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MEASUREMENT OF THE SHEAR WAVESPEED IN AN ISOTROPIC 
ELASTOMERIC PLATE 

1. INTRODUCTION 

Measurement of material properties of elastic systems has been and continues to be an 

active area of investigation. Resonant techniques have been used1"4 that usually involve 

measuring the natural resonant frequencies of slender structures. Once measured, these 

frequencies are equated to the corresponding analytical natural frequencies, which are typically 

functions of Young's modulus, shear modulus, length and/or mass. The resultant expression can 

be solved, which produces an estimate of Young's or shear modulus at each natural frequency. 

Nonresonant methods2'5'6 have also been used. Although slightly more complicated than 

resonant techniques, these methods have the ability to estimate material properties at frequencies 

other than the natural frequency of the system. Typically, nonresonant techniques involve 

equating measured data with a simplified analytical model of the system. The analytical model 

is rewritten so that the material properties that are to be estimated are rendered as functions of 

the data. 

Both resonant and nonresonant methods are usually performed at low frequencies, where 

simple (though limited) analytical models and corresponding dynamic behavior exists. Ideally, 

the structure under testing will have only a single mode of energy propagation, so that the effects 

of other wave motion will not corrupt the estimation process. 

Few wavespeed estimation techniques have been developed for general plates and beams. 

Most of the research has assumed thin plate (or beam) behavior where the theory is that of a 

single flexural wave propagating in the structure. The estimation of Young's modulus and shear 

modulus have been accomplished by matching the theoretical eigenfrequencies of a Timoshenko 

beam model to measured data and then deducing the material parameters.7 Some techniques at 

ultrasonic frequencies have been derived, frequently to support the medical imaging or the 

aviation industry. The measurement of elastic constants of thin immersed anisotropic plates has 

been undertaken using the identification of transmission zeros and poles based on various 

incident angles of an incoming ultrasonic wave.8 The estimation of stiffness and damping 
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properties of viscoelastic materials by numerically inverting the transmitted ultrasonic field of an 

immersed thin plate at different incident angles has been accomplished.   A method has been 

devised to identify Lame constants, thickness, density, longitudinal and shear attenuation and 

interfacial properties of a solid layer placed between two other layers.10 This method uses 

normal and angular ultrasonic reflectivity from the middle layer. The last three references 

involve modeling and measurement in the MHz region. Many indentation material testing 

methods exist." These usually consist of loading a location of the material and measuring the 

resultant force and depth. Using these measurements, one can determine Young's modulus and 

shear modulus. These methods are usually quasi-static and frequency independent. 

The elastic plate theory has been extensively developed,12'13 though thick plates have 

traditionally not been used to measure material properties because they support multiple wave 

types, and any measurement technique has to have the ability to discern between each wave type 

and its contribution to the measurement. Transfer function methods that measure one output (at 

a single location) versus a fixed input do not have the capability to separate various wave types 

and their associated response levels. It is precisely this property of multiple wave types that this 

report exploits to measure the shear wavespeed in a thick plate. This is in the region where 

dilatational and shear wavelengths begin to approach the plate thickness, i.e., fully elastic 

dynamic behavior. The plate is mechanically excited by a point force at a fixed frequency while 

simultaneously measuring the normal velocity of the plate across its entire surface. These spatial 

domain measurements are transferred into a wavevector (two-wavenumber (fc ^ )) domain by 

means of two Fourier transforms. Individual waves are identified in this domain, and the 

resulting wave propagation wavenumbers are accurately estimated. Once they are measured, the 

estimated wavenumbers are inserted into a Newton-Raphson iterative solver applied to the 

theoretical Rayleigh-Lamb equations for the propagation of waves in a plate with traction-free 

boundary conditions. Results of estimates of the squares of the shear wavenumbers are thus 

obtained, allowing for calculations of the shear wavespeed. Numerical simulations are used to 

confirm accuracy. An experiment is completed and is included to illustrate and verify the 

technique. The first three Lamb waves propagating in a urethane plate are excited at several 

frequencies and the inverse method is applied. From this, estimates of the shear wavespeed are 

determined. 



