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Abstract

Smith has proposed an elegant extension of the ML type system for polymor�

phic functional languages with overloading� Type inference in his system requires

solving a satis�ability problem that is undecidable if no restrictions are imposed

on overloading� This short note explores the e�ect of recursion and the structure

of type assumptions in overloadings on the problem�s complexity�
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� Introduction

The ML type system �Mil��� DaM��� has been studied extensively and has some well�
known limitations	 One practical limitation is that it prohibits overloading by allowing
no more than one assumption per identi
er in a type context	 In an attempt to overcome
this limitation� Smith gives an elegant type system that merges ML�style polymorphism
and overloading �Smi��� Smi�
� Smi���	 The system has the usual set of unquanti
ed
types given by

� ��� � j � � � � j ����� � � � � �n�

where � is an n�ary type constructor� like int or matrix � and � is a type variable	
The set of quanti
ed types� or type schemes� is given by

� ��� ���� � � � � �n with x� � ��� � � � � xm � �m � �

The set f��� � � � � �ng is the set of quanti�ed variables of �� fx� � ��� � � � � xm � �mg the set
of constraints of �� and � the body of �	 If there are no constraints� the with portion of
the type scheme is omitted	

The type inference rules are given in Figure �	 We can prove typing judgements of
the form A � e � � where A is a 
nite set of assumptions of the form x � �� called a
type context 	 A type context A may contain more than one typing for an identi
er x�
in this case we say that x is overloaded in A	 We use the notation A � C to represent
A � x � �� for all x � � in C� and let jAj denote the number of assumptions in type
context A	

�Appeared in Information Processing Letters� ������ pp�	
��� Jan �		�� This material is based upon
activities supported by the National Science Foundation under Agreement No� CCR
	����	�� Any
opinions� �ndings� and conclusions or recommendations expressed in this publication are those of the
authors and do not necessarily re�ect the views of the National Science Foundation�
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�hypoth� A � x � �� if x � � � A

���intro� A � fx � �g � e � � �

A � �x� e � � � � �
�x does not occur in A�

���elim� A � e � � � � �

A � e� � �
A � e e� � � �

�let� A � e � �
A � fx � �g � e� � �
A � let x � e in e� � � �x does not occur in A�

���intro� A �C � e � �
A � C��� �� �	�
A � e � ��� with C � �

��� not free in A�

���elim� A � e � ��� with C � �

A � C��� �� �	�
A � e � � ��� �� �	�

���� A � e � �
� �� ��

A � e � ��

Figure �� Typing Rules with Overloading
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� � real � real � real
� � �� with � � �� �� � �

matrix���� matrix���� matrix���
� � int � int � int
� � real � real � real
� � �� with � � �� �� �� � � �� �� � �

matrix���� matrix���� matrix���

Figure �� A recursive type context

Observe that when C is empty the ���intro� and ���elim� rules reduce respectively to
type generalization and specialization in the type system of Damas and Milner �DaM���	
The second hypothesis of the ���intro� rule says that a constraint set can be moved into
a type scheme only if the constraint set is satis
able� the typing A � e � ��� with C � �

cannot be derived unless we know that there is some way of instantiating the �� so that
C is satis
ed	 This leads to the following problem�

De�nition ��� CS�SAT is the problem of given a constraint set C and a type context
A� is there a substitution S such that A � CS�

In practice� we would expect a type inference algorithm to generate C by specializing
the constraints of type schemes in A	 So from now on� we assume that constraints in C

can be formed by specializing constraints in A	
CS�SAT is undecidable as was shown by Smith �Smi���	 Type schemes in this system

permit very expressive type contexts to be constructed� some of which may be recursive
in the following sense	

De�nition ��� Let S � fx� y � � �g be the set of identi�ers with assumptions in a type
context A� Then the dependency relation of A is a binary relation R on S such that xRy

i� x � � � A and y � � is a constraint of � �x and y are not necessarily distinct	�

De�nition ��� A type context A with dependency relation R is recursive i� 	x� xR� x�

For example� the type context in Figure � is recursive due to the assumptions for �
and �	 As a result of recursion� we have in
nitely�many types at which � and � have
instances	

� Lower Bounds

Although CS�SAT is decidable when recursion is prohibited� it remains hard if the struc�
ture of type assumptions is not restricted� requiring nondeterministic exponential time	

Theorem ��� CS�SAT is NEXPTIME complete for nonrecursive type contexts�

Proof� Given a nonrecursive type context A and a constraint set C� construct a set E
of equations as follows	 For each constraint x � � � C� nondeterministically choose an
assumption x � ��� with C� � � � in A� add to E equation � � � ���� �� �
�� where �
 is new�
and add the members of C ���� �� �
� to C	 Then E is uni
able i� the original set C is






satis
able with respect to A	 The size of E is at most exponential in jAj	 Whether E is
uni
able can be decided in linear time so CS�SAT is in NEXPTIME	 For hardness� let

