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ABSTRACT

We develop models and solution methodologies to solve the discrete-time path-

optimization problem where a single or multiple searchers look for a moving target

in a finite set of cells. The single searcher is constrained by maximum limits on

the consumption of several resources such as time, fuel, and risk along any path.

We develop a specialized branch-an-bound algorithm for this problem that utilizes

several new network reduction procedures as well as new bounding technique based

on Lagrangian relaxation and network expansion. The resulting algorithm is quite

efficient and promising. For the multiple searchers, an optimal set of paths (search

plan) is determined by taking advantage of the cooperative search effect. We present

a new exact algorithm and two new heuristics to find an optimal or near-optimal

search plan. One of the heuristics is based on the cross-entropy method and is found

to perform well for a broad range of problem instances. The exact algorithm deals with

the specific case of homogeneous searchers and is based on outer approximations by

several new cutting planes. In addition, we prove that under certain assumptions the

path-optimization problem becomes equivalent to a large-scale linear mixed-integer

program.
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EXECUTIVE SUMMARY

This dissertation develops models and solution methodologies to solve the dis-

crete time-and-space path-optimization problems where a single searcher or multiple

searchers look for a non-evading moving target. We extended the single searcher

problem (SSP), generally called the optimal searcher path problem, to realistic situ-

ation where: (1) the searcher needs to change its flight altitude during a mission to

balance sensor quality and risk from ground threats; (2) the searcher is subject to

constraints on multiple resources such as fuel consumption and risk exposure along

any path; and (3) the search effect depends on the current and previous locations of

the searcher. The latter situation may occur if moving from some search sector to

a new sector results in a lower search effect due to ineffective search during transit.

We refer to this extended SSP as the resource-constrained single searcher problem

(RSSP).

We present new bounding techniques (static bound and directional static

bound) and network reduction procedure in a branch-and-bound algorithm to opti-

mally solve the single searcher problem (SSP). The static bound simplifies the bound

calculation substantially at the expense of a weaker bound. The directional static

bound improves the weaker static bound. The network reduction procedure takes

advantage of the initial positions of searcher and target, and eliminates parts of the

branch-and-bound tree while retaining a optimal solution. The resulting algorithm

solves a problem instance with 15 by 15 cells and a time horizon of 20 optimally in

less than 4 seconds on average, which is a significant reduction from the 9 minutes

required by a state-of-the-art algorithm.

We extend our branch-and-bound algorithm for the SSP to treat the RSSP

and construct a new bounding technique based on Lagrangian relaxation. In addition,

we develop novel network reduction techniques using dominance tests. The resulting

algorithm solves a realistic problem instance (10 by 10 cells, two altitudes, time

xvii



horizon 40, and two resource constraints), on average, in less than 10 minutes.

We extend the specialized branch-and-bound algorithm to the case of multi-

ple searchers and also develop two new heuristics (static bound heuristic and cross-

entropy heuristic). In the context of search problems, this dissertation appears to be

the first one which utilizes the cross-entropy method. Among these three algorithms,

the cross-entropy heuristic performs best for a broad range of problem instances.

While the branch-and-bound algorithm and the static bound heuristic are limited

to small problem instances, the cross-entropy heuristic obtains good approximate

solutions of moderately sized instances (15 by 15 cells, time horizon 18, and three

searchers) in about 10 minutes.

For the case with multiple identical searchers, we construct an exact algorithm

based on outer approximations by cutting planes. We introduce several new cutting

planes (multiple-cut, strong-cut, relative-cut, and symmetric-cut), combine them, and

develop a specialized outer approximation algorithm. For a moderate-size problem

instance (15 by 15 cells, time horizon 16, and three searchers), the resulting algorithm

essentially provides an approximate solution that is guaranteed to be within 5% of an

optimal solution in less than about 20 minutes. Instances with more searchers (such

as 10, 15 and 30 searchers) are solved even faster. In addition, we prove that under

certain assumptions the nonlinear convex multiple homogeneous searcher problem is

equivalent to a large-scale linear mixed-integer program.

xviii



I. INTRODUCTION

A. MOTIVATION

The need to search for moving objects arises in many civilian and military

applications. Rescue teams search for lost persons and shipwrecks. Autonomous

robots could find victims and survivors after natural disasters. In military search

operations, patrol aircraft and unmanned aerial vehicles (UAVs) look for high-valued

targets such as missile launchers and terrorist vehicles. In all these applications,

the choice of paths for the searchers strongly influences the probability of finding

the targets within a specific time limit. Unfortunately, the problem of selecting the

“best” path is fundamentally hard due to the nonlinearity induced by the probability

of detection. For example, looking twice by a searcher generally does not double the

detection probability.

In military search missions with UAVs, the problem of finding good paths

for searchers (UAVs) is complicated even further. Rather than manned aircraft,

UAVs are preferred to operate in dangerous environments such as hostile regions and

battlefields. In these applications, the searchers (UAVs) often need to balance search

effectiveness with threats to themselves posed by surface-to-air missiles and small-

arms fire. Moreover, the search problem becomes significantly more difficult as the

number of searchers grows. With the technological advances in cooperative control of

multiple UAVs, such multi-searcher problems are appearing with increasing frequency

in applications. The need for optimal path planning in these complicated situations

motivates this dissertation.

In this dissertation, we consider several search problems including situations

with searchers subject to threats as well as multiple searchers. We particularly focus

on search by aerial assets that are subject to threats from the ground. We formulate

search problems for single and multiple searchers and develop solution methodologies

for efficiently finding an optimal or near-optimal path.
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B. SCOPE OF DISSERTATION

We consider discrete time-and-space path-optimization problems where a non-

evading target moves in a two-dimensional area of interest (AOI). The AOI is dis-

cretized into a finite set of cells and the target moves between the cells in discrete

time. Stone [47] and Brown [7] introduced the basic forms of this search problem.

A single searcher or multiple searchers move, in discrete time, through a discretized

two-dimensional space (on the ground in the AOI or at a constant altitude over the

AOI) or a discretized three-dimensional airspace over the AOI. The searchers’ space

is represented by a directed graph, where vertices represent waypoints (or search

sectors) from which a searcher can search a particular cell in the AOI and where di-

rected edges represent transition between two waypoints. Thus a path of the searcher

is represented as a sequence of waypoints (vertices).

We note that our aim is not to find an optimal flyable trajectory that fully

accounts for turn radius, climb/dive angle, and max/min speed for the searcher. We

aim for “high-level” control of the searchers where waypoints may represent points

in space that are many minutes apart in flying time and may represent areas to be

searched for some period of time. We consider imperfect searchers that may search a

cell that contains a target without finding the target. However, in this dissertation,

we assume that the searchers will not report a target in a cell where there is no target.

The goal for the searchers is to maximize the probability of detecting the target

within a finite mission time or, equivalently, to minimize the probability that the

target is not detected during the duration of the mission. The searchers are subject

to constraints on path continuity, mission time, and possibly other “resources” such

as risk exposure and fuel consumption.

This dissertation refers to the path optimization problem for a single searcher

with path- and time-constraints as the single searcher problem (SSP). Other authors

refer to this problem as the optimal searcher path problem [41, 49, 32]. In this

dissertation, we focus on the following variants of SSP.

2



1. SSP with additional constraints on, e.g., risk exposure to threats and fuel
consumption during the missions. We refer to this path-optimization problem
as the resource-constrained single searcher problem (RSSP).

2. SSP for multiple searchers where the probability of detecting the target by at
least one searcher is maximized. We term this problem the multiple-searcher
problem (MSP).

3. MSP for homogeneous searchers where the fact that searchers are identical is
utilized. We refer to this multiple-homogeneous-searcher problem as MHSP.

This dissertation always assumes that the searchers are subject to constraints on

path continuity and mission time. We note that the multiple-searcher problem with

resource-constraints (risk exposure and fuel consumption, etc.) is outside of the scope

of this dissertation.

C. LITERATURE SURVEY

The topic of searching for a moving target in discrete time and space where

a searcher’s path is constrained has received much attention. Benkoski et al. [41]

provide a comprehensive survey of this problem (until 1990). The path- and time-

constrained search problem with a stationary target is NP-complete [49]. Thus the

path- and time-constrained, moving-target, search problem is at least as difficult.

One scheme to find an optimal path for a searcher is the branch-and-bound

procedure. A branch-and-bound procedure was first studied by Stewart [46]. Since

Stewart’s “bounds” are not valid, an optimal branch of the enumeration tree may be

fathomed. More recent studies [18, 34, 52, 32] focus on the development of specialized

branch-and-bound algorithms for finding an optimal path for the single searcher. In

these algorithms, a path is a sequence of vertices that the searcher will visit and

branching corresponds to extending a subpath by one more vertex. Bounds on the

optimal value of the problem are obtained by replacing the probability of detection

with, effectively, the expected number of detections [34, 52, 32]. Bounds are also

obtained by assuming that the searcher can divide its effort among multiple cells each

time period [18]. The efficiency of various branch-and-bound methods is investigated

3



in [52], with emphasis on the tradeoff between the accuracy of the bound employed

and the time required to compute it.

An alternative approach to obtain an optimal path is based on dynamic pro-

gramming and partially observable Markov decision processes [17]. The approach

can solve small problems quickly, but requires a large amount of computer storage as

the problem size increases. Later the same author reports that a branch-and-bound

algorithm [18] performs more efficiently and can solve larger problems than the exist-

ing dynamic programming procedures. Thus, we mainly focus on branch-and-bound

procedures in this dissertation.

1. Resource-constrained Single Searcher Problem

In the studies listed above, it is assumed that the searcher moves on the

ground in the AOI or searches the AOI from a constant altitude. However, in mil-

itary search, surveillance, and reconnaissance operations over land, factors such as

risk and fuel consumption become independent elements of concern for planners [37],

and the searcher is required to change its flight altitude during a mission. Risk to

the searcher arises from exposure to enemy threats on the ground such as small-arms

fire, anti-aircraft artillery, and surface-to-air missiles. Risk of pilot error (e.g., for a

low-flying helicopter [29]) and mechanical failure (e.g., for small and unreliable UAVs

[31]) may also be significant. Fuel consumption tends to be proportional to the search

duration. However, for small UAVs, it is not always proportional to the mission time,

due to variation in the searcher’s speed and/or altitude, as well as varying weather

conditions. During search over land, terrain features require altitude changes. The

altitude is also varied to balance the searcher’s risk with image quality. We note

that image quality is of particular concern for small UAVs operating with low- to

moderate-quality sensors (For information about UAV surveillance operations and

sensors, see [37, 42]). In civilian search and surveillance operations over land, we may

face many of the same factors with the exception of ground fire.
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There are only a few studies dealing with constraints on risk and fuel con-

sumption for the searchers. Thomas and Eagle [48] consider a search problem with

a random time horizon; i.e., with a perishable target with a random lifetime that

follows a particular distribution (a geometric distribution in that study). This situa-

tion is similar to having the searcher being subject to threats and having the search

terminate after searcher “failure.” We will consider a similar situation, but will limit

the total risk a searcher can be exposed to during the mission. Secrest [43] considers

optimal path planning with multiple-objectives (simultaneously accounting for flight

time, risk and fuel consumption, etc.) in surveillance missions while visiting all as-

signed locations. The resulting model does not consider the probability of detecting

a target.

Models for military aircraft routing frequently consider minimum risk along a

path subject to fuel consumption and mission duration constraints, see, e.g., [35, 55,

10]. These models have similar constraints to the ones in RSSP, but deal with linear

and time-invariant objective functions. In contrast, RSSP has a nonlinear, time-

variant objective function representing the probability of detection (see Chapter II).

Only recently have researchers extended the models for aircraft routing to situations

with nonlinear objective functions, and then only for special cases of path-dependent

risks [29].

2. Multiple-Searcher Problem

The branch-and-bound procedure is also applicable in solving the multiple-

searcher problems (MSP/MHSP). Dell et al. [13] present an exact procedure (branch-

and-bound algorithm) and six heuristics (local search, expected detection heuristics,

genetic algorithms, and moving time-horizon heuristic) to solve the MSP/MHSP.

However, the branch-and-bound algorithms need prohibitive runtime to guarantee an

optimal path for multiple-searchers, because the number of possible paths grows expo-

nentially with the number of searchers. This motivates the development of heuristic

algorithms. We find other heuristic algorithms based on myopic and receding-horizon
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approaches in [23] and sequential optimization of each searcher in [26]. For a specific

scenario, Riehl et al. [28] present a receding-horizon approach that jointly optimizes

paths and sensor orientations for multiple searchers. For a stationary-target case,

Song et al. [45] use a forward induction approach to find an optimal search strategy.

Control and robotic communities have analyzed the search problems for mul-

tiple UAVs and sensors as well. Ryan et al. [2] review the current issues and develop-

ments in the field of cooperative control (real-time navigation, collision avoidance, and

flight formation, etc.). Decentralized search techniques [20, 54] and Bayesian heuristic

approaches [53, 25] are also studied in the context of real-time search operations.

D. CONTRIBUTIONS

This study considers the path optimization problems, including “searcher sub-

ject to threat” and cases with multiple searchers. We extend the classical single

searcher problem (SSP) to realistic situations such as: (1) the searcher needs to

change its flight altitude during a mission to balance sensor quality and risk from the

ground treats; (2) the searcher is subject to constraints on multiple resources such as

fuel consumption and risk exposure along its path; and (3) the search effect depends

on the current and previous locations of the searcher. The latter situation may occur

if moving from some search sector to a new sector results in a lower search effect due

to ineffective search during transit.

We present new bounding techniques and network reduction procedures in a

branch-and-bound algorithm to efficiently solve the SSP. Based on this algorithm, we

develop a specialized branch-and-bound procedure to solve the resource-constrained

single searcher problem (RSSP) by utilizing several novel network reduction proce-

dures as well as new bounding technique taking account of the multiple resource

constraints. We also develop several new algorithms to solve the multiple searchers

problems (MSP/MHSP).
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E. ORGANIZATION

The reminder of this dissertation is outlined as follows. In the next chapter,

we formulate RSSP and develop a specialized branch-and-bound algorithm for RSSP.

The resulting algorithm utilizes a new bounding technique, applies several network

reduction procedures, and exhibits promising behavior in computational tests on in-

stances of SSP and RSSP. In Chapter III, we formulate MSP by extending SSP and

present three new algorithms (an exact procedure and two heuristics) to solve MSP

and examine their computational efficiency. In Chapter IV, we focus on MHSP. We

use the convexity of the nonlinear objective function (the non-detection probability)

and construct an exact algorithm using cutting planes (outer approximations). We

prove that under certain assumptions the problem is equivalent to a large-scale lin-

ear mixed-integer program. We also introduce several new cuts for the MHSP and

demonstrate their effect in computational tests. Chapter V provides conclusions of

our study as well as suggestions for future work.
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II. RESOURCE-CONSTRAINED SINGLE

SEARCHER PROBLEM

This chapter formulates the resource-constrained single searcher problem (RSSP)

by generalizing existing models of the single searcher problem (SSP) to the case

with multiple resource constraints. The RSSP also considers an altitude-dependent

searcher with its search effect depending on not only the searcher’s current loca-

tion but also its previous location. We combine the branch-and-bound methodology

for solving SSP with the line of research on the resource-constrained, shortest-path

problem [10]. Specifically, we merge the algorithms in [32] and [10], and develop a spe-

cialized branch-and-bound algorithm for RSSP. The resulting algorithm utilizes new

bounding techniques, applies several new network reduction procedures, and exhibits

promising behavior in computational tests on instances of SSP and RSSP.

A. PROBLEM DESCRIPTION AND FORMULATION

The area of interest (AOI) is discretized into a finite set of cells C = {1, . . . , C}
(see Figure 1) and the time horizon is discretized into a finite set of time periods

T = {1, 2, ..., T}. A target occupies one cell each time period and moves among

cells according to a Markov process with known transition matrix Γ = (Γc,c′), where

Γc,c′ is the probability that the target moves from cell c to cell c′ during one time

period. This Markovian target motion is first modeled in Stone [47]. Let p(·, t) =

[p(1, t), p(2, t), . . . , p(C, t)], where p(c, t) is the probability that the target is in cell

c ∈ C at the beginning of time period t ∈ T and the target has not been detected

before t. We refer to p(·, t) as the undetected target distribution. We note that p(·, t)
may not be a probability mass function as the sum of the elements could be less than

1. The initial target distribution p(·, 1) is known.

A single searcher moves through a designated airspace over the area of interest

with the goal of finding the moving target on the ground. The airspace over each
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Figure 1. A discretized area of interest composing of C = 4 cells.

cell c ∈ C is vertically discretized into a set of altitudes (or boxes) H = {1, 2, . . . , H}
(see Figure 2). For any c ∈ C and h ∈ H, we refer to the cell-altitude pair 〈c, h〉 as a

waypoint where the searcher can loiter and carry out search of cell c. We assume that,

from waypoint 〈c, h〉, the searcher can sweep cell c only. We model the designated

airspace by a directed network (V , E), with set of vertices V and set of directed

edges E , in which vertices v = 〈c, h〉 ∈ V represent waypoints and directed edges

e = (v, v′) ∈ E represent transition between waypoints v, v′ ∈ V . The waypoints

v, v′ ∈ V are adjacent to each other if v and v′ touch at any portions. The searcher

can only transit between two waypoints that are adjacent to each other. Let F(v) ⊂ V
be the set of vertices that are adjacent to v ∈ V . We refer to F(v) as the forward

star of vertex v. We adopt the convention that v ∈ F(v) for all v ∈ V . Then, the set

of edges E = {(v, v′) ∈ V × V| v′ ∈ F(v)}.
During each time period t ∈ T , the searcher is at a particular vertex (way-

point). We assume there is no transit time between waypoints. Hence, (v, v′) ∈ E
simply represents search at waypoint v followed by search at waypoint v′ in the next

time period. The situation with nonzero transit time between waypoints can be mod-

eled, at least approximately, by introducing artificial vertices. (We refer to [32] for

a comprehensive study of nonzero transit times.) We note that the edge (v, v) ∈ E
represents searching at waypoint v for two consecutive time periods.
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Figure 2. A discretized airspace over the area of interest (Figure 1) with H = 2
altitudes.

Let φ : V → C be the function that specifies the cell over which a vertex is

located, i.e., cell φ(v) is searched from vertex v. We denote the searcher’s vertex

(waypoint) prior to time period 1 by v0 ∈ V . This starting vertex could be a desig-

nated entry waypoint into the area of interest. We also define V̂ ⊂ V to be a set of

possible destination vertices for the searcher (e.g., V̂ = {v0} if the searcher is required

to return to the starting vertex or V̂ = V if the search can end anywhere).

For any k ∈ T and vl ∈ V , l = 0, 1, 2, ..., k, such that (vl−1, vl) ∈ E for all

l = 1, 2, ..., k, let the sequence {vl}k
l=0 denote a directed v0-vk subpath. If vk ∈ V̂ ,

then the directed v0-vk subpath is a directed v0-vk path. When the meaning is clear

from the context, we refer to a directed v0-vk (sub)path as a (sub)path. In this

notation, the searcher flies from v0 to some vk ∈ V̂ along a directed v0-vk path. The

searcher occupies only one vertex v ∈ V each time period, and stays at the same

vertex or moves to another vertex in F(v) for the next time period.

We adopt the following target-detection model. If the target is in cell c ∈ C
during time period t ∈ T and the searcher is at the same time at waypoint v′ ∈ V
above cell c, i.e., φ(v′) = c, then detection occurs with a probability. We term this

probability as glimpse detection probability and refer to g(v, v′, t), where v ∈ V is the

searcher’s waypoint during time period t−1. Hence, the glimpse detection probability
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during time period t depends on the previous and current waypoints for the searcher.

This is a generalization of earlier models where the glimpse detection probability

depends only on v′ and t [52, 32] and is one of our contributions. Our model accounts

for the fact that moving from some waypoint to a new waypoint may result in a lower

glimpse detection probability than if the searcher already was loitering at the latter

waypoint, i.e., g(v′, v′, t) > g(v, v′, t) for v′ 6= v. This effect occurs if refocusing the

sensor and becoming familiar with a new cell have a significant detrimental effect on

the glimpse detection probability. In general, change of waypoint, especially change

of altitude and frequent, irregular change of direction, may distract from the search.

This generalization also allows us to account indirectly for small transit times (much

less than the length of a time period) between waypoints without adopting a fine time

discretization with resulting high computational cost. In this notation, the probability

of detection at waypoint v′ during time period t, given search at waypoint v during

time period t− 1, and no prior detections becomes p(φ(v′), t)g(v, v′, t).

The glimpse detection probability may also depend on the searcher’s speed.

To account for this situation, edges can be duplicated as in [10] to represent search

at different speeds in cases where speed influences the searcher’s effectiveness signif-

icantly. For the sake of simplicity, however, we do not introduce notation to handle

that situation.

Since p(·, t) is the undetected target distribution at the beginning of time

period t, it depends on searches up to time period t − 1. Specifically, if p(·, t) =

[p(1, t), . . . , p(c′, t), . . . , p(C, t)] and cell c′ is searched from waypoint v′ (i.e., φ(v′) = c′)

during time period t, the undetected target distribution at the beginning of the next

time period t + 1 is

p(·, t+1) = [p(1, t), .., p(c′−1, t), p(c′, t)(1− g(v, v′, t)), p(c′+1, t), .., p(C, t)]Γ, (II.1)

where v is the searcher’s vertex during time period t − 1. Thus, the probability of
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detection along a directed v0-vk path P = {vl}k
l=0, denoted q(P), is defined as

q(P) =
k∑

t=1

p(φ(vt), t)g(vt−1, vt, t). (II.2)

Let I = {1, 2, ..., I} be a set of resources and fi(v, v′, t) be the amount of

resource i ∈ I consumed by the searcher at vertex v′ during time period t, given search

at vertex v during time period t− 1. Resources may represent physical commodities

such as fuel and ordnance that are depleted during the search as well as abstract

factors such as notions of risk exposure during the search. In contrast to search by

manned aircraft, where significant risks are usually avoided, planners accept higher

risks for UAV search missions and would like to balance risk with other factors during

the planning process. We discuss the calculation of risk in Section D. The total

“consumption” of resource i ∈ I along the directed path P = {vl}k
l=0 is

ri(P) =
k∑

t=1

fi(vt−1, vt, t). (II.3)

The searcher cannot consume more than r̂i of resource i ∈ I along a path. Hence,

the resource-constrained single searcher problem (RSSP) is the problem to find a

directed v0-vk path P = {vl}k
l=0, with vk ∈ V̂ , k ∈ T , that maximizes q(P) subject to

the constraints

ri(P) ≤ r̂i, i ∈ I. (II.4)

We contribute that the single searcher problem (SSP) is generalized to the case

with multiple resource constraints. We refer to constraints (II.4) as side constraints.

In Section D, we examine a case study with two time-invariant resources: risk and fuel.

The next section deals with the “unconstrained” problem with no side constraints

(referred as SSP), while Sections C and D address the full RSSP.

B. BRANCH-AND-BOUND ALGORITHM FOR SSP

In this section, we consider the single search problem (SSP) that maximizes

(II.2) without the side constraints (II.4). Several branch-and-bound algorithms for
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the solution of SSP have been developed [46, 50, 18, 34, 13, 52, 32]. These algorithms

implicitly enumerate all searcher paths that cannot be proven, by means of a bound, to

be nonimproving. The next subsection presents the algorithm in [32], which appears

to be the fastest in the literature for SSP under a broad range of conditions; see [32]

for an empirical study. The subsequent subsection presents four modifications of that

algorithm which generalize and speed up that algorithm.

This section ignores side constraints and, without loss of generality, assumes

that an optimal path consists of T + 1 vertices. To simplify the notation, we also

assume in this section that there is no end-point restriction, i.e., V̂ = V . We find

identical assumptions in [52, 32]. Initially, we assume that the glimpse detection

probability g(v, v′, t) is independent of v and write g(v′, t), but relax that assumption

later in this section.

1. Existing Algorithm

For completeness and ease of reference later, we outline the algorithm in Lau

et al. [32]. Given a subpath {vl}t−1
l=0, t ∈ T , let K(t) be the set of triplets of the form

(vt, t, q̄(vt, t)) representing extensions of {vl}t−1
l=0 yet to be explored. The first element

vt refers to the next vertex to visit, the second element t is the time period1 to visit

the vertex vt, and the third element q̄(vt, t) is an upper bound on the probability

of detection along any path that starts with the subpath {vl}t
l=0. The upper bound

q̄(vt, t) consists of three parts. Let dt(vt, t) be an upper bound on the probability of

detection during time periods t + 1, t + 2, ..., T , given that the searcher starts at vt at

time t, and no detection occurs along the subpath {vl}t
l=0. The two other parts are

the probability of detection on the subpath {vl}t−1
l=0 and the probability of detection

during t. Hence,

q̄(vt, t) = q({vl}t−1
l=0) + p(φ(vt), t)g(vt, t) + dt(vt, t). (II.5)

1This information is currently redundant but the notation is convenient in later generalizations.
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We also let q̂ denote the largest detection probability found so far among all the

examined paths. In this notation, the algorithm in [32] takes the following form.

Algorithm 1 (Solves SSP).