2. SYSTEM EQUATIONS 

The theory of wave motion in isotropic elastic thick plates is extensively developed. The 

objective of this work is to estimate the shear wavespeed using the theoretical Rayleigh-Lamb 

equations developed for free-free plate boundary conditions. Free-free plate boundary conditions 

correspond to the case of traction-free boundaries; i.e., the normal and shear stresses at the plate 

faces are zero. There are two separate Rayleigh-Lamb dispersion equations based on the 

symmetry of the horizontal displacement field about the mid-plane of the plate; one corresponds 

to symmetrical waves and the other to antisymmetric waves. The Rayleigh-Lamb equation for 

the propagation of symmetric waves is written as 

X^k2 -k2{hll)]    ^k2^k2-k2^k2 -k2     n 
f(kd,ks) = v  + -, rz = 0, (1) 

tim[Jk*-k2(h/2)\ (2k2-kjf 

1 7 
and the Rayleigh-Lamb equation for the propagation of antisymmetric waves is given by 

gikdM=^lkJ^JV2b+ (2k2~kjf = Q (2) 
tan[^jk2-k2{h/2)]    4k2^k2 -k2 yjkj -k2 

where h is the thickness of the plate (m), ks is the shear wavenumber (rad m" ), kj is the 

dilatational wavenumber (rad m"1), and k is the propagation wavenumber (rad m"1). When 

equation (1) or (2) is satisfied, the propagation wavenumber k corresponds to a specific Lamb 

wave (sometimes also referred to as Rayleigh-Lamb wave) traveling in the plate. Note that 

equation (1) or (2) will be applicable to any specific wave in the plate, but not both. These two 

equations define the wavenumber-frequency dispersion curves and will be used with the 

identification of Lamb waves in the medium to estimate the shear wavespeed. The measurement 

or estimation of the propagation wavenumber of interest, k, is discussed in the next section. The 

relationship between shear wavenumber and shear wavespeed is 



K= —, (3) "S 

where co is the angular frequency (rad s" ) and cs is the shear wavespeed (ms" ). The relationship 

between dilatational wavenumber and dilatational wavespeed is 

kd=—, (4) 
cd 

where Cd is the dilatational wavespeed (m s" ). 

To better understand the functions f(kc/,ks) and g(kj,ks), it is informative to display 

them as surfaces with respect to dilatational and shear wavenumber and examine their 

characteristic behavior. Figure 1 is a plot of the function f(k^,ks) versus shear and dilatational 

wavenumber using a propagation wavenumber of k = 68.9 rad m" displayed using a decibel 

scale. Figure 2 is a plot of the function g(kj,ks) versus shear and dilatational wavenumber 

using a propagation wavenumber of k = 128.9 rad m ' displayed using a decibel scale. In both 

figures 1 and 2, the right plot is a plot of the function with respect to the dilatational wavenumber 

with the shear wavenumber fixed at 100 rad m ', and the bottom plot is a plot of the function 

with respect to the shear wavenumber with the dilatational wavenumber fixed at 16 rad m . The 

plate thickness h was 0.0254 m and the frequency &>was {2K) 4000 rad s" . Note that in both 

plots, the functions vary significantly with respect to the shear wavenumber and are essentially 

flat with respect to the dilatational wavenumber. This overarching feature reveals two pertinent 

dynamic characteristics, which guide the estimation process: (1) the shear wavenumber (and, 

hence, the shear wavespeed) can be accurately estimated due to the well-defined minimum 

values of the surface with respect to the shear wavenumber; and (2) the dilatational wavenumber 

will be poorly estimated using this method due to the poorly defined, slowly varying minimum 

values of the surface with respect to the dilatational wavenumber. The estimation of the shear 

wavenumber, within this region, is relatively invariant with respect to the dilatational 

wavenumber. 
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Figure 1. Frequency Equation (1) for the Propagation of Symmetric Waves in an Elastic 
Plate Versus Shear and Dilatational Wavenumber 

