly through the URL stored in

the service advertisement or it can send out a multicast query message to lookup service

and it can receive a unicast reply from either a lookup service or the service itself.

2.2.2.6 Bluetooth Service Discovery Protocol

Bluetooth [35] is a short-range wireless technology that allows devices to

exchange data and voice in real time. It consists of a set of protocols that constitute the

27

protocol stack. Service Discovery Protocol is one of the protocols in the protocol stack,

and it provides efficient service discovery on resource-constrained devices.

2.2.2.7 DReggie

DReggie [36] is a Jini-based Semantic Service Discovery System under

development at the University Of Maryland, Baltimore County. It attempts to take Jini

and similar service discovery systems beyond their simple syntax-based service matching

techniques by adding semantic matching capabilities to the service description facilities.

Semantic service matching widens the scope of a certain service discovery request by

being able to locate services based on the functional description of the service. DReggie

uses DARPA Agent Markup Language (DAML) [37] and intelligent reasoning modules

to carryout semantic matching process. DReggie enhanced Jini Lookup Service (JLS) to

enable discovery of Jini-enabled services. Using DReggie, clients can discover services

in a manner unchanged from the existing Jini Lookup and Discovery infrastructure. Any

service that registers with DReggie’s enhanced Jini Lookup Service uses DAML to

describe its capabilities, requirements and service attributes. Any client who wants to find

a service uses DAML to describe service requirements along with its constraints. The

DReggie lookup server contains two different modules to carryout the matching process

of the service request with descriptions of the advertised services: a simple java-based

matching module and an advanced prolog-based reasoning module. The initial

implementation uses simple java based matching module to find either exact or

approximate service matches.

2.2.2.8 Grid Discovery Service (Globus Toolkit MDS)

The Monitoring and Discovery Service (MDS) incorporated in Globus Toolkit

consists of two components namely the Grid Resource Information Service (GRIS) and

the Grid Index Information Service. The GRIS runs on resources deployed on the Grid

and is an information provider framework for specific information sources. At a higher

level, the GIIS is a user accessible directory server that accepts information from child

28

GIIS and GRIS instances and aggregates this information into a unified space. MDS also

supports searching for resources by characteristics. The discovery service is mainly

employed for computational resources deployed on the Grid. Unlike URDS, the

performance of a query to the MDS cannot be predicted with a pre-defined formula [47]

and is depended on the complexity of the associated hierarchy of GRIS and GIIS.

2.2.3 Characteristics of Resource Discovery protocols

All the problems that the discovery protocols discussed under sections 2.2.1 and

2.2.2 aim to solve can be summarized into Service Advertisement, Service Request and

Match Making.

• Service Advertisement: Service Providers advertise their services by providing their

availability, contact information and other necessary information. This advertisement

could be in the form either registering with a directory service or through multicast or

broadcast communication.

• Service Request: Service Consumers searching for services forward their request to

some well-known directory service or send request across the network through the

process of multicast or broadcast communication.

• Match Making: Match Making is the process in which service producers and service

consumers hookup. This process can be facilitated through a directory service or

direct discovery between producers and consumers.

 Issues related to reliability and scalability of all these discovery protocols are

handled either through a hierarchical or federated organization. All the discovery and

directory protocols exhibit some common features. A comparison of these features is

provided in table 2.1 based on the information provided in [50].

Feature List Directory Services Discovery Services
Information Storage and

Retrieval

Storage of information in

static databases. For greater

scalability, information can

be replicated on multiple

Spontaneous discovery and

configuration of network

services and devices. Some

Discovery services such as

29

static databases.

SSDS, JINI maintain caches

of information about

discovered services and

devices and update caches

periodically to reflect the

global state of the system.

Failure Detection Do not monitor the

availability of resources or

their failure due to external

circumstances such and

node/link failure, etc. They

usually do not possess any

event generation

mechanisms either to

inform clients of resource

registration or withdrawal.

Automatically configure

according to service

availability.

Management Centralized control. Usually

maintained by privileged

administrators.

Decentralized management

with limited administration.

Search Semantics Usually provide lower

flexibility with respect to

the search criteria that can

be specified for service

selection.

Allows for selection of very

specific types of service.

Interoperability Do not provide

interoperability of services

that belong to different

models.

Some services enable

interoperability of services

that belong to different

models through the use of

bridges and proxies.

Table 2.2 Comparison of the Features of the Directory and Discovery services

30

The Directory and Discovery Services described under sections 2.2.1 and 2.2.2

are mostly designed for ‘closed’ systems, i.e., systems, although distributed in nature, are

developed and deployed in a confined setup. Such systems do not take advantage of the

heterogeneity, local autonomy and the open architecture that are characteristic of DCS.

The URDS architecture and the MURDS architecture on the other hand are designed for

‘open’ systems by providing for the discovery and interoperation of distributed

heterogeneous software components. The MURDS uses mobile agents to reduce the

message consumption and to interoperate with ARs to discover components. The

following section provides an overview of agents.

2.3 Overview of Agents

2.3.1 Agent

An agent is a computational entity that

• Acts on behalf of other entities in an autonomous fashion,

• Performs its action with some level of proactivity and/or reactiveness, and

• Exhibits some level of the key attributes of learning, co-operation and mobility [33].

2.3.2 Mobile Agent

A mobile agent is a software entity that represents a user in a computer network

and can migrate autonomously from node to node to perform some computation on

behalf of the user [15]. Mobile agents inherit the characteristics of an agent described in

section 2.3.1.

2.4 Overview of models in an agent

A mobile agent exists in a software environment called mobile agent execution

environment. It is distributed over a network of heterogeneous computers [38] whose

primary task is to provide an environment in which mobile agents can execute. A mobile

agent must contain an agent model, a life-cycle model, a computational model, a security

31

model and a navigation model to work in the distributed computing environment. The

following subsections give a description of these models.

2.4.1 Agent Model

An Agent model defines "the internal structure of the intelligent agent part of a

mobile agent" [38]. The structure of this model defines the autonomy, learning and co-

operative characteristics of an agent and also specifies the reactive and proactive nature

of agents.

2.4.2 Life-cycle Model

A Life-cycle model defines "the different execution states of a mobile agent and

the events that cause the movement from one state to another" [38]. The most prominent

life cycle models that different mobile agent tools exhibit are the persistent process model

and the task-based model.

• Persistent process model

The persistent process model consists of a 'start' state, a 'running' state, a 'frozen'

state and a 'death' state. Upon creation, a mobile agent enters a 'start' state, executes a

persistent process in a 'running' state and enters a 'death' state when the process is

terminated. When an agent is transported from one node to another node, the process in

the running state is check-pointed and the agent enters a 'frozen' state. Then, its context is

delivered to the destination node where the process is resumed and re-enters the 'running'

state at the point it left off.

Figure 2.2 Persistent process based life cycle

Frozen

Running Death Start

Suspend
(Checkpoint)

Resume

32

The persistent process model is considered to be the most flexible life cycle as all

other life cycle models can be built on top of this model [38]. Telescript [39], AgentTCL

[41], Tryllian's Agent Development Kit [42] are some of the mobile agent tools that

follow a persistent process model.

• Task based model

The task-based model consists of a 'start' state, a group of tasks and a 'death' state.

Upon creation, a mobile agent enters a 'start' state. Then depending upon a set of

conditions, it executes appropriate tasks where each task has its own state and finally

enters the ‘death’ state upon the completion of execution of all appropriate tasks. In this

model, the mobile agent loses its context of the currently executing task when it moves

from one host to another host but stores the task that has to be started when it enters a

Figure 2.3 Task based life cycle

new host. The flexibility of this approach is reduced because of the loss of context

information during transport [38]. Aglets [43], Voyager [44], Ajanta [45], Grasshopper

[40], and JADE [46] are some of the mobile agent tools that follow task-based model.

2.4.3 Computational Model

A computational model defines "how a mobile agent executes when it is in a

'running' state". The computation takes place in an environment and is facilitated by some

Cond3

Start

Task 2

Task 1

Task3

Death
Cond1

Cond4

Cond2

33

form of processor. A processor could be the CPU of a computer or a more abstract

processor as can be found in the Java virtual machine.

2.4.4 Security Model

Mobile agents are software entities that are independent of computer and transport

layer and are dependent only on the agent execution environment. The autonomous

behavior of mobile agents and the malicious environment of the Internet give rise to

various important security issues for both the software agent and its execution

environment. Hence, a security model deals with the protection of host nodes and mobile

agents from one another. Security issues related to the mobile agent environment are

broadly classified into two areas namely ‘threats for agent hosts’ and ‘threats for agents’.

The following subsections give a description of these threats.

• Threats to host systems from malicious agents

Mobile agents run in an open distributed environment. An agent platform serves

as an agent execution environment for mobile agents on a host system. It allows mobile

agents to access host resources such as file system, system memory, local executable

code, peripherals, and CPU cycles. This allows mobile agents to perform their tasks

without human interventions. However, a mobile agent’s ability will put the host platform

at risk if an agent becomes malicious. Therefore, hosts in an open distributed

environment may encounter a variety of security threats due to the execution of malicious

agents. These security threats are classified into the following categories [17]:

o Leakage: acquisition of data by an unauthorized party.

o Tampering: alteration of data by an unauthorized party.

o Resource stealing: use of facilities by an unauthorized party.

o Vandalism: malicious interference with a host’s data or facilities with no clear

profit to the perpetrator.

More specifically, a mobile agent may choose any of the traditional methods of

attack like eavesdropping, masquerading, message tampering, message replay and viruses

to harm a host system. Therefore, host systems use standard techniques such as

34

cryptography, authentication, digital signatures and trust hierarchies to guard host

resources.

• Threats to mobile agents from malicious host systems

As an independent and autonomous program, a mobile agent migrates between

nodes in a heterogeneous network and performs tasks on behalf of its owner. During its

course of travel, a mobile agent interacts with different components like host systems,

other network entities as well as other mobile and stationary agents. Some of these

components may be malicious and may pose security threats to the mobile agent. Security

threats to a mobile agent are classified into the following categories [18]:

o Integrity attacks: Violation of the integrity of mobile agent due to tampering

of agent’s code, state or data.

o Availability refusal: Delaying the allocation of resources or preventing the

access of specified objects to an authorized mobile agent to carry out its task

on a specified host.

o Confidentiality attacks: Violation of the privacy of a mobile agent due to the

illegal access or disposal of mobile agent resources by the host environment.

o Authentication risks: Jeopardizing the intended goal of a mobile agent by

providing false identity.

Trust based computing, recoding and tracking, cryptography and time based

techniques are the countermeasures suggested to avoid some of the above specified

attacks on mobile agents. According to the literature [18], most of the available

countermeasures focus on ‘integrity attacks’ and very few measures exist to counter

‘availability refusals’ or ‘authentication risks’.

2.4.5 Communication Model

A communication model deals with the interaction of mobile agents with entities

like users, static or mobile agents, host execution environment, etc.

Mobile agents need protocols to communicate with all of these entities. A

protocol is an implementation of a communicating model [38]. Distributed computing

35

environments use a wide variety of protocols for different purposes. Because of this

reason, mobile agents need more than one communication model to communicate with

different entities.

2.4.6 Navigation Model

A navigation model deals with all aspects of agent mobility from the discovery

and resolution of destination hosts to the manner in which a mobile agent is transported

[39].

Since mobile agents can execute only in a software environment, the mobile agent

execution environment implements most of the above-mentioned models. It may also

provide support services that relate to the mobile agent environment itself, support

services pertaining to the environments on which the mobile agent environment is built,

services to support access to other mobile agent systems, and finally support for openness

when accessing non-agent-based software environments [38].

The introduction of mobile agents to discover heterogeneous software

components in MURDS requires a software tool that serves as a mobile agent platform

during the prototype implementation phase. Though the MURDS architecture that is

described in chapter 3 did not adhere to any specific implementation methodology, the

MURDS prototype implementation uses java and java-based technologies. Therefore, the

following section provides an overview of a java-based mobile agent platform,

Grasshopper, which serves as the mobile agent platform in the prototype implementation

of MURDS.

2.5 Overview of Grasshopper

Grasshopper [40] is a mobile agent platform that is built on top of a distributed

processing environment. By using Grasshopper, an integration of the traditional

client/server paradigm and mobile agent technology can be achieved. Grasshopper is used

to implement mobile agents in MURDS. Distributed Agent Environment (DAE), which

provides the mobile agent environment in Grasshopper, is composed of the following

entities - regions, places, agencies and different types of agents. Figure 2.3 shows an

36

abstract view of these entities in the DAE of Grasshopper, and the following subsections

give a description of each of these entities.

Figure 2.4 Abstract view of entities in the Distributed agent environment of Grasshopper

(from [40], with the permission from IKV++ Technologies)

2.5.1 Agents

Taking the most commonly accepted attribute of an agent into consideration,

Grasshopper defines ‘an agent as a computer program that acts autonomously on behalf

of a person or organization’. Grasshopper presents two types of agents in its context,

namely, mobile agents and stationary agents.

• Mobile Agents

Mobile agents in Grasshopper are able to move from one physical network

location to another. In this way, they can be regarded as an alternative or enhancement of

the traditional client/server paradigm. While client/server technology relies on remote

procedure calls across a network, mobile agents can migrate to the desired

communication peer and take advantage of local interactions. In this way, several

37

advantages can be achieved, such as reduction of network traffic or a reduction of the

dependency of network availability.

• Stationary agents

Stationary agents do not have the ability to migrate actively between different

network locations. Instead, they are associated with one specific location.

2.5.2 Agency

An agency is the actual runtime environment for mobile and stationary agents. At

least one agency must run on each host that shall be able to support the execution of

agents. A Grasshopper agency consists of two parts namely the Core Agency and one or

more Places. The following subsections give a description of the Core Agency and the

Place.

2.5.2.1 The Core Agency

The Core Agency represents the minimal functionality required by an agency in

order to support the execution of agents. It provides the following services for the

execution of agents in the DAE.

• Communication Service

This service is responsible for all remote interactions that take place between the

distributed components of Grasshopper, such as location-transparent inter-agent

communication, agent transport, and the localization of agents by means of the region

registry.

• Registration Service

Each agency must be able to know about all agents and places currently hosted,

on the one hand for external management purposes and, on the other hand, in order to

deliver information about registered entities to hosted agents

38

• Management Service

The management services allow the monitoring and control of agents and places

of an agency by (human) users. It is possible, among others, to create, remove, suspend

and resume agents, services and places, to get information about specific agents and

services, to list all agents residing in a specific place and to list all places of an agency.

• Transport service

The transport service supports the migration of agents from one agency to

another. It handles the externalization and internalization of agents, and the coordination

of the actual transfer that is performed by the communication service.

• Security Service

Grasshopper supports two security mechanisms namely ‘external’ and ‘internal’

security. External security protects remote interactions between the distributed

Grasshopper components, i.e. between agencies and region registries. On the other hand,

internal security protects agency resources from unauthorized access by agents.

• Persistence Service

The Grasshopper persistence service enables the storage of agents and places on a

persistent medium. This way, it is possible to recover agents or places when needed, e.g.

when an agency is restarted after a system crash.

Detailed description of these models can be found at [35].

2.5.2.2 Place

A place provides a logical grouping of functionality inside an agency. For

example, there may be a communication place offering sophisticated communication

features, or there may be a trading place where agents offer or buy information or service

access. Therefore, the name of a place should reflect its purpose.

39

2.6 Region

The region concept facilitates the management of the distributed components in

the Grasshopper environment, i.e., - agencies, places, and agents. Agencies as well as

their places can be associated with a specific region by registering themselves within the

accompanying region registry. Each registry automatically registers each agent that is

currently hosted by an agency associated with the region. If an agency moves to another

location, the corresponding registry information is automatically updated.

2.7 Region registry

A region registry maintains information about all components that are associated

with a specific region. When a new component (i.e., an agency, place or agent) is created,

it is automatically registered within the corresponding region registry. While agencies

and their places are associated with a single region for their entire lifetime, mobile agents

are able to move between the agencies of different regions. After each migration, the

current location of mobile agents in which they are residing is updated in the

corresponding region registry. By contacting the region registry, other entities (e.g.

Agents, human users) are able to locate agents, places and agencies residing in a region.

Besides, a region registry facilitates the connection establishment between agencies or

agents.

This Chapter provided an overview of the Unified Meta-Model Framework

(UniFrame), discovery based services, agents and Grasshopper. The next chapter

provides the MURDS architecture, its design and implementation.

40

3. MURDS ARCHITECTURE

This chapter provides architecture of the MURDS. The MURDS architecture is an

enhanced version of the URDS architecture. The MURDS focuses on the issues related to

the component discovery and component selection mechanisms used in the URDS. The

MURDS architecture modifies URDS architecture by replacing the request-reply

communication with the mobile agent-based communication. The following paragraphs

provide a review of the component discovery and the component selection mechanisms

used in the URDS [9].

The Headhunters (HHs) and the Active Registries (ARs) are the two entities that

are involved in the dynamic discovery of heterogeneous software components in the

URDS. The discovery of components is carried out within an administratively scoped

domain where each domain refers to an industry sector, such as Financial Services or

Health Care Services, and is supported by the sector or organization providing the URDS

service. Therefore, all the ARs and the HHs that are participating in the discovery process

belong to a particular domain. The discovery of components is carried out with the help

of multicast communication between the HHs and the ARs. In order to find out

components that belong to a particular domain, the HHs periodically multicast their

presence to a multicast group. The ARs, which belong to the same multicast group, listen

for these messages and send unicast messages that contain their contact information to all

the respective HHs. The HHs query those ARs that respond to their multicast messages

for the UniFrame specification of all the components registered with them. The ARs

respond to the HHs by sending the list of components registered with them along with

their UniFrame specification. The HHs store the information of all these components in

their local Meta-Repository (MR) and uses this information during the component

selection process to select appropriate components that match client requirements.

 The HHs and the Query Manager (QM) are the two entities involved in the

component selection process of the URDS. When a client submits a functional and QoS

requirement specification to the system integrators/component assemblers, they contact

the QM and specify the search criteria to it. The QM contacts the

41

DomainSecurityManager (DSM) and gets the list of HHs that belong to the domain

specified in the search criteria. Then the QM randomly picks a HH termed as the

‘Primary Headhunter’ (PH) and delegates the job of selecting components from the

remaining list of HHs to the PH. The PH first searches its local MR to find out

components that match the search criteria. Then, it selects a random subset of the

remaining HHs, delegating each HH a list containing a portion of the remaining HHs

along with the query to be transmitted. The portion allocated is a ratio of the remaining

HHs to the number of HHs in the chosen subset. Each of the subset HHs is a PH and is

responsible for transmission of the query among the list of HHs allocated to it and

retrieval of the results back to the HH that spawned them. The transmission of the query

includes selecting a subset of HHs and passing the remaining HH list and the query to the

subset. The PH finally combines the results it receives before sending them back to the

QM.

 The following sub-section provides a detailed description of component discovery

phase and component selection phase in the MURDS.

3.1 Component Discovery and Component Selection phases

 Phase 1: Discovering heterogeneous software components

The Active Registry, the Headhunter and a mobile agent acting on behalf of the

Headhunter are the main entities that are involved in the dynamic discovery of

heterogeneous software components.

Heterogeneous software components, which are available on the network, may

offer services that belong to different application domains. Also, the entities that are

involved in the discovery process in the MURDS (i.e., The Headhunter and the Active

Registry) are associated with a domain. Hence, the mobile agent that acts on behalf of a

Headhunter visits only those Active Registries that belong to the same domain as the

Headhunter. Each principal that participates in the discovery process would be assigned

to a particular domain by the system administrator. Upon initialization, each principal

(i.e., the AR and the HH) contacts the DSM with its authentication credentials to

participate in the discovery process. The DSM validates authenticity of the credentials

42

and registers the contacted principal with itself. Periodically, all the contacted principals

update their availability with the DSM. Once deployed on the network, heterogeneous

software components register services with their respective ARs. Each HH periodically

contacts the DSM to get the list of ARs registered with the DSM. Upon receiving this list,

each HH creates a mobile agent and sends it across the network to discover components

that are newly registered with each AR specified in the list. The mobile agent randomly

picks one AR at a time from the list, moves to the location of that AR and contacts it

locally to get the list of components along with their detailed UniFrame specifications.

The mobile agent repeats this process until it visits all the ARs specified in the list and

returns the list of components to its respective HH. Upon receiving the information from

the mobile agent, the HH stores the component information in its local MR and removes

the mobile agent from the system. The HH uses the information available in its local MR

to select appropriate components during the component selection process.

Phase 2: Selecting appropriate components

 The HH, the QM and a mobile agent acting on behalf of the QM are the main

entities that are involved in the selection of components that match client requirements.

 A client, who wants to build a DCS, submits functional and non-functional

requirements (QoS) to the System Integrator/Component Assembler. The System

Integrator/Component Assembler, in turn, submits the query to the Query Manager. The

QM contacts the DSM to get the list of HHs that belongs to the domain specified in the

search criteria. Upon receiving this list, the QM creates a mobile agent and sends it across

the network to select appropriate components that match the search criteria from each of

the HH that is specified in the list. The mobile agent randomly picks one HH at a time,

moves to the location of that HH and contacts it locally to get the list of components that

matches the search criteria specified in the query. The mobile agent repeats this process

until it visits all the HHs specified in the list and returns the component information to the

QM. Upon receiving the information, the QM returns the list of appropriate components

to the system integrator/component assembler and removes the mobile agent from the

system.

43

 With the introduction of mobile agents for the component discovery process of

the MURDS, the number of messages that flow across the network reduces because of

local execution of tasks as discussed in the following sub-section.

3.1.1 Flow of number of messages between HHs and ARs in the component discovery
process

 Figure 3.1 shows the flow of messages between a single Headhunter (HH) and a

single Active Registry (AR) after the Headhunter multicasts its presence in the discovery

process of URDS.

Figure 3.1 Message communication between a HH and an AR in the URDS

 represents the message from the AR to the HH. The AR, which is listening for the

multicast messages from HHs at a particular group address, responds to HH’s multicast

messages by passing its contact information to the HH.

 represents the message from the HH to the AR. The HH queries the AR that

responds to its announcement for the UniFrame specification of all the components

registered with it.

 represents the message from the AR to the HH. The AR responds by passing to the

HH the list of components registered with it and the detailed UniFrame specifications of

these components.

HH

AR

1

2

3

1

2

3

44

Therefore, if there exists one HH and one AR that belong to the same multicast

group in the discovery process of URDS, it takes three messages to discover components

from the AR by the HH. -------- (1)

If there exists one HH and ‘N’ ARs that belong to the same multicast group in the

discovery process of URDS, it takes ‘3*N’ messages to discover components from ‘N’

ARs by the HH. -------- (2)

If there exists ‘M’ HHs and ‘N’ ARs that belong to the same multicast group in

the discovery process of URDS, it takes ‘3*N*M’ messages to discover components from

‘N’ ARs by ‘M’ HHs. -------- (3)

Figure 3.2 shows the flow of messages between a single HH and ‘N’ ARs in the

discovery process of MURDS

 Figure 3.2 Mobile agent based message communication between a HH and ‘N’ ARs

 represents a mobile agent that travels on behalf of a HH to gather

component information from all the ARs that are specified in the list. The arrow indicates

the direction in which the mobile agent travels from one entity to another entity.

If there exists one HH and one AR that belong to the same domain, it takes two

messages (i.e., Mobile agent moving from its location to the location of AR is considered

as one message. Mobile agent moving back to its original location after completing its

MA

HH AR1 AR2

AR3 AR4 ARn …

MA

MA MA

MA MA

MA

45

task is considered as one message) to discover components from the AR by the HH with

the help of a mobile agent. -------- (4)

If there exists one HH and ‘N’ ARs that belong to the same domain, it takes

‘N+1’ messages to discover components from ‘N’ ARs by the HH with the help of a

mobile agent. -------- (5)

If there exist ‘M’ HHs and ‘N’ ARs that belongs to the same domain, each HH

sends one mobile agent to discover components from ‘N’ ARs and therefore it takes

‘M*(N+1)’ messages. -------- (6)

From the above discussion, it is clear that the component discovery process of

URDS requires 3*N*M messages, where as the discovery process of MURDS requires

M*(N+1) messages. This implies that the discovery process of URDS requires M(2N-1)

more messages than the discovery process of MURDS. As N tends to infinity and M

tends to infinity, the mechanisms used in MURDS and URDS exhibit O (NM)

complexity. This may not make much difference in a situation where the available

network resources are abundant but it may matter where the available network resources

are less. Since the QMs and the HHs make asynchronous calls to retrieve information

from their corresponding peers, they require network connection only during the transfer

of mobile agents from one entity to another entity.

3.1.2 Heterogeneous policies

In the URDS, a HH requesting software components will be provided information

about all the components that are available with ARs. An important fact that needs to be

considered is to limit the availability of services provided by ARs to HHs based upon the

type of HHs requesting the services. Many factors, such as security and cost may control

the nature of services offered by ARs to the HHs. One factor that is considered in the

context of the MURDS is the cost associated with obtaining information from the ARs by

the HHs.

46

A hypothetical scenario based on cost is described below:

In Figure 3.3, AR1, AR2 …….. ARn are ‘N’ Active Registries from which

Headhunters, HH1, HH2 …. HHm, can request information about components. The

maintenance of components published in ARs would involve cost for the ARs. In order to

recover the costs incurred on them, the ARs may decide to distribute this cost on to the

HHs. Thus, the ARs may offer differentiated services, such as: Regular or Premium:

based on the nature of service, Individual or Business: based on the usage of service. The

nature of services (e.g., a selective release of component information) offered for a

Regular Individual HH will be different than that offered to a Premium Business HH.

 Figure 3.3 Policy relationships between Headhunters and Active Registries

AR1

AR2

ARn

HH1

HH2

HHm

Guard

Levels of Services:

Service type: Regular – R
 Premium – P
Component
 Usage: Individual – I
 Business – B

47

The level of service offered to a HH by an AR will be dependent on many factors,

such as the credentials of the HH, the policy employed by the AR and levels of services

available. Thus, each HH (or an agent authorized by that HH) will provide its credentials

to the AR, before requesting a service, and the AR will offer an appropriate level of

service based on its internal decision making process – dependent on its policies and

levels of services. It is obvious to expect that different ARs may follow different

decision-making processes, thereby, giving rise to heterogeneity. Sending mobile agents

on behalf of the HHs is an effective way to discover components from the ARs because

of the following reasons:

• Mobile agents would retrieve component information from the ARs by providing

appropriate credential information to the ARs.

• As the factors that control decision making of ARs vary from time to time, the

policies associated with the HHs also changes. In such scenarios, all the Headhunters

have to do is update the level of service associated with different ARs in their

repositories and provides the updated information to the mobile agents acting on

behalf of them.

One possible characteristic that can demonstrate this heterogeneity and the usage

of mobile agents in MURDS is the access-control (AC), which is discussed below:

3.1.2.1 Access Control as an example

The AC-PIM [19] is a generic access control model that can be used to design

access control model for any distributed application. The access control model given in

[19] can be customized to specific applications to perform access control checks.

According to [19], the main purpose of AC-PIM is:

• To identify the access decision and /or access control elements that perform identical

tasks in different component models,

• To unify the vocabulary used to identify these elements in different models, and

• To propose a platform independent model that includes commonly identified and

standardized access control and /or access decision elements.

48

 During the application modeling phase and /or the development phase, the AC-

PIM enables transformations to the access control platform specific models (AC-PSM)

that incorporate access control points. Thus, the AC-PIM provides a clear architectural

separation between the access policy (the management and expression of access rules),

the access decision (evaluating policy at a given point in time) and the access control (the

enforcement of access decisions).

In order to have a controlled access to resources (i.e., components), the following

elements are identified for parameterization of the AC-PIM for MURDS:

• Entities that should pass through access control checks: Before providing component

information to a mobile agent acting on behalf of a HH, the AR needs to know

whether it should provide information to the mobile agent or not. Also, it needs to

know the level of information that it should give to the mobile agent. Therefore,

access control checks are to be made on mobile agents to give access to the

information available with the AR.

• Points within the MURDS architecture where the access control checks should be

made: The access control checks should be made before mobile agents contact ARs.

In the AC-PIM [19], the access control check points are guarded by Guards. A Guard

is responsible for ensuring that the mobile agent is acting on behalf of a valid HH and

is authorized to access the information available with the ARs. The Guard is also

responsible for identifying and notifying the level of information that the AR should

provide to the mobile agent. The DSM acts as a Guard in the MURDS architecture.

The DSM establishes the relationship between each AR and each set of controlling

parameters according to the policies of each AR. Conversely, the DSM also

establishes a relationship, where in, each HH functions for a definite set of controlling

parameters. Figure 3.3 shows the relationship between ARs and the Guard.

• Application specific context/ attribute information: The application specific context/

attribute information that a mobile agent needs to specify at the point of an access

control check is the information about the HH on whose behalf it is seeking

information. It is of the form < headhunter location, mobile agent user name>. Ex:

<//192.168.0.100:5001/Headhunter1, HH1Agent>.

49

 In addition to the identification of the above mentioned modeling elements, an

access policy is to be defined to perform access control checks on mobile agents. When

mobile agents request information about components registered with an AR, the DSM

makes use of this access policy and informs the AR about the category of information

that the AR should provide to the mobile agent.

In the MURDS, the access control policy is defined as follows:

 A mobile agent that acts on behalf of a Headhunter would get component

information only if the credentials (i.e., < headhunter location, mobile agent user

name>) provided by the mobile agent are authenticated by the DSM.

Any mobile agent that tries to access ARs must submit credentials about the HH

to the DSM for authentication and authorization purposes. The DSM consists of a

repository of policies associated with valid ARs and HHs that would participate in the

component discovery and component selection aspects of the MURDS. Upon

initialization, each principal (i.e., the AR or the HH) contacts the DSM with their

authentication credentials (i.e., username and password). The DSM authenticates the

contacted principal by checking the credentials against the data available in its repository.

Also, the DSM registers the credentials in its repository to perform access control checks

during the component discovery phase. A mobile agent acting on behalf of a HH carries

authentication information with it to get access to the AR. When the mobile agent

contacts AR for information, the DSM performs checks on the information provided by

the mobile agent and informs the AR about the level of service that it should give to the

mobile agent.

3.2 Security Issues

The mobile agent paradigm also has disadvantages. Security issues surrounding

the mobile agent paradigm is the main disadvantage that needs to be addressed in the

context of MURDS. Mobile agents travel in open distributed environments to carry out

specified tasks on behalf of the Headhunters and the Query Managers. While in transit,

mobile agents encounter a number of security threats such as confidentiality attacks,

50

integrity attacks and authentication risks from network entities. Hence, these issues are to

be addressed in the context of the MURDS.

o Confidentiality attack: It is defined as “violation of the privacy of a mobile agent

due to illegal access or disposal of mobile agent resources by the host

environment” [18]. When mobile agents travel from one node to another node, the

information that they carry should not be of any potential use to anybody else

other than the communicating partners. Since mobile agents travel in an open

network channel, it is possible that any interested host can gain an access to the

data carried by mobile agents by means of eavesdropping or by masquerading as a

legitimate member of the system. In order to avoid these attacks, mobile agents

must travel over a secure channel, but it is difficult to physically secure the

channel by the communicating partners in an open network. Therefore, mobile

agents must be encrypted while in transit so that nobody else other than the

communicating partners knows how to decrypt mobile agents.

o Integrity attack: It is defined as “violation of the integrity of a mobile agent due to

tampering of agent’s code, state or data” [18]. When mobile agents travel in an

open network channel, it is possible that they can be modified by means of

transmission errors or intentional acts of vandalism. Therefore, a receiving host

must be able to identify if the mobile agent is modified or corrupted so that the

receiving host can try to reconstruct the agent or ask the sending host to repeat the

transmission.

o Authentication risk: It is defined as “jeopardizing the intended goal of a mobile

agent by providing false identity” [18]. In today’s networked world, it is much

easier for imposters to pretend to be a legitimate member of the system under

consideration. Hence, they can send mobile agents to or receive mobile agents

from legitimate members of the system. Also, they can replay the intercepted data

to legitimate members of the system at a later point of time. In order to avoid

these authentication risks, all the members that are participating in a

communication session must be aware of the real identity of their communication

peer by means of authentication checks.

51

To prevent the above mentioned security attacks on mobile agents, the MURDS

system makes use of X.509 [24] certificates and the Secure Socket layer (SSL) [24]

protocol. SSL is an industry standard protocol that makes use of both symmetric key

cryptography and asymmetric key cryptography to provide confidentiality, data integrity

and mutual authentication of sender and receiver.

In the context of the MURDS system, SSL provides confidentiality, data integrity

and authentication as follows:

o SSL provides confidentiality of mobile agents by encrypting them with a

symmetric key algorithm that is negotiated using a handshake prior to the actual

SSL session and then sending them over a secure socket. Even though mobile

agents can still be intercepted by any potential intruder, encryption renders them

to be useless.

o SSL preserves the integrity of the data carried by mobile agents using Message

Authentication Codes (MACs). The sending host transmits a mobile agent by

attaching a MAC to it, which is calculated on the data carried by the mobile agent

using a hash function. The receiving host verifies the integrity of the data carried

by the mobile agent by calculating a MAC on the data and comparing it with the

MAC attached to the mobile agent. If both MACs are same, the transmitted data is

not modified during transmission. Otherwise, the receiving host tries to

reconstruct the mobile agent or asks the sending host to retransmit the mobile

agent.

o SSL verifies authenticity of communicating partners during the SSL handshake

phase by letting them exchange each others authentication credentials to make

sure that each of them are who they are meant to be. Both the communicating

partners exchange their personal data and their public keys in the form of X.509

certificates. The combination of certificate and correct private key of each of the

communicating partner implies that they are valid entities in the MURDS system.

52

3.3 Architecture of MURDS

The MURDS architecture follows the guidelines specified for the URDS

architecture. The MURDS architecture is organized as a federated hierarchy of ICBs and

Headhunters in order to achieve scalability. Each ICB that is participating in the MURDS

consists of zero or more HHs attached to it and all ICBs are linked to one another to form

a federated group. The HH, which is responsible for discovering services, sends a mobile

agent on its behalf to discover services. The QM, which handles requests to find services

that match client requirements, sends a mobile agent to retrieve services from the HHs.

Both the HH and the QM uses asynchronous mode of communication to achieve their

task.

 The MURDS architecture handles failure of the HHs and the ARs through

periodic announcements and information caching. The DSM maintains a cache of the

HHs and a cache of the ARs that are participating in the MURDS. The HHs and the ARs

periodically update their availability with the DSM. The DSM periodically checks the

duration of the time interval between successive updations of a particular entity and

removes it from the system if the time interval exceeds the specified time period.

The MURDS architecture comprises of the following entities to carry out their

specified tasks. a) Internet Component Broker (ICB) b) Headhunters (HHs), c) Meta-

Repositories, d) Active Registries, e) Services (S1..Sn), and f) Adapter components

(AC1...ACn). The following subsections give a description of all the entities specified in

the MURDS infrastructure. Figure 3.4 shows interaction of these components in the

MURDS architecture.

• Internet Component Broker (ICB): The ICB is not a single entity but a collection of

the following services – Query Manager (QM), the Domain Security Manager

(DSM), Link Manager (LM), and Adapter Manager (AM). The ICB acts as an all-

pervasive component broker in an interconnected environment. It constitutes the

communication infrastructure necessary to identify and locate services, enforce

domain security and handle mediation between heterogeneous components. All of the

services provided by an ICB are accessible at well-known addresses. It is expected

53

that there will be a fixed number of ICBs deployed at well-known locations hosted by

corporations or organizations supporting UniFrame.

o Domain Security Manager (DSM): The DSM serves as an authorized third

party that handles secret key generation and distribution and enforces group

memberships. It also performs access control checks on HHs on behalf of the

ARs. In order to perform access control checks, the DSM has a repository of

valid users (i.e., HHs, agents acting on behalf of HHs, and the ARs), and the

policies associated between valid users (i.e., the ARs and the HHs).

o Query Manager (QM): The QM is responsible to propagate the component

selection criteria that it receives from a system integrator/component

assembler to the ‘appropriate’ HHs. The QM achieves this task by sending a

mobile agent on its behalf to select a list of service provider components that

match the search criteria. ‘Appropriate’ HHs are selected based on the domain

specified in the requirements. The QM and the LM are responsible for

propagating the queries to other linked ICBs.

o Link Manager (LM): The LM is responsible to establish links between ICBs to

form a federation and to propagate queries received from the QM to the linked

ICBs. An ICB administrator configures the LM with the location information

of other ICBs with which links are to be established.

o Adapter Manager (AM): The AM acts as a registry/lookup service for clients

seeking adapter components. The adapter components register with the AM

by specifying the component models that they can bridge efficiently. Clients

contact AM to search for adapter components that match their requirements.

• Headhunters (HHs): The HHS are responsible to detect the presence of service

providers with the help of mobile agents, to register the functionality of these service

providers and to return a list of service providers to the ICB that matches the

requirements of the component assembler’s/system integrator’s request forwarded by

the QM.

• Meta-Repository (MR): The MR is a database that is associated with a HH to store the

UniFrame specification information of exporters adhering to heterogeneous

component models.

54

• Active Registry (AR): The AR serves as a native registry/lookup service of a particular

distributed computing model such as RMI, CORBA, .NET, etc. ARs provide

component information to the HHs based on the policies associated with the HHs.

ARs have introspection capabilities to discover not only the instances, but also the

specifications of the components registered with them.

• Services (S1…Sn): The services that are deployed on the network may be

implemented in different distributed component models such as RMI, CORBA, .NET,

etc. Each of these services identify themselves by the service type name and the

XML description of the component’s informal UMM specification.

• Adapter Components (AC1…ACn): The ACs are responsible to serve as bridges

between components developed in different distributed component models.

• Users (C1…Cn): The users of the MURDS system can be Component Assemblers,

System Integrators/System developers searching for services matching certain

functional and non-functional requirements.

Figure 3.4 MURDS architecture

55

With the introduction of mobile agents in the MURDS architecture, the

functionality of the DSM, the HH, the QM and the AR varies as compared with that of

the URDS architecture. Table 3.1 provides significant differences of the functionality

provided by the DSM, the HH, the QM and the AR in the MURDS and the URDS

architectures. The following subsections provide the high level design details and

algorithms for DSM, HH, AR and QM.