Input: A time-expanded network (N ,A) (defined later as Figure 3) with
nodes n ∈ N and arcs (n, n′) ∈ A where n = 〈v, t − 1〉, n′ = 〈v′, t〉.
Arc lengths g(v′, t) in (N ,A), the initial target distribution p(·, 1), Markov
transition matrix Γ, and upper bound q̂.

Output: An optimal search path P∗ = {vl}T
l=0 and its value q∗.

Step 0. Set t = 0,K(t) = {(v0, 0,∞)}, and q̂ = 0.

Step 1. If K(t) is empty, replace t by t− 1. Else, go to Step 3.

Step 2. If t = 0, stop: the last saved path is optimal and q̂ is its probability
of detection. Else, go to Step 1.

Step 3. Remove from K(t) the triplet (vt, t, q̄(vt, t)) with the largest bound
q̄(vt, t).

Step 4. If q̄(vt, t) ≤ q̂, go to Step 1. (Current subpath is fathomed.)

Step 5. If t < T , then for each vertex v ∈ F(vt), calculate a bound dt+1(v, t+
1) as well as q̄(v, t + 1) using equation (II.5), and add (v, t + 1, q̄(v, t + 1))
to K(t + 1). Replace t by t + 1 and go to Step 3. Else, let q̂ = q̄(vt, t) and
save the incumbent path {vl}T

l=0, and go to Step 1.

Clearly, a tight bound dt(vt, t) will reduce the number of branching attempts

in Step 4 of Algorithm 1. As examined in [51, 52, 32], there is a fundamental trade-off

between the effort needed to compute a bound and its tightness. From these studies,

it appears that the bounding technique in [32] compares favorably in most situations.

We describe that bounding technique in the rest of this subsection.

Consider a subpath {vl}t
l=0, t ∈ T , and let pg(·, t) be the undetected target

distribution after search along {vl}t
l=0, i.e.,

pg(·, t) = (II.6)

[p(1, t), .., p(φ(vt)− 1, t), p(φ(vt), t)(1− g(vt, t)), p(φ(vt) + 1, t), .., p(C, t)].
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We use subscript g to indicate that pg(·, t) is obtained from p(·, t) by applying the

glimpse detection probability corresponding to the last vertex in the “current” sub-

path {vl}t
l=0. For any integer s > t, s ∈ T , we also define

pΓ(·, s; t) = pg(·, t)Γs−t. (II.7)

As seen, pΓ(c, s; t) is the probability that the target is in cell c at time period s > t

and there was no detection during search along the subpath {vl}t
l=0. Hence, target

distribution pΓ(·, s; t) at time period s > t ignores the effect of search after time

period t. If the subpath is {v0}, i.e., t = 0, we define for notational convenience

pΓ(·, s; 0) = p(·, 1)Γs−1, (II.8)

for any s > 0, s ∈ T . Moreover, we define pΓ(c, t; t) = 0 for all c ∈ C and t = 0, 1, ..., T .

Now, we construct a time-expanded graph from the network (V , E) as follows

(see Figure 3). Each vertex v ∈ V is duplicated T times to define the nodes 〈v, s〉,
s ∈ T . Let N be the set of all such nodes as well as the nodes n0 = 〈v0, 0〉 and

n̂ = 〈v̂, T+1〉 representing the searcher’s prior position and final position, respectively.

Here, v̂ is an artificial terminal vertex. Two nodes n = 〈v, s − 1〉 and n′ = 〈v′, s〉,
v, v′ ∈ V and s = 2, 3, ..., T , are connected with an arc (n, n′) if and only if (v, v′) ∈ E .

Moreover, the node n0 = 〈v0, 0〉 is connected with an arc to a node n′ = 〈v′, 1〉,
v′ ∈ V , if and only if (v0, v

′) ∈ E ; and every node n = 〈v, T 〉, v ∈ V is connected

with an arc to n̂. Let A be the set of all arcs. For any integer k ≤ T + 1 and nodes

nl = 〈vl, l〉 ∈ N , l = 0, 1, ..., k, such that (nl−1, nl) ∈ A for all l = 1, 2, ..., k, we let the

sequence {nl}k
l=0 denote a subpath in the time-expanded graph (N ,A).

For some t ∈ {0, 1, ..., T − 1}, suppose that a subpath {vl}t
l=0 in the original

graph (V , E) is given. Then, we endow each arc (n, n′) = (〈v, s〉, 〈v′, s + 1〉) ∈ A,

s = t, t + 1, ..., T − 1, in the time-expanded graph (N ,A) with a “reward”

cn,n′ = [pΓ(φ(v′), s + 1; t)− pΓ(φ(v), s; t)g(v, s)Γ(v, v′)]g(v′, s + 1), (II.9)

where Γ(v, v′) is the φ(v)-φ(v′) element of the Markov transition matrix Γ. We set

cn,n̂ = 0 for all (n, n̂) ∈ A. We observe that, multiplied out, the first term pΓ(φ(v′), s+
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Figure 3. A time-expanded graph from the network in Figure 1 and one altitude. The
searcher’s initial position is n0 = 〈v0, 0〉 = 〈〈1, 1〉, 0〉 and final position is n̂ = 〈v̂, T+1〉.

1; t)g(v′, s + 1) in (II.9) is effectively the expected number of detections during time

period s + 1, which gives rise to the so-called mean bound [34], and the second term

in (II.9) improves the bound by accounting for the effect of search during time period

s [32]. We refer to (N ,A) with arc rewards given by (II.9) as the time-expanded

network.

In Lau et al. [32], it is shown that given the subpath {vl}t
l=0, the optimal value

of the longest-path problem in the time-expanded network from node 〈vt, t〉 to node

〈v̂, T + 1〉, using the rewards in (II.9) as “arc length,” provides an upper bound for

Algorithm 1. Specifically, this optimal value is an upper bound on the probability of

detection during time periods t + 1, t + 2, ..., T , given that the searcher starts at vt at

time t, and no prior detections occurred along the subpath {vl}t
l=0. We denote this

bound by dt(vt, t) and refer to it as the dynamic bound, as it needs to be recomputed
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every time the current subpath is extended.

Since the time-expanded network is acyclic, the longest-path problem can be

solved in polynomial calculation time with a standard shortest-path algorithm ([1],

pages 77-79). We observe that to compute dt(vt, t) given the subpath {vl}t
l=0, it is

only necessary to generate the part of the graph (N ,A), and the corresponding arc

rewards, “after” time t and within reach from node 〈vt, t〉, since the longest path

starts at node 〈vt, t〉. Hence, in Step 5 of Algorithm 1, it suffices to generate the

time-expanded network “after” time t.

2. Algorithmic Modifications for SSP

Algorithm 1 requires bound calculation at each branching which is a principal

bottleneck for that algorithm. Thus we present new bounding techniques to enhance

Algorithm 1. This subsection proposes and examines four modifications of Algorithm

1. The first modification extends the bound in [32] to the case in which glimpse

detection probability depends on the previous vertex, i.e., g(v, v′, t). The following

three modifications are aimed to simplify and speed up Algorithm 1. The second

modification weakens the bound but greatly simplifies its bound calculation. The

third modification improves the weaker bound at little computational expense. The

fourth modification takes advantage of a special, but frequently occurring, initial tar-

get distribution.

a. Bound for Edge-Dependent Glimpse Detection Proba-
bility

Previous studies (see, e.g.,[52, 32]) assume that the glimpse detection

probability depends only on the searcher’s current waypoint (vertex) and on time.

As we argue in Section A, this is somewhat restrictive. Fortunately, we can easily

extend the previous studies to the case where the glimpse detection probability also

depends on the searcher’s previous waypoint. The only modification that is required

is to redefine the arc reward cn,n′ in (II.9). However, a straightforward replacement of
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g(v, s) by g(v′′, v, s) in (II.9), where v′′ is the vertex prior to v, would ruin the longest-

path structure of the bound-calculation problem: cn,n′ would no longer depend only on

the head and tail of the arc (n, n′). Hence, it is necessary to use the smallest glimpse

detection probability minv′′∈R(v) g(v′′, v, s) to eliminate the dependence on the vertex

prior to v, where R(v) ⊂ V is the reverse star of v, i.e., R(v) = {v′′ ∈ V | (v′′, v) ∈ E}.
Consequently, we now endow each arc (n, n′) = (〈v, s〉, 〈v′, s+1〉) ∈ A with the reward

cn,n′ =

[
pΓ(φ(v′), s + 1; t)− pΓ(φ(v), s; t)

(
min

v′′∈R(v)
g(v′′, v, s)

)
Γ(v, v′)

]
g(v, v′, s + 1).

(II.10)

With this reward, the bound calculation remains a longest-path problem in an acyclic

graph and it can be shown using the same arguments as in [32] which prove that the

dynamic bound is valid.

b. Static Bound

Algorithm 1 requires one longest-path calculation in the time-expanded

network for each vertex in the forward star of the current vertex to compute the re-

quired bounds dt(vt, t) (see Step 5). The approach of Algorithm 1 with dynamic

bound follows the traditional approach of branch-and-bound algorithms where the

bound is reoptimized before each branching. In the present case, the reoptimization

corresponds to the longest-path calculation and requires computing the arc rewards

cn,n′ , see (II.10). These calculation can be time consuming, as they typically involve

a moderately large Markov transition matrix Γ and associated matrix multiplication.

Our numerical example considers that Γ is of size 225 by 225. We propose to use a

static bound instead of the dynamic bound proposed in [32] and described in Subsec-

tion B.1. As shown below, all the necessary static bounds are computed prior to any

branching and are not recomputed later.

The dynamic bound dt(vt, t) (see Subsection B.1) uses information

about search along a current subpath {vl}t
l=0. However, the bound remains valid

if the effect of search along the current subpath is ignored. This follows from the
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same arguments as in the proof of the validity of dt(vt, t), see [32]. We denote the

new bound d0(vt, t), where the subscript 0 indicates that the trivial subpath {v0}
is used in (II.10) with t = 0 instead of the subpath {vl}t

l=0, which dt(vt, t) utilizes.

Hence, the only difference between dt(vt, t) and d0(vt, t) is that pΓ(·, ·; t) is replaced by

pΓ(·, ·; 0) in (II.10). However, this difference makes the bound d0(vt, t) independent

of the current subpath used to reach the vertex vt. Hence, d0(v, t) can be computed

in advance for all nodes 〈v, t〉 ∈ N , and dynamical computation of bounds is not

required. Consequently, the arc rewards (II.10) and bounds are computed only once.

We refer to d0(v, t) as the static bound. We observe that it is not necessary to carry

out a longest-path calculation from each node 〈v, t〉 ∈ N to 〈v̂, T + 1〉 to obtain

d0(v, t). It is more efficient to carry out the longest-path calculations backward from

node 〈v̂, T + 1〉 to all nodes. This calculation simply amounts to applying a shortest-

path algorithm once to the time-expanded network with arc lengths equal to the

negative rewards.

In Step 5 of Algorithm 1, we now simply use d0(vt, t) instead of dt(vt, t).

Thus, the modified algorithm does not require any longest-path calculation in Step 5.

All bound calculations are done prior to Step 0. Clearly, the modified approach results

in a weaker bound and the need for more branching attempts. However, the additional

branching attempts may be compensated by shorter per-iteration computing times.

In order to examine the effect of the static bound d0(vt, t), we examine

the same numerical example as in [32]: An area of interest consists of 11 by 11 cells.

The searcher operates only at one altitude and its moves are restricted to vertically

and horizontally adjacent cells, excluding diagonal moves. The target remains in the

current cell with a probability ρ or moves to one of the vertically or horizontally

adjacent cells with probability 1 − ρ. The different moves are equally likely. The

searcher departs cell 1 (v0 = 1), where the cells are numbered from left to right and

from top to bottom. Hence, cell 1 is the upper-left-corner cell. The target starts at

the center cell, i.e., at cell 61. The time horizon T = 17.

20



We have implemented Algorithm 1 with static bound using Microsoft

Visual C++ 6.0 on a desktop computer with a 3.4 GHz Intel Pentium IV processor,

1.0 gigabytes of RAM, and the Microsoft Windows XP operating system. Table 1

shows, for a range of constant glimpse detection probabilities g(v, v′, t) and “stay

probabilities” ρ, the run times (in seconds) and numbers of bounding attempts of

Algorithm 1, as well as those reported in [32]. We especially consider the case of high

glimpse detection probability (g(v, v′, t) = 0.99), in which both static and dynamic

bounds tend to be relatively weak. Column 3 of Table 1 presents the resulting run

times for Algorithm 1 with static bound. The corresponding run times reported from

[32] are found in column 5. (The case g(v, v′, t) = 0.99 is not considered in [32].)

Those reported numbers are achieved on a 2.6 GHz Opteron 152 processor computer

using Matlab. Hence, a direct comparison between the run times in columns 3 and

5 is difficult. However, we find reports of run times for other problem instances

using a C++ implementation in [32]. A brief comment in [32] based on a single

problem instance indicates that the Matlab implementation is 15.6 times slower than

the C++ implementation. For the sake of comparison, we scale down the run times

in column 5 of Table 1 with 1/15.6 to approximately account for the slower Matlab

implementation. We also scale down the run times of column 5 by a factor of 2.6/3.4

to account for the slower computer used in [32]. The resulting scaled down run times

are presented in column 6 of Table 1. We observe that the scaled down run times for

Algorithm 1 with dynamic bound are somewhat faster than the corresponding run

times with static bound. However, the static bound, which is weaker than the dynamic

bound, remains fairly competitive, especially for more difficult problem instances.

We compare the strengths of the static and dynamic bounds by counting

the number of branching attempts required in Algorithm 1. Columns 4 and 7 of

Table 1 give the numbers of branching attempts for the static and dynamic bounds,

respectively. The number of branching attempts for the static bound is, on average,

37 times larger than in the case of the dynamic bound. We observe that the greater
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Static Bound Dynamic Bound [32] Dynamic Bound
Time Branching Time Scaled Branching Time Branching

g(v, v′, t) ρ (sec.) attempts (sec.) (sec.) attempts (sec.) attempts
0.3 3.59 2,301,182 14.56 0.71 58,314 2.09 58,314

0.3 0.6 2.58 1,635,517 14.53 0.71 52,369 2.11 52,369
0.9 11.47 7,338,492 157.30 7.71 380,889 20.75 380,889
0.3 5.38 3,424,282 19.07 0.94 49,774 2.59 49,774

0.6 0.6 2.58 1,620,402 23.76 1.16 47,454 3.03 47,454
0.9 59.26 38,186,809 730.96 35.84 2,185,066 103.08 2,185,066
0.3 5.78 3,675,197 21.55 1.06 45,019 2.78 45,019

0.9 0.6 2.89 1,831,875 30.58 1.50 59,527 3.91 59,527
0.9 176.26 113,646,357 2902.27 142.30 11,299,259 431.38 11,299,259
0.3 6.09 3,865,002 N/A N/A N/A 2.91 46,339

0.99 0.6 3.00 1,896,960 N/A N/A N/A 3.91 58,752
0.9 192.06 123,822,672 N/A N/A N/A 558.63 16,685,969

Table 1. Run times and number of branching attempts (counted in Step 4) for
Algorithm 1 with static and dynamic bounds on 11 by 11 cell search problem with
time horizon T = 17. Columns labeled “Dynamic Bound [32]” correspond to original
and speed-adjusted results from [32].

number of bounding attempts is partially compensated for by avoiding dynamical

reoptimization of the bound.

For a direct comparison between the static and dynamic bounds, we

implement Algorithm 1 with dynamic bound in Microsoft Visual C++ 6.0. We made

a significant effort to ensure that the implementation is efficient, including efficient

handling of sparse matrices. Column 8 and 9 of Table 1 report the run times and the

number of branching attempts for our implementation of Algorithm 1 with dynamic

bound, respectively. We observe that our implementation results in identical numbers

of branching attempts compared to the implementation in [32]. When comparing

columns 6 and 8, we see that our implementation of the dynamic bound results in

somewhat longer run times than the scaled times from [32]. However, the longer times

in column 8 compared to column 6 can partially be due to an excessively aggressive

scaling of run times going from column 5 to column 6.

While implementing the dynamic bound, we noted a significant chal-

lenge associated with efficient matrix multiplication and data handling. Since the
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dynamic bound dt(v, t) is reoptimized a large number of times, it is paramount to

carry out the related calculations efficiently. In comparison, it is rather trivial to

implement a static bound. It is not critical to carry out the longest-path calculations

highly efficiently in the static case as they are only done once.

We also observe that both static and dynamic bounds tend to be weaker

when the target is nearly stationary (e.g., ρ = 0.9) and glimpse detection probability

is large (e.g., g(v, v′, t) = 0.9 or 0.99). For these problem instances, the implementa-

tion with dynamic bound is more sensitive to the change in data. In fact, comparing

the instance (g(v, v′, t) = 0.9 and ρ = 0.9) to the instance (g(v, v′, t) = 0.99 and

ρ = 0.9), we see that the run time and the number of branching attempts in the

case of the dynamic bound become 1.29 and 1.48 times larger, respectively. On the

other hand, the static bound is less sensitive, and its numbers become only 1.09 times

larger. These numbers indicate that it becomes even less worthwhile to invest time

in dynamic bound calculations when the bounds are relatively weak anyway.

c. Directional Static Bound

As seen from Table 1, the static bound is substantially weaker than

the dynamic bound. We derive a stronger static bound motivated by the classical

approach to handling turn-radius constraints in vehicle-routing problems [8].

In the longest-path calculations for the static bound, the reward of arc

(〈v, s〉, 〈v′, s + 1〉) is, effectively, the probability of detection at vertex v′ during time

period s + 1 and no detection at vertex v during time period s. Of course, this

overestimates the probability of detection at vertex v′ during time period s + 1 and

no prior detections, as detection could occur prior to time period s. We strengthen

the static bound if we redefine the arc reward to be the probability of detection at

vertex v′ during time period s + 1 and no detection at vertex v during time period s

and no detection at the vertex visited during time period s− 1. However, redefining

the arc reward to depend not only on the arc’s head and tail nodes, but also on a

previous node, ruins the longest-path structure of the bound-calculation problem.
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A similar situation arises in vehicle routing problems for vehicles with

turn-radius constraints or penalties. The classical approach to handle that situation

is to duplicate each node a number of times equal to the number of nodes in the

node’s reverse star. An arc in the resulting “node-expanded” network then carries

information about three nodes, not only two, and a desirable network structure of

the problem can be maintained. Fortunately, it is practical to carry out such a node-

expansion approach in the problems of interest in this paper because the number of

nodes in the reverse star is typically quite moderate. Hence, we proceed along the

stated lines and develop a node-and-time expanded network, in which the improved

static bound can be calculated by solving a longest-path problem. We refer to this

improved bound as the directional static bound.

For any n′ ∈ N , let R(n′) ⊂ N be the reverse star of n′, i.e., R(n′) =

{n ∈ N|(n, n′) ∈ A}. Then, for any n, n′ ∈ N\{n̂} such that (n, n′) ∈ A, we define

an expanded node ξ = 〈n, n′〉. We do not expand the end node, so we set ξ̂ = n̂. Let

Ξ be the set of all expanded nodes. Two expanded nodes ξ, ξ′ ∈ Ξ are connected by

an expanded arc (ξ, ξ′) if ξ = 〈n, n′〉 and ξ′ = 〈n′, n′′〉. Let the set of all expanded

arcs be Ω. The node-and-time expanded graph is illustrated in Figure 4.

We endow each expanded arc in the node-and-time expanded graph

(Ξ, Ω) with a reward similar to (II.10). To derive the exact form of this reward, we

need the following building blocks. For any v, v′ ∈ V and t ∈ T , let Mt(v, v′) be a C

by C identity matrix with the φ(v′)-th diagonal element set equal to 1 − g(v, v′, t).

We also let Γ(v′) be the φ(v′)-th column of the Markov transition matrix Γ.

From (II.2) and the recursive application of (II.1), we see that the

probability of detection along a path {vl}T
l=0 is given by

q({vl}T
l=0) = p(φ(v1), 1)g(v0, v1, 1) +

p(·, 1)M1(v0, v1)Γ(v2)g(v1, v2, 2) +

p(·, 1)M1(v0, v1)ΓM2(v1, v2)Γ(v3)g(v2, v3, 3) + (II.11)

p(·, 1)M1(v0, v1)ΓM2(v1, v2)ΓM3(v2, v3)Γ(v4)g(v3, v4, 4) +
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Figure 4. A node-and-time expanded network from the time-expanded graph (Figure
3).

...

p(·, 1)M1(v0, v1)ΓM2(v1, v2) · . . . · ΓMT−1(vT−2, vT−1)Γ(vT )g(vT−1, vT , T ).

The expression (II.11) gives insight into a class of bounds on the probability of detec-

tion, including the static bound d0(vt, t). If we replace Mt(·, ·) by the identity matrix

in (II.11), we find that

q({vl}T
l=0) ≤ p(φ(v1), 1)g(v0, v1, 1) +

p(·, 1)Γ(v2)g(v1, v2, 2) +

p(·, 1)ΓΓ(v3)g(v2, v3, 3) + (II.12)

p(·, 1)ΓΓΓ(v4)g(v3, v4, 4) +

...

p(·, 1)ΓT−2Γ(vT )g(vT−1, vT , T ).
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In (II.12), the “reward” received during a time period is simply the expected number

of detection during that time period and depends only on the current and previous

vertices. Hence, it is possible to compute an upper bound on the optimal probability

of detection by finding a path {vl}T
l=0 that maximizes the right-hand side in (II.12).

This calculation amounts to a longest-path problem and is, in fact, the approach

in [34]. (Note, however, that [34] assumes that the glimpse detection probability is

independent of the previous vertex.)

If we replace each Mt(·, ·) by the identity matrix everywhere except the

last matrix of each line in (II.11), we obtain

q({vl}T
l=0) ≤ p(φ(v1), 1)g(v0, v1, 1) +

p(·, 1)M1(v0, v1)Γ(v2)g(v1, v2, 2) +

p(·, 1)ΓM2(v1, v2)Γ(v3)g(v2, v3, 3) + (II.13)

p(·, 1)ΓΓM3(v2, v3)Γ(v4)g(v3, v4, 4) +

...

p(·, 1)ΓT−2MT−1(vT−2, vT−1)Γ(vT )g(vT−1, vT , T ).

Now, the reward received during each time period also depends on the searcher’s

position two time periods ago, and the problem of finding a path that maximizes

the right-hand side is no longer a longest-path problem. However, the bound remains

valid with the following minor modification, where the maximization of a matrix with

a single element different from zero or one is simply the maximization of that element:

q({vl}T
l=0) ≤ p(φ(v1), 1)g(v0, v1, 1) +

p(·, 1)

(
max

v∈R(v1)
M1(v, v1)

)
Γ(v2)g(v1, v2, 2) +

p(·, 1)Γ

(
max

v∈R(v2)
M2(v, v2)

)
Γ(v3)g(v2, v3, 3) + (II.14)

p(·, 1)ΓΓ

(
max

v∈R(v3)
M3(v, v3)

)
Γ(v4)g(v3, v4, 4) +

...
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p(·, 1)ΓT−2

(
max

v∈R(vT−1)
MT−1(v, vT−1)

)
Γ(vT )g(vT−1, vT , T ).

After this modification, we see that the reward during each time period only depends

on the current and previous vertices. Hence, again, it is possible to compute an upper

bound on the optimal probability of detection by solving a longest-path problem. In

fact, this is exactly the approach we described in Subsection B.2a and it can be shown

that the reward in the longest-path problem cn,n′ , see (II.10), can be deduced from

(II.14). Specifically, when the current subpath in (II.10) is {v0}, we have for arc

(n, n′) = (〈v, s〉, 〈v′, s + 1〉) ∈ A that

cn,n′ = p(·, 1)Γs−1

(
max

v′′∈R(v)
Ms(v

′′, v)

)
Γ(v′)g(v, v′, s + 1). (II.15)

Using similar arguments, we define the directional static bound as fol-

lows. Clearly,

q({vl}T
l=0) ≤ p(φ(v1), 1)g(v0, v1, 1) +

p(·, 1)M1(v0, v1)Γ(v2)g(v1, v2, 2) +

p(·, 1)

(
max

v∈R(v1)
M1(v, v1)

)
ΓM2(v1, v2)Γ(v3)g(v2, v3, 3) +(II.16)

p(·, 1)Γ

(
max

v∈R(v2)
M2(v, v2)

)
ΓM3(v2, v3)Γ(v4)g(v3, v4, 4) +

...

p(·, 1)ΓT−3

(
max

v∈R(vT−2)
MT−2(v, vT−2)

)
ΓMT−1(vT−2, vT−1)Γ(vT )g(vT−1, vT , T ).

Hence, we can compute an upper bound on the optimal probability of detection by

finding a path {vl}T
l=0 that maximizes the right-hand side of (II.16). This calculation

amounts to a longest-path problem in the node-and-time expanded graph (Ξ, Ω).