(The right plot is with the shear wavenumber fixed at 100 rad m"'; the bottom plot is with the 
dilatational wavenumber fixed at 16 rad m"'. For all plots, propagation wavenumber is 

68.9 rad m"1 and frequency is 4 kHz.) 
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Figure 2. Frequency Equation (2) for the Propagation of Antisymmetric Waves in an Elastic- 
Plate Versus Shear and Dilatational Wavenumber 

(The right plot is with the shear wavenumber fixed at 100 rad m"1; the bottom plot is with the 
dilatational wavenumber fixed at 16 rad m*. For all plots, the propagation wavenumber is 

128.9 rad m"1 and the frequency is 4 kHz.) 

The dilatational wavespeed is assumed to be a known value and a convenient method to 

measure this wavespeed is given in appendix A. In section 4, it will be analyzed how an error in 

the dilatational wavespeed measurement will affect the shear wavespeed measurement. Using 

the dilatational wavespeed measured using the method described in appendix A, the dilatational 

wavenumber is calculated using equation (4). The propagation wavenumber is a known quantity 

that can be determined either from a simulation or via experiment (this is further discussed in 

sections 3 and 4). With both the dilatational wavenumber and the propagation wavenumber 



known, a Newton-Raphson method14 can then be applied to equations (1) or (2) for the 

estimation of the shear wavenumber that generates a value of zero for the function f(kd,ks) or 

g(kd,ks). To eliminate the ambiguity of both positive and negative shear wavenumbers, the 

estimation process is applied to the square of the wavenumber, rather than the wavenumber 

itself. For equation (1) written as f(kd,ks) = 0, the Newton-Raphson method yields 

y+1 
df(kd,ks) 

8{k2
s) 

J \kd,ks)j , (5) 

where 

Sf(kd,ks)_    h{l + tan2[^kj-k2\h/2)]} 

3(^2)        A^k2 - k2 tan[^jk2 -k2(h/2)] 

2k2^k2-k2 %k2^k2-k2^k2-k- 

(2k2-k2)3 

(6) 

^k2-k2(2k2-k2)2 

For equation (2) written as g(kd,ks) = 0, the Newton-Raphson method yields 

7 + 1 
Sg(kd,ks) 

d(k2) 
g(kd,ks)j (7) 

where 

dg(kd,ks)       h{\ + tan2[Jkf-k2{h/2)]} 

Ws)        4yjkj - k2 tan^k2 -k2{hl2)] 
+ 

(8) 
(2k2-k2) ~(2k2-k2)2 

2k2yjk2-k2^k2-k2 Sk2^k2~k2(^kj-k2)3 



where y is the iteration number of the algorithm. After every iteration j, the new estimate of ks 

can be inserted back into equation (1) or (2) to test for convergence. This numerical process is 

applied to each specific Lamb wave at each measurement frequency and the result is an estimate 

of the square of the shear wavenumber. Finally, equation (3) is used to find the shear 

wavespeed. 

Equations (1) - (8) illustrate that if the propagation wavenumber of any wave is known (or 

can be measured) with the dilatational wavespeed, the shear wavespeed can be estimated. That 

is, given k and kj, the Newton-Raphson technique can be employed to solve for ks. The process 

will be demonstrated with a numerical simulation and with experimental measurements. 



3. NUMERICAL SIMULATION 

The technique is first applied to a simulated data set created using a fully elastic three- 

dimensional model of the plate. The model is formulated from Naviers' equations of motion in 

an isotropic solid. By modeling the response as a sum of a dilatational component and a shear 

component, the general form of the solutions to the displacement fields are determined. Once 

these are known, they are inserted into the stress equations on free surfaces of the plate. In the 

chosen Cartesian coordinate system, the orientation is such that the xv-plane lies in the major 

dimensions of the plate and the z-axis is normal to the plate. On one side of the plate (z = 0), the 

normal stress of the plate is set equal to the stress applied by a point forcing function and this 

corresponds to a mechanical shaker located at XQ and yQ . This equation is written as 

ozz (x, v,0,t) = F0S(x - x0 )S(y - v0) exp(i<y/). (9) 