Entity MURDS URDS
DomainSecurityManager Serves as an authorized third

party that handles secret key

generation and distribution

and enforces group

memberships. In addition, it

performs access control

checks on HHs on behalf of

the ARs.

Serves as an authorized

third party that handles the

secret key generation and

distribution and enforces

group memberships and

access control to multicast

resources through

authentication and use of

access control lists.

Headhunter Gets the list of Active

Registries from the DSM and

uses mobile agent-based

communication to discover

components from the Active

Registries.

Uses multicast messages to

identify the Active

Registries available in the

network and then uses

request-reply protocol to

discover components from

the Active Registries.

QueryManager Uses mobile agent-based

communication to select

components from the

Headhunters.

Uses request-reply protocol

to select components from

the Headhunters.

Active Registry Provides information about Responds with unicast

56

components registered with it

based on the policies

associated with the

Headhunters.

messages to those

Headhunters that send

multicast messages. Upon

receiving a request from the

Headhunters for component

information, the AR

provides the information of

all the components

registered with it.

Table 3.1 Functional differences of the entities participating in the MURDS and the

URDS

3.3.1 Domain Security Manager (DSM)

The DSM is responsible to protect the ARs from unauthorized accesses by mobile

agents during the component discovery phase. Therefore, it acts as a Guard and performs

the following tasks:

• In order to serve as a Guard, the DSM needs to know all the entities participating in

the component discovery phase of the MURDS. Therefore, it maintains a list of

authorized users and their passwords as persistent data in the DSM_Repository. Upon

initialization, the HHs and the ARs contact the DSM with their authentication

credentials. The DSM authenticates and authorizes the contacted entities by checking

their authentication credentials with the data available in the DSM_Repository.

• During the component discovery phase, mobile agents originating from HHs submit

policy credentials associated with the HHs to the DSM to get access to the ARs. The

DSM checks the authenticity of credentials and then authorizes mobile agents to

access ARs. Also, the DSM specifies the level of service (i.e., a PremiumBusiness,

PremiumIndividual) that the AR must offer to the HH so that the AR can provide

appropriate component information to the mobile agents.

57

• During the component selection phase, the QM contacts the DSM about the list of

HHs belonging to a particular domain. The DSM returns the list of appropriate HHs

by searching the list of HHs actively participating in the MURDS.

 The following sub-sections provide algorithms for DSM functions.

3.3.1.1 Algorithm for DSM initialization

The DSM configuration process involves setting up the DSM_Repository with the

information about the domains, authorized users and their passwords, mobile agents

associated with users and their passwords. The DSM stores the information in the

DSM_Repository as a collection of tables. The DSM configuration is carried out by a

system administrator. Upon initialization, the DSM activates the authentication service

and thereafter responds to authentication calls from the HHs, the ARs and the mobile

agents associated with the HHs.

DSM_INITIALIZATION

CREATE DSM_REPOSITORY

ACTIVATE DSM_AUTHENTICATION_SERVICE

END_DSM_INITIALIZATION

3.3.1.2 Algorithm for authenticating entities

This algorithm outlines the process of authenticating HHs and ARs by verifying

their authentication credentials against the DSM_Repository.

DSM_AUTHENTICATION_SERVICE

INPUT: userType, userName, password, contactLocation, domain

OUTPUT: boolean value indicating whether the contacted principal is a valid entity

WHILE TRUE

IF contacted by user

58

isUserAuthenticated =

VALIDATE userType, userName, password against

 DSM_Repository.

IF isUserAuthenticated is TRUE

 /* If the user is of type Headhunter, save the information in its

 associated table. */

 IF userType EQUALS “Headhunter”

 /* Maintain a list of Headhunter contact locations with their

 associated domains in the registeredHHTable table.

 */

 Store <hhContactLocation, domainName> in

 registeredHHTable

 /* Maintain a list of mobile agents associated with the

 authenticated headhunters in a table. */

 Store <hhContactLocation, mobileAgentUserName> in

 registeredHHAgentTable

 /* If the user is of type active registry, save the information in its

 associated tables. */

 ELSE IF (userType EQUALS “Registry”)

 /* Maintain a list of active registry contact locations and

 their associated domains in a table. */

 Store <arContactLocation, domainName> in

 registeredARTable

 ENDIF //user type

ENDIF //authorized user

ENDIF //contacted by user

Send a response to the contacted principal.

 ENDWHILE

END_DSM_AUTHENTICATION_SERVICE

59

3.3.1.3 Algorithm to withdraw Headhunters from DSM

 This algorithm outlines the process of withdrawing a Headhunter from the DSM.

DSM_WITHDRAW

INPUT: headhunterLocation

REMOVE headhunterLocation entry from registeredHHTable

REMOVE headhunterLocation entry from registeredHHAgentTable

END_DSM_WITHDRAW

3.3.1.4 Algorithm to respond to a Headhunter’s request for list of active registries

 This algorithm outlines the process of selecting a list of active registries that

belong to the same domain as the Headhunter that requested the list.

DSM_FOR_THE_LIST_OF_ACTIVE_REGISTRIES

 INPUT: Domain, headhunterLocation

 OUTPUT: registryList

 /* The DSM checks whether the Headhunter is a valid entity to get the AR list. If

 so, then the DSM sends the registryList to the HH. The DSM returns an empty list

 if it cannot find any ARs that belong to the Domain. It can also send an empty list

 if the HH is not a valid entity to get the list of ARs.*/

 IF registeredHHTable CONTAINS an entry for headhunterLocation

 GET the list of active registries that belong to the Domain from the

 availableARTable

 WHILE availableARTable CONTAINS active registry entries

 /* Take one entry at a time from the availableARTable and check

 if the domain of this entry is same as that of the Domain. If so,

 save the active registry in the registryList table. Repeat this process

 until all the entities in the list are checked */

 Key = GET an entry from availableARTable

 IF the domain value of the entry Key EQUALS Domain

60

 Store < Key > in the registryList

 ENDIF

 ENDWHILE

 ENDIF

 Send registryList to the respective Headhunter

END_DSM_FOR_THE_LIST_OF_ACTIVE_REGISTRIES

3.3.1.5 Algorithm to respond to a Query Manager’s request for list of Headhunters

 This algorithm outlines the process of selecting a list of Headhunters that belong

to the domain specified by the QueryManager.

DSM_FOR_THE_LIST_OF_HEADHUNTERS

 INPUT: Domain

 OUTPUT: headhunterList

 /* The DSM checks for the availability of Headhunters, which belong to the

 Domain, in the availableHHTable and returns the list to the QM . IF the DSM

 could not find any entires, it returns an empty list to the QM.*/

 WHILE availableHHTable CONTAINS Headhunter entries

 /* Take one entry at a time from the registeredHHTable and check

 if the domain of this entry is same as that of the Domain. If so, save the

 Headhunter location in the headhunterList table. */

 Key = GET an entry from availableHHTable

 IF the domain value of the entry Key EQUALS Domain

 Store < Key > in the headhunterList

 ENDIF

 ENDWHILE

 Return headhunterList to the respective QueryManager

END_DSM_FOR_THE_LIST_OF_HEADHUNTERS

61

3.3.1.6 Algorithm to validate a mobile agent originating from a Headhunter

 This algorithm outlines the process of validating a mobile agent acting on behalf

of a Headhunter for component discovery from active registries.

DSM_VALIDATE_HH_MOBILE_AGENT

 INPUT: headhunterLocation, mobileAgentUserName

 OUTPUT: accessLevel

 /* The DSM checks for the availability of Headhunters, which belong to the

 Domain, in the availableHHTable and returns the list to the QM . IF the DSM

 could not find any entries, it returns an empty list to the QM.*/

 IF availableHHTable CONTAINS an entry for headhunterLocation

 Key = GET the entry from availableHHTable

 IF the value of the Key EQUALS mobileAgentUserName

 //randomly select access level

 accessLevel = GENERATE a random access level

 ENDIF

 ELSE

 SET accessLevel to NULL

 END IF

 return accessLevel to the respective active registry

END_ DSM_VALIDATE_HH_MOBILE_AGENT

3.3.1.7 Algorithm to update the availability of Headhunters and Active Registries

 The Headhunters and the Active Registries periodically contact the DSM to notify

their availability in the MURDS system. This algorithm outlines the process of updating

the information about the Headhunters and the Active Registries state of availability with

the DSM.

DSM_NOTIFY_USER_STATE

 INPUT: userType, userLocation,Domain

62

 /* If the contacted entity is a Headhunter, register the time stamp of the message

 received in the registeredHHTimestampTable*/

 IF userType EQUALS “Headhunter”

 IF registeredHHTable CONTAINS an entry for userLocation that matches

 the Domain

 Store <userLocation, timeStamp> in

 registeredHHTimestampTable

 END IF

 ELSE IF (userType EQUALS “Registry”)

 IF registeredARTable CONTAINS an entry for userLocation that

 matches the Domain

 Store <userLocation, timeStamp> in

 registeredARTimestampTable

 END IF

 ENDIF //user type

END_DSM_NOTIFY_USER_STATE

3.3.1.8 Algorithm to detect failure of Headhunters and Active Registries

The failure detection algorithm of the DSM involves keeping track of

Headhunters and Active Registries which may no longer be alive. The DSM uses the time

stamp information available with it and uses this information to purge all those entities

that have not responded with in the expected time period.

DSM_UPDATE_LISTS

 WHILE TRUE

 SLEEP TPpurge

 Tc = COMPUTE CURRENT_TIMESTAMP

 WHILE registeredARTimestampTable HAS MORE ENTRIES of Active

 Registries

 Key = GET NEXT ENTRY from registeredARTimestampTable

63

 Tr = GET timestamp value of Key

 IF (Tc-Tr)>2TPpurge

 REMOVE Key from availableARTable

 ENDIF

 END WHILE

 WHILE registeredHHTimestampTable HAS MORE ENTRIES of

 Headhunters

 Key = GET NEXT ENTRY from registeredHHTimestampTable

 Tr = GET timestamp value of Key

 IF (Tc-Tr)>2TPpurge

 REMOVE Key from availableHHTable

 ENDIF

 END WHILE

 END WHILE

END_DSM_UPDATE_LISTS

3.3.2 Headhunter (HH)

The HH performs the following tasks:

• Detects the presence of service provider components with the help of mobile agents,

• Registers the functionality of discovered components in its local meta-repository, and

• Selects and returns a list of appropriate service provider components to the mobile

agent that contacts the HH on behalf of a QM.

 The discovery of service provider components is carried out by a mobile agent on

behalf of a HH. Once deployed in the UniFrame environment, the HH periodically

contacts the DSM to get a list of ARs that belong to the same domain as the HH. Then the

HH sends a mobile agent on its behalf to gather component information from all the ARs

specified in the list. After visiting all the ARs specified in the list, the mobile agent

returns component information including the UniFrame specification of all components

to the HH. The HH stores this information in its meta-repository and uses this

64

information during the match making process to find services that satisfy the

computational, co-operational, auxiliary attributes and QoS metrics specified in a search

query. The HH periodically contacts the DSM to notify its availability in the discovery

process. The following sub-sections provide algorithms for HH functions.

3.3.2.1 Algorithm for HH initialization

 At the startup of the MURDS system, the system administrator configures the HH

by passing the DSM location information, domain name, username and password as input

parameters. Upon initialization, the Headhunter contacts the DSM with its authentication

credentials in order to get authorization to participate in the MURDS. Then the

Headhunter creates the meta-repository, contacts the DSM to get the list of active

registries and sends a mobile agent on its behalf to gather component information from

all the active registries that are specified in the list.

HH_INITIALIZATION

 INPUT: DSMLocation, userType, username, password, domain

 /* Contact DSM by sending the authentication credentials (userType, username,

 password, domain, HHLocation) and wait for authorization from DSM. DSM

 returns a boolean value to indicate the Headhunter’s validity in the MURDS. */

 boolean isUserAuthenticated = CALL DSM_AUTHENTICATION_SERVICE

 with userType, username, password, domain, HHLocation

 IF isUserAuthenticated EQUALS TRUE

 CALL DSM_TO_GET_MOBILE_AGENT_INFO

 CREATE META_REPOSITORY

 CALL HH_PERIODIC_NOTIFICATION

 CALL DSM_FOR_THE_LIST_OF_ACTIVE_REGISTRIES

 CREATE MOBILE_AGENT

 SEND MOBILE_AGENT_TO_DISCOVER_COMP_INFO

 ENDIF

END HH_INITIALIZATION

65

3.3.2.2 Algorithm to send mobile agent on behalf of a Headhunter

 This algorithm outlines the process of discovering service provider components

from active registries by a mobile agent.

MOBILE_AGENT_TO_DISCOVER_COMP_INFO

 INPUT: registryList, registryPolicyList, headhunterLocation

 OUTPUT: componentTable

 WHILE registryList HAS MORE ELEMENTS

 /* Mobile agent randomly picks one active registry at a time from the list,

 moves to the location of active registry and contacts it locally. */

 registryLocation = GET NEXT ELEMENT from registryList

 registryPolicy = GET associated policy from the registryPolicyList

 MOVE_TO registryLocation

 /*Get the state of the ActiveRegistry*/

 state = GET the state of ActiveRegistry located at registryLocation

/* IF the Active Registry is in state 2 …randomly select the attribute

type*/

attributeType = “”

attributeValue = “”

attribute = randomly select a number between 1 and 3

IF attribute == 1

 attributeType = “algorithm”

 attributeValue = “JFC”

IF attribute == 2

 attributeType = “compelxity”

 attributeValue = “O(1)”

IF attribute == 3

 attributeType = “technology”

 attributeValue = “Java RMI”

66

 /* Mobile agent contacts active registry to get the component information

 and stores the received information in the componentTable. */

componentTable = CALL AR_GET_COMPONENT_DATA on active

registry with registryPolicy, attributeType and attributeValue as input

parameters

 ENDWHILE

 /*After visiting all the active registries, return the component information to the

 headhunter.*/

 CALL HH_POPULATE_META_REPOSITORY

END_MOBILE_AGENT_TO_GATHER_COMP_INFO

3.3.2.3 Algorithm for populating Meta Repository

 This algorithm outlines the process of populating a headhunter’s meta-repository

with the information received from a mobile agent [9].

HH_POPULATE_META_REPOSITORY

 INPUT: componentTable

 /* Get one entry from the componentTable at a time and store it in the meta-

 repository. */

 WHILE componentTable HAS MORE ELEMENTS

 componentInfo = GET NEXT ELEMENT from componentTable

 STORE componentInfo to META_REPOSITORY

 ENDWHILE

END_HH_POPULATE_META_REPOSITORY

3.3.2.4 Algorithm to Retrieve Search Results from the Meta-Repository

67

This algorithm outlines the process in which the Headhunter generates the SQL

query from the queryEntity and executes this query against the meta-repository to retrieve

the list of components matching the search criteria.

HH_EXECUTE_QUERY

 INPUT: queryEntity

 OUTPUT: resultTable

sqlQuery = CALL QM_GENERATE_SQL_QUERY on queryEntity

resultTable = EXECUTE QUERY sqlQuery on META_REPOSITORY

RETURN resultTable

END_HH_EXECUTE_QUERY

3.3.2.5 Algorithm to notify DSM about the Headhunter’s availability in the system

 This algorithm outlines the process of periodically updating a Headhunter’s

availability in the system.

HH_PERIODIC_NOTIFICATION

 INPUT: headhunterLocation, Domain

 CALL DSM_NOTIFY_USER_STATE

END_ HH_PERIODIC_NOTIFICATION

3.3.2.6 Algorithm for Headhunter Shutdown

 The Headhunter before shutdown withdraws from the DSM, leaves the multicast

group and terminates all the active processes [9].

HH_SHUTDOWN

// Withdraw Headhunter registration from DSM

CALL DSM_WITHDRAW on DSM with headhunterLocation as input parameter

HH_SHUTDOWN

68

3.3.3 Meta-Repository

 The Meta-Repository is a repository of information about service provider

components adhering to different component models. The Meta-Repository stores the

Meta level service information of each component discovered by Headhunter during the

discovery process. It comprises of:

• Service type name,

• Details of its informal specification, and

• Zero or more QoS values for the service offered by each of the components.

 The implementation of a Meta-Repository is database oriented because of inbuilt

search techniques provided by the database to search for components that match the

search criteria specified in the query. The Meta-Repository associated with a headhunter

is passive in nature because of the fact that the Headhunter brings information and stores

it in the Meta-Repository.

3.3.4 Active Registry (AR)

The Active Registries are the native registries that belong to different distributed

computing models such as RMI, CORBA and .NET. The functionality of native

registries are extended in such a way that they not only maintain a list of component

URLs of the components registered with them, but also maintain detailed UniFrame

specifications of components registered with them. The registries use principles of

introspection to obtain the URL of XML based specifications of all the components

registered with them. The registries parse the specification and maintain the details in a

memory resident table. When a mobile agent acting on behalf of a Headhunter contacts

the registries for component specifications, they return a restricted amount of information

to the Headhunter because of the reasons specified under section 3.2. The following sub-

sections provide algorithms for AR functions:

3.3.4.1 Algorithm for AR Initialization

69

 At the startup of the MURDS system, the system administrator configures the AR

by passing the DSM location information, domain name, username and password as input

parameters. Upon initialization, the AR contacts the DSM with its authentication

credentials in order to get authorization to participate in the MURDS. Then the AR starts

processing requests that it receives from mobile agents acting on behalf of the

Headhunters.

AR_INITIALIZATION

 INPUT: DSMLocation, userType, username, password, domain

 /* Contact DSM by sending the authentication credentials (userType, username,

 password, domain, ARLocation) and wait for authorization from DSM. DSM

 returns a boolean value to indicate the validity of active registry in the MURDS.

 */

 boolean isUserAuthenticated = CALL DSM_AUTHENTICATION_SERVICE on

 dsm with userType, username, password, domain, HHLocation

 IF isUserAuthenticated EQUALS TRUE

 AR_PERIODIC_NOTIFICATION

 ACTIVATE AR_GET_COMPONENT_DATA

 ENDIF

END_AR_INITIALIZATION

3.3.4.2 Algorithm for obtaining UniFrame Specifications of Registered Components

This algorithm [9] outlines the process for obtaining the UniFrame specifications

of the components registered with an AR. The AR gets a URL list of all the components

registered with it. It then steps through this list and gets a handle to each of these

components. Using the component reference, the AR examines the component’s

properties to check for a property returning the URL of its UniFrame specification. The

AR then reads the XML-based UniFrame specification from the URL and parses this

specification to obtain all the component details, which it stores in an entity object

70

componentEntity. The AR builds a hash table of such entities corresponding to each of

the components registered with it and returns this hash table to the Headhunter.

AR_GET_COMPONENT_DATA

INPUT: headhunterLocation, mobileAgentUserName, attributeType, attributeValue

OUTPUT: componentTable

WHILE TRUE

 IF contacted by a mobile agent to retrieve component data

 serviceType = DSM_VALIDATE_HH_MOBILE_AGENT

 IF serviceType NOT EQUALS “ “

CREATE a new componentTable

//Obtain a list of object URL’s of all objects registered with

 //this registry.

registeredServicesURLList = GET LIST of service

 components registered with this Active Registry

IF serviceType EQUALS PB

 accessLevel = ALL

 ELSE IF serviceType EQUALS PI

 accessLevel = L1L2

ELSE IF serviceType EQUALS RB

 accessLevel = L1

ELSE IF serviceType EQUALS RI

 accessLevel = L2

 // For each object in this URL list

FOR i=0 to LENGTH of registeredServicesURLList

 registeredServiceURL = registeredServicesURLList[i]

// Lookup and obtain the reference to the services from the

// registry using the registered service URL.

serviceObject = LOOKUP registeredServiceURL

// Obtain the location (URL) of the UniFrame Specification

// for this service by introspecting its property name called

71

// “uniFrameSpecification”.

uniFrameSpecURL = CALL AR_INTROSPECT_PROPERTY with

 serviceObject, “uniFrameSpecification”

// Parse the UniFrame Specification and construct a

// componentEntity which can be persisted.

CREATE a componentEntity

 document = PARSE uri and load XML document

 CALL AR_PARSE_UNIFRAME_SPEC with document

 //Add the component to the componentTable

 cost = GET cost of componentEntity

 IF attributeType EQUALS “” AND attributeValue EQUALS “”

 IF accessLevel EQUALS ALL

 PUT < registeredServiceURL, componentEntity>

 in componentTable

 ELSE IF accessLevel EQUALS L1L2

 IF cost EQUALS L1

PUT < registeredServiceURL,

componentEntity> in level1ObjectTable

 ELSE IF cost EQUALS L2

PUT < registeredServiceURL,

componentEntity> in level2ObjectTable

 ELSE IF cost EQUALS accessLevel

PUT < registeredServiceURL,

componentEntity> in componentTable

 ELSE IF attributeType EQUALS “algorithm”

 algorithms [] = GET algorithms of componentEntity

algorithmValue = CHECK for attributeValue in

algorithms []

IF accessLevel EQUALS ALL AND algorithmValue

EQUALS TRUE

72

 PUT < registeredServiceURL, componentEntity>

 in componentTable

ELSE IF accessLevel EQUALS L1L2 AND

algorithmValue EQUALS TRUE

 IF cost EQUALS L1

PUT < registeredServiceURL,

componentEntity> in level1ObjectTable

 ELSE IF cost EQUALS L2

PUT < registeredServiceURL,

componentEntity> in level2ObjectTable

ELSE IF cost EQUALS accessLevel AND algorithmValue

EQUALS TRUE

PUT < registeredServiceURL, componentEntity> in

componentTable

ELSE IF attributeType EQUALS “complexity”

 complexity = GET complexity of componentEntity

IF accessLevel EQUALS ALL AND complexity EQUALS

attributeValue

 PUT < registeredServiceURL, componentEntity>

 in componentTable

ELSE IF accessLevel EQUALS L1L2 AND complexity

EQUALS attributeValue

 IF cost EQUALS L1

PUT < registeredServiceURL,

componentEntity> in level1ObjectTable

 ELSE IF cost EQUALS L2

PUT < registeredServiceURL,

componentEntity> in level2ObjectTable

ELSE IF cost EQUALS accessLevel AND complexity

EQUALS attributeValue

73

PUT < registeredServiceURL, componentEntity> in

componentTable

ELSE IF attributeType EQUALS “technology”

 technologies [] = GET technologies of componentEntity

technologyValue = CHECK for attributeValue in

technologies []

IF accessLevel EQUALS ALL AND technologyValue

EQUALS TRUE

 PUT < registeredServiceURL, componentEntity>

 in componentTable

ELSE IF accessLevel EQUALS L1L2 AND

technologyValue EQUALS TRUE

 IF cost EQUALS L1

PUT < registeredServiceURL,

componentEntity> in level1ObjectTable

 ELSE IF cost EQUALS L2

PUT < registeredServiceURL,

componentEntity> in level2ObjectTable

ELSE IF cost EQUALS accessLevel AND

technologyValue EQUALS TRUE

PUT < registeredServiceURL, componentEntity> in

componentTable

 ENDFOR

 IF accessLevel EQUALS L1L2

 size = GET number of elements in level1ObjectTable

 IF size IS GREATER THAN ZERO

 WHILE i LESS THAN OR EQUAL TO size/2

 GET componentEntity from level1ObjectTable

PUT < registeredServiceURL, componentEntity> in

componentTable

i++

74

ENDWHILE

 ENDIF

size = GET number of elements in level2ObjectTable

 IF size IS GREATER THAN ZERO

 WHILE i LESS THAN OR EQUAL TO size/2

 GET componentEntity from level2ObjectTable

PUT < registeredServiceURL, componentEntity> in

componentTable

i++

ENDWHILE

 ENDIF

 RETURN componentTable

 ENDIF

ENDWHILE

END_AR_GET_COMPONENT_DATA

3.3.4.3 Algorithm for Parsing the UniFrame Specification

 This algorithm [9] uses recursion to parse through the nodes of the XML tree,

extract the node values and store these values in the componentEntity. The algorithm

starts parsing at the root node element. It extracts the node name and checks if the node

name matches any attribute in componentEntity and populates it with the value in this

node. It then finds all the children of that node and repeats the process through recursion.

AR_PARSE_UNIFRAME_SPEC

 INPUT: nodeElement

 nodeName = GET NODE NAME from nodeElement

 FOR each attribute in componentEntity

 IF nodeName EQUALS attribute

nodeValue = GET NODE VALUE from nodeElement

 SET attribute value in componentEntity to nodeValue

75

 ENDIF

 ENDFOR

// Get the list of children for this Node.

NODELIST childrenList = GET CHILDNODES for nodeElement

IF childrenList NOT NULL

 // For every child node in the list

 FOR i = 0 to LENGTH of childrenList

 childNode = childrenList[i]

// Recurse through the function READ_NODE passing it the

// childNode as reference.

 CALL AR_PARSE_UNIFRAME_SPEC with childNode

 ENDFOR

 ENDIF

END_AR_PARSE_UNIFRAME_SPEC

3.3.4.4 Algorithm for Introspection of the Registered Components

 This algorithm [9] outlines the process for examining a service object to find a

specific property and retrieve its value. The algorithm gets a list of all the properties from

the service object and tries to find a match for the specific property of interest. Once the

property is found, a handle to the Read accessor method (getter) of this property is

obtained and invoked.

AR_INTROSPECT_PROPERTY

 INPUT: serviceObject, propertyName

 OUTPUT: property

 //Introspect and retrieve all information pertaining to this service object.

 serviceObjectInfo = INTROSPECT serviceObject to retrieve object information

 //Get a description list of all properties of this object.

 propertyDescriptorList =

GET PROPERTY DESCRIPTORS from serviceObjectInfo

76

 //Iterate through the description list to find the desired property.

 FOR i=0 to LENGTH of propertyDescriptorList

 propertyDescriptor = propertyDescriptorList[i]

 propertyDescriptorName = GET NAME of propertyDescriptor

 //If the property descriptor name matches the desired property name

 IF propertyDescriptorName EQUALS propertyName

 //Get the accessor method that returns the property value.

 method = GET READ METHOD of propertyDescriptor

 //Invoke the method to retrieve the value.

 property = INVOKE method of serviceObject

 //Return this property to the requester.

 RETURN property

 ENDIF

 ENDFOR

END_AR_INTROSPECT_PROPERTY

3.3.4.5 Algorithm to notify DSM about the Active Registry’s availability in the system

 This algorithm outlines the process of periodically updating an AR’s availability

in the system.

AR_PERIODIC_NOTIFICATION

 INPUT: registryLocation, Domain

 CALL DSM_NOTIFY_USER_STATE

END_ AR_PERIODIC_NOTIFICATION

77

3.3.5 Query Manager (QM)

The QM is responsible for finding services matching the client’s query request.

The QM parses the user’s request into a structured query language statement and sends a

mobile agent to find service components from the list of ‘appropriate’ Headhunters.

Appropriate Headhunters are determined based on the domain specified in the client

query. After completing the job of finding service components from the list of

Headhunters, the mobile agent returns information to the QM. The QM, in turn, returns

the information to the client.

Selection of results by the QM is controlled by the client’s parameter values in the

query. The user would be required to enter the following details:

• Service details such as domain, name, description, and function;

• The functional attributes such as algorithms, complexity, and technology

• Search by auxiliary attributes such as mobility, security, fault tolerance

• Search by QoS parameters such as end-to-end delay and availability

 Each entered parameters would be considered as a constraint to the query. As

more parameters are entered, the query becomes more constrained, whereas a more

global query would have fewer parameter values entered.

 The QM queries are handled in the following manner:

• Parse the client’s entered parameters and extract the text pertaining to the various

UniFrame specified attributes necessary for finding service components.

• Compose the extracted information into a SQL based query statement.

• Contact the DSM and get the list of Headhunters belonging to the domain specified in

the client query request.

• Create a mobile agent, submit the query to the mobile agent and delegate the job of

selecting appropriate service components from the list of Headhunters.

• The mobile agent contacts each Headhunter specified in the list and requests the

component information. The Headhunter searches its local Meta-Repository with the

query submitted by the mobile agent and returns the list of service components. After

78

visiting all the Headhunters, the mobile agent returns the service component

information to the QM.

• The QM returns the results, whether there are results or not, to the client of the

system.

 The following sub-sections provide algorithms for AR functions:

3.3.5.1 Algorithm for QM Initialization

The QM initialization activates the client request handler. This process receives

requests from clients and responds with results.

QM_INITIALIZATION

 ACTIVATE QM_CLIENT_REQUEST_HANDLER

END_QM_INITIALIZATION

3.3.5.2 Algorithm for handling query requests from clients

 This algorithm outlines the process for servicing requests from clients.

QM_CLIENT_REQUEST_HANDLER

INPUT: naturalLanguageQuery

OUTPUT: resultTable

WHILE TRUE

 IF contacted by client with naturalLanguageQuery Request

 headhunterList=CALL DSM_FOR_THE_LIST_OF_HEADHUNTERS

 IF headhunterList IS NOT EMPTY

 queryEntity = Parse naturalLanguageQuery

 sqlQuery = QM_GENERATE_SQL_QUERY

 CREATE MOBILE_AGENT

 SEND MOBILE_AGENT_TO_SEARCH_FOR_COMP_INFO

79

 WHILE requestResultsFound is FALSE

 //keep waiting for results

 ENDWHILE

 ENDIF

 ENDIF//contacted by client

 SEND resultTable to client

ENDWHILE

QM_CLIENT_REQUEST_HANDLER

3.3.5.3 Algorithm to send mobile agent on behalf of a QM

 This algorithm outlines the process of selecting service components from

Headhunters by a mobile agent.

MOBILE_AGENT_TO_SEARCH_FOR_COMP_INFO

 INPUT: sqlQuery, headhunterList, queryManagerLocation

 OUTPUT: resultTable

 WHILE headhunterList HAS MORE ELEMENTS

 /* Mobile agent randomly picks one Headhunter at a time from the list,

 moves to the location of that Headhunter and contacts it locally/

 headhunterLocation = GET NEXT ELEMENT from headhunterList

 MOVE_TO headhunterLocation

 /* Mobile agent contacts Headhunter to get the component information

 based on the sqlQuery and stores the received information in the

 resultTable. */

 resultTable = CALL HH_EXECUTE_QUERY on Headhunter

 ENDWHILE

 /*After visiting all the Headhunters, return the component information to the

 Query Manager.*/

 CALL QM_RECEIVE_RESULTS

END_MOBILE_AGENT_TO_SEARCH_FOR_COMP_INFO

80

3.3.5.4 Algorithm for Generating Structured Query Language (SQL) Statement

This algorithm forms a part of the operations performed by queryEntity. This

algorithm outlines the process for generating a SQL statement based on the attributes

extracted from the client’s query. These attributes are captured in the queryEntity. The

attribute names, values and constraints stored in the query entity are built into a SQL

statement.

QM_GENERATE_SQL_QUERY

 INPUT: queryEntity

 OUTPUT: sqlQuery

 attributeList = GET all attributes in queryEntity

 FOR i=0 to LENGTH of attributeList

 attribute = attributeList[i]

 IF attribute is selected as search parameter

 attributeValue = GET value of this attribute from queryEntity

 attributeConstraint = GET constraint value from queryEntity

 CONCATENATE to BUILD SQL query with the

attribute, attributeConstraint, and attributeValue

 ENDIF

 ENDFOR

 RETURN sqlQuery

END_QM_GENERATE_SQL_QUERY

3.3.5.5 Algorithm to send query results to the QM by the mobile agent

 This algorithm outlines the process of mobile agent returning component selection

results to the QM.

QM_RECEIVE_RESULTS

81

 INPUT: resultTable

 SET requestResultsFound to TRUE

END_HH_POPULATE_META_REPOSITORY

3.3.6 Services

Service Exporter Components belong to different distributed component models,

e.g., Java RMI, CORBA, EJB, etc. The components are identified by their Service Offers

comprising a) service type name, b) informal UniFrame specification, and c) zero or

more QoS values for that service. A component registers its interfaces with an Active

Registry. The component interface contains a method that returns the URL of its informal

specification. The informal specification is stored as an XML file adhering to certain

syntactic contracts to facilitate parsing. These service exporter components will be

tailored for specific domains, such as Financial Services, Health Care Services,

Manufacturing Services, and will adhere to the relevant standards, business architectures,

and research and technologies for these industry specific markets.

 This chapter provided the design details for DSM, HH, AR and QM. Chapter 4

presents a prototypical implementation for the MURDS architecture.

82

4. MURDS IMPLEMENTATION

A prototype for the MURDS architecture is implemented by enhancing the

prototypical implementation of the URDS architecture [9]. The significant differences

between the MURDS architecture and the URDS architecture are the introduction of

mobile agents instead of request-reply type of communication for component discovery

and component selection phases and the introduction of heterogeneous policies.

Therefore, a part of the functionality that is identical in both the MURDS and the URDS

architectures has been reused for the MURDS prototype implementation and the

functionality for mobile agents has been implemented in the MURDS. The following

sub-section gives an overview of the technology used for the prototype implementation of

the MURDS architecture.

4.1 Technology

The prototype implementation of the MURDS is based on the architectural model

laid out by [48] in J2EE. J2EE defines a standard that applies to all aspects of

architecting, developing, and deploying multi-tier, server-based applications. Figure 4.1

[from 49] shows the components of the J2EE Model.

The J2EE platform specifies technologies to support multi-tier enterprise

applications. These technologies are classified into three categories [48]: Component,

Service, and Communication. The technologies that have been used from these categories

in the MURDS implementation are described below:

• Component Technologies

 Components are application level software entities. The J2EE Component

technologies have been used in the MURDS prototype to develop the front-end client

components and back-end service components. All J2EE component technologies depend

on the runtime support of a system-level entity called a “Container” that provides

components with services such as life cycle management, security, deployment and

threading.

83

Figure 4.1 Components and Containers of J2EE Model. (Figure 4.1 is courtesy of SUN

Microsystems, [48])

 The MURDS prototype consists of Application Clients. Application clients are

client components that execute in their own Java Virtual machine and are hosted in an

Application Client Container. Application clients are implemented as Java RMI

components.

• Service Technologies

 The J2EE platform service technologies allow applications to access a

variety of services. The prominent service technologies supported are JDBCTM API 2.0

which provides access to databases, Java Transaction API (JTA) 1.0 for transaction

processing, Java Naming and Directory Interface (JNDI) 1.2 which provides access to

naming and directory services, and J2EE Connector Architecture 1.0 which supports

access to enterprise information systems.

84

 The service technologies used in the prototype are described below:

• JDBCTM API 2.0: The JDBCTM API provides methods to invoke SQL commands

from Java programming language methods. The JDBC API has two parts: an

application-level interface used by the application components to access a

database, and a service provider interface to attach a JDBC driver to the J2EE

platform.

Java API for XML Processing 1.1: XML is a language for representing text-based data so

the data can be read and handled by any program or tool. Programs and tools can

generate XML documents that other programs and tools can read and handle. Java API

for XML Processing (JAXP) supports processing of XML documents using DOM, SAX,

and XSLT parsers. JAXP enables applications to parse and transform XML documents

independent of a particular XML processing implementation.

• Communication Technologies

 Communication technologies provide mechanisms for communication between

clients and servers and between collaborating objects hosted by different servers. Some

of the communications technologies supported by the J2EE Platform include – Transport

Control Protocol over Internet Protocol (TCP/IP), Hypertext Transfer Protocol HTTP 1.0,

Secure Socket Layer SSL 3.0, Java Remote Method Protocol (JRMP), Java IDL, Remote

Method Invocation over Internet Inter ORB Protocol (RMI-IIOP), Java Message Service

1.0 (JMS), JavaMail and Java Activation Framework.

 The prototype uses Java Remote Method Invocation to achieve inter-component

communication between the following components: the DSM and the QM, the DSM and

the HH, the DSM and the AR.

 In addition to the above mentioned technologies, the MURDS prototype requires

a mobile agent platform to create mobile agents and to send them across the network

during the component discovery and component selection phases. The MURDS prototype

uses Grasshopper [40] - a Java-based mobile agent platform for this purpose. The

communication service provided in the Grasshopper allows transport of agents between

the following components with the help of Java RMI connections: HH and the AR , the

85

QM and the HH, and the HHs. The Grasshopper uses Secure Socket Layer SSL for

secure transportation of mobile agents from one host to another host.

4.2 Prototype Implementation

This section describes an implementation of a prototype for the MURDS

architecture. Figure 4.2 illustrates this implementation. The MURDS prototype

implementation follows multi-tier architecture, which is generally used for distributed

applications. The prototype consists of three tiers namely the client tier, the middle tier

and the database tier. Various parts of the prototype implementation falls into these three

tiers. The Client tier of the prototype supports application clients. The middle tier of the

prototype supports client services through Java-RMI based component services (i.e.

DSM, HH, QM, and AR) and Grasshopper enabled mobile agents. The Database tier

supports access to the repositories by means of standard APIs.

Figure 4.2 MURDS Implementation

86

4.2.1 Platform and Environment

The Java 2 Platform, Standard Edition (J2SE) [49] version 1.4.2 software

environment is used to implement the algorithms outlined for various components of the

MURDS prototype. The core architectural components (DSM, QM, HH, and AR) are

implemented as Java-RMI based services. The entity that processes client requests is

implemented as Java-RMI based service. The Grasshopper version 2.2.4 is used to

implement mobile agents. The repositories (DSM_Repository and Meta_Repositories)

are implemented as databases on Oracle v 9.2.

4.2.2 Communication Infrastructure

The unicast communication between the core architectural components is

achieved through JRMP. The communication service provided by the Grasshopper

Distributed Agent Environment is used to transfer mobile agents between the core

components. The connections to the Oracle databases are established using JDBC APIs.

An interaction between the entity that processes client requests and the QM is achieved

through JRMP.

4.2.3 Security Infrastructure

Mobile agents require a secure communication channel to travel on the network.

In order to provide a secure communication channel, Grasshopper 2.2.4 uses the Java

Secure Socket Extension (JSSE). JSSE enables secure internet communications by

implementing a Java version of Secure Socket Layer (SSL) and Transport Layer Security

(TLS) protocols. Mobile agents are authenticated by checking their credentials against

the data available with the DSM.

87

4.2.4 Programming Model

The prototype implementation of the MURDS is divided into modules and these

modules are decomposed into specific objects to represent the behavior and data of the

application. All the objects in the MURDS implementation have been categorized as

follows: Entity Objects, Helper Objects, Persistent Data, Component Services and the

Agent Objects depending upon their functionality.

