
Lower Bounds on Type Checking Overloading

Dennis M� Volpano

Department of Computer Science

Naval Postgraduate School

Monterey� CA� ������ USA

Abstract

Smith has proposed an elegant extension of the ML type system for polymor�

phic functional languages with overloading� Type inference in his system requires

solving a satis�ability problem that is undecidable if no restrictions are imposed

on overloading� This short note explores the e�ect of recursion and the structure

of type assumptions in overloadings on the problem�s complexity�

Keywords� Type theory� overloading� computational complexity�

� Introduction

The ML type system �Mil��� DaM��� has been studied extensively and has some well�
known limitations	 One practical limitation is that it prohibits overloading by allowing
no more than one assumption per identi
er in a type context	 In an attempt to overcome
this limitation� Smith gives an elegant type system that merges ML�style polymorphism
and overloading �Smi��� Smi�� Smi���	 The system has the usual set of unquanti
ed
types given by

� ��� � j � � � � j ����� � � � � �n�

where � is an n�ary type constructor� like int or matrix � and � is a type variable	
The set of quanti
ed types� or type schemes� is given by

� ��� ���� � � � � �n with x� � ��� � � � � xm � �m � �

The set f��� � � � � �ng is the set of quanti�ed variables of �� fx� � ��� � � � � xm � �mg the set
of constraints of �� and � the body of �	 If there are no constraints� the with portion of
the type scheme is omitted	

The type inference rules are given in Figure �	 We can prove typing judgements of
the form A � e � � where A is a
nite set of assumptions of the form x � �� called a
type context 	 A type context A may contain more than one typing for an identi
er x�
in this case we say that x is overloaded in A	 We use the notation A � C to represent
A � x � �� for all x � � in C� and let jAj denote the number of assumptions in type
context A	

�Appeared in Information Processing Letters� ������ pp�	
��� Jan �		�� This material is based upon
activities supported by the National Science Foundation under Agreement No� CCR	����	�� Any
opinions� �ndings� and conclusions or recommendations expressed in this publication are those of the
authors and do not necessarily re�ect the views of the National Science Foundation�

�

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 JAN 1996

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Lower Bounds on Type Checking Overloading

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Department of Computer Science Naval Postgraduate School Monterey,
CA 93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

�hypoth� A � x � �� if x � � � A

���intro� A � fx � �g � e � � �

A � �x� e � � � � �
�x does not occur in A�

���elim� A � e � � � � �

A � e� � �
A � e e� � � �

�let� A � e � �
A � fx � �g � e� � �
A � let x � e in e� � � �x does not occur in A�

���intro� A �C � e � �
A � C��� �� �	�
A � e � ��� with C � �

��� not free in A�

���elim� A � e � ��� with C � �

A � C��� �� �	�
A � e � � ��� �� �	�

���� A � e � �
� �� ��

A � e � ��

Figure �� Typing Rules with Overloading

�

� � real � real � real
� � �� with � � �� �� � �

matrix���� matrix���� matrix���
� � int � int � int
� � real � real � real
� � �� with � � �� �� �� � � �� �� � �

matrix���� matrix���� matrix���

Figure �� A recursive type context

Observe that when C is empty the ���intro� and ���elim� rules reduce respectively to
type generalization and specialization in the type system of Damas and Milner �DaM���	
The second hypothesis of the ���intro� rule says that a constraint set can be moved into
a type scheme only if the constraint set is satis
able� the typing A � e � ��� with C � �

cannot be derived unless we know that there is some way of instantiating the �� so that
C is satis
ed	 This leads to the following problem�

De�nition ��� CS�SAT is the problem of given a constraint set C and a type context
A� is there a substitution S such that A � CS�

In practice� we would expect a type inference algorithm to generate C by specializing
the constraints of type schemes in A	 So from now on� we assume that constraints in C

can be formed by specializing constraints in A	
CS�SAT is undecidable as was shown by Smith �Smi���	 Type schemes in this system

permit very expressive type contexts to be constructed� some of which may be recursive
in the following sense	

De�nition ��� Let S � fx� y � � �g be the set of identi�ers with assumptions in a type
context A� Then the dependency relation of A is a binary relation R on S such that xRy

i� x � � � A and y � � is a constraint of � �x and y are not necessarily distinct	�

De�nition ��� A type context A with dependency relation R is recursive i� 	x� xR� x�

For example� the type context in Figure � is recursive due to the assumptions for �
and �	 As a result of recursion� we have in
nitely�many types at which � and � have
instances	

� Lower Bounds

Although CS�SAT is decidable when recursion is prohibited� it remains hard if the struc�
ture of type assumptions is not restricted� requiring nondeterministic exponential time	

Theorem ��� CS�SAT is NEXPTIME complete for nonrecursive type contexts�

Proof� Given a nonrecursive type context A and a constraint set C� construct a set E
of equations as follows	 For each constraint x � � � C� nondeterministically choose an
assumption x � ��� with C� � � � in A� add to E equation � � � ���� �� �
�� where �
 is new�
and add the members of C ���� �� �
� to C	 Then E is uni
able i� the original set C is

satis
able with respect to A	 The size of E is at most exponential in jAj	 Whether E is
uni
able can be decided in linear time so CS�SAT is in NEXPTIME	 For hardness� let

B � fcp�n��� � �� q� � a� � a� �

 � an � �g

in the PTIME reduction of Theorem �	� in �VoS���� a�a�

an is an input string x

to a nondeterministic Turing machine M of exponential time complexity	 Then B is
satis
able under Ax i� M accepts x	

Next we consider the complexity of CS�SAT with the style of overloading permitted
in the lazy functional programming language Haskell �Has���	 An identi
er may be
overloaded in Haskell� but only through multiple instance declarations� which give rise
to what we call a Haskell type context 	 A Haskell type context is very structured	

De�nition ��� Suppose X is the set of identi
ers of a nonempty type context H	 Then
H is a Haskell type context if for each x � X� there is a type �x with exactly one free
type variable �x� possibly occurring more than once� such that all assumptions for x in
H are described by the set

���
��

x � ��
� with C� � �x��x �� ����
���
			

x � ��
n with Cn � �x��x �� �n��
n��

���
��

where n � �� �i �� �j for i �� j� and

y � � � Ci implies y � X� � � �y��y ��
�� and
 � �
i	

If x is overloaded �n � �� then the type �x used in forming the assumptions for x is
the least common generalization �Rey��� of the types

�x��x �� ����
��� � � � � � �x��x �� �n��
n��

If x has only one assumption �n � ��� then it is� technically speaking� not overloaded�
nevertheless it may appear in a constraint	 The body of a type scheme in an assumption
must be formed by specializing a type with one level of type structure� or in other words�
by a single type constructor �� parameterized perhaps by one or more type variables	
Further� in a constraint y � �� it must be possible to form � by merely renaming the free
type variable of �y� the type used in forming all assumptions for y	

The recursive type context of Figure � is an example of a Haskell type context	 Con�
sider the assumptions for �	 The bodies of its type schemes are formed by instantiating
� of the type �� �� � with real and matrix���� so �� � �� �� �	

Regular tree languages recognized by DR tree automata characterize the types of
identi
ers in Haskell type contexts	 Formally� a k�ary� ��valued tree is a mapping t �
dom�t�� �where dom�t� f�� � � � � kg� is a nonempty set and closed under pre
xes	 We
can assume for our purposes that � is a ranked alphabet of type constructors ��� � � � � �n	
We let F� denote the set of all
nite ��trees	 A deterministic root�to�frontier �DR� ��
tree automaton M is a pair �A� S� such that

�	 A is a
nite DR ��algebra �A���� and

�

�	 S � A is the initial state	

A DR ��algebra is a pair �A��� where A is a nonempty set of states and� for every
� � �m with m � � there is a partial transition function �A � A � Am	 If � � ���
then �A A �GeS���	 A run of M on a tree t is a mapping g � dom�t� � A such that
g��� � S� and if t�w� � �� � � �m for m � �� and g�w� � a� then

�A�a� � �g�w��� g�w��� � � � � g�wm���

A run g of M on a tree t is accepting if g�w� � t�w�A for every node w in the frontier
of t	 The set of all trees on which M has accepting runs is the language of M � written
T �M �	

Deciding whether the intersection of a sequence of DR tree automata is nonempty is
EXPTIME complete	 Hardness can be proved by a log�space generic reduction from
polynomial�space bounded alternating Turing machines �ATMs� �Sei���	 The lower
bound on CS�SAT for Haskell type contexts follows directly from this result while the
upper bound follows from the following lemma�

Lemma ��� Suppose H is a Haskell type context� If x is an identi�er of H then a DR
tree automaton Mx can be constructed such that

