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Model Reduction for Dynamic Sensor Steering: A Bayesian

Approach to Inverse Problems

by

Sonja Wogrin
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on May 16, 2008, in partial fulfillment of the

requirements for the degree of
Master of Science in Computation for Design and Optimization

Abstract

In many settings, distributed sensors provide dynamic measurements over a specified
time horizon that can be used to reconstruct information such as parameters, states
or initial conditions. This estimation task can be posed formally as an inverse prob-
lem: given a model and a set of measurements, estimate the parameters of interest.
We consider the specific problem of computing in real-time the prediction of a con-
tamination event, based on measurements obtained by mobile sensors. The spread
of the contamination is modeled by the convection diffusion equation. A Bayesian
approach to the inverse problem yields an estimate of the probability density function
of the initial contaminant concentration, which can then be propagated through the
forward model to determine the predicted contaminant field at some future time and
its associated uncertainty distribution. Sensor steering is effected by formulating and
solving an optimization problem that seeks the sensor locations that minimize the
uncertainty in this prediction.

An important aspect of this Dynamic Sensor Steering Algorithm is the ability to
execute in real-time. We achieve this through reduced-order modeling, which (for our
two-dimensional examples) yields models that can be solved two orders of magnitude
faster than the original system, but only incur average relative errors of magnitude
O(10−3). The methodology is demonstrated on the contaminant transport problem,
but is applicable to a broad class of problems where we wish to observe certain
phenomena whose location or features are not known a priori.

Thesis Supervisor: Karen E. Willcox
Title: Associate Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Motivation

In numerous fields of science and engineering there is a strong demand for precise ob-

servation of large-scale physical systems, modeled by partial differential equations, in

order to detect phenomena of interest that can not be foreseen and to compute accu-

rate predictions regarding those phenomena. For example, let us observe the amount

of contamination in the air of the Boston city area as measured by mobile sensors

and modeled by the convection diffusion equation. Imagine the following scenario:

due to a terrorist attack, a highly poisonous contaminant is set free, endangering the

life of many civilians. This situation calls for immediate results; counteractions, like

evacuations or the deployment of the fire department, have to take place as soon as

possible. It becomes apparent that the time available to come up with an accurate

prediction of the ongoing contamination is extremely limited. Even though the results

computed by a high fidelity, large-scale model are the most accurate for this appli-

cation, the long computational time required by those models (hours or even days)

makes them inappropriate under these circumstances. Furthermore, as the obtained

prediction depends greatly on the location of sensors, we need a way to find the best

sensor locations for this purpose.

The discipline of model order reduction studies properties of large-scale dynamical

systems and reduces their complexity while maintaining their input-output behavior.
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The reduced-order model is computationally much less expensive than the full model

and thus yields real-time solutions for a negligible trade-off in accuracy. The Bayesian

approach to inverse problems is based on observed data, which allow one to estimate

unknown model parameters. These two techniques will be key ingredients for tackling

the problem stated above. The remaining challenge is to develop a methodology that

combines these two disciplines. This will enable accurate real-time predictions, which

are optimal for the observed data in systems that change quickly, and to handle

uncertainty in measurements.

1.2 Literature Review

Model order reduction is a technique that observes properties of large-scale dynamical

systems and reduces their complexity while maintaining their input-output behavior.

The majority of methods obtains the reduced-order model by projecting the full

model onto a basis that spans a space of lower dimension. This reduced basis can be

computed using proper orthogonal decomposition [29, 47], Krylov-subspace methods

[18, 21, 26], reduced basis methods [42], balanced truncation [36] or a Hessian-based

model reduction approach [4].

The Bayesian approach to inverse problems is thoroughly discussed in the liter-

ature, e.g. [30, 50] and deals with estimating unknown model parameters based on

observed data. The solution of the inverse problem is represented by a probability

density as oppose to just a single estimate of the model parameters as in the determin-

istic approach. In the Bayesian approach, model as well as measurement uncertainties

can be incorporated into the solution very elegantly.

In [34, 35] an approach is proposed for the description of atmospheric flows based

on proper orthogonal decomposition. In this thesis we assume different velocity fields

and focus on the contaminant transport problem. Combining the work that was

presented in [34, 35] and this thesis can yield even more efficient and more realistic

results.

Optimal sensor placement is an issue that has been widely addressed in literature.

18



This discipline holds many challenges for several different applications. The most

relevant papers, for the purpose of this thesis, shall be discussed now.

Both, [6] and [44], address the problem of placing sensors in water networks to

detect maliciously injected contaminants, which has a similar motivation as our prob-

lem. [6] formulates a linear mixed-integer problem that minimizes the fraction of the

population at risk and assumes a finite number of sensor locations. While efficiently

solvable this approach, as many others, only considers a finite number of sensor lo-

cations. [44] focuses on finding a layout of early warning detection stations based

on an optimization problem comprising water quality conditions and extended pe-

riod unsteady hydraulics. The main limitation of this methodology is the real-time

assumption and again the finite number of possible sensor locations.

An autonomous model-based reactive observing systems has been developed in

[11] with a set of static and mobile sensors. The focus lies on a sample selection

problem modeled by a subset selection problem for regression. They assume the

physical phenomena that they wish to observe, do not change temporally (or change

very slowly). In the contaminant transport setting on the other hand we have to

be prepared for fast changing phenomena. In [11] the mobile sensors are steered by

an algorithm based on local linear regression as oppose to our eigenvalue-based op-

timization problem. They distinguish between three different kinds of sensor faults

and describe methods to detect those faults whereas we propose to incorporate mea-

surement errors as uncertainties when solving the inverse problem.

In [24] a sensor placement strategy to obtain the most effective visual sensing

of an area of interest is proposed and solved by solving a variant of the art-gallery

problem [43]. This problem is NP-hard and once more the optimal solution is chosen

among a finite number of possibilities. The issue of reducing uncertainty over a

region of interest has been addressed by [13] and [27]. In [27] this is approached

by an algorithm that maximizes mutual information in Gaussian processes and [13]

presents an algorithm for an observation targeting problem formulated as a sensor

selection problem.

In order to obtain the best prediction we have to find the Bayesian optimal exper-
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imental design by solving an optimization problem aiming at minimizing uncertainty

in the prediction based on an approximation of the variance-covariance matrix. The

most common design criteria focus on minimizing the trace of this matrix (this is

referred to as A optimality), other approaches [5, 38] involve the determinant or

the largest eigenvalue and are known as D and E optimal designs [2]. The work

of [1, 12, 28] involves A optimal design. In this thesis we focus on an E optimal

approach.

Many of the optimal sensor placement approaches mentioned above compute an

optimal solution from a finite number of sensor locations. In this thesis we rather

choose to formulate the task as a continuous optimization problem, where the possible

sensor locations are assumed to be continuous and the sensors are represented using

mollified delta functions. This formulation has the advantage that it can be solved

efficiently using a gradient-based algorithm, enabling the possibility of real-time com-

putations.

1.3 Thesis Objectives

The main goal of this thesis is to develop a Dynamic Sensor Steering Algorithm,

divided into an offline and online stage, that operates in real-time in order to observe

quickly changing phenomena in physical processes. The specific objectives to reach

this goal are the following:

1. As the physical processes are modeled by partial differential equations and lead

to large-scale systems, which are too computationally expensive to be solved in

real-time, we propose an algorithm that builds a reduced-order model only once

in the offline stage and repeatedly runs through the online stage using only the

reduced-order model.

2. We solve a Bayesian formulation of the ill-posed inverse problem to account for

model and measurement uncertainties.

3. We formulate and solve an optimization problem based on the largest eigen-
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value of the covariance matrix, yielding optimal sensor locations to minimize

uncertainty in the prediction over the output region of interest.

4. We demonstrate the newly proposed methodology by applying it to a conta-

minant transport problem modeled by the convection diffusion equation and

extending the methodology to be able to handle a parameterized velocity field.

1.4 Thesis Outline

In Chapter 2 we develop the methodology for a Dynamic Sensor Steering Algorithm

based on a characterization of prediction uncertainty, computed using a Bayesian

formulation of the inverse problem and the application of model order reduction.

Each component of the approach, i.e. the Bayesian framework, the model order

reduction and the optimization are discussed in detail.

In Chapter 3 the methodology developed in Chapter 2 is applied to a contaminant

transport problem modeled by the convection diffusion equation. We also include a

thorough comparison between full and reduced-order model performance in forward

and inverse problem as well as in the optimization.

We introduce a parameterized velocity field in the Dynamic Sensor Steering Al-

gorithm setting in Chapter 4, which enables a more realistic simulation of physical

processes. The posed challenge is to maintain the algorithm’s computational real-

time property, by building reduced-order models that are not only dependent on the

initial condition but also on the velocity field. The results are presented in Chapter

5 where we employ a Navier-Stokes solver to pre-compute the velocity fields.

Finally, Chapter 6 concludes the thesis with a summary and suggestions for future

work.
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Chapter 2

Dynamic Sensor Steering

Algorithm - Methodology

This chapter provides a description of the methodology used in the newly developed

Dynamic Sensor Steering Algorithm, which is based on a characterization of prediction

uncertainty, computed using a Bayesian formulation of the inverse problem and the

application of model order reduction. In Section 2.1 the algorithm’s general work

flow, its steps and its functionality are presented, followed by a detailed discussion

in Section 2.2 on how a reduced-order model is incorporated to obtain an accurate

predictive capability that operates in real-time. We will then analyze the Bayesian

framework and the optimization problem employed, in Section 2.3 and Section 2.4

respectively.

2.1 Problem Description

2.1.1 Introductory Definitions

Let the two or three-dimensional domain that we wish to observe be named Ω. In

order to obtain measurements of an ongoing physical process, Q mobile sensors are

placed into this domain. For the purpose of this general discussion we do not assume

any knowledge about Ω. Constraints describing the sensors’ mobility have to be
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adapted according to each individual problem setting. Therefore let us collect the

corresponding sensor-related information in the so-called sensor constraints. One

approach to defining these constraints is described in Section 2.4. Let the sensor

locations be denoted as Si
1, . . . , S

i
Q for i=1,2,3. . . , where the superscript refers to a

time index and the subscript corresponds to the number of the sensor. Furthermore

let Tsteer denote the available steering time for the mobile sensors. We do not assume

anything about the initial sensor placement except that they have to be within our

domain Ω. Within this domain there are some specific regions that are of greater

interest than others. It may be temporary interest because sensors detect some curious

unexpected phenomenon or permanent interest due to additional knowledge on the

structure of Ω, e.g. residential areas. The union of those regions will be referred to as

the output region of interest and be denoted as ΩI . Let g(·) be the forward operator

used to model the natural processes we want to observe e.g. the convection-diffusion

equations, let m be the input vector for the model g, and let d denote the vector

containing the outputs of interest. Then this can be written as follows

d = g(m). (2.1)

In the case that g is a linear operator, equation (2.1) can be written as:

d = Gm. (2.2)

In Section 2.2, we will present a model reduction framework. For now, we define the

following notation. Let gr(·) denote the reduced-order model for g(·) and Gr be the

reduced-order model for G, then we obtain the two reduced systems (2.3)–(2.4) that

correspond to (2.1) and (2.2), respectively. The goal of model order reduction is to

determine a reduced model so that d ≈ dr while achieving a significant reduction in

the computational cost.

dr = gr(m), (2.3)

dr = Grm (2.4)
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2.1.2 Contaminant Transport Example

To demonstrate the results of the Dynamic Sensor Steering Algorithm we consider a

two-dimensional contaminant transport problem, modeled by the convection-diffusion

equation,

∂u

∂t
+ v · ∇u− κ∇2u = 0 in Ω× (0, tf ), (2.5)

u = 0 on ΓD × (0, tf ), (2.6)

∂u

∂n
= 0 on ΓN × (0, tf ), (2.7)

u = u0 in Ω for t = 0, (2.8)

where u denotes the contaminant concentration, v denotes the velocity field, tf de-

notes the observed time horizon and κ is the diffusivity constant. We impose homo-

geneous Dirichlet boundary conditions on the Dirichlet boundary ΓD × (0, tf ) and

Neumann boundary conditions on the Neumann boundary ΓN × (0, tf ). We perform

the time discretization using the Backward Euler method and a Streamline Upwind

Petrov-Galerkin [8] finite-element method using triangular elements for the discretiza-

tion in space to obtain the discrete-time system

D1 u(k + 1) = D2 u(k), k = 0, 1, . . . , T − 1 (2.9)

d(k) = C u(k), k = 0, 1, . . . , T (2.10)

u(0) = u0, (2.11)

where u(k) ∈ RN represents the state at time tk, d(k) ∈ RQ is the output at time tk

and the initial condition u0 is the state at time t = 0 and the matrices D1 ∈ RN×N ,

D2 ∈ RN×N , C ∈ RQ×N .