4.2.4.1 Entity Objects

Entity objects serve to represent the individual rows in a database as objects or to

encapsulate an application specific concept in terms of an object. The entity objects in the

prototype support access or methods to set and retrieve the values of the attributes they

hold. These objects can be passed by value as serializable Java objects. The prototype

contains the following entity objects: Component, QueryBean. Class diagrams for these

objects are presented in the Appendix A.

Component: The attributes of the Component class mirror the fields of the table

UMMSpecification. The Component has functionality built in to store it to a database.

QueryBean: The QueryBean encapsulates the attributes of a Query received from the

 client. The bean also has the logic associated with generating a SQL query based on the

attributes it holds.

4.2.4.2 Helper Objects

The prototype uses Helper objects for purposes such as data access or for

performing specific utility functions such as obtaining component attributes from XML

files, periodically updating the HH status and the AR status with the DSM. The following

classes serve as Helper classes and have been sub-classified under the categories of Data

Access Objects and Dependent Objects.

88

4.2.4.2.1 Data Access Objects

 The data access objects used in the prototype encapsulates access to databases.

The DomianSecurityManager object and the Headhunter object access their respective

databases through the data access objects.

 The class diagrams of the data access objects are given under Appendix B. A

description of the data access objects used in the prototype is provided here:

DSMRepositoryHelper: This class performs functions associated with accessing the

DSM_Repository to retrieve user-domain mappings, user-agent mappings and for user

authentication.

MetaRepositoryHelper: This class performs functions associated with storing

information in the Meta_Repository during component discovery process and accessing

the Meta_Repository to retrieve search results during the component selection process.

SQLEngine: This class acts as a wrapperthat encapsulates the essential JDBC API

methods and performs functions associated with establishing database connections and

executing the queries. It is used by the DSMRepositoryHelper and MetaRepositoryHelper

classes.

4.2.4.2.2 Dependent Objects

The prototype uses dependent objects for performing utility functions. These

dependent objects are immutable and the objects that create and use them manage their

life cycle.

The class diagram of the dependent objects is given under Appendix C. A

description of the dependent objects is provided below:

89

UniFrameIntrospector: This utility class uses reflection to analyze the properties of an

object and retrieve the value corresponding to a specific attribute.

UniFrameSpecificationParser: This class is used to parse a UniFrame XML

specification file and construct an instance of the ConcreteComponent.

BuildPersist: This class is used to store a ConcreteComponent in the Meta-Repository

during the component discovery process and to build a concrete component during the

component selection process.

ARStateRenewer: This class operates as a Thread which executes periodically. This class

is used to update the availability of an Active Registry service with the

DomainSecurityManager Service.

HHStateRenewer: This class operates as a Thread which executes periodically. This

class is used to update the availability of a Headhunter service with the

DomainSecurityManager Service.

DiscoveryAgent: This class operates as a Thread which executes periodically. This class

is used to send a mobile agent on behalf of the Headhunter service to discover software

components from a list of Active Registry Services.

ComponentSelectionAgent: This class is used to send a mobile agent on behalf of the

QueryManager service to select software components from a list of Headhunter Services.

PrincipalAvailabilityChecker: This class operates as a Thread which executes

periodically. This class is used to update the list of Headhunter Services and the list of

Active Registry Services available with the DomainSecurityManager Service.

ServerObject: The ServerObject, which is used by HHAgent and the QMAgent, is

described below:

90

In the context of the MURDS implementation, mobile agents are implemented

using Grasshopper. These mobile agents consider QM object and AR object as external

application objects. Therefore, a service is required which can communicate with the

external objects on behalf of mobile agents. The ServerObject enables mobile agent

objects (i.e., the HHAgent object and the QMAgent object) to interact with the service

objects (i.e., the Query Manager object, the Headhunter object and the Active Registry

object).

IServerObject: This is the interface for the ServerObject. This interface publishes the

following methods:

• postCompDataToHH: This method is invoked by the HHAgent. The purpose of this

method is to return the list of components discovered by the HHAgent on behalf of

the Headhunter.

• getCompDataFromAR: This method is invoked by the HHAgent. The purpose of this

method is to discover components from the active registry objects on behalf of the

Headhunter.

• getCompDataFromHH: This method is invoked by the QMAgent. The purpose of this

method is to search for components that are available with the Headhunters by the

QMAgent on behalf of the QueryManager.

• postCompDataToClient: This method is invoked by the QMAgent. The purpose of

this method is to return the list of components retrieved from the Headhunter objects

by the QMAgent on behalf of the QueryManager.

• getARState():This method is invoked by the HHAgent. The purpose of this method is

to return the state of the ActiveRegistry to the Headhunter.

ServerObject: This class implements IServerObject interface. The ServerObject serves as

a communication medium between HHAgent/QMAgent and AR/QM/HH. Grasshopper

provides a service called external communication service in order to let mobile agents

communicate with those applications that are not implemented completely on

Grasshopper platform. The HHAgent and the QMAgent uses the external communication

91

service to communicate with the ServerObject in order to accomplish their job in the

MURDS prototype implementation.

4.2.4.3 Persistent Data

The prototype maintains persistent data that is associated with the

DomainSecuirtyManager Service and the Headhunter Service as database tables. The

databases that are used in the prototype are the DSM_Repository and the

Meta_Repository.

DSM_Repository

The DSM_Repository comprises of five tables Users, Permissions,

User_Permission_Xref, and Mobile_Users. Appendix D provides the schema for the

DSM_Repository.

The Users table serves to hold the Headhunter/ActiveRegistry/QueryManager

information. The columns of this table are userid (numeric identifier), usertype (whether

Headhunter or Registry), username, and password. The primary-key in this table is the

userid. An example of a record of this table is as follows: <1,’Headhunter’,

‘Headhunter1’, ‘xxxx’>.

The Permissions table serves to hold a list of allowed permissions (or domains).

The columns in this table are permissionid (numeric id for permission) and

permissionname (domain name like Finance, Manufacturing, etc.,). The permissionid

serves as the primary-key for this table. An example of a record of this table is as follows:

<1, ‘Manufacturing’>.

The User_Permission_Xref table serves to map the permission to be assigned to a

user. The table contains two numeric columns userid which references the userid in

Users and permissionid which references permissionid in Permissions. The combination

92

of the <userid,permissionid> serve as the primary key. An example of a record of this

table is as follows: <1, 2>.

The Mobile_Users table serves to hold mobile agents information associated with

the Headhunter/QueryManager. The columns of this table are mobileuserid (numeric

identifier), mobileusername, mobileuserpassword, principaltype (whether Headhunter or

querymanager), and principalname. The primary-key in this table is the mobileuserid. An

example of a record of this table is as follows: <1,’HH1Agent’, ‘HH1Agent’,

‘Headhunter’, ‘Headhunter1’>.

Meta_Repository

The Meta_Reposiotry comprises of twelve tables UMMSpecification, Algorithms,

RequiredInterfaces, ProvidedInterfaces, Technologies, ExpectedResources,

DesignPatterns, KnownUsages, Aliases, PreProcessing, PostProcessing, and

CompFuncQoS. Appendix E provides the schema for the Meta_Repository.

The UMMSpecification table serves to hold QoS parameters of the components

discovered during the component discovery phase. The columns in this table are

componentname, subcase, domianname, systemname, description, id, version, author,

creatingdate, validity, atomicity, registration, model, purpose, complexity, mobility,

security, faultolorance, qoslevel, cost, and qualitylevel. The primary-key in this table is

the id. An example of a record of this table is as follows: <‘DeluxeDocumentServer’,

‘DeluxeDocumentServerCase1’, ‘Document’, ‘DocumentManager’, ‘provide document

service to the document terminal’, ‘magellan.cs.iupui.edu:9000/DeluxeDocumentServer’,

‘1.0’, ‘zhisheng Huang’, ‘August 2002’, ‘Yes’, ‘Yes’,

‘magellan.cs.iupui.edu:8500/HeadHunter1’����provide document services to the document

terminal.’, ‘O(1)’, ‘No’, ‘L1’, ‘L1’, ‘L1’, ‘L1’, ‘L1’ >.

The Algorithms table holds information about algorithms used in implementing

the component. The columns in this table are id, componentname, domainname,

systemname, and algorithm. The combination of the <id, algorithm> serves as the

93

primary key. An example of a record of this table is as follows:

<‘magellan.cs.iupui.edu:9000/DeluxeDocumentServer’, ‘DeluxeDocumentServer’,

‘Document’, ‘DocumentManager’, ‘JFC’>.

The RequiredInterfaces table holds information about interfaces that are required

for implementing the component. The columns in this table are id, componentname,

domainname, systemname, and interface. The combination of the <id, interface> serves

as the primary key. An example of a record of this table is as follows:

<‘magellan.cs.iupui.edu:9000/DeluxeDocumentServer’, ‘DeluxeDocumentServer’,

‘Document’, ‘DocumentManager’, ‘IDocumentManagementCase1’>.

The ProvidedInterfaces table holds information about interfaces that are provided

for implementing the component. The columns in this table are id, componentname,

domainname, systemname, and interface. The combination of the <id, interface> serves

as the primary key. An example of a record of this table is as follows:

<‘magellan.cs.iupui.edu:9000/DeluxeDocumentServer’, ‘DeluxeDocumentServer’,

‘Document’, ‘DocumentManager’, ‘IDocumentManagementCase1’>.

The Technologies table holds information about component technology utilized in

the implementation of the component. The columns in this table are id, componentname,

domainname, systemname, and technology. The combination of the <id, technology>

serves as the primary key. An example of a record of this table is as follows:

<‘magellan.cs.iupui.edu:9000/DeluxeDocumentServer’, ‘DeluxeDocumentServer’,

‘Document’, ‘DocumentManager’, ‘Java RMI’>.

The ExpectedResources table holds information about the resources that are

required for executing the component. The columns in this table are id, componentname,

domainname, systemname, and expectedresource. The combination of the <id,

expectedresource> serves as the primary key. An example of a record of this table is as

follows: <‘magellan.cs.iupui.edu:9000/DeluxeDocumentServer’,

‘DeluxeDocumentServer’, ‘Document’, ‘DocumentManager’, ‘Memory: 1.0Gb’>.

94

The DesignPatterns table holds information about the resources that are required

for executing the component. The columns in this table are id, componentname,

domainname, systemname, and pattern. The combination of the <id, pattern> serves as

the primary key. An example of a record of this table is as follows:

<‘magellan.cs.iupui.edu:9000/DeluxeDocumentServer’, ‘DeluxeDocumentServer’,

‘Document’ , ‘DocumentManager’, ‘N/A’>.

The KnownUsages table holds information about the known usages of the

component. The columns in this table are id, componentname, domainname, systemname,

and usage. The combination of the <id, usage> serves as the primary key. An example of

a record of this table is as follows:

<‘magellan.cs.iupui.edu:9000/DeluxeDocumentServer’, ‘DeluxeDocumentServer’,

‘Document’, ‘DocumentManager’, ‘N/A’>.

The Aliases table holds information about the alias names of the component. The

columns in this table are id, componentname, domainname, systemname, and alias. The

combination of the <id, usage> serves as the primary key. An example of a record of this

table is as follows: <‘magellan.cs.iupui.edu:9000/DeluxeDocumentServer’,

‘DeluxeDocumentServer’, ‘Document’, ‘DocumentManager’, ‘N/A’>.

The PreProcessing table holds information about the dependency of a component

on other components. The columns in this table are id, componentname, domainname,

systemname, and collaborator. The combination of the <id, collaborator> serves as the

primary key. An example of a record of this table is as follows:

<‘magellan.cs.iupui.edu:9000/DeluxeDocumentServer’, ‘DeluxeDocumentServer’,

‘Document’, ‘DocumentManager’, ‘DocumentTerminalCase1’>.

The PostProcessing table holds information about other components that may

depend on the discovered component. The columns in this table are id, componentname,

domainname, systemname, and collaborator. The combination of the <id, collaborator>

95

serves as the primary key. An example of a record of this table is as follows:

<‘magellan.cs.iupui.edu:9000/DeluxeDocumentServer’, ‘DeluxeDocumentServer’,

‘Document’, ‘DocumentManager’, ‘DocumentDatabaseCase1’>.

The columns in the CompFuncQoS table are id, componentname, systemname,

qosparameter, and value. The combination of the <id, functionname, qosparameter,

value> serves as the primary key. An example of a record of this table is as follows:

<‘magellan.cs.iupui.edu:9000/DeluxeDocumentServer’, ‘DeluxeDocumentServer’,

‘DocumentManager’, ‘N/A’, ‘N/A ‘>.

4.2.4.4 Service Components

A service component here refers to a software unit that provides a service. The

service provided could be a computational effort or an access to underlying resources. A

service component consists of one or more artifacts (software, hardware, libraries) that

are integrated together to provide the service. Service Components are described by a

interface and associated implementation. Each Service Component is a stand-alone

functional unit, which accepts inputs through its published interfaces, and returns results.

Clients or other components can remotely access a service component using standard

communication protocols. For a component to be remotely accessible, it should be

deployed in a runtime environment (e.g., Application Server) with ports open to receive

incoming requests and return results.

The service components implemented in the prototype are the DSM, QM, HH,

and AR. These service components utilize the Entity Objects and Helper Objects to

achieve their functionalities and store and retrieve information from their respective

repositories. Appendix F provides class diagrams for the Service Components.

• Domain Security Manager object

IDomainSecurityManager: This is the interface for the DomainSecurityManager object.

This interface publishes the following methods:

96

o getHHListForDomain: This method is invoked by the QueryManager. The

purpose of this method is to return a list of registered Headhunters for a

particular domain to the QueryManager.

o authenticationService: This method is invoked by the Headhunter and the

ActiveRegistry components to authenticate themselves with the DSM.

o getARListForDomain: This method is invoked by the Headhunter. The

purpose of this method is to give the list to a mobile agent to discover

components from active registries.

o renewARState: This method is invoked by the active registry to inform its

presence in the MURDS.

o renewHHState: This method is invoked by the Headhunter to inform its

presence in the MURDS.

o receiveUpdatedTables: This method is invoked by the

PrincipalAvailabilityChecker to update the freshness of Headhunters and

active registries.

o getARTimestampTable: This method is invoked by the

PrincipalAvailabilityChecker to get the time stamps associated with the

registered active registries.

o getHHTimestampTable: This method is invoked by the

PrincipalAvailabilityChecker to get the time stamps associated with the

registered headhunters.

o authenticateHHAgent: This method is invoked by the ServerObject to check

the authenticity of agents coming from multiple Headhunters.

o getMobileAgentInfo: This method is used by the Headhunter to get the mobile

agent identity that it can use for sending mobile agent to the active registry for

component information.

DomainSecurityManager: This class implements IDomainSecurityManager interface.

• Headhunter object

97

IHeadhunter: This is the interface for the Headhunter object. This interface publishes the

following methods:

o performSearch: This method is invoked by the QMAgent to retrieve

components that match search criteria specified in the query.

o populateMetaRepository: This method is invoked by the ServeObject to

populate Headhunter’s Meta_Repository with the components discovered

from active registries by the HHAgent.

Headhunter: This class implements IHeadhunter interface.

• Active Registry object

IActiveRegistry: This is the interface for the ActiveRegistry object. This interface

publishes the following method:

o getComponentData: This method is invoked by the ServerObject to retrieve

component information from the ActiveRegistry object.

o getState(): This method is invoked by the ServerObject to retrieve the state

from the ActiveRegistry object

ActiveRegistry: This class implements the IActiveRegistry interface.

• Query Manager object

IQueryManager: This is the interface for the QueryManager service. This interface

publishes the following method:

o getSearchResultTable: This method is invoked by the RequestProcessor to

obtain a list of services matching the search criteria specified by a component

assembler.

QueryManager: This class implements the IQueryManager interface.

98

4.2.4.5 Mobile Agent Objects

The mobile agent objects that are used by the Headhunter object and the Query

Manager object are shown below:

• HHAgent object: An instance of this class act as a mobile agent on behalf of the

Headhunter object to discover components from the Active Registry object. This

class is implemented using mobile agent API provided by the Grasshopper 2.2.4. It

consists of the following methods:

o init: The purpose of this method is to serve as a constructor for the HHAgent. As

soon as the HHAgent is created by the Headhunter object, the init method on the

HHAgent is automatically invoked by an ‘agency’ to initialize class variables

with the input parameters passed on by the Headhunter object. This method is

called only once during the lifetime of an agent (i.e. during its creation). In

Grasshopper, an agency is the agent execution environment for mobile agents.

o aftermove: This method is automatically invoked by the hosting agency after an

agent migrates to a new agency. This method is implemented to create a proxy of

a ServerObject, which enables HHAgent communication with the Active Registry

object.

o live: This method is used to implement the tasks that are to be performed by the

HHAgent after moving to a new agency. The new agency invokes this method on

the HHAgent after invoking aftermove method.

• QMAgent object: An instance of this class act as a mobile agent on behalf of the QM

object to search components from the Headhunter object. This class is implemented

using mobile agent API provided by Grasshopper. It consists of the following

methods:

o init: The purpose of this method is to serve as a constructor for the QMAgent. As

soon as the QMAgent is created by the QM object, the init method on the

QMAgent is automatically invoked by an ‘agency’ to initialize class variables

99

with the input parameters passed on by the Query Manager object. This method is

called only once during the lifetime of an agent (i.e. during its creation). In

Grasshopper, an agency is the agent execution environment for mobile agents.

o aftermove: This method is automatically invoked by the hosting agency after an

agent migrates to a new agency. This method is implemented to create a proxy of

a ServerObject, which enables QMAgent communication with the Headhunter

object.

o live: This method is used to implement the tasks that are to be performed by the

QMAgent after moving to a new agency. The new agency invokes this method

on the QMAgent after invoking aftermove method.

This chapter presented the implementation details of the MURDS prototype that

enhances the URDS architecture. The prototype of the URDS was implemented in Java

and utilized Java RMI for communication between service entities. The MURDS

prototype enhanced the URDS prototype by replacing the Java RMI based

communication between different service entities (i.e., a HH and an AR , a QM and a

HH) with the mobile agent based communication for various reasons. The next chapter

presents the details of the experiments performed using this prototype to validate the

MURDS architecture proposed in chapter 3.

100

5. VALIDATION

In order to validate the performance of the prototype, an empirical

experimentation was performed. Due to the limited number of Windows-OS systems

available for experimentation, fewer Headhunters, Active Registries, Query Managers

and clients were used than would be optimal for these experiments. Future work would

include the use of more systems to run a large number of Headhunters, Active Registries,

Query Managers and clients in order to evaluate the scalability of the MURDS prototype.

The testing of the MURDS prototype was carried out by using the components that

belong to a Banking system called Super Bank.

The service components that belong to the Super Bank are as follows:

• ATM – a Java RMI component which requires services such as depositMoney,

withdrawMoney, transferMoney, checkBalance, validate.

• CustomerValidationServer – a Java RMI component which provides service to

validate a ATM client.

• EconomicTransactionServer - a Java RMI component which provides services such

as depositMoney, withdrawMoney, transferMoney, checkBalance to a client.

• CashierTerminal – a Java RMI component which requires services such as

openAccount, closeAccount, depositMoney, withdrawMoney, transferMoney,

checkBalance, validate.

• CashierValidationServer – a Java RMI component which provides service to validate

a CashierTerminal client.

• DeluxeTransactionServer - a Java RMI component which provides services such as

depositMoney, withdrawMoney, transferMoney, checkBalance to a client.

• TransactionServerManager – a Java RMI component which provides services such as

openAccount, closeAccount to a client.

All the experiments for prototype validation were conducted on four PCs running

Windows XP Professional. Sun’s JDK 1.4.2_04 was used on all the four PCs to run the

service objects and the client objects of the MURDS system. Grasshopper 2.2.4 was used

101

on all the four machines to provide an agent execution environment for agents working

on behalf of their corresponding service objects (i.e., the Headhunter and the Query

Manager). The Secure Socket Layer communication service provided by the Grasshopper

was used to securely transmit mobile agents over the network. Oracle v 9.2 available on

the Phoenix server was used to maintain databases associated with the

DomainSecurityManager object and the Headhunter object.

5.1 Experimentations

The experiments that were carried out serve the following purposes:

• To validate the proposed MURDS architecture, and

• To show that the system is scalable.

The metrics that were used to carry out different experiments are described below:

• Client Query Result Retrieval Time (CQRRT): CQRRT is defined as the time taken

from the point of issue of query by the client to the point of retrieval of results back to

the client.

• Message Consumption (MC): MC is defined as the number of messages taken by a

mobile agent, which acts on behalf of a Headhunter, to discover components from

Active Registries during the Component Discovery Phase.

5.1.1 Experimentation to validate the proposed architecture

The main purpose of the MURDS is to identify and retrieve components that

match client search criteria, with the help of mobile agents. For this purpose, the

architecture is provided in section 3.3 and the functionality of various entities involved in

the architecture is provided under sections 3.3.1 to 3.3.6. One way to validate the

functionality of each entity is to perform experiments based on appropriate metrics and

analyze the empirical data available for those metrics. According to the functionality, the

following things are expected:

102

• An increase in the number of components that match the search criteria would

increase the time taken by a mobile agent to retrieve components from appropriate

Headhunters participating in the system.

• Similarly, an increase in the number of Headhunters participating in the system would

increase the time taken by a mobile agent to retrieve components from those

Headhunters.

• An increase in the number of Active Registries participating in the system would

have negligible effect on the time taken by the mobile agent to retrieve components

from the Headhunters.

In order to measure the time for the above mentioned three cases, CQRRT is

considered as a metric because it involves the events of discovering components as

well as selecting appropriate components based on a client request. If the empirical

data obtained by varying the number of components, Headhunters and Active

Registries verifies the trend expected for the above three cases, then it can be said that

the MURDS system works with varying number of components, Headhunters and

Active Registries.

• One of the reasons for introducing mobile agents into the MURDS architecture is to

reduce the number of network resources consumed for the component discovery

process. In order to verify the network resource consumption, MC is considered as an

appropriate metric. If the empirical data obtained by conducting an experiment to

measure the number of messages consumed during the discovery process matches the

message consumption model presented under section 3.1.1, then it validates that the

mobile agent-based communication is advantageous when compared to that of the

request-reply communication.

An important point that needs to be noted is that the nature of messages that

take place during the component discovery process of MURDS is different when

compoared to that of the URDS. As per the message consumption model given under

section 3.1.1, the transfer of a mobile agent from one host to another host is

considered as a single message. Similarly, the unicast communication between a

Headhunter and an Active Registry is considered as a single message. However, the

amount of information carried by a mobile agent during its transfer from one host to

103

another host increases by a specific amount along the path of its travel. The amount of

information transferred through unicast communication is constant between a

Headhunter and an ActiveRegistry.

• Another reason for introducing mobile agents into the MURDS architecture is to

effectively discover components from Active Registries by providing appropriate

credentials to the Active Registries by mobile agents acting on behalf of different

Headhunters. The Active Registries exists in different states at different points of time

and offer varying sets of data to the mobile agents that request information from

them. The mobile agents periodically discover information about newly registered

components from different Active Registries and submit the information to their

respective Headhunters. The Headhunters assess usefulness of different components

available in their local Meta-Repositories for component selection process and

intimates the type of components that they require to the mobile agents. The mobile

agents sense the state of Active Registries and use its intelligence to request the type

of components, which would be useful to the Headhunters, from the Active

Registries. Hence, the empirical data obtained by varying the policies associated

between Headhunters and Active Registries varies accordingly, then it validates that

mobile agents would effectively discover components from ARs with varying

policies.

5.1.2 Experimentation to show that the prototype is scalable

Any software application that is distributed in nature should be able to serve its

purpose effectively with an increase in the number of entities participating in the system.

The MURDS system should be able to serve a client request effectively with an increase

in the number of HHs, ARs, components and the client requests. Also, it should be able to

process multiple queries sent to the system at a given point of time. The set of

experiments with varying number of HHs, ARs and the components described under

section 5.1.1 holds good for scalability purposes as well. An experiment based on average

CQRRT is to be performed to show that the MURDS system can handle multiple queries

at a time. According to the functionality provided, the CQRRT would increase with an

increase in the number of simultaneous queries processed by the MURDS system.

104

Due to the lack of available systems, scalability experiments were conducted on

fewer systems with the limited number of Headhunters, Active Registries, and

Components. With the addition of more Windows OS systems to the MURDS, future

experimentation would include more number of Headhunters, Active Registries, and

Components.

5.2 Results

To discuss the effect of increase in the number of Headhunters, the Active

Registries, the queries and the Components on CQRRT, the chain of events that occur

during the component selection process is given below:

1. When a client issues a query to the Query Manager, the Query Manager contacts the

DomainSecurityManager to get the list of Headhunters belonging to the domain

specified in the query.

2. The Query Manager creates a mobile agent, specifies the query to the mobile agent

and sends it to select appropriate components from the list of Headhunters.

3. The mobile agent randomly selects a Headhunter from the list, moves to the

location of that Headhunter and contacts it locally to get the appropriate

components. The Headhunter searches its local Meta-Repository and returns

appropriate components to the Headhunter.

4. After receiving the results from the Headhunter, the mobile agent repeats step 3

until it visits all the Headhunters specified in the list.

5. Then the mobile agent contacts the Query Manager and returns the results to it.

6. The Query Manager in turn returns the results to the client.

 The following sub-sections discuss the results obtained for various experiments.

The measurements that were taken for these experiments were averaged over thirty trials.

5.2.1 Increase in the number of Components

The parameters that were used for this experiment are as follows:

• One Query Manager

• One Client

105

• One Headhunter

• Seven Active Registries

• Number of Components registered with Active Registries was gradually increased

from zero to eight.

CQRRT vs. Increase in Number of Components

0

5000

10000

15000

20000

25000

Number of Components

C
Q

R
R

T(
m

s)

CQRRT(ms) 6395.3 8335.8 9964 11762 13862 15228 17595 20231 22344

1 2 3 4 5 6 7 8 9

Figure 5.1 CQRRT vs. Number of Components

Figure 5.1 indicates that an increase in the number of components would increase

the CQRRT. This trend could be attributed to the fact that an increase in the number of

components registered with Active Registries increases the size of the Headhunter’s

Meta-Repository. When the Headhunter receives a query to find appropriate components,

it searches for components in its Meta-Repository. The more the size of Meta-Repository,

it would take more time for the Headhunter to retrieve appropriate components. Also, if

the retrieved results consist of a greater number of components, the Headhunter would

spend more time in building those components by getting the information from the Meta-

Repository. Hence, the time taken to retrieve results would in turn increases the CQRRT

proportionately assuming that the time taken by the QM to get the list of Headhunters

from the DomainSecurityManager and to send the mobile agent is invariant for each

query.

106

5.2.2 Increase in the number of Active Registries

The parameters that were used for this experiment are as follows:

• One Query Manager

• One Client

• One Headhunter

• Four Components were registered with each Active Registry

• Number of Active Registries was gradually increased from one to seven.

CQRRT vs. Number of Active Registries

0

5000

10000

15000

20000

Number of Active Registries

C
Q

R
R

T(
m

s)

CQRRT(ms) 13862.4 14075.3 18265.6 18021.8 18403 18353.1 18103.3

1 2 3 4 5 6 7

Figure 5.2 CQRRT vs. Number of Active Registries

Figure 5.2 indicates that an increase in the number of Active Registries

participating in the discovery process has negligible effect on the CQRRT. The chain of

events explained under section 5.2 indicates that the component selection process does

not involve Active Registries. The negligible increase in the CQRRT would be attributed

to the fact that the Headhunter might have received the query from the mobile agent

acting on behalf of a QM while it was updating its local Meta-repository with the

information obtained from the component discovery process. This would have delayed

the Headhunter from accessing the information from its Meta-Repository.

5.2.3 Increase in the number of Headhunters

The parameters that were used for this experiment are as follows:

• One Query Manager

107

• One Client

• Seven Active Registries

• Four Components were registered with each Active Registry

• Number of Headhunters was gradually increased from one to five

CQRRT vs. Increase in Number of Headhunters

0

50000

100000

150000

200000

250000

Number of Headhunters

C
Q

R
R

T(
m

s)

CQRRT(ms) for MURDS 26275.2 45068.6 63684.5 81687.6 99690

CQRRT(ms) for Stationary
Agent based URDS

26292.64 54353.73 82665.71 122488.3 195112.8

1 2 3 4 5

Figure 5.3 CQRRT vs. Number of Headhunters

To compare the performance of mobile agent based resource discovery service

with the stationary agent based resource discovery service, experiments were carried out

on both the prototypes. The following paragraphs provide an explanation of the

component selection process in both the prototypes.

In a mobile agent based resource discovery service, when a QueryManager

receives a query from the client, it sends a mobile agent to search components from a list

of appropriate Headhunters. The mobile agent randomly picks one Headhunter at a time,

moves to the location of that Headhunter and retrieves components that match the query.

Then it moves to the next Headhunter in the list and repeats this process till it visits all

the Headhunters. Finally, the mobile agent sends the reulst to the QueryManager. The

QueryManager and the mobile agent acting on behalf of it communicate with each other

through asynchronous mode of communication.

In a stationary agent based resource discovery service, when a QueryManager

receives a query from the client, it creates a stationary agent to search components from a

108

list of appropriate Headhunters. The stationary agent randomly picks one Headhunter as a

primary Headhunter (PH) and assigns it the job of selecting components from the

remaining list of Headhunters. The PH searches for components in its local

MetaRepository. Then it creates a stationary agent and delegates the job of propagating

query to the remaining list of Headhunters. The stationary agent randomly picks one

Headhunter as a PH from the remaining list of Headhunters and assigns it the job of

selecting components from the remaining list of Headhunters. This step is repeated until

the query is passed to all the Headhunters in the list. The stationary agent at each step is

responsible for sending the results back to the entity (i.e., either a Headhunter or a

QueryManager) that creates it. The results are finally returned back to the Client. The

QueryManager, the Headhunters and the Stationary agents communicate with one

another through synchronous mode of communication.

Figure 5.3 indicates that an increase in the number of Headhunters would increase

the CQRRT for both the mobile agent based component selection process and the

stationary agent based component selection process. Reason is that the agents in both the

processes contact one Headhunter at a time to retrieve component information from that

HH. Each Headhunter consumes time to retrieve components from its local Meta-

Repository and to return those components to the agents. As the number Headhunters

specified in the search list increases, the amount of time that the agents take to return

results to the Query Manager increases proportionately. This, in turn, increases the

CQRRT. Figure 5.3 indicates that the stationary agent based component selection

process consumes more time in retrieving results from a set of Headhunters when

compared to that of the mobile based component selection process. The reason for this

could be attributed to the differences in the synchronous and asynchronous mode of

communication because all the other steps involved in the both the processes are similar

in nature.

5.2.4 Increase in the number of Queries

The parameters that were used for this experiment are as follows:

• Three Query Managers

• Three Headhunters

109

• Seven Active Registries

• Four Components were registered with each Active Registry

• Three Clients

• Number of queries was gradually increased from ten to hundred and twenty. All

the queries were equally distributed among three clients.

CQRRT vs Increase in number of Queries

0

50

100

150

200

Number of Queries

A
ve

ra
ge

 C
Q

R
R

T(
se

cs
)

Average CQRRT(secs) 16.1 28.8 43.7 55.6 67.9 79.6 93.7 113 116 135 150 163

1 2 3 4 5 6 7 8 9 10 11 12

Figure 5.4 CQRRT vs. Number of Queries

Figure 5.4 indicates that an increase in the number of simultaneous queries sent to

Query Managers would increase the average CQRRT proportionately. As the number of

incoming queries increases, Headhunters become busy in servicing those requests in

addition to the requests that they are still servicing; so an increase in the CQRRT will be

the result.

Similar experiments were conducted for the URDS. The nature of the graph

shown in the above figure was similar to the graph obtained for the URDS.

5.2.5 Message Consumption

The parameters that were used for this experiment are as follows:

• One Headhunter

• Number of Active Registries are gradually increased from one to seven

110

Number of Active Registries vs. Message Consumption

0

5

10

15

20

25

Number of Active Registries

M
es

sa
ge

 C
on

su
m

pt
io

n

Message Consumption in the
MURDS

2 3 4 5 6 7 8

Message Consumption in the
URDS

3 6 9 12 15 18 21

1 2 3 4 5 6 7

Figure 5.5 Number of Active Registries vs. Message Consumption

This experiment was conducted to see whether the number of messages consumed

during the component discovery process matches the message consumption model

presented under section 3.1.1. Figure 5.5 indicates that a mobile agent acting on behalf of

a Headhunter consumed (N+1) messages to discover components from ‘N’ Active

Registries where as a Headhunter consumed 3N messages to discover components from

‘N’ Active Registries using request-reply communication. Hence, this experiment

validated the message consumption model presented under section 3.3.1.

5.2.6 Heterogeneous policies

This experiment was conducted to verify whether different ARs would provide

differentiated services to the mobile agent acting on behalf of a HH based on appropriate

credentials presented to the ARs. This experiment was carried out with two ARs and one

HH. The services provided by an AR to a HH were based on whether the HH belongs to

any one of the following service types: PremiumBusiness or PremiumIndividual or

RegularIndividual or RegularBusiness. All the components that belong to Super Bank

111

were divided into two cost levels (i.e., L1 and L2). The policies associated with all the

ARs in the experiment were as follows:

• A premium Business (PB) HH would get all the components that belong to L1

and L2.

• A premium Individual (PI) HH would get a subset of components that belong to

both L1 and L2.

• A Regular Business (RB) HH would get all the components that belong to L1.

• A Regular Individual (RI) HH would get all the components that belong to L2.

The HH that was used in the experiment was associated with the ARs with any

one the policies mentioned above. All the ARs participating in the discovery process

exists in either state1 or state2 at different point of times. When an AR is in state1, it

searches for components based on the policies mentioned above and return all those

components to the mobile agents. When an AR is in state2, it searches for components

based on functional attributes of the UMMSpecification of a component and returns only

those components that match the functional attributes.

During the component discovery phase, a mobile agent acting on behalf of a HH

enquires about the state of an AR. If an AR is in state1, the mobile agent submits

credentials (i.e., < headhunter location, mobile agent user name>) to the AR. The AR

verifies the credentials with the DSM and returns varying number of components based

on the policy associated with the HH. If an AR is in state2, the mobile agent submits

different set of credentials (i.e., < headhunter location, mobile agent user name,

functional attribute, functional attribute value>) when compared to the set of credentials

submitted to the AR when it is in state1. The AR verifies the credentials with the DSM,

then selects components based on functional attribute type and functional attribute value

specified by the mobile agent and returns varying number of components based on the

policy associated with the HH. Functional attributes that were used in the experiments are

Algorithms, Complexity, and Technology. Functional attribute values that were used for

different fuctional attributes are as follows:

• Algorithms: JFC

• Complexity: O(1)

112

• Technology: Java RMI

 PB PI RB RI

State1 8 6 4 4

State2 (Algorithm) 6 4 3 3

State2 (Complexity) 5 3 3 2

State2 (Technology) 7 5 4 3

Table 5.1 Policy Association between HH1 and AR1

 PB PI RB RI

State1 8 6 4 4

State2 (Algorithm) 4 2 2 2

State2 (Complexity) 7 4 3 4

State2 (Technology) 5 3 3 2

Table 5.2 Policy Association between HH1 and AR2

Experiments were conducted to test whether different ARs would give varying

results to mobile agents acting on behalf of Headhunters when the ARs are in different

states. Table 5.1 and Table 5.2 provide the details of the policy relationship of HH1 with

AR1 and AR2 respectively and number of components returned by respective ARs.

Hence, this experiment proved that mobile agents would be able to retrieve

component information effectively from the ARs with varying policies.

The results obtained for all the experiments that involve CQRRT measurement,

ACM measurement and the heterogeneous policies were as expected. The observations

obtained from the above experiments are summarized below:

• An increase in the number of Components will increase the CQRRT. This

observation is supported by what is observed in Figure 5.1. As the number of

components available in the Meta-repositories increases, all the Headhunters

servicing a particular query takes more time to retrieve components from their

respective Meta-repositories. Hence, there will be an increase in the CQRRT.

113

• An increase in the number of Active Registries has negligible effect on the CQRRT.

This observation is supported by what is observed in Figure 5.2. The reason is that the

component discovery process and the component selection process are independent of

each other.

• An increase in the number of Headhunters will result a proportionate increase of the

CQRRT. This observation is supported by what is observed in Figure 5.3. The reason

is that the mobile agent visits one Headhunter after another and each Headhunter

consumes considerable amount of time to process the query. This leads to an increase

in the CQRRT.

• An increase in the number of Queries will result a proportionate increase of the

CQRRT. This observation is supported by what is observed in Figure 5.4. As the

number of incoming queries increases, Headhunters become busy in servicing those

requests in addition to the requests that they are still servicing and an increase in the

CQRRT will be the result.

• The message consumption of the mobile agent-based component discovery process

requires less number of network resources when compared to that of the request-reply

based component discovery process.

• Mobile agents would be able to discover components from various Active Registries

by providing appropriate credentials to respective Active Registries during the

component discovery phase.

This chapter presented the experimentation details to validate the proposed MURDS

architecture. The next chapter provides the conclusion of this report and future work.

114

6. CONCLUSION AND FUTURE WORK

This project presented the architecture and an implementation for a resource

discovery service, the “UniFrame Mobile Agent based Resource Discovery Service

(MURDS)”. The MURDS architecture proposed in this project is based on the URDS

architecture [9]. The MURDS prototype was implemented in Java. The MURDS itself

forms a part of a framework, “UniFrame”, which aims at providing a platform for

building DCS by integrating existing and emerging distributed component models under

a common meta-model that enables discovery, interoperability, and collaboration of

components via generative software techniques. The MURDS prototype was tested on

limited machines to validate its functionality and scalability.

The contributions of this project are as follows:

• It provides a survey of the issues associated with the component discovery and

component selection phases of the URDS and establishes the need for introducing

mobile agents to address these issues in the MURDS architecture.

• It presents a framework for MURDS by adding mobile agents into the URDS

architecture.

• It provides an access control that allows mobile agents to get differentiated access to

the resources associated with the NRs/LSs in the component discovery phase of the

MURDS.