The arc reward in this longest-path problem is deduced from (II.16). Specifically, an

expanded arc (ξ, ξ′) = (〈n′′, n〉, 〈n, n′〉) ∈ Ω, with n′′ = 〈v′′, s − 1〉, n = 〈v, s〉, and

n′ = 〈v′, s + 1〉, is endowed with the reward

cξ,ξ′ = p(·, 1)Γs−2

(
max

v′′′∈R(v′′)
Ms−1(v

′′′, v′′)

)
ΓMs(v

′′, v)Γ(v′)g(v, v′, s + 1). (II.17)
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We refer to the node-and-time expanded graph (Ξ, Ω) with the arc rewards cξ,ξ′ from

(II.17) as the node-and-time expanded network. Since the node-and-time expanded

graph is acyclic, longest-path problems are solvable by standard shortest-path algo-

rithms.

In view of the above discussion, we obtain the following result.

Proposition 1 For any v′ ∈ V and t ∈ T , let

(i) d0(v
′, t) be the value of the longest-path from node 〈v′, t〉 to node n̂ in the

time-expanded graph (N ,A) with arc rewards given by (II.15), and

(ii) δ0(v, v′, t) be the value of the longest-path from expanded node 〈〈v, t−1〉, 〈v′ t〉〉
to expanded node ξ̂ in the node-and-time expanded graph (Ξ, Ω) with arc re-
wards given by (II.17).

Then, both d0(v
′, t) and δ0(v, v′, t) are upper bounds on the probability of detection

during time periods t + 1, t + 2, ..., T for any path {vl}T
l=0 with vt−1 = v and vt = v′.

Moreover, δ0(v, v′, t) ≤ d0(v
′, t).

We refer to δ0(v, v′, t) as the directional static bound and see from

Proposition 1 that it is at least as strong as the static bound. We demonstrate in an

empirical study below that it may be substantially stronger.

Clearly, building the node-and-time expanded graph (Ξ, Ω), computing

the associated rewards, and calculating the longest-paths take some computing time.

However, the process is only carried out once before the start of Algorithm 1 and

the computed bounds are stored for later use. Hence, the time for computing the

directional static bounds remains small compared to the overall run time of Algorithm

1. We conjecture that the use of the node-and-time expanded graph (Ξ, Ω) with

dynamic reoptimization of bounds will not be efficient due to the small but significant

effort required to build the node-and-time expanded graph, compute associated arc

rewards, and carry out the longest-path calculations. We observe that this conjecture

appears to be aligned with [32], which alludes to the inefficiency of a dynamic bound

based on more than one-time-step look-behind.
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In Table 2, we report computational results for Algorithm 1 with the

directional static bound applied to the same problem instances as in Table 1. Columns

3 and 4 give run times and number of branching attempts, respectively, for Algorithm

1 using the directional static bound. We observe that, on average, the number of

branching attempts has been reduced to 58.1% by using the directional static bound

compared with the static bound. (Compare column 4 in Table 1 with column 4 in

Table 2.) Similarly, the run times have been reduced to 58.2% by using the directional

static bound. Since the reduction in branching attempts and run time are essentially

identical, we conclude that the time for computing the directional static bound is

small compared to the overall run time.

Algo. 1: D-Static Algo. 2: Static & Red. Algo. 2: D-Static & Red.
Time Branching Time Branching Time Branching

g(v, v′, t) ρ (sec.) attempts (sec.) attempts (sec.) attempts
0.3 2.59 1,642,619 0.22 129,990 0.19 91,198

0.3 0.6 1.80 1,125,929 0.17 94,307 0.16 65,485
0.9 6.30 4,032,951 0.58 354,677 0.41 223,435
0.3 3.50 2,245,784 0.31 194,425 0.27 128,526

0.6 0.6 1.45 902,409 0.17 92,997 0.14 57,015
0.9 29.67 19,321,387 2.17 1,442,612 1.37 844,747
0.3 3.59 2,282,989 0.34 209,160 0.28 138,598

0.9 0.6 1.66 1,037,829 0.17 101,216 0.17 61,005
0.9 80.50 52,527,302 4.95 3,323,101 2.89 1,837,647
0.3 3.77 2,396,764 0.36 219,217 0.28 137,063

0.99 0.6 1.72 1,080,459 0.19 102,763 0.17 62,890
0.9 87.99 57,427,410 5.39 3,592,696 3.09 1,974,871

Table 2. Run time and number of branching attempts (counted in Step 4) for Al-
gorithm 1 on problem instances of Table 1 using directional static bound (D-Static)
and for Algorithm 2 using static bound and network reduction (Static & Red.) and
directional static bound and network reduction (D-Static & Red.).

d. Network Reduction

In some practical situations, the searcher’s and the target’s initial po-

sitions are relatively far from each other. Hence, for a number of time periods the

searcher will only examine cells where the target is guaranteed not to be located. In

these initial moves, the searcher is simply positioning itself for the later search. This
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Time period 1 Time period 2

Time period 3 Time period 4

Figure 5. An area of interest composed of 5 by 5 cells. For each time period, the
unshaded, lightly-shaded, heavily-shaded, and completely-shaded cells describe the
regions where neither searcher nor target stay, only target possibly stays, only searcher
possibly stays, and target and searcher possibly stay, respectively.

is the situation in the numerical examples of [32]. In this subsection, we derive a

network reduction technique that utilizes this situation.

Consider the time-expanded graph (N ,A). Suppose that the searcher

flies, for the first s time periods, along a subpath {nt}s
t=0, with nt = 〈vt, t〉, such

that p(φ(vt), t) = 0 for all t < s, and p(φ(vs), s) > 0. Then, the searcher cannot

detect the target prior to time period s. We refer to the last node ns of the subpath

{nt}s
t=0 as a node-of-first-contact. It is typically straightforward to determine a set of

nodes-of-first-contact by applying a standard search algorithm ([1], pages 73-77) on

the time-expanded network. In Figure 5, we illustrate a situation where the searcher

can at the earliest detect the target during time period 4, and also note that the time

period of all nodes-of-first-contact 〈vs, s〉 ∈ N is s ≥ 4.
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We observe that there might be several different subpaths {nt}s
t=0, nt =

〈vt, t〉 to reach a node-of-first-contact 〈vs, s〉 ∈ N . However, the subpath used to

reach 〈vs, s〉 is of no or little importance. In fact, if g(vs−1, vs, s) does not vary

with the choice of vs−1, all subpaths to 〈vs, s〉 have probability of detection equal

to p(φ(vs), s)g(vs−1, vs, s); with p(φ(vs), s) = p(·, 1)Γs−2Γ(vs). Thus, it is enough to

find a subpath to each node-of-first-contact 〈vs, s〉 using a standard search algorithm,

connect initial node 〈v0, 0〉 to 〈vs, s〉 directly with a “jump” arc representing the

move to 〈vs, s〉, and ignore time periods 1, 2, ..., s − 1 during the branch-and-bound

algorithm. Clearly, this procedure may reduce the amount of branching attempts

significantly. We can generalize this to the case with g(vs−1, vs, s) varying with respect

to vs−1, as discussed in Subsection C.2c.

If a lower bound q̂ on the optimal probability of detection is available in

advance of the network reduction procedure described above, it may not be necessary

to consider all nodes-of-first-contact. Fortunately in the single searcher problems

(SSP), a lower bound is trivially obtained by computing the probability of detection

along the path corresponding to the static bound d0(v0, 0). Furthermore, for each

node-of-first-contact 〈vs, s〉, an upper bound on the probability of detection after

time period s with no prior detections (e.g., the static bound d0(vs, s)) is available

in advance of both branch-and-bound and network-reduction procedures. The upper

and lower bounds can be used to eliminate some nodes-of-first-contact that cannot

lie on an optimal path. Specifically, if p(φ(vs), s)g(vs−1, vs, s) + d0(vs, s) ≤ q̂, we can

eliminate 〈vs, s〉 and all incoming and outgoing arcs. Thus, the amount of branching

attempts may be reduced further.

In order to take advantage of this reduced network in the branch-and-

bound algorithm, we construct a second algorithm (Algorithm 2) that generalizes

the branch-and-bound mechanism of Algorithm 1. Before we describe the algorithm,

we need to clarify some notation. After the algorithm is presented, we describe the

network reduction procedure in detail.
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Given a subpath {nl}k
l=0, nl = 〈vl, l〉, k ∈ T , let K(i), as before, be

the set of triplets (vt, t, q̄(vt, t)) representing extensions of {nl}k
l=0 yet to be explored.

Now, the index i of K(i) refers to the depth from node 〈v0, 0〉 to the next node 〈vt, t〉
in the branch-and-bound tree. Since 〈v0, 0〉 is directly connected to each node-of-

first-contact 〈vs, s〉, the corresponding depth in the branch-and-bound tree is 1. For

reporting purposes, a subpath {nl}s
l=0 is stored for each node-of-first-contact 〈vs, s〉.

Algorithm 2 (Solves SSP).

Input: A time-expanded network (N ,A) with arc length cn,n′ or a node-and-
time expanded network (Ξ, Ω) with arc length cξ,ξ′ . The initial target
distribution p(·, 1), Markov transition matrix Γ, and upper bound q̂.

Output: An optimal search path P∗ = {vl}T
l=0 and its value q∗.

Step 0. Calculate δ0(v, v′, t) for all t ∈ T and v, v′ ∈ V such that (v, v′) ∈ E
or d0(v

′, t) for all t ∈ T and v′ ∈ V , and calculate a lower bound q̂. Set
i = 0,K(i) = {(v0, 0,∞)}.

Step 1. If K(i) is empty, replace i by i− 1. Else, go to Step 3.

Step 2. If i = 0, stop: the last saved path is optimal and q̂ is its probability
of detection. Else, go to Step 1.

Step 3. Remove from K(i) the triplet (vt, t, q̄(vt, t)) with the largest bound
q̄(vt, t).

Step 4. If q̄(vt, t) ≤ q̂, go to Step 1. (Current subpath is fathomed.)

Step 5. If i = 0, replace i by i + 1, and go to Step 3. (K(1) is populated in
the network reduction procedure.)

Step 6. If t < T , then for each vertex v ∈ F(vt), calculate q̄(v, t + 1) from
(II.5) using bounds d0(v, t+1) or δ0(vt, v, t+1), and add (v, t+1, q̄(v, t+1))
to K(i + 1). Replace i by i + 1, and go to Step 3. Else, let q̂ = q̄(vt, t) and
save the incumbent path {vl}T

l=0, and go to Step 1.

We now present the network reduction procedure that can be imple-

mented as part of Step 0 of Algorithm 2. The procedure assumes that a static bound

d0(v
′, t) is available as well as a lower bound on the optimal probability of detection q̂.

If the directional static bound is available instead of the static bound, replace d0(v
′, t)

32



by δ0(v, v′, t) in the procedure below. We note again that the network reduction pro-

cedure is valid under the assumption that g(vs−1, vs, s) does not vary with the choice

of vs−1 ∈ R(vs) among all nodes-of-first-contact 〈vs, s〉. We generalize this in Section

C.

Network Reduction Procedure R1.

Input: A time-expanded network (N ,A) with arc length cn,n′ , the initial tar-
get distribution p(·, 1), Markov transition matrix Γ, and upper bound q̂.

Output: Nodes-of-first-contacts 〈vs, s〉 which are not dominated by others.

Step 1. Find all nodes-of-first-contact 〈vs, s〉 ∈ N . If none exist with s > 1,
then stop.

Step 2. For each 〈vs, s〉, calculate q̄(vs, s) = p(φ(vs), s)g(vs−1, vs, s)+d0(vs, s).

Step 3. Eliminate all nodes-of-first-contact 〈vs, s〉 with q̄(vs, s) ≤ q̂.

Step 4. For each nodes-of-first-contact 〈vs, s〉 not eliminated, store the triplet
(vs, s, q̄(vs, s)) in K(1).

Table 2 illustrates the effect of the network-reduction technique as ap-

plied to the same problem instances as in Table 1. Columns 5 and 6 of Table 2

present the run time and number of branching attempts, respectively, for Algorithm

2 with static bound and network reduction. On average, the run times and and the

branching attempts are reduced to 5.3% and 5.0% of the corresponding numbers ob-

tained without the network reduction technique (see columns 3 and 4 in Table 1),

respectively. When applying both network reduction and directional static bound,

we obtain the run times and numbers of branching attempts reported in columns 7

and 8 of Table 2. It is clear that network reduction and directional static bound have

complementary positive effect and the run times and numbers of branching attempts

are further reduced.

Table 3 presents computational results for a larger problem instance

with 15 by 15 cells and a time horizon T = 20. Again, the searcher starts in the

upper-left cell and the targets starts in the center cell. As seen from Table 3, the run
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times remain rather short for Algorithm 2 with directional static bound and network

reduction (columns 3 and 4) while the times increases dramatically for Algorithm 1

with dynamic bound (columns 5 and 6). Furthermore, Algorithm 2 with directional

static bound and network reduction is less sensitive to the detrimental effect of a

near stationary target (e.g., ρ = 0.9) and high glimpse detection probability (e.g.,

g(v, v′, t) = 0.9 or 0.99), a case where the bounds tend to be weak.

Algo. 2: D-Static & Red. Algo. 1: Dynamic Bound
Time Branching Time Branching

g(v, v′, t) ρ (sec.) attempts (sec.) attempts
0.3 3.08 103,811 20.24 328,672

0.3 0.6 2.94 66,185 21.22 311,645
0.9 3.58 238,089 107.11 1,352,503
0.3 3.14 122,941 20.28 248,727

0.6 0.6 2.92 51,977 30.47 288,738
0.9 4.41 571,649 701.17 8,668,034
0.3 3.17 129,276 29.61 292,818

0.9 0.6 2.95 57,353 45.05 404,299
0.9 5.94 1,076,948 2323.48 30,173,994
0.3 3.13 128,776 31.97 301,498

0.99 0.6 2.92 60,449 48.42 441,664
0.9 5.77 1,016,918 3092.63 45,329,829

Table 3. Run times and number of branching attempts for Algorithm 2, with direc-
tional static bound and network reduction, compared with Algorithm 1 with dynamic
bound on 15 by 15 cell search problem with time horizon T = 20.

The same problem instances were also examined in [32], which reports

a run time of 10.9 seconds for the case with g(v, v′, t) = 0.6 and ρ = 0.6 using a

C++ implementation of Algorithm 1 with a dynamic bound running on a 2.6 GHz

computer. We observe that our implementation appears to be somewhat slower than

the one achieved in [32] with 30.47 seconds compared to 10.9 seconds (on a presumedly

slightly slower computer). However, Algorithm 2 with directional static bound and

network reduction appears to offer a noticeable advantage over Algorithm 1 with

dynamic bound as derived in [32]. In principle, Algorithm 1 with dynamic bound can

also be speeded up by using the proposed network reduction technique. However, we
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have not examined that possibility. We adopt a directional static bound with network

reduction as the basis for extension to the case with side constraints discussed in the

next section.

C. BRANCH-AND-BOUND ALGORITHM FOR RSSP

We now turn the attention to the full problem with side constraints, i.e., the

resource-constrained single searcher problem (RSSP) formulated in Section A. We

first develop a static bound based on Lagrangian relaxation that can be used within

a branch-and-bound algorithm in the form of Algorithms 1 and 2. Second, we briefly

discuss the development of a Lagrangian directional static bound. Third, we develop

a series of network reduction techniques. Fourth, we combine the resulting procedures

and present the complete algorithm.

1. Lagrangian Static Bound

Consider the time-expanded network (N ,A), see Subsection B.1, with the arc

rewards cn,n′ given in (II.15). Now, we also endow each arc (n, n′) ∈ A, n = 〈v, t− 1〉
and n′ = 〈v′, t〉, with weights ri,n,n′ = fi(v, v′, t), i ∈ I. While computing the static

bound in the case of no side constraints amounts to solving a longest-path problem

on the time-expanded graph, a similar bound in the case with side constraints will

need to account for those constraints. Specifically, a static bound can be obtained by

solving a constrained longest-path problem. We formulate this problem as an integer

program on a slightly modified time-expanded graph.

We use the same time-expanded graph as in Subsection B.1, with the following

modifications. We recall that V̂ is the set of vertices where the search can end. Now,

every node n = 〈v, t〉, v ∈ V̂ , t ∈ T is connected to the artificial destination node n̂

with an arc. This modification allows the searcher to terminate the search prior to

time period T to avoid violating the side constraints. Furthermore, all arcs (n, n̂) with

n = 〈v, T 〉, v /∈ V̂ , are removed from the time-expanded network. This modification

makes the searcher end at v ∈ V̂ . We still let A denote the set of all arcs.
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We formulate the constrained longest-path problem on the time-expanded

graph (N ,A) as an integer program. We consider an ordering of A and let A denote

the |N | by |A| node-arc incidence matrix for the time-expanded graph. For each arc

a = (n, n′) ∈ A, let An,a = 1, An′,a = −1, and An′′,a = 0 for any n′′ ∈ N , n′′ 6= n, n′

be the elements of A. Let b denote the |N |-vector with bn0 = 1, bn̂ = −1 and bn = 0

for all n ∈ N\{n0, n̂}. We also define the additional notation: r̂ = (r̂1, r̂2, . . . , r̂I)
T ,

where T denotes the transpose. We collect the rewards cn,n′ in the |A|-dimensional

row vector c. Also, for each i ∈ I, we define the |A|-dimensional row vector ri to

contain the weights ri,n,n′ and we let R be the |I| by |A| matrix with ri as its rows.

Finally, we let x be a |A|-dimensional column vector, where xn,n′ = 1 if arc (n, n′) is

used by a path, and zero otherwise. Then, the constrained longest-path problem, see

[1], can be written as:

z∗ ≡ max
x∈{0,1}|A|

cx (II.18)

s.t. Ax = b

Rx ≤ r̂. (II.19)

In principle, the solution of the constrained longest-path problem provides a static

bound. However, the constrained longest-path problem is NP-complete even for the

case with an acyclic graph ([22], pages 213-214). Hence, we prefer to avoid solving such

problems within an algorithm. We proceed by introducing an additional relaxation

that is motivated by the solution approach for the constrained shortest-path problem

in [24, 9, 10].

Using the standard theory of Lagrangian relaxation (see, e.g., [1], Chapter 16)

and an |I|-dimensional row vector λ ≥ 0, we find that

z∗ ≤ z(λ) ≡ max
x∈{0,1}|A|

cx − λ(Rx− r̂) (II.20)

s.t. Ax = b.
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Rewriting the objective function, we can optimize the Lagrangian upper bound z(λ)

through

z̄ ≡ min
λ≥0

z(λ) (II.21)

= min
λ≥0

max
x∈{0,1}|A

(c− λR)x + λr̂ (II.22)

s.t. Ax = b.

For any fixed λ ≥ 0, computing the upper bound z(λ) simply requires the solution of

a longest-path problem with Lagrangian-modified arc lengths in an acyclic graph. The

outer minimization over λ can be solved by several methods [19, 5, 14, 9, 10]. Since

we anticipate only a small number of side constraints, it suffices to use a repeated

coordinate search. Given an optimal or near-optimal λ, we obtain the Lagrangian

static bound by carrying out one backward longest-path calculation in the time-

expanded graph from node n̂ to all nodes n ∈ N using the Lagrangian modified

arc reward c − λR. More specifically, an arc (n, n′) = (〈v, s〉, 〈v′, s + 1〉) ∈ A,

s = 1, 2, ..., T − 1, is endowed with the reward

c̃n,n′ = cn,n′ −
∑

i∈I
λiri,n,n′ , (II.23)

where cn,n′ is given by (II.15).

We also derive and implement a Lagrangian directional static bound similar to

the one in Subsection B.2c. However, the derivation is a straightforward combination

of Subsection B.2c and the approach described above. Hence, we omit it. This

derivation results in a similar Lagrangian problem to the one in (II.21), but now

defined on the node-and-time expanded network. We still refer to the Lagrangian

multiplier as λ and the Lagrangian upper bound as z(λ). We denote the Lagrangian

directional static bound computed in this way by δ̃0(v, v′, t). Since the Lagrangian

directional static bound is at least as strong as the Lagrangian static bound, we carry

out the Lagrangian relaxation only in the node-and-time expanded network to find a

Lagrangian multiplier λ ≥ 0.
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2. Network Reduction

We propose and examine three techniques for reducing the size of the network

prior to application of a branch-and-bound procedure. First, we use dominance rules

to eliminate edges that cannot be on an optimal path. Second, we describe the

application of “preprocessing” techniques frequently used prior to solving constrained

shortest-path problems. Third, we modify the procedure described in Subsection

B.2d.
a. Edge Dominance

There are several situation where a vertex v′ ∈ F(v) can be eliminated

as candidate for visit from vertex v. Such “dominance tests” are case dependent, but

can be effective in reducing the number of edges. We describe one situation where we

use “edge dominance.”

In many practical situations, there are two resources: risk and fuel.

If higher altitude implies lower risk and lower glimpse detection probability, and

climbing to higher altitude consumes more fuel than level flight, then we can eliminate

some edges in the graph (V , E) by edge dominance. Suppose that f1(v, v′, t) and

f2(v, v′, t) represent risk and fuel, respectively. Also suppose that the risk f1(v, v′, t) =

f1(v
′), i.e., only depends on v′. Let ψ(v) be the altitude of waypoint v ∈ V . Then, if

we have the above described situation, we use the following (one-step) procedure to

reduce the size of the graph (V , E).

Edge Dominance Procedure R2.

Step 1. Delete any edge (v, v′) ∈ E that satisfies f1(v
′) = 0 and ψ(v) < ψ(v′).

We note that Procedure R2 takes advantage of the fact that if there is no risk at v′,

then there is no need to increase altitude when moving from v to v′. The altitude

can be increased later if need be.
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b. Preprocessing

It is well known that the side constraints (II.19) can be used, prior

to any main calculations, to identify nodes and arcs in the time-expanded network

(N ,A) that cannot lie on any feasible path [4, 15, 9, 10]. Such nodes and arcs

can be eliminated from (N ,A), which reduces the size of the problem that needs to

be considered when computing bounds and carrying out branching. Moreover, the

reduction of the time-expanded network typically also strengthens the Lagrangian

relaxation, i.e., reduces the gap z̄ − z∗, (see (II.21) and (II.20)), and, hence, reduces

the need for branching. We adopt the follow procedure, adapted from [9, 10], to carry

out arc preprocessing:

Preprocessing Procedure R3.

Input: A time-expanded network (N ,A) and arc lengths rn,n′ .

Output: The updated (or reduced) time-expanded network (N ,A).

Step 1. Set number of iterations k̄ and k = 1.

Step 2. For all i ∈ I and n ∈ N , compute a minimum-weight n0-n subpath
distance Ri(n) and a minimum-weight n-n̂ subpath distance ri(n) in (N ,A)
with respect to weights ri,n,n′ .

Step 3. Delete any arc (n, n′) ∈ A with

Ri(n) + ri,n,n′ + ri(n
′) > r̂i for any i ∈ I. (II.24)

Step 4. If k < k̄ and at least one arc was deleted in Step 3, replace k by k+1,
and go to Step 2. Else, stop.

If a lower bound on the probability of detection is available, we also

carry out similar preprocessing with respect to arc reward cn,n′ and the Lagrangian

modified arc reward c̃n,n′ = cn,n′ −∑
i∈I λiri,n,n′ , see [9, 10].

We describe the preprocessing procedure for the time-expanded net-

work and argue that it improves the Lagrangian static bound. However, the same

methodology applies to the node-and-time expanded network and it improves the
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Lagrangian directional static bound. In our main algorithm (described in Subsection

C.3), we also apply preprocessing to the node-and-time expanded network and denote

that procedure R3′.

c. Vertex Dominance for Distant Target

As in Subsection B.2d, we consider the case where the searcher’s and

the target’s locations are initially some distance apart and derive a network reduction

procedure that takes advantage of that situation. In contrast to Subsection B.2d,

the subpath used to reach a node-of-first-contact is now important since the resource

consumption along different subpaths may be different. Hence, 〈v0, 0〉 now needs to be

connected to each node-of-first-contact 〈vs, s〉 with multiple “jump” arcs representing

the different possible subpaths and resource consumptions used to reach 〈vs, s〉. A

standard path enumeration algorithm (see, e.g., [11]) can enumerate the different

subpaths, at least as long as s is relatively small. Multiple arcs to a node-of-first-

contact can also be used to model the situation with edge-dependent glimpse detection

probability, a case ignored in Subsection B.2d.

After all the arcs are generated to all the nodes-of-first-contact, a num-

ber of them can be deemed uninteresting and can be eliminated using dominance rules

of the form: If an arc from 〈v0, 0〉 to 〈vs, s〉 has no larger probability of detection and

no smaller consumption of each resource as another parallel arc and the two arcs are

not identical, the first arc is dominated and can be eliminated. In sets of identical

parallel arcs, we also eliminate all but one. Trivially, arcs with resource consumption

greater than the specified limits are also removed. Moreover, if a lower bound on

the optimal probability of detection exists, it can be used to eliminate more arcs as

described in the following.

Below we formally describe this network reduction procedure based on

vertex dominance for a distant target. We note that the procedure is more effective

after (i) applying network reduction procedures R2, R3 and R3′, (ii) finding λ that

(approximately) optimizes the Lagrangian upper bound z(λ) on the node-and-time
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expanded network, and (iii) computing the directional static bound δ0(v, v′, t) and

the Lagrangian directional static bound δ̃0(v, v′, t) for each node 〈v′, t〉 ∈ N . So

we assume that these calculations have been carried out. During these calculations,

feasible paths may be obtained. Such paths provide lower bounds on the optimal

probability of detection. Let q̂ denote the largest lower bound found so far.

Vertex Dominance Procedure R4.

Input: A time-expanded network (N ,A), arc lengths cn,n′ and rn,n′ .

Output: The nodes-of-first-contact 〈vs, s〉 which are not dominated by others.

Step 1. Find all nodes-of-first-contact 〈vs, s〉 ∈ N . If none exist with s > 1,
then stop.

Step 2. For each node-of-first-contact 〈vs, s〉, enumerate all subpaths 〈v0, 0〉
to 〈vs, s〉.

Step 3. For each node-of-first-contact 〈vs, s〉 and subpath P = {vl}s
l=0, carry

out the tests:

If any of the following is true, then eliminate P :

(i) For some remaining 〈v0, 0〉-〈vs, s〉 subpath P ′, ri(P) ≥ ri(P ′) for all
i ∈ I and q(P) ≤ q(P ′).
(ii) q(P) + δ0(vs−1, vs, s) ≤ q̂.

(iii) ri(P) + ri(〈vs, s〉) > r̂i for some i ∈ I.

Step 3 can also be augmented with a test on the Lagrangian-modified probability of

detection using δ̃0(v, v′, t) if a near-optimal multiplier λ is available.

3. Algorithm

We now state the complete algorithm for RSSP. The algorithm starts with

network reductions procedures R2, R3, and R3′. The next step solves the Lagrangian

problem (II.22) and determines a near-optimal λ. (The calculations are actually

carried out in the node-and-time expanded network as we prefer to use the Lagrangian

directional static bound.) If a feasible path becomes available during the procedures

described above, network reduction procedure R3′ is repeated now using checks with
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respect to arc reward cξ,ξ′ and its Lagrangian modified arc reward. The next steps

are to compute the directional static bound of Subsection B.2c (i.e., δ0(v, v′, t)), the

Lagrangian directional static bound as described in Subsection C.1 (i.e., δ̃0(v, v′, t)),

and bounds on resource consumption along any path extension (i.e., ri(n), i ∈ I). The

final steps before the branch-and-bound procedure is to implement network reduction

procedure R4.

We implement the branch-and-bound procedure as an implicit path-enumeration

in the time-expanded network. The procedure amounts to a depth-first search cou-

pled with optimality and feasibility checks using the computed bounds, which follows

[9, 10]. The complete algorithm takes the following form:

Algorithm 3 (Solves RSSP).

Input: A time-expanded network (N ,A) with arc lengths cn,n′ and rn,n′ and a
node-and-time expanded network (Ξ, Ω) with arc lengths cξ,ξ′ and rξ,ξ′ . The
initial target distribution p(·, 1), Markov transition matrix Γ, and upper
bound q̂.

Output: An optimal search path P∗ = {vl}T
l=0 and its value q∗.

Step 1. Apply network reduction procedures R2, R3 and R3′.

Step 2. Find λ that approximately optimizes the Lagrangian upper bound
z(λ) in the node-and-time expanded graph (Ξ, Ω). If a feasible solution is
found, set the probability of detection on the corresponding path equal to
q̂. Otherwise, set q̂ = −∞.

Step 3. If a feasible solution is found so far, implement R3′ also with respect
to arc reward and Lagrangian modified arc reward using q̂.

Step 4. Ignoring side constraints, compute the directional static bound δ0(v, v′, t)
for all expanded nodes ξ = 〈n, n′〉 in (Ξ, Ω), with n = 〈v, t−1〉, n′ = 〈v′, t〉,
v, v′ ∈ V .

Step 5. Using λ from Step 2, compute the Lagrangian directional static
bound δ̃0(v, v′, t) for all expanded nodes ξ = 〈n, n′〉 in (Ξ, Ω), with n =
〈v, t− 1〉, n′ = 〈v′, t〉, v, v′ ∈ V .

Step 6. For each i ∈ I, compute the minimum distance ri(n) from each node
n ∈ N back to n̂ by solving a single, backwards, shortest-path problem in
the time-expanded graph (N ,A) starting from n̂ using arc lengths ri,n,n′ .
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Step 7. Apply network reduction procedure R4.

Step 8. Apply a standard path-enumeration procedure (e.g., [11]) in (N ,A)
with the following modifications:

(i) The path-enumeration commences from n0, but extends a current sub-
path {nl}t

l=0 along arc (nt, n) = (〈vt, t〉, 〈v, t + 1〉) if and only if the
following conditions hold:

• For all i ∈ I, {n0, n1, ..., nt, n} can be extended to a path whose i-th
resource does not exceed r̂i, i.e.,

ri({n0, n1, ..., nt, n}) + ri(n) ≤ r̂i. (II.25)

• {n0, n1, ..., nt, n} can be extended to a path with probability of de-
tection exceeding q̂, i.e.,

q({n0, n1, ..., nt, n}) + δ0(vt, v, t + 1) > q̂. (II.26)

• {n0, n1, ..., nt, n} can be extended to a path whose Lagrangian-modified
probability is no less than q̂, i.e.,

q({n0, n1, ..., nt, n})−
∑

i∈I

t∑

l=1

λiri,nl−1,nl

−∑

i∈I
λiri,nt,n + λr̂ + δ̃0(vt, v, t + 1) ≥ q̂. (II.27)

(ii) Whenever the algorithm identifies a path P with q(P) > q̂ and ri(P) ≤
r̂i, i ∈ I, replace q̂ by q(P).

In Step 8, the checks (II.25), (II.26), and (II.27) prevent the enumeration

of paths that can be determined, using the computed bounds, to not be optimal.

Specifically, (II.25) prevents the extension of subpaths that cannot result in a feasible

path with respect to the side constraints. Since δ0(vt, v, t + 1) is a valid upper bound

on the probability of detection during time periods t + 2, t + 3, ..., T , the left-hand

side of (II.26) is an upper bound on the probability of detection along any path that

starts with the subpath {n0, n1, ..., nt, n}. Hence, the subpath cannot be extended

to a path with larger probability of detection than q̂ if (II.26) fails. In (II.27), the

probability of detection along {n0, n1, ..., nt, n} is modified by Lagrangian terms and
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the Lagrangian directional static bound is used. The resulting check can be shown

to be valid using standard Lagrangian relaxation theory and the argument above.

We also implement Step 8 with a “branching strategy” based on the La-

grangian directional static bound. Specifically, we first consider extending the current

subpath {nl}t
l=0 along the arc (nt, n) with the largest Lagrangian directional static

bound among all the nodes in the forward star of nt. Second, we consider extend-

ing {nl}t
l=0 with the node corresponding to the second largest Lagrangian directional

static bound, etc. This branching strategy is analogous to the one in Step 3 of Algo-

rithms 1 and 2. We have also experimented with using the directional static bound

instead of the Lagrangian directional static bound and found it to usually result in

comparable run times. However, the Lagrangian directional static bound appears

faster, on average.

Since Algorithm 3, in the worst case, enumerates all feasible paths, it is guar-

anteed to find an optimal solution of RSSP.

D. NUMERICAL EXAMPLE

This section describes computational experiments with Algorithm 3 applied

to RSSP with side constraints on risk exposure and fuel consumption. We carry out

all experiments on the same computational platform as in Section B.

We consider a military planning situation where a UAV is assigned a mission

to search and detect a high-value moving target. Planners wish to determine a flight

path over the area of interest (AOI) that maximizes the probability of detecting the

target. The UAV will start its path at a known waypoint with a known fuel supply,

and will return to the same waypoint before the fuel tank is empty. Doctrine specifies

that the UAV cannot be assigned a path with higher risk than a specific threshold.

The AOI is partially under enemy control and any aircraft flying over the AOI could be

shot down by enemy surface-to-air missiles (SAMs), anti-aircraft artillery, and small-

arms fire. Flying at a high altitude would reduces that risk, but it will also reduce the
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quality of UAV’s sensor readings. Consequently, the UAV may change altitude during

the course of the mission to balance risk and sensor quality. Changing from low to

high altitude consumes more fuel than level flight. Hence, the number of time periods

available for search depends on the fuel consumption and therefore the vertical flight

profile.

We model this situation by dividing the AOI into 10 by 10 cells (see Figure

6). The airspace over each cell is vertically discretized into two altitudes (”low and

high”). The heavily shaded cells (C1) in Figure 6 represent an urban area over which

the UAV’s risk is high and its glimpse detection probability is low. The unshaded cells

(C3) represent open terrain where there is no risk and the UAV’s glimpse detection

probability is high. The lightly shaded cells (C2) represent an area with intermediate

risk and intermediate glimpse detection probability. We note that, while this problem

instance does not directly relate to any real-world operational situation, we believe

that it illustrate a fairly practical situation.

We assume that the risks at different edges along a path are independent. If

the probability of the UAV surviving edge (v, v′) ∈ A is σ(v, v′), then the probability

of surviving the path {vt}k
t=0 is simply Πk

l=1σ(vl−1, vl). Let σ̂ be a lower limit on

the survival probability. Then, a standard logarithmic transformation leads to the

following constraint
k∑

l=1

− log σ(vl−1, vl) ≤ − log σ̂, (II.28)

which is in the form (II.3) and (II.4) with fi(vl−1, vl, l) = − log σ(vl−1, vl) and r̂i =

− log σ̂.

For this computational experiment, we assume that the glimpse detection

probability and the survival probability for an edge (v, v′) ∈ E depend only on the

cell and altitude corresponding to vertex v′ ∈ V as listed in Table 4. We note that

glimpse detection probability at high altitude is assumed to be 70% of that at low

altitude and the failure probability (complement of the survival probability) at high

altitude is 30% of that at low altitude.
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Figure 6. An area of interest composed of 10 by 10 cells and two altitudes. Heavily
shaded cells (C1), lightly shaded cells (C2), and unshaded cells (C3) describe risky,
moderately risky, and non-risky area, respectively. The circle indicates the cell over
which searcher starts, and the triangle specifies the initial position of the target.

The UAV enters the airspace at high altitude over the northwest cell (cell 1;

cells are numbered from left to right, and from top to bottom) and will return to

the same cell at either high or low altitude at the end of the mission. The searcher

is located at one vertex each time period and searches the corresponding cell. For

the next time period, the searcher can stay at the same vertex, change altitude over

the same cell, or move to a vertex (at any altitude) corresponding to a vertically or

horizontally adjacent cell. The maximum number of time periods is T = 40, but the

fuel-consumption constraint may limit the number of periods to less than 40. We

assume that the fuel consumption at each time step is as follows: 10 units if there

is no altitude change, 12(9) units if changing from low(high) altitude to high(low)

altitude. The initial position of the target is the center of the high risk region (cell
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Cells Altitude Glimpse probability Survival probability
C1 low 0.20 0.960

high 0.14 0.988
C2 low 0.40 0.980

high 0.28 0.994
C3 low 0.60 1.000

high 0.42 1.000

Table 4. Glimpse detection probability g(v, v′, t) and survival probability σ(v, v′) for
different cells and altitude.

68). The target remains in the current cell with a probability ρ = 0.6 for the next

time period or moves to one of the vertically or horizontally adjacent cells with equal

probability.

The survival-probability limit is a threshold that is set by the commander or

planner. A search path with lower survival probability than the threshold would not

be accepted. In this experiment, we consider the survival probability limits 0.95,

0.90,...,0.70, and fuel consumption limit 300, 325, ..., 450.

We solve this problem instance using Algorithm 3. Tables 5, 6 and 7 report

computational results for different combinations of survival probability and fuel limits

for the UAV. When the fuel limit is tight (e.g., 300 and 325), the UAV cannot operate

for the full duration of 40 time steps. We observe that increasing the fuel limit beyond

425 does not increase the probability of detection as the time limit of 40 periods

becomes active. The average run time is 580 seconds, with a standard deviation of

792. All problem instances are solved within one hour and typically in much less.

Figure 7 shows the optimal path given survival probability limit 0.90 and fuel limit

400. The solid lines and the dashed lines represent flight segment at low and high

altitude, respectively.

We also consider the case with edge-dependent glimpse detection probability.

Consider the same situation as earlier described, but now assume that a move to a new

waypoint results in a lower glimpse detection probability than if the searcher already
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was at that waypoint. Specifically, if v = v′, we let the glimpse detection probability

g(v, v′, t) be as in Table 4; otherwise we replace g(v, v′, t) by 0.1g(v, v′, t). Figure 8

shows an optimal path found given survival probability and fuel limits of 0.90 and

400, respectively. In contrast to the case with edge-independent glimpse detection

probability (Figure 7), the searcher now tends to stay for multiple time periods at the

same waypoints in high-probability regions to reap the benefits of the corresponding

high glimpse detection probability. The run times (not reported in detail) for the

case with edge-dependent glimpse detection probabilities are, on average, 53 seconds,

with a standard deviation of 71 seconds. The reduction in run time compared to

the edge-independent case is caused by the often lower glimpse detection probability

(0.1g(v, v′, t)), which tightens the bound.

Survival prob. limit = 0.95 Survival prob. limit = 0.90
Fuel Prob. Survival Fuel Run time Fuel Prob. Survival Fuel Run time
limit Detection Prob. (sec.) limit Detection Prob. (sec.)
300 0.131501 0.962466 300 26.89 300 0.135098 0.915157 300 29.58
325 0.153228 0.952892 321 98.20 325 0.166933 0.901925 322 32.66
350 0.176511 0.952892 350 3313.64 350 0.194440 0.915157 350 115.94
375 0.204686 0.952892 371 661.43 375 0.217277 0.901925 372 84.00
400 0.236651 0.962466 400 664.96 400 0.246767 0.902268 400 537.71
425 0.237081 0.952892 401 2721.68 425 0.249996 0.901925 402 361.60
450 0.237081 0.952892 401 2724.22 450 0.249996 0.901925 402 361.52

Table 5. Computational results (probability of detection, survival probability, fuel
consumption and run times) for Algorithm 3 with survival probability limit = 0.95
and 0.90.
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Survival prob. limit = 0.85 Survival prob. limit = 0.80
Fuel Prob. Survival Fuel Run time Fuel Prob. Survival Fuel Run time
limit Detection Prob. (sec.) limit Detection Prob. (sec.)
300 0.145309 0.851528 300 25.31 300 0.145809 0.805953 299 22.03
325 0.173000 0.851528 320 37.81 325 0.173218 0.839535 319 37.39
350 0.203183 0.851528 350 67.69 350 0.204891 0.805953 349 64.17
375 0.222393 0.851528 370 115.24 375 0.223377 0.805953 369 116.69
400 0.255481 0.851528 400 510.68 400 0.255813 0.827710 399 880.65
425 0.255481 0.851528 400 508.50 425 0.255813 0.827710 399 880.40
450 0.255481 0.851528 400 508.96 450 0.255813 0.827710 399 880.46

Table 6. Computational results (probability of detection, survival probability, fuel
consumption and run times) for Algorithm 3 with survival probability limit = 0.85
and 0.80.

Survival prob. limit = 0.75 Survival prob. limit = 0.70
Fuel Prob. Survival Fuel Run time Fuel Prob. Survival Fuel Run time
limit Detection Prob. (sec.) limit Detection Prob. (sec.)
300 0.150092 0.753377 300 21.33 300 0.150277 0.742767 299 21.38
325 0.175850 0.753377 320 37.50 325 0.176068 0.742767 319 31.16
350 0.205935 0.753377 350 63.84 350 0.206200 0.742767 349 53.42
375 0.223703 0.753377 370 125.97 375 0.224003 0.713056 369 121.33
400 0.255813 0.827710 399 1220.30 400 0.255813 0.827710 399 1280.52
425 0.255813 0.827710 399 1217.21 425 0.255813 0.827710 399 1277.52
450 0.255813 0.827710 399 1218.91 450 0.255813 0.827710 399 1282.42

Table 7. Computational results (probability of detection, survival probability, fuel
consumption and run times) for Algorithm 3 with survival probability limit = 0.75
and 0.70.
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Figure 7. An optimal path for survival probability limit 0.90 and fuel limit 400. The
solid lines and the dashed lines represent flight segments at low and high altitude,
respectively. (See Figure 6 for a description of the underlying figure.)
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Figure 8. An optimal path for a case with edge-dependent glimpse probability, sur-
vival probability limit 0.90, and fuel limit 400. The solid lines and the dashed lines
represent flight segments at low and high altitude, respectively. (See Figure 6 for a
description of the underlying figure.)
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III. MULTIPLE-SEARCHER PROBLEM

This chapter addresses the optimization of multiple searchers with path- and

time-constraints (MSP). We aim to determine a path for each searcher that maximize

the probability of detecting a moving target within a mission time by at least one

searcher. We refer to such a set of paths as a “search plan.” We start by describing

and formulating MSP. Then, we present three algorithms (an exact procedure and

two heuristics) to find an optimal, near-optimal, or “good” search plan. The chapter

also includes computational studies.

A. PROBLEM DESCRIPTION AND FORMULATION

The multiple-searcher problem (MSP) is an extension of SP which considers

a finite set of searchers J = {1, 2, ..., J}. In this section, for ease of reference, we

formulate MSP by retracing the relevant portions of Section A in Chapter II.

The area of interest is discretized into a finite set of cells C = {1, . . . , C} and the

time horizon is discretized into a finite set of time periods T = {1, 2, ..., T}. A target

occupies one cell each time period and moves among cells according to a Markov

process with known transition matrix Γ. Let p(·, t) = [p(1, t), p(2, t), . . . , p(C, t)],

where p(c, t) is the probability that the target is in cell c ∈ C at the beginning of time

period t ∈ T and the target has not been detected before t by any searcher. We refer

to p(·, t) as the undetected target distribution. The initial target distribution p(·, 1)

is known.

The multiple searchers move through a designated airspace over the area of

interest with the goal of finding the moving target on the ground. The airspace over

each cell c ∈ C is vertically discretized into a set of altitudes H = {1, 2, . . . , H}. For

any c ∈ C and h ∈ H, we refer to the cell-altitude pair 〈c, h〉 as a waypoint where the

searchers can loiter and carry out search of cell c. We model the designated airspace

by a directed network (V , E), with set of vertices V and set of directed edges E , in
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which vertices v = 〈c, h〉 ∈ V represent waypoints and directed edges e = (v, v′) ∈ E
represent transition between waypoints v, v′ ∈ V . The searchers can only transit

between two waypoints that are located physical adjacent to each other. Let F(v) ⊂ V
be the set of vertices that are adjacent to v ∈ V . We adopt the convention that

v ∈ F(v) for all v ∈ V . Then, the set of edges E = {(v, v′) ∈ V × V| v′ ∈ F(v)}.
During each time period t ∈ T , each searcher is located at a particular vertex

(waypoint). Any number of searchers can occupy a vertex in the same time period.

We also assume that there is no transit time between waypoints. Hence, (v, v′) ∈ E
simply represents search at waypoint v followed by search at waypoint v′ in the next

time period. We note that the edge (v, v) ∈ E represents searching at waypoint v for

two consecutive time periods.

Let φ : V → C be the function that specifies the cell over which a vertex

is located, i.e., cell φ(v) is searched from vertex v. We denote the initial vertex

(waypoint) of searcher j ∈ J prior to time period 1 by vj
0 ∈ V . We also define V̂j ⊂ V

to be a set of possible destination vertices for searcher j ∈ J . When we describe an

arbitrary searcher, we may omit the superscript and simply write v0 and V̂ .

For any k ∈ T and vl ∈ V , l = 0, 1, 2, ..., k, such that (vl−1, vl) ∈ E for

all l = 1, 2, ..., k, let the sequence P = {vl}k
l=0 denote a directed v0-vk subpath. If

vk ∈ V̂ , then the directed v0-vk subpath is a directed v0-vk path. In this notation,

a searcher flies from v0 to some vk ∈ V̂ along a directed v0-vk path. For a specific

searcher j ∈ J , we denote its directed v0-vk (sub)path as Pj = {vj
l }k

l=0. Thus a

search plan for the fleet of searchers is described as P = (P1,P2, ...,PJ).

We adopt the following target-detection model. If the target is in cell c ∈
C during time period t ∈ T and only searcher j ∈ J is at the same time at a

waypoint above cell c, i.e., φ(vj
t ) = c, then detection occurs with a glimpse detection

probability gj(vj
t−1, v

j
t , t), where vj

t−1 ∈ V is the waypoint of searcher j during time

period t− 1. Hence, the glimpse detection probability during time period t depends

on the previous and current waypoints for the searcher. We assume that the glimpse
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detection probability of each searcher is mutually independent. In this notation, the

probability of detecting the target in cell c ∈ C by any searcher during time period

t ∈ T and no prior detections becomes

Q(c, t) = p(c, t)


1− ∏

j∈J |φ(vj
t )=c

(1− gj(vj
t−1, v

j
t , t))


 , (III.1)

We refer to Q(·, t) = [Q(1, t), Q(2, t), . . . , Q(C, t)] as the reward vector at time period

t.

Since p(·, t) is the undetected target distribution at the beginning of time

period t, it depends on searches up to time period t− 1. Specifically, if p(·, t) is given

and each searcher searches a cell from its waypoint during time period t ∈ T , the

undetected target distribution at the beginning of the next time period t + 1 is

p(·, t + 1) = [p(·, t)−Q(·, t)]Γ. (III.2)

Thus, the probability of detection for search plan P is defined as

q(P) =
T∑

t=1

C∑

c=1

Q(c, t). (III.3)

We refer to the problem of maximizing (III.3) as the multiple-searcher problem (MSP).

B. ALGORITHMS FOR MSP

We develop one exact algorithm and two heuristics to solve MSP. The exact

algorithm is a straightforward extension of the branch-and-bound (B/B) algorithm

in Chapter II. However, the B/B algorithm for solving MSP requires an expanded

network structure to account for multiple searchers. Thus, in each time period t ∈ T ,

we consider the combined location Vt = (v1
t , v

2
t , . . . , v

J
t ) of all searchers. We call

this combined location a configuration. We treat a configuration in the same way

we treated a vertex in SP, and construct a time-expanded (configuration) network.

The B/B algorithm for MSP is implemented in this time-expanded network. In that

network, a search plan is simply a sequence of configurations {Vl}k
l=0, k ∈ T . We also
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use the notation {nl}k
l=0 where nl = 〈Vl, l〉. Thus we refer to a search plan also as

a “configuration path.” When the meaning is clear from the context, we refer to a

configuration path as a path.

We present two heuristics to solve MSP. The first one is a variant of the

expected detection heuristic (H1) in [13]. In H1, a configuration path (search plan)

is generated by iteratively extending the current configuration subpath by the first

arc in the longest-path, with respect to the expected number of detections, from the

current configuration to the last time period. We note that a longest-path calculation

is required every time the current configuration subpath is extended. Hence, H1 is

similar to Algorithm 1 with dynamic bounds (see Chapter II) as they both require

repeated longest-path calculations. As an alternative approach, we present a similar

heuristic corresponding to the static bound (see Chapter II). We denote our approach

the static bound heuristic (SBH).

The second heuristic algorithm is using the Cross-Entropy (CE) method [38,

39]. The CE method involves an iterative procedure where each iteration composes

of two phases. First, the method generates random samples (i.e., search plans in

our case) according to a probability distribution. Second, the method updates the

parameters in the probability distribution based on a subset of the “best” samples,

the so-called “elite” samples. This process increases the chances of an optimal or near-

optimal solution to appear within the next set of samples. This dissertation appears

to be the first one studying the CE method in the context of search problems.

We can assume without loss of generality that each searcher’s path consists

of T + 1 vertices. For simplicity of notations, we also assume that: (1) there is no

end-point restriction for any searcher j ∈ J , i.e., V̂j = V ; (2) the glimpse detection

probability gj(v, v′, t), j ∈ J is independent of v (i.e., gj(v, v′, t) = gj(v′, t)); (3) the

airspace has only one altitude, i.e., there is only one vertex corresponding to each cell

in the area of interest. It is straightforward to generalize the proposed algorithms to

account for situations without these assumptions.
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1. Branch-and-Bound Algorithm

In Chapter II, we presented a specialized branch-and-bound (B/B) procedure

for solving SP. We utilize the same enhancement schemes to develop a B/B algorithm

for MSP. However, the B/B algorithm for solving MSP requires an expanded network

structure to account for multiple searchers. We consider a directed graph (Vc, Ec)

where Vc is the set of possible configurations and Ec is the set of directed edges

representing possible transitions in one time period between two configurations. Thus

a search plan can be described as P = {Vl}T
l=0 where (Vl−1, Vl) ∈ Ec for all l =

1, 2, ..., T . We note that a search plan is also described (in the previous section) as

P = (P1, ...Pj, ...,PJ), where Pj = {vj
l }T

l=0.

The description of the B/B algorithm for solving MSP follows the presentation

of the algorithms for SP presented in Chapter II. Given a configuration subpath

{Vl}t−1
l=0, t ∈ T , let K(t) be the set of triplets of the form (Vt, t, q̄(Vt, t)) representing

extensions of {Vl}t−1
l=0 yet to be explored. The first element Vt refers to the next

configuration to form, the second element t is the time period to form the configuration

Vt, and the third element q̄(Vt, t) is an upper bound on the probability of detection

along any configuration path that starts with the configuration subpath {Vl}t
l=0. The

upper bound q̄(Vt, t) consists of three parts. Let dt(Vt, t) be an upper bound on

the probability of detection during time periods t + 1, t + 2, ..., T , given that the

configuration of time t is Vt, and no detection occurs along the configuration subpath

{Vl}t
l=0. The two other parts are the probability of detection on the configuration

subpath {Vl}t−1
l=0 and the probability of detection during t. Hence,

q̄(Vt, t) = q({Vl}t−1
l=0) +

∑

c∈C
Q(c, t) + dt(Vt, t). (III.4)

We also let q̂ denote the largest detection probability found so far among all the ex-

amined configuration paths.
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Consider a configuration subpath {Vl}t
l=0, t ∈ T , and let pg(·, t) be the unde-

tected target distribution after search along {Vl}t
l=0, i.e.,

pg(·, t) = [p(·, t)−Q(·, t)]. (III.5)

For any integer s > t, s ∈ T , we also define

pΓ(·, s; t) = pg(·, t)Γs−t. (III.6)

As seen, pΓ(c, s; t) is the probability that the target is in cell c at time period s > t

and there was no detection during search along the subpath {Vl}t
l=0. Hence, target

distribution pΓ(·, s; t) at time period s > t ignores the effect of search after time

period t. If the subpath is {V0}, i.e., t = 0, we define for notational convenience

pΓ(·, s; 0) = p(·, 1)Γs−1, (III.7)

for any s > 0, s ∈ T . Moreover, we define pΓ(c, t; t) = 0 for all c ∈ C and t = 0, 1, ..., T .

We construct a time-expanded configuration graph (Nc,Ac) from the graph

(Vc, Ec) in the same manner as the development of the time-expanded network for

SP in Chapter II (for details, we refer to Section B in Chapter II). For any integer

k ≤ T + 1 and nodes nl = 〈Vl, l〉 ∈ Nc, l = 0, 1, ..., k, such that (nl−1, nl) ∈ Ac for

all l = 1, 2, ..., k, we let the sequence {nl}k
l=0 denote a configuration subpath in the

time-expanded configuration graph (Nc,Ac).

For some t ∈ {0, 1, ..., T − 1}, suppose that a configuration subpath {Vl}t
l=0

in the graph (Vc, Ec) is given. We endow each arc (n, n′) = (〈V, s〉, 〈V ′, s + 1〉) ∈ Ac,

s = t, t + 1, ..., T − 1, in the time-expanded configuration graph (Nc,Ac) with a

“reward”

cn,n′ =
∑

c′∈C


pΓ(c′, s + 1; t)− ∑

c∈R(c′)
Q(c, s)Γ(c, c′)





1− ∏

j∈J |vj
s+1=c′

(1− gj(vj
s+1, s + 1)




(III.8)

where Γ(c, c′) is the c-c′ element of the Markov transition matrix Γ. Thus this time-

expanded configuration network (Nc,Ac) has the same structure as the time-expanded
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network (N ,A) of Chapter II and the longest paths in this network provides the static

bound d0(Vt, t). The B/B for MSP is implemented in this time-expanded configuration

network (Nc,Ac).

We consider generalizations of directional static bound and network reduction

from Chapter II. To obtain a directional static bounds, we would need to generate a

node-and-time expanded “configuration” network corresponding to the node-and-time

expanded network for SP. Since the number of arcs in the node-and-time expanded

configuration network becomes extremely large (e.g., a problem instance with 5 by 5

cells, 3 searchers, and time horizon 7 has more than one hundred million arcs), we

realize that the directional static bound technique is not computationally practical for

MSP. Hence, we adopt the static bound in our B/B algorithm for MSP. The difficulty

of network size occurs also in the time-expanded configuration network when we

consider large-size problems, which means our B/B algorithm is practical only for

small-size problems.

It is straightforward to generalize the network-reduction technique based on

the initial positions of the searchers and the target of Chapter II to MSP. The required

“configurations”-of-first-contact 〈Vs, s〉 ∈ Nc are now defined as the first configura-

tion where at least one searcher can obtain contact with the target. Thus our B/B

algorithm utilizes this network reduction technique. The resulting algorithm takes

the following form:

Algorithm 4 (Solves MSP).

Input: A time-expanded configuration network (Nc,Ac) with nodes n ∈ N
and arcs (n, n′) ∈ A where n = 〈V, t − 1〉, n′ = 〈V ′, t〉. Arc lengths cn,n′

in (Nc,Ac), the initial target distribution p(·, 1), Markov transition matrix
Γ, and upper bound q̂.

Output: An optimal configuration path P∗ = {Vl}T
l=0 and its value q∗.

Step 0. Calculate the static bound d0(V, t) for all t ∈ T and V ∈ Vc, and
calculate a lower bound q̂. Set i = 0,K(i) = {(V0, 0,∞)}, where V0 is
the initial configuration. Implement network reduction procedure R5 (see
below).
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Step 1. If K(i) is empty, replace i by i− 1. Else, go to Step 3.

Step 2. If i = 0, stop: the last saved configuration-path is optimal and q̂ is
its probability of detection. Else, go to Step 1.

Step 3. Remove from K(i) the triplet (Vt, t, q̄(Vt, t)) with the largest bound
q̄(Vt, t).

Step 4. If q̄(Vt, t) ≤ q̂, go to Step 1. (Current subpath is fathomed.)

Step 5. If i = 0, replace i by i + 1, and go to Step 3. (K(1) is populated in
the network reduction procedure.)

Step 6. If t < T , then for each configuration V ∈ F(Vt), calculate q̄(V, t + 1)
from (III.4) using bounds d0(V, t + 1) and add (V, t + 1, q̄(V, t + 1)) to
K(i + 1). Replace i by i + 1, and go to Step 3. Else, let q̂ = q̄(Vt, t) and
save the incumbent configuration path {Vl}T

l=0, and go to Step 1.

Network Reduction Procedure R5.

Input: A time-expanded configuration network (Nc,Ac), the initial target
distribution p(·, 1), Markov transition matrix Γ, and upper bound q̂.

Output: The configurations-of-first-contacts 〈Vs, s〉 which are not dominated
by others.

Step 1. Find all configurations-of-first-contact 〈Vs, s〉 ∈ Nc. If none exist
with s > 1, then stop.

Step 2. For each 〈Vs, s〉, calculate q̄(Vs, s) =
∑

c∈C Q(c, s) + d0(Vs, s),

Step 3. Eliminate all configurations-of-first-contact 〈Vs, s〉 with q̄(Vs, s) ≤ q̂.

Step 4. For each configurations-of-first-contact 〈Vs, s〉 not eliminated, store
the triplet (Vs, s, q̄(Vs, s)) in K(1).

We implement Algorithm 4 and examine its performance on small-scale in-

stances of MSP. The problem instances are as follows: An area of interest (AOI)

consists of 5 by 5 cells. The number of searchers is 1, 2, and 3. The searchers, which

have a constant glimpse detection probability 0.6, operate in the AOI and their moves

are restricted to vertically or horizontally adjacent cells. The target remains in the

current cell with probability 0.6 or moves to one of the vertically or horizontally ad-

jacent cells with probability 0.4. The different moves are equally likely. All searchers
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depart the upper-left corner cell, and the target starts at the center of the AOI. The

time horizon is from 5 to 10. We carry out all experiments on the same computation

platform as in Chapter II.

Table 8 reports the run times for different combinations of number of searchers

and time horizons. Column 2, 4 and 6 of Table 8 show the run times of Algorithm

4 for the case of 1, 2 and 3 searchers, respectively. For the case with 3 searchers,

the run time increases exponentially with increasing time horizon, and the case with

time horizon 10 cannot be solved in several days. The case with 3 searchers and

the time horizon 9 takes about 5 days to guarantee an optimal solution, however,

the optimal solution is found after only 174.78 seconds. The remaining time is spent

proving optimality by fathoming other possible configuration paths. Table 9 presents

the optimal probability of detection obtained by Algorithm 4. Column 2, 5 and 8 of

Table 9 show the optimal probability of detection for the case of 1, 2 and 3 searchers,

respectively. Figure 9 illustrate an optimal search plan for the case with 3 searchers

and time horizon 9.

1 searcher 2 searchers 3 searchers
Time B/B SBH B/B SBH B/B SBH

Horizon (sec.) (sec.) (sec.) (sec.) (sec.) (sec.)
5 0.00 0.00 0.02 0.00 4.17 1.84
6 0.00 0.00 0.03 0.02 5.67 2.17
7 0.00 0.00 0.06 0.02 58.89 2.72
8 0.00 0.00 0.44 0.02 4,341.51 2.91
9 0.00 0.00 5.19 0.03 426,874.92 3.25
10 0.00 0.00 75.77 0.03 N/A 3.70

Table 8. Run times for the branch-and-bound algorithm (B/B) and the static bound
heuristic (SBH) on 5 by 5 cell search problem with 1-3 searchers and time horizon
T = 5-10.

In view of Tables 8 and 9, it is clear that Algorithm 4 is practical only for

small-size problems (with few searchers, short time horizon, and/or small area of

interest). As noted earlier, the time-expanded configuration network (necessary for

implementing the B/B procedure) cannot be generated for large-size problems since
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1 searcher 2 searchers 3 searchers
Time B/B SBH Rel. B/B SBH Rel. B/B SBH Rel.

Horizon gap gap gap
5 0.306483 0.306483 0.00 0.474213 0.474213 0.00 0.579710 0.579710 0.00
6 0.351647 0.351241 0.00 0.535954 0.521669 0.03 0.643001 0.622074 0.03
7 0.389043 0.380220 0.02 0.581175 0.561550 0.03 0.691865 0.679234 0.02
8 0.416987 0.404325 0.03 0.618416 0.574542 0.07 0.728375 0.711876 0.02
9 0.444506 0.426829 0.04 0.647400 0.620582 0.04 0.754400 0.739376 0.02
10 0.465594 0.438671 0.06 0.673168 0.648007 0.04 N/A 0.762183 N/A

Table 9. Probability of detection obtained by the branch-and-bound algorithm (B/B)
and the static bound heuristic (SBH) on 5 by 5 cell search problem with 1-3 searchers
and time horizons T = 5-10, and relative gap between SBH and B/B solutions.

the extremely large number of data (arcs) can not be stored. Thus, to solve large-size

problems, alternative heuristic approaches may be necessary.

2. Static Bound Heuristic

Dell et al. [13] present seven algorithms (one exact procedure and six heuris-

tics) to solve MSP. Among their heuristics, the expected detection heuristic (H1)

performs best under a broad range of conditions. As described in the beginning of

this section, H1 constructs a search plan (configuration path) by extending a config-

uration subpath one arc at the time. Each extension is determined by a longest-path

calculation on a time-expanded configuration network where arc lengths are given by

the expected number of detections.

We present an alternative approach, the static bound heuristic (SBH), which is

similar to H1 in [13] but requires only one longest-path calculation and uses improved

arc lengths as described below. In Algorithm 4 (i.e., the B/B procedure for MSP), we

calculate the static bounds in advance of the main calculations. The bound calculation

corresponds to a longest path in the time-expanded configuration network (Nc,Ac)

with arc length given by (III.8). That longest path, which specifies a search plan,

is the solution provided by SBH. We observe that the longest path calculations in

H1 amounts to finding a configuration path with the largest expected number of
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Figure 9. An optimal search plan for the 5 by 5 cell search problem with 3 searchers
and the time horizon 9.

detections. In contrast, the longest path calculation in SBH uses arc lengths (III.8)

which effectively amounts to finding the configuration path with the largest expected

number of detections while at each node along the path accounting for the effect of

search at the previous node. As demonstrated in [32] and discussed in Section 1 of

Chapter II, accounting for the previous node significantly improves the configuration

path found by the longest path calculation.

Column 3, 5 and 7 of Table 8 report the run times for the cases of 1, 2 and

3 searchers, respectively. Since SBH corresponds to a longest-path problem in an
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acyclic network, the run times tend to be extremely short. Column 3, 6 and 9 of

Table 9 show the obtained probability of detection, and column 4, 7 and 10 describe

the relative gap to the corresponding optimal probability of detection. For each case,

the obtained detection probability is quite close to the corresponding optimal value.

Thus SBH performs well for these problem instances. However the performance tends

to be worse as the problem size becomes large. Moreover, this SBH is not available

for large-size problem since the time-expanded configuration cannot be generated.

3. Cross-Entropy Method

The cross-entropy (CE) method was developed by Rubinstein [38, 39] for solv-

ing rare event simulations and combinatorial optimization problems. The CE method

derives its name from the cross-entropy (or Kullback-Leibler) distance between two

probability distributions (e.g, an optimal importance sampling distribution and an

estimated distribution). The CE method is an iterative procedure consisting of two

steps: (1) random samples (i.e., search plans for our case) are generated according to

a parameterized probability distribution, and (2) the generated search plans are eval-

uated using the objective function (i.e., detection probability), and the parameters

of the sampling distribution are updated based on the ”elite” samples in a manner

which increases the possibility that an optimal or near-optimal solution appears in

the next iteration.

The CE method is a global search heuristic, and is somewhat similar to ge-

netic algorithms. However the CE method has a simpler scheme for the change of

population generation parameter compared to genetic algorithms. Boer et al. [36]

compare in details the CE method and other heuristics such as simulated annealing,

genetic algorithm, and ant colony method. The CE method has been applied to a

large number of combinatorial optimization problems [39, 40, 33, 44, 36, 12] but this

dissertation appears to be the first one applying the CE method to search problems.
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a. CE Algorithms

In the multiple-search problem (MSP), a possible search plan is de-

scribes as a sequence of configurations P = {Vl}T
l=0 where (Vl−1, Vl) ∈ Ec for all

l = 1, 2, ..., T . Thus, a crude way to find a search plan is as follows. Let F(V ) =

{V ′ ∈ Vc| (V, V ′) ∈ Ec} be the forward star of configuration V . Start at the given ini-

tial configuration V0 = (v1
0, v

2
0, . . . , v

J
0 ). Select an arbitrary configuration from F(V0)

and denote it V1. Next, choose an arbitrary configuration from F(V1) and denote it

V2. The same process is repeated until the configuration VT is obtained.

The CE method takes similar steps, but selects the next configuration

according to a probability distribution. For each node n ∈ Nc in the time-expanded

configuration network (Nc,Ac), we define a probability distribution σn,n′ over the

outgoing arcs (n, n′) ∈ Ac (i.e.,
∑

(n,n′)∈Ac
σn,n′ = 1). Then, given a configuration

subpath {nl}k
l=0, k ∈ T , the configuration subpath is extended by randomly selecting

an arc (nk, n
′) ∈ Ac according to the probability distribution σnk,n′ .

Clearly, if σn,n′ is degenerate at each node n ∈ Nc, i.e., there exists an n′

such that (n, n′) ∈ Ac and σn,n′ = 1, then the probability distribution uniquely speci-

fies a configuration path. The CE methods aims to iteratively update the probability

distribution so that it converges to a degenerate distribution specifying the optimal

configuration path of MSP. We formalize this approach in the next algorithm.

Algorithm 5 (Basic CE Algorithm).

Parameters. Sample size M , elite size M elite, stopping parameter s (e.g.,
s = 5), and smoothing parameter β.

Step 0. Calculate static bounds d0(n) for all n ∈ Nc and a lower bound q̂.
Set q̄(0) = q̂ and i = 1.

Step 1. For all n ∈ Nc and n′ ∈ F(n), define probability distribution σ
(i)
n,n′

such that

σ
(i)
n,n′ =

d0(n
′)∑

n′∈F(n) d0(n′)
. (III.9)

Step 2. Generate M search plans based on probability distribution σ
(i)
n,n′ .
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Step 3. Choose M elite elite samples among the generated search plans, and
calculate the detection probability of the best elite q̄(i). If q̄(i) > q̂, then
q̂ = q̄(i)

Step 4. If q̄(i) = q̄(i−1) = . . . = q̄(i−s), then stop. Else go to Step 5.

Step 5. Update probability distribution σ
(i+1)
n,n′ using the M elite elite samples

and parameter β as described below. Replace i by i + 1 and go to Step 2.

In Step 0, the static bounds d0(n) are calculated for all node n ∈ Nc in

the time-expanded configuration network. At this time, we obtain a lower bound q̂

of the optimal detection probability (i.e., the detection probability along the config-

uration path corresponding to d0(n0)). The best detection probability initially (0th

iteration), denoted q̄(0), is simply q̂. In Step 1, we define the initial probability dis-

tribution σ
(1)
n,n′ using the static bounds. Next, in Step 2, based on the probability

distribution σ
(1)
n,n′ , we generate M search plans P1,P2, . . . ,PM randomly. After that,

in Step 3, the M plans are evaluated using the objective function (i.e., detection prob-

ability), and the best performing M elite elite samples are extracted. If the detection

probability of the current best elite sample q̄(1) is better than the current lower bound

q̂ (the best detection probability so far), q̂ is updated. Step 4 stops the algorithm if

the best values found in the previous several iterations were identical. We hope that

the repetition of values is due to a near degenerate probability distributions σ
(i)
n,n′ and

that the best found search plan is close to the optimal one. However, that is not guar-

anteed. If the stopping criterion is not satisfied in Step 4, probability distributions

are updated using the current M elite elite samples as follows. Let l
(i)
n,n′ be the number

of times one of the elite samples use the arc (n, n′) in the current ith iteration. The

probability distribution is updated using both the current probability distributions

and contribution of the elite samples by setting

σ
(i+1)
n,n′ = β

l
(i)
n,n′∑

n′∈F(n) l
(i)
n,n′

+ (1− β)σ
(i)
n,n′ . (III.10)

where 0.4 ≤ β ≤ 0.9 as suggested in [36] based on empirical studies.
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We note that the parameters (M , M elite, s, β) must be specified to

implement Algorithm 5. Boer et al. [36] suggest that the sample size M is chosen

according to the size of the problem (e.g., M = rm, where m is the number of arcs in

the time-expanded configuration network, and r is a constant), and the elite sample

size is taken to be approximately 0.01M . Boer et al. [36] also report that an adaptive

choice of the parameter settings speeds up the convergence. Thus, we implement nu-

merical tests for a variety of cases and develop an adaptive CE algorithm. Specifically,

we set the elite sample size and smoothing parameter as M elite = 0.01M and β = 0.4,

respectively. Furthermore, we vary the sample size M in the range between Mmin

and Mmax adaptively. Mmin is set according to the size of the problem instance, and

Mmax = 5Mmin.

The CE method has asymptotic convergence properties. Specifically,

under the assumption that the optimal solution is unique, Costa et al. [3] give neces-

sary and sufficient conditions under which the optimal solution is approached, with

probability one, as the number of iterations goes to infinity. For MSP, the CE method

provides good solutions (as shown below in numerical tests). However it does not

guarantee an optimal solution since MSP often has multiple optimal solutions (e.g., if

two searchers are identical) and since the CE method is implemented with a heuristic

stopping criterion. The multi-extremal property of the MSP solutions may provide

the following undesirable condition. In each iteration, probability distributions are

updated using the elite samples including the best elite. Thus, in the next iteration,

at least, the best elite of the previous iteration is expected to appear in the samples

if the sample size is large. However, the multi-extremal property may bring unstable

probability distributions and the current best elite may be worse than that in the

previous iteration. In this case, Algorithm 5 is unlikely to stop in reasonable time.

For that undesirable situation, we intentionally stop the algorithm and provide the

best solution, but label it as “unreliable.”
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In view of the above discussion, we develop a specialized adaptive CE

algorithm to solve the MSP. In this algorithm, we refer to the sample size at ith

iteration as Mi.

Algorithm 6 (Adaptive CE Algorithm).

Parameters. Minimum and maximum sample sizes Mmin and Mmax and
smoothing parameter β.

Step 0. Calculate static bounds d0(n) for all n ∈ Nc and lower bound q̂. Set
q̄(0) = q̂ and i = 1.

Step 1. For all n ∈ Nc and n′ ∈ F(n), define probability distribution σ
(i)
n,n′

such that

σ
(i)
n,n′ =

d0(n
′)∑

n′∈F(n) d0(n′)
. (III.11)

Set Mi = Mmin.

Step 2. Generate Mi search plans based on probability distribution σ
(i)
n,n′ .

Step 3. Choose M elite = 0.01Mi elite samples among the generated search
plans, and calculate the detection probability of the best elite q̄(i). If q̄(i) >
q̂, then q̂ = q̄(i)

Step 4. If q̄(i) > q̄(i−1), update σ
(i+1)
n,n′ using the M elite elite samples. Replace

i by i + 1. Set Mi = Mmin and go to Step 2. Else go to Step 5.

Step 5. If the best detection probabilities are identical for three iterations
(i.e., q̄(i) = q̄(i−1) = q̄(i−2)), then stop. (The obtained solution is considered
reliable). Else go to Step 6.

Step 6. If Mi < Mmax = 5Mmin, increase the sample size Mi = Mi + Mmin

and go to Step 2. Else go to Step 7.

Step 7. If Mk = Mi−1 = . . . = Mi−5, then stop. (The obtained solution

is considered unreliable). Else update σ
(i+1)
n,n′ using the latest M elite elite

samples. Replace i by i + 1. Mi = Mmin and go to Step 2

Algorithm 6 is based on the time-expanded configuration network,

which is problematic for large-scale problems. However, we overcome this difficulty

by considering a time-expanded network for each searcher. For each searcher j ∈ J ,

we construct a time-expanded network Gj as in Chapter II. For each Gj, we define the
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probability distributions σj
n,n′ . We then generate a search plan by generating a path

Pj = {vj
l }T

l=0 for each searcher j according to the probability distributions σj
n,n′ . The

search plan is simply P = (P1,P2, ...,PJ). We update the probability distributions

σj
n,n′ , j ∈ J , by considering the joint search effect of all searchers. Specifically, we

determine as before the M elite elite search plan and define l
j(i)
n,n′ be the number of times

one of the elite samples use the arc (n, n′) for search j in the current ith iteration.

The probability distribution for each searcher j is then updated by setting

σ
j(i+1)
n,n′ = β

l
j(i)
n,n′∑

n′∈F(n) l
j(i)
n,n′

+ (1− β)σ
j(i)
n,n′ . (III.12)

An advantage of this approach is that we can treat large-scale problems since we

avoid generating the time-expanded configuration network. We summarize this “de-

composition” approach next.

Algorithm 7 (Adaptive CE Algorithm with Decomposition).

Parameters. Minimum and maximum sample sizes Mmin and Mmax and
smoothing parameter β.

Step 0. Generate the time-expanded network Gj, j ∈ J . In each Gj, calculate
static bounds dj

0(n) for all nodes n ∈ Gj. Generate a search plan P by
collecting each searcher’s path corresponding to the static bound dj

0(n0).
Calculate detection probability q(P) from (III.3). Set q̂ = q̄(0) = q(P) and
i = 1.

Step 1. For j ∈ J , define the probability distributions σ
j(i)
n,n′ by

σ
j(i)
n,n′ =

dj
0(n

′)
∑

n′∈F(n) dj
0(n

′)
. (III.13)

Set Mi = Mmin.

Step 2. Construct Mi search plans by generating each searcher’s path based
on probability distribution σ

j(i)
n,n′ . For each search plan, P calculate the

detection probability q(P) from (III.3).

Step 3. Choose M elite = 0.01Mi elite search plans among the generated
search plans, and set the detection probability of the best elite as q̄(i).
If q̄(i) > q̂, then q̂ = q̄(i)
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Step 4. If q̄(i) > q̄(i−1), update σ
j(i+1)
n,n′ , ∀j ∈ J using searcher j’s path con-

tributing to M elite elite samples. Replace i by i + 1. Mi = Mmin and go
to Step 2. Else go to Step 5.

Step 5. If the best detection probabilities are same for three iterations (i.e.,
q̄(i) = q̄(i−1) = q̄(i−2)), then stop. (The obtained solution is considered
reliable). Else go to Step 6.

Step 6. If Mi < Mmax = 5Mmin, increase the sample size Mi = Mi + Mmin

and go to Step 2. Else go to Step 7.

Step 7. If Mk = Mi−1 = . . . = Mi−5, then stop. (The obtained solution is

considered unreliable). Else update σ
j(i+1)
n,n′ , j ∈ J , using (III.12). Replace

i by i + 1. Set Mi = Mmin and go to Step 2

In Algorithm 7, for each j ∈ J , the probability distributions σ
j(i)
n,n′

are rather poor in the initial iterations compared to the situation in Algorithm 6.

However, the distributions are gradually improved as the cooperative search effort is

accounted for when determining the elite search plans.

The decomposition approach is practical for large-size problems since it

only requires the time-expanded network for each single searcher. Thus, the approach

is easily be implemented using the node-and-time expanded network with the poten-

tial for more effective generation of paths (see Chapter II for a discussion about the

advantage of the note-and-time expanded network over the time-expanded network).

The size of the node-and-time expanded network is larger than time-expanded net-

work, but it is substantially smaller than the time-expanded configuration network.

Since the algorithm using the node-and-time expanded network is essentially identical

to Algorithm 7 (except for using the node-and-time expanded network), we omit to

explicitly describe that algorithm but refer to it as Algorithm 7N.

b. Numerical Tests

We implement Algorithm 6, Algorithm 7, and Algorithm 7N using the

twelve problem instances listed in Table 10. The problem instances are similar to the

ones in Tables 8 and 9, and they have the same assumptions and parameter settings
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(e.g., start positions, glimpse detection probability and target stationary probability,

etc). The minimum sample size Mmin is decided according to the size of problem

instance, see columns 5 and 6 of Table 10 where m is the number of arcs in the

network corresponding to the algorithms. As before, we set Mmax = 5Mmin and

β = 0.4. Since Algorithm 6 uses the time-expanded configuration network, it is

available only for small problem instances, i.e., cases A2, A3, B2, and B3. The CE

heuristics (Algorithms 6, 7, and 7N) are compared with Algorithm 4 (i.e., the B/B

algorithm). When available, we compare the optimal value from Algorithm 4 with the

search plan obtained by the CE heuristics. We also compare with incumbent solution

available in Algorithm 4 at the point in time when the CE heuristics terminate.

Area Time Number of Min. sample size
Case size horizon searchers Algo. 6 Algo. 7/7N
A2 5 by 5 9 2 0.1m 10000m
A3 5 by 5 9 3 0.01m 10000m
B2 5 by 5 18 2 0.1m 10000m
B3 5 by 5 18 3 0.01m 10000m
C2 15 by 15 18 2 N/A 1000m
C3 15 by 15 18 3 N/A 1000m
D1 15 by 15 27 1 N/A 100m
D2 15 by 15 27 2 N/A 100m
D3 15 by 15 27 3 N/A 100m
E1 15 by 15 28 1 N/A 100m
F1 15 by 15 29 1 N/A 100m
G1 15 by 15 30 1 N/A 100m

Table 10. Test cases with Algorithm 6, Algorithm 7 and Algorithm 7N with area size,
time horizon, number of searchers, and minimum sample size. m is the number of
arcs in the network used in the corresponding algorithm.
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(a) Single searcher

Tables 11 and 12 report the numerical results for problem instances with

a single searcher. Columns 2 and 3 in Table 11 present the detection probabilities

obtained by the CE heuristics and column 4 shows the corresponding optimal solution

obtained by Algorithm 4. We find that Algorithms 7 and 7N have comparable solution

quality. The last column in Table 11 reports the probability of detection of the

incumbent search plan of Algorithm 4 at the time Algorithm 7 terminates. For

example, for case D1, the best detection probability available to Algorithm 4 at time

50.98 seconds (see Table 12) is 0.304046. Table 12 reports the corresponding run

times (columns 2 and 3 for Algorithms 7 and 7N, respectively, and column 5 for

Algorithm 4). In Table 12, we have also included the time at which Algorithm 4 finds

the optimal solution (but not yet proven optimal), see column 4. The run time of

Algorithm 4 is clearly slower than that of the CE heuristics. We also observe that the

run time of Algorithm 7 is much faster than that of Algorithm 7N. In a comparison

of columns 2, 3, and 5 in Table 11, we find that the CE heuristics terminates with

a better search plan than what is available from Algorithm 4 at the same time. The

solution quality of the CE heuristics is quite good for all the instances examined.

CE heuristic Branch-and-bound (Algo. 4)
Case Algo. 7 Algo. 7N Optimal Early term.
D1 0.305254 0.305254 0.305254 0.304046
E1 0.311225 0.313101 0.313101 0.307411
F1 0.320277 0.320716 0.320719 0.313043
G1 0.325968 0.325968 0.327823 0.320131

Table 11. Probability of detection for problem instances with a single searcher.

(b) Two searchers

Tables 13 and 14 describe the computational results for problem in-

stances with two searchers. The columns show the same content as the corresponding

columns in Tables 11 and 12. Algorithm 4 performs well for the smallest problem

instance (A2), but is not available for large instances. Algorithms 7 and 7N obtain
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CE heuristic Branch-and-bound (Algo. 4)
Algo. 7 Algo. 7N Found optimal Proved optimal

Case (sec.) (sec.) (sec.) (sec.)
D1 50.98 226.08 151.14 752.32
E1 47.28 229.17 536.40 2732.36
F1 79.26 302.88 1955.64 9690.79
G1 60.17 309.08 6255.47 34820.26

Table 12. Run times on problem instances with a single searcher.

solutions in practical times and their solution quality is better than that of Algorithm

6. In addition, they can obtain solutions for large problems. Hence, it appears that

Algorithms 7 and 7N are superior to Algorithm 6 for problem instances with two

searchers. Algorithm 7 and Algorithm 7N are comparable, but the former takes less

times to obtain a solution. The run time of the CE heuristics is smaller for case D2

than for C2, see Table 14. This is counterintuitive as cases D2 have a longer time

horizon than C2. However, the randomness in the algorithms may cause such effects.

Overall, it appears that Algorithm 7 is the algorithm of choice as in the case of two

searchers.

CE heuristic Branch-and-bound (Algo. 4)
Case Algo. 6 Algo. 7 Algo. 7N Optimal Early term.
A2 0.646586 0.647400 0.647400 0.647400 0.647400
B2 0.799565 0.801566 0.801552 N/A N/A
C2 N/A 0.336465 0.336483 N/A N/A
D2 N/A 0.474782 0.476186 N/A N/A

Table 13. Probability of detection for problem instances with two searchers.

(c) Three searchers

Tables 15 and 16 report the numerical results for the cases with three

searchers. The columns are the same as the corresponding columns in Tables 11 and

12. We observe that Algorithm 7 dominates Algorithm 6 in solution quality and run

times. Furthermore, it is available for the large-scale problem instances. As in the

73



CE heuristic Branch-and-bound (Algo. 4)
Algo. 6 Algo. 7 Algo. 7N Found optimal Proved optimal

Case (sec.) (sec.) (sec.) (sec.)
A2 6.78 11.09 48.45 0.67 5.19
B2 35.23 169.89 517.05 N/A N/A
C2 N/A 650.93 1666.43 N/A N/A
D2 N/A 210.43 951.36 N/A N/A

Table 14. Run times on problem instances with two searchers.

case of two searchers, Algorithms 7 and 7N are comparable, but the former tends to

require less computing time to obtain a reasonable solution.

For the smallest size problem instance (A3), Algorithm 7 obtains an

optimal solution (however it is not guaranteed) in 49 seconds. On the other hand,

Algorithm 4 obtains an optimal solution in 174.78 seconds and proves it optimal

in about 5 days. The best detection probability after 49 seconds in Algorithm 4 is

0.749631. Thus the CE heuristic Algorithm 7 appears to generate good solutions

quicker than the B/B based Algorithm 4.

Comparing the CE heuristic (Tables 11-16) with the Static Bound

Heuristic (SBH) (Tables 8 and 9 second to last row), we find that the SBH dom-

inates the CE heuristic in run time (3.25 seconds compared to 49 seconds for case

A3). However, the SBH is available only for small-size problem. In addition, the so-

lution quality of the CE heuristic is better than that of the SBH based on the limited

tests .

In view of the above results, Algorithm 7 appears to be an overall

efficient heuristic for solving MSP.
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CE heuristic Branch-and-bound (Algo. 4)
Case Algo. 6 Algo. 7 Algo. 7N Optimal Early term.
A3 0.753688 0.754400 0.754400 0.754400 0.749631
B3 0.889145 0.891720 0.893104 N/A N/A
C3 N/A 0.436528 0.436528 N/A N/A
D3 N/A 0.587159 0.593178 N/A N/A

Table 15. Probability of detection for problem instances with three searchers.

CE heuristic Branch-and-bound (Algo. 4)
Algo. 6 Algo. 7 Algo. 7N Found optimal Proved optimal

Case (sec.) (sec.) (sec.) (sec.)
A3 144.75 49.00 249.42 174.78 426,874.92
B3 767.39 271.43 1567.62 N/A N/A
C3 N/A 674.85 3815.69 N/A N/A
D3 N/A 297.30 1454.73 N/A N/A

Table 16. Run times on problem instances with three searchers.
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IV. MULTIPLE HOMOGENEOUS

SEARCHER PROBLEM

This chapter focuses on the multiple-searcher problems where all searchers are

identical, i.e., the multiple homogenous searcher problem (MHSP). The goal for the

searchers is to minimize the probability of not detecting the target within a mission

time, which is equivalent to maximize the probability of detecting the target within

the same time. We utilize the convexity of the nonlinear objective function (the non-

detection probability), and introduce an exact algorithm using cutting planes (outer

approximations). Under certain assumptions, the problem becomes equivalent to a

large-scale linear mixed-integer program. We also present several new cuts for MHSP

and demonstrate their effect in computational tests.

A. PROBLEM DESCRIPTION AND FORMULATION

Chapter III presented three algorithms (the branch-and-bound procedure and

two heuristics) to solve the multiple searcher problem (MSP), which are also applica-

ble for solving MHSP. Here we introduce an alternative approach especially tailored

to solve MHSP. This section formulates MHSP by following [7, 18]. We use the same

notations and assumptions as in MSP. Specifically, we assume that: (1) there is no

end-point restriction for any searcher; (2) the airspace has only one altitude. i.e.,

there is only one vertex corresponding to each cell in the discretized area of interest;

and (3) the search effect at the current waypoint is independent of the previous way-

point. In addition, we assume that the “search effect” is described by an exponential

detection function instead of an arbitrary function as in earlier chapters. That is,

when the number of searchers in cell c at time period t is yc,t, the probability of de-

tecting the target in that cell during that time period given the target occupies cell c

at time period t is described as 1− exp(−αc,tyc,t) instead of 1− (1−g(c, t))yc,t as used

in Chapter III. Here, the term αc,t is the detection rate for a single searcher in cell c
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and time period t defined by αc,t = −log(1−g(c, t)). We assume that g(c, t) < 1 (i.e.,

the sensor is not perfect) so that αc,t is finite. Additionally, we let ω(t) be the target’s

cell at time period t ∈ T , the sequence of cells ω = (ω(1), ω(2), . . . , ω(T )) denote a

target path, and pω be the probability that the target takes that path ω. The set of

all possible target paths is denoted as Ω. In this notation, MHSP is formulated as

follows.

Formulation of MHSP

Indices
c, c′ cells (c, c′ ∈ C = {1, . . . , C})
t time step (t ∈ T = {0, 1, ..., T})
ω target path (ω ∈ Ω)

Parameters
αc,t detection rate for a single searcher in cell c and time period t
αω

c,t αc,t if cell c is on target path ω at time period t, zero otherwise.
yc,0 number of searchers in cell c at time period 0
pω probability that the target takes path ω

Variables
xc,c′t number of searchers that is redistributed from cell c in time

period t to cell c′ in time period t + 1
yc,t number of searchers in cell c in time period t

Formulation

min f(y) =
∑

ω∈Ω

pω exp


−∑

c,t

αω
c,tyc,t




s.t.∑

c′∈R(c)

xc′,c,t−1 =
∑

c′∈F(c)

xc,c′,t ∀t = 1, ..., T

yc,t =
∑

c′∈F(c)

xc,c′,t ∀t ∈ T

xc,c′,t, yc,t: integer

We refer to this problem which minimizes the probability that the target is

not detected during time horizon T subject to network flow-balance constraints as

the multiple homogeneous searcher problem (MHSP). The objective function of this

nonlinear mixed-integer program is clearly convex. For reference later, elements of
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the gradient ∇f(y) of the objective function f(y) are

∂f(y)

∂yc,t

= − ∑

ω∈Ω

pωαω
c,t exp(−∑

c,t

αω
c,tyc,t). (IV.1)

Since the formulation uses all possible target paths ω ∈ Ω, if the number

of possible target paths is extremely large, calculating the objective function value

f(y) or its gradient ∇f(y) for any solution y becomes extremely computationally

expensive. Brown [7] introduces an alternative formulation for the case of Markovian

target movement using conditioning on the target’s position at a time period as

follows.

Given a solution y, let rc,t(y) be the probability of the target visiting cell c at

time period t without being detected in time periods 1, 2, ..., t− 1, and sc,t(y) be the

probability that the target departs cell c in time period t and is not detected by any

searches in time periods t + 1, t + 2, ..., T . Let r·,t(y) = [r1,t(y), r2,t(y), . . . , rC,t(y)]

and s·,t(y) = [s1,t(y), s2,t(y), . . . , sC,t(y)]. We define r·,1(y) = p(·, 1), where p(·, 1) is a

given initial target distribution, and sc,T (y) = 1 for any cell c ∈ C. Let Γ be a target

transition matrix. Thus r·,t(y) and s·,t(y) are calculated recursively by

r·,t(y) = [r1,t−1(y) exp(−α1,t−1y1,t−1), . . . , rC,t−1(y) exp(−αC,t−1yC,t−1)]Γ, (IV.2)

s·,t(y) = [s1,t+1(y) exp(−α1,t+1y1,t+1), . . . , rC,t+1(y) exp(−αC,t+1yC,t+1)]Γ
′, (IV.3)

where Γ′ is the transpose matrix of Γ. Since we only consider a target moving ac-

cording to a Markov transition matrix, we can apply this result. In this notation, for

any t = 1, 2, ..., T , the objective function is alternatively expressed as

f(y) =
∑

c∈C
rc,t(y) exp(−αc,tyc,t)sc,t(y), (IV.4)

and elements of the gradient ∇f(y) are

∂f(y)

∂yc,t

= −αc,trc,t(y) exp(−αc,tyc,t)sc,t(y). (IV.5)

Thus, for any solution y, the objective function value and the gradient can be evalu-

ated with a moderate computational effort.
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B. ALGORITHMS FOR MHSP

As mentioned, MHSP is a convex nonlinear mixed-integer program. This sec-

tion introduces an exact outer approximation (OA) algorithm to solve MHSP using

the convexity of the objective function [30]. The OA algorithm refers to the fact that

the surface described by a convex function lies above the supporting hyperplane to

the convex function at any point. A supporting hyperplane at a point y(i) takes the

form f(y(i)) +∇f(y(i))′(y− y(i)) (see Figure 10). The algorithm iteratively generates

supporting hyperplanes (cuts) and accumulates them to provide successively improv-

ing linear approximations of the nonlinear convex function (see Figure 10). The linear

approximation underestimates the objective function. We start by describing a basic

OA algorithm. After that we introduce several new cuts and present computational

results in the subsequent subsections.

1. Basic OA Algorithm

The basic OA algorithm is described as Algorithm 8 (see below), which solves

the following master problem as part of its calculations. Specifically, we denote that

the master problem of the k-th iteration of Algorithm 8 for MP1(k) and its optimal

value and optimal solution for z(k) and y(k), respectively.

Formulation of Master problem : MP1(k)

min z
s.t.
z ≥ f(y(i)) +∇f(y(i))′(y − y(i)) i = 0, 1, ..., k − 1∑

c′∈R(c)

xc′,c,t−1 =
∑

c′∈F(c)

xc,c′,t ∀t = 1, ..., T

yc,t =
∑

c′∈F(c)

xc,c′,t ∀t ∈ T

xc,c′,t, yc,t: integer

Algorithm 8 (Basic OA Algorithm).

Step 0. Set a relative optimality tolerance δ ≥ 0. Choose an initial feasible
solution y(0).

80



( )f y

y
(0)y (1)y(2)y

 !  !
'

(0) (0) (0)( )z f y f y y y" #$ %z

 !  !
'

(2) (2) (2)( )z f y f y y y" #$ %

 !  !
'

(1) (1) (1)( )z f y f y y y" #$ %

Figure 10. Linear supporting functions.

Step 1. Calculate f(y(0)) and ∇f(y(0)) (see (IV.4) and (IV.5)). Set lower
bound q = 0, upper bound q̄ = f(y(0)), and k = 1.

Step 2. If the gap (q̄−q)/q ≤ δ, stop. Else, solve the master problem MP1(k),

and obtain its optimal value z(k) and optimal solution y(k). If z(k) > q, then

q = z(k).

Step 3. Calculate f(y(k)) and ∇f(y(k)) (see (IV.4) and (IV.5)).

Step 4. If f(y(k)) < q̄, then q̄ = f(y(k)). Replace k by k + 1, and go to Step
2.

As seen, Algorithm 8 generates one cut in each iteration (a strategy we refer

to as “single-cut”) at a solution determined by the master problem MP1(k).

It is well known that using a nonzero optimality tolerance when solving, at

least the initial master problems in Algorithm 8 may reduce overall computing time
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as cuts can be generated more cheaply. We examine this possibility. Let ε(k) ≥ 0 be

a relative optimal tolerance for the solution of the master problem MP1(k). Then,

the value z
(k)

ε(k) obtained from the master problem may not be a valid lower bound on

the optimal value of MHSP. However, (1− ε(k))z
(k)

ε(k) is a valid lower bound and we use

that instead of z(k) in step 2 of Algorithm 8. We note that when ε(k) is constant at

zero for iterations after some finite iteration, Algorithm 8 is an exact algorithm and

provides an optimal solution after a finite number of iterations [16].

We examine Algorithm 8 using the problem instance “case C3” in Table 10

of Chapter III which involves 15 by 15 cells, a time horizon of 18, and 3 searchers.

We also adopt the same assumptions and parameter settings as in Chapter III. Our

program is coded using the General Algebraic Modeling System (GAMS) Distribution

22.5 [21] and is implemented on the same computational platform as in Chapters II

and III. The master problem MP1(k) is solved by the CPLEX 10.0 solver [27]. In the

master problem, we assume that the optimality tolerance ε(k) is constant with value

0 (version 1) or with value 0.03 (version 2).

All searchers depart the upper-left corner cell. Thus, as a choice of initial

feasible solution (search plan), we consider the situation that all searchers loiter at

the depot during the whole time horizon. We refer to this search plan as a “trivial

search” plan. This trivial plan is clearly unwise, but we apply this plan as an initial

feasible solution in the preliminary tests. Later we introduce a procedure to obtain a

better initial feasible solution.

In the initial numerical tests, the goal is to compare various approaches thus

we terminate the calculations after one hour. Table 17 reports lower/upper bounds

on the optimal value and the relative gap between the bounds at every ten minute

during one hour calculations using Algorithm 8. As reference, the best known non-

detection probability is 0.563472 (=1-0.436528) which is found in Table 15 (case C3)

in Chapter III. The one hour run time includes the solution time for the master

problems (Step 2) and the overhead time for generating cuts, etc. (Steps 1 and 3).
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Algorithm 8 versions 1 and 2 use 96.4% and 85.1% of the run time to solve the master

problems, respectively. During one hour, version 1 executes only 25 iterations because

the tighter optimality tolerance in the master problems, while version 2 executes 96

iterations. Even though the cuts in version 2 may not be as “deep” as the one

generated in version 1, it is clear from Table 17 that the extra effort to solve the

master problem optimally may not be worth it.

In these test, the relative optimal tolerance ε(k) of the master problem is con-

stant (0 or 0.03) for the one hour calculations. We note that if ε(k) is not zero,

Algorithm 8 may regeneration a cut. This can be prevented in many ways, especially

if we access the master problem solver. However, in these tests, as well as in tests

below, we adopt the simple approach of adjusting the relative optimality tolerance

ε(k). For example, ε(k)=0.03 appears to be a practical number if the goal is a 5%

near-optimal solution.

Time Algo. 8 version 1: ε(k) = 0 Algo. 8 version 2: ε(k) = 0.03
(min) LB UB Gap LB UB Gap

10 0.410705 0.620493 0.511 0.467784 0.576832 0.233
20 0.422249 0.599865 0.421 0.471399 0.576832 0.224
30 0.428358 0.599865 0.400 0.473591 0.576832 0.218
40 0.437659 0.585815 0.339 0.475205 0.574215 0.208
50 0.448581 0.585815 0.306 0.475316 0.574215 0.208
60 0.449400 0.585815 0.304 0.475316 0.572823 0.205

Table 17. Numerical results for Algorithm 8 versions 1 and 2 for every ten minutes
of calculations. The best known non-detection probability is 0.563472 (=1-0.436528)
found in Table 15 (case C3) in Chapter III.

2. New Cuts for OA Algorithm

This subsection introduces several new cuts and demonstrates their effect.

Initially two new cuts (multi-cut and strong-cut) are presented. After that we prove

that, under certain assumption, MHSP is equivalent to a large-scale linear mixed-

integer program, which motivates an approach for obtaining a good initial solution.
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Next, two additional cuts (relative-cut and symmetric-cut) are presented. Finally, we

develop a specific OA algorithm by combining these cuts effectively.

(a) Multi-cut

In Table 17, we learned that at least a moderate number of cuts is necessary

to bring up the lower bound. The aim of the multi-cut presented here is that, in

each iteration, we generate multiple cuts instead of single cut to accumulate many

cuts fast and push up the lower bound quickly. The multi-cut utilizes a similar

technique to the multicut version of the L-shaped method in stochastic programming

with two-stage recourse (see Chapter 5 in [6]). The basic idea is that, for the objective

function f(y) =
∑

ω∈Ω pωfω(y) where fω(y) = exp(−∑
c,t α

ω
c,tyc,t), we consider outer

approximation of fω(y) for all ω ∈ Ω instead of for f(y), and generate |Ω| cuts at

each iteration. However, the number of possible target paths |Ω| is extremely large.

Thus, according to the target movement during the initial few time steps, we define

U (typically U << |Ω|) “scenarios” Ω̃1, Ω̃2, ..., Ω̃U , where a scenario Ω̃u is a subset

of target paths (i.e., Ω̃u ⊂ Ω, u = 1, 2, ..., U). Moreover, each scenario is mutually

exclusive (i.e., Ω̃u ∩ Ω̃u′ = ∅, u 6= u′) and each possible target path ω belongs to

some scenario (i.e., ∪U
u=1Ω̃u = Ω). For example, from a known target location at time

period t = 1 there are five possible target movements (stay in the initial position or

go up/down/left/right) for the next time period. Thus we can define five (U = 5)

scenarios based on the target movement conditioned during the initial two time steps.

Similarly, for the initial three time steps (t=1,2 and 3), twenty five scenario (U = 25)

are defined if boundary effects are ignored. Let p̃u be the probability that the target

takes any path ω such that ω ∈ Ω̃u.

In order to apply this multi-cut approach, the objective function (IV.4) and

the gradient (IV.5) need to be expressed differently. When the solution is y, let ru
c,t(y)

be the probability of target visiting cell c at time period t without being detected

in time periods 1, 2, ..., t − 1 given the target takes a path ω corresponding to

scenario u. Similarly, su
c,t(y) is defined as the probability that the target departs cell
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c in time period t and is not detected by any searches in time periods t + 1, t + 2,

..., T given the target chooses a path ω corresponding to scenario u. Let ru
·,t(y) =

[ru
1,t(y), ru

2,t(y), . . . , ru
C,t(y)] and su

·,t(y) = [su
1,t(y), su

2,t(y), . . . , su
C,t(y)]. By considering

the conditioning on the target’s position with respect to scenario u, both ru
·,t(y) and

su
·,t(y) are recursively calculated similar as r·,t(y) and s·,t(y). In this notation, the

objective function is redefined as

f(y) =
U∑

u=1

p̃ufu(y), (IV.6)

where, for any t = 1, 2, ..., T , fu(y) =
∑

c∈C ru
c,t(y) exp(−αc,tyc,t)s

u
c,t(y), and elements

of the gradient ∇fu(y) are

∂fu(y)

∂yc,t

= −αc,tr
u
c,t(y) exp(−αc,tyc,t)s

u
c,t(y). (IV.7)

The OA algorithm with U cuts per iteration is described as Algorithm 9.

The algorithm solves the following master problem MP2(k) in the k-th iteration.

We denote the corresponding optimal value and optimal solution for z(k) and y(k),

respectively.

Formulation of Master problem : MP2(k)

min z =
∑U

u=1 p̃uzu

s.t.
zu ≥ fu(y

(i)) +∇fu(y
(i))′(y − y(i)) u = 1, 2, ..., U, i = 0, 1, ..., k − 1∑

c′∈R(c) xc′,c,t−1 =
∑

c′∈F(c) xc,c′,t ∀t = 1, ..., T
yc,t =

∑
c′∈F(c) xc,c′,t ∀t ∈ T

xc,c′,t, yc,t: integer

Algorithm 9 (OA Algorithm with multi-cut).

Step 0. Set a relative optimality tolerance δ ≥ 0. Choose an initial feasible
solution y(0).

Step 1. Calculate fu(y
(0)) and∇fu(y

(0)), u = 1, 2, ..., U (see (IV.6) and (IV.7)).
Set lower bound q = 0, upper bound q̄ =

∑U
u=1 p̃ufu(y

(0)), and k = 1.
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Step 2. If the gap (q̄−q)/q ≤ δ, stop. Else, solve the master problem MP2(k),

and obtain its optimal value z(k) and optimal solution y(k). If z(k) > q, then

q = z(k).

Step 3. Calculate fu(y
(k)) and∇fu(y

(k)), u = 1, 2, ..., U (see (IV.6) and (IV.7)).

Step 4. If f(y(k)) =
∑U

u=1 p̃ufu(y
(k)) < q̄, then q̄ = f(y(k)). Replace k by

k + 1, and go to Step 2.

Similar to the master problem MP1(k) in Algorithm 8, the relative optimality

tolerance of the master problem MP2(k) is denoted by ε(k) ≥ 0. Again we note that,

if ε(k) > 0, z(k) must be replaced by (1 − ε(k))z
(k)

ε(k) to obtain a valid lower bound in

Step 2 of Algorithm 9. Here, z
(k)

ε(k) is the value turn by the solver when using relative

optimality tolerance ε(k) > 0 when solving MP2(k).