2.1.3 The Algorithm

The Dynamic Sensor Steering Algorithm focuses on computing the best-possible pre-

diction of an ongoing physical process in the output region of interest ΩI in real-time
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based on sensor measurements. In order to improve the amount of information ob-

tained from the measurements and thereby increase the accuracy of the prediction, we

solve an optimization problem to determine new sensor locations that lead to mini-

mized uncertainty in the prediction. The algorithm is made up of two separate stages,

the offline stage, which we execute only once, and the online stage, which consists of a

measure-predict-optimize-steer cycle. This online cycle is repeatedly executed to im-

prove the accuracy of the obtained prediction, while incorporating new measurement

information as time progresses. The formation of a reduced-order model in the offline

stage enables the successful application of the Dynamic Sensor Steering Algorithm to

problems that require real-time processing. The online stage consists of five major

steps computing a current prediction, solving an optimization problem on the sensor

locations and steering each mobile sensor to its new and improved destination. Note

that for this section the input vector m consists of an initial condition denoted by u0

only.

Step 0b. Initialize sensor locations S1
0,…,SQ

0.

Step 0a. Build reduced-order model gr(u0) of physical system g(u0).

Figure 2-1: Offline stage of the Dynamic Sensor Steering Algorithm.

Offline Stage of the Dynamic Sensor Steering Algorithm

Figure 2-1 shows the offline stage of the algorithm. The details of each step are

discussed in the following:

Step 0a. Build reduced-order model gr(·) of the physical system g(·) and continue

working with reduced system throughout the Dynamic Sensor Steering Algorithm.
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Note that some well-known techniques to construct reduced-order models and the

method applied in this thesis for the application to a contaminant transport problem

are discussed in Section 2.2.

Step 0b. Place the Q mobile sensors at locations S0
1 , . . . , S

0
Q within Ω and acti-

vate them. We note that specification of the initial sensor locations is an important

question; however, in the setting of this thesis we focus on the dynamic element, i.e.

mobile sensors that are moved to optimal locations so as to minimize uncertainty in

the prediction.

Online Stage of the Dynamic Sensor Steering Algorithm

Figure 2-2 shows the online stage of the algorithm. The details of each step are

discussed in the following:

Step 1. The Q sensors create measurements of the environment at their current

locations Si−1
1 , . . . , Si−1

Q in cycle i. Let di = (di
1, . . . , d

i
Q) be the obtained data at the

Q different sensor locations in cycle i.

Step 2. Based on the data di = (di
1, . . . , d

i
Q) and the known forward model gr(·)

(Gr in the linear case), we solve the inverse problem using a Bayesian approach and

compute the posterior probability density σM(m). Please refer to Section 2.3 for

further details on the Bayesian framework.

Step 3. In many applications some regions ΩI within the observed domain Ω need

to be watched more thoroughly than others at any time, meaning that the physical

process that we want to predict interests us especially in those regions. ΩI can be

fixed, e.g. representing an urban region, or could change from cycle to cycle, e.g. if

we wish to track regions of high concentration.

Step 4. We optimize the sensor locations within Ω such that the uncertainty

in the prediction for the output regions of interest ΩI is minimized. For details on

how the optimization problem is set up and solved please refer to Section 2.4. As

input parameters we use the current set of sensor locations Si−1
1 , . . . , Si−1

Q , a set of

constraints specifying allowable sensor movements, knowledge about the domain Ω

and ΩI , and the model – either g or gr. As the output of this optimization problem
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we obtain the optimal sensor locations Si
1, . . . , S

i
Q, whose quality will be reflected in

Step 2 of the next cycle of the online stage, where a new prediction will be produced.

Step 5. The last step in the algorithm steers the mobile sensors from their cur-

rent locations Si−1
1 , . . . , Si−1

Q to the optimized locations Si
1, . . . , S

i
Q within Tsteer and

return to Step 1. Note that the choice of Tsteer is connected to the above mentioned

constraints on sensor movements. Depending on the application, there may be a

trade-off between extending Tsteer, thereby increasing the amount of reachable sensor

locations and limiting the number of cycles that can be run in the time available,

or rather focusing on gaining as many predictions as possible and restricting sensor

movements.

2.2 Model Reduction Framework

2.2.1 Significance for Dynamic Sensor Steering Algorithm

In general, model order reduction is applied to highly complex large-scale dynamical

systems to obtain a reduced-order model (ROM) whose dimensions are considerably

smaller, thus leading to faster computational time while the input-output behavior

remains approximately the same. In the majority of cases model reduction techniques

project the large-scale systems onto a basis in a space of reduced dimension. Some

well-known methods to obtain this reduced basis are proper orthogonal decomposition

(POD) [14, 29, 47], approximate balanced truncation, Krylov-subspace methods [18,

21, 26] and Hessian-based model reduction [4] for initial value problems.

Let us emphasize once more the significance of model order reduction for realistic

applications of the Dynamic Sensor Steering Algorithm. In order to run the online

stage in real time, a ROM of the physical model has to be computed offline making

sure computations remain accurate but are considerably faster. Figure 2-3 depicts

the trade-off between full and reduced-order model.

After construction in the offline stage the reduced-order model is used at two

points within the online stage: in Step 2 when solving the inverse problem and in
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Step 1. Obtain measurements di at sensor locations 
S1

i-1,…,SQ
i-1.

Cycle i

Step 2. Estimate u0 and its associated uncertainty by solving the  
inverse problem d = gr(u0) using a Bayesian approach.

Step 3. Define output region of interest I.

Step 4. Solve optimization problem to obtain new sensor 
locations S1

i,…,SQ
i.

Step 5. Steer sensors to new locations and return to Step 1.

Figure 2-2: One cycle of the online stage of the Dynamic Sensor Steering Algorithm.
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Step 4 when solving the optimization problem. For a detailed comparison between full

and reduced-order model performance in a two-dimensional contaminant transport

problem please refer to Chapter 3.

2.2.2 Model Reduction Methodology

In this section let us focus on how to build the reduced-order models intended for this

thesis. Therefore let us restate the linear discrete-time system describing an initial

value problem from Section 2.1.2 as

D1 u(k + 1) = D2 u(k), k = 0, 1, . . . , T − 1 (2.12)

d(k) = C u(k), k = 0, 1, . . . , T (2.13)

u(0) = u0, (2.14)

where u(k) ∈ RN represents the state at a time tk for k = 0, . . . , T , d(k) ∈ RQ is the

output at time t and the initial condition u0 is the state at time t = 0. We obtain

D1, D2 ∈ RN×N and C ∈ RQ×N from spatial and temporal discretization methods.

Then the system from (2.12) can be rewritten in matrix form

A u = F u0, (2.15)

d = C u, (2.16)

where

A =



I 0 . . . . . . 0

−D2 D1 0

0 −D2 D1
. . .

...
. . . . . . . . . 0

0 0 −D2 D1


, C =



C 0 . . . . . . 0

0 C 0
... 0 C

. . .
...

. . . . . . 0

0 0 C


, F =



I

0

0
...

0


(2.17)
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Input:
mi-1, Si-1=(S1

i-1,…,SQ
i-1)

Online stage using 
full model g(m)

Online stage using 
reduced model gr(m)

Output:
mi, Si=(S1

i,…,SQ
i)

Output:
mr

i, Sr
i=(S1,r

i,…,SQ,r
i)

Si ~ Sr
i

mi ~ mr
i

Real-time 
computations

Figure 2-3: Trade-off between full and reduced-order model in one online cycle.
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and the matrices’ dimensions are given by A = RN(T+1)×N(T+1), F = RN(T+1)×N and

C = RQ(T+1)×N , and where u and d are defined as

u =


u(0)

u(1)
...

u(T )

 , d =


d(0)

d(1)
...

d(T )

 . (2.18)

As N is usually large we need to create a reduced-order model by projecting the

large-scale system onto a basis in a space of considerably reduced dimension n.

Let V ∈ RN×n denote the matrix containing the n orthonormal basis vectors and

ur(k) ∈ Rn denote the reduced-order state, then V ur(k) should provide us with a

good approximation for the state u(k) for k = 0, 1, . . . , T . Then we apply a Galerkin

projection method to the full system by projecting onto the space spanned by V and

finally obtain the reduced-order model of the discrete-time system as

D1,r ur(k + 1) = D2,r ur(k), k = 0, 1, . . . , T − 1 (2.19)

dr(k) = Cr ur(k), k = 0, 1, . . . , T (2.20)

ur(0) = V T u0, (2.21)

where Di,r = V TDiV for i = 1, 2 and Cr = CV . Note that this can also be rewritten

in matrix form

Ar ur = Fr u0, (2.22)

dr = Cr ur, (2.23)

where Ar, Cr, ur and dr are defined exactly like A, C, u and d in (2.17) & (2.18)

except for the fact that each inner component of the vectors or matrices has a subscript

r now and thus we only have to exchange N to n to get the dimensions of the reduced
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system. Only Fr ∈ Rn(T+1)×N is defined slightly differently, as

Fr =



V T

0

0
...

0


. (2.24)

We use the Hessian-based model reduction approach in [4] where s seed initial con-

ditions are computed as the dominant eigenvectors of the system’s Hessian defined

as

H = (CA−1F )T (CA−1F ). (2.25)

Then state trajectories at time steps k = 0, 1, 2, . . . , T are generated for each seed

initial condition and stored in the snapshot matrix X ∈ RN×M , where M = s(T +1).

The technique used to efficiently compute the basis V from all the state trajectories

is proper orthogonal decomposition (POD). There are several ways to compute the

POD [31] but for our means we will concentrate on a method using the singular value

decomposition of the snapshot matrix X. Let the singular value decomposition for

the matrix of snapshots be defined as

X = USV T , (2.26)

then the following holds

XXT = US2UT , (2.27)

XTX = V S2V T . (2.28)

Due to the above equations, the singular values of X are the square roots of the

eigenvalues of XTX or XXT and moreover the left and right singular vectors of X

are in fact the eigenvectors of XXT and XTX. The proper orthogonal modes are

the left singular vectors of X and the proper orthogonal values are defined as the
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Model of  
physical system 

g(.) 