• It compares the perfomance of mobile agent based resource discovery service with

the non-mobile agent based resource discovery service to prove that the mobile agent

based resource discovery service provides better service when compared to the non-

mobile agent based resource discovery service.

Future work to complete for the MURDS involves enhancing the implementation of

the prototype and adding more components to the prototype for further testing.

Some future work for the MURDS and the prototype includes:

115

• The performance of the prototype can be optimized by fine tuning various parameters

such as the number of Headhunters present in the system per domain, the time period

between periodic component discovery process by the mobile agents, the time period

between successive purge cycles to maintain the ‘freshness’ of the information

returned by the mobile agents during the component discovery process, the time

period between successive purge cycles to maintain the ‘freshness’ of the entities

participating in the component discovery process and component selection process,

etc.

• The mobile agent based communication pattern used for the component discovery

and the component selection processes of the MURDS would increases the turn

around time as the number of entities involved in the search space increases.

Alternative techniques such as dividing the Headhunters/the ActiveRegistries into

multiple groups and assigning each group to a mobile agent would reduce the turn

around time for these two processes.

• The prototype implementation of the MURDS used a cost based example to show that

mobile agents provide an optimal way of discovering components from multiple

ActiveRegistries that offer differentiated services to different Headhunters. This idea

can be extended to develop a cost-based framework for the discovery aspect of the

MURDS.

• Due to the limited number of Windows-OS systems available for experimentation,

fewer Headhunters, Active Registries, Query Managers and clients were used than

would be optimal for these experiments. Future work would include the use of more

systems to run a large number of Headhunters, Active Registries, Query Managers

and clients in order to evaluate the scalability of the MURDS prototype.

In conclusion, this project has enhanced the URDS architecture by introducing

mobile agents for component discovery and component selection phases. Mobile agents

reduced the message consumption for the discovery process by processing the requests at

the location of the Active Registries. By making asynchronous calls, mobile agents

relieved respective entities, which participate in the component discovery process and the

component selection process, from maintaining network connections over an extended

116

period of time. Mobile agents provided an effective way of discovering components from

various Active Registries that offer differentiated services to various Headhunters. The

MURDS architecture, coupled with the UniFrame Approach, presents a promising

solution for discovery and selection of geographically scattered components.

117

LIST OF REFERENCES

[1] Orfali R, and Harkey, D. Client/Server Programming with JAVA and CORBA. The
second edition. John Wiley & Sons, Inc., 1998.

[2] Microsoft Corporation. DCOM Specifications.
http://www.microsoft.com/oledev/olecom, 1998.

[3] Object Management Group. CORBA Components. Technical report, Object
Management Group TC Document orbos/99-02-05, March 1999.

[4] .NET, Microsoft Corporation. http://www.microsoft.com/net/. 2003

[5] Quality Vocabulary, ISO, Report: ISO 8402, pp.8.

[6] Raje, R., Auguston, M., Bryant, B. R., Olson, A., Burt, C. “A Unified Approach for
the Integration of Distributed Heterogeneous Software Components”. Proceedings of the
2001 Monterey Workshop on Engineering Automation for Software Intensive System
Integration, Monterey, California, 2001, pp: 109-119.

[7] Raje, R., Auguston, M., Bryant, B. R., Olson, A., Burt, C. “A Quality-of-Service-
based Framework for Creating Distributed Heterogeneous Software Components”.
Concurrency and Computation: Practice and Experience, Volume 14, Issue 12, 2002.
Pages: 1009-1034.

[8] Raje, R. “UMM: Unified Meta-object Model for Open Distributed Systems”.
Proceedings of 4th IEEE International Conference on Algorithms and Architecture for
Parallel Processing, ICAP3PP’2000, pp: 454-465, Hong Kong, 2000.

[9] Nanditha N. Siram. "An Architecture for the Uniframe Resource Discovery Service”.
M. S. Thesis. Department of Computer & Information Science. Indiana University
Purdue University Indianapolis, March 2002.

[10] “UDDI Technical White Paper”, September
2000.http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf

[11] Object Management Group. “Trading Object Service Specification,” Object
Management Group 2000. ftp://ftp.omg.org/pub/docs/formal/00-06-27.pdf.

[12] Open LDAP. http://www.openldap.org/jldap/overview.html

[13] ITU/ISO Recommendation X.500 (08/97): Open Systems Interconnection – The
Directory: Overview of concepts, models and services. International Telecommunication
Union, 1997.

118

[14] Mockapetris, P. “Domain Names-Implementation and Specification,” IETF RFC
1035, October 1987. http://www.rfc-editor.org/rfc/rfc1035.txt

[15] Neeran M. Karnik and Anand R. Tripathi. “Design issues in mobile-agent
programming systems”. IEEE Concurrency, 6(3): 52--61, 1998.

[16] Danny B. Lange and Mitsuru Oshima. “Seven good reasons for mobile agents”.
Communications of the ACM, 42(3): 88--89, March 1999.

[17] George Coulouris And Jean Dollimore. “Security Requirements for Cooperative
Work: A Model and Its System Implications”. Position paper for Sixth SIGOPS
European Workshop, Dagstuhl, September 1994.

[18] E.Bierman, E.Cloete. “Classification of malicious host threats in mobile agent
computing”. Proceedings of the 2002 annual research conference of the South African
institute of computer scientists and information technologists on enablement through
technology.

[19] Burt, Carol C., Bryant, Barrett R., Raje, Rajeev R., Olson, Andrew M., and
Auguston, Mikhail, "Model Driven Security: Unification of Authorization Models for
Fine-Grain Access Control", Proceedings of EDOC 2003, The 7th IEEE International
Enterprise Distributed Object Computing Conference, September 16 - 19, 2003,
Brisbane, Australia.

[20] Zhisheng Huang. "The UniFrame System-Level Generative Programming
Framework." M. S. Thesis, Department of Computer & Information Science, Indiana
University Purdue University Indianapolis, May, 2003.

[21] G. Brahnmath. "The UniFrame Quality Of Service Framework." M. S. Thesis,
Department of Computer & Information Science, Indiana University Purdue University
Indianapolis, December, 2002.

[22] G. Brahnmath, R. Raje, A. Olson, B. Bryant, M. Auguston, C.Burt, "A Quality of
Service Catalog for Software Components", pp: 513-520, The Proceedings of the
Southeastern Software Engineering Conference, Huntsville, Alabama, April 2002.

[23] G. Brahnmath, R. Raje, A. Olson, C. Sun. “Quality of Service Catalog for Software
Components “. Technical report (TR-CIS-0219-01), Department of Computer and
Information Science, Indiana University Purdue University Indianapolis, 2001.

[24] Coulouris, G., Dollimore, J., Kindberg, T., “Distributed Systems Concepts and
Design”, Third Edition, Addison-Wesley, 2001.

[25] Sun Microsystems, Jini Specifications V2.0.

119

[26] Guttman, Erik, “Service Location Protocol: Automatic Discovery of IP Network
Services,” IEEE Internet Computing, vol. 3, no. 4, pp. 71-80, 1999.

[27] Perkins, C., Guttman, E., “DHCP Options for Service Location Protocol,” IETF
RFC 2610, June 1999.

[28] Czerwinski, S. E., Zhao, B. Y., Hodes, T. D., Joseph, A. D., Katz, R. H., “An
Architecture for a Secure Service Discovery Service,” Proceedings of Mobicom '99,
1999.

[29] Ninja, “The Ninja Project,” http://ninja.cs.berkeley.edu, 2002.

[30] Salutation Consortium, “Salutation Architecture Specification Version 2.0c –Part 1,”
The Salutation Consortium, June 1, 1999. http://www.salutation.org

[31] Salutation Consortium, “Salutation Architecture Specification Version 2.0c –Part 2,”
The Salutation Consortium, June 1, 1999. http://www.salutation.org

[31] Rekesh John, “UPnP, Jini and Salutation - A look at some popular coordination
frameworks for future networked devices,” California Software Labs, June 17, 1999.

[33] Microsoft Corporation, “Universal Plug and Play Device Architecture Version 1.0,”
June 8, 2000, www.upnp.org/download/UPnPDA10_20000613.htm

[34] Goland, Y., Cai, T., Leach P., Gu, Y., and Albright, S., “Simple Service Discovery
Protocol,” IETF, Draft draft-cai-ssdp-v1-03, October 28 1999,
http://www.ietf.org/internet-drafts/draft-cai-ssdp-v1-03.txt.

[35] Bluetooth White Paper. http://www.bluetooth.com/developer/whitepaper.

[36] Dipanjan Chakraborty, Filip Perich, Sasikanth Avancha, and Anupam Joshi,
“DReggie: A Smart Service Discovery Technique for E-Commerce Applications”, In
20th Symposium on Reliable Distributed Systems, October 2001.

[37] DARPA Agent Markup Language. http://www.daml.org/ .

[38] S. Green, L. Hurst, B. Nangle, P. Cunningham, F.Somers and R. Evans. “Software
Agents: A Review”. Technical report. Trinity College, Dublin, Ireland, May 1997.

[39] White J., “Telescript technology: The foundation of the electronic market place”.
General Magic white paper 1995.

[40] Grasshopper. http://www.grasshopper.de./

[41] http://agent.cs.dartmouth.edu/general/agenttcl.html

120

[42] http://www.tryllian.com/development/

[43] http://www.trl.ibm.com/aglets/

[44] http://www.recursionsw.com/products/whitepapers/whitepapers.asp

[45] http://www.cs.umn.edu/Ajanta/

[46] Nguyen T. Giang, Dang T. Tung. “Agent platform evaluation and comparison”. June
2002. http://pellucid.ui.sav.sk/TR-2002-06.pdf

[47] http://www.globus.org/ogsa/

[48] Sun Microsystems, “Designing Enterprise Applications with the J2EETM Platform”,
http://java.sun.com/blueprints/guidelines/designing_enterprise_applications/.

121

APPENDICES

APPENDIX A: Class Diagrams for the Entity Objects

122

123

APPENDIX B: Class Diagrams for the Data Access Objects

124

APPENDIX C: Class Diagrams for the Dependent Objects

125

APPENDIX D: Schema for the DSM_Repository

126

APPENDIX E: Schema for the Meta_Repository

127

APPENDIX F: Class Diagrams for the Service Components

128

APPENDIX G: Source Code

AbstractComponent.java
public class AbstractComponent extends Component
{
}

ActiveRegistry.java
import java.rmi.registry.*;
import java.rmi.*;
import java.net.*;
import java.util.*;
import java.rmi.server.*;
import java.lang.Integer;
import java.lang.String;

/**
 * The active registry class uses the ARStateRenewer to periodically
 * update it's state with the DSM.
 * Creation date: (05/15/2003 10:10:30 AM)
 * @author: Jayasree Gandhamaneni
 */

public class ActiveRegistry extends UnicastRemoteObject implements IActiveRegistry
{

 private int port = 9000;
 private String userType = "Registry";
 private String rmiLocn =null;
 private IDomainSecurityManager dsmanager = null;

 /**
 * Obtain URL List of Registered components.
 */

 private String[] list(int argPort,String rmiLocn)
 {
 String[] listOfURLS = null;
 try
 {
 listOfURLS = Naming.list("//"+rmiLocn+":" + argPort);
 } catch (java.rmi.RemoteException e) {
 System.out.println(e.getMessage());
 } catch (Exception e) {
 System.out.println(e.getMessage());
 }

 return listOfURLS;
 }

 public static void main(String[] args) {
 long renewalTime = 30000;

129

 int rmiRegistryPort = 0000;
 String activeRegistryLocation="//"+args[0]+":"+args[1] + "/ActiveRegistry";
 rmiRegistryPort = Integer.parseInt(args[2].trim());
 System.out.println("Port in use is"+rmiRegistryPort);
 String dsmLocation ="//"+args[3]+":"+ args[4]+"/DomainSecurityManager";
 String domain = args[5];
 String userName = args[6];
 String password = args[7];

 try {
 System.setSecurityManager(new RMISecurityManager());
 Naming.rebind(
 activeRegistryLocation,
 new ActiveRegistry(
 renewalTime,
 rmiRegistryPort,
 userName,
 password,
 domain,
 activeRegistryLocation,
 dsmLocation)
);
 System.out.println("ActiveRegistry is ready.");

 } catch (Exception e) {
 System.out.println("ActiveRegistry failed: " + e);
 }
 }

 /**
 * The ActiveRegistry Constructor.
 */
 public ActiveRegistry(
 long rTime,
 int rmiRegistryPort,
 String userName,
 String password,
 String domain,
 String activeRegistryLocation,
 String dsmLocation)
 throws RemoteException {
 try {
 port = rmiRegistryPort;
 int j=0;

 for (int i=0;i<activeRegistryLocation.length();i++)
 {
 if(activeRegistryLocation.charAt(i)==':')
 {
 j =i;
 i = activeRegistryLocation.length();
 }
 }

 rmiLocn=activeRegistryLocation.substring(2,j);
 LocateRegistry.createRegistry(port);

130

 System.out.println("\n Active Registry Created RMI Registry At : " + port);

 dsmanager = (IDomainSecurityManager) Naming.lookup(dsmLocation);

 System.out.println("Active Registry Contacting DSM for Authentication.");

 if(dsmanager.authenticationService(
 userType,
 userName,
 password,
 activeRegistryLocation,
 domain)) {

 System.out.println("Active Registry Authenticated by DSM.");

 ARStateRenewer arStateRenewer = new
ARStateRenewer(rTime,dsmLocation,activeRegistryLocation,domain);
 Thread renewerThread = new Thread(arStateRenewer);
 renewerThread.start();
 }
 else
 {
 System.out.println("Active registry is not a valid principal.
Authentication failed");
 System.exit(0);
 }

 } catch (Exception e) {
 System.out.println("Exception in the constructor of Active
Registry"+e.getMessage());
 }

 }

 /**
 * Returns ActiveRegistry state to HHAgent
 */
 public int getState() throws RemoteException
 {
 Random r = new Random();
 return (r.nextInt(2)+1);
 }

 /**
 * Returns components to HHAgent
 */
 public Hashtable getComponentData(String headhunterLocation, String mobileAgentUserName,
String attributeType, String attributeValue) throws RemoteException
 {
 String serviceType = dsmanager.authenticateHHAgent(headhunterLocation,
mobileAgentUserName);
 Hashtable objectTable = new Hashtable();
 Hashtable level1ObjectTable = new Hashtable();
 Hashtable level2ObjectTable = new Hashtable();

131

 System.out.println("AR contacted by "+headhunterLocation+" to Retrieve Component
Data");

 if(serviceType!="") {

 System.out.println("Headhunter requests for "+serviceType+" services from
AR");

 try
 {
 String[] objURL = list(port,rmiLocn);

 String accessLevel=new String();
 if(serviceType.equals("PB"))
 accessLevel= "ALL";
 else if(serviceType.equals("PI"))
 accessLevel= "L1L2";
 else if(serviceType.equals("RB"))
 accessLevel= "L1";
 else if(serviceType.equals("RI"))
 accessLevel= "L2";
 System.out.println("Access level is "+accessLevel);
 System.out.println("Attribute type -"+attributeType+" Attribute Value -
"+attributeValue);

 for(int i=0;i<objURL.length;i++)
 {
 System.out.println("Active Registry gathering component
information from : " + objURL[i]);

 //Registry looking up object registered with it.
 System.setSecurityManager(new RMISecurityManager());
 Object obj = Naming.lookup(objURL[i]);

 //Obtain the location(URL) of the UMMSpecification for this
object by
 //introspecting its ummSpecification property.

 String ummSpecURL = (String)
UniFrameIntrospector.getProperty(obj,"ummSpecURL");

 //Call the XMLParser by passing this URL. The XML Parser
will parse the XML specification
 //and construct a Component from the specification which it
returns.

 UniFrameSpecificationParser xmlDomParser = new
UniFrameSpecificationParser(ummSpecURL);
 ConcreteComponent component =
xmlDomParser.getConcreteComponent();

 if(attributeType.equals("") && attributeValue.equals(""))
 {
 if(accessLevel.equals("ALL"))
 objectTable.put(objURL[i],component);
 else if(accessLevel.equals("L1L2"))

132

 {
 if((component.getCost()).equals("L1"))

 level1ObjectTable.put(objURL[i],component);
 else if((component.getCost()).equals("L2"))

 level2ObjectTable.put(objURL[i],component);
 }
 else if((component.getCost()).equals(accessLevel))
 {

 objectTable.put(objURL[i],component);
 }

 }
 else if(attributeType.equals("algorithm"))
 {
 String algorithms []=component.getAlgorithms();
 if(accessLevel.equals("ALL") &&
verifyAlgorithm(algorithms,attributeValue))
 {
 objectTable.put(objURL[i],component);

 }
 else if(accessLevel.equals("L1L2") &&
verifyAlgorithm(algorithms,attributeValue))
 {
 if((component.getCost()).equals("L1"))

 level1ObjectTable.put(objURL[i],component);
 else if((component.getCost()).equals("L2"))

 level2ObjectTable.put(objURL[i],component);

 }
 else
if((component.getCost()).equals(accessLevel)&& verifyAlgorithm(algorithms,attributeValue))
 {
 objectTable.put(objURL[i],component);
 }
 }
 else if(attributeType.equals("complexity"))
 {
 if(accessLevel.equals("ALL") &&
(component.getComplexity()).equals(attributeValue))
 {

 objectTable.put(objURL[i],component);
 }
 else if(accessLevel.equals("L1L2") &&
(component.getComplexity()).equals(attributeValue))
 {
 if((component.getCost()).equals("L1"))

 level1ObjectTable.put(objURL[i],component);
 else if((component.getCost()).equals("L2"))

133

 level2ObjectTable.put(objURL[i],component);

 }
 else if((component.getCost()).equals(accessLevel)
&& (component.getComplexity()).equals(attributeValue))
 {

 objectTable.put(objURL[i],component);
 }
 }
 else if(attributeType.equals("technology"))
 {
 String technologies []=component.getTechnologies();
 if(accessLevel.equals("ALL") &&
verifyTechnology(technologies,attributeValue))
 {
 objectTable.put(objURL[i],component);
 }
 else if(accessLevel.equals("L1L2") &&
verifyTechnology(technologies,attributeValue))
 {
 if((component.getCost()).equals("L1"))

 level1ObjectTable.put(objURL[i],component);
 else if((component.getCost()).equals("L2"))

 level2ObjectTable.put(objURL[i],component);
 }
 else if((component.getCost()).equals(accessLevel)
&& verifyTechnology(technologies,attributeValue))
 {
 objectTable.put(objURL[i],component);
 }
 }
 }//end for

 if(accessLevel.equals("L1L2"))
 {
 if(level1ObjectTable.size()>0)
 {
 int i=0;
 Enumeration e=level1ObjectTable.keys();
 while(i <= (level1ObjectTable.size()/2)){
 String urlID=(String)e.nextElement();

 objectTable.put(urlID,(ConcreteComponent)level1ObjectTable.get(urlID));
 i++;

 }

 }

 if(level2ObjectTable.size()>0)
 {
 int j=0;

134

 Enumeration e=level2ObjectTable.keys();
 while(j <= (level2ObjectTable.size()/2)){
 String urlID=(String)e.nextElement();

 objectTable.put(urlID,(ConcreteComponent)level2ObjectTable.get(urlID));
 j++;
 }
 }
 }
 } catch(Exception e){
 System.out.println(e.getMessage());
 }
 }
 else {
 System.out.println("Mobile agent is not a valid member to access
component data");
 System.out.println("Access to ActiveRegistry rejected");

 }
 return objectTable;
 }

 /**
 * Checks the algorithm type of a component.
 */
 private boolean verifyAlgorithm(String[] algorithms, String attributeValue)
 {
 boolean isVerified = false;
 if(algorithms!=null)
 {
 int i=0;
 for(i=0;i<algorithms.length;i++)
 {
 if(algorithms[i].equals(attributeValue))
 {
 isVerified = true;
 i=algorithms.length;
 }
 }
 }
 return isVerified;

 }

 /**
 * Checks the technology used for the development of a component.
 */
 private boolean verifyTechnology(String[] technologies, String attributeValue)
 {
 boolean isVerified = false;
 if(technologies!=null)
 {
 int i=0;
 for(i=0;i<technologies.length;i++)
 {
 if(technologies[i].equals(attributeValue))

135

 {
 isVerified = true;
 i=technologies.length;
 }
 }
 }
 return isVerified;
 }

}//end of Active Registry

ARStateRenewer.java
import java.rmi.*;
import java.rmi.server.*;
import java.rmi.registry.*;
import java.net.*;
import java.util.*;

/**
 * This class operates as a Thread which executes periodically
 * to update availability of an active registry with the
 * DomainSecurityManager.
 * Creation date: (06/15/2003 10:10:30 AM)
 * @author: Jayasree Gandhamaneni
 */

public class ARStateRenewer implements Runnable
{
 private long rTime = 0;
 private String arLocation = "";
 private IDomainSecurityManager dsm = null;
 private String arDomain = "";

 /**
 * The ARStateRenewer Constructor.
 */
 public ARStateRenewer(
 long renewalTime,
 String dsmLocation,
 String activeRegistryLocation,
 String domain) {

 try {

 System.out.println("ARStateRenewer thread starting active registry state
updation with the DSM");
 System.setSecurityManager(new RMISecurityManager());
 dsm = (IDomainSecurityManager) Naming.lookup(dsmLocation);
 rTime = renewalTime;
 arLocation = activeRegistryLocation;
 arDomain = domain;

 }catch (Exception e){

136

 System.out.println("Exception in the constructor of ActiveRegistryStateRenewer
"+e);
 }
 }

 public void run()
 {
 Thread CurrentThread = Thread.currentThread();

 try {
 while(true)
 {
 dsm.renewARState(arLocation, arDomain);
 //System.out.println("AR state updated with DSM");
 CurrentThread.sleep(rTime);
 }
 }catch(InterruptedException ie) {
 System.out.println(ie.getMessage());
 }
 catch (Exception e)
 {
 System.out.println(e);
 }
 }
}

buildpersist.java
import java.util.*;
import java.sql.*;
import java.io.*;
import java.lang.*;

public class buildpersist implements Serializable{

 public buildpersist(){}

 /**
 * Retrieves component data from the Meta_Repository.
 */
 public ConcreteComponent build(ConcreteComponent component, ResultSet result, String
componentTablename)
 {
 try{
 component.setComponentName(result.getString("componentName"));
 component.setSubcase(result.getString("subcase"));
 component.setDomainName(result.getString("domainName"));
 component.setSystemName(result.getString("systemName"));
 component.setDescription(result.getString("description"));
 component.setID(result.getString("id"));
 component.setVersion(result.getString("version"));
 component.setAuthor(result.getString("Author"));
 component.setDate(result.getString("CreatingDate"));
 component.setValidity(result.getString("validity"));
 component.setAtomicity(result.getString("atomicity"));
 component.setRegistration(result.getString("registration"));

137

 component.setModel(result.getString("Model"));
 component.setPurpose(result.getString("Purpose"));
 component.setComplexity(result.getString("complexity"));
 component.setMobility(result.getString("mobility"));
 component.setSecurity(result.getString("security"));
 component.setFaultTolerance(result.getString("faultTolerance"));
 component.setQoSLevel(result.getString("qosLevel"));
 component.setCost(result.getString("cost"));
 component.setQualityLevel(result.getString("qualityLevel"));
 }catch (Exception e) {
 System.out.println("Exception in building component" + e.getMessage());
 }
 try {
 SQLHelper sqlEngine = new SQLHelper();

 try {
 String algorithmsQuery = "SELECT * from "+ componentTablename +
 "Algorithms where id =
'"+component.getID() +
 "' AND " + " ComponentName ='"
+component.getComponentName() +
 "' AND " + "DomainName = '" +
component.getDomainName() +
 "' AND " + "SystemName = '" +
component.getSystemName() + "'";
 ResultSet algorithmsResult = sqlEngine.executeQuery(algorithmsQuery);
 ArrayList algorithms = new ArrayList();
 while(algorithmsResult.next())
 {
 algorithms.add(algorithmsResult.getString("Algorithm"));
 }
 if(algorithms.size() != 0)
 {
 component.setAlgorithms((String[])algorithms.toArray(new String[1]));
 }
 }catch(Exception e){
 System.out.println("Error in algorithms query retrieval"+e.getMessage());
 }

 try {
 String requiredInterfacesQuery = "SELECT * from "+ componentTablename +
 "RequiredInterfaces where Id =
'"+component.getID() +
 "' AND " + " ComponentName =
'" + component.getComponentName() +
 "' AND " + "DomainName = '" +
component.getDomainName() +
 "' AND " + "SystemName = '" +
component.getSystemName() + "'";
 ResultSet requiredInterfacesResult = sqlEngine.executeQuery(requiredInterfacesQuery);
 ArrayList requiredInterfaces = new ArrayList();
 while(requiredInterfacesResult.next())
 {
 requiredInterfaces.add(requiredInterfacesResult.getString("Interface"));
 }
 if(requiredInterfaces.size() != 0)

138

 {
 component.setRequiredInterfaces((String[])requiredInterfaces.toArray(new String[1]));
 }
 }catch(Exception e){
 System.out.println("Error in required interfaces query retrieval"+e.getMessage());
 }

 try {
 String providedInterfacesQuery = "SELECT * from "+ componentTablename +
 "ProvidedInterfaces where Id =
'"+component.getID()+
 "' AND " + " ComponentName =
'" + component.getComponentName() +
 "' AND " + "DomainName = '" +
component.getDomainName() +
 "' AND " + "SystemName = '" +
component.getSystemName() + "'";
 ResultSet providedInterfacesResult = sqlEngine.executeQuery(providedInterfacesQuery);
 ArrayList providedInterfaces = new ArrayList();
 while(providedInterfacesResult.next())
 {
 providedInterfaces.add(providedInterfacesResult.getString("Interface"));
 }
 if(providedInterfaces.size() != 0)
 {
 component.setProvidedInterfaces((String[])providedInterfaces.toArray(new String[1]));
 }
 }catch(Exception e){
 System.out.println("Error in provided interfaces query
retrieval"+e.getMessage());
 }

 try {
 String technologiesQuery = "SELECT * from "+ componentTablename +
 "Technologies where Id =
'"+component.getID()+
 "' AND " + " ComponentName = '" +
component.getComponentName() +
 "' AND " + "DomainName = '" +
component.getDomainName() +
 "' AND " + "SystemName = '" +
component.getSystemName() + "'";
 ResultSet technologiesResult = sqlEngine.executeQuery(technologiesQuery);
 ArrayList technologies = new ArrayList();
 while(technologiesResult.next())
 {
 technologies.add(technologiesResult.getString("Technology"));
 }
 if(technologies.size() != 0)
 {
 component.setTechnologies((String[])technologies.toArray(new String[1]));
 }
 }catch(Exception e){
 System.out.println("Error in technologies query retrieval"+e.getMessage());
 }

139

 try {
 String expectedResourcesQuery = "SELECT * from "+ componentTablename +
 "ExpectedResources where Id =
'"+component.getID()+
 "' AND " + " ComponentName = '" + component.getComponentName() +
 "' AND " + "DomainName = '" +
component.getDomainName() +
 "' AND " + "SystemName = '" +
component.getSystemName() + "'";
 ResultSet expectedResourcesResult = sqlEngine.executeQuery(expectedResourcesQuery);
 ArrayList expectedResources = new ArrayList();
 while(expectedResourcesResult.next())
 {
 expectedResources.add(expectedResourcesResult.getString("ExpectedResource"));
 }
 if(expectedResources.size() != 0)
 {
 component.setExpectedResources((String[])expectedResources.toArray(new String[1]));
 }
 }catch(Exception e){
 System.out.println("Error in expected resources retrieval"+e.getMessage());
 }

 try {
 String designPatternsQuery = "SELECT * from "+ componentTablename +
 "DesignPatterns where Id =
'"+component.getID()+
 "' AND " + " ComponentName = '" +
component.getComponentName() +
 "' AND " + "DomainName = '" +
component.getDomainName() +
 "' AND " + "SystemName = '" +
component.getSystemName() + "'";
 ResultSet designPatternsResult = sqlEngine.executeQuery(designPatternsQuery);
 ArrayList designPatterns = new ArrayList();
 while(designPatternsResult.next())
 {
 designPatterns.add(designPatternsResult.getString("Pattern"));
 }
 if(designPatterns.size() != 0)
 {
 component.setDesignPatterns((String[])designPatterns.toArray(new String[1]));
 }
 }catch(Exception e){
 System.out.println("Error in design patterns query retrieval"+e.getMessage());
 }

 try {
 String knownUsagesQuery = "SELECT * from "+ componentTablename +
 "KnownUsages where Id =
'"+component.getID()+
 "' AND " + " ComponentName = '" +
component.getComponentName() +
 "' AND " + "DomainName = '" +
component.getDomainName() +
 "' AND " + "SystemName = '" +

140

component.getSystemName() + "'";
 ResultSet knownUsagesResult = sqlEngine.executeQuery(knownUsagesQuery);
 ArrayList knownUsages = new ArrayList();
 while(knownUsagesResult.next())
 {
 knownUsages.add(knownUsagesResult.getString("Usage"));
 }
 if(knownUsages.size() != 0)
 {
 component.setKnownUsages((String[])knownUsages.toArray(new String[1]));
 }
 }catch(Exception e){
 System.out.println("Error in known usages retrieval"+e.getMessage());
 }

 try {
 String aliasesQuery = "SELECT * from "+ componentTablename +
 "Aliases where Id = '"+component.getID()+
 "' AND " + " ComponentName = '" + component.getComponentName() +
 "' AND " + "DomainName = '" +
component.getDomainName() +
 "' AND " + "SystemName = '" +
component.getSystemName() + "'";
 ResultSet aliasesResult = sqlEngine.executeQuery(aliasesQuery);
 ArrayList aliases = new ArrayList();
 while(aliasesResult.next())
 {
 aliases.add(aliasesResult.getString("Alias"));
 }
 if(aliases.size() != 0)
 {
 component.setAliases((String[])aliases.toArray(new String[1]));
 }
 }catch(Exception e){
 System.out.println("Error in aliases query retrieval"+e.getMessage());
 }

 try {
 String preProcessingCollaboratorsQuery = "SELECT * from "+ componentTablename +
 "PreProcessing where Id
= '"+component.getID()+
 "' AND " + "
ComponentName = '" + component.getComponentName() +
 "' AND " +
"DomainName = '" + component.getDomainName() +
 "' AND " +
"SystemName = '" + component.getSystemName() + "'";
 ResultSet preProcessingCollaboratorsResult =
sqlEngine.executeQuery(preProcessingCollaboratorsQuery);
 ArrayList preProcessingCollaborators = new ArrayList();
 while(preProcessingCollaboratorsResult.next())
 {

 preProcessingCollaborators.add(preProcessingCollaboratorsResult.getString("Collaborator"));
 }
 if(preProcessingCollaborators.size() != 0)

141

 {

 component.setPreProcessingCollaborators((String[])preProcessingCollaborators.toArray(new
String[1]));
 }
 }catch(Exception e){
 System.out.println("Error in preprocessing query retrieval"+e.getMessage());
 }

 try {
 String postProcessingCollaboratorsQuery = "SELECT * from "+
componentTablename +
 "PostProcessing
where Id = '"+component.getID()+
 "' AND " + "
ComponentName = '" + component.getComponentName() +
 "' AND " +
"DomainName = '" + component.getDomainName() +
 "' AND " +
"SystemName = '" + component.getSystemName() + "'";
 ResultSet postProcessingCollaboratorsResult =
sqlEngine.executeQuery(postProcessingCollaboratorsQuery);
 ArrayList postProcessingCollaborators = new ArrayList();
 while(postProcessingCollaboratorsResult.next())
 {

 postProcessingCollaborators.add(postProcessingCollaboratorsResult.getString("Collaborator"));
 }
 if(postProcessingCollaborators.size() != 0)
 {

 component.setPostProcessingCollaborators((String[])postProcessingCollaborators.toArray(new
String[1]));
 }
 }catch(Exception e){
 System.out.println("Error in postprocessing query retrieval"+e.getMessage());
 }

 // Building ComponentQoS object
 //Get all the entries from the table
 /*try
 {
 SQLHelper sqlengine1 = new SQLHelper();
 SQLHelper sqlengine2 = new SQLHelper();
 SQLHelper sqlengine3 = new SQLHelper();
 String componentqosString="SELECT * FROM
"+componentTablename+"CompFuncQoS";
 ResultSet answerset1, oneuse;
 // oneuse is used for getting the systemname and componentname the first time
 oneuse = sqlEngine.executeQuery(componentqosString);
 oneuse.next();
 // Scroll through the entries one row at a time
 String cname = oneuse.getString("componentName");
 String sname = oneuse.getString("systemName");
 ComponentQoS qoscomponent = new ComponentQoS(sname, cname);
 answerset1 = sqlengine1.executeQuery(componentqosString);

142

 while(answerset1.next())
 {
 String componentname = "";
 String systemname = "";
 String functionname = "";
 String qosparameter = "";
 String value = "";
 try {
 componentname = answerset1.getString("componentName");
 systemname = answerset1.getString("systemName");
 functionname = answerset1.getString("functionname");
 qosparameter = answerset1.getString("qosparameter");
 value = answerset1.getString("value");
 }catch(Exception e) {
 System.out.println("Error in getting parameters from result set :
build --> buildpersist "+e.getMessage());
 }

 // For testing
 System.out.println(componentname +systemname + functionname +
qosparameter + value);
 // The systemname is same for every record, but the componentname
changes
 // So...scroll through the records with the primary index being
componentname
 qoscomponent = new ComponentQoS(systemname,componentname);
 ResultSet answerset2 = sqlengine2.executeQuery(componentqosString);
 while(answerset2.next())
 {
 try{
 // Get the function name and create object functionqos.
 functionname = answerset2.getString("functionname");
 System.out.println(" answerset" +functionname);
 FunctionQoS qosfunction = new
FunctionQoS(componentname, functionname);
 // For each function, get qosparameter and value in the form of
a hashtable
 System.out.println("before answerset3" +functionname);
 ResultSet answerset3 =
sqlengine3.executeQuery(componentqosString);
 // For testing
 System.out.println("after answerset3" +functionname);
 while(answerset3.next())
 {
 functionname =
answerset3.getString("functionname");
 qosparameter = answerset3.getString("qosparameter");
 value = answerset3.getString("value");
 qosfunction.addFunctionQoS(componentname,
functionname, qosparameter, value);
 // For testing
 System.out.println("Qos stuff" +componentname
+functionname +qosparameter +(String)value);
 }//while
 answerset3.close();

143

 //Add the functionqos object to qoscomponent's hashtable
 qoscomponent.addFunctionQoS(qosfunction);
 }catch(Exception e){
 System.out.println("Error in retrieving object
functionqos from table"+e.getMessage());
 }
 }//while
 answerset2.close();
 }//while. Finally got the ComponentQoS object. Now set it in the
concretecomponent.
 component.setComponentQoS(qoscomponent);

 }catch(Exception e) {
 System.out.println("Error in retrieving from tables for results of query
"+e.getMessage());
 }*/
 } catch(Exception e){
 System.out.println("Error creating SQLHelper :"+e.getMessage());
 }

 return component;
}

/**
* Stores component data in the Meta_Repository.
*/
public void persist(
 ConcreteComponent component,
 SQLHelper sqlHelper,
 String componentTableName) throws java.lang.Exception {

 ComponentQoS qoscomponent = component.getComponentQoS();
 FunctionQoS qosfunction;

 if (component !=null)
 {
 String insertString_UMMSpecification = "INSERT INTO " + componentTableName
+"UMMSpecification (" +
 "ComponentName, SubCase, DomainName, SystemName, Description, Id, Version, Author,
" +
 "CreatingDate, Validity, Atomicity, Registration, Model, Purpose, " +
 "Complexity, Mobility, Security, FaultTolerance, QoSLevel, Cost, QualityLevel)" +
 "VALUES('" + component.getComponentName() + "' , '" +
 component.getSubcase() + "' , '" +
 component.getDomainName() + "' , '" +
 component.getSystemName() + "' , '" +
 component.getDescription() + "' , '" +
 component.getID() + "' , '" +
 component.getVersion() + "' , '" +
 component.getAuthor() + "' , '" +
 component.getDate() + "' , '" +
 component.getValidity() + "' , '" +
 component.getAtomicity() + "' , '" +
 component.getRegistration() + "' , '" +
 component.getModel() + "' , '" +
 component.getPurpose() + "' , '" +

144

 component.getComplexity() + "' , '" +
 component.getMobility() + "' , '" +
 component.getSecurity() + "' , '" +
 component.getFaultTolerance() + "' , '" +
 component.getQoSLevel() + "' , '" +
 component.getCost() + "' , '" +
 component.getQualityLevel() + "')";

 sqlHelper.updateTable(insertString_UMMSpecification);
 // For finding out whether tables have been created
 // For testing purposes
 //System.out.println("Testing ...Table UMMSpec ");
 //for (int in=0;in<insertString_UMMSpecification.length();in++)
 //System.out.println(insertString_UMMSpecification);

 String[] algorithms = component.getAlgorithms();
 if(algorithms != null)
 {
 for (int i = 0; i < algorithms.length; i++)
 {
 String insertString_Algorithms = "INSERT INTO " +componentTableName+
"Algorithms (" +
 "Id, ComponentName, DomainName, SystemName, Algorithm)" +
 "VALUES('" + component.getID() +"' , '" +
 component.getComponentName() + "' , '" +
 component.getDomainName() + "' , '" +
 component.getSystemName() + "' , '" +
 algorithms[i] + "')";
 sqlHelper.updateTable(insertString_Algorithms);
 }
 }

 try
 {
 String[] requiredInterfaces = component.getRequiredInterfaces();
 if(requiredInterfaces != null)
 {
 for(int i = 0; i < requiredInterfaces.length; i++)
 {
 String insertString_RequiredInterfaces = "INSERT INTO "+componentTableName+
"RequiredInterfaces (" +
 "Id, ComponentName, DomainName, SystemName, Interface)" +
 "VALUES('" + component.getID() +"' , '" +
 component.getComponentName() + "' , '" +
 component.getDomainName() + "' , '" +
 component.getSystemName() + "' , '" +
 requiredInterfaces[i] + "')";
 sqlHelper.updateTable(insertString_RequiredInterfaces);
 }
 }
 }catch(Exception e) {
 System.out.println("insertion in table reqd interfaces problem"+e.getMessage());
 }

 try

145

 {
 String[] providedInterfaces = component.getProvidedInterfaces();
 if(providedInterfaces != null)
 {
 for(int i = 0; i < providedInterfaces.length; i++)
 {
 String insertString_ProvidedInterfaces = "INSERT INTO
"+componentTableName+"ProvidedInterfaces (" +
 "Id, ComponentName, DomainName, SystemName, Interface)" +
 "VALUES('" + component.getID() +"' , '" +
 component.getComponentName() + "' , '" +
 component.getDomainName() + "' , '" +
 component.getSystemName() + "' , '" +
 providedInterfaces[i] + "')";
 sqlHelper.updateTable(insertString_ProvidedInterfaces);
 }
 }
 }catch(Exception e) {
 System.out.println("insertion in table provided interfaces
problem"+e.getMessage());
 }

 try
 {
 String[] technologies = component.getTechnologies();
 if(technologies != null)
 {
 for(int i = 0; i < technologies.length; i++)
 {
 String insertString_Technologies = "INSERT INTO "
+componentTableName+"Technologies (" +
 "Id, ComponentName, DomainName, SystemName, Technology)" +
 "VALUES('" + component.getID() +"' , '" +
 component.getComponentName() + "' , '" +
 component.getDomainName() + "' , '" +
 component.getSystemName() + "' , '" +
 technologies[i] + "')";
 sqlHelper.updateTable(insertString_Technologies);
 }
 }
 }catch(Exception e) {
 System.out.println("insertion in table technologies problem"+e.getMessage());
 }

 try
 {
 String[] expectedResources = component.getExpectedResources();
 if(expectedResources != null)
 {
 for(int i = 0; i < expectedResources.length; i++)
 {
 String insertString_ExpectedResources = "INSERT INTO "
+componentTableName+"ExpectedResources (" +
 "Id, ComponentName, DomainName, SystemName, ExpectedResource)" +
 "VALUES('"+ component.getID() +"' , '" +
 component.getComponentName() + "' , '" +

146

 component.getDomainName() + "' , '" +
 component.getSystemName() + "' , '" +
 expectedResources[i] + "')";
 sqlHelper.updateTable(insertString_ExpectedResources);
 }
 }
 }catch(Exception e) {
 System.out.println("insertion in table expected resources
problem"+e.getMessage());
 }

 try {
 String[] designPatterns = component.getDesignPatterns();
 if(designPatterns != null)
 {
 for(int i = 0; i < designPatterns.length; i++)
 {
 String insertString_DesignPatterns = "INSERT INTO
"+componentTableName+"DesignPatterns (" +
 "Id, ComponentName, DomainName, SystemName, Pattern)" +
 "VALUES('" + component.getID() +"' , '" +
 component.getComponentName() + "' , '" +
 component.getDomainName() + "' , '" +
 component.getSystemName() + "' , '" +
 designPatterns[i] + "')";
 sqlHelper.updateTable(insertString_DesignPatterns);
 }
 }
 }catch(Exception e) {
 System.out.println("insertion in table design patterns problem"+e.getMessage());
 }

 try {
 String[] knownUsages = component.getKnownUsages();
 if(knownUsages != null)
 {
 for(int i = 0; i < knownUsages.length; i++)
 {
 String insertString_KnownUsages = "INSERT INTO
"+componentTableName+"KnownUsages (" +
 "Id, ComponentName, DomainName, SystemName, Usage)" +
 "VALUES('" + component.getID() +"' , '" +
 component.getComponentName() + "' , '" +
 component.getDomainName() + "' , '" +
 component.getSystemName() + "' , '" +
 knownUsages[i] + "')";
 sqlHelper.updateTable(insertString_KnownUsages);
 }
 }
 }catch(Exception e) {
 System.out.println("insertion in table known usages problem"+e.getMessage());
 }

 try {
 String[] aliases = component.getAliases();
 if(aliases != null)

147

 {
 for(int i = 0; i < aliases.length; i++)
 {
 String insertString_Aliases = "INSERT INTO "+componentTableName+"Aliases (" +
 "Id, ComponentName, DomainName, SystemName, Alias)" +
 "VALUES('" + component.getID() +"' , '" +
 component.getComponentName() + "' , '" +
 component.getDomainName() + "' , '" +
 component.getSystemName() + "' , '" +
 aliases[i] + "')";
 sqlHelper.updateTable(insertString_Aliases);

 }
 }
 }catch(Exception e) {
 System.out.println("insertion in table aliases problem"+e.getMessage());
 }

 try {
 String[] preProcessingCollaborators =
component.getPreProcessingCollaborators();
 if(preProcessingCollaborators != null)
 {
 for(int i = 0; i < preProcessingCollaborators.length; i++)
 {
 String insertString_PreProcessingCollaborators = "INSERT INTO
"+componentTableName+"PreProcessing (" +
 "Id, ComponentName, DomainName, SystemName, Collaborator)" +
 "VALUES('" + component.getID() +"' , '" +
 component.getComponentName() + "' , '" +
 component.getDomainName() + "' , '" +
 component.getSystemName() + "' , '" +
 preProcessingCollaborators[i] + "')";
 sqlHelper.updateTable(insertString_PreProcessingCollaborators);
 }
 }
 }catch(Exception e) {
 System.out.println("insertion in table preprocessing problem"+e.getMessage());
 }

 try {
 String[] postProcessingCollaborators =
component.getPostProcessingCollaborators();
 if(postProcessingCollaborators != null)
 {
 for(int i = 0; i < postProcessingCollaborators.length; i++)
 {
 String insertString_PostProcessingCollaborators = "INSERT INTO
"+componentTableName+"PostProcessing (" +
 "Id, ComponentName, DomainName, SystemName, Collaborator)" +
 "VALUES('" + component.getID() +"' , '" +
 component.getComponentName() + "' , '" +
 component.getDomainName() + "' , '" +
 component.getSystemName() + "' , '" +
 postProcessingCollaborators[i] + "')";
 sqlHelper.updateTable(insertString_PostProcessingCollaborators);

148

 }
 }

 }catch(Exception e) {
 System.out.println("insertion in table post processing problem"+e.getMessage());
 }

 Hashtable qoscomponenttable = qoscomponent.getComponentQoS();
 Enumeration e1 = qoscomponenttable.keys();
 while (e1.hasMoreElements())
 {
 qosfunction = (FunctionQoS)qoscomponenttable.get((String)e1.nextElement());
 if (qosfunction !=null)
 {
 String functionname = qosfunction.getFunctionName();
 Hashtable qosfunctiontable = qosfunction.getFunctionQoS();
 Enumeration e2 = qosfunctiontable.keys() ;
 while(e2.hasMoreElements()) {
 try {
 String QoSParameter = (String) e2.nextElement();
 String value =
qosfunction.getFunctionQoS(component.getComponentName(), functionname, QoSParameter);
 String insertString_QoS = "INSERT INTO
"+componentTableName+"CompFuncQoS (" +
 "Id, ComponentName, SystemName, FunctionName,
QoSParameter, Value)" +
 "VALUES('" +component.getID() + "' , '" +
 component.getComponentName() + "' , '" +
 component.getSystemName() + "' , '" +
 functionname + "' , '" +
 QoSParameter + "' , '" +
 value + "')";

 sqlHelper.updateTable(insertString_QoS);
 }catch(Exception e){
 System.out.println("Error in updating tables
"+e.getMessage());
 }
 }//End of inner while
 }//End of if
 } //End of first while
 } //End of if
} //End of method
}//End of Class

Component.java
import java.util.*;
import java.io.*;

/**
 * This class represents a component
 *
 * @author Zhisheng Huang
 * @date January 2003
 * @version 1.0

149

 */
abstract public class Component implements Serializable
{
 private String componentName = "";
 private String subcase = "";
 private String domainName = "";
 private String systemName = "";
 private String description = "";

 private String id = ""; //host id, seems not necessary in abastract component
 private String version = "";
 private String author = "";
 private String date = "";
 private String validity = "";
 private String atomicity = "Yes";
 private String registration = "";
 private String model = "";

 private String purpose = ""; //describe the function of the component
 private String[] algorithms = null;
 private String complexity = "";
 private String[] requiredInterfaces = null;
 private String[] providedInterfaces = null;
 private String[] technologies = null;
 private String[] expectedResources = null;
 private String[] designPatterns = null;
 private String[] knownUsages = null;
 private String[] aliases = null;

 private String[] preProcessingCollaborators = null;
 private String[] postProcessingCollaborators = null;

 private String mobility = "No";
 private String security = "";
 private String faultTolerance = "";

 private String[] qosMetrics = null;
 private String qosLevel = "";
 private String cost = "";
 private String qualityLevel = "";

 private ComponentQoS componentQoS;

 public void setComponentName (String componentName){this.componentName = componentName;}
 public void setSubcase(String subcase){this.subcase = subcase;}
 public void setDomainName (String domainName){this.domainName = domainName;}
 public void setSystemName(String systemName){this.systemName = systemName;}
 public void setDescription (String description){this.description = description;}

 public void setID (String id) {this.id = id;}//host id, seems not necessary in abastract component
 public void setVersion (String version){this.version = version;}
 public void setAuthor (String author){this.author = author;}
 public void setDate (String date){this.date = date;}
 public void setValidity (String validity){this.validity =validity;}
 public void setAtomicity(String atomicity) {this.atomicity = atomicity;}
 public void setRegistration (String registration){this.registration = registration;}

150

 public void setModel (String model){this.model = model;}

 public void setPurpose (String purpose) {this.purpose = purpose;} //describe the function of the
component
 public void setAlgorithms (String[] algorithms) {this.algorithms = algorithms;}
 public void setComplexity (String complexity){this.complexity = complexity;}
 public void setRequiredInterfaces (String[] interfaces) {this.requiredInterfaces = interfaces;}
 public void setProvidedInterfaces (String[] interfaces) {this.providedInterfaces = interfaces;}
 public void setTechnologies (String[] technologies){this.technologies = technologies;}
 public void setExpectedResources (String[] expectedResources){this.expectedResources =
expectedResources;}
 public void setDesignPatterns (String[] designPatterns){this.designPatterns = designPatterns;}
 public void setKnownUsages (String[] unknownUsages) {this.knownUsages = knownUsages;}
 public void setAliases (String[] aliases) {this.aliases = aliases;}

 public void setPreProcessingCollaborators (String[] collaborators) {this.preProcessingCollaborators =
collaborators;}
 public void setPostProcessingCollaborators (String[] collaborators) {this.postProcessingCollaborators =
collaborators;}

 public void setMobility (String mobility) {this.mobility = mobility;}
 public void setSecurity (String security) {this.security = security;}
 public void setFaultTolerance (String faultTolerance){this.faultTolerance = faultTolerance;}

 public void setQoSMetrics (String[] qosMetrics){this.qosMetrics = qosMetrics;}
 public void setQoSLevel (String qosLevel){this.qosLevel = qosLevel;}
 public void setCost (String cost){this.cost = cost;}
 public void setQualityLevel (String qualityLevel){this.qualityLevel = qualityLevel;}

 public void setComponentQoS(ComponentQoS componentQoS){this.componentQoS =
componentQoS;}

 public String getComponentName(){ return componentName;}
 public String getSubcase(){ return subcase;}
 public String getDomainName(){ return domainName;}
 public String getSystemName() {return systemName;}
 public String getDescription(){ return description;}

 public String getID(){ return id;} //host id, seems not necessary in abastract component
 public String getVersion(){ return version;}
 public String getAuthor(){ return author;}
 public String getDate(){ return date;}
 public String getValidity(){ return validity;}
 public String getAtomicity () {return atomicity;}
 public String getRegistration(){ return registration;}
 public String getModel(){ return model;}

 public String getPurpose(){ return purpose;} //describe the function of the component
 public String[] getAlgorithms(){ return algorithms;}
 public String getComplexity(){ return complexity;}
 public String[] getRequiredInterfaces () {return requiredInterfaces;}
 public String[] getProvidedInterfaces() {return providedInterfaces;}
 public String[] getTechnologies(){ return technologies;}
 public String[] getExpectedResources(){ return expectedResources;}
 public String[] getDesignPatterns(){ return designPatterns;}
 public String[] getKnownUsages(){ return knownUsages;}

151

 public String[] getAliases(){ return aliases;}

 public String[] getPreProcessingCollaborators() {return preProcessingCollaborators;}
 public String[] getPostProcessingCollaborators() {return postProcessingCollaborators;}

 public String getMobility (){return mobility;}
 public String getSecurity(){ return security;}
 public String getFaultTolerance(){ return faultTolerance;}

 public String[] getQoSMetrics() {return qosMetrics;}
 public String getQoSLevel(){ return qosLevel;}
 public String getCost(){ return cost;}
 public String getQualityLevel(){ return qualityLevel;}

 public ComponentQoS getComponentQoS(){return componentQoS;}

 public String toString()
 {
 return domainName + "/" + systemName + "/" + componentName;
 }
}

ComponentQoS.java
import java.util.*;
import java.io.*;

/**
 * This class represents the QoS for a component. A component is identified
 * by the system name and component name. The FunctionQoS for each method of
 * the component is stored in a Hashtable. The keys for the Hashtable are
 * function names of the component.
 *
 * @author Zhisheng Huang
 * @date January 2003
 * @version 1.0
 */
public class ComponentQoS implements Serializable
{
 private Hashtable componentQoS;
 private String componentName;
 private String systemName;

 /**
 * Constructor.
 *
 * @param systemName Name of the system.
 * @param componentName Name of the component.
 */
 public ComponentQoS(String systemName, String componentName)
 {
 this.componentName = componentName;
 this.systemName = systemName;
 componentQoS = new Hashtable();
 }

152

 /**
 * This method add a FunctionQoS of a method associated with the component.
 * The method checks against the component name to ensure integrity. If the FunctionQoS
 * in the argument does not have the expected component name, this method does nothing.
 */
 public void addFunctionQoS(FunctionQoS functionQoS)
 {
 if(componentName.equals(functionQoS.getComponentName()))
 {
 String key = functionQoS.getFunctionName();
 componentQoS.put(key, functionQoS);
 }
 }

 /**
 * This method get a FunctionQoS for a specified function in the argument.
 * @param componentName Name of a component. For error checking.
 * @param functionName Name of a function.
 * @return FunctionQoS If the function specified in the argument exist
 * return the corresponding FunctionQoS, else return null.
 */
 public FunctionQoS getFunctionQoS(String componentName, String functionName)
 {
 if(componentName.equals(this.componentName))
 {
 return (FunctionQoS)componentQoS.get(functionName);
 }
 else
 {
 return null;
 }
 }

 /**
 * This method returns the FunctionQoS of all the functions in the component
 * in a Hashtable.
 */
 public Hashtable getComponentQoS()
 {
 return (Hashtable)componentQoS.clone();
 }

 /**
 * This method returns the system name.
 */
 public String getSystemName()
 {
 return systemName;
 }

 /**
 * This method returns the component name.
 */
 public String getComponentName()
 {
 return componentName;

153

 }
}

ComponentSelectionAgent.java
import java.rmi.*;
import java.rmi.server.*;
import java.rmi.registry.*;
import java.net.*;
import java.util.*;
import java.io.*;
import java.lang.*;

import simpleCom.*;
import de.ikv.grasshopper.communication.GrasshopperAddress;
import de.ikv.grasshopper.communication.ExternalCommService;
import de.ikv.grasshopper.communication.ProxyGenerator;
import de.ikv.grasshopper.agency.IAgentSystem;
import de.ikv.grasshopper.agency.IRegionRegistration;
import de.ikv.grasshopper.agency.PlaceAlreadyExistsException;
import de.ikv.grasshopper.util.SearchFilter;
import de.ikv.grasshopper.type.AgentSystemInfo;
import de.ikv.grasshopper.type.AgentInfo;

/**
 * Insert the type's description here.
 * Creation date: (05/15/2003 11:50:10 AM)
 * @author: Jayasree Gandhamaneni
 */

public class ComponentSelectionAgent implements Runnable {

 private String clientLocation = null;
 private String agentCodebase = null;
 private GrasshopperAddress regionAddr = null;
 private ArrayList hhList = null;
 private QueryBean queryBean = null;
 private String queryID = null;

 /**
 * The ComponentSelectionAgent Constructor.
 */
 public ComponentSelectionAgent(
 ArrayList hhLocList,
 QueryBean querybean,
 String clientLoc,
 String registryAddress,
 String qID) {

 try {

 System.setSecurityManager(new RMISecurityManager());
 hhList = hhLocList;
 clientLocation = clientLoc;
 queryBean = querybean;

154

 regionAddr = new GrasshopperAddress(registryAddress);
 agentCodebase = "file:/c:/murds";
 queryID = qID;
 } catch (Exception e){
 System.out.println("Exception in the constructor of DiscoveryAgent "+e);
 }
 }

 public void run() {

 Thread CurrentThread = Thread.currentThread();

 try {
 System.out.println("QueryManager received query with "+ queryID +" from
client "+clientLocation);
 System.out.println("QueryManager obtained a list of "+hhList.size()+"
headhunters from DSM");
 createMobileAgent();
 } catch (Exception e)
 {
 System.out.println("Exception in the run() of DiscoveryAgent class
"+e.getMessage());
 }
 }

 /**
 * Creates a QMAgent.
 */
 private void createMobileAgent() {

 try {
 IRegionRegistration regionProxy = (IRegionRegistration)

 ProxyGenerator.newInstance(IRegionRegistration.class,
 regionAddr.generateRegionId(),
 regionAddr);

 AgentSystemInfo[] agentSystemInfo = regionProxy.listAgencies(new
SearchFilter());

 if (agentSystemInfo.length > 0)
 {

 ArrayList agencyList=new ArrayList();
 for (int i=0; i<agentSystemInfo.length; i++)
 {
 System.out.println((i+1) + ". " +
agentSystemInfo[i].getLocation());
 agencyList.add(agentSystemInfo[i].getLocation());
 }

 Hashtable agencyHHTable = new Hashtable();
 agencyHHTable = agencyHhIpMapping(hhList, agencyList);

 GrasshopperAddress address;
 Enumeration e = agencyHHTable.keys();

155

 if(e.hasMoreElements())
 {
 address = (GrasshopperAddress)e.nextElement();
 System.out.println("Contacting agency '" +address + "'.");

 String serverAddresses[] =
regionProxy.lookupCommunicationServer(address.generateAgentSystemId());

 GrasshopperAddress agencyAddress = new
GrasshopperAddress(serverAddresses[0]);
 IAgentSystem agencyProxy = (IAgentSystem)

 ProxyGenerator.newInstance(IAgentSystem.class,
 agencyAddress.generateAgentSystemId(),
 agencyAddress);

 Object agentCreationArgs[] = new Object[5];
 agentCreationArgs[0]
=(Hashtable)agencyHHTable;//agencyList consists of objects of type GrasshopperAddress
 agentCreationArgs[1]=(String)clientLocation.toString();

 agentCreationArgs[2]=(GrasshopperAddress)agencyAddress;//agency where the mobile agent is to
be created initially
 agentCreationArgs[3]=(QueryBean)queryBean;
 agentCreationArgs[4]=(String)queryID;
 System.out.println("QMAgent moving to agency
"+agencyAddress);
 AgentInfo agentInfo = agencyProxy.createAgent("QMAgent",
agentCodebase, "", agentCreationArgs);
 }
 else
 {
 System.out.println("Nothing to do. Please start agencies where
Headhunters are running.");
 }
 }

 } catch(Exception e) {
 e.printStackTrace();
 }
 }

 /**
 * This method maps the Headhunter locations with respective agencies.
 */
 private Hashtable agencyHhIpMapping(ArrayList hhAddressList, ArrayList agencyAddresses)
 {
 Hashtable DomainIPMapping=new Hashtable();

 if(hhAddressList.size()>0 && agencyAddresses.size()> 0)
 {
 ArrayList tempAgency = new ArrayList();
 ArrayList tempHHAdd = new ArrayList();

 for(int k=0;k<agencyAddresses.size();k++)
 {

156

 int j=0;
 String IPAdd=agencyAddresses.get(k).toString();
 int start=0;
 int t=0;
 for (int i=0;i<IPAdd.length();i++)
 {
 if(IPAdd.charAt(i)=='/')
 {
 t++;
 if(t==2)
 start=i+1;
 }
 else if(IPAdd.charAt(i)==':' && t>=2)
 {
 j =i;
 i = IPAdd.length();
 }
 }
 IPAdd = IPAdd.substring(start,j);
 tempAgency.add(IPAdd);
 }

 for(int k=0;k<hhAddressList.size();k++)
 {
 int j=0;
 String MachineName=(String)hhAddressList.get(k);
 int start=0;
 int t=0;
 for (int i=0;i<MachineName.length();i++)
 {
 if(MachineName.charAt(i)=='/')
 {
 t++;
 if(t==2)
 start=i+1;
 }
 else if(MachineName.charAt(i)==':' && t>=2)
 {
 j =i;
 i = MachineName.length();
 }
 }
 MachineName = MachineName.substring(start,j);
 tempHHAdd.add(MachineName);

 }

 try {

 for(int i=0;i<tempAgency.size();i++)
 {
 String hostData[] = new String[2];
 InetAddress addr =
InetAddress.getByName((String)(tempAgency.get(i)));

157

 hostData[0] = addr.getHostName();
 hostData[1] = addr.getHostAddress();
 ArrayList tempHHList=new ArrayList();
 for(int l=0;l<tempHHAdd.size();l++)
 {
 if(hostData[1].equals((String)tempHHAdd.get(l)))
 {
 tempHHList.add(hhAddressList.get(l));
 }
 }

 if(tempHHList.size()>0)

 DomainIPMapping.put((GrasshopperAddress)agencyAddresses.get(i),(ArrayList)tempHHList);
 }

 }catch (java.net.UnknownHostException e) {
 }
 }

 return DomainIPMapping;
 }
}

ConcreteComponent.java
public class ConcreteComponent extends Component
{
 public ConcreteComponent(){}
}

DiscoveryAgent.java
import java.rmi.*;
import java.rmi.server.*;
import java.rmi.registry.*;
import java.net.*;
import java.util.*;
import java.io.*;
import java.lang.*;

import simpleCom.*;
import de.ikv.grasshopper.communication.GrasshopperAddress;
import de.ikv.grasshopper.communication.ExternalCommService;
import de.ikv.grasshopper.communication.ProxyGenerator;
import de.ikv.grasshopper.agency.IAgentSystem;
import de.ikv.grasshopper.agency.IRegionRegistration;
import de.ikv.grasshopper.agency.PlaceAlreadyExistsException;
import de.ikv.grasshopper.util.SearchFilter;
import de.ikv.grasshopper.type.AgentSystemInfo;
import de.ikv.grasshopper.type.AgentInfo;

/**
 * Insert the type's description here.
 * Creation date: (05/15/2002 11:50:10 AM)
 * @author: Jayasree Gandhamaneni

158

 */

public class DiscoveryAgent implements Runnable {

 private long discoveryTime = 0;
 private IDomainSecurityManager dsmanager = null;
 private String hhLocation = null;
 private String domain = null;
 private String agentCodebase = null;
 private GrasshopperAddress regionAddr = null;
 private String mobileAgentUserName = null;

 /**
 * The DiscoveryAgent Constructor.
 */
 public DiscoveryAgent(
 long dTime,
 String dsmLoc,
 String hhLoc,
 String hhDomain,
 String registryAddress,
 String maUserName) {

 try {

 System.setSecurityManager(new RMISecurityManager());
 dsmanager = (IDomainSecurityManager) Naming.lookup(dsmLoc);

 hhLocation = hhLoc;
 domain = hhDomain;
 discoveryTime = dTime;
 regionAddr = new GrasshopperAddress(registryAddress);
 agentCodebase = "file:/c:/murds";
 mobileAgentUserName = maUserName;

 } catch (Exception e){
 System.out.println("Exception in the constructor of DiscoveryAgent "+e);
 }
 }

 public void run() {

 Thread CurrentThread = Thread.currentThread();

 try {
 while(true)
 {

 CurrentThread.sleep(discoveryTime);
 ArrayList arList =
dsmanager.getARListForDomain(hhLocation,domain);
 if(arList.size()>0)
 {
 System.out.println("----------------------");
 System.out.println("Headhunter "+hhLocation+" received a list

159

of "+arList.size()+" Active registries from DSM");
 System.out.println("Active Registries available are as
follows");
 for(int i=0;i<arList.size();i++)
 System.out.println(i+"."+arList.get(i));
 System.out.println("Headhunter "+hhLocation+" sending
HHAgent for component discovery");
 createMobileAgent(arList);
 }
 else
 {
 System.out.println("Agent couldn't find any active registries to
visit");
 System.out.println("Start some active registries in the system");
 }
 }
 }catch(InterruptedException ie) {
 System.out.println(ie.getMessage());
 }
 catch (Exception e)
 {
 System.out.println("Exception in the run() of DiscoveryAgent class
"+e.getMessage());
 }
 }

 /**
 * Creates a HHAgent.
 */
 private void createMobileAgent(ArrayList arList) {

 try {
 IRegionRegistration regionProxy = (IRegionRegistration)

 ProxyGenerator.newInstance(IRegionRegistration.class,
 regionAddr.generateRegionId(),
 regionAddr);

 AgentSystemInfo[] agentSystemInfo = regionProxy.listAgencies(new
SearchFilter());

 if (agentSystemInfo.length > 0)
 {

 ArrayList agencyList=new ArrayList();
 for (int i=0; i<agentSystemInfo.length; i++)
 {
 agencyList.add(agentSystemInfo[i].getLocation());
 }

 Hashtable agencyARTable = new Hashtable();
 agencyARTable = agencyArIpMapping(arList, agencyList);

 GrasshopperAddress address;
 Enumeration e = agencyARTable.keys();
 if(e.hasMoreElements())

160

 {
 address = (GrasshopperAddress)e.nextElement();

 //it may be possible that an agency can have more than one
server to recieve communication..
 //for Ex: one server with rmi protocol and the other with the
socket protocol

 String serverAddresses[] =
regionProxy.lookupCommunicationServer(address.generateAgentSystemId());

 GrasshopperAddress agencyAddress = new
GrasshopperAddress(serverAddresses[0]);

 IAgentSystem agencyProxy = (IAgentSystem)

 ProxyGenerator.newInstance(IAgentSystem.class,
 agencyAddress.generateAgentSystemId(),
 agencyAddress);

 Object agentCreationArgs[] = new Object[5];
 agentCreationArgs[0] = agencyARTable;
 agentCreationArgs[1] = (String)hhLocation.toString();
 agentCreationArgs[2] = (String)mobileAgentUserName;
 agentCreationArgs[3] = (GrasshopperAddress)agencyAddress;

 Long startTime = new Long((new java.util.Date()).getTime());
 agentCreationArgs[4] = startTime;
 System.out.println("HHAgent moving to agency
"+agencyAddress);
 AgentInfo agentInfo = agencyProxy.createAgent("HHAgent",
agentCodebase, "", agentCreationArgs);
 }
 else
 {
 System.out.println("Nothing to do. Please start agencies where
ActiveRegistries are running.");
 }
 }

 } catch(Exception e){
 e.printStackTrace();
 }
 }

 /**
 * This method maps the ActiveRegistry locations with respective agencies.
 */
 private Hashtable agencyArIpMapping(ArrayList arAddressList, ArrayList agencyAddresses)
 {
 Hashtable DomainIPMapping=new Hashtable();

 if(arAddressList.size()>0 && agencyAddresses.size()> 0)
 {
 ArrayList tempAgency=new ArrayList();

161

 ArrayList tempARAdd=new ArrayList();

 for(int k=0;k<agencyAddresses.size();k++)
 {
 int j=0;
 String IPAdd=agencyAddresses.get(k).toString();
 int start=0;
 int t=0;
 for (int i=0;i<IPAdd.length();i++)
 {
 if(IPAdd.charAt(i)=='/')
 {
 t++;
 if(t==2)
 start=i+1;
 }
 else if(IPAdd.charAt(i)==':' && t>=2)
 {
 j =i;
 i = IPAdd.length();
 }
 }
 IPAdd = IPAdd.substring(start,j);
 tempAgency.add(IPAdd);
 }

 for(int k=0;k<arAddressList.size();k++)
 {
 int j=0;
 String MachineName=(String)arAddressList.get(k);
 int start=0;
 int t=0;
 for (int i=0;i<MachineName.length();i++)
 {
 if(MachineName.charAt(i)=='/')
 {
 t++;
 if(t==2)
 start=i+1;
 }
 else if(MachineName.charAt(i)==':' && t>=2)
 {
 j =i;
 i = MachineName.length();
 }
 }
 MachineName = MachineName.substring(start,j);
 tempARAdd.add(MachineName);

 }

 try
 {
 for(int i=0;i<tempAgency.size();i++)

162

 {
 String hostData[] = new String[2];
 InetAddress addr =
InetAddress.getByName((String)(tempAgency.get(i)));
 hostData[0] = addr.getHostName();
 hostData[1] = addr.getHostAddress();
 ArrayList tempARList=new ArrayList();
 for(int l=0;l<tempARAdd.size();l++)
 {
 if(hostData[1].equals((String)tempARAdd.get(l)))
 {
 tempARList.add(arAddressList.get(l));
 }
 }
 if(tempARList.size()>0)

 DomainIPMapping.put((GrasshopperAddress)agencyAddresses.get(i),(ArrayList)tempARList);
 }

 }catch (java.net.UnknownHostException e) {
 //hostData[0] = e.toString();
 //hostData[1] = e.toString();
 }
 }

 return DomainIPMapping;
 }
}

DomainSecurityManager.java
import java.net.*;
import java.util.*;
import java.rmi.*;
import java.rmi.server.*;
import java.rmi.registry.*;

/**
 * The DomainSecurityManager class uses the PrincipalAvailabilityChecker
 * to periodically check the availability of all the active registries and
 * the headhunters registered with it. After checking the availability of
 * principals, the PrincipalAvailabilityChecker updates the list of currently
 * available Headhunters and active registries with the DSM.
 * Insert the type's description here.
 * Creation date: (05/15/2002 10:50:10 AM)
 * @author: Jayasree Gandhamaneni
 */

public class DomainSecurityManager extends UnicastRemoteObject implements IDomainSecurityManager
{

 private static Hashtable userdomainMapping = null;
 private static Hashtable mobileUserPrincipalMapping = null;
 private static Hashtable registeredHHTable = new Hashtable();
 private static Hashtable registeredHHAgentTable = new Hashtable();
 private static Hashtable availableHHTable = new Hashtable();

163

 private static Hashtable registeredHHTimestampTable = new Hashtable();
 private static Hashtable registeredARTable = new Hashtable();
 private static Hashtable availableARTable = new Hashtable();
 private static Hashtable registeredARTimestampTable = new Hashtable();

 /**
 * The DomainSecurityManager Constructor.
 */
 public DomainSecurityManager(long cTime,String dsmLocation) throws RemoteException {
 super();
 try {

 loadUserDomainMappingData();
 loadMobileAgentInfo();
 } catch (DomainSecurityManagerException e) {
 System.out.println(e);
 }
 }

 public static void main(String[] args) {

 long checkingTime = 60000;//60 secs
 String dsmLocation="//"+args[0]+":"+args[1]+"/DomainSecurityManager";
 try
 {
 System.setSecurityManager(new RMISecurityManager());
 Naming.rebind(dsmLocation, new DomainSecurityManager(checkingTime,
dsmLocation));
 System.out.println("DomainSecurityManager " + dsmLocation + " is ready.");

 //Start a thread to check availability of registered ARs and HHs in the network
 PrincipalAvailabilityChecker checker = new
PrincipalAvailabilityChecker(checkingTime,dsmLocation);
 Thread checkingThread = new Thread(checker);
 checkingThread.start();

 } catch (Exception e) {
 System.out.println("DomainSecurityManager failed: " + e);
 }

 }

 /**
 * This method returns Headhunter list under a particular domain to the QM.
 */
 public java.util.ArrayList getHHListForDomain(String domainName)
 throws RemoteException {

 ArrayList hhList = new ArrayList();
 Enumeration e = registeredHHTable.keys();

 while (e.hasMoreElements()) {
 String key = (String) e.nextElement();
 if(availableHHTable.containsKey(key) &&
registeredHHTable.containsKey(key))

164

 {
 String value = (String) registeredHHTable.get(key);
 if((value).equalsIgnoreCase(domainName))
 {
 hhList.add(key);
 //System.out.println("Headhunter "+key);
 }//endif
 }
 }//end while
 return hhList;
 }

 /**
 * This method returns ActiveRegistry list under a particular domain to the HH.
 */
 public java.util.ArrayList getARListForDomain(String headhunterLocation, String domainName)
 throws RemoteException {
 System.out.println("DSM Contacted by headhunter "+headhunterLocation+" for AR List
for : " + domainName + " Domain");

 //System.out.println("DSM checking headhunter's validity ");

 ArrayList arList = new ArrayList();
 if(availableHHTable.containsKey(headhunterLocation) &&
((String)registeredHHTable.get(headhunterLocation)).equals(domainName))
 {
 //System.out.println("Headhunter "+headhunterLocation+" is a valid entity");
 Enumeration e = registeredARTable.keys();

 while (e.hasMoreElements())
 {
 String key = (String) e.nextElement();
 if(availableARTable.containsKey(key))
 {
 String value = (String) registeredARTable.get(key);
 if((value).equalsIgnoreCase(domainName))
 {
 arList.add(key);
 }//end if
 }//end if
 }//end while
 }
 return arList;
 }

 /**
 * This method authenticates a HHAgent.
 */
 public String authenticateHHAgent(String hhLocation, String maUserName) {

 boolean isAValidUser = false;
 String serviceType = new String("");
 if(availableHHTable.containsKey(hhLocation) &&
((String)registeredHHAgentTable.get(hhLocation)).equals(maUserName))
 {
 Random r= new Random();

165

 int serviceSelector = r.nextInt(4)+1;
 if(serviceSelector == 1)
 serviceType = "PB";// PB=PremiumBusiness
 else if(serviceSelector == 2)
 serviceType = "PI"; // PI=PremiumIndividual
 else if(serviceSelector == 3)
 serviceType = "RB"; // RB=RegularBusiness
 else if(serviceSelector == 4)
 serviceType = "RI"; // PI=RegularIndividual
 }

 return serviceType;
 }

 /**
 * This method renews the ActiveRegistry state.
 */
 public void renewARState(String arLocation, String domain) {

 if(registeredARTable.containsKey(arLocation) &&
((String)registeredARTable.get(arLocation)).equals(domain))
 {
 registeredARTimestampTable.put(arLocation, (new java.util.Date()));
 }
 }

 /**
 * This method renews the Headhunter state.
 */
 public void renewHHState(String hhLocation, String domain) {

 if(registeredHHTable.containsKey(hhLocation) &&
((String)registeredHHTable.get(hhLocation)).equals(domain))
 {
 registeredHHTimestampTable.put(hhLocation, (new java.util.Date()));
 }
 }

 /**
 * This method returns ActiveRegistry time stamp table to the PrincipalAvailabilityChecker.
 */
 public Hashtable getARTimestampTable() {
 return registeredARTimestampTable;
 }

 /**
 * This method returns Headhunter time stamp table to the PrincipalAvailabilityChecker.
 */
 public Hashtable getHHTimestampTable() {
 return registeredHHTimestampTable;
 }

 /**
 * This method updates the freshness of the Headhunters and the ActiveRegistries.
 */
 public void receiveUpdatedTables(Hashtable arTable,Hashtable hhTable) {

166

 availableARTable = arTable;
 availableHHTable = hhTable;
 }

 /**
 * Authenticate principal against DSM_Repository.
 */
 private static boolean retrieveUser(
 String userType,
 String userName,
 String password,
 String domain)
 throws DomainSecurityManagerException {

 // load user from database
 boolean userExists =
 DSMRepositoryHelper.authenticateUser(userType, userName, password,
domain);

 // if not found, throw exception
 if (!userExists) {
 throw new DomainSecurityManagerException(
 "User " + userName + " failed authentication.",
 null);
 }

 System.out.println("DSM authenticated " + userName);

 return userExists;
 }

 /**
 * Remote method called by HH/AR.
 */
 public boolean authenticationService(
 String userType,
 String userName,
 String password,
 String location,
 String domain)
 throws RemoteException {

 boolean isUserAuthenticated=false;

 try
 {
 if(retrieveUser(userType, userName, password, domain)==true)
 {
 isUserAuthenticated=true;
 if(userType.equals("Headhunter"))
 {
 //System.out.println("Headhunter "+ userName +"
authenticated by DSM at location"+ location);
 registeredHHTable.put(location,domain);
 availableHHTable.put(location,domain);
 //System.out.println("size of mobileUserPrincipalMapping "+

167

mobileUserPrincipalMapping.size());
 if(mobileUserPrincipalMapping.containsKey(userName))
 {
 //System.out.println("trying to get agent for
"+userName);
 String mobileAgent =
(String)mobileUserPrincipalMapping.get(userName);
 registeredHHAgentTable.put(location,mobileAgent);
 System.out.println("Mobile agent assocaited with
Headhunter at "+location+" is "+mobileAgent);
 }
 }
 else if(userType.equals("Registry"))
 {
 registeredARTable.put(location,domain);
 availableARTable.put(location,(new java.util.Date()));
 //System.out.println("Active Registry "+ userName +"
authenticated by DSM at location"+ location);
 }
 }

 } catch (Exception e) {
 System.out.println(e);
 }
 return isUserAuthenticated;
 }

 /**
 * Remote Method called by a HH to get the agent information.
 */
 public String getMobileAgentInfo(String headhunterLocation) {

 String mobileAgentName =new String();
 if(registeredHHAgentTable.containsKey(headhunterLocation))
 {
 mobileAgentName = (String)registeredHHAgentTable.get(headhunterLocation);
 }
 return mobileAgentName;
 }

 /**
 * Method to load mobile agent and it's associated principal information from DSM_Repository
 */
 private static void loadMobileAgentInfo()throws DomainSecurityManagerException {

 try
 {
 if (mobileUserPrincipalMapping == null)
 {
 mobileUserPrincipalMapping =
DSMRepositoryHelper.loadMobileUserPrincipalMapping();
 }
 }
 catch (Exception e)
 {
 throw new DomainSecurityManagerException("Error in loadQMAgentData

168

method", e);
 }
 }

 /**
 * Method to load users and their associated domain information from DSM_Repository
 */
 private static void loadUserDomainMappingData() throws DomainSecurityManagerException {

 try {
 if (userdomainMapping == null) {
 // initialize the jdbc helper class
 DSMRepositoryHelper.initialize();
 userdomainMapping =
DSMRepositoryHelper.loadUserDomainMapping();
 }

 } catch (Exception e) {
 throw new DomainSecurityManagerException("Error in init method", e);
 }
 }
}//end of DomainSecurityManager

DomainSecurityManagerException.java
public class DomainSecurityManagerException extends Exception
{

 private String message = null;
 private Exception exception = null;

 public DomainSecurityManagerException(String smessage, Exception ex)
 {
 // store the passed in values as class variables
 message = smessage;
 exception = ex;
 }

 public String getMessage()
 {
 // return the message to the user
 return message;
 }

 public void printStackTrace()
 {
 // output the message & print the StackTrace
 System.out.println(message);
 exception.printStackTrace();
 }
}

DSMRepositoryHelper.java
import java.sql.*;
import java.util.*;

169

/**
* This class performs functions associated with
* accessing the DSM_Repository to retrieve
* user-domain mappings and for user authentication.
* Creation date: (05/15/2003 1:30:45 PM)
* @author: Jayasree Gandhamaneni
*/
public class DSMRepositoryHelper {

private static SQLHelper sqlHelper = null;

/**
 * Initialize SQLHelper
 */
public static void initialize() {
 try {
 sqlHelper = new SQLHelper();

 } catch (Exception e) {
 System.out.println(e);
 }

}

/**
 * authenticate principal against DB.
 */

public static boolean authenticateUser(
 String sUserType,
 String sUserName,
 String sPassword,
 String sDomain) {
 boolean isAuthenticated = false;

 try {
 String sUserQuery =
 "SELECT Users.UserName,Users.Password,Users.UserType,"+
 +"Permissions.PermissionName From Users,Permissions,User_Permission_Xref
"
 + "WHERE ((Users.UserName = '"
 + sUserName
 + "') AND (Users.Password = '"
 + sPassword
 + "') AND (Users.UserType = '"
 + sUserType
 + "') AND (Permissions.PermissionName= '"
 + sDomain
 + "') AND (User_Permission_Xref.PermissionID =
Permissions.PermissionID)"+
 + " AND (User_Permission_Xref.UserID = Users.UserID))";

 ResultSet resultSet = sqlHelper.executeQuery(sUserQuery);

170

 if (!resultSet.next()) {
 // the database has no results - therefore the user is not authenticated
 return false;
 }

 // retrieve the resultset
 String sResult = resultSet.getString(1);

 // if the username is returned,
 if (sResult != null) {
 // the user has been successfully authenticated
 System.out.println("data available is "+sResult);
 isAuthenticated = sUserName.equals(sResult);
 }

 } catch (SQLException sqlE) {
 sqlE.printStackTrace();
 return false;
 } catch (Exception e) {
 e.printStackTrace();
 return false;
 }

 return isAuthenticated;
}

/**
 * Build hashtable from resultset
 */
private static Hashtable getFeaturesFromResultSet(ResultSet resultSet)
 throws SQLException {

 Hashtable hFeatures = new Hashtable();

 String sFeatureName = null;
 String sFeatureValue = null;

 while (resultSet.next()) {
 sFeatureName = resultSet.getString(1);
 //System.out.println("key "+ sFeatureName);
 sFeatureValue = resultSet.getString(2);
 //System.out.println("value "+ sFeatureValue);

 hFeatures.put(sFeatureName, sFeatureValue);
 }

 return hFeatures;
}

/**
 * Load from DomainList and Permission tables.
 */
public static Hashtable loadDomainList() {
 Hashtable hFeatures = null;

 String sDomainListQuery =

171

 "SELECT DomainList.DomainAddress, Permissions.PermissionName"
 + "From DomainList, Permissions "
 + " WHERE (DomainList.DomainID = Permissions.PermissionID)";
 try {
 // execute the Query
 ResultSet resultSet = sqlHelper.executeQuery(sDomainListQuery);
 hFeatures = getFeaturesFromResultSet(resultSet);

 } catch (SQLException sqlE) {
 sqlE.printStackTrace();
 return null;
 } catch (Exception e) {
 e.printStackTrace();
 return null;
 }

 return hFeatures;
}

/**
 * Load from Users and Permissions.
public static Hashtable loadUserDomainMapping() {
 Hashtable hFeatures = null;

 String sUserDomainQuery =
 "SELECT Users.UserName, Permissions.PermissionName "
 + "FROM Users, Permissions, User_Permission_Xref "
 + " WHERE ("
 + "(User_Permission_Xref.PermissionID = Permissions.PermissionID) AND "
 + "(User_Permission_Xref.UserID = Users.UserID))";

 try {
 // execute the Query
 ResultSet resultSet = sqlHelper.executeQuery(sUserDomainQuery);
 hFeatures = getFeaturesFromResultSet(resultSet);

 } catch (SQLException sqlE) {
 sqlE.printStackTrace();
 return null;
 } catch (Exception e) {
 e.printStackTrace();
 return null;
 }

 return hFeatures;
}

 /*Method added for getting agent data from database
 Added on 05/22/2003 by Jayasree */
 /**
 * Load mobile agent data from Mobile_Users.
 */
 public static Hashtable loadMobileUserPrincipalMapping()
 {
 Hashtable hFeatures = null;

172

 String sMobileUserPrincipalQuery = "SELECT PrincipalName,MobileUserName"
 + " FROM Mobile_Users where
PrincipalType='Headhunter'";

 try
 {
 // execute the Query
 ResultSet resultSet = sqlHelper.executeQuery(sMobileUserPrincipalQuery);
 hFeatures = getFeaturesFromResultSet(resultSet);

 }
 catch (SQLException sqlE)
 {
 sqlE.printStackTrace();
 return null;
 }
 catch (Exception e)
 {
 e.printStackTrace();
 return null;
 }

 return hFeatures;
 }

 /**
 * Load from Permissions table.
 */
 public static ArrayList getListOfDomains()
 {
 String sListofDomainsQuery = "SELECT PermissionName From Permissions";

 try
 {
 // execute the Query
 ResultSet resultSet = sqlHelper.executeQuery(sListofDomainsQuery);
 // position to first record
 boolean moreRecords = resultSet.next();
 // If there are no records, display a message
 if (!moreRecords) {
 return null;
 } else {
 ArrayList listOfDomains = new ArrayList();
 do {
 String domain = resultSet.getString("PermissionName");
 listOfDomains.add(domain);
 } while (resultSet.next());
 return listOfDomains;
 } //end else

 } catch (SQLException sqlE) {
 sqlE.printStackTrace();
 return null;
 } catch (Exception e) {
 e.printStackTrace();
 return null;

173

 }
 }
}

ExtComServCreator.java
import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;
import java.util.*;
import java.net.*;

import de.ikv.grasshopper.communication.GrasshopperAddress;
import de.ikv.grasshopper.communication.ProxyGenerator;
import de.ikv.grasshopper.communication.ExternalCommService;
import de.ikv.grasshopper.type.Identifier;
import de.ikv.grasshopper.agency.AgentCreationFailedException;
import de.ikv.grasshopper.agency.IAgentSystem;
import de.ikv.grasshopper.agency.IRegionRegistration;
import de.ikv.grasshopper.util.SearchFilter;
import de.ikv.grasshopper.type.AgentSystemInfo;
import de.ikv.grasshopper.type.AgentInfo;

public class ExtComServCreator extends UnicastRemoteObject implements IExtComServCreator {
 ExternalCommService commService;

 /**
 * The ExtComServCreator Constructor.
 */
 public ExtComServCreator(String serviceHostAddress, String dsmLocation)throws
RemoteException {

 super();
 createExtComServ(serviceHostAddress,dsmLocation);
 }

 /**
 * Method to create external communication service.
 */
 private void createExtComServ(String serviceHostAddress,String dsmLocation)
 {
 try
 {

 GrasshopperAddress commServiceAddress = new
GrasshopperAddress("rmi://"+serviceHostAddress+":3000/ComSer");
 ServerObject serverObject = new ServerObject(dsmLocation);

 commService = new ExternalCommService(serverObject);
 commService.start();
 commService.startReceiver(commServiceAddress);
 }
 catch(Exception e)
 {
 System.out.println("In the createExtComServ() of class ExtComServCreator");

174

 e.printStackTrace();
 }
 }

 /**
 * Method to close external communication service.
 */
 public void closeCommService()throws RemoteException
 {
 System.out.println("ExtComServCreator stopping communication service.");
 commService.stop();
 }

 public static void main(String args[])
 {
 System.setSecurityManager(new RMISecurityManager());
 try
 {
 String bindingName = "//"+args[0]+":"+args[1]+"/ECSC";
 String extComServiceAdd = args[0];
 String dsmLocation = "//"+args[2]+":"+args[3]+"/DomainSecurityManager";
 ExtComServCreator ecsc = new
ExtComServCreator(extComServiceAdd,dsmLocation);
 Naming.rebind(bindingName,ecsc);
 System.out.println("External Communication Service Ready!");
 }
 catch (Exception e)
 {
 System.out.println("Exception: " + e.getMessage());
 e.printStackTrace();
 }
 }
}

FunctionBean.java
import java.util.*;
import java.io.*;

/**
 * Insert the type's description here.
 * Creation date: (11/15/2001 11:50:10 AM)
 * @author: Nanditha Nayani
 */

public class FunctionBean implements Serializable{
 private java.lang.String functionName = "";
 private java.lang.String syntacticContract = "";
/**
 * FunctionBean constructor comment.
 */
public FunctionBean() {
 super();
}
/**
 * Insert the method's description here.

175

 * Creation date: (11/15/2001 11:57:03 AM)
 * @param resultSet java.sql.ResultSet
 * @exception java.lang.Exception The exception description.
 */
public void buildBean(java.sql.ResultSet resultSet) throws java.lang.Exception {

 id = resultSet.getString("id");
 functionName = resultSet.getString("function_name");
 syntacticContract = resultSet.getString("syntactic_contract");
}
/**
 * Insert the method's description here.
 * Creation date: (11/15/2001 11:50:52 AM)
 * @return java.lang.String
 */
public java.lang.String getFunctionName() {
 return functionName;
}
/**
 * Insert the method's description here.
 * Creation date: (11/15/2001 11:51:10 AM)
 * @return java.lang.String
 */
public java.lang.String getSyntacticContract() {
 return syntacticContract;
}
/**
 * Insert the method's description here.
 * Creation date: (11/15/2001 11:50:52 AM)
 * @param newFunctionName java.lang.String
 */
public void setFunctionName(java.lang.String newFunctionName) {
 functionName = newFunctionName;
}
/**
 * Insert the method's description here.
 * Creation date: (11/15/2001 11:51:10 AM)
 * @param newSyntacticContract java.lang.String
 */
public void setSyntacticContract(java.lang.String newSyntacticContract) {
 syntacticContract = newSyntacticContract;
}
 private java.lang.String id = "";
public java.lang.String getId() {
 return id;
}

public void setId(java.lang.String newId) {
 id = newId;
}public void persistBean(SQLHelper sqlHelper,String functionTableName) throws Exception {

 String functionUpdateString =
 "INSERT INTO "+functionTableName+" VALUES(" +
 "'" + id + "'," +
 "'" + functionName + "'," +
 "'" + syntacticContract + "')";

176

 sqlHelper.updateTable(functionUpdateString);
}}

FunctionQoS.java
import java.util.*;
import java.io.*;

/**
 * This class represents the QoS for a function. A function is identified
 * by the component name and function name. The QoS values for corresponding
 * QoS parameters are stored in a Hashtable. The keys for the Hashtable are
 * the QoS parameters.
 *
 * @author Zhisheng Huang
 * @date January 2003
 * @version 1.0
 */
public class FunctionQoS implements Serializable
{
 private String componentName;
 private String functionName;
 private Hashtable functionQoSTable;

 /**
 * Constructor.
 *
 * @param componentName Name of the component.
 * @param functionName Name of the function.
 */
 public FunctionQoS(String componentName, String functionName)
 {
 this.componentName = componentName;
 this.functionName = functionName;
 functionQoSTable = new Hashtable();
 }

 /**
 * This method adds a pair of QoS parameter and its value.
 *
 * @param componentName Name of the component. It is used for error checking.
 * @param functionName Name of the function. It is used for error checking.
 * @param QoSParameter Name of the QoS parameter.
 * @param value Vaue for the QoS parameter shown as the third argument of this method.
 */
 public void addFunctionQoS(String componentName, String functionName, String QoSParameter,
String value)
 {
 if(this.componentName.equals(componentName) && this.functionName.equals(functionName))
 {
 functionQoSTable.put(QoSParameter, value);
 }
 }

 /**

177

 * This method get the value for the QoS parameter specified as the third argument.
 * The first two arguments are for error checking purpose.
 */
 public String getFunctionQoS(String componentName, String functionName, String QoSParameter)
 {
 if(componentName.equals(this.componentName) && functionName.equals(this.functionName))
 {
 return (String)functionQoSTable.get(QoSParameter);
 }
 else
 {
 return null;
 }
 }

 /**
 * This method return all the QoS metrics for the function as a Hashtable.
 */
 public Hashtable getFunctionQoS()
 {
 return (Hashtable)functionQoSTable.clone();
 }

 /**
 * This method returns the name of the component.
 */
 public String getComponentName()
 {
 return componentName;
 }

 /**
 * This method returns the name of the function.
 */
 public String getFunctionName()
 {
 return functionName;
 }
}

Headhunter.java
import java.net.*;
import java.util.*;
import java.sql.*;

import java.rmi.*;
import java.rmi.server.*;
import java.rmi.registry.*;

import java.security.*;
import java.io.*;
import java.lang.*;

import simpleCom.*;
import de.ikv.grasshopper.communication.GrasshopperAddress;

178

import de.ikv.grasshopper.communication.ExternalCommService;
import de.ikv.grasshopper.communication.ProxyGenerator;
import de.ikv.grasshopper.agency.IAgentSystem;
import de.ikv.grasshopper.agency.IRegionRegistration;
import de.ikv.grasshopper.agency.PlaceAlreadyExistsException;
import de.ikv.grasshopper.util.SearchFilter;
import de.ikv.grasshopper.type.AgentSystemInfo;
import de.ikv.grasshopper.type.AgentInfo;

/**
 * This class implements the IHeadhunter interface.The Headhunter
 * class interacts with the DomainSecurityManager using RMI-JRMP.
 * The Headhunter class interacts with the ActiveRegistry services
 * through Grasshopper mobile agents for the purpose of obtaining
 * the component information as a Hashtable of componentBean objects.
 * The Headhunter class delegates the job of periodically updating
 * its availability to the HHStateRenewer thread. The Headhunter class
 * delegates the job of periodic component discovery to the DiscoveryAgent
 * thread. The Headhunter persists this information to the
 * Meta_Repository and uses the MetaRepositoryHelper for the purpose
 * of performing searches against the repository. The SQL query for
 * the searches is obtained from the QueryBean which is propagated
 * to the Headhunter by a mobile agent acting on behalf of the
 * QueryManager.
 * Insert the type's description here.
 * Creation date: (05/15/2003 11:50:10 AM)
 * @author: Jayasree Gandhamaneni
 */

public class Headhunter extends UnicastRemoteObject implements IHeadhunter
{
 private java.lang.String userType = "Headhunter";
 private Hashtable registryTable = new Hashtable();
 private Hashtable resultTable=null;
 private String componentTableName=null;
 private String hhLocation=null;

 private String registryAddress = null;
 private String agentCodebase = null;

 /**
 * Remote method called by the QMAgent to get components available with the HH.
 */
 public Hashtable performSearch(QueryBean querybean) throws RemoteException
 {
 Hashtable resultTable = new Hashtable();
 System.out.println("Processing Query request ");
 MetaRepositoryHelper srchEngine=new MetaRepositoryHelper(querybean);
 try
 {
 long sTime =(new java.util.Date()).getTime();
 resultTable = srchEngine.getSearchResultTable(componentTableName);
 System.out.println("Total time taken to retrieve components from meta-rep is "+
 ((new java.util.Date()).getTime()-sTime));
 }catch(Exception e)
 {

179

 System.out.println("Error in searching Local Metarepository"+ e.getMessage());
 }
 return resultTable;
 }

 /**
 * Method to create Meta_Repository.
 */
 private void createMetaRepository(String userName) throws Exception
 {
 SQLHelper sqlEngine = new SQLHelper();
 String dropUmmSpecs = "DROP TABLE "+userName+"UMMSpecification";
 String dropAlgorithms = "DROP TABLE "+userName+"Algorithms";
 String dropreqdinterface = "DROP TABLE "+userName+"RequiredInterfaces";
 String dropProvidedInterfaces = "DROP TABLE "+userName+"ProvidedInterfaces";
 String dropTechnologies = "DROP TABLE "+userName+"Technologies";
 String dropExpectedResources = "DROP TABLE "+userName+"ExpectedResources";
 String dropDesignPatterns = "DROP TABLE "+userName+"DesignPatterns";
 String dropKnownUsages = "DROP TABLE "+userName+"KnownUsages";
 String dropAliases = "DROP TABLE "+userName+"Aliases";
 String dropPreProcessing = "DROP TABLE "+userName+"PreProcessing";
 String dropPostProcessing = "DROP TABLE "+userName+"PostProcessing";
 String dropCompFuncQoS = "DROP TABLE "+userName+"CompFuncQoS";
 try {
 sqlEngine.updateTable(dropUmmSpecs);
 }catch (Exception e){}
 try {
 sqlEngine.updateTable(dropAlgorithms);
 }catch (Exception e){}
 try {
 sqlEngine.updateTable(dropreqdinterface);
 }catch (Exception e){}
 try {
 sqlEngine.updateTable(dropProvidedInterfaces);
 }catch (Exception e){}
 try {
 sqlEngine.updateTable(dropTechnologies);
 }catch (Exception e){}
 try {
 sqlEngine.updateTable(dropExpectedResources);
 }catch (Exception e){}
 try {
 sqlEngine.updateTable(dropDesignPatterns);
 }catch (Exception e){}
 try {
 sqlEngine.updateTable(dropKnownUsages);
 }catch (Exception e){}
 try {
 sqlEngine.updateTable(dropAliases);
 }catch (Exception e){}
 try {
 sqlEngine.updateTable(dropPreProcessing);
 }catch (Exception e){}
 try {
 sqlEngine.updateTable(dropPostProcessing);
 }catch (Exception e){}

180

 try {
 sqlEngine.updateTable(dropCompFuncQoS);
 }catch (Exception e)
 {
 //System.out.println("Exception in dropping table"+e.getMessage());
 }
 String createUMMSpecification = "create table "+ userName + "UMMSpecification" +
 "(ComponentName VARCHAR(256), " +
 "SubCase VARCHAR(256), " +
 "DomainName VARCHAR(256), " +
 "SystemName VARCHAR(256), " +
 "Description VARCHAR(2000), " +
 "Id VARCHAR(256) PRIMARY KEY, " +
 "Version VARCHAR(256), " +
 "Author VARCHAR(256), " +
 "CreatingDate VARCHAR(256), " +
 "Validity VARCHAR(256), " +
 "Atomicity VARCHAR(256), " +
 "Registration VARCHAR(256), " +
 "Model VARCHAR(256), " +
 "Purpose VARCHAR(2000), " +
 "Complexity VARCHAR(256), " +
 "Mobility VARCHAR(256), " +
 "Security VARCHAR(256), " +
 "FaultTolerance VARCHAR(256), " +
 "QosLevel VARCHAR(256), " +
 "Cost VARCHAR(256), " +
 "QualityLevel VARCHAR(256))";

 String createAlgorithms = "Create table "+ userName + "Algorithms" +
 "(Id VARCHAR(256) NOT NULL, " +
 "ComponentName VARCHAR(256), " +
 "DomainName VARCHAR(256), " +
 "SystemName VARCHAR(256), " +
 "Algorithm VARCHAR(256) NOT NULL," +
 " PRIMARY KEY (Id, Algorithm))";

 String createRequiredInterfaces = "Create table "+ userName + "RequiredInterfaces" +
 "(Id VARCHAR(256) NOT NULL, " +
 "ComponentName VARCHAR(256), " +
 "DomainName VARCHAR(256), " +
 "SystemName VARCHAR(256), " +
 "Interface VARCHAR(256) NOT NULL, " +
 " PRIMARY KEY (Id, Interface))";

 String createProvidedInterfaces = "create table "+ userName + "ProvidedInterfaces" +
 "(Id VARCHAR(256) NOT NULL, " +
 "ComponentName VARCHAR(256), " +
 "DomainName VARCHAR(256), " +
 "SystemName VARCHAR(256), " +
 "Interface VARCHAR(256) NOT NULL, " +
 " PRIMARY KEY (Id, Interface))";

 String createTechnologies = "create table "+ userName + "Technologies" +
 "(Id VARCHAR(256) NOT NULL, " +

181

 "ComponentName VARCHAR(256), " +
 "DomainName VARCHAR(256), " +
 "SystemName VARCHAR(256), " +
 "Technology VARCHAR(256) NOT NULL," +
 " PRIMARY KEY (Id, Technology))";

 String createExpectedResources = "create table "+ userName + "ExpectedResources" +
 "(Id VARCHAR(256) NOT NULL, " +
 "ComponentName VARCHAR(256), " +
 "DomainName VARCHAR(256), " +
 "SystemName VARCHAR(256), " +
 "ExpectedResource VARCHAR(256) NOT NULL," +
 " PRIMARY KEY (Id, ExpectedResource))";

 String createDesignPatterns = "create table "+ userName + "DesignPatterns" +
 "(Id VARCHAR(256) NOT NULL, " +
 "ComponentName VARCHAR(256), " +
 "DomainName VARCHAR(256), " +
 "SystemName VARCHAR(256), " +
 "Pattern VARCHAR(256) NOT NULL," +
 " PRIMARY KEY (Id, Pattern))";

 String createKnownUsages = "create table "+ userName + "KnownUsages" +
 "(Id VARCHAR(256) NOT NULL, " +
 "ComponentName VARCHAR(256), " +
 "DomainName VARCHAR(256), " +
 "SystemName VARCHAR(256), " +
 "Usage VARCHAR(256) NOT NULL," +
 " PRIMARY KEY (Id, Usage))";

 String createAliases = "create table "+ userName + "Aliases" +
 "(Id VARCHAR(256) NOT NULL, " +
 "ComponentName VARCHAR(256), " +
 "DomainName VARCHAR(256), " +
 "SystemName VARCHAR(256), " +
 "Alias VARCHAR(256) NOT NULL," +
 " PRIMARY KEY (Id, Alias))";

 String createPreProcessingCollaborators = "create table "+ userName + "PreProcessing" +
 "(Id VARCHAR(256) NOT NULL, " +
 "ComponentName VARCHAR(256), " +
 "DomainName VARCHAR(256), " +
 "SystemName VARCHAR(256), " +
 "Collaborator VARCHAR(256) NOT NULL," +
 " PRIMARY KEY (Id, Collaborator))";

 String createPostProcessingCollaborators = "create table "+ userName + "PostProcessing" +
 "(Id VARCHAR(256) NOT NULL, " +
 "ComponentName VARCHAR(256), " +
 "DomainName VARCHAR(256), " +
 "SystemName VARCHAR(256), " +
 "Collaborator VARCHAR(256) NOT NULL," +
 " PRIMARY KEY (Id, Collaborator))";

 /* In the following table, the length of the columns of the tables have been changed, since Oracle
doesn't allow

182

 the length of the primary key to exceed 756 key length*/

 String createqoscompfunc = "create table "+ userName + "CompFuncQoS" +
 "(Id VARCHAR(100) NOT NULL, " +
 "ComponentName VARCHAR(256), " +
 "SystemName VARCHAR(256), " +
 "FunctionName VARCHAR(100) NOT NULL, " +
 "QoSParameter VARCHAR(100) NOT NULL, " +
 "Value VARCHAR(100) NOT NULL, " +
 " PRIMARY KEY (Id, FunctionName, QoSParameter, Value))";

 try{
 sqlEngine.updateTable(createUMMSpecification);
 } catch(Exception e) {System.out.println("UMM Spec Table problem"+e.getMessage());}
 try{
 sqlEngine.updateTable(createAlgorithms);
 }catch(Exception e){System.out.println("Algo table problem");}
 try{
 sqlEngine.updateTable(createRequiredInterfaces);
 }catch(Exception e){System.out.println("Required Interface table problem");}
 try{
 sqlEngine.updateTable(createProvidedInterfaces);
 }catch(Exception e){System.out.println("Provided Interface table problem");}
 try{
 sqlEngine.updateTable(createTechnologies);
 }catch(Exception e){System.out.println("Technology table problem");}
 try{
 sqlEngine.updateTable(createExpectedResources);
 }catch(Exception e){System.out.println("Resources table problem");}
 try{
 sqlEngine.updateTable(createDesignPatterns);
 }catch(Exception e){System.out.println("DesignPatterns table problem");}
 try{
 sqlEngine.updateTable(createKnownUsages);
 }catch(Exception e){System.out.println("knownusages table problem");}
 try{
 sqlEngine.updateTable(createAliases);
 }catch(Exception e){System.out.println("Aliases table problem");}
 try{
 sqlEngine.updateTable(createPreProcessingCollaborators);
 }catch(Exception e){System.out.println("Preprocessing table problem");}
 try{
 sqlEngine.updateTable(createPostProcessingCollaborators);
 }catch(Exception e){System.out.println("Postprocessing table problem");}
 try{
 sqlEngine.updateTable(createqoscompfunc);
 }catch(Exception e){System.out.println(" Problem in qos update table: "+e.getMessage());}
 sqlEngine.shutDown();
 }

 public static void main(String[] args)
 {
 long renewalTime = 30000;
 String headhunterLocation = "//"+args[0]+":" +args[1]+"/HeadHunter";
 String dsmLocation = "//"+args[2]+":"+args[3]+"/DomainSecurityManager";

183

 String regionRegistryAddress = "rmi://"+args[4]+":6020/MyRegion";
 String domain = args[5];
 String userName = args[6];
 String password = args[7];
 long dTime = 15000;

 try {
 System.setSecurityManager(new RMISecurityManager());
 Naming.rebind(
 headhunterLocation,
 new Headhunter(
 renewalTime,
 dTime,
 userName,
 password,
 domain,
 headhunterLocation,
 dsmLocation,
 regionRegistryAddress));
 System.out.println("Headhunter is ready.");
 } catch (Exception e) {
 System.out.println("HeadHunter failed: " + e);
 }
 }

 /**
 * The Headhunter Constructor.
 */
 public Headhunter(
 long rTime,
 long dTime,
 String userName,
 String password,
 String domain,
 String headhunterLocation,
 String dsmLocation,
 String regionRegistryAddress)
 throws RemoteException {

 System.out.println("\n Headhunter activated at " + headhunterLocation);
 componentTableName=userName;
 hhLocation=headhunterLocation;
 boolean isAuthenticated=false;
 String mobileAgentUserName = new String();
 IDomainSecurityManager dsmanager =null;

 try
 {
 System.out.println("Headhunter Contacting DSM for Authentication.");

 //IDomainSecurityManager dsmanager =(IDomainSecurityManager)
Naming.lookup(dsmLocation);
 dsmanager =(IDomainSecurityManager) Naming.lookup(dsmLocation);

 isAuthenticated = dsmanager.authenticationService(
 userType,

184

 userName,
 password,
 headhunterLocation,
 domain);

 if(isAuthenticated)
 {
 mobileAgentUserName =
dsmanager.getMobileAgentInfo(headhunterLocation);
 System.out.println("DSM returned agent info "+
mobileAgentUserName);

 createMetaRepository(userName);
 System.out.println("MetaRepository Created.");

 //start a thread to periodically update headhunter's availability in the
system
 HHStateRenewer hhStateRenewer = new
HHStateRenewer(rTime,dsmLocation,headhunterLocation,domain);
 Thread renewerThread = new Thread(hhStateRenewer);
 renewerThread.start();

 DiscoveryAgent discoveryAgent = new DiscoveryAgent(dTime,

 dsmLocation,

 hhLocation,

 domain,

 regionRegistryAddress,

 mobileAgentUserName);
 Thread discoveryThread = new Thread(discoveryAgent);
 discoveryThread.start();
 }
 else
 {
 System.out.println("Headhunter is not a valid pricipal. Authentication
failed");
 System.exit(0);
 }
 }catch(Exception e)
 {
 System.out.println(e.getMessage());
 }

 } //end of constructor

 /**
 * Method to populate Meta_Repository.
 */
 public void populateMetaRepository(Hashtable CompData,String resultType,long startTime,int
noOfMsgs)throws RemoteException
 {
 try

185

 {
 System.out.println("Headhunter "+hhLocation+" obtained registered services
data from HHAgent");
 System.out.println("Number of components retrieved are "+CompData.size());
 System.out.println("Number of messages taken by the HHAgent to discover
components are "+ (++noOfMsgs));
 if(resultType.equals("final")) {
 long elapsedTime = (new java.util.Date()).getTime() - startTime;
 System.out.println("\nTotal time taken to discover components is
"+elapsedTime+" millisecs");
 System.out.println("i.e. "+elapsedTime/1000+" seconds\n");
 }

 if(!CompData.isEmpty())
 {
 SQLHelper sqlEngine = new SQLHelper();
 Enumeration e = CompData.elements();

 while (e.hasMoreElements())
 {
 ConcreteComponent component = new ConcreteComponent();
 component=(ConcreteComponent) e.nextElement();
 try
 {
 buildpersist buildcomponent = new buildpersist();

 buildcomponent.persist(component,sqlEngine,componentTableName);
 }catch (Exception ex)
 {
 //ex.printStackTrace();
 //If the component already exists in the table, ignore
the error thrown by the database system
 }
 }//end while

 sqlEngine.shutDown();
 }
 else
 System.out.println("No components discovered");
 System.out.println("-------------------");
 } catch (Exception ex) {
 System.out.println("HH exception " + ex);
 }
 }
}//end of HeadHunter

HHAgent.java
import de.ikv.grasshopper.communication.GrasshopperAddress;
import de.ikv.grasshopper.communication.ProxyGenerator;
import de.ikv.grasshopper.communication.ExternalCommService;
import de.ikv.grasshopper.type.Identifier;
import de.ikv.grasshopper.agency.AgentCreationFailedException;
import java.util.*;
import java.lang.*;

186

public class HHAgent extends de.ikv.grasshopper.agent.MobileAgent{

 private Hashtable agencyARMapping=null;
 private String originatingHHLocation=null;
 private String mobileAgentUserName=null;
 private GrasshopperAddress originatingAgencyAdd;
 private GrasshopperAddress targetAgencyAdd;
 private String ipAddress;

 private GrasshopperAddress commObjectAddress;
 private IServerObject serverObjectProxy;
 private Hashtable resultTable=new Hashtable();

 private int resultCounter = 0;
 private int randomResultResolver = 0;
 private boolean sendInterResults = false;
 private long startTime = 0;
 private int noOfMsgs = 0;
 public void init(Object[] args){
 log("*******************");
 log("In the init method of HHAgent");
 agencyARMapping=(Hashtable)args[0];
 originatingHHLocation=(String)args[1];
 mobileAgentUserName=(String)args[2];
 originatingAgencyAdd=(GrasshopperAddress)args[3];
 targetAgencyAdd=originatingAgencyAdd;
 ipAddress=(String)targetAgencyAdd.toString();
 startTime = ((Long)args[4]).longValue();

 commObjectAddress = new
GrasshopperAddress("rmi://"+parseIPAddress(ipAddress)+":3000/ComSer");
 serverObjectProxy = (IServerObject)ProxyGenerator.newInstance(IServerObject.class,
 commObjectAddress.generateAgentSystemId(),
 commObjectAddress);
 //code to send intermediate results to Headhunter

 int numberOfAgencies = agencyARMapping.size();
 if(numberOfAgencies>5) {
 randomResultResolver = (int)(Math.random()*(int)(numberOfAgencies/2))+1;
 if(randomResultResolver > 1)
 {
 sendInterResults = true;
 }
 }

 }

 /**
 * The name of the agent.
 */
 public String getName() {
 return "HHAgent";
 }

 /**
 * Callback from the agent system after moving.

187

 */
 public void afterMove() {
 try
 {
 ipAddress=(String)targetAgencyAdd.toString();
 commObjectAddress = new
GrasshopperAddress("rmi://"+parseIPAddress(ipAddress)+":3000/ComSer");
 serverObjectProxy =
(IServerObject)ProxyGenerator.newInstance(IServerObject.class,
 commObjectAddress.generateAgentSystemId(),
 commObjectAddress);
 } catch(Exception e)
 {
 log("error in afterMove method");
 log(e.getMessage());
 }
 }

 /**
 * The lifecycle of this agent.
 */
 public void live() {
 log("HHAgent arrived at "+targetAgencyAdd);
 noOfMsgs++;

 try
 {
 ArrayList arList = new ArrayList();

 if(agencyARMapping.size()> 0 &&
agencyARMapping.containsKey(targetAgencyAdd))
 {
 /* get the list of ActiveRegistries that are associated
 with a particular agency on a particular machine */
 arList=(ArrayList)(agencyARMapping.remove(targetAgencyAdd));
 }

 if(arList.size()==0)
 {
 log("This system doesn't have any active registries to visit");
 }
 else if(arList.size()>0)
 {
 resultCounter++;
 log("Number of Active registries to be contacted on this host machine
are "+arList.size());
 while(!arList.isEmpty()) {
 //take one AR at a time
 String arAddress = (String)arList.remove(0);
 log("HHAgent contacting AR "+arAddress);
 //get the state of the AR
 log("Contacting AR "+arAddress);

 int state = serverObjectProxy.getARState(arAddress);
 log("AR state is "+state);

188

 String attributeType ="";
 String attributeValue ="";
 Hashtable tempCompData = new Hashtable();
 // if the AR is in state 1, just pass the HHlocation and the
HHAgent name and get the data
 //if the AR is in state 2, randomly pick a functional attribute
and ask the AR for comp. data
 if(state == 2)
 {
 Random r = new Random();
 int attribute = r.nextInt(3);

 if(attribute == 0)
 {
 attributeType = "algorithm";
 attributeValue = "JFC";
 }
 else if(attribute == 1)
 {
 attributeType = "complexity";
 attributeValue = "O(1)";
 }
 else if(attribute == 2)
 {
 attributeType = "technology";
 attributeValue = "Java RMI";
 }
 log("HHAgent requesting components based on
"+attributeType+" "+attributeValue);
 }

 tempCompData=serverObjectProxy.getCompDataFromAR(arAddress,originatingHHLocation,
mobileAgentUserName,attributeType,attributeValue);
 Enumeration e1=tempCompData.keys();
 if(!e1.hasMoreElements())
 {
 log("No components found!!!");
 }
 else
 {
 log("No. of Components retrieved are
"+tempCompData.size());
 log("Components retrieved are as follows");
 }

 while(e1.hasMoreElements()){
 String urlID=(String)e1.nextElement();
 ConcreteComponent component =
(ConcreteComponent)tempCompData.get(urlID);
 log("Component
"+component.getComponentName()+" available at "+urlID);
 //log("Component ID is "+component.getID());
 resultTable.put(urlID,component);

 }
 }

189

 if(sendInterResults==true && (resultCounter%randomResultResolver
== 0))
 {
 //send results to Headhunter through serverObject and empty
the resultTable
 resultCounter = 0;

 serverObjectProxy.postCompDataToHH(originatingHHLocation,resultTable,"inter",startTime,noO
fMsgs);
 resultTable.clear();
 }
 }
 log("No. of agencies remained are "+agencyARMapping.size());
 if(agencyARMapping.size()>0)
 {
 Enumeration e=agencyARMapping.keys();
 GrasshopperAddress tempAgencyAdd=null;
 if(e.hasMoreElements())
 {
 tempAgencyAdd=(GrasshopperAddress)e.nextElement();
 }
 originatingAgencyAdd=targetAgencyAdd;
 targetAgencyAdd=(GrasshopperAddress)(tempAgencyAdd);
 log("HHAgent moving to agency "+targetAgencyAdd);
 move(targetAgencyAdd);
 }
 else
 {
 log("No more ActiveRegistries to visit");
 log("Finally sending the component data to Headhunter
"+originatingHHLocation);

 serverObjectProxy.postCompDataToHH(originatingHHLocation,resultTable,"final",startTime,noO
fMsgs);
 try
 {
 //log("trying to remove agent");
 remove();
 log("HHAgent removed from the system");
 }
 catch(Exception e) {
 log("failed to remove agent", e);
 }
 }
 } catch (Exception e) {
 log("Migration failed. Exception = ", e);
 serverObjectProxy.printMessage("HHAgent couldn't move.");
 }
 }

 private String parseIPAddress(String IPAddress)
 {
 int j=0;
 int start=0;
 int k=0;
 for (int i=0;i<IPAddress.length();i++)

190

 {
 if(IPAddress.charAt(i)=='/')
 {
 k++;
 if(k==2)
 start=i+1;
 }
 else if(IPAddress.charAt(i)==':' && k>=2)
 {
 j =i;
 i = IPAddress.length();
 }
 }
 return IPAddress.substring(start,j);
 }
}

HHStateRenewer.java
import java.rmi.*;
import java.rmi.server.*;
import java.rmi.registry.*;
import java.net.*;
import java.util.*;

/**
 * This class operates as a Thread which executes periodically
 * to update availability of a Headhunter with the
 * DomainSecurityManager.
 * Creation date: (06/15/2003 10:10:30 AM)
 * @author: Jayasree Gandhamaneni
 */

public class HHStateRenewer implements Runnable
{
 private long rTime = 0;
 private String hhLocation= "";
 private IDomainSecurityManager dsm = null;
 private String hhDomain = "";

 /**
 * The HHStateRenewer Constructor.
 */
 public HHStateRenewer(
 long renewalTime,
 String dsmLocation,
 String headhunterLocation,
 String domain) {

 try {

 System.out.println("HHStateRenewer thread starting headhunter state updation
with the DSM");
 System.setSecurityManager(new RMISecurityManager());
 dsm = (IDomainSecurityManager) Naming.lookup(dsmLocation);
 rTime = renewalTime;

191

 hhLocation= headhunterLocation;
 hhDomain = domain;