The other two shear stress boundary conditions at z = 0 are set equal to zero, i.e., 

aX2(x,y,0,t) = 0 (10) 

and 

ayz(x,y,0,t) = 0. (11) 

On the other side of the plate (z = h), all of the stress boundary conditions are zero, and these 

expressions are written as 

azz(x,y,h,t) = 0, (12) 

axz(x,y,h,t) = 0, (13) 

and 

avz(x,y,h,t) = 0. (14) •yz 

This produces a linear system of six equations that can be written in matrix form and 

consist of a dynamics matrix, an unknown coefficient vector, and a load vector. From this, the 

solution to the unknown constants can be determined. Finally, inserting these unknown values 



back into the displacement fields yields a known solution to the displacement fields in all three 

directions.1 

The simulation model corresponds to measurements of the normal velocity of the plate (at 

z-h) divided by the input force (at z = 0) (the mobility of the system.) in the kx,ky 

wavevector domain is written as 

W(kx,kv,a>) 
 '•—: = -Xt\acosin(ah) + X2\acocos(ah) + X^k (ocos(fih) 

F0 (15) 

+ X4kvcosm(fih) - X5kxcocos(fih) - X\k xcosm(j3h). 

where kx is wavenumber with respect to the x-axis rad m"1, k v is wavenumber with respect to 

the v-axis rad m1, i is v-1 , and 

<* = ^k2
d-k

2
x-k

2
v (16) 

and 

P = ^k2
s-k

2
x-kl . (17) 

The constants X. through Xb are wave propagation coefficients and are determined by 

solving the three-dimensional elastic plate equation of motion when excited by a point force. 

This solution was previously developed and is presented in appendix B. It is noted here that 

geometrical shapes other than a plate will support different wave pattern responses.15 

Using equation (15), the mobility of the plate in the kx,kv wavevector domain is simulated 

using a set of parameters that nominally corresponds to the experimental values in the next section. 

These parameters are dilatational wavespeed of 1422(l-0.05i) ms ', shear wavespeed of 

220(1 -0.05i) ms ', thickness of 0.0254 m, and density of 1100 kgm '. Note that the dilatational 

and shear wavespeeds are complex; this effect adds structural damping to the analysis that makes 

the simulation more realistic. Once the mobility fields are created (or later measured), they are 



searched so that the relative maximum of each Lamb wave propagating at a specific frequency is 

identified. From equation (B-35), a relative maxima for each specific wave in the kx,ky 

wavevector domain can be modeled as a circle centered at kx = ky = 0. Hence, a circular function 

was fit to the data sets of the relative maxima points. For each specific Lamb wave and fixed 

frequency, the radius of the circle was determined by the mean value of the radius of all of the 

individual points, via an ordinary least-square estimator. The resulting radius of the circle is the 

measured wavenumber k for the specific Lamb wave identified. Once known, either equation (5) 

(for symmetric waves) or equation (7) (for antisymmetric waves) is used to estimate the square of 

the shear wavenumber ks . From this, the shear wavespeed can be computed. 

The simulation was conducted from 1 - 6 kHz in increments of 1 kHz. It is noted at this 

point that different authors use different terminology to identify individual Lamb waves in the 

wavevector-frequency (or wavenumber-frequency) plane. In this report, the work of 

Achenbach   was used to define the names of each of the individual waves. Figure 3 is a plot of 

the wave propagation locations in the kx,kv wavevector domain at 5 kHz. The (first) flexural 

wave F(0) is denoted with an x, the longitudinal wave L(0) is denoted with a +, the (second) 

flexural wave FE( 1) is denoted with an o, and the circles fit to the markers are denoted with solid 

lines. (For clarity, the markers have been decimated by 80%.) Once the propagation 

wavenumbers are known, the shear wavespeed can be estimated using equation (1) for the 

symmetric L(0) longitudinal wave or equation (2) for the antisymmetric F(0) and FE(1) flexural 

waves. The results of this simulation are shown in table 1 for six frequency values. The average 

of the shear wavespeed estimate for the 11 simulated measurements was 220.5 ms '. It is noted 

that the addition of structural damping produces a slight biasing of the estimated shear wave 

values for each individual wave. When the damping value was set to 0, the estimation process 

produced an average value of 219.9 ms ', which varies slightly from the value of 220 ms ', and 

likely only due to discretization of the simulation in the wavevector domain. 
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Table 1. Estimated Shear Wavespeeds for Simulated Waves 

Wave Name and Symmetry 

Frequency 
/ 

(kHz) 

Simulated 
k 

(rad m') 

Estimated 

(rad m"') 

Estimated 
cs 

(ms1) 
F(0) - Antisymmetric 1 50.4 28.4 221.2 

F(0) - Antisymmetric 2 79.5 56.8 221.3 

F(0) - Antisymmetric 3 107.2 85.1 221.5 

F(0) - Antisymmetric 4 134.5 113.1 222.1 

F(0) - Antisymmetric 5 161.9 141.1 222.6 

L(0) - Symmetric 3 46.4 87.0 216.7 

L(0) - Symmetric 4 64.5 115.1 218.4 

L(0) - Symmetric 5 86.8 143.0 219.7 

L(0) - Symmetric 6 118.5 171.2 220.2 

FE(1) - Antisymmetric 5 34.8 141.6 221.8 

FE(1) - Antisymmetric 6 62.7 171.7 219.5 

The initial estimate of the shear wavespeed is important for convergence of the algorithm. 

For the FE( 1) flexural wave in a plate, the cut-on frequency can be approximated with 12 

(18) 

where /j is the cut-on frequency (Hz) where the FE(1) wave propagation initiates at zero 

wavenumber. This simulation shows that the FE(1) wave does not exist at 4 kHz and does exist 

at 5 kHz, which produces a minimum shear wavespeed value of 203 ms ' and a maximum shear 

wavespeed value of 254 ms ' using equation (18). Based on these values, a convergence search 

using initial estimates from 170 ms ' to 270 ms ' was conducted. The results are shown in 

figure 4, where the convergence of each of the eleven simulated waves was tested with respect to 

varying initial estimates. The initial wavespeed estimate is shown on the ;c-axis of the plot and 

the eleven specific waves are depicted on the j-axis of the plot. Each wave is separated by a 

horizontal dotted line. In figure 4, the black areas indicate nonconvergence and the white areas 

indicate convergence of the algorithm. The actual wavespeed used to formulate the simulation is 

shown as a vertical dashed line. Note that the algorithm converges for ten of the eleven 

simulations with reasonable initial estimates of the shear wavespeed. For the 6 kHz L(0) 

longitudinal wave, convergence was problematic. Investigation of equation (1) revealed a 

response with an extremely narrow minimum; thus, the algorithm had difficulty converging on 

this specific value. 
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4. EXPERIMENT 

An experiment was undertaken to verify the proposed technique to measure shear 

wavespeed in a plate. The estimation process uses the following assumption: (1) The return 

energy from the reflections at the edge of the plate is not interfering with the measurement 

process, and (2) the particle motion is linear. A plate was molded using Cytech Industries EN-6, 

a two-part urethane that consists of a mixture of a prepolymer and a curing agent. The plate was 

0.780 m by 0.755 m by 0.0254-m thick and weighed 16.6 kg. The dilatational wavespeed was 

previously measured at 1421 ms ', as described in appendix A. The plate was mounted on four 

corners with bungee cords and a Wilcoxon Model F3/Z602WA electromagnetic shaker was 

attached to the back near the middle. When the shaker was turned on, the front side was 

interrogated with a scanning Polytec LDV PSV-200 Doppler laser vibrometer that measured the 

normal velocity of the plate. (The experimental setup is shown in figure 5.) The experiment was 

conducted at a room temperature of 15.5°C. A square grid of 90 by 90 points with a point-to- 

point spacing of 0.0082 m was used to collect 8100 spatial domain data points. After the data 

were collected, they were transformed into the frequency domain using a fast Fourier transform. 

Next, it was zero padded and transformed into the kx,ky wavevector domain using a two- 

dimensional 512 by 512 point fast Fourier transform. Once this was accomplished, three Lamb 

waves were identified based on their relative maxima. Isotropic elastic plate theory predicts that 

every wave will be circular in the kx,ky wavevector domain; thus, a circle was fit using an 

ordinary least-square estimate to the wavevector domain data. Measurements were made from 

1 to 6 kHz in increments of 1 kHz. 

Figure 6 is a plot of the wave propagation locations in the kx,ky wavevector domain at 

5 kHz. The F(0) flexural wave data are denoted with an x, the L(0) longitudinal wave data are 

denoted with a +, the FE( 1) flexural wave is denoted with an o, and the circles fit to the markers 

are denoted with solid lines. For clarity, the markers have been decimated by 80%. Once the 

propagation wavenumbers are known, the shear wavespeed can be estimated using equation (1) 

for the symmetric L(0) longitudinal wave or equation (2) for the antisymmetric F(0) and FE(1) 

flexural waves. (Note, at the frequency of 5 kHz, the F(0) flexural wave is beginning to become 
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incoherent across the major dimensions of the plate.) The results of this estimation procedure are 

shown in table 2 for all of the waves measured during the test and at all experimental frequencies. 

(The measured propagation wavenumber of the L(0) longitudinal and F(0) flexural waves at 4 

kHz were used to construct figures 1 and 2, respectively.) The average value for the shear 

wavespeed estimate for the F(0) flexural wave was 235.6 ms ', the average shear wavespeed 

estimate for the L(0) longitudinal wave was 206.5 ms1, and the average value shear wavespeed 

estimate for the FE(1) flexural wave was 211.9 ms '. This indicates a mild dispersion of the 

shear wavespeed with respect to wave type. The average shear wavespeed for all measurements 

was 220.7 ms '. Using this average value and the value of the dilatational wavespeed, the 

dispersion curve in the wavenumber-frequency plane can be calculated. This is displayed as 

figure 7 along with each data point. The slight mismatch between theory and experiment is due to 

the variation of the shear wavespeed with respect to each individual wave. 

Table 2. Estimated Shear Wavespeeds for All Measured Waves 

Wave Name and Symmetry 

Frequency 
f 

(kHz) 

Simulated 
k 

(rad m"1) 

Estimated 
ks 

(rad m') 

Estimated 
C.v 

(ms1) 
F(0) - Antisymmetric 1 49.2 26.5 229.9 

F(0) - Antisymmetric 2 75.8 53.0 237.3 

F(0) - Antisymmetric 3 103.0 80.7 233.6 

F(0) - Antisymmetric 4 128.9 107.3 234.2 

F(0) - Antisymmetric 5 150.3 129.2 243.2 

L(0) - Symmetric 3 50.4 93.6 201.3 

L(0) - Symmetric 4 68.9 121.3 207.1 

L(0) - Symmetric 5 94.4 150.9 208.2 

L(0) - Symmetric 6 131.0 180.0 209.5 

FE(1) - Antisymmetric 5 41.7 148.4 211.8 

FE(1) - Antisymmetric 6 67.8 177.8 212.0 
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Figure 5. Experimental Setup of the Shear Wave Estimation Test 
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FE(1) Wave Data (o), and Theory ( ) 

Several parameters were varied to examine the accuracy of the measurement technique. 

First, the dilatational wavespeed was halved to 710.5 ms ' and then doubled 2840 ms ', which 

produced average shear wavespeed estimates of 224.1 ms"' and 220.0 ms1, respectively. This 

shows conclusively that the shear wavespeed estimate is relatively invariant to the dilatational 

wavespeed. Second, the thickness of the plate was thinned by 10% to 0.0229 m and thickened 

by 10% to 0.0279 m, and this produced average shear wavespeed estimates of 220.3 ms ' and 

222.0 ms ', respectively. Finally, each of the measurements was statistically analyzed by 

calculating the standard deviation of the radius of the data points for each wave at every 

frequency. Once known, the shear wavespeeds were estimated at +1 and -1 standard deviation 

away from the mean. The results are shown for each individual wave in table 3. At -1 standard 

deviation, the average shear wavespeed was estimated to be 229.9 ms ', and for +1 standard 



deviation, the average shear wavespeed was estimated to be 213.0 ms '. These estimates are off 

by the original estimate of 220.7 ms ' by 4.4% and 3.3%, respectively, which generally 

indicates a stable estimation process. 

Table 3. Statistical Analysis of Estimated Shear Wavespeeds 

Wave Name and Symmetry 

Frequency 
/ 

(kHz) 

Standard 
Deviation 
(rad m"1) 

Estimated 

(-1 Std. Dev.) 
(m s"1) 

Estimated 

(+1 Std. Dev.) 
(m s1) 

F(0) - Antisymmetric 1 3.6 261.2 204.8 

F(0) - Antisymmetric 2 3.3 253.3 223.1 

F(0) - Antisymmetric 3 2.6 241.7 226.0 

F(0) - Antisymmetric 4 2.2 239.3 229.3 

F(0) - Antisymmetric 5 4.3 251.9 235.2 

L(0) - Symmetric 3 3.0 212.5 191.3 

L(0) - Symmetric 4 2.9 214.3 200.8 

L(0) - Symmetric 5 1.2 209.9 206.7 

L(0) - Symmetric 6 2.3 215.9 207.7 

FE(1) - Antisymmetric 5 1.6 214.1 209.4 

FE(1) - Antisymmetric 6 2.0 214.9 209.2 
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5. CONCLUSIONS 

The shear wavespeed of an isotropic plate can be accurately estimated using the 

measurement technique developed in this report. The approach consists of exciting the plate 

with a point force, measuring the normal component of velocity over its surface, and 

transforming the spatial measurements into the kx, ky wavevector domain. The described 

technique is enabled by high-resolution wavevector measurement (via a scanning laser Doppler 

vibrometer). This fine resolution, coupled with zero padding within the kx,ky spectra, allows 

for straightforward identification of propagating Lamb waves and their associated wavenumbers. 

An estimate of the shear wavespeed, using a Newton-Raphson method applied to the theoretical 

Rayleigh-Lamb plate equations, is straightforward. Numerical simulations and experimental 

measurements demonstrated that the method provides accurate estimates of the shear wavespeed, 

even when other measurement parameters have uncertainties. Nonconvergence of the Newton- 

Raphson method can occur, primarily due to poor initial estimates of the shear wavespeed, 

although this did not occur with the experimental data evaluated here. 
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APPENDIX A 
MEASUREMENT OF DILATATIONAL WAVESPEED 

The dilatational wavespeed was measured using an echo reduction test. An echo reduction 

test is accomplished by insonifying the plate and measuring the transfer function of the incident 

acoustic energy divided by the reflected acoustic energy. This previously developed estimation 

method17 identifies the peaks in the data and relates each specific peak to a corresponding 

wavelength that is a half integer multiplication of the thickness of the plate. Figure A-l is the 

echo reduction data for the EN-6 plate. When the frequencies of the relative maxima are 

determined, they can be related to the dilatational wavespeed by 

(cd)»= —, (A-D 
n 

where /„ is the frequency of the nth relative maxima (Hz or eyeless" ) and n is the number of 

wavelengths in the material that creates the relative maxima (cycles). For the three relative 

maxima shown in figure A-l, the values of n are 1/2, 1, and 3/2, cycles, respectively. Once this 

relationship is known, the dilatational wavespeed can be calculated. The results are shown in 

table A-l. The average dilatational wavespeed for the test was calculated to be 1421 ms" . 

This method was shown to have an average difference of dilatational wavespeed of 1.6% when 

compared to an inverse method developed using the fully elastic response of the plate. 
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Table A-l. Dilatational Wavespeed Estimates at Relative Maxima 

n 
(cycles) 

fn 
(kHz) (ms"1) 

1/2 28.3 1435 

1 56.0 1422 

3/2 83.0 1406 
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Figure A-l. Magnitude of the Echo Reduction for the Plate Under Investigation 
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APPENDIX B 
COEFFICIENTS OF TRANSFER FUNCTION MATRICES 

The dynamic model of the plate has been previously developed12 for a system with no 

variation in the x-direction. Because the system described here has a point load (located at 

XQ = 0 and y$ = 0), the previous model is extended to include the variation in the x-direction, 

as well as retain the variations in the v- and z-directions. This theoretical development follows 

the previous model equations (8.1.62) - (8.1.67)    adding this additional degree of freedom. 

The constants Xj through X^ are wave propagation coefficients and are determined by 

solving the matrix equation 

x = A_1f, (B-l) 

where x is a 6 x 1 vector written as 

x = {*i    X2    X3    X4    X5    X6}T, (B-2) 

the nonzero entry of the 6 x 1 vector f is 

h=FQ, (B-3) 

and the nonzero entries of the 6 x 1 matrix A are 

au =-A(a2+k;+kh-2{ia2, (B-4) 

a]4=-2irfky, (B-5) 

al6=2ijufikx, (B-6) 
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a22 = 2\/uakv, 

a23=-M(fi2 + k2
x-k

2
y), 

a25 = -2fikxky, 

a32 = 2i/uakx, 

^34     =    —fikxK  y    , 

ai5=ju(/32-k2
x), 

a)6 = "A . 

.2   ,   ;,2   ,   .2 a41 = -[A(a  +kx +k;,) + 2{ja ]cos(ah), 

(B-7) 

(B-8) 

(B-9) 

(B-10) 

(B-ll) 

(B-12) 

(B-13) 

(B-14) 

(B-15) 

.2   ,    .2    ,   ; 2 a42 = -[A(er + £, +/t, ) + 2//ar ]sin(arA), 

a43 = 2i///ftvsin(/?/j), 

a44 = -2\nfSky cos(/?/<), 

a45 = -2\/jpkx sin(/?/z), 

(B-16) 

(B-17) 

(B-18) 

(B-19) 
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a46 - 2\fufikx cos(/3h), 

a51 = -2\/uakv sin(ah), 

a52 = 2\/jakv cos(ah), 

a5i=-M(/32+k2
x-k

2
v)cos(/lh), 

a54 = /u(fi2+k2
x-k

2
y)sm(0h), 

and 

a55 = -2jukxkv cos(fih), 

ase = ~2Mkxky sin(/?A), 

a61 = -2\fxakx sin(ah), 

a62 = 2\/jakx cos(ah), 

a62=vkxky[cos(j3h)-sin(/3h)], 

aM = pkxkv[sm(/Jh) - cos(j3h)], 

a65 = ju(/12 - k2) cos(/?/2) - /** sin(/tt) 

«66 = ViP2 -k2
x)sinC/?/?) - vk2

v cos(j3h). 

(B-20) 

(B-2i; 

(B-22) 

(B-23) 

(B-24) 

(B-25) 

(B-26) 

(B-27) 

(B-28) 

(B-29) 

(B-30) 

(B-3i; 

(B-32) 
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In the above equations, A and /v are the Lame constants and are related to the wavespeeds 

by 

U-P& (B-33) 

and 

cs = tp , (B-34) 

where p is the density of the plate (kg m    ). Finally, the wavenumber in the plate is related to 

the k x and k v wavenumbers by 

K = ^kl+kl . (B-35) 

When the response of the plate is at a wavenumber that corresponds to a Lamb wave, the 

propagation wavenumber equals the Lamb propagation wavenumber, i.e., K = k . 
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