Model parameters 
m

Observed data 
d

Forward Problem

Solve for d 

by using g(.), m 

Inverse Problem 

Solve for m 

by using g(.), d 

Figure 2-4: Comparison between inverse and forward problem.

corresponding singular values. As we started out to gain a basis containing n vectors,

we just have to choose the dominant n left singular values of X to obtain the basis.

2.3 Bayesian Inverse Approach

Throughout this section we are following the notation introduced by [22, 50]. and

thus let g(·) denote the physical system we wish to observe, let m denote the model

parameters and let d be the observable parameters, such that the theoretical forward

problem can be written as

d = g(m). (2.29)

In each online cycle of the Dynamic Sensor Steering Algorithm we obtain measure-

ments di that are related to model parameters mi via the physical model g(·) as

described in (2.29). In order to predict mi using the observed data di and the for-

ward operator g(·) an inverse problem needs to be solved. While the forward problem

maps from the model parameters or the “cause” to the data, the inverse problem solves

for the model parameters using the data and the knowledge of the physical model,

see Figure 2-4. In practice the theoretical results for d obtained by using (2.29) will

never exactly be the same as the actual observations that are made during the on-
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line stage of the Dynamic Sensor Steering Algorithm due to model uncertainties and

measurement errors. Thus, when reconstructing m based on g(·) and d, it is hard to

quantify whether the obtained solution m is correct. What we are rather interested

in is a way of saying that some solutions are in fact more likely than others. In order

to accurately incorporate the model and measurement uncertainties and the likeliness

of a solution m we introduce probability density functions to the inverse problem,

leading us the Bayesian inverse approach where we compare theoretical predictions

to observations. One basic tool needed in this framework is Bayes’ Theorem relating

cause to effect.

2.3.1 Bayes Theorem

Let A and B be two events, then the joint probability can be written as

P (A,B) = P (A | B) P (B) = P (B | A) P (A), (2.30)

where P (A | B) is the conditional probability of A in case event B has already

happened. From this we immediately obtain Bayes’ Theorem

P (A | B) =
P (B | A)P (A)

P (B)
. (2.31)

Let us now incorporate Bayes’ Theorem into the Dynamic Sensor Steering setting in

the following section.

2.3.2 Solution of the Inverse Problem

Let M denote the model space manifold and D denote the data space manifold.

Furthermore let µM(m) and µD(d) denote the homogeneous probability density of

the model space manifold and the data space manifold respectively, then their joint

homogeneous probability density can be written as follows

µ(d,m) = µD(d) µM(m). (2.32)
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Let θ(d|m) be the conditional probability density that provides knowledge about d

when we have m. This is determined by the forward operator and hence called the

likelihood function. The joint probability density correlating m and d is defined as

Θ(d,m) = θ(d|m) µM(m). (2.33)

Due to the fact that there are measurement and model uncertainties let us introduce

the joint prior probability density ρ(d,m). When solving the inverse problem we

are interested in the information which will be provided by the posterior density. In

particular, we are interested on the posterior information on the model parameters

m. From Bayes’ Theorem we obtain the joint posterior probability density σ(d,m)

as follows:

σ(d,m) = q
Θ(d,m) ρ(d,m)

µ(d,m)
, (2.34)

where q is a normalizing constant. From (2.34) we obtain the two marginal probability

densities σM(m) and σD(d) as follows:

σM(m) =

∫
M
σ(d,m) dm (2.35)

σD(d) =

∫
D
σ(d,m) dd (2.36)

σM(m) contains the posterior information on the model parameters given the ob-

served data and is therefore the solution to the inverse problem in the Bayesian

setting. Due to the fact that the number of model parameters may be large it might

be difficult to be able to extract information from σM(m). Thus in order to analyze

this posterior probability density in more detail we want to observe marginal densi-

ties. Let m = (m1, . . . ,mP ) where P denotes the number of model parameters and

let M = M1 × . . . ×MP be the Cartesian product of P model manifolds, then the

posterior marginal probability density for mi for an 1 ≤ i ≤ P can be obtained by

σmi
(mi) =

∫
M1

dm1 . . .

∫
Mi−1

dmi−1

∫
Mi+1

dmi+1 . . .

∫
MP

dmP σM(m). (2.37)
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2.3.3 Gaussian Case

This section is dedicated to restating the posterior probability density defined in

Section 2.3.2 in case uncertainties are Gaussian. Let us assume theoretical model-

ing uncertainties, described by the covariance matrix C−1
T , are Gaussian. Then the

conditional probability θ(d|m) relating m and d becomes

θ(d|m) ∼ exp(−1

2
(d− g(m))T C−1

T (d− g(m))). (2.38)

Now let Cd denote the measurement uncertainty matrix and CM the prior uncer-

tainty matrix, then let CD = Cd + CT denote the matrix combining modeling and

measurement uncertainties. The resulting posterior probability density is as follows:

σM(m) ∼ exp(−1

2
(g(m)− d)T C−1

D (g(m)− d)− 1

2
(m−mprior)

T C−1
M (m−mprior))

(2.39)

If the forward problem is linear the term g(m) will be substituted by Gm and the

posterior model covariance ĈM is the inverse of the Hessian ĈM = (GT C−1
D G +

C−1
M )−1.

2.4 Optimization Problem

As already mentioned in Section 2.2.2, a discrete-time system can be rewritten in

matrix form and we obtain a system such as that stated in (2.15)–(2.16). Let us

consider the linear case where we can state the forward problem with forward operator

Gi = CiA
−1F as follows

A u = F u0, (2.40)

d = Ci u, (2.41)

where (as before) u is the space-time state, u0 is the initial condition, and d are the

observables in space-time. The matrix Ci(S) defines the current sensor locations S in
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the domain Ω. Due to simplicity of notation we will be writing Ci instead of Ci(S).

Similarly the prediction problem with prediction operator Gp = CpA
−1F is given by

A u = F u0, (2.42)

p = Cp u, (2.43)

where p are the prediction outputs of interest, defined by the matrix Cp. The pre-

diction and the inversion problem are formulated separately because in general they

are not the same, e.g. sensor locations and locations of interest might not coincide or

the problems have a differing time horizon.

Let C−1
D denote the uncertainty matrix combining model and measurement un-

certainties and C−1
M denotes the priori uncertainty matrix. Then the expression for

the posterior of the initial condition covariance is

Ĉm = Ĉm(S) = (F T A−T CT
i C−1

D CiA
−1F + C−1

M )−1 = (GT
i C−1

D Gi + C−1
M )−1.(2.44)

Assuming C−1
D is the identity and C−1

M → 0, which signifies that there is no prior

information, we compute the simplified posterior model covariance as

Ĉm = Ĉm(S) = (F T A−T CT
i CiA

−1F + βI)−1 = (GT
i Gi + βI)−1. (2.45)

Note that βI, with β small, is merely a regularization term needed for inversion.

The goal addressed in the optimization problem is to minimize the uncertainty in

the prediction, thus the posterior covariance of the prediction field will be observed,

computed as

Ĉp = Ĉp(S) = GpĈm(S)GT
p . (2.46)

With p, the prediction outputs of interest, being known, the posterior covariance of

the prediction field depends on the set of sensor locations S. Thus we have to move

the sensors to locations such that the uncertainty is minimized. This can be achieved
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by minimizing the spectral norm of Ĉp, which in turn is equivalent to minimizing

the maximum eigenvalue of Ĉp. Therefore the dynamic sensor steering optimization

problem reads

min
S̃∈Ω

λmax(Ĉp(S̃)). (2.47)

As we are working with mobile sensors, we need to impose constraints representing

allowable sensor motions. Those sensor constraints are incorporated into the opti-

mization problem, meaning that prediction uncertainty will be minimized taking into

consideration only the sensor locations that can be reached within Tsteer and that

satisfy the imposed sensor constraints. Thus the constrained optimization problem

reads

min
S̃∈Ω

λmax(Ĉp(S̃)) (2.48)

s.t. S̃ satisfies sensor constraints

A realistic and for this setting very useful approach incorporates the previously dis-

cussed steering time Tsteer in which the sensors move to the recently computed optimal

locations that minimizes uncertainty in the prediction. Obviously we do not want

Tsteer to be too long as the Dynamic Sensor Steering Algorithm aims at achieving

real-time measuring-predicting-optimizing-steering, where time lost in steering the

sensors is needed badly during the optimization as well as during the computation

of the prediction. Thus we assume that a sensor can only reach locations that are

within a certain radius R within the available steering time, which can be formulated

as

min
S̃∈Ω

λmax(Ĉp(S̃)) (2.49)

s.t. (Sx
j − S̃x

j )2 + (Sy
j − S̃y

j )2 ≤ R2 ∀j = 1, . . . , Q,

where S = (S1, . . . , SQ) is the set of current sensor locations and each sensor location

consists of an x and y coordinate, i.e. Sj = (Sx
j , S

y
j ).

We solve the optimization problem using a gradient-based method, i.e. a se-

quential quadratic programming (SQP) method. At each iteration in this method
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a quadratic programming subproblem is solved, the estimate of the Hessian of the

Lagrangian is updated by the Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula

[9, 19, 23, 46].

2.5 Implementation Remarks

In large-scale problems there arise various computational challenges for the newly

introduced Dynamic Sensor Steering Algorithm. First, the resulting model matrices

may have large dimensions. Moreover as the covariance matrix is the inverse of the

Hessian, we need to compute this inverse and its eigenvalue spectra as well. Therefore

it is important to avoid explicit formation of those matrices and apply matrix-free

methods only requiring the generation of matrix-vector products.

For large-scale problems with high-dimensional parameter spaces, computing co-

variance matrices can become a very demanding problem because explicit formation

could already exceed available storage. Furthermore to compute the covariance ma-

trix the Hessian needs to be inverted (see Section 2.4) which could be too costly.

Therefore we aim at approximating Ĉm by using both a truncated spectral decom-

position i.e. a Lanczos method and the Sherman-Morrison-Woodbury formula for

inversion.

Let V ΛV T be the eigenvalue decomposition of GT
i Gi,where Λ is the diagonal matrix

containing the eigenvalues and V contains the corresponding eigenvectors. It often

occurs that the eigenvalue spectrum of GT
i Gi decays rapidly, enabling the approxima-

tion through a truncated spectrum, meaning that we can approximate V ΛV T based on

the few dominant eigenvalues and vectors contained in Vr, such that V ΛV T ≈ VrΛV
T
r .

Applying the Sherman-Morrison-Woodbury formula [52] now we obtain the following

approximation

Ĉm = (GT
i Gi+βI)

−1 = (V ΛV T +βI)−1 ≈ (VrΛV
T
r +βI)−1 =

1

β
(I−VrDV

T
r ), (2.50)

where D is a diagonal matrix with Dii = λi

β+λi
.
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A second challenge is related to representation of sensor locations. In order to

make the problem differentiable, the sensor locations are represented by mollified

delta functions, meaning the sensor locations are modeled by Gaussian functions

centered at the according sensor location where the variance of the Gaussian needs

to be chosen appropriately in conjunction with the local grid size, thereby enabling

the sensor locations to be anywhere in the domain Ω (not just at grid points).
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Chapter 3

Dynamic Sensor Steering

Algorithm - Application and

Results

In Chapter 3 we apply the methodology presented in Chapter 2 to a two-dimensional

contaminant transport problem that is modeled by the convection-diffusion equa-

tion. This problem is introduced in Section 2.1.2. The following sections present

results that include a comparison between the full and the reduced-order model, and

a demonstration of the use of model reduction for uncertainty quantification.

3.1 Description of Rectangular Domain

Let us consider a specific example, where the dimensions of the domain Ω are described

by

Ω =

 0 ≤ x ≤ 1

0 ≤ y ≤ 0.4
(3.1)

and the computational domain has spatial mesh size of N = 4005. Figure 3-1 shows

the computational mesh with triangular elements as well as the dimensions of domain

Ω. At the inflow boundary characterized by ΓD = {x = 0, 0 ≤ y ≤ 0.4} we impose

homogeneous Dirichlet boundary conditions. On all the remaining boundaries of Ω
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we impose homogeneous Neumann boundary conditions. Throughout this chapter we

assume a diffusivity κ = 0.01, ∆t = 0.005, forty time steps and a constant velocity

field v1, defined as follows

v1(x, y) =

1

0

 for (x, y) ∈ Ω. (3.2)

The output region of interest, ΩI , is defined as follows:

ΩI =

 0.6 ≤ x ≤ 0.8

0.15 ≤ y ≤ 0.25
. (3.3)

Figure 3-1: Triangular mesh of domain Ω.

3.2 Reduced-Order Model Performance in Forward

Problem

We choose to demonstrate the results using a superposition of three Gaussian func-

tions as the initial contaminant concentration depicted in Figure 3-2. Each Gaussian

function is defined as

u0(x, y) =
1

σ
√

2π
e−

(x−xc)2+(y−yc)2

2σ2 , (3.4)
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where σ corresponds to the standard deviation and (xc, yc) represents the center of

the Gaussian.

Figure 3-2: This figure depicts the sample test initial condition used to compare
reduced model to full model in the forward problem.

In Figure 3-3 we compare reduced model outputs to full-scale outputs at two

sensor locations S1 = (0.15, 0.25) and S2 = (0.45, 0.2). We define the error ε due to

a particular initial condition u0 as

ε = || d− dr ||2 = || (CA−1F −CrA
−1
r Fr) u0 ||2, (3.5)

where d and dr correspond to the full model output and the reduced-order model

output respectively. Table 3.1 displays various reduced-order model properties, where

ε denotes the error compared to the full model, c− time denotes the computational

time to obtain the outputs in seconds, n denotes the size of the reduced-order model,

and the significance of λ̄ and µ̄ are as follows. When creating a snapshot matrix using

the Hessian-based method described in [4] we compute s eigenvectors corresponding

to the s largest eigenvalues of the Hessian. Thus we specify λ̄ so that eigenvector

45



i, which has eigenvalue λi, is in the pool of initial conditions if λi

λ1
> λ̄, where λ1 is

the largest eigenvalue of the Hessian. Then we apply POD to the snapshot matrix

to obtain a basis of size n for the reduced-order model. The number n is specified

by relating the POD eigenvalues µ1, . . . , µ(T+1)s to the largest one µ1. Thus the POD

basis vector corresponding to eigenvalue µj is included in the basis V if
µj

µ1
> µ̄. Note

that the size of the reduced-order model used in our results will vary according to the

choice of λ̄ and µ̄.

Running the forward problem using the full model takes 5.5 seconds on a desktop

computer with Intel Core 2 Duo processor and 2GB RAM. Note that all computational

results in this thesis were computed using the same desktop computer. From Table 3.1

we see that the largest reduced-order model of size n = 212 is about ten times faster

than the full model and the smallest reduced-order model of size n = 38 computes

results 360 times faster. The performance with respect to error and computational

time of each reduced-order model can be seen in Figure 3-4.

case ε c− time n λ̄ µ̄
1 0.0290 0.0160 38 0.5 10−4

2 0.0273 0.0280 53 0.5 10−6

3 0.0039 0.0610 80 0.1 10−4

4 0.0033 0.1430 118 0.1 10−6

5 1.9211e−4 0.1480 121 0.01 10−4

6 1.9087e−4 0.1950 135 0.001 10−4

7 1.1382e−4 0.4340 188 0.01 10−6

8 1.0232e−4 0.5690 212 0.001 10−6

Table 3.1: Properties of various reduced-order models of a full-scale system with size
N = 4005 and two output sensors in the forward problem. The error ε is defined in
(3.5) and the initial condition used is depicted in Figure 3-2.

3.3 Solution of the Inverse Problem

In the contaminant transport problem introduced in (2.5)–(2.8) the vector of model

parameters m corresponds to the initial condition u0, and the output or the data

parameters are d = (d1, . . . , dQ), where dj for 1 ≤ j ≤ Q corresponds to the conta-
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Figure 3-3: A comparison between full (N = 4005) and reduced outputs (n = 212)
for sensors S1 and S2 using initial condition depicted in Figure 3-2 with κ = 0.01,
∆t = 0.005 and hundred time steps. The error is ε = 1.0232e−4.

minant concentration at sensor location j through time. The true initial condition

u0 that was chosen to present the results is shown in Figure 3-5. The observations

dobs = (dobs
1 , . . . , dobs

Q ) were obtained by propagating u0 through the forward model

and adding 5% noise to each component. The forward model is given by

dj = Gju0 = (CjA
−1F )u0 for 1 ≤ j ≤ Q, (3.6)

where A and F are defined as in (2.17) and Cj is the matrix corresponding to sensor

location j. As data uncertainties are Gaussian we can write the probability density

distributions of the values of contaminant concentration as

ρD(d1, . . . , dQ) ∼ exp(− 1

2σ2

Q∑
j=1

(dj − dobs
j )T (dj − dobs

j )). (3.7)
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Figure 3-4: The upper plot shows the increase in computational time in seconds of the
forward problem as the size of the reduced-order model grows over the rectangular
domain. The lower plot depicts the decrease of the error defined in (3.5) as the size
of the reduced-order model increases.

From this we obtain the probabilistic solution to the inverse problem, which is the

posterior probability density of the model parameters given by

σM(u0) ∼ exp(− 1

2σ2

Q∑
j=1

(Gju0 − dobs
j )T (Gju0 − dobs

j )). (3.8)

This posterior probability density provides us with information on how likely each

initial scenario u0 is. In the deterministic approach, the solution of the inverse problem

is just a single estimate of u0, while the solution in the Bayesian approach provides

the probability distribution function of u0.

Here we have two sensors S1 = (0.15, 0.2) and S2 = (0.5, 0.2), hence Q = 2. Let

us analyze this solution and the quality of reduced-order models via Figures 3-5, 3-6,

3-8 and Table 3.2. The mean of the initial condition field û0 obtained by the full

model is referred to as ûfull
0 and depicted in the upper plot of Figure 3-6, whereas the
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Figure 3-5: This plot depicts the true initial contaminant concentration u0 used in
the inverse problem.

mean of the initial condition field computed by the reduced model of size n = 212,

referred to as ûred
0 , is shown in the lower plot of Figure 3-6. It takes 37.6 seconds to

compute ûfull
0 using the full model and 4.2 seconds to compute ûred

0 , which is nine

times faster. When using a reduced-order model of size n = 38 we can compute

ûred
0 about 123 times faster. In Table 3.2 and Figure 3-8 we present some reduced-

order model results. The time to compute ûred
0 is referred to as c − time, and the

error between the estimate of the initial condition field using the full and the reduced

model is denoted by εu0 and defined by

εu0 = || ûfull
0 − ûred

0 ||2 . (3.9)

The full system has spatial size N = 4005 and hence u0 = (u1
0, . . . , u

i
0, . . . , u

N
0 ), where

ui
0 refers to the initial contaminant concentration at grid point i. For the remainder

of this section i = 2506 which corresponds to the location (0.1477,0.2105) in Ω. In

Figure 3-7 we depict the marginal probability density of ui
0, namely σui

0
(ui

0) which is

a Gaussian with standard deviation σ and mean µ, where µ = ûfull,i
0 = 0.2105 with i
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corresponding to grid point (0.1477,0.2105).

Figure 3-6: The upper plot shows the full model estimate ûfull
0 of the initial condition

field. The lower plot shows the reduced model estimate ûred
0 of the initial condition

field with n = 212 which yields εu0 = 0.0062.

3.4 Reduced-Order Model Performance in Opti-

mization Problem

3.4.1 Unconstrained Optimization

Let us consider the unconstrained optimization problem (2.47) introduced in Section

2.4. Due to the lack of sensor constraints the sensors are free to move anywhere in

the domain Ω defined in (3.1). The output region of interest ΩI is as stated in (3.3)

and we expect the optimal sensor locations to be within ΩI . For the following results

we assume the number of sensors Q = 2. Solving the optimization problem using
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Figure 3-7: Marginal probability density σui
0
(ui

0) with mean µ = 0.2105 and with
varying standard deviation σ. Note that i corresponds to grid point (0.1477,0.2105)
in Ω.

the full model of size N = 4005 yields optimal locations of S∗1 = (0.6783, 0.2034) and

S∗2 = (0.7751, 0.1999) after about 31.4 hours of computation time. Let us the define

the average optimization error εopt as follows

εopt =
1

Q

Q∑
j=1

distj, where (3.10)

distj =
√

(S∗,xj − Sx
j,r)

2 + (S∗,yj − Sy
j,r)

2, (3.11)

where optimal sensor locations computed by the full model are S∗j = (S∗,xj , S∗,yj )

and optimal sensor locations computed by the reduced-order model are given by

S∗j,r = (S∗,xj,r , S
∗,y
j,r ). In Table 3.3 we present the optimization results obtained using

reduced-order models of size n. The average optimization error is defined in (3.10)

and the time in seconds to compute an optimal solution is denoted by c− time.

From the obtained results we can see that the average optimization error decreases
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Figure 3-8: The upper plot depicts the increase in computational time as the size
of the reduced-order model increases. The lower plot depicts the error according to
reduced-order model sizes in the inverse problem.

with increasing n but only by very little. Hence we suggest to run the optimization

problem with a reasonably small reduced-order model as the error doesn’t change that

drastically but the computing time increases quite fast. Note that in the Dynamic

Sensor Steering Algorithm the optimization problem takes by far the most time com-

pared to the forward and inverse problem. A reduced-order model of size n = 212

computes the optimal sensor locations about 159 times faster than the full model and

with n = 38 we can compute up to 300 times faster. We depict the obtained optimal

solutions in Figure 3-9.

3.4.2 Constrained Optimization

In this section we consider the constrained optimization problem (2.49) introduced

in Section 2.4 with a radius R of 0.2. The output region of interest ΩI is as stated in

(3.3) and we expect the optimal sensor locations to be either within ΩI , if the sensor
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case εu0 c− time n λ̄ µ̄
1 0.2887 0.305 38 0.5 10−4

2 0.2613 0.381 53 0.5 10−6

3 0.0848 0.624 80 0.1 10−4

4 0.0386 1.276 118 0.1 10−6

5 0.0286 1.224 121 0.01 10−4

6 0.0062 4.218 212 0.001 10−6

Table 3.2: Properties of various reduced-order models of a full-scale system with size
N = 4005 and two output sensors in the inverse problem.

case εopt c− time n
1 0.1613 373.921 38
2 0.0338 438.442 53
3 0.0267 651.141 80
4 0.0263 657.382 118
5 0.0119 711.401 212

Table 3.3: Results of various reduced-order models in the unconstrained optimization
problem.

constraints allow it, or to move in the direction of ΩI until the sensor constraint

becomes active. For the following results we assume the number of sensors Q = 2 with

initial locations S0
1 = (0.9, 0.3) and S0

2 = (0.4, 0.1). Solving the optimization problem

using the full model of size N = 4005 yields optimal locations of S∗1 = (0.7549, 0.2033)

and S∗2 = (0.5815, 0.1840) after about 17 hours of computation time. In Table 3.4 we

present the optimization results obtained using reduced-order models of size n. The

average optimization error εopt is defined in (3.10) and the time to compute an optimal

solution is denoted by c− time in seconds. As in the unconstrained case, the results

show that increasing the size of the reduced-order model yields only small reductions

in error, but has a large impact on computing time. In this case, a reduced-order

model of size n = 212 computes the optimal sensor locations about 27 times faster

than the full model, while n = 38 leads to a speed-up factor of about 94. We depict

the obtained optimal solutions in Figure 3-10.
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Figure 3-9: This figure contains the new sensor locations computed by the full model
and several reduced-order models in the unconstrained case.

3.4.3 Optimality Conditions

In the unconstrained case the sensor can move anywhere within the bounds and

hence we expect the optimal sensor locations to be within ΩI . After the optimization

algorithm terminates we verify that the gradient at the new sensor locations is zero.

Hence we can state that we have found at least a local minimum. How confidently can

we say that this local minimum is in fact a global minimum. When we fix Q−1 sensors

and compute the objective function, i.e. the maximum eigenvalue of the covariance

matrix, for the remaining sensor over the entire domain Ω we can observe that the

local minimum is a global one for the remaining sensor. We can repeat this procedure

Q times always letting one sensor run freely and we get similar results. Moreover we

solved the two sensor optimization problem for hundred randomly chosen initial sensor

locations and in 96% of the cases the SQP algorithm converged to the same solution.

In the remaining 4% the algorithm got stuck near to the initialized points because

they were chosen too close to the boundaries of the domain.

In the constrained case we obtain a solution that either has zero gradient, if we
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Figure 3-10: This figure contains the new sensor locations computed by the full model
and several reduced-order models in the constrained case.

case εopt c− time n
1 0.0361 655.644 38
2 0.0302 660.103 53
3 0.0122 688.332 80
4 0.0119 1957.057 118
5 0.0086 2304.569 212

Table 3.4: Results of various reduced-order models in the constrained optimization
problem.

can reach ΩI , or nonzero gradients, if the sensor constraints become active. We

observed that, when repeating the constrained optimization problem long enough,

always initializing with the previous optimal solution we end up at the same locations

in ΩI like we would have in the unconstrained case. This is only true if all the sensors

can actually reach ΩI . In the next section, we demonstrate how the sensors move

during various cycles of the online stage.
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3.5 Moving Window Illustration

In this section we demonstrate the work flow of the Dynamic Sensor Steering Algo-

rithm over several cycles. We solve the optimization problem using a reduced-order

model of size n = 212. The quality of the reduced solution compared to the full

solution has already been discussed in Section 3.4. Note that we are also applying a

set of sensor constraints, which were discussed in Section 2.4, and the corresponding

optimization problem is stated in (2.49). The radius R is 0.1 and ΩI is as defined

in (3.3). Each figure shows the current contaminant concentration, the current sen-

sor locations, the circle within which each sensor can steer, and the optimal sensor

locations computed by solving the optimization problem.

In Figures 3-11–3-14 we observe four subsequent cycles of the online stage of

the Dynamic Sensor Steering Algorithm. Figure 3-11 corresponds to Cycle 1 of the

online stage and shows the current contaminant concentration at tf = 0.2, the do-

main of interest ΩI , the current sensor locations S0
1 = (0.3, 0.2), S0

2 = (0.4, 0.3),

the sensor constraints and the optimal sensor locations S1
1 = (0.3962, 0.1727) and

S1
2 = (0.4889, 0.2541). The lower plot in Figure 3-11 shows a low-rank approximation

of the variance field. In Cycle 1 the variance in ΩI is still quite large. Thus in the

following cycles we move the sensors even closer to that region. Note that the variance

is very small around the sensor locations.

Figure 3-12 corresponds to Cycle 2 of the online stage and shows the contaminant

concentration at tf = 0.4, the current sensor locations S1
1 , S

1
2 computed in Cycle

1, the sensor constraints and the optimal sensor locations S2
1 = (0.4895, 0.2087) and

S2
2 = (0.5779, 0.2093). Due to the newly obtained sensor locations, the variance in

ΩI has decreased.

Figure 3-13 corresponds to Cycle 3 of the online stage and shows the contaminant

concentration at tf = 0.6, the current sensor locations S2
1 , S

2
2 computed in Cycle

2, the sensor constraints and the optimal sensor locations S3
1 = (0.5895, 0.2074) and

S3
2 = (0.6775, 0.2008). The variance over ΩI decreases further.

Figure 3-14 corresponds to Cycle 4 of the online stage and shows the contaminant
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concentration at tf = 0.8, the current sensor locations S3
1 , S

3
2 computed in Cycle

3, the sensor constraints and the optimal sensor locations S4
1 = (0.6492, 0.1980) and

S4
2 = (0.7500, 0.2002). The variance field over ΩI approaches zero.

In the first three figures we can observe that the optimal sensor locations lie

on the boundary imposed by the sensor constraints and thus do not lead to a zero

gradient. In Figure 3-14 the optimal sensor locations both lie within ΩI as expected

and furthermore none of the sensor constraints are active. Moreover with sensors at

S4
1 and S4

2 the gradient is zero guaranteeing that we are at a local minimum.

Figure 3-11: The upper figure depicts the contaminant concentration at tf = 0.2,
current and optimal sensor locations of cycle one of the online stage with constant
velocity field v1. The lower plot shows the corresponding variance field based on the
current optimal sensor locations over Ω.
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Figure 3-12: The upper figure depicts contaminant concentration at tf = 0.4, current
and optimal sensor locations of cycle two of the online stage with constant velocity
field v1. The lower plot shows the corresponding variance field based on the current
optimal sensor locations over Ω.
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Figure 3-13: The upper figure depicts the contaminant concentration at tf = 0.6,
current and optimal sensor locations of cycle three of the online stage with constant
velocity field v1. The lower plot shows the corresponding variance field based on the
current optimal sensor locations over Ω.
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Figure 3-14: The upper figure depicts the contaminant concentration at tf = 0.8,
current and optimal sensor locations of cycle four of the online stage with constant
velocity field v1. The lower plot shows the corresponding variance field based on the
current optimal sensor locations over Ω.
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Chapter 4

Model Order Reduction of

Convection-Diffusion Equation

with Parameterized Velocity Field

In Chapter 4 we consider the convection-diffusion equation and introduce a parame-

terized velocity field in the Dynamic Sensor Steering Algorithm setting, which enables

a more realistic simulation of physical processes. The posed challenge is to maintain

the algorithm’s computational real-time property, by building reduced-order models

that are not only dependent on the initial condition but also on the velocity field. In

Section 4.1 we will provide a detailed problem statement, followed by a description

of the extended Dynamic Sensor Steering Algorithm in Section 4.2 and by a discus-

sion of the applied model order reduction methodology for linear dependence of the

velocity field on the parameter vector in Section 4.3.

4.1 Problem Description

We consider the the convection-diffusion equation described in Section 2.1.2 but now

the field variable, denoting the contaminant concentration, and the velocity field, and

thus the state solution, depend on an input parameter vector µ. That is, we now

have v(µ) and µ ∈ D ⊂ RP . The diffusivity constant is κ and the observed time
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horizon is given by tf . We imposed a homogeneous Dirichlet boundary condition on

ΓD × (0, tf ) and homogeneous Neumann boundary conditions on ΓN × (0, tf ).

It is assumed that there exists a way of computing a velocity field v(µ) over the

entire domain Ω given an input parameter vector µ. Hence there are two separate

cases, namely the linear case if the dependence of v(µ) on µ is linear and the non-

linear case when this dependence is non-linear. In this chapter we will focus on the

linear case.

For the linear case we assume that P different convective velocity fields are given

v1, . . . ,vP and that v(µ) is an linear combination of velocity fields that we specified

a priori. Therefore the current velocity field v(µ) in our domain Ω can be computed

by:

v(µ) =
P∑

j=1

µj vj (4.1)

with input parameter µ = (µ1, . . . , µP ) ⊂ RP . The P pre-computed velocity fields

v1, . . . ,vP could come from e.g. a Navier-Stokes flow solver, or a reduced-order model

of a flow solver, etc.

4.1.1 Weak Form and Finite Element Method

The weak formulation of the problem stated above is as follows: ∀µ ∈ D, find u(µ) ∈

X, where X = {u ∈ H1(Ω) | u |ΓD
= 0}, such that ∀w ∈ X,

m(
∂u(µ)

∂t
, w) + a(u(µ), w; µ) = l(w), (4.2)

where a(·, ·) is a bilinear functional, l(·) is a linear functional and m(∂u(µ)
∂t

, w) is

a bilinear form that results from the inner product of ∂u(µ)
∂t

and the test functions

w. The time discretization is then performed using Backward Euler or any other

appropriate scheme.
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For w, w̄ ∈ X the bilinear and linear functionals stated in (4.2) are given by

a(w, w̄; µ) = a1(w, w̄; µ) + a2(w, w̄), (4.3)

a1(w, w̄; µ) =

∫
Ω

w v(µ) · ∇w̄ dΩ, (4.4)

a2(w, w̄) = κ

∫
Ω

∇w · ∇w̄ dΩ, (4.5)

l(w) =

∫
Ω

wf dΓ, (4.6)

where κ corresponds to the diffusivity and f corresponds to the source term, which

is zero for our problem.

Time Discretization and Matrix Equations

In Section 2.2.2 we have introduced the general linear discrete-time system (2.12)–

(2.14), which can be expressed in the following continuous form

M u̇(k) = A u(k), (4.7)

d(k) = C u(k) (4.8)

where u̇ denotes the vector of state derivatives with respect to time and M∈ RN×N

and A ∈ RN×N correspond to the mass matrix and the stiffness matrix respectively

obtained from the finite-element discretization. For the discretization in time we will

use a Backward Euler method with a time step ∆t. In order to write (4.7)–(4.8) in

matrix form let us define the following matrices according to the chosen Backward

Euler method.

D1 =
1

∆t
M+A (4.9)

D2 =
1

∆t
M (4.10)

Inserting D1 from (4.10), D2 from (4.10) and C from (4.8) into (2.17) we can derive

the same matrix form as stated in (2.15)–(2.16).
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Streamline-Upwind / Petrov-Galerkin Stabilization

For small values of the diffusivity κ a solution to the discretization of (4.2) can exhibit

non-physical oscillations due to the negative numerical diffusion of the Galerkin finite

element method, which is described in detail in the literature. In [15] this instability

occurs when the Péclet number is greater than one. In our problem however it can not

be guaranteed to have the same Péclet number for each element in the triangulation

because the current velocity field v may not be constant. Thus we define an elemental

Péclet number Pek such that

Pek =
h || vk ||`2

2κ
for k = 1, . . . , Nelem, (4.11)

where Nelem corresponds to the number of elements in our mesh, h is the size of the

element and vk denotes the velocity at the centroid of element k. Therefore when

max1≤k≤Nelem
Pek > 1 we will have add stabilization to (4.2). This can be done by

deploying the Streamline-Upwind Petrov-Galerkin method by Brooks and Hughes [8],

which leads to the weak form

m(
∂u(µ)

∂t
, w) + a(u(µ), w; µ) +

Nelem∑
k=1

∫
T h

k

P(w; µ) τ R(u(µ); µ) = l(w), (4.12)

where the Streamline-Upwind Petrov-Galerkin stabilization terms are given by

P(w; µ) = v(µ) · ∇w (4.13)

R(u(µ); µ) =
∂u(µ)

∂t
+ v(µ) · ∇u(µ)− κ∇2u(µ). (4.14)

and the stabilization parameter τ can be computed by

τ = κ̃/ || v ||2`2 , (4.15)

κ̃ =
ξ̃ || v ||`2 h

2
, (4.16)

ξ̃ = coth(Pe)− 1/Pe. (4.17)
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4.2 Dynamic Sensor Steering Algorithm with Pa-

rameterized Velocity Field

All introductory definitions from Section 2.1.1 remain unmodified. It should be em-

phasized though that contrary to Chapter 3, where m = (u0), the input vector is

now m = (u0,µ), where u0 denotes the initial condition and µ denotes the parame-

ter vector. Moreover, the overall purpose of the Dynamic Sensor Steering Algorithm

doesn’t change but additionally to the methodology described in Chapter 2 we incor-

porate a parameterized velocity field into the problem. Thus we take into account

that the velocity field in our domain Ω is subject to frequent changes, which was not

captured by the initial design of the algorithm stated in Chapter 2. Therefore there

are significant changes in the algorithm which will be described in this section.

4.2.1 Offline Stage of the Dynamic Sensor Steering Algo-

rithm with Parameterized Velocity Field

Figure 4-1 shows the offline stage of the algorithm. The details of each step are

discussed in the following:

Step 0a. Build reduced-order model gr(u0,µ) of physical system g(u0,µ) and

continue working with reduced system throughout the Dynamic Sensor Steering Al-

gorithm. Note that the process of building a reduced-order model, that is now not

only depending on an initial condition u0 but also on a parameter vector µ ∈ D ⊂ RP ,

becomes a rather complex, challenging task. The modus operandi differs depending

on the linearity or non-linearity of the relationship between µ and v(µ). The linear

approach is presented in Section 4.3.

Step 0b. Place the Q mobile sensors at locations S0
1 , . . . , S

0
Q within Ω and activate

them. Note that in Step 1 of the Online Stage we have to measure two values, the

current contaminant concentration denoted by di = (di
1, . . . , d

i
Q), where i corresponds

to the cycle we are in, and the current parameter vector µi, which provides the current

velocity field. Later on this issue shall be addressed and some solution approaches
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shall be proposed.

Offline Stage 

Step 0b. Initialize sensor locations S1
0,…,SQ

0.

Step 0a. Build reduced-order model gr(u0, ) of physical system g(u0, ).

Figure 4-1: Offline stage of the Dynamic Sensor Steering Algorithm with parameter-
ized velocity field.

4.2.2 Online Stage of the Dynamic Sensor Steering Algo-

rithm with Parameterized Velocity Field

Figure 4-2 shows the online stage of the algorithm. The details of each step are

discussed in the following:

Step 1. The Q sensors create measurements of the environment at their current

locations Si−1
1 , . . . , Si−1

Q in cycle i. Let di = (di
1, . . . , d

i
Q) be the obtained data on the

contaminant concentration at the Q different sensor locations and µi be the obtained

data on the parameter vector.

Step 2. Compute the current velocity field vi using µi.

Step 3. Based on di = (di
1, . . . , d

i
Q), µi, vi and the known reduced forward model

gr(u0,µ) (or Gr(u0,µ) in the linear case) we solve the inverse problem to obtain a

prediction of the initial value u0. By applying model order reduction to g(u0,µ) in

the offline stage we made sure to maintain real-time computations throughout the

online stage.

Step 4. In many applications some regions ΩI within the observed domain Ω need

to be watched more thoroughly than others at any time, meaning that the physical
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process that we want to predict interests us especially in those regions. ΩI can be

fixed, e.g. representing an urban region, or could change from cycle to cycle, e.g. if

we wish to track regions of high concentration.

Step 5. We optimize the sensor locations within Ω such that the uncertainty in

the prediction for the output regions of interest ΩI is minimized. Here, the full and

reduced forward models depend on both u0 and µ.

Step 6. The last step in the algorithm steers the mobile sensors from their current

locations Si−1
1 , . . . , Si−1

Q to the optimized locations Si
1, . . . , S

i
Q within Tsteer and return

to Step 1.

4.3 Model Order Reduction Methodology in the

Linear Case

In this section we assume that the dependence of the convective velocity field v(µ) on

the parameter vector µ is linear. Now let us observe once more the weak formulation

derived in Section 4.1.1 and pay particular attention to the functional a(·, ·; µ) which

depends on the parameter vector µ. In equation (4.2) we divided functional a(·, ·; µ)

into two independent functionals a1(·, ·; µ) and a2(·, ·) where the latter corresponds

to the diffusive part of the problem and a1(·, ·; µ) shows the dependence on µ that

is inherent to the convective part of the problem. Due to their independence of µ,

both l(·) and a2(·, ·) can be computed offline once, leading to the mass matrix M and

the right-hand side vector F that will not change throughout the problem (assuming

constant diffusivity κ). Note that F is zero in our problem. Conversely,

a1(w, w̄; µ) =

∫
Ω

w v(µ) · ∇w̄ dΩ ∀ w, w̄ ∈ X (4.18)

shows that we cannot compute a1(·, ·; µ) once, because µ and thus the stiffness matrix

A are subject to frequent changes. Potentially, this could mean that we can no longer

compute a reduced-order model in the offline Stage of the Dynamic Sensor Steering

Algorithm. The consequence is a loss of executing the algorithm in real-time. However
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let us now incorporate (4.1) into (4.18), which yields

∫
Ω

w v(µ) · ∇w̄ dΩ =

∫
Ω

w (
P∑

j=1

µj vj) · ∇w̄ dΩ (4.19)

=
P∑

j=1

µj

∫
Ω

w vj · ∇w̄ dΩ. (4.20)

From this we can see that the integral over Ω in (4.20) is no longer dependent on µ

and can therefore be computed offline for each vj, j = 1, . . . , P . This means that we

now have to pre-compute P different stiffness matrices A1, . . . ,AP corresponding to

the P different velocity fields.

Thus, the continuous representation of the discrete-time system stated in (4.7)-

(4.8) becomes

M u̇(k) = A(µ) u(k), (4.21)

d(k) = C u(k), (4.22)

with A(µ) =
P∑

j=1

µj Aj, (4.23)

and from the Backward Euler method for time discretization we obtain

Dµ
1 =

1

∆t
M+

P∑
j=1

µj Aj, (4.24)

D2 =
1

∆t
M. (4.25)

If we define the matrices

Aµ =



I 0 . . . . . . 0

−D2 Dµ
1 0

0 −D2 Dµ
1

. . .
...

. . . . . . . . . 0

0 0 −D2 Dµ
1


, C =



C 0 . . . . . . 0

0 C 0
... 0 C

. . .
...

. . . . . . 0

0 0 C


(4.26)
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and

F =



I

0

0
...

0


, u =


u(0)

u(1)
...

u(T )

 , d =


d(0)

d(1)
...

d(T )

 , (4.27)

the new matrix form of the system becomes:

Aµ u = F u0, (4.28)

d = C u. (4.29)

Since we have decoupled µ from the model matrices, we can compute all necessary

reduced-order model matrices offline. The reduced matrices are defined by

Mr = V TMV (4.30)

Aj,r = V TAjV j = 1, . . . , P (4.31)

Cr = CV, (4.32)

where computation of the basis V was discussed in Section 2.2.2. In the reduced

model, (4.24)-(4.25) becomes

Dµ
1,r =

1

∆t
Mr +

P∑
j=1

µj Aj,r, (4.33)

D2,r =
1

∆t
Mr, (4.34)

which ultimately leads to the reduced system in matrix form

Aµ
r ur = Fr u0, (4.35)

dr = Cr ur, (4.36)
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with

Aµ
r =



I 0 . . . . . . 0

−D2,r Dµ
1,r 0

0 −D2,r Dµ
1,r

. . .
...

. . . . . . . . . 0

0 0 −D2,r Dµ
1,r


, Cr =



Cr 0 . . . . . . 0

0 Cr 0
... 0 Cr

. . .
...

. . . . . . 0

0 0 Cr


(4.37)

and

Fr =



V T

0

0
...

0


, ur =


ur(0)

ur(1)
...

ur(T )

 , dr =


dr(0)

dr(1)
...

dr(T )

 . (4.38)
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Step 1. Create measurements di at sensor locations 
S1

i-1,…,SQ
i-1 and i.

Cycle i

Step 2. Compute velocity field vi( i ).

Step 3. Estimate u0 by solving the inverse problem
d = gr(u0, i) .

Step 4. Define output region of interest I.

Step 5. Solve optimization Problem to obtain new sensor
locations S1

i,…,SQ
i.

Step 6. Steer sensors to new locations and return to Step 1.

Figure 4-2: One cycle of the online stage of the Dynamic Sensor Steering Algorithm
with parameterized velocity field.
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Chapter 5

Application to

Convection-Diffusion Systems with

Parameterized Velocity Fields

In Chapter 5 we present the results obtained by the Dynamic Sensor Steering Algo-

rithm with parameterized velocity field in the linear case described in Section 4.3.

First, let us compare reduced-order model and full model performance over a rec-

tangular domain in Section 5.1. Then in Section 5.2, we apply the algorithm to a

backwards-facing step domain with velocity fields computed by a Navier-Stokes flow

solver.

5.1 Dynamic Sensor Steering over Rectangular Do-

main

5.1.1 Description of Rectangular Domain

The rectangular domain used throughout this section was described in Section 3.1.

Note that boundary conditions as well as the output region of interest remain un-

changed and that all following results are obtained assuming two sensors. As previ-

ously mentioned in Section 4.1.1 we need to stabilize our system in case the maximum
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elemental Péclet number Pek, defined in (4.11), exceeds one. Hence, let us choose a

diffusivity κ ensuring

max
1≤k≤Nelem

Pek < 1 (5.1)

by finding an upper bound for (4.11). We consider only low Péclet number flows in

order to avoid stabilization because otherwise we would have to pre-compute stabiliza-

tion matrices which are described in Section 4.1.1 and introduce additional notation

here.

5.1.2 A Priori Velocity Fields over Rectangular Domain

The Dynamic Sensor Steering Algorithm in the affine case requires P pre-computed

velocity fields and an input parameter µ ∈ RP . In this section the a priori velocity

fields shall be represented by polynomial functions in x and y. In particular we want

to be able to represent velocity fields modeled by all polynomial functions f1, . . . , fU ,

where U is the number of velocity fields, up to a degree of χ which causes

deg(fu) ≤ χ for u = 1, . . . , U. (5.2)

If there is no redundancy within f1, . . . , fU then U = P . From this we immediately

get that U ≥ χ + 1 and the polynomials of degree smaller or equal to χ have a

resulting vector space of dimension χ + 1. In order to span this space let us assume

a monomial basis

fu(x) = xu−1 for u = 1, . . . , χ+ 1, (5.3)

fu(y) = yu−1 for u = 1, . . . , χ+ 1. (5.4)
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Then P has to be 2 ∗ (χ+ 1) and let us define the corresponding velocity fields as

vk =

fk(x)

0

 for k = 1, . . . , χ+ 1 (5.5)

vk+χ+1 =

 0

−fk(y)

 for k = 1, . . . , χ+ 1 (5.6)

which makes sure that we can adequately model polynomial flow up to an order of χ

in both the x and y direction.

For the computational results over the rectangular domain we choose χ = 3, which

leads to P = 8 a priori velocity fields

v1 =

1

0

 , v2 =

x
0

 , v3 =

x2

0

 , v4 =

x3

0

 , (5.7)

v5 =

 0

−1

 , v6 =

 0

−y

 , v7 =

 0

−y2

 , v8 =

 0

−y3

 , (5.8)

and µ will be specified at the beginning of each new cycle of the Dynamic Sensor

Steering Algorithm and shall be stated accordingly.

5.1.3 Moving Window Illustration

As we have already discussed the performance of reduced-order models in the forward

problem, inverse problem and optimization problem over the rectangular domain in

Chapter 3 the reader is referred to Sections 3.2 – 3.4. Let us now depict the work

flow of the algorithm as the velocity field changes. Each figure below corresponds to

a different cycle of the online stage of the Dynamic Sensor Steering Algorithm. The

current velocity field that is represented by the vector µ changes after each cycle.

Again we apply sensor constraints stated in (2.49). The radius R is 0.1. We assumed

κ = 0.01, ∆t = 0.005, unchanged ΩI and the initial condition displayed in 3-2.

Figure 5-1 corresponds to Cycle 1 of the online stage and shows the current con-
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taminant concentration at tf = 0.2, the domain of interest ΩI , the current sensor

locations S0
1 = (0.7, 0.35), S0

2 = (0.4, 0.2), the sensor constraints and the optimal

sensor locations S1
1 = (0.7189, 0.2518) and S1

2 = (0.4992, 0.2123).

Figure 5-1: Contaminant concentration at tf = 0.2, current and optimal sen-
sor locations of cycle one of the online stage with parameterized velocity field by
µ = {0.75, 0.25, 0, 0, 0, 0, 0, 0}.

Figure 5-2 corresponds to Cycle 2 of the online stage and shows the current con-

taminant concentration at tf = 0.4, the domain of interest ΩI , the current sensor

locations S1
1 and S1

2 as computed in Cycle 1, the sensor constraints and the optimal

sensor locations S2
1 = (0.7392, 0.2029) and S2

2 = (0.5989, 0.2203).

Figure 5-3 corresponds to Cycle 3 of the online stage and shows the current con-

taminant concentration at tf = 0.6, the domain of interest ΩI , the current sensor

locations S2
1 and S2

2 as computed in Cycle 2, the sensor constraints and the optimal

sensor locations S3
1 = (0.7610, 0.1839) and S3

2 = (0.6684, 0.2011) which is a local

minimum.
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Figure 5-2: Contaminant concentration at tf = 0.4, current and optimal sen-
sor locations of cycle two of the online stage with parameterized velocity field by
µ = {0.25, 0.10, 0.25, 0, 0.15, 0, 0, 0.25}.

5.2 Dynamic Sensor Steering over Backward Fac-

ing Step

5.2.1 Description of Backward Facing Step Domain

The dimension of the backward facing step domain Ω is best described by (5.9) and

the corresponding computational domain has spatial mesh size of N = 2417. Figure

5-4 depicts the subdivision of Ω in triangles. We have κ = 0.01, ∆t = 0.0025 and

the output region of interest is ΩI . The following results were computed assuming

two sensors. At the inflow boundary x = 0 and 0 ≤ y ≤ 0.4 we apply homogeneous

Dirichlet conditions and everywhere else homogeneous Neumann boundary conditions

are applied.

Ω =

 0.2 ≤ y ≤ 0.4 if 0 ≤ x < 0.2

0 ≤ y ≤ 0.4 if 0.2 ≤ x ≤ 1
(5.9)
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Figure 5-3: Contaminant concentration at tf = 0.6, current and optimal sensor
locations of cycle three of the online stage with parameterized velocity field by
µ = {0, 0, 0.25, 0, 0.75, 0, 0, 0}.

5.2.2 A Priori Velocity Fields over Backward Facing Step

Domain

More realistic velocity fields for the backward facing step domain were computed using

a Navier-Stokes flow solver, i.e. the Incompressible Flow Iterative Solution Software

(IFISS) [16, 17]. The Navier-Stokes equations can be written as

−ν∇2v + v · ∇v +∇p = f , (5.10)

∇ · v = 0, (5.11)

where ν corresponds to the kinematic viscosity constant, f corresponds to a source

term, , v is the velocity field and p represents pressure. Boundary conditions are

given by

v = w on ΓD, (5.12)

ν
∂v

∂n
− np = 0 on ΓN , (5.13)
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Figure 5-4: Triangular mesh of the backward facing step domain. Note that the mesh
used for computations is much finer.

where n is the normal vector, ΓD corresponds to the boundary where we apply ho-

mogeneous Dirichlet conditions and ΓN corresponds to the boundary where we apply

homogeneous Neumann conditions. In particular, a Poiseuille flow is imposed on the

inflow boundary, a no-flow (zero velocity) condition is imposed on the top and bottom

boundaries and a Neumann condition is applied at the outflow boundary automati-

cally setting the mean outflow pressure to zero. To solve the Navier-Stokes equations

stated in (5.12)–(5.13) a finite element method using a quadrilateral element mesh is

applied. The resulting non-linear algebraic system is solved using iterative methods,

i.e. a hybrid method performing a small number of Picard iterations first for getting

a good starting point for Newton’s method. For further details on Krylov subspace

methods, stabilization and pre-conditioning please refer to [16].

To demonstrate the computational results over the backward facing step domain

we choose P = 4 obtaining velocity fields v1, . . . ,vP corresponding to four different

choices of the kinematic viscosities specified in (5.14). Note that the boundary condi-

tions for the Navier-Stokes equations remain unchanged when computing the solution

corresponding to different viscosities.

ν1 = 1/50, ν2 = 1/75, ν3 = 1/25, ν4 = 1/10 (5.14)
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As the resulting velocity fields can not be described analytically as in Section 5.1.2 let

us present the solution of the Navier-Stokes equations graphically for ν1. Figure 5-5

contains the solution of the velocity field by plotting the streamlines and the solution

of the pressure field. In Figure 5-6 we show the velocity at certain nodes in the step

domain. Note that µ will be specified at the beginning of each new cycle of the

Dynamic Sensor Steering Algorithm but due to the fact that we can not interpolate

between velocity fields with different viscosities only one µj will be set to one whereas

all the other ones must remain zero.

Figure 5-5: The upper plot depicts the streamlines over the backward facing step
domain computed using a viscosity ν = 1/50. The lower plot shows the pressure field
over the backward facing step domain computed using a viscosity ν = 1/50.
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Figure 5-6: Velocity at selected grid points of the backward facing step domain com-
puted using a viscosity ν = 1/50.

5.2.3 Reduced-Order Model Performance in Forward Prob-

lem

In this section we assumed a diffusivity κ = 0.01, ∆t = 0.0025 and an input vector

µ = {1, 0, 0, 0} specifying the velocity field

v(µ) = vν1 , (5.15)

where vν1 corresponds to the viscosity ν1 defined in (5.14). We choose to demonstrate

the results using a superposition of five Gaussian functions as the initial contaminant

concentration depicted in Figure 5-7. Each Gaussian function is defined as in (3.4).

In Figure 5-8 we compare reduced model outputs to full-scale outputs at two sensor

locations S1 = (0.15, 0.25) and S2 = (0.45, 0.2). Table 5.1 displays various reduced-

order model properties, where ε denotes the error compared to the full model defined

in (3.5), c − time denotes the computational time to obtain the outputs in seconds,

n denotes the size of the reduced-order model, and the significance of λ̄ and µ̄ is

discussed in Section 3.2. Running the forward problem using the full model takes

4.88 seconds. From Table 5.1 we see that the largest reduced-order model of size

n = 185 is about twelve times faster than the full model and the smallest reduced-

order model of size n = 32 computes results even 350 times faster. The performance
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with respect to error and computational time of each reduced-order model can be

viewed in Figure 5-9.

Figure 5-7: Sample test initial condition used to compare reduced model to full model
in the forward problem over backward facing step domain.

5.2.4 Solution of the Inverse Problem

As theoretical details have already been discussed in Section 3.3, we will only present

the numerical results over the backward facing step domain here. The true initial

condition u0 that was chosen to obtain the observations dobs is depicted in Figure 5-7.

The mean of the initial condition field û0 obtained by the full model is referred to

as ûfull
0 and depicted in the upper plot of Figure 5-10, whereas the mean of the initial

condition field computed by the reduced model of size n = 185, referred to as ûred
0 ,

is shown in the lower plot of Figure 5-10. It takes 34.62 seconds to compute ûfull
0

using the full model and 5.55 seconds to compute ûred
0 . When using a reduced-order

model of size 32 we can compute ûred
0 about 150 times faster than the full model

computations. In Table 5.2 we present some reduced-order model results. The time

to compute ûred
0 is referred to as c − time, and the error between the estimate of
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Figure 5-8: A comparison between full (N = 2417) and reduced outputs (n = 185)
for sensors S1 and S2 using initial condition depicted in Figure 5-7 with κ = 0.01,
∆t = 0.0025 and 100 time steps. The error is ε = 8.5419e−4.

the initial condition field using the full and the reduced model is denoted by εu0 and

defined by (3.9).

5.2.5 Reduced-Order Model Performance in Optimization Prob-

lem

Again we consider the unconstrained optimization problem (2.47) introduced in Sec-

tion 2.4 with a velocity field corresponding to ν = 1/50 and ∆t = 0.0025. Due to

the lack of senor constraints the sensors are free to move anywhere in the domain Ω

defined in (5.9). The output region of interest ΩI is as stated in (3.3) and we expect

the optimal sensor locations to be within ΩI . For the following presented results we

assume the number of sensors Q = 2. Solving the optimization problem using the

full model of size N = 2417 yields optimal locations of S∗1 = (0.6463, 0.1901) and

S∗2 = (0.7100, 0.1998) after about 19 hours. The SQP algorithm terminated because
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Figure 5-9: The upper plot shows the increase in computational time in seconds of
the forward problem as the size of the reduced-order model grows over the backward
facing step domain. The lower plot depicts the decrease of the error defined in (3.5)
as the size of the reduced-order model increases.

the number of maximum function evaluations was exceeded. The gradient at the

optimal solution was reasonably small to account for at least a local minimum. We

have observed that when velocity fields are computed by a Navier-Stokes solver, the

objective function is less well behaved. Compared to results in Chapter 3 only 73%

of random initial locations converge to the above optimum. The remaining 27% ei-

ther get stuck in local minima that are not within ΩI (and yield a bigger objective

value than the optimal point) or when initialized too close to a boundary do not

move at all (we assume that this is due to flatness in the objective function). In

Table 5.3 we present the optimization results obtained using reduced-order models

of size n. The average optimization error εopt is defined in (3.10) and the time to

compute an optimal solution is denoted by c − time. The following conclusions can

be drawn from Table 5.3: the smallest reduced-order model does not perform the

fastest. Even though a single function evaluation using the reduced-order model of

84



case ε c− time n λ̄ µ̄
1 0.0858 0.0140 32 0.5 10−4

2 0.0599 0.0210 45 0.5 10−6

3 0.0055 0.0570 71 0.1 10−4

4 0.0026 0.1060 105 0.1 10−6

5 0.0017 0.0880 96 0.01 10−4

6 0.0016 0.2680 146 0.01 10−6

7 8.5419e−4 0.4030 185 0.001 10−6

Table 5.1: Properties of various reduced-order models of a full-scale system with
size N = 2417 and two output sensors over the backward facing step domain in the
forward problem. The error ε is defined in (3.5) and the initial condition used is
depicted in Figure 5-7.

case εu0 c− time n λ̄ µ̄
1 0.7492 0.224 32 0.5 10−4

2 0.7125 0.320 45 0.5 10−6

3 0.6070 0.664 71 0.1 10−4

4 0.5264 1.533 105 0.1 10−6

5 0.4256 3.000 146 0.01 10−6

5 0.4025 5.551 185 0.001 10−6

Table 5.2: Properties of various reduced-order models of a full-scale system with size
N = 2417 and two output sensors in the inverse problem.

size n = 45 is indeed faster than using a reduced-order model of size n = 105, the

number of iterations needed in the SQP algorithm is not dependent on the size of

the reduced-order model. Hence the fastest result is not necessarily obtained by the

smallest reduced-order model. However, in general (when comparing average run

times) smaller reduced-order models yield a smaller computational time. Moreover

we can observe that increasing the size of the reduced-order model by four leads to

an error that is reduced by a factor of three. Hence we suggest that using a smaller

reduced-order model in the optimization problem yields a small computational time

with a reasonably small error. We omit details about the constrained optimization

problem as we observe similar behavior as in the unconstrained case.
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Figure 5-10: The upper plot shows the full model estimate ûfull
0 of the initial condition

field over the backward facing step domain. The lower plot shows the reduced model
estimate ûred

0 of the initial condition field with n = 185 which yields εu0 = 0.4025.

5.2.6 Moving Window Illustration

In this section we demonstrate the work flow over the backward facing step domain.

We solve the optimization problem using a reduced-order model of size n = 185 and

apply a set of sensor constraints stated in (2.49). The radius R that was used here is

0.15.

Figure 5-11 corresponds to Cycle 1 of the online stage and shows the current

contaminant concentration at tf = 0.2, the domain of interest ΩI , the current sensor

locations S0
1 = (0.3, 0.2), S0

2 = (0.9, 0.1), the sensor constraints and the optimal

sensor locations S1
1 = (0.4436, 0.2434) and S1

2 = (0.7714, 0.1772). We also include a

plot corresponding to the not normalized variance field. In Cycle 1 the variance on

the right boundary of ΩI is very small because one sensor is located there. On the

left boundary however the variance is still big as the other sensor is still to far away
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case εopt c− time n
1 0.0295 262.061 45
2 0.0195 242.479 105
3 0.0166 278.449 146
4 0.0105 464.317 185

Table 5.3: Results of various reduced-order models in the unconstrained optimization
problem over the backward-facing step.

from ΩI .

Figure 5-12 corresponds to Cycle 2 of the online stage and shows the current

contaminant concentration at tf = 0.4, the domain of interest ΩI , the current sensor

locations S1
1 and S1

2 as computed in Cycle 1, the sensor constraints and the optimal

sensor locations S2
1 = (0.5887, 0.2814) and S2

2 = (0.6992, 0.1987). The variance in ΩI

is close to zero now that one sensor is in the output region of interest and the other

one is very close to it.

Figure 5-13 corresponds to Cycle 3 of the online stage and shows the current

contaminant concentration at tf = 0.6, the domain of interest ΩI , the current sensor

locations S2
1 and S2

2 as computed in Cycle 2, the sensor constraints and the optimal

sensor locations S3
1 = (0.7113, 0.1950) and S3

2 = (0.6511, 0.1740). As we decrease the

variance in ΩI by moving both sensors into this region, the variance at regions that

are further away from the sensor locations increases. Once again let us mention that

we only want to minimize uncertainty in predictions over ΩI and hence neglect the

rest of the domain.
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Figure 5-11: The upper figure depicts the contaminant concentration at tf = 0.2, cur-
rent and optimal sensor locations of cycle one of the online stage with parameterized
velocity field by µ = {1, 0, 0, 0}. The lower figure shows the corresponding variance
field based on the current optimal sensor locations over Ω.
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Figure 5-12: The upper figure depicts the contaminant concentration at tf = 0.4, cur-
rent and optimal sensor locations of cycle two of the online stage with parameterized
velocity field by µ = {0, 0, 1, 0}. The lower figure shows the corresponding variance
field based on the current optimal sensor locations over Ω.
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Figure 5-13: The upper figure depicts the contaminant concentration at tf = 0.6,
current and optimal sensor locations of cycle three of the online stage with parame-
terized velocity field by µ = {0, 0, 0, 1}. The lower figure shows the corresponding
variance field based on the current optimal sensor locations over Ω.
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Chapter 6

Conclusions and Future Work

6.1 Summary and Conclusions

In this thesis we develop the methodology for a real-time Dynamic Sensor Steering

Algorithm that computes the best-possible prediction of an ongoing physical process

by combining model order reduction with a Bayesian approach to inverse problems

and with optimization. We apply the algorithm to a contaminant transport problem,

paying particular attention to full model versus reduced-order model performance.

The algorithm is divided into two separate stages: the offline stage, which is exe-

cuted only once, and the online stage, which consists of a measure-predict-optimize-

steer cycle and is executed repeatedly. In the offline stage we place mobile sensors

in the domain that we wish to observe and we build a reduced-order model of the

physical system, using the reduced basis technique, which projects the large-scale sys-

tem onto a basis in a space of reduced dimensions. This basis is obtained by proper

orthogonal decomposition and Hessian-based model reduction.

In the online stage we first obtain observations of the contaminant concentration

at current sensor locations by measurements and then we solve an inverse problem

yielding a prediction of the initial contamination using a Bayesian approach. The

solution to the inverse problem is a probability density function of the initial contam-

inant concentration. This probability density function provides us with information

on how likely each possible contamination scenario is based on the obtained mea-
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surements. The knowledge of the contamination distribution provides us with the

advantage of being able to instruct fire fighters and police more effectively and if

necessary even evacuate people who are in danger. The physical process, i.e. the

contamination, changes with time and hence we move the sensors to new locations

that minimize the uncertainty in the prediction. We obtain those new locations by

solving an optimization problem, with non-linear constraints if sensor constraints are

imposed, using the sequential quadratic programming algorithm. After the sensors

are steered to their new locations, the online stage repeats itself.

In reality the velocity field, e.g. the wind velocity, is also subject to changes, which

alters the way the contamination evolves. Hence we extend the Dynamic Sensor

Steering Algorithm to handle a parameterized velocity field, i.e. we pre-compute

several different velocity fields, using a Navier-Stokes flow solver and obtain different

physical systems according to different velocity fields. In the offline stage we build

reduced-order models for each of the physical systems. In the online stage we are now

capable of approximating the full model by using the reduced-model, with a velocity

field that is any linear combination of the previously computed velocity fields, enabling

to model a much broader range of scenarios accurately. The performance in terms

of computational time and accuracy of reduced-order models versus full models in

the forward problem, the inverse problem and the optimization problem is discussed

individually. Due to reduced-order modeling we are able to execute one cycle of

the online stage about 260 times faster than with the full model with average relative

errors of magnitude O(10−3). The methodology applied to the contaminant transport

problem is widely applicable to all sorts of problems where we wish to observe certain

phenomena whose location or features are not known before hand. The following

section includes some suggestions for improvements and future work.
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6.2 Future Work

6.2.1 Recommendations

In this thesis the general methodology was applied to a linear two-dimensional con-

taminant transport problem. It is a challenging and interesting task to extend the

methodology to three-dimensional problems and non-linear problems.

In case the dependence of the velocity field v(µ) on the input parameter µ in the

Dynamic Sensor Steering Algorithm with parameterized velocity field is nonlinear, the

velocity field v(µ) could be anything but in order to reduce the level of abstraction we

can think of this model as a Navier-Stokes flow solver that computes the velocity field

for every point in the domain Ω given µ. Then µ could contain a specific Reynolds

number, boundary conditions, initial conditions, etc. We can extend the algorithm to

additionally sample for obtaining current velocity fields in each cycle instead of pre-

computing velocity fields. An approach for this extension is proposed in the following

section.

In references [34, 35] a technique based on proper orthogonal decomposition is

proposed that reconstructs a close approximation to the velocity field. In this thesis

we have focused on computing reduced-order models to accurately approximate the

full model of a contaminant transport problem while assuming certain velocity fields.

Combining the work that was presented in [34, 35] and this thesis can yield even more

efficient and more realistic results.

6.2.2 Model Order Reduction Methodology in the Nonlinear

Case

We consider the more general case where the dependence of parameter vector µ on the

convective velocity field v(µ) is non-linear. In order to avoid online re-computation

of the reduced-order model we need to obtain an affine decomposition of the bilin-

ear functional a1(w, w̄; µ) in terms of products of parameter-dependent coefficients,

Φv
m(µ) for 1 ≤ m ≤ n (computed online), and parameter-independent bilinear forms
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am
1 (w, w̄) for 1 ≤ m ≤ n (computed offline). The resulting bilinear functional can be

written as

a1(w, w̄; µ) =
n∑

m=1

Φv
m(µ)am

1 (w, w̄). (6.1)

In order to achieve this we introduce a parameter sample that adequately covers the

parameter space D,

SK = {µ1 ∈ D, . . . ,µK ∈ D}. (6.2)

Then we compute solution snapshots

Su
K = {u(µk) for 1 ≤ k ≤ K}. (6.3)

Then we apply POD to the snapshots Su
K and hence obtain the basis functions

for our reduced-order model {ζm}n
m=1 and define the approximation space V =

span{ζ1, . . . , ζn}. For the following discussion let us assume the basis is orthonor-

malized. Now we also generate snapshots of the velocity field,

Sv
K = {v(µk) for 1 ≤ k ≤ K}. (6.4)

Then we use the ”Best Points” Interpolation Method (BPIM) introduced in [40] to

construct a set of interpolation points {zv
m}n

m=1 and the basis functions {ψv
m}n

m=1 such

that we can define a coefficient-function approximation, vn(x,µ), for the convective

velocity field v(x; µ) as follows,

vn(x; µ) =
n∑

m=1

v(zv
m; µ) ψv

m, (6.5)

where x = (x, y) ∈ Ω. Then {ψv
m}n

m=1, with ψv
j (zi) = δij, where δij is the Kronecker

symbol, can thus be obtained by

ζi(x) =
n∑

m=1

ζi(zm) ψv
m(x), 1 ≤ i ≤ n. (6.6)
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Then the discrete version of the bilinear functional a1(w, w̄; µ) is given by

An
1 ij =

n∑
m=1

v1(z
v
m; µ)

∫
Ω

ψv
m(x)

∂ζj(x)

∂x
ζi(x) dΩ+

n∑
m=1

v2(z
v
m; µ)

∫
Ω

ψv
m(x)

∂ζj(x)

∂y
ζi(x) dΩ

(6.7)

=
n∑

m=1

v1(z
v
m; µ) am

1x(ζi, ζj) +
n∑

m=1

v2(z
v
m; µ) am

2y(ζi, ζj) 1 ≤ i, j ≤ n, (6.8)

where v(z~v
m; µ) = (v1(z

v
m; µ), v2(z

v
m; µ)). Now we can solve the weak form (4.2) in the

reduced basis space V . The same affine decomposition described above for a1(w, w̄; µ)

should also be used for all the SUPG stabilization terms in (4.2).

When actually implementing this method we need to address the following issue.

Throughout the algorithm the sensors that measure the ongoing contamination steer

to locations which minimize uncertainty in the prediction, however the functionality

of the best interpolation points that we use to approximate a1(·, ·; µ) is completely

unrelated to the sensor locations. Thus we can either introduce a second set of sensors

that merely depends on the best interpolation points or we can only work with one set

of sensors and try to find a reasonable balance between the locations that minimize

uncertainty and locations of best interpolation points. Although it is more costly to

deploy another set of sensors the results will to be more accurate. However it should

be considered that when working with one set of sensors due to limited resources

finding the optimal trade-off between minimizing uncertainty in the prediction and

approximating the functional a1(·, ·; µ) is a very interesting problem by itself and

should be examined in future work.
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