 }catch (Exception e){
 System.out.println("Exception in the constructor of HeadhunterStateRenewer
"+e.getMessage());
 }
 }

 public void run()
 {
 Thread CurrentThread = Thread.currentThread();

 try {
 while(true)
 {
 dsm.renewHHState(hhLocation, hhDomain);
 CurrentThread.sleep(rTime);
 }
 }catch(InterruptedException ie) {
 System.out.println(ie.getMessage());
 }
 catch (Exception e)
 {
 System.out.println(e);
 }
 }
}

IActiveRegistry.java
import java.rmi.*;
import java.util.*;

public interface IActiveRegistry extends Remote
{
 public Hashtable getComponentData(String headhunterLocation, String
mobileAgentUserName, String attributeType, String attributeValue) throws
RemoteException;
 public int getState() throws RemoteException;
}

IComponent.java
import java.rmi.*;

public interface IComponent extends Remote
{
 public String getUmmSpecURL() throws RemoteException;
}

IDomainSecurityManager.java
import java.util.*;
import java.rmi.*;

192

/**
 * Insert the type's description here.
 * Creation date: (05/16/03 9:07:49 PM)
 * @author: Jayasree Gandhamaneni
 */
public interface IDomainSecurityManager extends java.rmi.Remote{

 public boolean authenticationService(String userType, String userName, String password, String
contactLocation, String domain) throws RemoteException;
 public String getMobileAgentInfo(String headhunterLocation) throws RemoteException;
 public void renewARState(String arLocation, String domain) throws RemoteException;
 public void renewHHState(String hhLocation, String domain) throws RemoteException;
 public void receiveUpdatedTables(Hashtable arTable,Hashtable hhTable) throws
RemoteException;
 public Hashtable getARTimestampTable()throws RemoteException;
 public Hashtable getHHTimestampTable()throws RemoteException;
 public ArrayList getARListForDomain(String headhunterLocation, String domainName)throws
RemoteException;
 public ArrayList getHHListForDomain(String domainName) throws RemoteException;
 public String authenticateHHAgent(String hhLocation, String maUserName)throws
RemoteException;
}

IExtComServCreator.java
import java.rmi.Remote;
import java.rmi.RemoteException;
import java.util.*;

public interface IExtComServCreator extends java.rmi.Remote
{
 public void closeCommService() throws java.rmi.RemoteException;
}

IHeadhunter.java
import java.rmi.*;
import java.util.*;
import java.security.*;
import java.io.*;

public interface IHeadhunter extends Remote
{
 public Hashtable performSearch(QueryBean querybean) throws RemoteException;
 public void populateMetaRepository(Hashtable CompData,String resultType,long startTime,int
noOfMsgs)throws RemoteException;
}

IQueryManager.java
import java.rmi.*;
import java.util.*;

public interface IQueryManager extends Remote {

193

 public void getSearchResultTable(QueryBean qBean,String clientLocation,String qID) throws
RemoteException;
}

IServerObject.java
import java.util.*;
import de.ikv.grasshopper.communication.GrasshopperAddress;

public interface IServerObject {
 public void printMessage(String msg);
 public void postCompDataToHH(String hhLocation,Hashtable resultTable, String resultType,long
startTime,int noOfMsgs);
 public Hashtable getCompDataFromAR(String arAddress, String headhunterLocation, String
mobileAgentUserName,String attributeType, String attributeValue);
 public Hashtable getCompDataFromHH(ArrayList hhList, QueryBean queryBean);
 public void postCompDataToClient(String clientLocation,Hashtable resultTable,String
resultType, String qID);
 public int getARState(String arAddress);
}

IURDS_Proxy.java
import java.rmi.*;
import java.util.*;

/**
 * This interface defines the remote methods to be implemented by
 * URDS_proxy in USGF to interface with URDS created by Nanditha.
 *
 * @author Zhisheng Huang
 * @date January 2003
 * @version 1.0
 */
public interface IURDS_Proxy extends Remote
{
 public void searchConcreteComponents(AbstractComponent Component, String QID) throws
RemoteException;
 public void notifyClient(String msg,String QID) throws RemoteException;
 public void receiveQueryResult(Hashtable concreteComponentList,String resultType,String
QID)throws RemoteException;
}

MetaRepositoryHelper.java
import java.sql.*;
import java.util.*;

/**
 * Insert the type's description here.
 * Creation date: (05/18/2003 3:39:35 PM)
 * @author: Jayasree Gandhamaneni
 */
public class MetaRepositoryHelper
{
 private java.util.Hashtable resultTable;

194

 private QueryBean queryBean;

 public MetaRepositoryHelper() {
 super();
 }

 public MetaRepositoryHelper(QueryBean newQueryBean)
 {
 queryBean = newQueryBean;
 }

 public Hashtable getSearchResultTable(String componentTableName) throws java.lang.Exception
 {
 SQLHelper sqlHelper = new SQLHelper();
 String searchQuery = queryBean.getQuery(componentTableName);
 System.out.println("Query is "+searchQuery);

 if (searchQuery == null || searchQuery.equals(""))
 throw new Exception("No Parameters Passed For Search");
 ResultSet resultSet = null;

 try
 {
 resultSet = sqlHelper.executeQuery(searchQuery);
 }
 catch(Exception e)
 {
 System.out.println("Error in executing query Headhunter Local
Metarepository"+e.getMessage());
 }

 // position to first record
 boolean moreRecords = resultSet.next();
 resultTable = new Hashtable();

 // If there are no records, display a message
 if (!moreRecords) {
 sqlHelper.shutDown();
 throw new Exception("No Records Matching Search Criteria");
 }
 else
 {
 ConcreteComponent component = null;
 buildpersist buildcomponent= new buildpersist();

 // get row data
 do
 {
 String ID="";
 try
 {
 ID = resultSet.getString("id");//Get the host id
 }
 catch(Exception e) {
 System.out.println("Error in getting details of primary query"
+e.getMessage());

195

 }
 if (!resultTable.isEmpty() && resultTable.containsKey(ID)) {
 try {
 component = (ConcreteComponent)
resultTable.get(ID);
 }
 catch(Exception e)
 {
 System.out.println("Error in creation of Concrete
Component with resultTable not empty "+e.getMessage());
 }
 }
 else
 {
 try
 {
 component = new ConcreteComponent();
 component= buildcomponent.build(component,
resultSet, componentTableName);
 resultTable.put(ID, component);
 } catch(Exception e){
 System.out.println("Error in building new Concrete
component :Metarepository"+e.getMessage());
 }
 }
 } while (resultSet.next());

 } //end of else

 sqlHelper.shutDown();

 return resultTable;
 }
}

PrincipalAvailabilityChecker.java
import java.rmi.*;
import java.rmi.server.*;
import java.rmi.registry.*;
import java.net.*;
import java.util.*;

/**
 * This class operates as a Thread which executes periodically
 * to check availability of active registries and headhunters
 * that are registered with the DomainSecurityManager.
 * Creation date: (06/15/2003 10:10:30 AM)
 * @author: Jayasree Gandhamaneni
 */

public class PrincipalAvailabilityChecker implements Runnable
{
 private long purgeTime = 0;
 private String dsmLocation = "";
 private IDomainSecurityManager dsm = null;

196

 /**
 * The PrincipalAvailabilityChecker Constructor.
 */
 public PrincipalAvailabilityChecker(
 long checkingTime,
 String dsmLocation) {

 try {

 System.out.println("Thread started to check the availability of Headhunters and
ActiveRegistries");
 System.setSecurityManager(new RMISecurityManager());
 dsm = (IDomainSecurityManager) Naming.lookup(dsmLocation);
 purgeTime = checkingTime;
 }catch (Exception e){
 System.out.println("Exception in the constructor of
PrincipalAvailabilityChecker "+e);
 }
 }

 public void run()
 {
 Thread CurrentThread = Thread.currentThread();

 try {
 while(true)
 {
 CurrentThread.sleep(purgeTime);
 System.out.println("Checking availability of ARs and HHs");
 long currentTime = (new java.util.Date()).getTime();

 Hashtable arTable = new Hashtable();
 Hashtable hhTable = new Hashtable();
 arTable = dsm.getARTimestampTable();
 hhTable = dsm.getHHTimestampTable();

 Enumeration e = arTable.keys();

 while (e.hasMoreElements()) {
 String key = (String) e.nextElement();
 long registeredTime = ((Date) (arTable.get(key))).getTime();
 if((currentTime-registeredTime) > 2*purgeTime)
 {
 arTable.remove(key);

 }
 }

 Enumeration e1 = hhTable.keys();

 while (e1.hasMoreElements()) {
 String key = (String) e1.nextElement();
 long registeredTime = ((Date) (hhTable.get(key))).getTime();
 if((currentTime-registeredTime) > 2*purgeTime)
 {

197

 hhTable.remove(key);

 }
 }

 dsm.receiveUpdatedTables(arTable,hhTable);
 System.out.println("Tables updated in DSM");

 }
 }catch(InterruptedException ie) {
 System.out.println(ie.getMessage());
 }
 catch (Exception e)
 {
 System.out.println(e);
 }
 }
}

QMAgent.java
import de.ikv.grasshopper.communication.GrasshopperAddress;
import de.ikv.grasshopper.communication.ProxyGenerator;
import de.ikv.grasshopper.communication.ExternalCommService;
import de.ikv.grasshopper.type.Identifier;
import de.ikv.grasshopper.agency.AgentCreationFailedException;
import java.util.*;

public class QMAgent extends de.ikv.grasshopper.agent.MobileAgent
{

 private Hashtable resultTable=new Hashtable();
 private Hashtable agencyHHMapping=null;
 private String clientLocation=null;
 private GrasshopperAddress originatingAgencyAdd;
 private GrasshopperAddress targetAgencyAdd;
 private String ipAddress=null;
 private QueryBean queryBean=null;
 private GrasshopperAddress commObjectAddress;
 private IServerObject serverObjectProxy;
 private String qID = null;
 private int resultCounter = 0;
 private int randomResultResolver = 0;
 private boolean sendInterResults = false;

 public void init(Object[] args)
 {
 log("*******************");
 agencyHHMapping = (Hashtable)args[0];
 clientLocation = (String)args[1];
 originatingAgencyAdd = (GrasshopperAddress)args[2];
 targetAgencyAdd = originatingAgencyAdd;
 ipAddress = (String)targetAgencyAdd.toString();
 queryBean = (QueryBean)args[3];
 qID = (String)args[4];

198

 commObjectAddress = new
GrasshopperAddress("rmi://"+parseIPAddress(ipAddress)+":3000/ComSer");
 serverObjectProxy = (IServerObject)ProxyGenerator.newInstance(IServerObject.class,
 commObjectAddress.generateAgentSystemId(),
 commObjectAddress);

 int numberOfAgencies = agencyHHMapping.size();
 if(numberOfAgencies>5) {
 randomResultResolver = (int)(Math.random()*(int)(numberOfAgencies/2))+1;
 if(randomResultResolver > 1)
 {
 sendInterResults = true;
 }
 }

 }

 /**
 * The name of the agent.
 */
 public String getName(){
 return "QMAgent";
 }

 /**
 * Callback from the agent system after moving.
 */
 public void afterMove(){
 try
 {
 ipAddress=(String)targetAgencyAdd.toString();
 commObjectAddress = new
GrasshopperAddress("rmi://"+parseIPAddress(ipAddress)+":3000/ComSer");
 serverObjectProxy =
(IServerObject)ProxyGenerator.newInstance(IServerObject.class,
 commObjectAddress.generateAgentSystemId(),
 commObjectAddress);
 }
 catch(Exception e)
 {
 log("error in afterMove method");
 log(e.getMessage());
 }
 }

 /**
 * The lifecycle of this agent.
 */
 public void live(){
 log("QMAgent arrived at "+targetAgencyAdd);

 try {
 ArrayList hhList = new ArrayList();
 if(agencyHHMapping.size()>0 &&

199

agencyHHMapping.containsKey(targetAgencyAdd))
 {
 hhList=(ArrayList)(agencyHHMapping.remove(targetAgencyAdd));
 }

 if(hhList.size()==0)
 {
 log("This system doesn't have any headhunters to visit");
 }
 else if(hhList.size()> 0)
 {
 resultCounter++;
 log("Number of headhunters to be contacted are "+hhList.size());

 Hashtable
tempCompData=serverObjectProxy.getCompDataFromHH(hhList,queryBean);
 if(!tempCompData.isEmpty())
 {
 Enumeration e1=tempCompData.keys();

 log("Components retrieved are as follows");

 while(e1.hasMoreElements())
 {
 String urlID=(String)e1.nextElement();
 ConcreteComponent component =
(ConcreteComponent)tempCompData.get(urlID);
 log("Component ID is "+component.getID());
 resultTable.put(urlID,component);

 }
 }
 else
 {
 log("No components found!!!");
 }

 if(sendInterResults==true &&
(resultCounter%randomResultResolver == 0))
 {
 resultCounter = 0;

 serverObjectProxy.postCompDataToClient(clientLocation,resultTable,"inter",qID);
 resultTable.clear();
 }
 }

 if(agencyHHMapping.size()> 0)
 {
 Enumeration e=agencyHHMapping.keys();
 GrasshopperAddress tempAgencyAdd=null;

 if(e.hasMoreElements())
 {
 tempAgencyAdd=(GrasshopperAddress)e.nextElement();
 }

200

 originatingAgencyAdd=targetAgencyAdd;
 targetAgencyAdd=(GrasshopperAddress)(tempAgencyAdd);
 log("QMAgent moving to agency "+targetAgencyAdd);
 move(targetAgencyAdd);
 }
 else
 {
 log("No more headhuters to visit");
 log("Finally sending the component data to client "+clientLocation);

 serverObjectProxy.postCompDataToClient(clientLocation,resultTable,"final",qID);
 try
 {
 remove();
 log("QMAgent removed from the system");
 }
 catch(Exception e) {
 log("failed to remove Agent", e);
 }
 }
 } catch (Exception e) {
 log("Migration failed. Exception = ", e);
 serverObjectProxy.printMessage("QMAgent couldn't move.");
 }
 }

 private String parseIPAddress(String IPAddress)
 {
 int j=0;
 int start=0;
 int k=0;
 for (int i=0;i<IPAddress.length();i++)
 {
 if(IPAddress.charAt(i)=='/')
 {
 k++;
 if(k==2)
 start=i+1;
 }
 else if(IPAddress.charAt(i)==':' && k>=2)
 {
 j =i;
 i = IPAddress.length();
 }
 }
 return IPAddress.substring(start,j);
 }
}

QueryBean.java
import java.util.*;
import java.io.*;

/**
 * Insert the type's description here.

201

 * Creation date: (11/15/2001 1:15:26 PM)
 * @author: Nanditha Nayani, modified by Zhisheng in March 2003
 */

public class QueryBean implements Serializable
{
 private AbstractComponent component;
 private int numOffers = 0;
 private int numMetrics = 0;
 private int hopcount;
 private java.lang.String requestID;

 public QueryBean(AbstractComponent component)
 {
 this.component = component;
 }

 /**
 * Insert the method's description here.
 * Creation date: (11/15/2001 2:08:48 PM)
 * @return java.lang.String
 */
 public String getComponentNameQuery()
 {
 String searchQuery = " Componentname =" + "'"+ component.getComponentName() +
"'";
 return searchQuery;
 }

 public String getSystemNameQuery()
 {
 String systemNameQuery =
 "(" +
 " UPPER(systemName) = '" + component.getSystemName() + "' "+
 ")";

 return systemNameQuery;
 }

 public String getSubcaseQuery()
 {
 String subcaseQuery =" subcase = '" +component.getSubcase() + "' ";
 return subcaseQuery;
 }

 public String getIDQuery()
 {
 String idQuery =
 "(" +
 " UPPER(hostid) = " + component.getID() + "' "+
 ")";

 return idQuery;
 }

202

 public String getVersionQuery()
 {
 String VersionQuery =
 "(" +
 " UPPER(Version) = " + component.getVersion() + "' "+
 ")";

 return VersionQuery;
 }

 public String getAuthorQuery()
 {
 String AuthorQuery =
 "(" +
 " UPPER(Author) = " + component.getAuthor() + "' "+
 ")";

 return AuthorQuery;
 }

 public String getDateQuery()
 {
 String DateQuery =
 "(" +
 " UPPER(CreatingDate) = " + component.getDate() + "' "+
 ")";

 return DateQuery;
 }

 public String getValidityQuery()
 {
 String ValidityQuery =
 "(" +
 " UPPER(Validity) = " + component.getValidity() + "' "+
 ")";

 return ValidityQuery;
 }

 public String getAtomicityQuery()
 {
 String AtomicityQuery =
 "(" +
 " UPPER(Atomicity) = " + component.getAtomicity() + "' "+
 ")";

 return AtomicityQuery;
 }

 public String getRegistrationQuery()
 {
 String RegistrationQuery =
 "(" +
 " UPPER(Registration) = " + component.getRegistration() + "' "+
 ")";

203

 return RegistrationQuery;
 }

 public String getModelQuery()
 {
 String ModelQuery =
 "(" +
 " UPPER(Model) = " + component.getModel() + "' "+
 ")";

 return ModelQuery;
 }

 public String getComplexityQuery()
 {
 String ComplexityQuery =
 "(" +
 " UPPER(Complexity) = " + component.getComplexity() + "' "+
 ")";

 return ComplexityQuery;
 }

 public String getSecurityQuery()
 {
 String SecurityQuery =
 "(" +
 " UPPER(Security) = " + component.getSecurity() + "' "+
 ")";

 return SecurityQuery;
 }

 public String getFaultToleranceQuery()
 {
 String FaultToleranceQuery =
 "(" +
 " UPPER(FaultTolerance) = " + component.getFaultTolerance() + "' "+
 ")";

 return FaultToleranceQuery;
 }

 public String getQoSLevelQuery()
 {
 String QoSLevelQuery =
 "(" +
 " UPPER(QoSLevel) = " + component.getQoSLevel() + "' "+
 ")";

 return QoSLevelQuery;
 }

 public String getCostQuery()
 {

204

 String CostQuery =
 "(" +
 " UPPER(Cost) = " + component.getCost() + "' "+
 ")";

 return CostQuery;
 }

 public String getQualityLevelQuery()
 {
 String QualityLevelQuery =
 "(" +
 " UPPER(QualityLevel) = " + component.getQualityLevel() + "' "+
 ")";

 return QualityLevelQuery;
 }

 /**
 * Insert the method's description here.
 * Creation date: (11/15/2001 5:08:43 PM)
 * @return java.lang.String
 */
 public String getDomain()
 {
 return component.getDomainName();
 }

 /**
 * Insert the method's description here.
 * Creation date: (11/15/2001 2:10:10 PM)
 * @return java.lang.String
 */
 public String getMobilityQuery()
 {
 String mobilityQuery =
 "(" +
 " UPPER(MOBILITY) LIKE '%" + component.getMobility().toUpperCase() + "%' "+
 ")";

 return mobilityQuery;
 }

 /**
 * Insert the method's description here.
 * Creation date: (11/15/2001 2:04:42 PM)
 * @param newNumMetrics int
 */
 public void setNumMetrics(int newNumMetrics)
 {
 numMetrics = newNumMetrics;
 }

 /**
 * Insert the method's description here.
 * Creation date: (11/15/2001 2:04:21 PM)

205

 * @param newNumOffers int
 */
 public void setNumOffers(int newNumOffers)
 {
 numOffers = newNumOffers;
 }

 /**
 * Insert the method's description here.
 * Creation date: (11/15/2001 3:54:45 PM)
 * @return java.lang.String
 */
 public String[] tokeniseString(String keyWords)
 {
 String[] stringTokens = null;

 if (keyWords != null)
 {
 StringTokenizer strTok = new StringTokenizer(keyWords);
 int numTokens = strTok.countTokens();
 stringTokens = new String[numTokens];
 int i = 0;
 while (strTok.hasMoreTokens()) {
 stringTokens[i] = strTok.nextToken();
 i++;
 }
 }
 return stringTokens;

 }

 /**
 * Insert the method's description here.
 * Creation date: (11/15/2001 2:19:41 PM)
 * @return java.lang.String
 */

 public String getQuery(String componentTableName)
 {
 /* for experiments the following statement is commented and the new statement has
been used.
 * while giving code in the appendix of project report, decomment the following
statement and
 remove the statement that is substituted for the following statement/
 String baseQuery = "SELECT * FROM " + componentTableName +
"UMMSpecification " +
 " WHERE Domainname = 'Banking'";

 //remove this later and decomment the above statement
 //String baseQuery = "SELECT * FROM UMMSpecification WHERE Domainname =
'Banking'";

 String bodyQuery = "";

206

 if ((component.getComponentName() !=null) &&
(!component.getComponentName().equals("")))
 {
 bodyQuery = bodyQuery + " AND " + getComponentNameQuery();
 }

 if((component.getSubcase() != null) && (!component.getSubcase().equals("")))
 {
 bodyQuery = bodyQuery + " AND " + getSubcaseQuery();
 }
 String query = baseQuery + bodyQuery;

 return query;

 }

 /**
 * Insert the method's description here.
 * Creation date: (3/16/02 8:39:02 PM)
 * @return int
 */
 public int getHopcount() {
 return hopcount;
 }

 /**
 * Insert the method's description here.
 * Creation date: (3/16/02 8:39:34 PM)
 * @return java.lang.String
 */
 public java.lang.String getRequestID() {
 return requestID;
 }

 /**
 * Insert the method's description here.
 * Creation date: (3/16/02 8:39:02 PM)
 * @param newHopcount int
 */
 public void setHopcount(int newHopcount) {
 hopcount = newHopcount;
 }

 /**
 * Insert the method's description here.
 * Creation date: (3/16/02 8:39:34 PM)
 * @param newRequestID java.lang.String
 */
 public void setRequestID(java.lang.String newRequestID)
 {
 requestID = newRequestID;
 }
}

QueryManager.java

207

import java.net.*;
import java.util.*;

import java.rmi.*;
import java.rmi.server.*;
import java.rmi.registry.*;

import java.security.*;
import java.io.*;
import java.lang.*;

import simpleCom.*;

import de.ikv.grasshopper.communication.GrasshopperAddress;
import de.ikv.grasshopper.communication.ExternalCommService;
import de.ikv.grasshopper.communication.ProxyGenerator;
import de.ikv.grasshopper.agency.IAgentSystem;
import de.ikv.grasshopper.agency.IRegionRegistration;
import de.ikv.grasshopper.agency.PlaceAlreadyExistsException;
import de.ikv.grasshopper.util.SearchFilter;
import de.ikv.grasshopper.type.AgentSystemInfo;
import de.ikv.grasshopper.type.AgentInfo;

/**
 * Insert the type's description here.
 * Creation date: (06/12/2003 05:36:30 PM)
 * @ author: Jayasree gandhamaneni
 */

public class QueryManager extends UnicastRemoteObject implements IQueryManager
{
 private IDomainSecurityManager dsm = null;
 private String qmLocation = null;
 private String regionRegistryAddress = null;

 /**
 * Remote method called by the URDS_Proxy to get components.
 */
 public void getSearchResultTable(QueryBean querybean, String clientLocation,String
qID)throws RemoteException
 {
 System.out.println("-------------------------");
 System.out.println("QM contacted by URDS_Proxy to propagate Search Query.");

 System.setSecurityManager(new RMISecurityManager());
 ArrayList hhList = dsm.getHHListForDomain(querybean.getDomain());

 System.out.println("QM obtained registered headhunter list from DSM for Domain " +
 querybean.getDomain());
 if (hhList.size() == 0)
 {
 try {
 System.out.println("No Headhunters available for query propagation
in this domain ");
 System.out.println("Notifying client about the unavailability of
headhunters");

208

 IURDS_Proxy urdsProxy = (IURDS_Proxy)
Naming.lookup(clientLocation);
 urdsProxy.notifyClient("No headhunters are available",qID);
 } catch(Exception e){
 System.out.println("Exception in the getSearchResultTable() of
QueryManager\n"+e.getMessage());
 }
 }
 else if(hhList.size()>0)
 {
 ComponentSelectionAgent csAgent = new
ComponentSelectionAgent(hhList,querybean,clientLocation,regionRegistryAddress,qID);
 Thread componentSelectionThread = new Thread(csAgent);
 componentSelectionThread.start();

 }

 System.out.println("-------------------------");

 }

 public static void main(String[] args) {

 String qmLocation = "//"+args[0]+":"+ args[1] +"/QueryManager";
 String dsmLocation = "//"+args[2]+":"+args[3]+"/DomainSecurityManager";
 String regionRegistryAddress = "rmi://"+args[4]+":6020/MyRegion";

 try
 {
 System.setSecurityManager(new RMISecurityManager());
 Naming.rebind (qmLocation, new
QueryManager(dsmLocation,qmLocation,regionRegistryAddress));
 System.out.println ("QueryManager is ready.");
 }
 catch (Exception e)
 {
 System.out.println ("QueryManager failed: " + e);
 }
 }

 /**
 * The QueryManager Constructor.
 */
 public QueryManager(String dsmLoc, String qmLoc, String registryAddress) throws
RemoteException
 {
 try
 {
 System.setSecurityManager(new RMISecurityManager());
 dsm = (IDomainSecurityManager) Naming.lookup(dsmLoc);
 qmLocation=qmLoc;
 regionRegistryAddress = registryAddress;

 } catch (Exception e) {
 System.out.println(e.getMessage());
 }

209

 } //end of constructor
}//end of QueryManager

ServerObject.java
import java.util.*;
import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;
import de.ikv.grasshopper.communication.GrasshopperAddress;

public class ServerObject implements IServerObject {

 private IDomainSecurityManager dsm = null;

 /**
 * The ServerObject Constructor.
 */
 public ServerObject(String dsmLocation)
 {
 try {
 System.setSecurityManager(new RMISecurityManager());
 dsm = (IDomainSecurityManager)Naming.lookup(dsmLocation);

 } catch (Exception e)
 {
 System.out.println(e.getMessage());
 }
 }

 public void printMessage(String msg)
 {
 System.out.println("ServerObject receiving message: '" + msg + "'.");
 }

 /**
 * Remote method to return AR state to the HHAgent.
 */
 public int getARState(String arAddress)
 {
 int state=0;
 try {
 IActiveRegistry myAR =(IActiveRegistry)Naming.lookup(arAddress);
 state = myAR.getState();
 }catch(Exception e) {
 System.out.println("Exception in getARState() of ServerObject: "
+e.getMessage());
 e.printStackTrace();
 }
 return state;
 }

 /**
 * Remote method to get UniFrame Specification information
 * of components registered with a AR.
 */

210

 public Hashtable getCompDataFromAR(String arAddress, String headhunterLocation, String
mobileAgentUserName, String attributeType, String attributeValue)
 {
 Hashtable compData = new Hashtable();

 try {
 IActiveRegistry myAR =(IActiveRegistry)Naming.lookup(arAddress);
 compData=(Hashtable)(myAR.getComponentData(headhunterLocation,
mobileAgentUserName,attributeType,attributeValue));
 }
 catch(Exception e) {
 System.out.println("Exception in getCompDataFromAR() of ServerObject: "
+e.getMessage());
 e.printStackTrace();
 }

 return compData;
 }

 /**
 * Remote method to get UniFrame Specification information
 * of components available with a HH.
 */
 public Hashtable getCompDataFromHH(ArrayList hhList, QueryBean queryBean)
 {
 Hashtable compData = new Hashtable();

 try {

 if(hhList.size()>0) {
 if(hhList.size() == 1) {
 IHeadhunter myHH
=(IHeadhunter)Naming.lookup((String)hhList.get(0));
 compData=(Hashtable)(myHH.performSearch(queryBean));
 //System.out.println("Recieved "+compData.size()+"
components from Headhunter "+hhList.get(0));
 }
 else if(hhList.size()>1) {
 Hashtable tempCompData = new Hashtable();

 while(!hhList.isEmpty()) {
 String hhAddress = (String)hhList.remove(0);
 //IHeadhunter myHH
=(IHeadhunter)Naming.lookup((String)hhList.remove(0));
 IHeadhunter myHH
=(IHeadhunter)Naming.lookup(hhAddress);
 System.out.println("ServerObject contacted HH
"+hhAddress+" for registered services ");

 tempCompData=(Hashtable)(myHH.performSearch(queryBean));
 //System.out.println("Recieved
"+tempCompData.size()+" components from Headhunter ");

 Enumeration e=tempCompData.keys();
 //System.out.println("Components retrieved are as
follows");

211

 while(e.hasMoreElements()){
 String urlID=(String)e.nextElement();
 ConcreteComponent component =
(ConcreteComponent)tempCompData.get(urlID);
 //System.out.println("Component
"+(String)component.getComponentName()+" available at "+urlID);
 if(!compData.containsKey(urlID)) {
 compData.put(urlID,component);
 }
 }//end inner while
 }//end of outer while
 }//end of else if
 }
 else {
 System.out.println("No headhunters to contact on this machine");

 }

 }
 catch(Exception e) {
 System.out.println("Exception in the getCompDataFromHH() of ServerObject:
" + e.getMessage());
 e.printStackTrace();
 }
 return compData;
 }

 /**
 * Remote method to return UniFrame Specification information
 * of components registered with a AR to the HH.
 */
 public void postCompDataToHH(String hhLocation,Hashtable resultTable,String
resultType,long startTime,int noOfMsgs)
 {
 try {
 IHeadhunter myHH =(IHeadhunter)Naming.lookup(hhLocation);
 myHH.populateMetaRepository(resultTable,resultType,startTime,noOfMsgs);

 } catch(Exception e){
 System.out.println("Exception in the method postCompDataToHH of
ServerObject : " + e.getMessage());
 e.printStackTrace();
 }
 }

 /**
 * Remote method to return UniFrame Specification information
 * of components available with a HH to a client.
 */

 public void postCompDataToClient(String clientLocation,Hashtable resultTable,String
resultType, String qID)
 {
 try {
 //instead of contacting QM, contact urds_proxy

212

 IURDS_Proxy urdsProxy = (IURDS_Proxy)Naming.lookup(clientLocation);
 urdsProxy.receiveQueryResult(resultTable,resultType,qID);

 } catch(Exception e) {
 System.out.println("Exception in the method
postCompDataToClient of ServerObject : " +e.getMessage());
 e.printStackTrace();
 }
 }
}

SQLHelper.java
import java.util.*;
import java.sql.*;

/**
 * This is the class which serves as a connection to the
 * oracle database. It establises the database connection
 * and executes queries which either select/update the
 * tables of the database as well as execute stored
 * procedures.
 * Creation date: (9/14/2001 12:57:07 PM)
 * @author: Nanditha Nayani
 */
public class SQLHelper {
 private java.sql.Connection dbconn = null;
 private java.sql.Statement statement = null;

/**
 * The SQLHelper Constructor.
 */

public SQLHelper() throws java.lang.Exception {

 //--
 // Get Connection to database.
 // The URL specifying the database to which
 // this program connects using JDBC
 //--

 String url = "jdbc:oracle:thin:@phoenix.cs.iupui.edu:1521:cs9iorcl";

 String username = "jgandham";
 String password = "mobileurds";

 // Load the driver to allow connection to the database
 try {
 Class.forName("oracle.jdbc.driver.OracleDriver");
 dbconn = DriverManager.getConnection(url, username, password);
 statement = dbconn.createStatement();
 } catch (ClassNotFoundException cnfex) {
 System.err.println("Failed to load driver.");
 cnfex.printStackTrace();
 System.exit(1); // terminate program

213

 } catch (SQLException sqlex) {

 System.err.println("\n Unable to connect to Oracle Server");
 sqlex.printStackTrace();
 System.exit(1); // terminate program
 }

}

/**
 * Commit Transaction.
 */
public final void commitTransaction() throws java.lang.Exception {
 try {
 dbconn.commit();
 } catch (SQLException sqle) {
 throw new Exception(
 "\n SQL Exception during commitTransaction with message :" +
sqle.getMessage());
 }
}

/**
 * Execute a query.
 */
public ResultSet executeQuery(String query) throws java.lang.Exception {

 ResultSet resultSet = null;

 try {
 resultSet = statement.executeQuery(query);
 } catch (SQLException sqle) {
 throw new Exception(
 "\n SQL Exception during executeQuery with message:" + sqle.getMessage());
 }

 return resultSet;

}

/**
 * Return DB connection.
 */
public java.sql.Connection getDbconn() {
 return dbconn;
}

/**
 * Return statement.
 */
public java.sql.Statement getStatement() {
 return statement;
}

/**

214

 * Turn off Auto Commit before initiating transaction.
 */
public final void initiateTransaction() throws java.lang.Exception {
 try {
 dbconn.setAutoCommit(false);
 } catch (SQLException sqle) {
 throw new Exception(
 "\n SQL Exception during initiateTransaction with message :"
 + sqle.getMessage());
 }
}

/**
 * Perform Rollback.
 */
public void rollbackTransaction() throws java.lang.Exception {
 try {
 dbconn.rollback();
 } catch (SQLException sqle) {
 throw new Exception(
 "\n SQL Exception during rollbackTransaction with message :"
 + sqle.getMessage());
 }
}

/**
 * Set DB connection.
 */
public void setDbconn(java.sql.Connection newDbconn) {
 dbconn = newDbconn;
}

/**
 * Set statement.
 */
public void setStatement(java.sql.Statement newStatement) {
 statement = newStatement;
}

/**
 * Close connection.
 */
public void shutDown() throws java.lang.Exception {

 try {

 if (statement != null){
 //System.out.println("inside of the shutdown method statement!=null");
 statement.close();
 }
 if (dbconn != null)
 {
 //System.out.println("inside of the shutdown method, dbconn!=null");
 dbconn.close();
 }

215

 } catch (Exception e) {
 throw new Exception(e.getMessage());
 }

}

/**
 * Update DB Table.
 */
public void updateTable(String updateString) throws java.lang.Exception {

 try {
 //System.out.println("in updateTable");
 dbconn.setAutoCommit(false);
 //System.out.println(updateString);
 statement.executeUpdate(updateString.trim());
 //System.out.println("statement succeeded");
 dbconn.commit();
 } catch (SQLException sqle) {
 throw new Exception(
 "\n SQL Exception from function updateTable with message:" +
sqle.getMessage());
 }
}}

SystemQoS.java
import java.util.*;
import java.io.*;

/**
 * This class stores system QoS in a Hashtable. The keys of the Hashtable are
 * QoS parameters.
 *
 * @author Zhisheng Huang
 * @date January 2003
 * @version 1.0
 */
public class SystemQoS implements Serializable
{
 private String systemName;
 private Hashtable systemQoS;

 /**
 * Constructor.
 */
 public SystemQoS(String systemName)
 {
 this.systemName = systemName;
 systemQoS = new Hashtable();
 }

 /**
 * This method add a pair of QoS parameter and its value. The first argument is
 * the system name, which is for error checking.
 */

216

 public void addSystemQoS(String systemName, String QoSParameter, String value)
 {
 if(systemName.equals(this.systemName))
 {
 systemQoS.put(QoSParameter, value);
 }
 }

 /**
 * This method gets the QoS value for a QoS parameter. The first argument is
 * the system name, which is for error checking.
 */
 public String getSystemQoS(String systemName, String QoSParameter)
 {
 if(systemName.equals(this.systemName))
 {
 return (String)systemQoS.get(QoSParameter);
 }
 else
 {
 return null;
 }
 }
}

UniFrameIntrospector.java
import javax.servlet.http.*;
import java.lang.reflect.*;
import java.beans.*;
import java.util.*;

/**
* Creation date: (6/11/2001 9:18:51 AM)
 * @author: Nanditha Nayani
 */
public class UniFrameIntrospector {
public UniFrameIntrospector() {
 super();
}

public static Object getProperty(Object bean, String propertyName)
 throws UniFrameIntrospectorException {

 Object property = null;
 Method method = null;
 Object[] args = null;

 try {

 BeanInfo info = Introspector.getBeanInfo(bean.getClass());
 PropertyDescriptor[] pds = info.getPropertyDescriptors();

 for (int i = 0; pds != null && i < pds.length; i++) {
 if (pds[i].getName().equals(propertyName)) {

217

 method = pds[i].getReadMethod();
 break;
 }
 }
 } catch (IntrospectionException e) {
 throw new UniFrameIntrospectorException(
 "Error analyzing the bean class: " + e.getMessage());
 }

 if (method == null)
 throw new UniFrameIntrospectorException(
 "Property " + propertyName + " not found");

 try {

 property = method.invoke(bean, args);
 System.out.println("Active Registry obtained UMM Spec URL by Introspection : " + property);

 } catch (Exception e) {
 throw new UniFrameIntrospectorException(
 e.getClass().getName()
 + ": "
 + "Failed to get property "
 + propertyName
 + ", message: "
 + e.getMessage());
 }

 return property;
}
}

UniFrameIntrospectorException.java
/**
 * Creation date: (10/5/2001 12:55:32 PM)
 * @author: Nanditha Nayani
 */
public class UniFrameIntrospectorException extends Exception {
public UniFrameIntrospectorException() {
 super();
}
public UniFrameIntrospectorException(String s) {
 super(s);
}
}

UniFrameSpecificationParser.java
import java.io.IOException;
import org.w3c.dom.Document;
import org.w3c.dom.DocumentType;
import org.w3c.dom.NamedNodeMap;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;
import org.apache.xerces.parsers.DOMParser;

218

import java.util.*;

/*
 *
 */
public class UniFrameSpecificationParser
{
 private ConcreteComponent component;
 private Vector functionVector = new Vector();
 private boolean populatedFlag = false;
 private Vector syntaxVector = new Vector();

 public UniFrameSpecificationParser(String url)
 {

 // Instantiate the vendor's DOM parser implementation
 DOMParser parser = new DOMParser();

 try
 {
 parser.parse(url);
 Document doc = parser.getDocument();

 // Parse the document from the DOM tree.
 NodeList children = doc.getChildNodes();

 if (children != null)
 {
 for (int i = 0; i < children.getLength(); i++)
 {
 if(children.item(i).getNodeName().equalsIgnoreCase("UMM_ConcreteComponent"))
 {
 parseUMMSpecification(children.item(i));
 break; //allow each file contain only one architecture model
 }
 }
 }
 }
 catch (IOException e)
 {
 System.out.println("Error reading URL: " + e.getMessage());
 }
 catch (Exception ex)
 {
 System.out.println("Error in parsing: " + ex.getMessage());
 }
 }
 public ConcreteComponent getConcreteComponent()
 {
 return component;
 }

 private void parseUMMSpecification(Node node)
 {
 NodeList children = node.getChildNodes();