B � fcp�n��� � �� q� � a� � a� � 
 
 
 � an � �g

in the PTIME reduction of Theorem �	� in �VoS���� a�a� 
 
 
an is an input string x

to a nondeterministic Turing machine M of exponential time complexity	 Then B is
satis
able under Ax i� M accepts x	

Next we consider the complexity of CS�SAT with the style of overloading permitted
in the lazy functional programming language Haskell �Has���	 An identi
er may be
overloaded in Haskell� but only through multiple instance declarations� which give rise
to what we call a Haskell type context 	 A Haskell type context is very structured	

De�nition ��� Suppose X is the set of identi
ers of a nonempty type context H	 Then
H is a Haskell type context if for each x � X� there is a type �x with exactly one free
type variable �x� possibly occurring more than once� such that all assumptions for x in
H are described by the set

���
��

x � ��
� with C� � �x��x �� ����
���
			

x � ��
n with Cn � �x��x �� �n��
n��

���
��

where n � �� �i �� �j for i �� j� and

y � � � Ci implies y � X� � � �y��y �� 
�� and 
 � �
i	

If x is overloaded �n � �� then the type �x used in forming the assumptions for x is
the least common generalization �Rey��� of the types

�x��x �� ����
��� � � � � � �x��x �� �n��
n��

If x has only one assumption �n � ��� then it is� technically speaking� not overloaded�
nevertheless it may appear in a constraint	 The body of a type scheme in an assumption
must be formed by specializing a type with one level of type structure� or in other words�
by a single type constructor �� parameterized perhaps by one or more type variables	
Further� in a constraint y � �� it must be possible to form � by merely renaming the free
type variable of �y� the type used in forming all assumptions for y	

The recursive type context of Figure � is an example of a Haskell type context	 Con�
sider the assumptions for �	 The bodies of its type schemes are formed by instantiating
� of the type �� �� � with real and matrix���� so �� � �� �� �	

Regular tree languages recognized by DR tree automata characterize the types of
identi
ers in Haskell type contexts	 Formally� a k�ary� ��valued tree is a mapping t �
dom�t�� �where dom�t� 
 f�� � � � � kg� is a nonempty set and closed under pre
xes	 We
can assume for our purposes that � is a ranked alphabet of type constructors ��� � � � � �n	
We let F� denote the set of all 
nite ��trees	 A deterministic root�to�frontier �DR� ��
tree automaton M is a pair �A� S� such that

�	 A is a 
nite DR ��algebra �A���� and

�



�	 S � A is the initial state	

A DR ��algebra is a pair �A��� where A is a nonempty set of states and� for every
� � �m with m � � there is a partial transition function �A � A � Am	 If � � ���
then �A 
 A �GeS���	 A run of M on a tree t is a mapping g � dom�t� � A such that
g��� � S� and if t�w� � �� � � �m for m � �� and g�w� � a� then

�A�a� � �g�w��� g�w��� � � � � g�wm���

A run g of M on a tree t is accepting if g�w� � t�w�A for every node w in the frontier
of t	 The set of all trees on which M has accepting runs is the language of M � written
T �M �	

Deciding whether the intersection of a sequence of DR tree automata is nonempty is
EXPTIME complete	 Hardness can be proved by a log�space generic reduction from
polynomial�space bounded alternating Turing machines �ATMs� �Sei���	 The lower
bound on CS�SAT for Haskell type contexts follows directly from this result while the
upper bound follows from the following lemma�

Lemma ��� Suppose H is a Haskell type context� If x is an identi�er of H then a DR
tree automaton Mx can be constructed such that

T �Mx� � f	 j H � x � �x��x �� 	�g�

Further� such automata can be constructed for all identi�ers of H in time exponential
�space polynomial	 in jHj�

Proof� Given a Haskell type contextH� letX be the set of identi
ers ofH	 Let A � 
�X�
and � be the ranked alphabet of type constructors in H	 De
ne Mx � �A� fxg�� where
A � �A���� and A is initially constructed so that T �A� f g� � F�	 Then extend A with
the following transitions	 For every r 
 X� let r � �A i� all identi
ers in r have an
instance assumption in H at nullary type constructor �	 Let �A�r� � �r�� � � � � rk� i� all
have an instance at type constructor ����� � � � � �k�� for k � �	 Set rj� for � � j � k�
contains an identi
er� say z� i� there is an identi
er in r whose instance assumption at
� has a constraint on z involving �j	 There are �jXj subsets to consider� each of which
can be stored in at most jXj space	

The following theorem was proved by Seidl �Sei��� in the framework of Nipkow and
Prehofer�s type system �NiPr�
�	 A proof is given here for Smith�s system	