T �Mx� � f	 j H � x � �x��x �� 	�g�

Further� such automata can be constructed for all identi�ers of H in time exponential
�space polynomial	 in jHj�

Proof� Given a Haskell type contextH� letX be the set of identi
ers ofH	 Let A � �X�
and � be the ranked alphabet of type constructors in H	 De
ne Mx � �A� fxg�� where
A � �A���� and A is initially constructed so that T �A� f g� � F�	 Then extend A with
the following transitions	 For every r X� let r � �A i� all identi
ers in r have an
instance assumption in H at nullary type constructor �	 Let �A�r� � �r�� � � � � rk� i� all
have an instance at type constructor ����� � � � � �k�� for k � �	 Set rj� for � � j � k�
contains an identi
er� say z� i� there is an identi
er in r whose instance assumption at
� has a constraint on z involving �j	 There are �jXj subsets to consider� each of which
can be stored in at most jXj space	

The following theorem was proved by Seidl �Sei��� in the framework of Nipkow and
Prehofer�s type system �NiPr��	 A proof is given here for Smith�s system	

Theorem ��� CS�SAT is EXPTIME complete for Haskell type contexts�

Proof� Let H be a Haskell type context and C a constraint set	 First construct a DR
tree automaton �A� fxg� for each identi
er x of H	 By Lemma �	�� this can be done
in exponential time	 Suppose that for each constraint x � � � C� � � �x��x �� 	�� for
some type 		 Let g be a run of �A� fxg� on 		 If there is a node w � dom�	� such
that 	�w� � �m� m � �� and g�w� is unde
ned� then reject	 If 	 has type variables�
then associate a DR tree automaton with every occurrence of a variable in 	 as follows	
For every node w such that 	�w� � � and g�w� � a� assign to this occurrence of type
variable �� tree automaton �A� a�	

�

Now for every type variable � in C� with occurrences ��� � � � � �m� decide whether the
languages of their assigned tree automata

�A� a��� � � � � �A� am�

intersect by checking the emptiness of automaton

�A� a� �

 � am��

This can be done in PTIME �Don���	 Then accept i� this intersection is nonempty for
all type variables in C	

Hardness follows from a log�space reduction from the DR tree automaton intersection
problem	 Given a sequence of tree automataM��M�� � � � �Mk� where Mi � �Ai� Si� and
Ai is the ��algebra �Ai���� we construct a constraint set C and a Haskell type context

H such that C is satis
able with respect to H i�
Tk
i�� T �Mi� is nonempty	 Assume the

sets of states A�� � � � � Ak are disjoint	 For all � � i � k add to H a set of assumptions
for Mi as follows	 If �Ai�a� � �a�� � � � � am�� for � � �m� then add to H�

a � ���

�m with a� � ��� � � � � am � �m � ����� � � � � �m�

and for � � ��� add a � � for all a � �Ai 	 Then with C � fS� � �� � � � � Sk � �g� we haveTk
i�� T �Mi� is nonempty i� C is satis
able with respect to H	

Now we consider the complexity of CS�SAT when all assumptions for an overloaded
identi
er� say x� in a Haskell type context are formed by specializing �x with unary
or nullary type constructors only	 An example of this kind of overloading is given in
Figure �	 We call such contexts unary Haskell type contexts	

De�nition ��� A Haskell type context H is a unary Haskell type context if all assump�
tions for every identi�er x of H have the form x � �x��x �� ���� for some nullary type
constructor ��� or x � �� with C � �x��x �� ������ for some unary type constructor ��

Theorem ��� CS�SAT is PSPACE complete for unary Haskell type contexts�

Proof� Let H be a unary Haskell type context and C a constraint set	 Suppose that for
each constraint x � � � C� � � �x��x �� 	�� for some type 		 Let g be a run of �A� fxg� on
	� where �A� fxg� is constructed �on demand� and in polynomial space by Lemma �	�	
As in Theorem �	� assign tree automaton �A� a� to a type variable � in 	 if 	�w� � � and
g�w� � a for some node w	 If a variable � in C has occurrences ��� � � � � �m� then check
whether the languages of their assigned tree automata �A� a��� � � � � �A� am� intersect by
checking the emptiness of �A� a� �

 � am�	 This automaton represents a DFA since
H is a unary Haskell type context	 Thus emptiness can be checked by searching an
on�demand construction of it nondeterministically in log �jHj space� or DSPACE�jHj��	