219

 if(children == null)
 return;

 component = new ConcreteComponent();

 for (int i = 0; i < children.getLength(); i++)
 {
 if(children.item(i).getNodeName().equalsIgnoreCase("componentname"))
 {
 component.setComponentName(children.item(i).getFirstChild().getNodeValue().trim());
 }
 else if(children.item(i).getNodeName().equalsIgnoreCase("componentSubcase"))
 {
 component.setSubcase(children.item(i).getFirstChild().getNodeValue().trim());
 }
 else if(children.item(i).getNodeName().equalsIgnoreCase("domainname"))
 {
 component.setDomainName(children.item(i).getFirstChild().getNodeValue().trim());
 }
 else if(children.item(i).getNodeName().equalsIgnoreCase("systemname"))
 {
 component.setSystemName(children.item(i).getFirstChild().getNodeValue().trim());
 }
 else if(children.item(i).getNodeName().equalsIgnoreCase("description"))
 {
 component.setDescription(children.item(i).getFirstChild().getNodeValue().trim());
 }
 else if(children.item(i).getNodeName().equalsIgnoreCase("ComputationalAttributes"))
 {
 NodeList children_computationalAttributes = children.item(i).getChildNodes();

 for(int j = 0; j < children_computationalAttributes.getLength(); j++)
 {
 if(children_computationalAttributes.item(j).getNodeName().equals("InherentAttributes"))
 {
 NodeList children_inherentAttributes =
children_computationalAttributes.item(j).getChildNodes();

 for(int k = 0; k < children_inherentAttributes.getLength(); k++)
 {
 if(children_inherentAttributes.item(k).getNodeName().equalsIgnoreCase("id"))
 {

component.setID(children_inherentAttributes.item(k).getFirstChild().getNodeValue().trim());
 }
 else
if(children_inherentAttributes.item(k).getNodeName().equalsIgnoreCase("version"))
 {

component.setVersion(children_inherentAttributes.item(k).getFirstChild().getNodeValue().trim());
 }
 else
if(children_inherentAttributes.item(k).getNodeName().equalsIgnoreCase("author"))
 {

component.setAuthor(children_inherentAttributes.item(k).getFirstChild().getNodeValue().trim());

220

 }
 else if(children_inherentAttributes.item(k).getNodeName().equalsIgnoreCase("date"))
 {

component.setDate(children_inherentAttributes.item(k).getFirstChild().getNodeValue().trim());
 }
 else
if(children_inherentAttributes.item(k).getNodeName().equalsIgnoreCase("validity"))
 {

component.setValidity(children_inherentAttributes.item(k).getFirstChild().getNodeValue().trim());
 }
 else
if(children_inherentAttributes.item(k).getNodeName().equalsIgnoreCase("atomicity"))
 {

component.setAtomicity(children_inherentAttributes.item(k).getFirstChild().getNodeValue().trim());
 }
 else
if(children_inherentAttributes.item(k).getNodeName().equalsIgnoreCase("registration"))
 {

component.setRegistration(children_inherentAttributes.item(k).getFirstChild().getNodeValue().trim());
 }
 else if(children_inherentAttributes.item(k).getNodeName().equalsIgnoreCase("model"))
 {

component.setModel(children_inherentAttributes.item(k).getFirstChild().getNodeValue().trim());
 }
 }
 }
 else
if(children_computationalAttributes.item(j).getNodeName().equals("FunctionalAttributes"))
 {
 NodeList children_functionalAttributes =
children_computationalAttributes.item(j).getChildNodes();

 for(int k = 0; k < children_functionalAttributes.getLength(); k++)
 {
 if(children_functionalAttributes.item(k).getNodeName().equalsIgnoreCase("purpose"))
 {

component.setPurpose(children_functionalAttributes.item(k).getFirstChild().getNodeValue().trim());
 }
 else
if(children_functionalAttributes.item(k).getNodeName().equalsIgnoreCase("algorithms"))
 {
 NodeList children_algorithms =
children_functionalAttributes.item(k).getChildNodes();
 ArrayList algorithms = new ArrayList();

 for(int l = 0; l < children_algorithms.getLength(); l++)
 {
 if(children_algorithms.item(l).getNodeName().equalsIgnoreCase("algorithm"))
 {
 String value =

221

children_algorithms.item(l).getFirstChild().getNodeValue().trim();
 if(!value.equals(""))
 {
 algorithms.add(value);
 }
 }
 }

 if(algorithms.size() != 0)
 {
 component.setAlgorithms((String[])algorithms.toArray(new String[1]));
 }
 }
 else
if(children_functionalAttributes.item(k).getNodeName().equalsIgnoreCase("complexity"))
 {

component.setComplexity(children_functionalAttributes.item(k).getFirstChild().getNodeValue().trim());
 }
 else
if(children_functionalAttributes.item(k).getNodeName().equalsIgnoreCase("SyntacticContract"))
 {
 NodeList children_syntax = children_functionalAttributes.item(k).getChildNodes();

 for(int l = 0; l < children_syntax.getLength(); l++)
 {

if(children_syntax.item(l).getNodeName().equalsIgnoreCase("ProvidedInterfaces"))
 {
 NodeList children_provided = children_syntax.item(l).getChildNodes();
 ArrayList providedInterfaces = new ArrayList();

 for(int m = 0; m < children_provided.getLength(); m++)
 {
 if(children_provided.item(m).getNodeName().equalsIgnoreCase("Interface"))
 {
 String value =
children_provided.item(m).getFirstChild().getNodeValue().trim();
 if(!value.equals(""))
 providedInterfaces.add(value);
 }
 }

 if(providedInterfaces.size() != 0)
 {
 component.setProvidedInterfaces((String[])providedInterfaces.toArray(new
String[1]));
 }
 }
 else
if(children_syntax.item(l).getNodeName().equalsIgnoreCase("RequiredInterfaces"))
 {
 NodeList children_required = children_syntax.item(l).getChildNodes();
 ArrayList requiredInterfaces = new ArrayList();

 for(int m = 0; m < children_required.getLength(); m++)

222

 {
 if(children_required.item(m).getNodeName().equalsIgnoreCase("Interface"))
 {
 String value =
children_required.item(m).getFirstChild().getNodeValue().trim();
 if(!value.equals(""))
 requiredInterfaces.add(value);
 }
 }

 if(requiredInterfaces.size() != 0)
 {
 component.setRequiredInterfaces((String[])requiredInterfaces.toArray(new
String[1]));
 }
 }
 }
 }
 else
if(children_functionalAttributes.item(k).getNodeName().equalsIgnoreCase("technologies"))
 {
 NodeList children_technologies =
children_functionalAttributes.item(k).getChildNodes();
 ArrayList technologies = new ArrayList();

 for(int l = 0; l < children_technologies.getLength(); l++)
 {
 if(children_technologies.item(l).getNodeName().equalsIgnoreCase("technology"))
 {
 String value =
children_technologies.item(l).getFirstChild().getNodeValue().trim();
 if(!value.equals(""))
 {
 technologies.add(value);
 }
 }
 }

 if(technologies.size() != 0)
 {
 component.setTechnologies((String[])technologies.toArray(new String[1]));
 }
 }
 else
if(children_functionalAttributes.item(k).getNodeName().equalsIgnoreCase("expectedResources"))
 {
 NodeList children_resources =
children_functionalAttributes.item(k).getChildNodes();
 ArrayList resources = new ArrayList();

 for(int l = 0; l < children_resources.getLength(); l++)
 {
 if(children_resources.item(l).getNodeName().equalsIgnoreCase("resource"))
 {
 String value = children_resources.item(l).getFirstChild().getNodeValue().trim();
 if(!value.equals(""))

223

 {
 resources.add(value);
 }
 }
 }

 if(resources.size() != 0)
 {
 component.setExpectedResources((String[])resources.toArray(new String[1]));
 }
 }
 else
if(children_functionalAttributes.item(k).getNodeName().equalsIgnoreCase("designPatterns"))
 {
 NodeList children_patterns = children_functionalAttributes.item(k).getChildNodes();
 ArrayList patterns = new ArrayList();

 for(int l = 0; l < children_patterns.getLength(); l++)
 {
 if(children_patterns.item(l).getNodeName().equalsIgnoreCase("pattern"))
 {
 String value = children_patterns.item(l).getFirstChild().getNodeValue().trim();
 if(!value.equals(""))
 {
 patterns.add(value);
 }
 }
 }

 if(patterns.size() != 0)
 {
 component.setDesignPatterns((String[])patterns.toArray(new String[1]));
 }
 }
 else
if(children_functionalAttributes.item(k).getNodeName().equalsIgnoreCase("knownUsage"))
 {
 NodeList children_usages = children_functionalAttributes.item(k).getChildNodes();
 ArrayList usages = new ArrayList();

 for(int l = 0; l < children_usages.getLength(); l++)
 {
 if(children_usages.item(l).getNodeName().equalsIgnoreCase("usage"))
 {
 String value = children_usages.item(l).getFirstChild().getNodeValue().trim();
 if(!value.equals(""))
 {
 usages.add(value);
 }
 }
 }

 if(usages.size() != 0)
 {
 component.setKnownUsages((String[])usages.toArray(new String[1]));
 }

224

 }
 else
if(children_functionalAttributes.item(k).getNodeName().equalsIgnoreCase("aliases"))
 {
 NodeList children_aliases = children_functionalAttributes.item(k).getChildNodes();
 ArrayList aliases = new ArrayList();

 for(int l = 0; l < children_aliases.getLength(); l++)
 {
 if(children_aliases.item(l).getNodeName().equalsIgnoreCase("alias"))
 {
 String value = children_aliases.item(l).getFirstChild().getNodeValue().trim();
 if(!value.equals(""))
 {
 aliases.add(value);
 }
 }
 }

 if(aliases.size() != 0)
 {
 component.setAliases((String[])aliases.toArray(new String[1]));
 }
 }
 }
 }
 }
 }
 else if(children.item(i).getNodeName().equalsIgnoreCase("CooperationAttributes"))
 {
 NodeList children_cooperativeAttributes = children.item(i).getChildNodes();

 for(int j = 0; j < children_cooperativeAttributes.getLength(); j++)
 {

if(children_cooperativeAttributes.item(j).getNodeName().equalsIgnoreCase("preprocessingCollaborators"
))
 {
 NodeList children_preprocessingCollaborators =
children_cooperativeAttributes.item(j).getChildNodes();
 ArrayList collaborators = new ArrayList();

 for(int k = 0; k < children_preprocessingCollaborators.getLength(); k++)
 {

if(children_preprocessingCollaborators.item(k).getNodeName().equalsIgnoreCase("Collaborator"))
 {
 String value =
children_preprocessingCollaborators.item(k).getFirstChild().getNodeValue().trim();
 if(!value.equals(""))
 collaborators.add(value);
 }
 }

 if(collaborators.size() != 0)
 {

225

 component.setPreProcessingCollaborators((String[])collaborators.toArray(new
String[1]));
 }
 }
 else
if(children_cooperativeAttributes.item(j).getNodeName().equalsIgnoreCase("postprocessingCollaborators
"))
 {
 NodeList children_postprocessingCollaborators =
children_cooperativeAttributes.item(j).getChildNodes();
 ArrayList collaborators = new ArrayList();

 for(int k = 0; k < children_postprocessingCollaborators.getLength(); k++)
 {

if(children_postprocessingCollaborators.item(k).getNodeName().equalsIgnoreCase("Collaborator"))
 {
 String value =
children_postprocessingCollaborators.item(k).getFirstChild().getNodeValue().trim();
 collaborators.add(value);
 }
 }

 if(collaborators.size() != 0)
 {
 component.setPostProcessingCollaborators((String[])collaborators.toArray(new
String[1]));
 }
 }
 }
 }
 else if(children.item(i).getNodeName().equalsIgnoreCase("AuxiliaryAttributes"))
 {
 NodeList children_auxiliaryAttributes = children.item(i).getChildNodes();

 for(int j = 0; j < children_auxiliaryAttributes.getLength(); j++)
 {
 if(children_auxiliaryAttributes.item(j).getNodeName().equalsIgnoreCase("Mobility"))
 {

component.setMobility(children_auxiliaryAttributes.item(j).getFirstChild().getNodeValue().trim());
 }
 else if(children_auxiliaryAttributes.item(j).getNodeName().equalsIgnoreCase("Security"))
 {

component.setSecurity(children_auxiliaryAttributes.item(j).getFirstChild().getNodeValue().trim());
 }
 else
if(children_auxiliaryAttributes.item(j).getNodeName().equalsIgnoreCase("FaultTolerance"))
 {

component.setFaultTolerance(children_auxiliaryAttributes.item(j).getFirstChild().getNodeValue().trim());
 }
 }
 }
 else if(children.item(i).getNodeName().equalsIgnoreCase("QoS"))

226

 {
 NodeList children_qos = children.item(i).getChildNodes();

 for(int j = 0; j < children_qos.getLength(); j++)
 {
 if(children_qos.item(j).getNodeName().equalsIgnoreCase("QoSMetrics"))
 {
 NodeList children_qosMetrics = children_qos.item(j).getChildNodes();
 ComponentQoS componentQoS = new ComponentQoS(component.getSystemName(),
component.getComponentName());

 for(int k = 0; k < children_qosMetrics.getLength(); k++)
 {
 String parameterName = null;
 String functionName = null;
 String value = null;

 if(children_qosMetrics.item(k).getNodeName().equalsIgnoreCase("metric"))
 {
 NodeList children_metric = children_qosMetrics.item(k).getChildNodes();

 for(int l = 0; l < children_metric.getLength(); l++)
 {
 if(children_metric.item(l).getNodeName().equalsIgnoreCase("ParameterName"))
 {
 parameterName =
children_metric.item(l).getFirstChild().getNodeValue().trim();
 }
 else
if(children_metric.item(l).getNodeName().equalsIgnoreCase("FunctionName"))
 {
 functionName = children_metric.item(l).getFirstChild().getNodeValue().trim();
 }
 else if(children_metric.item(l).getNodeName().equalsIgnoreCase("Value"))
 {
 value = children_metric.item(l).getFirstChild().getNodeValue().trim();
 }
 }
 }

 if(parameterName != null && functionName != null && value != null &&
!parameterName.equals("") && !functionName.equals("") && !value.equals(""))
 {
 FunctionQoS functionQoS =
(FunctionQoS)componentQoS.getFunctionQoS(component.getComponentName(), functionName);
 if(functionQoS == null)
 {
 functionQoS = new FunctionQoS(component.getComponentName(),
functionName);
 }
 functionQoS.addFunctionQoS(component.getComponentName(), functionName,
parameterName, value);
 componentQoS.addFunctionQoS(functionQoS);
 }
 }

227

 component.setComponentQoS(componentQoS);
 }
 else if(children_qos.item(j).getNodeName().equalsIgnoreCase("QoSLevel"))
 {
 component.setQoSLevel(children_qos.item(j).getFirstChild().getNodeValue().trim());
 }
 else if(children_qos.item(j).getNodeName().equalsIgnoreCase("cost"))
 {
 component.setCost(children_qos.item(j).getFirstChild().getNodeValue().trim());
 }
 else if(children_qos.item(j).getNodeName().equalsIgnoreCase("QualityLevel"))
 {
 component.setQualityLevel(children_qos.item(j).getFirstChild().getNodeValue().trim());
 }
 }
 }
 }
 //put code here to check validity to bulletproof the system
 //or the code can be inserted in the appropriate places above.
 }
}

URDS_Proxy.java
import java.rmi.*;
import java.rmi.server.*;
import java.net.*;
import java.util.*;

/**
 * This class serves as the client that sends queries to the QueryManager.
 * @author Jayasree Gandhamaneni
 * @date March 2004
 */
public class URDS_Proxy extends UnicastRemoteObject implements IURDS_Proxy
{
 IQueryManager queryManager = null;
 String proxyLocation;
 Hashtable queryTable=new Hashtable();
 long timer =0;
 int queryCounter = 0;
 public URDS_Proxy(String qmAddress,String qmPort, String url) throws RemoteException
 {
 try
 {
 queryManager =
(IQueryManager)Naming.lookup("//"+qmAddress+":"+qmPort+"/QueryManager");
 proxyLocation = url;
 }
 catch(RemoteException e)
 {
 System.err.println(e);
 }
 catch(NotBoundException e)
 {

228

 System.err.println(e);
 }
 catch(MalformedURLException e)
 {
 System.err.println(e);
 }
 }

 public void searchConcreteComponents(AbstractComponent Component,String qID) throws
RemoteException
 {
 if(queryManager == null)
 {
 System.out.println("QueryManager is not ready");
 System.exit(0);
 }

 QueryBean queryBean = new QueryBean(Component);
 queryManager.getSearchResultTable(queryBean,proxyLocation,qID);
 queryTable.put(qID,new Long(System.currentTimeMillis()));

 }

 public void notifyClient(String msg,String qID) {
 System.out.println(msg+" for query "+ qID);
 long endTime = (new java.util.Date()).getTime();
 long startTime = ((Long)queryTable.get(qID)).longValue();
 System.out.println("Total time taken for query "+qID+" is "+ (endTime-startTime));

 timer+=endTime-startTime;
 queryCounter ++;
 if(queryCounter == queryTable.size())
 {
 long avgTime = timer/queryCounter;
 System.out.println("Avg. time taken to process "+queryTable.size()+" queries
is "+avgTime);
 System.exit(0);
 }
 }

 public void receiveQueryResult(Hashtable concreteComponentList,String resultType,String qID)
{
 ArrayList resultList = new ArrayList();
 try {
 long endTime = (new java.util.Date()).getTime();
 long startTime = ((Long)queryTable.get(qID)).longValue();
 System.out.println("---------Results for "+qID+"----------");

 System.out.println("Total time taken for query "+qID+" is "+ (endTime-
startTime));
 timer+=endTime-startTime;
 queryCounter ++;

 Enumeration e = concreteComponentList.elements();
 if(e.hasMoreElements())

229

 {
 System.out.println("Number of components found for "+qID+" are
"+concreteComponentList.size());
 int counter=0;
 while(e.hasMoreElements()){
 counter++;
 ConcreteComponent component
=(ConcreteComponent)e.nextElement();

 System.out.println(counter+"."+component.getComponentName());
 }
 }
 else
 {
 System.out.println("No components found that match the
query"+qID);
 }

 if(queryCounter == queryTable.size())
 {
 long avgTime = timer/queryCounter;
 System.out.println("Avg. time taken to process "+queryTable.size()+"
queries is "+avgTime);
 System.exit(0);

 }
 System.out.println("-------------------");
 }
 catch(Exception e) {
 System.out.println(e.getMessage());
 }
 }

 public AbstractComponent Query1() {
 AbstractComponent component = new AbstractComponent();
 component.setDomainName("Banking");
 return component;
 }

 public AbstractComponent Query2() {
 AbstractComponent component = new AbstractComponent();
 component.setDomainName("Banking");
 component.setComponentName("AccountDatabase");
 return component;
 }

 public AbstractComponent Query3() {
 AbstractComponent component = new AbstractComponent();
 component.setDomainName("Banking");
 component.setComponentName("ATM");
 return component;
 }

 public AbstractComponent Query4() {
 AbstractComponent component = new AbstractComponent();
 component.setDomainName("Banking");

230

 component.setComponentName("CashierValidationServer");
 return component;
 }

 public AbstractComponent Query5() {
 AbstractComponent component = new AbstractComponent();
 component.setDomainName("Banking");
 component.setComponentName("CustomerValidationServer");
 return component;
 }

 public AbstractComponent Query6() {
 AbstractComponent component = new AbstractComponent();
 component.setDomainName("Banking");
 component.setComponentName("DeluxeTransactionServer");
 return component;
 }

 public AbstractComponent Query7() {
 AbstractComponent component = new AbstractComponent();
 component.setDomainName("Banking");
 component.setComponentName("EconomicTransactionServer");
 return component;
 }

 public AbstractComponent Query8() {
 AbstractComponent component = new AbstractComponent();
 component.setDomainName("Banking");
 component.setComponentName("TransactionServerManager");
 return component;
 }

 public AbstractComponent Query9() {
 AbstractComponent component = new AbstractComponent();
 component.setDomainName("Banking");
 component.setComponentName("CashierTerminal");
 return component;
 }

 public AbstractComponent Query10() {
 AbstractComponent component = new AbstractComponent();
 component.setDomainName("Banking");
 return component;
 }

 public static void main(String[] args) {

 String url = "//" + args[0]+":"+args[1]+"/URDS_Proxy";

 try
 {
 URDS_Proxy urds_Proxy= new URDS_Proxy(args[2],args[3],url);
 int numberOfIterations = Integer.parseInt(args[4]);
 Naming.rebind(url, urds_Proxy);

231

 ArrayList queryList = new ArrayList();
 queryList.add(urds_Proxy.Query1());
 queryList.add(urds_Proxy.Query2());
 queryList.add(urds_Proxy.Query3());
 queryList.add(urds_Proxy.Query4());
 queryList.add(urds_Proxy.Query5());
 queryList.add(urds_Proxy.Query6());
 queryList.add(urds_Proxy.Query7());
 queryList.add(urds_Proxy.Query8());
 queryList.add(urds_Proxy.Query9());
 queryList.add(urds_Proxy.Query10());

 for(int i=0;i<numberOfIterations;i++)
 {
 for(int j=0;j<queryList.size();j++)
 {

 urds_Proxy.searchConcreteComponents((AbstractComponent)queryList.get(j),("Q"+i+j));
 }
 }
 } catch(RemoteException e) {
 System.err.println(e.getMessage());
 }
 catch(MalformedURLException e)
 {
 System.err.println(e.getMessage());
 }
 catch(Exception e)
 {
 System.err.println(e);
 System.exit(1);
 }
 }
}

232

APPENDIX H: Commands To Run the System

• Order to start the entities of the MURDS System

• RegionRegistry
• Agency
• DomainSecurityManager
• ExternalCommunicationServer
• One or more ActiveRegistries
• Components to be registered with each ActiveRegistry
• One or more Headhunters
• One or more QueryManagers
• URDS_Proxy

• Environment parameters

classpath

.;C:\murds\CompRep\classes;C:\Grasshopper2.2.4\examples\classes\examples;
C:\Grasshopper2.2.4\lib\gh.jar;C:\Grasshopper2.2.4\lib\jasper.jar;C:\Grasshopper2.2.4\lib\jaxp.jar;
C:\Grasshopper2.2.4\lib\jndi.jar;C:\Grasshopper2.2.4\lib\ldap.jar;C:\Grasshopper2.2.4\lib\parser.jar;
C:\Grasshopper2.2.4\lib\servlet.jar;C:\Grasshopper2.2.4\lib\tomcat.jar;C:\murds\classes111.zip;
C:\murds\xerces.jar;C:\murds;

path

C:\Grasshopper2.2.4\bin;C:\murds\CompRep\classes;

Install Grasshopper software on a system and set the environment parameters as specified above.
Then poen a MS-DOS prompt and type Grasshopper at command prompt. The grasshopper system
opens a wizard and guides to start either a Region Registry or an Agency. Choose one of them.

• RegionRegistry

For a Region Registry, an example of the properties that needs to be specified in the Edit Profile
window of the wizard is mentioned below...
Default Address 192.168.0.100
Default Port 6020
Default Protocol rmi
Graphical UI True
Name MyRegion
Textual UI True
Trace Errors True
Trace Warnings True
Note: Always set the Default Port to 6020 and Name to MyRegion as these are hard coded in the
Headhunter and QueryMAnager classes. Otherwise, a Headhunter or a QueryManager trows an
error.

233

• Agency

For an Agency, an example of the properties that needs to be specified in the Edit Profile window of
the wizard is mentioned below...
Default Address 192.168.0.100
Default Port 6000
Default Protocol rmi
Graphical UI True
Name MyAgency
Region rmi://192.168.0.100:6020/MyRegion
Textual UI True
Trace Errors True
Trace Warnings True
Log True
Logfile AgencyLog
Security True

Grasshopper uses private key cryptography for SSL handshake. Hence keys are to be generated.
Use Keytool provided by Java to generate keys.

An example of key generation using keytool is geiven below:

C:\Documents and Settings\Jaya>keytool -genkey -alias agency1
Enter keystore password: changeit
What is your first and last name?
 [Unknown]: jaya gandham
What is the name of your organizational unit?
 [Unknown]: cs
What is the name of your organization?
 [Unknown]: iupui
What is the name of your City or Locality?
 [Unknown]: indy
What is the name of your State or Province?
 [Unknown]: in
What is the two-letter country code for this unit?
 [Unknown]: us
Is CN=jaya gandham, OU=cs, O=iupui, L=indy, ST=in, C=us correct?
 [no]: y

Enter key password for <agency1>
 (RETURN if same as keystore password): agency1

C:\Documents and Settings\Jaya>keytool -list
Enter keystore password: changeit

Keystore type: jks
Keystore provider: SUN

Your keystore contains 1 entry

agency1, May 27, 2004, keyEntry,

234

Certificate fingerprint (MD5): 5D:FD:A3:E9:89:AB:7C:02:6A:CF:31:BF:FD:D7:EB:67

C:\Documents and Settings\Jaya>keytool -export -alias agency1 -file agency1.cer
Enter keystore password: changeit
Certificate stored in file <agency1.cer>

If the Security is set to True, look at the Objects sub-window of the Edit Profile window… click on
the System option …it shows two sub-options...Security and Webhopper. Click on Security
option…look at the properties window... It shows properties for security…
set Sign Alias to Agency1.

Then, select Sign Storage option under Security…look at the properties window… set the following
properties…
Password changeit
Provider SUN
Type jks

Click the Start buntton of the Edit Profile window…
The wizard prompts for Private Key Password for Alias ‘agency1’
Enter agency1 and click OK

Then it prompts for keystore Password(client)
Click Cancel

Then it prompts for keystore Password(server)
Click Cancel

The system starts the security service for secure transfer of agents.

The following output in the MS-Dos window of the Agency shows that the security service is
successfully started…

C:\Documents and Settings\Jaya>grasshopper
Note: JAVA_HOME is undefined - JSP in Webhopper will not work.

Preparing Wizard [........]
Grasshopper Agent Platform V2.2.4 (C) 1998-2003 by IKV++

18:31:26:828 i AgentSystem: Checking system ...
18:31:26:828 i AgentSystem: Checking '192.168.0.103' (forced) ...
18:31:26:890 i AgentSystem: Hostname is 'Aryan'
 (IP-ADDRESS: 192.168.0.103)
18:31:26:890 i AgentSystem: Initializing security context ...
18:31:26:890 i SecurityContext: Init provider JSSE ...
18:31:27:015 i SecurityContext: Init provider IAIK ...
18:31:27:015 w SecurityContext: Failed, provider is not available!
18:31:27:015 i SecurityContext: Checking available providers ...
18:31:27:015 i SecurityContext: Number of providers: 5
 (SUN 1.42)
 (SunJSSE 1.42)
 (SunRsaSign 1.42)

235

 (SunJCE 1.42)
 (SunJGSS 1.0)
18:31:27:015 i SecurityStorageImpl: Opening keystore 'sign'...
 (LOCATION: file:/C:/Documents and Settings/Jaya/.keystore)
18:31:27:031 i SecurityStorageImpl: Keystore opened
 (PROVIDER: SUN version 1.42)
 (TYPE: jks)
 (ENTRIES: 1)
18:31:27:031 i SecurityStorage: Parsing keystore entries ...
18:31:27:031 i SecurityStorage: Found keypair for alias 'agency1'
18:31:27:031 i SecurityStorage: Password required ...
18:32:36:171 e SecurityStorage: Unrecoverable error: Cannot recover key
18:32:36:171 i SecurityStorage: Opening root CA keystore ...
 (LOCATION: file:/C:/Program Files/Java/j2re1.4.2_05/lib/security/cacerts)
18:32:36:312 i SecurityStorage: Keystore 'ca' opened
 (ENTRIES: 25)
18:32:36:312 i SecurityStorage: Merging ...
18:32:36:312 i SecurityStorage: Found trusted certificate ...
 (ALIAS: equifaxsecureebusinessca1)
18:32:36:328 i SecurityStorage: Found trusted certificate ...
 (ALIAS: verisignclass4ca)
18:32:36:328 w SecurityStorage: Certificate has expired. Ignoring.
18:32:36:328 i SecurityStorage: Found trusted certificate ...
 (ALIAS: entrustglobalclientca)
18:32:36:328 i SecurityStorage: Found trusted certificate ...
 (ALIAS: gtecybertrustglobalca)
18:32:36:328 i SecurityStorage: Found trusted certificate ...
 (ALIAS: entrustgsslca)
18:32:36:328 i SecurityStorage: Found trusted certificate ...
 (ALIAS: verisignclass1ca)
18:32:36:328 i SecurityStorage: Found trusted certificate ...
 (ALIAS: thawtepersonalbasicca)
18:32:36:328 i SecurityStorage: Found trusted certificate ...
 (ALIAS: entrustsslca)
18:32:36:328 i SecurityStorage: Found trusted certificate ...
 (ALIAS: thawtepersonalfreemailca)
18:32:36:328 i SecurityStorage: Found trusted certificate ...
 (ALIAS: verisignclass3ca)
18:32:36:328 i SecurityStorage: Found trusted certificate ...
 (ALIAS: gtecybertrustca)
18:32:36:328 i SecurityStorage: Found trusted certificate ...
 (ALIAS: thawteserverca)
18:32:36:328 i SecurityStorage: Found trusted certificate ...
 (ALIAS: thawtepersonalpremiumca)
18:32:36:328 i SecurityStorage: Found trusted certificate ...
 (ALIAS: equifaxsecureca)
18:32:36:328 i SecurityStorage: Found trusted certificate ...
 (ALIAS: thawtepremiumserverca)
18:32:36:328 i SecurityStorage: Found trusted certificate ...
 (ALIAS: entrust2048ca)
18:32:36:328 i SecurityStorage: Found trusted certificate ...

236

 (ALIAS: verisignserverca)
18:32:36:328 i SecurityStorage: Found trusted certificate ...
 (ALIAS: entrustclientca)
18:32:36:328 i SecurityStorage: Found trusted certificate ...
 (ALIAS: baltimorecybertrustca)
18:32:36:343 i SecurityStorage: Found trusted certificate ...
 (ALIAS: geotrustglobalca)
18:32:36:343 i SecurityStorage: Found trusted certificate ...
 (ALIAS: gtecybertrust5ca)
18:32:36:343 i SecurityStorage: Found trusted certificate ...
 (ALIAS: equifaxsecureglobalebusinessca1)
18:32:36:343 i SecurityStorage: Found trusted certificate ...
 (ALIAS: baltimorecodesigningca)
18:32:36:343 i SecurityStorage: Found trusted certificate ...
 (ALIAS: equifaxsecureebusinessca2)
18:32:36:343 i SecurityStorage: Found trusted certificate ...
 (ALIAS: verisignclass2ca)
18:32:36:343 w SecurityContext: Alias 'agency1' not found: signing not available

18:32:36:343 i SecurityContext: Initializing SSL ...
18:32:36:343 i SecurityContext: Trying IAIK ...
18:32:36:343 w SecurityContext: Failed - IAIK not found!
18:32:36:343 i SecurityContext: Trying JSSE ...
18:32:36:359 i SecurityStorageImpl: Opening keystore 'client'...
 (LOCATION: file:/C:/Documents and Settings/Jaya/.grasshopper/security/clientce
rts)
18:32:36:359 i SecurityStorageImpl: Password required ...
18:33:17:609 i SecurityStorageImpl: Loading canceled
18:33:17:609 i SecurityStorageImpl: Opening keystore 'server'...
 (LOCATION: file:/C:/Documents and Settings/Jaya/.grasshopper/security/serverce
rts)
18:33:17:609 i SecurityStorageImpl: Password required ...
18:33:37:437 i SecurityStorageImpl: Loading canceled
18:33:38:781 i SecurityContext: SSL-initialization ok.
18:33:39:750 i AgentSystem: Initializing GUID factory ...
18:33:39:812 i AgentSystem: Initializing ORB ...
 (ARGUMENTS: <none>)
18:33:39:937 i AgentSystem: Initializing communication service ...
18:33:40:218 i DirectoryService: Initializing ...
 (CONTEXT TYPE: Region Registration)
 (PROVIDER: rmi://192.168.0.103:6020)
 (ENTRY DN: MyRegion)
 (USERNAME: <none>)
 (PASSWORD: <none>)
18:33:44:296 i DirectoryService: Initialized.
 (de.ikv.grasshopper.agency.spi.RegionDirCtx@ca6cea)
18:33:44:312 i AgentSystem: Initializing registration service ...
18:33:44:328 i AgentSystem: Start default server ...
 (HOST: 192.168.0.103)
 (PROTOCOL: rmi)
 (PORT: 6000)

237

18:33:44:531 i AgentSystem: Initializing core services.
18:33:44:546 i AgentSystem: Initializing thread service ...
18:33:44:562 i AgentSystem: Initializing listener service ...
18:33:44:578 i AgentSystem: Initializing externalization service ...
18:33:44:578 i AgentSystem: Register agent system ...
18:33:44:578 i RegistrationService: requesting ticket ...
18:33:44:625 i RegistrationService: got Ticket
18:33:44:625 i AgentSystem: Creating default place ...
18:33:44:656 i SecurityManager: Null security manager set...
18:33:44:671 i AgentSystem: Shutdown hook added.
18:33:44:687 i Grasshopper: Loading builtin TUI ...
18:33:44:734 i ListenerService: Listener loaded.
 (CLASS: de.ikv.grasshopper.agency.TextConsole)
18:33:44:734 i Grasshopper: Loading builtin GUI ...
18:33:45:375 i Explorer: Loading desktop ...
 (FILE: C:\Documents and Settings\Jaya\.grasshopper\desktop-MyAgency.ini)
18:33:45:484 i ListenerService: Listener loaded.
 (CLASS: de.ikv.grasshopper.app.explorer.Explorer)
18:33:45:500 i AgentSystem: Event handling started

Agency Text Console (C) 1999 by IKV++
__
Type 'help [command]' for more information

• DomainSecurityManager(DSM)

java -Djava.security.policy=server.policy DomainSecurityManager <ip address of machine at
which a DSM is to be started> <port number at which a DSM must be contacted>

Example:
rmiregistry 3050

java -Djava.security.policy=server.policy DomainSecurityManager 192.168.0.100 3050

• ExternalCommunicationServer

java -Djava.security.policy=server.policy ExtComServCreator <ipaddress of machine at which an
ExtComServCreator is to be started> < port number at which an ExtComServCreator must be
started > < ip address of machine at which a DSM is running > < port number at which a DSM must
be contacted >

Example:
rmiregistry 3001

java -Djava.security.policy=server.policy ExtComServCreator 192.168.0.100 3001 192.168.0.100
3050

NOTE: ExternalCommunicationService provided by Grasshopper uses port number 3000 in this
application. Therfore, don't use that port number to run any other rmi programs.

238

• ActiveRegistry

java -Djava.security.policy=server.policy ActiveRegistry <ip address of machine at which an AR is
to be started> <port number at which an AR must be started>
<port number of rmiregistry where components must be registered with an AR> < ip address of
machine at which a DSM is running > <port number at which a DSM must be contacted> <AR
domain> <AR username> <AR password>

Example:
rmiregistry 4000

java -Djava.security.policy=server.policy ActiveRegistry 192.168.0.100 4000 9000 192.168.0.100
3050 Banking Reg1 Reg1

• Headhunter

java -Djava.security.policy=server.policy Headhunter <ip address of machine at which a HH is to
be started> <port number at which a HH must be started>
< ip address of machine at which a DSM is running > <port number at which a DSM must be
contacted> <ip address of the machine where Region Registry is initialized> <HH domain> <HH
username> <HH password>

Example:
rmiregistry 5001

java -Djava.security.policy=server.policy Headhunter 192.168.0.100 5001 192.168.0.100 3050
192.168.0.100 Banking Headhunter1 Headhunter1

• QueryManager

java -Djava.security.policy=server.policy QueryManager <ip address of machine at which a QR is
to be started> <port number at which a QR must be started>
ip address of machine at which a DSM is running > <port number at which a DSM must be
contacted> <ip address of the machine where Region Registry is initialized>

Example:
rmiregistry 5050

java -Djava.security.policy=server.policy QueryManager 192.168.0.100 5050 192.168.0.100 3050
192.168.0.100

• URDS_Proxy

java -Djava.security.policy=server.policy URDS_Proxy <ipaddress of machine at which a
URDS_Proxy is to be started> <port number at which a URDS_Proxy must be started> < ip address
of machine at which a QM is running > < port number at which a QM must be contacted > <number
of iterations>

Example:

239

rmiregistry 9009

java -Djava.security.policy=server.policy URDS_Proxy 192.168.0.100 9009 192.168.0.100 5050 2

• Running components

NOTE: All the class files required to run components are under the directory
C:\murds\CompRep\classes. Therefore, always run components under the directory
C:\murds\CompRep\classes.

java -Djava.library.path=. <ComponentName>
 -s <IPaddress of the machine where Active Registry is running:port number where components can
register with an AR/ComponentName>
 -u <codebase of a component’s XML file>

Example:
NOTE: Java versions below 1.4.2 accept URL of an XML file as
file://c:/murds/CompRep/bank_xml/account_database_spec.xml whereas Java versions from 1.4.2
accept URL of an XML file as file:\C:\murds\CompRep\bank_xml\account_database_spec.xml.
Therefore, choose appropriate URL format to start a component.

java -Djava.library.path=. AccountDatabase -s 192.168.0.100:9000/AccountDatabase -u
file://c:/murds/CompRep/bank_xml/account_database_spec.xml

java -Djava.library.path=. AccountDatabase -s 192.168.0.100:9000/AccountDatabase -u
file:\c:\murds\CompRep\bank_xml\account_database_spec.xml

java -Djava.library.path=. ATM -s 192.168.0.102:9000/ATM -u
file:\c:\murds\comprep\bank_xml\atm_spec.xml

java -Djava.library.path=. CashierTerminal -s 192.168.0.106:9000/CashierTerminal -u
file:\c:\murds\comprep\bank_xml\cashier_terminal_spec.xml

java -Djava.library.path=. CashierValidationServer -s 192.168.0.103:9000/CashierValidationServer
-u file:\c:\murds\comprep\bank_xml\cashier_validation_server_spec.xml