Theorem ��� CS�SAT is EXPTIME complete for Haskell type contexts�

Proof� Let H be a Haskell type context and C a constraint set	 First construct a DR
tree automaton �A� fxg� for each identi
er x of H	 By Lemma �	�� this can be done
in exponential time	 Suppose that for each constraint x � � � C� � � �x��x �� 	�� for
some type 		 Let g be a run of �A� fxg� on 		 If there is a node w � dom�	� such
that 	�w� � �m� m � �� and g�w� is unde
ned� then reject	 If 	 has type variables�
then associate a DR tree automaton with every occurrence of a variable in 	 as follows	
For every node w such that 	�w� � � and g�w� � a� assign to this occurrence of type
variable �� tree automaton �A� a�	
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Now for every type variable � in C� with occurrences ��� � � � � �m� decide whether the
languages of their assigned tree automata

�A� a��� � � � � �A� am�

intersect by checking the emptiness of automaton

�A� a� � 
 
 
 � am��

This can be done in PTIME �Don���	 Then accept i� this intersection is nonempty for
all type variables in C	

Hardness follows from a log�space reduction from the DR tree automaton intersection
problem	 Given a sequence of tree automataM��M�� � � � �Mk� where Mi � �Ai� Si� and
Ai is the ��algebra �Ai���� we construct a constraint set C and a Haskell type context

H such that C is satis
able with respect to H i�
Tk
i�� T �Mi� is nonempty	 Assume the

sets of states A�� � � � � Ak are disjoint	 For all � � i � k add to H a set of assumptions
for Mi as follows	 If �Ai�a� � �a�� � � � � am�� for � � �m� then add to H�

a � ��� 
 
 
�m with a� � ��� � � � � am � �m � ����� � � � � �m�

and for � � ��� add a � � for all a � �Ai 	 Then with C � fS� � �� � � � � Sk � �g� we haveTk
i�� T �Mi� is nonempty i� C is satis
able with respect to H	

Now we consider the complexity of CS�SAT when all assumptions for an overloaded
identi
er� say x� in a Haskell type context are formed by specializing �x with unary
or nullary type constructors only	 An example of this kind of overloading is given in
Figure �	 We call such contexts unary Haskell type contexts	

De�nition ��� A Haskell type context H is a unary Haskell type context if all assump�
tions for every identi�er x of H have the form x � �x��x �� ���� for some nullary type
constructor ��� or x � �� with C � �x��x �� ������ for some unary type constructor ��

Theorem ��� CS�SAT is PSPACE complete for unary Haskell type contexts�

Proof� Let H be a unary Haskell type context and C a constraint set	 Suppose that for
each constraint x � � � C� � � �x��x �� 	�� for some type 		 Let g be a run of �A� fxg� on
	� where �A� fxg� is constructed �on demand� and in polynomial space by Lemma �	�	
As in Theorem �	
� assign tree automaton �A� a� to a type variable � in 	 if 	�w� � � and
g�w� � a for some node w	 If a variable � in C has occurrences ��� � � � � �m� then check
whether the languages of their assigned tree automata �A� a��� � � � � �A� am� intersect by
checking the emptiness of �A� a� � 
 
 
 � am�	 This automaton represents a DFA since
H is a unary Haskell type context	 Thus emptiness can be checked by searching an
on�demand construction of it nondeterministically in log �jHj space� or DSPACE�jHj��	

Hardness follows from a log�space reduction from the DFA intersection problem
�Koz���	 Let M��M�� � � � �Mk be a sequence of DFAs� where Mi is �Qi��� �i� q�i� Fi��
and the sets of states Q�� � � � � Qk are disjoint	 Create a unary Haskell type context H
where for all � � i � k� assumptions are added to H for Mi as follows	 For all q� q� � Qi

and a � � such that �i�q� a� � q�� add to H�

q � �� with q� � � � a���

�



and for all q � Fi add q � � where � is a nullary type constructor	 Then with C � fq�� �

�� � � � � q�k � �g�
Tk

i�� L�Mi� is nonempty i� C is satis
able with respect to H	

And 
nally we consider unary Haskell type contexts without recursion	

Theorem ��� CS�SAT is NP hard for nonrecursive� unary Haskell type contexts�

Proof� The proof is by a PTIME reduction from 
CNF�SAT	 Suppose E is a 
CNF
formula with clauses d�� � � � � dn and distinct variables x�� � � � � xm	 The satisfying truth
assignments for each clause di are recognizable as unary trees by a DR tree automaton
Mi � �Ai� Si� that can be constructed in O�m� time	 That is� B��B��
 
 
Bm��� 
 
 
�� �
T �Mi� i� the assignment of truth values B�� � � � � Bm to x�� � � � � xm respectively satis
es
di	 Assume the sets of states for the n automata are disjoint	 Then for all � � i � n�
add to a type context H� the assumption

a � �� with b � � � B���

if BAi�a� � b and a � � if a � �Ai	 Then fS� � �� � � � � Sn � �g is satis
able under H i� E

is satis
able� and H is nonrecursive and unary	

� Summary

We have observed that it is necessary to simultaneously restrict both recursion in over�
loadings and the structure of type assumptions if there is to be any hope of solving
CS�SAT e�ciently	 Surprisingly� even for the simple kind of overloading allowed in
Haskell the problem is hard	
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