We examine Algorithm 9 using the same problem instance as in Table 17. In

these instances, conditioning on the target movement in the initial two time steps

(t=1 and 2) results in U=5 scenarios. Conditioning on the initial three time steps

results in U = 25 scenarios. We refer to these two versions of Algorithm 9 as “multi-

t2-cut” and “multi-t3-cut,” respectively. As above, the relative optimality tolerance

ε(k) when solving the master problem MP2(k) is set to 0 or 0.03. This results in a

total of four versions of Algorithm 9:

• version 1: multi-t2-cut, and MP2(k) solved with ε(k) = 0

• version 2: multi-t2-cut, and MP2(k) solved with ε(k) = 0.03

• version 3: multi-t3-cut, and MP2(k) solved with ε(k) = 0

• version 4: multi-t3-cut, and MP2(k) solved with ε(k) = 0.03

We note that the initial feasible solution is still set to be the trivial search

plan (i.e., all searchers keep searching the initial cell for the whole duration). Table

18 shows the numerical results for versions 1 and 2 of Algorithm 9. Versions 1 and

2 spend 96.3% and 80.1% of the run time to solve the master problems (in Step

2), respectively. The remaining time is used to generate cuts and build models.
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During one hour, the version 1 permits only 20 iterations while version 2 executes

68 iterations. Since the multi-cut requires much more overhead time to generate

(multiple) cuts than Algorithm 8 (single-cut) in each iteration, the number of possible

iterations is reduced compared to that of Algorithm 8 (i.e., 25 iterations in version 1

of Algorithm 8 are reduced to 20 in version 1 of Algorithm 9; 96 iterations in version

2 of Algorithm 8 are reduced to 68 in version 2 of Algorithm 9). However, for both

version 1 and version 2 of Algorithm 9, the total number of accumulated cuts becomes

larger than the corresponding versions using a single-cut approach. As a result, the

lower bound of the multi-t2-cut (versions 1 and 2) improves quicker than that of the

single-cut (refer to Table 17). For the upper bound, there is no significant difference

between the multi-t2-cut and the single-cut approaches. After one hour, the multi-

t2-cut versions provides better relative gaps than the single-cut versions (i.e., 30.4%

(version 1 of Algorithm 8) compared to 28.3% (version 1 of Algorithm 9), and 20.5%

(version 2 of Algorithm 8) compared to 19.6% (version 2 of Algorithm 9)). We also

note that version 2 (ε(k) = 0.03) performs better than the version 1 (ε(k) = 0)) as seen

from Table 17.

Time Algo. 9 version 1: ε(k) = 0 Algo. 9 version 2: ε(k) = 0.03
(min) LB UB Gap LB UB Gap

10 0.436285 0.588137 0.348 0.470301 0.569675 0.211
20 0.454153 0.588137 0.295 0.474848 0.569675 0.200
30 0.457303 0.588137 0.286 0.475066 0.569675 0.199
40 0.458369 0.588137 0.283 0.475835 0.569675 0.197
50 0.458369 0.588137 0.283 0.476396 0.569675 0.196
60 0.458369 0.588137 0.283 0.476396 0.569675 0.196

Table 18. Numerical results for Algorithm 9 using multi-t2-cut (versions 1 and 2)
for every 10 minutes of calculations. The best known non-detection probability is
0.563472 same as in Table 17.

Table 19 presents the numerical results for Algorithm 9 using multi-t3-cut. In

each iteration, the multi-t3-cut requires much more time to generate 25 cuts. Thus

the versions 3 and 4 spend only 40.1% and 4.7% of the run time on solving the
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master problems (in Step 2) and the remaining time generating cuts. During one

hour tests, versions 3 and 4 permit only 12 and 19 iterations, respectively. Typically,

the multi-t3-cut versions provide a significant improvement in the lower bound in each

iteration. However, the long run time per iteration prevents them from carrying out

“enough” iterations. Thus it appears that the multi-t3-cut versions are inferior to the

single-cut and multi-t2-cut versions (see Tables 17 and 18). We note however that

our implementation of Algorithm 9 in GAMS could be improved by implementing the

time-consuming cut generation in C++ or some other faster programming language.

If the cut generation time could be reduces, the multi-t3-cut versions may prove

competitive. However, in this dissertation, we do not consider this programming

enhancement.

Time Algo. 9 version 3: ε(k) = 0 Algo. 9 version 4: ε(k) = 0.03
(min) LB UB Gap LB UB Gap

10 0.255538 0.711572 1.785 0.247878 0.716509 1.891
20 0.359439 0.624907 0.739 0.343276 0.662075 0.929
30 0.399356 0.604164 0.513 0.384563 0.608274 0.582
40 0.424481 0.604164 0.423 0.419195 0.605206 0.444
50 0.424481 0.604164 0.423 0.435430 0.589771 0.354
60 0.429744 0.594532 0.383 0.450207 0.581592 0.292

Table 19. Numerical results for Algorithm 9 using multi-t3-cut (versions 3 and 4)
for every 10 minutes of calculations. The best known non-detection probability is
0.563472 same as in Table 17.

Based on the test results in Tables 17, 18 and 19, we conclude that Algorithm

8, version 2 (single-cut with ε(k)=0.03), and Algorithm 9, version 4 (multi-t2-cut with

ε(k)=0.03), are the most promising. Hence, we adopt these versions as baselines for

further comparisons. When the meaning is clear from the context, we refer to those

versions simply as single-cut and multi-cut, respectively.

(b) Strong-cut

In Algorithms 8 and 9, at each iteration, cuts are generated at the optimal so-

lutions ŷ obtained from the master problems. The cuts are the tangent hyper-planes
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Figure 11. Strong cut and tangent hyper-plane on an exponential objective function
in mixed-integer program.

and utilize that f(y) ≥ f(ŷ) +∇f(ŷ)′(y − ŷ) for all y. (For simplicity, we now argue

using single-cut, but the same arguments can be build for multi-cut versions). We

now use the fact we are only concern with integer values of y to build a stronger cut.

Figure 11 illustrates the basic idea of the new cut. Since the MHSP is an integer

program, we utilize finite differences of the objective function f(y) by considering the

perturbation from ŷc,t to ŷc,t + 1 while keep all other variables fixed. Theorem IV.1

presents this new cut. Let 4c,t ∈ ZCT be a vector in which the (c, t) element is one

and the other elements are all zero, where Z is the set of integers.
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Theorem IV.1 For any y, ŷ ∈ ZCT , f(y) ≥ f(ŷ)+
∑

c,t[f(ŷ+4c,t)−f(ŷ)](yc,t−ŷc,t).

Proof. f(y) =
∑

ω pω exp(−∑
c,t α

ω
c,tyc,t) =

∑
ω exp(−∑

c,t α
ω
c,tyc,t+logpω). Let aω be

a CT -dimensional vector defined by aω = (αω
c,t) and bω = (−logpω). Then, aω ≥ 0 and

bω > 0. Hence, f(y) =
∑

ω fω(y) where fω(y) = exp(−aωy− bω). In this notation, the

result is equivalent to fω(ŷ) +
∑

c,t[fω(ŷ +4c,t)− fω(ŷ)](yc,t − ŷc,t) ≤ fω(y) for all ω.

Consequently, fω(ŷ)[1 +
∑

c,t(exp(−αω
c,t)− 1)(yc,t − ŷc,t)− exp(−aω(y − ŷ))] ≤ 0. Let

βω
c,t = exp(−αω

c,t), and N be the set of the cell-time pair (c, t) such that yc,t− ŷc,t 6= 0

and αω
c,t > 0 (i.e., cell c is on path ω at time period t). Then we only need to show

that
∑

i∈N (1 − βi)(yi − ŷi) +
∏

i∈N (βi)
(yi−ŷi) ≥ 1, where i = (c, t) ∈ N , 0 < βi < 1.

Let k̂i = yi − ŷi, then we can define ϕ(β) =
∑

i∈N (1 − βi)k̂i +
∏

i∈N β k̂i
i , where

β = (βi) is a |N |-dimensional vector. Let ψ(β) =
∏

i∈N β k̂i
i . Then ∇ψ(β) =

(log(β1), ..., log(β|N |))′ψ(β), and ∇2ψ(β) = A′Aψ(β), where A is a |N | by |N | matrix

in which the first low is (log(β1), ..., log(β|N |)) and the other elements are all zero.

Since the matrix A′A is positive semi-definite and ψ(β) > 0, ψ(β) is convex on the

set with βi > 0 for all i ∈ N . Thus ϕ(β) is also convex on the set with βi > 0 for

all i ∈ N . When βi=1 for ∀i ∈ N , ∇ϕ(β) = (k̂1(−1 + β−1
1 ), ..., k̂|N |(−1 + β−1

|N |)) = 0.

Thus, the minimum value of ϕ(β) is 1 when βi=1 for ∀i ∈ N . Consequently, we

obtain that ϕ(β) ≥ 1 which proves the result.

We refer to this type of new cut as ’strong-cut’. The calculation of finite

differences [f(ŷ +4c,t)− f(ŷ)] is as easy as that of the gradient (IV.5). Specifically,

[f(ŷ +4c,t)− f(ŷ)]

=
∑

c′∈C
rc′,t(y)[exp(−αc′,tyc′,t − αc,t)− exp(−αc′,tyc′,t)]sc′,t(y)

= rc,t(y)[exp(−αc,t(yc,t + 1))− exp(−αc,tyc,t)]sc,t(y). (IV.8)

For the multi-cut version, for each scenario u = 1, 2, ..., U , the finite differences

[fu(ŷ +4c,t)− fu(ŷ)] are calculated similarly:

90



[fu(ŷ +4c,t)− fu(ŷ)]

=
∑

c′∈C
ru
c′,t(y)[exp(−αc′,tyc′,t − αc,t)− exp(−αc′,tyc′,t)]s

u
c′,t(y)

= ru
c,t(y)[exp(−αc,t(yc,t + 1))− exp(−αc,tyc,t)]s

u
c,t(y). (IV.9)

Algorithm 10 describes a single-cut OA algorithm using the strong-cut. Algo-

rithm 10 is a modification from Algorithm 8 since at each iteration a strong cut is

generated instead of a tangent hyper-plane. In the k-th iteration of Algorithm 10, we

solve a master problem MP3(k) defined below, where the optimal value and optimal

solution are denoted z(k) and y(k), respectively.

Formulation of Master problem : MP3(k)

min z
s.t.

z ≥ f(y(i)) +
∑

c,t[f(y(i) +4c,t)− f(y(i))](yc,t − y
(i)
c,t) i = 0, 1, ..., k − 1∑

c′∈R(c) xc′,c,t−1 =
∑

c′∈F(c) xc,c′,t ∀t = 1, ..., T
yc,t =

∑
c′∈F(c) xc,c′,t ∀t ∈ T

xc,c′,t, yc,t: integer

Algorithm 10 (OA Algorithm with single, strong-cut).

Step 0. Set a relative optimality tolerance δ ≥ 0. Choose an initial feasible
solution y(0).

Step 1. Calculate f(y(0)) and f(y(0) + 4c,t) − f(y(0)) for ∀(c, t) (see (IV.4)
and (IV.8)). Set lower bound q = 0, upper bound q̄ = f(y(0)), and k = 1.

Step 2. If the gap (q̄−q)/q ≤ δ, stop. Else, solve the master problem MP3(k),

and obtain its optimal value z(k) and optimal solution y(k). If z(k) > q, then

q = z(k).

Step 3. Calculate f(y(k)) and f(y(k) + 4c,t) − f(y(k)) for ∀(c, t) (see (IV.4)
and (IV.8)).

Step 4. If f(y(k)) < q̄, then q̄ = f(y(k)). Replace k by k + 1, and go to Step
2.
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Algorithm 11 shows the multi-cut version of Algorithm 10. In the k-th it-

eration of Algorithm 11, the master problem MP4(k) defined below is solved. The

optimal value and optimal solution of MP4(k) are denoted z(k) and y(k), respectively.

In each iteration of Algorithm 11, U cuts are generated at once.

Formulation of Master problem : MP4(k)

min z =
∑U

u=1 p̃uzu

s.t.

zu ≥ fu(y
(i)) +

∑
c,t[fu(y

(i) +4c,t)− fu(y
(i))](yc,t − y

(i)
c,t)

u = 1, 2, ..., U, i = 0, 1, ..., k − 1∑
c′∈R(c) xc′,c,t−1 =

∑
c′∈F(c) xc,c′,t ∀t = 1, ..., T

yc,t =
∑

c′∈F(c) xc,c′,t ∀t ∈ T
xc,c′,t, yc,t: integer

Algorithm 11 (OA Algorithm with multi/strong-cut).

Step 0. Set a relative optimality tolerance δ ≥ 0. Choose an initial feasible
solution y(0).

Step 1. Calculate fu(y
(0)) and fu(y

(0) +4c,t)−fu(y
(0)), u = 1, 2, ..., U, ∀(c, t)

(see (IV.6) and (IV.9)). Set lower bound q = 0, upper bound q̄ =
∑U

u=1 p̃ufu(y
(0)),

and k = 1.

Step 2. If the gap (q̄−q)/q ≤ δ, stop. Else, solve the master problem MP4(k),

and obtain its optimal value z(k) and optimal solution y(k). If z(k) > q, then

q = z(k).

Step 3. Calculate fu(y
(k)) and fu(y

(k) +4c,t)−fu(y
(k)), u = 1, 2, ..., U, ∀(c, t)

(see (IV.6) and (IV.9)).

Step 4. If f(y(k)) =
∑U

u=1 p̃ufu(y
(k)) < q̄, then q̄ = f(y(k)). Replace k by

k + 1, and go to Step 2.

We demonstrate the effect of the strong-cut using the same problem instance

accompanied with the same assumptions and parameter settings as in the previous

subsection. The trivial search plan is still used as the initial feasible solution y(0).

The relative optimality tolerance of the master problems is assumed constant at 0.03.
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Table 20 describes the effect of the strong-cut. Compared with the previous

algorithms (Algorithms 8 and 9), Algorithms 10 and 11 implement 1.4 times more

iterations: 96 for Algorithm 8 compared to 135 for Algorithm 10, and 68 for Algorithm

9 compared to 95 for Algorithm 11. Furthermore, the relative gap after one hour is

drastically reduced from about 20% to 10.5% for both versions. Since the increase

of the number of iterations and the progress in the gap are essentially identical for

both versions, we conclude that the strong-cut is quite effective. The performance of

Algorithms 10 and 11 during one hour of calculations is almost parallel to each other.

Time Algo. 10 : single-cut Algo. 11 : multi-cut
(min) LB UB Gap LB UB Gap

10 0.509594 0.570631 0.120 0.510988 0.571003 0.117
20 0.511369 0.570631 0.116 0.512539 0.569664 0.111
30 0.512452 0.568363 0.109 0.513929 0.569664 0.108
40 0.512819 0.568363 0.108 0.514792 0.569664 0.107
50 0.512847 0.568363 0.108 0.515407 0.569664 0.105
60 0.514277 0.568363 0.105 0.515407 0.569664 0.105

Table 20. Numerical results for Algorithms 10 and 11 using strong-cut for every 10
minutes of calculations. The best known non-detection probability is 0.563472 same
as in Table 17.

(c) Choice of Initial Solution

So far, as a choice of initial feasible solution, we have used the trivial search

plan (i.e., all searchers keep loitering at the initial cell). The choice of the initial solu-

tion certainly influences the OA algorithms, especially during the initial calculations.

In this section, we aim to develop a “good” initial solution. In advance of this, we

first introduce a theoretical property of the MHSP, which facilitates the calculation

of a good initial solution.

We now assume that the detection rate is time and space independent, i.e.,

α = αc,t for all c and t. Under this assumption, we show that the MHSP is equivalent

to a large-scale linear mixed-integer program. Let Wω =
∑

c,t α
ω
c,tyc,t be the total

effective search effort given search plan y when the target takes path ω ∈ Ω. Since

93



the detection rate is assumed identical, Wω is a multiple of α and thus Wω = mα for

some m = 0, 1, ..., JT . This is a similar idea to [52]. The maximum possible total

effective search effort is the number of searchers (J) times the time horizon (T ), which

occurs when all searchers take the path ω. In this notation, we claim that the MHSP

is formulated as the following large-scale linear mixed-integer program.

Formulation in linear mixed-integer program: L1

Indices
c, c′ cells (c, c′ ∈ C = {1, . . . , C})
t time step (t ∈ T = {0, 1, ..., T})
j searchers (j ∈ J = {1, ..., J})
ω target path (ω ∈ Ω)

Parameters
α detection rate for a single searcher in cell c and time period t
αω

c,t αc,t if cell c is on target path ω at time period t, zero otherwise.
yc,0 number of searchers in cell c in time period 0
pω probability that the target takes path ω

Variables
xc,c′t number of searchers that is redistributed from cell c in time

period t to cell c′ in time period t + 1
yc,t number of searchers in cell c in time period t

Formulation
min

∑
ω∈Ω pωzω

s.t.
Wω =

∑
c,t α

ω
c,tyc,t

zω ≥ e−mα[1 + m−me−α] + (1/α)e−mα(e−α − 1)Wω

∀ω ∈ Ω, m = 0, 1..., JT∑
c′∈R(c) xc′,c,t−1 =

∑
c′∈F(c) xc,c′,t ∀t = 1, ..., T

yc,t =
∑

c′∈F(c) xc,c′,t ∀t ∈ T
xc,c′,t, yc,t: integer

Theorem IV.2 If the detection rate is identical (i.e., α = αc,t for all c and t), the
convex nonlinear mixed-integer MHSP and the linear mixed-integer program L1 have
identical global minimum solutions.

Proof. Let fω(Wω) = e−Wω , where Wω =
∑

c,t α
ω
c,tyc,t and f(y) =

∑
ω∈Ω pωfω(Wω).

Wω only takes a finite number of discrete value Wω = mα, m = 0, 1, ..., JT . Thus

fω(Wω) can be described as a piece-wise linear function (see Figure 12). The linear
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Figure 12. Piece-wise linearlization of the exponential function fω(Wω).

approximation between mα and (m + 1)α is obtained as f(Wω) = e−mα[1 + m −
me−α] + (1/α)e−mα(e−α − 1)Wω by solving the linear equation (b0 + b1[mα] = e−mα

and b0 + b1[(m + 1)α] = e−(m+1)α) for parameters b0 and b1.

The linearization of MHSP under the assumption of identical detection rates

explicitly depends on all possible target paths. Hence, the program L1 may become

extremely large. Thus we cannot directly apply this formulation to solve most in-

stances of MHSP. However, this linearization provides useful insight to obtain a good

initial solution.

The linearlization of MHSP considers the total effective search effort Wω on

each target path ω ∈ Ω individually. The alternative approach is to consider the
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total effective search effort aggregated over all target paths. This approach allow us

to utilize the Markovian property of the target movement, but it leads to a relaxation

as we now described. Recall that the target moves between cells according to a

known transition matrix Γ. Let p(·, t) = p(·, 1)Γt−1, t > 1 be the undetected target

distribution in time period t, (p(·, 1) is known). Thus the aggregated total effective

search effort is described as W =
∑

c,t p(c, t)αyc,y. In this notation, the aggregation

of the large-scale linear mixed-integer program L1 takes the form of the moderately

sized linear mixed-integer program L2:

Formulation in linear mixed-integer program (aggregation): L2

Indices
c, c′ cells (c, c′ ∈ C = {1, . . . , C})
t time step (t ∈ T = {0, 1, ..., T})
j searchers (j ∈ J = {1, ..., J})

Parameters
α detection rate for a single searcher in any cell and time
yc,0 number of searchers in cell c in time period 0
p(·, t) undetected target distribution at time period t

Variables
xc,c′t number of searchers that is redistributed from cell c in time

period t to cell c′ in time period t + 1
yc,t number of searchers in cell c in time period t

Formulation
min z

s.t.
W =

∑
c,t p(c, t)αyc,y

z ≥ e−mα[1 + m−me−α] + (1/α)e−mα(e−α − 1)W , m = 0, 1..., JT∑
c′∈R(c) xc′,c,t−1 =

∑
c′∈F(c) xc,c′,t ∀t = 1, ..., T

yc,t =
∑

c′∈F(c) xc,c′,t ∀t ∈ T
xc,c′,t, yc,t: integer

We observe that solutions of L2 is not identical to solutions of L1 as L2 is a

relaxation of L1 due to the aggregation of all the target paths. However, L2 is easily

solved and typically provides a good initial solution for the main calculations. We

will use this aggregated program L2 to obtain an initial solution.
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In addition, we also consider a simple condition (constraint) to obtain a better

initial solution. If the number of searchers is moderate (e.g., 3 searchers) and the size

of the area is large, it is typically better that the searchers visit cells not previously

searched. (Of course, the effect of this strategy also depends on the movement of the

target.) Given a specific t′ ∈ T (e.g., t′=1 for the problem instance with 3 searchers),

a non-revisit constraint is described as
∑

t>t′ yc,t ≤ 1, ∀c ∈ C. Therefore, in the initial

step (Step 0) of the OA algorithms, we solve the aggregation problem (L2) with this

non-revisit constraint to obtain an initial solution. This initial problem is referred as

L3 as follows.

Initial problem: L3

Indices
c, c′ cells (c, c′ ∈ C = {1, . . . , C})
t time step (t ∈ T = {0, 1, ..., T})
j searchers (j ∈ J = {1, ..., J})

Parameters
α detection rate for a single searcher in any cell and time
yc,0 number of searchers in cell c in time period 0
p(·, t) undetected target distribution at time period t

Variables
xc,c′t number of searchers that is redistributed from cell c in time

period t to cell c′ in time period t + 1
yc,t number of searchers in cell c in time period t

Formulation
min z

s.t.
W =

∑
c,t p(c, t)αyc,y

z ≥ e−mα[1 + m−me−α] + (1/α)e−mα(e−α − 1)W , m = 0, 1..., JT∑
c′∈R(c) xc′,c,t−1 =

∑
c′∈F(c) xc,c′,t ∀t = 1, ..., T

yc,t =
∑

c′∈F(c) xc,c′,t ∀t ∈ T∑
t>t′ yc,t ≤ 1, ∀c ∈ C

xc,c′,t, yc,t: integer

In the OA algorithms, the first cut(s) is generated at the initial solution ob-

tained from the initial problem L3. In addition, we also add the cut at the solution

y = 0 (i.e., f(y) ≥ f(0) +∇f(0)′y) which can be shown to relate to the mean bound
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in a branch-and-bound procedure [34, 52]. The cut at y = 0 linearlizes the probability

of non-detection at the point of “no search” effect so it gives an estimate of initial

effect of increasing the search effort above zero in a cell. We apply the strong-cut,

not the gradient-based hyper plane, at y = 0 and the initial solution found when

solving L3. We note that this initial process is also available for the algorithm using

multi-cut (Algorithm 11) and is referred as the initial problem L4 as follows.

Initial problem: L4

Indices
c, c′ cells (c, c′ ∈ C = {1, . . . , C})
t time step (t ∈ T = {0, 1, ..., T})
j searchers (j ∈ J = {1, ..., J})
u scenario (u = 1, 2, ..., U)

Parameters
α detection rate for a single searcher in any cell and time
yc,0 number of searchers in cell c in time period 0
p̃u probability that the target takes scenario u
pu(·, t) undetected target distribution at time period t when scenario u

Variables
xc,c′t number of searchers that is redistributed from cell c in time

period t to cell c′ in time period t + 1
yc,t number of searchers in cell c in time period t
Wu total effective search effort when scenario u
zu

Formulation
min

∑U
u=1 p̃uzu

s.t.
Wu =

∑
c,t p

u(c, t)αyc,y, u = 1, 2, ..., U
zu ≥ e−mα[1 + m−me−α] + (1/α)e−mα(e−α − 1)Wu

u = 1, 2, ..., U, m = 0, 1..., JT∑
c′∈R(c) xc′,c,t−1 =

∑
c′∈F(c) xc,c′,t ∀t = 1, ..., T

yc,t =
∑

c′∈F(c) xc,c′,t ∀t ∈ T∑
t>t′ yc,t ≤ 1, ∀c ∈ C

xc,c′,t, yc,t: integer

Table 21 reports the effect of the choice of an improved initial solution using

the same problem instance with the same assumptions and parameter settings as

above. We define Algorithm 10.2 (single-cut) and Algorithm 11.2 (multi-cut) when
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an initial solution is computed from L3 in Algorithm 10 and from L4 in Algorithm

11, respectively. For both Algorithms 10.2 and 11.2, the relative gap decreases after

10 minutes from 0.107 to 0.103 for Algorithm 10.2, and from 0.105 to 0.098 for

Algorithm 11.2. However, after 30 minutes of calculations, the advantage of the

improved initial solution becomes insignificant since the numbers of cuts are added

and the cuts largely influence the solution quality. Algorithms 10.2 and 11.2 perform

better than the previous cases using trivial initial solution, thus we apply them as

the baseline for the OA algorithms which include the next set of new cuts.

Time Algo. 10.2 : single-cut Algo. 11.2 : multi-cut
(min) LB UB Gap LB UB Gap

10 0.510520 0.568875 0.114 0.512064 0.567808 0.109
20 0.512370 0.568875 0.110 0.513271 0.567808 0.106
30 0.512422 0.568875 0.110 0.514057 0.567808 0.105
40 0.513546 0.568875 0.108 0.514660 0.567808 0.103
50 0.513747 0.568875 0.107 0.515650 0.567808 0.101
60 0.513747 0.568875 0.107 0.515900 0.567808 0.101

Table 21. Numerical results for Algorithms 10.2 and 11.2 using an improved initial so-
lution for every 10 minutes of calculations. The best known non-detection probability
is 0.563472 same as in Table 17.

(d) Relative-cut

In Table 21, the upper bound (i.e., the best feasible value) does not change

after ten minutes. Thus it is possible that the upper bound could have been optimal.

(Of course, it is not in this case as we know a better value from Chapter III). Let ȳ

be the best solution so far providing the upper bound q̄ = f(ȳ). Since the objective

function is convex, ȳ is guaranteed to be optimal if f(ȳ) is still the upper bound after

cuts are added at all neighbor integer points ỹ of ȳ (the Euclidian distance between

ȳ and ỹ is one). Thus, we explore the strategy of generating cuts around the best

solution.

Figure 13 illustrates the rule that determines a neighboring integer point ỹ

where we generate a cut. In earlier the OA algorithms, each iteration obtains a
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Figure 13. Illustration of cut generation around the best solution.

solution ŷ and generates one or more cuts at ŷ. Now, we also generate an additional

cut at ỹ. Thus, in the algorithms using the single-cut, two cuts are generated in each

iteration. The upper picture in Figure 13 shows a case where the best solution so far

ȳ is still better than the current solution ŷ (i.e., f(ȳ) < f(ŷ)). Then, we determin

an integer point ỹ which is a neighbor of ȳ and is the closest point to ŷ measured in

the Euclidean distance. The lower picture illustrates the opposite case. In this case,

after generating the cuts at ŷ and ỹ, the best solution ȳ is updated as ŷ. We denote

the cut at the solution ỹ as a “relative-cut. ” Moreover, for the relative-cut, we also

apply the strong-cut instead of the gradient-based hyper-plane cut.

The OA algorithms using the relative-cut is described as Algorithm 12 and

Algorithm 13. Algorithm 12 is the single-cut version, and Algorithm 13 is the multi-
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cut version. Algorithms 12 and 13 also use the initial problem L3 and L4 to obtain a

reasonable initial solution, respectively. Thus Algorithms 12 and 13 are extension of

Algorithms 10.2 and 11.2 to the ones with relative-cut, respectively.

Algorithm 12 (OA Algorithm with single/strong/relative-cut).

Step 0. Set a relative optimality tolerance δ ≥ 0 and y(0) = 0. Solve the
initial problem L3 (t′ = 1 for the problem instance with 3 searchers) and
set the solution as y(1).

Step 1. Calculate f(y(0)), f(y(1)), f(y(0) +4c,t)− f(y(0)) and f(y(1) +4c,t)−
f(y(1)) for ∀(c, t) (see (IV.4) and (IV.8)). Set lower bound q = 0, upper

bound q̄ = f(y(1)), ȳ = y(1), and k = 2.

Step 2. If the gap (q̄−q)/q ≤ δ, stop. Else, solve the master problem MP3(k)

(described above Algorithm 10), and obtain its optimal value z(k) and
optimal solution ŷ = y(k). If z(k) > q, then q = z(k).

Step 3. Calculate f(y(k)) and f(y(k) + 4c,t) − f(y(k)) for ∀(c, t) (see (IV.4)
and (IV.8)).

Step 4. Obtain a neighbor point ỹ around the best solution by comparing
f(ŷ) with q̄ = f(ȳ). Replace k by k + 1. Set y(k) = ỹ.

Step 5. Calculate f(y(k)) and f(y(k) +4c,t)− f(y(k)) for ∀(c, t).
Step 6. If f(ŷ) < q̄, then q̄ = f(ŷ) and ȳ = ŷ. Replace k by k + 1, and go to

Step 2.

Algorithm 13 (OA Algorithm with multi/strong/relative-cut).

Step 0. Set a relative optimality tolerance δ ≥ 0 and y(0) = 0. Solve the
initial problem L4 (t′ = 1 for the problem instance with 3 searchers) and
set the solution as y(1).

Step 1. Calculate fu(y
(0)), fu(y

(1)), fu(y
(0) + 4c,t) − fu(y

(0)) and fu(y
(1) +

4c,t)−fu(y
(1)), for u = 1, 2, ..., U, ∀(c, t) (see (IV.6) and (IV.9)). Set lower

bound q = 0, upper bound q̄ =
∑U

u=1 p̃ufu(y
(1)), ȳ = y(1), and k = 2.

Step 2. If the gap (q̄−q)/q ≤ δ, stop. Else, solve the master problem MP4(k)

(described above Algorithm 11), and obtain its optimal value z(k) and
optimal solution ŷ = y(k). If z(k) > q, then q = z(k).
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Step 3. Calculate fu(y
(k)) and fu(y

(k) +4c,t)−fu(y
(k)), u = 1, 2, ..., U, ∀(c, t)

(see (IV.6) and (IV.9)). Calculate f(ŷ) =
∑U

u=1 p̃ufu(ŷ)

Step 4. Obtain a neighbor point ỹ around the best solution by comparing
f(ŷ) with q̄ = f(ȳ). Replace k by k + 1. Set y(k) = ỹ.

Step 5. Calculate fu(y
(k)) and fu(y

(k)+4c,t)−fu(y
(k)), u = 1, 2, ..., U, ∀(c, t).

Step 6. If f(ŷ) < q̄, then q̄ = f(ŷ) and ȳ = ŷ. Replace k by k + 1, and go to
Step 2.

We test the effect of the relative-cut using the same problem instance with

the same assumptions and parameter settings as above. Table 22 describes the com-

putational results of Algorithms 12 and 13. During one hour of calculations, we do

not identify significant effect of the relative-cut by comparing Table 21 and Table 22.

However, the relative-cut strategy seems not to be detrimental and it allows for a

faster accumulation of cuts which may be beneficial so we implement the relative-cut

in our OA algorithms.

Time Algo. 12: single-cut Algo. 13: multi-cut
(min) LB UB Gap LB UB Gap

10 0.510523 0.571749 0.120 0.512066 0.577300 0.127
20 0.512079 0.569864 0.113 0.514172 0.570003 0.109
30 0.513185 0.569864 0.110 0.514721 0.566784 0.101
40 0.514212 0.569864 0.108 0.514806 0.566784 0.101
50 0.514538 0.569864 0.108 0.515639 0.566784 0.099
60 0.514538 0.569864 0.108 0.515690 0.566784 0.099

Table 22. Numerical results for Algorithms 12 and 13 using relative-cut for every 10
minutes of calculations. The best known non-detection probability is 0.563472 same
as in Table 17.

(e) Symmetric-cut

The final cut we present is quite specific and not applicable for general cases.

However it is somewhat effective in specific situation. Suppose that the shape of the

area of interest (AOI) is symmetric and the searchers and the targets are initially in

the cells which are located on a line that divides the AOI symmetrically (see Figure

14). Suppose also that the detection rate is identical for all cells and time periods.
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And finally, suppose that the target moves to an adjacent cells equally likely. We

refer to this specific situation as “symmetric.” In the symmetric situation, for a

search plan P , there exist a symmetric (or mirror) plan P ′ with identical probability

of nondetection, i.e., q(P) = q(P ′), see Figure 14.

Thus, the basic idea of the symmetric-cut is that, in each iteration, cuts are

generated not only at the current solution (plan) P but also at its symmetric solution

(plan) P ′ since the symmetric solution can be evaluated from the current solution.

Algorithm 14 describe the OA algorithm using the symmetric-cut, which is an exten-

sion of Algorithm 12. In Algorithm 12, at each iteration, two cuts are generated at

the current solution ŷ and a neighbor point ỹ around the best solution (by comparing

f(ŷ) with f(ȳ)). In Algorithm 14, two cuts are additionally generated at the sym-

metric solution y′ and a neighbor point ỹ′ around the best solution (by comparing

f(y′) with f(ȳ)). Thus, in Algorithm 14, four cuts are added at each iteration.

The problem instance examined in numerical test so far is symmetric. Thus

we attempt to examine the effect of the symmetric cut in this instance. Since the

multi-cut utilizes the conditioning of the target movement, it violates the symmetry

property. Thus the symmetric cut is available in the algorithm using the single-cut

only.

Algorithm 14 (OA Algorithm with single/strong/relative/symmetric-cut).

Step 0. Set a relative optimality tolerance δ ≥ 0 and y(0) = 0. Solve the initial
problem L3 (described below Algorithm 12, and t′ = 1 for the problem
instance with 3 searchers) and set the solution as y(1).

Step 1. Calculate f(y(0)), f(y(1)), f(y(0) +4c,t)− f(y(0)) and f(y(1) +4c,t)−
f(y(1)) for ∀(c, t) (see (IV.4) and (IV.8)). Set lower bound q = 0, upper

bound q̄ = f(y(1)), ȳ = y(1), and k = 2.

Step 2. If the gap (q̄−q)/q ≤ δ, stop. Else, solve the master problem MP3(k)

(described above Algorithm 10), and obtain its optimal value z(k) and
optimal solution ŷ = y(k). If z(k) > q, then q = z(k).
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Figure 14. Symmetric environment where the symmetric-cut is available.

Step 3. Calculate f(y(k)) and f(y(k) + 4c,t) − f(y(k)) for ∀(c, t) (see (IV.4)
and (IV.8)).

Step 4. Obtain a neighbor point ỹ around the best solution by comparing
f(ŷ) with q̄ = f(ȳ). Replace k by k + 1. Set y(k) = ỹ.

Step 5. Calculate f(y(k)) and f(y(k) +4c,t)− f(y(k)) for ∀(c, t).
Step 6. For the solution ŷ, obtain the symmetric solution ŷ′. Replace k by

k + 1. Set y(k) = ŷ′.

Step 7. Calculate f(y(k)) and f(y(k) +4c,t)− f(y(k)) for ∀(c, t).
Step 8. Obtain a neighbor point ỹ′ around the best solution by comparing

f(ỹ′) with q̄ = f(ȳ). Replace k by k + 1. Set y(k) = ỹ′.

Step 9. Calculate f(y(k)) and f(y(k) +4c,t)− f(y(k)) for ∀(c, t).
Step 10. If f(ŷ) < q̄, then q̄ = f(ŷ) and ȳ = ŷ. Replace k by k + 1 and go to

Step 2.
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Table 23 reports the effect of the symmetric-cut as applied to the same problem

instance as in Table 22. Comparing with Algorithm 12 in Table 22, the relative gap

after one hour of calculations is reduced from 0.097 to 0.092. Both the lower and

upper bound are improved. Thus, among the OA algorithms using the single-cut,

Algorithm 14 is the best for this problem instance.

Time Algo. 14: Symmetric-cut
(min) LB UB Gap

10 0.512580 0.574371 0.121
20 0.514023 0.572793 0.114
30 0.515390 0.568628 0.103
40 0.515390 0.568628 0.103
50 0.515812 0.568628 0.102
60 0.516447 0.568628 0.101

Table 23. Numerical results for Algorithms 14 using symmetric-cut for every 10
minutes of calculations. The best known non-detection probability is 0.563472 same
as in Table 17.

We examined several OA algorithms in which the new cuts (multi-, strong-,

relative- and symmetric-cuts) are cumulatively applied. Specifically, Algorithm 13

(multi-cut) and Algorithm 14 (single-cut) perform best among the algorithms we

examined. For the problem instance (15 by 15 cells, time horizon 18 and 3 searchers)

with specific assumptions and parameters settings (e.g., identical detection rate and

symmetric situation, etc.), Algorithms 13 and 14 provide an approximate solution

with relative optimality gap about 10% after one hour of calculations. In Chapter

III, for the same problem instance (see Tables 15 and 16), the Cross-Entropy (CE)

heuristic provides a better solution 0.563472 (=1-0.436528) after 674.85 seconds. Thus

the CE heuristic performs better for this one-hour computational test, but, of course

the CE heuristic does not provide solution quality guarantees. Thus a hybrid method

using the CE heuristic and the OA algorithm is expected to be more effective: the

CE heuristic is initially applied to obtain a good initial feasible solution followed by

iterations of the OA algorithm. This dissertation does not pursue this hybrid scheme.
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3. Numerical Study of Three Searchers

In the previous subsection, we developed specific OA algorithms (i.e., Algo-

rithm 13 and Algorithm 14 among others) to solve the MHSP. For the moderately

sized problem instance (15 by 15 cells, time horizon 18 and 3 searchers) examined,

the OA algorithms provided a solution about 10% of the optimal solution in one hour.

We now examine the run time of Algorithm 13 on a more extensive set of problem

instances of somewhat smaller size. Results for Algorithm 14 is not presented, but

they are almost identical.

As problem instances, we consider the following five cases with three searchers

in which we apply the same assumptions and parameter settings as the problem

instance in the previous subsection, except for changing the area size and the time

horizon.

• case 1: 15 by 15 cells and time horizon 16

• case 2: 13 by 13 cells and time horizon 14

• case 3: 11 by 11 cells and time horizon 12

• case 4: 9 by 9 cells and time horizon 10

• case 5: 7 by 7 cells and time horizon 8

For each case, we run Algorithm 13 for two hours. Since the problem instances

are small, the master problems MP4(k) in Algorithm 13 are expected to be solved

quickly. Thus, we allow a smaller relative optimality tolerance ε(k) for the solver of

MP4(k). Specifically, we find empirically that the following simple rule works well:

set ε(k)= min{0.03,(q̄ − q)/(3q)}. In short, at each iteration, we use the optimality

tolerance 0.03, but apply one third of the latest gap (q̄ − q)/q after the gap has

dropped below 9%.

Table 24 reports the gaps at every ten minute during two-hours numerical tests

using Algorithm 13 on these five cases. Essentially all cases obtain solution within

5% of optimality within 20 minutes. The less the size of the problem instance is,
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the smaller gaps are achieved. Case 5 results in an essentially optimal solution after

two hours. After two hours, the lower and upper bounds in that case are 0.454141

and 0.455054, respectively. Thus Algorithm 13 is quite effective for these problem

instances and provides near-optimal solutions in reasonable computing times.

Time Gap
(min) case1 case2 case3 case4 case5

10 0.056 0.050 0.039 0.025 0.022
20 0.051 0.047 0.034 0.020 0.016
30 0.049 0.044 0.031 0.018 0.013
40 0.048 0.041 0.029 0.016 0.011
50 0.048 0.040 0.028 0.015 0.009
60 0.047 0.038 0.027 0.014 0.007
70 0.046 0.038 0.026 0.013 0.006
80 0.044 0.037 0.026 0.012 0.005
90 0.041 0.037 0.026 0.012 0.004

100 0.041 0.036 0.025 0.011 0.004
110 0.041 0.036 0.025 0.010 0.003
120 0.041 0.036 0.024 0.009 0.002

Table 24. Relative optimality gaps for Algorithm 13 applied three searcher problem
instances during two hours of calculations.

4. Application with Large Number of Searchers

This subsection considers the MHSP with more searchers, especially 5, 10, 15,

and 30 searchers. Conceptually, the OA algorithms can treat the HMSP with a large

number of searchers more easily than the Cross-Entropy (CE) heuristics since they

do not require the generation of specific network structures. Moreover, discussed and

demonstrated below, the OA algorithms actually may benefit from more searchers

as the continuous relaxation of the master problems may becomes stronger and thus

reduce the master problem solution times. In this subsection, we examine the effect

on the OA algorithms with respect to the number of searchers. For the computational

tests, we use the same problem instance (15 by 15 cells and time horizon 18) as in

the previous subsection 2, except we change the number of searchers. The other

assumptions and the parameter settings are identical except that: (i) The identical
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detection rate α is adjusted according to the number of searchers. For example, for the

case with 30 searchers, detection rate 0.1α is used to make the search effect equivalent

to the 3 searcher case (i.e., 3α = 30 · 0.1α). (ii) The optimality tolerance ε(k) for the

master problem solver is adjusted adaptively by setting ε(k)= min{0.03,(q̄− q)/(3q)}.
For the cases with a large number of searchers, the master problem (mixed-integer

program: MIP) becomes almost equivalent to the continuous relaxation of the MIP.

Thus, the master problem with small tolerance (e.g., 0.01) can be solved quickly thus

we do not need a large optimality tolerance (0.03). On the other hand, the MIP with

much smaller optimality tolerance (e.g., 0.001) is quite time-consuming to be solved.

(3) In the initial problem to find a good initial solution, the non-revisit constraint is

ignored since that constraint may be detrimental in situations with a large numbers

of searchers in a small and moderately sized areas.

We examine the following four cases are examined on the problem instance

with 15 by 15 cells and time horizon 18:

• case 1: 5 searchers

• case 2: 10 searchers

• case 3: 15 searchers

• case 4: 30 searchers

Since the number of searchers is fairly large, a continuous relaxation of the

MHSP becomes almost equivalent to the original integer MHSP problem. A con-

tinuous relaxation means that the integrality restriction in MHSP is relaxed, which

implies that the searchers can be “partitioned” arbitrarily. We denote the instances

corresponding to cases 1-4 with the continuous relaxation for cases 1r-4r.

For the computational tests, we use Algorithm 13 (multi-cut version) but

Algorithm 14 generates almost identical results. We refer to Algorithm 13 without

integer restrictions in the master problem for Algorithm 15. Clearly, Algorithm 15

may obtain non-integer solutions and thus a search plan that is not implementable.
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One way of obtaining an (integer) search plan from the non-integer solution is by

applying some rounding heuristic. However, we have not examined that approach to

obtain integer solutions from the continuous relaxation. Algorithm 15 does provide

a lower bound on the optimal value of MHSP as it solves a relaxation. We note that

gradient-descent methods may also solve the relaxed MHSP. However, we have not

pursued that avenue.

Tables 25 to 28 report the results of one-hour computational test for the case

with 5, 10, 15 and 30 searchers, respectively. For the cases with more than 5 searchers,

after one hour, Algorithm 13 provides quite good solutions with gaps at about 2%.

Even for 5 searchers, the gap is moderate about 5%. Algorithm 15 (continuous relax-

ation) gives non-detection probability (NDP) values close to those from Algorithm

13. Especially for the cases with large number of searchers (15, 30), the obtained

NDP values from Algorithms 13 and 15 are almost same.

Comparing with the lower bounds of Algorithms 13 and 15, we find that

Algorithm 15 provides larger lower bounds than Algorithms 13. Of course, the upper

bound from Algorithm 15 is not valid for MHSP. Algorithm 15 solves each iteration

more quickly than Algorithms 13 since it solves continuous relaxation problems. Thus,

Algorithm 15 generates many more cuts and brings up the lower bound quickly. Thus,

if the allowed calculation time is small, a hybrid method using Algorithms 13 and

15 may be better. For example, Algorithm 15 (continuous relaxation) is initially

implemented for some period to push up the lower bound quickly by generating

many cuts, and later Algorithm 13 is implemented to provide a good (integer) search

plan. We note the Algorithm 13 with many cuts takes much run time. Thus, this

hybrid approach may be extremely inefficient when Algorithm 15 has generated too

many “weak” cuts before Algorithm 13 starts. We examined this hybrid approach for

several cases, but found it generally to be an inferior approach for this reason.
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Time Algo. 13: case 1 Algo. 15: case 1r
(min) LB UB Gap LB UB Gap

10 0.505386 0.554756 0.098 0.506761 0.547174 0.080
20 0.514396 0.546065 0.062 0.518175 0.538696 0.040
30 0.516137 0.546065 0.058 0.521317 0.535791 0.028
40 0.518325 0.546065 0.054 0.523267 0.534307 0.021
50 0.518325 0.546065 0.054 0.524436 0.533078 0.016
60 0.518810 0.546065 0.053 0.525279 0.532586 0.014

Table 25. Numerical results for Algorithms 13 and 15 for the case with 5 searchers
for every 10 minutes of calculations.

Time Algo. 13: case2 Algo. 15: case2r
(min) LB UB Gap LB UB Gap

10 0.501388 0.549834 0.097 0.506429 0.546805 0.080
20 0.511533 0.541721 0.059 0.518083 0.538787 0.040
30 0.518910 0.535177 0.031 0.521340 0.535598 0.027
40 0.520400 0.535177 0.028 0.523113 0.534203 0.021
50 0.521077 0.535081 0.027 0.524351 0.533240 0.017
60 0.522048 0.533785 0.022 0.525165 0.532440 0.014

Table 26. Numerical results for Algorithms 13 and 15 for the case with 10 searchers
for every 10 minutes of calculations.

Time Algo. 13: case3 Algo. 15: case3r
(min) LB UB Gap LB UB Gap

10 0.495162 0.553566 0.118 0.507577 0.546699 0.077
20 0.511244 0.540650 0.058 0.517370 0.538297 0.040
30 0.517330 0.537061 0.038 0.520760 0.536154 0.030
40 0.519869 0.535204 0.029 0.522931 0.534244 0.022
50 0.521624 0.534385 0.024 0.524083 0.533416 0.018
60 0.523123 0.533276 0.019 0.524873 0.532910 0.015

Table 27. Numerical results for Algorithms 13 and 15 for the case with 15 searchers
for every 10 minutes of calculations.
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Time Algo. 13: case4 Algo. 15: case4r
(min) LB UB Gap LB UB Gap

10 0.487626 0.555553 0.139 0.508092 0.542999 0.069
20 0.505637 0.542030 0.072 0.518134 0.538112 0.039
30 0.513595 0.538593 0.049 0.521319 0.535204 0.027
40 0.516808 0.537237 0.040 0.523258 0.533536 0.020
50 0.520377 0.534938 0.028 0.524341 0.533536 0.018
60 0.522040 0.533946 0.023 0.524980 0.532239 0.014

Table 28. Numerical results for Algorithms 13 and 15 for the case with 30 searchers
for every 10 minutes of calculations.
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V. CONCLUSIONS AND FUTURE

RESEARCH

A. CONCLUSIONS

This dissertation develops models and solution methodologies to solve the

discrete-time path-optimization problems for single and multiple searchers looking

for a non-evading moving target in a finite set of cells. We especially focus on the

following problems:

• Single searcher problem (SSP) with additional resource constraints related to
risk exposure to threats and fuel consumption (RSSP)

• SSP for multiple searchers (MSP)

• MSP for multiple homogeneous searchers (MHSP)

The dissertation starts by formulating RSSP, which generalizes existing models of the

SSP by considering (i) history-dependent glimpse detection probability, (ii) multiple

altitudes for the searcher, and (iii) multiple constraints on “consumption” of resources

such as time, fuel, and risk.

We develop a specialized branch-and-bound (B/B) algorithm for solving RSSP

and propose a new bound (Lagrangian directional static bound) on the optimal de-

tection probability using network expansion to account for a portion of the history

of the current path and using a Lagrangian relaxation to eliminate resource con-

straints. We also derive a series of network reduction procedures that tighten the

Lagrangian relaxation and reduce the amount of path enumeration required by the

B/B algorithm.

In direct comparison with a state-of-the-art algorithm for SSP, the proposed

bound and network reduction procedures reduce the run times by at least one order

of magnitude. For RSSP with time, fuel, and risk constraints, as well as two altitudes,

our B/B algorithm solves problem instances with 10 by 10 cells and a time horizon

of 40 typically within 20 minutes.
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We develop a B/B algorithm and two heuristics (the static bound heuristic

and the cross-entropy (CE) heuristic) to solve MSP. Among these algorithms, the CE

heuristic performs better for a broad range of problem instances.

We also focus on MHSP and develop an exact outer approximation (OA)

algorithms using several novel cutting planes (multi-cut, strong-cut, relative-cut, and

symmetric-cut). In empirical studies, this algorithm provides search plans that are

guaranteed to be within 5% of an optimal plan in less than about 20 minutes for

problem instances involving 15 by 15 cells, 3 searchers, and a time horizon of 16.

Instances with 5 searchers are solved even faster. In addition, we prove that under

certain assumptions the nonlinear multiple homogenous searcher problem is equivalent

to a large-scale linear mixed-integer program.

B. FUTURE RESEARCH

The CE heuristic appears to quickly generate a good feasible solution for MSP.

However, it does not guarantee solution quality. A possible future area of research

would be to develop a hybrid algorithm that uses the CE heuristic to generate an

initial feasible solution for an OA algorithm. Currently we implement the CE heuristic

using C++ and execute the OA algorithms using GAMS with the CPLEX solver. The

development of an integrated computational program is worthy to effectively solve the

MSP/MHSP. Furthermore, an improved implementation of the OA algorithms outside

GAMS may reduce cut generation time and prove worthwhile.

This dissertation does not consider the multiple searcher problem with resource

constraints (MRSP). In practical applications, the mission planner would like to find

an optimal search plan for multiple “resource-constrained” searchers. A combined

approach of the RSSP algorithm (Lagrangian directional static bound) with the MSP

algorithm (CE heuristic) could be developed for this purpose. For example, such

an approach is applicable for the case where the multiple searchers start the search

operation all at the same time and finish their mission at the same time.
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