Hardness follows from a log�space reduction from the DFA intersection problem
�Koz���	 Let M��M�� � � � �Mk be a sequence of DFAs� where Mi is �Qi��� �i� q�i� Fi��
and the sets of states Q�� � � � � Qk are disjoint	 Create a unary Haskell type context H
where for all � � i � k� assumptions are added to H for Mi as follows	 For all q� q� � Qi

and a � � such that �i�q� a� � q�� add to H�

q � �� with q� � � � a���

�

and for all q � Fi add q � � where � is a nullary type constructor	 Then with C � fq�� �

�� � � � � q�k � �g�
Tk

i�� L�Mi� is nonempty i� C is satis
able with respect to H	

And
nally we consider unary Haskell type contexts without recursion	

Theorem ��� CS�SAT is NP hard for nonrecursive� unary Haskell type contexts�

Proof� The proof is by a PTIME reduction from CNF�SAT	 Suppose E is a
CNF
formula with clauses d�� � � � � dn and distinct variables x�� � � � � xm	 The satisfying truth
assignments for each clause di are recognizable as unary trees by a DR tree automaton
Mi � �Ai� Si� that can be constructed in O�m� time	 That is� B��B��

Bm���

�� �
T �Mi� i� the assignment of truth values B�� � � � � Bm to x�� � � � � xm respectively satis
es
di	 Assume the sets of states for the n automata are disjoint	 Then for all � � i � n�
add to a type context H� the assumption

a � �� with b � � � B���

if BAi�a� � b and a � � if a � �Ai	 Then fS� � �� � � � � Sn � �g is satis
able under H i� E

is satis
able� and H is nonrecursive and unary	

� Summary

We have observed that it is necessary to simultaneously restrict both recursion in over�
loadings and the structure of type assumptions if there is to be any hope of solving
CS�SAT e�ciently	 Surprisingly� even for the simple kind of overloading allowed in
Haskell the problem is hard	

References

�DaM��� Damas� L	 and Milner� R	� Principal Type Schemes for Functional Programs�
Proc� �th ACM Symp� on Principles of Prog� Lang�� pp	 �������� ����	

�Don��� Doner� J	� Tree acceptors and some of their applications� J� Computer and
System Sciences� �� pp	 �������� ����	

�GeS��� Gecseg� F	 and Steinby M	� Tree Automata� Akademiai Kiado� Budapest Hun�
gary� ����	

�Has��� Report on the Programming Language Haskell� A Non�strict� Purely Func�
tional Language� Version �	�� ACM SIGPLAN Notices� ������ May ����	

�Koz��� Kozen� D	� Lower Bounds for Natural Proof Systems� Proc� �th Annual Sym�
posium on Foundations of Computer Science� IEEE Computer Society� Long
Beach� CA pp	 �������� ����	

�Mil��� Milner� R	� A Theory of Type Polymorphism in Programming� J� Computer
and System Sciences� �	� pp	 ������ ����	

�

�NiPr�� Nipkow� T	 and Prehofer� C	� Type Checking Type Classes� Proc� ��th ACM
Symp� on Principles of Prog� Lang�� pp	 �������� ���	

�Rey��� Reynolds� J	C	� Transformational Systems and the Algebraic Structure of
Atomic Formulas�Machine Intelligence� �� pp	 ������� ����	

�Sei��� Seidl� H	� Haskell Overloading is DEXPTIME complete� Information Process�
ing Letters� ������ pp	 ������ October ����	

�Smi��� Smith� G	S	� Polymorphic Type Inference for Languages with Overloading and
Subtyping� Ph	D	 Thesis� Department of Computer Science� Cornell Univer�
sity� Technical Report ������� ����	

�Smi�� Smith� G	S	� Polymorphic Type Inference with Overloading and Subtyping�
Proc� TAPSOFT ��
� LNCS

�� Springer�Verlag� pp	 �������� ���	

�Smi��� Smith� G	S	� Principal Type Schemes for Functional Programs with Overload�
ing and Subtyping� Sci� of Comp� Prog�� ������� pp	 �������� Dec	 ����	

�VoS��� Volpano� D	M	 and Smith� G	S	� On the Complexity of ML Typability with
Overloading� Proc� �th Conf� on Functional Programming Languages and
Computer Architecture� LNCS ���� Springer�Verlag� pp	 ������ ����	

�

