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ABSTRACT 

An ensemble consisting of 150 Ziphius cavirostris vocalizations was compiled 

from acoustic data recorded at two High-frequency Acoustic Recording Package (HARP) 

locations: the Naval Postgraduate School (NPS)’s Point Sur HARP and Scripps 

Institution of Oceanography (SIO)’s site H HARP.  The ensemble was analyzed via a 

principal component analysis (PCA).  The results of the PCA verified the statistical 

robustness of the signal and yielded one dominant mode which accounted for 73% of the 

variance.  The dominant mode was used to create a kernel for a matched filter detection 

scheme.  The subsequent detector output was statistically evaluated against a ground 

truth.  The ground truth identified 28,434 Ziphius clicks by visually inspecting over 170 

minutes of data recorded by NPS’s Data Acquisition System (DAS) at the Southern 

California Offshore Range (SCORE).  The inability to visually discriminate a signal 

embedded in noise created a conservatively biased ground truth estimate which increased 

the detector’s false alarm rate.  At an acceptable 0.1% false alarm rate, the detector had 

an overall 44% probability of detection.  A further assessment of the detector’s 

performance divided the data into two categories: cluttered and uncluttered.  At a false 

alarm rate of 0.1%, the probability of detection was 26% and 61%, respectively. 
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I. INTRODUCTION 

A. BACKGROUND 

In an ongoing legal dispute with the National Resources Defense Council 

(NRDC), the U.S. District Court for the Central District of California has imposed 

restrictions which consequently affect the Navy’s ability to operate Mid-Frequency 

Active (MFA) sonar.  MFA sonar has been operated for over 60 years and is the primary 

method to localize submarines (Hastings, 2008).  These legal implications impede the 

combat proficiency and advancement of the U.S. Navy’s Pacific Fleet’s top priority: anti-

submarine warfare (ASW).  On January 23, 2007, under Title 16, Section 1371(f) of the 

U.S. Code, the Deputy Secretary of Defense invoked a two-year National Defense 

Exemption (NDE) under the Marine Mammal Protection Act (MMPA) which includes 29 

mitigation measures. These 29 mitigation measures were developed along with the 

National Marine Fisheries Service (NMFS) to reduce the potential impacts of MFA sonar 

on marine mammals through increased aerial monitoring and visual surveying (Federal 

Register, 2008). 

Recent mass stranding incidents involving beaked whales, both temporally and 

geographically coincident with naval emissions of underwater sound, coupled with these 

high-profile legal ramifications have increased the need for more effective methods of 

detection and classification.  Cuvier’s beaked whales (Ziphius cavirostris) are among 

those of greatest concern with respect to curtailing the potential effects from 

anthropogenic sound (Zimmer et al., 2005; Cox et al., 2006).  Since 1960, more than 40 

mass strandings of Cuvier’s beaked whales have been reported worldwide (Cox et al., 

2006).  This species, alone, comprises over 80 percent of all marine mammals involved in 

stranding incidents (Hildebrand, 2005).  Further amplifying the issue, research and 

knowledge of this species is severely limited.  Cuvier’s beaked whales are difficult to 

study and identify via traditional visual surveying techniques due to the nature of their 

lengthy deep-diving behavioral pattern, typically spending up to 40 minutes beneath the 
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surface of the water for a single dive (Barlow et al., 2006).  Cuvier’s beaked whales 

spend less than 3 minutes at the surface between dives, leaving not much time for visual 

identification (Barlow, 1999).  This species has also been observed to surface without any 

visible blow or splash (Ferguson et al., 2006).  In an experiment utilizing acoustic 

recording tags (DTAGs) attached to a Cuvier’s beaked whale, the average depth recorded 

during a deep diving period was approximately 850m, with vocalizations ceasing when 

the whale was within 200 meters of the surface (Johnson et al., 2004; Tyack et al., 2006). 

The accuracy of visual identification is further limited by many additional factors 

including: sea state, visibility, daylight, and the individual observer’s experience level 

and biases.  The development of an automated passive acoustic detector would provide 

the U.S. Navy with the capacity to observe this species’ presence and movement under 

conditions not appropriate for visual surveys.  Furthermore, passive acoustic techniques 

are more cost-effective, require less underway time, allow for continuous monitoring, and 

could provide information on seasonal and diurnal population patterns. 

B. THESIS OBJECTIVES 

There are two primary objectives for this thesis.  The first objective is to develop 

a kernel for the vocalizations of Cuvier’s beaked whales.  This will be achieved by 

conducting a principal component analysis (PCA) upon an ensemble of extracted Ziphius 

clicks.  The kernel will then be used in an automated passive acoustic matched filter 

detection scheme.   

The second objective of this thesis is to assess the performance of the automated 

passive acoustic detector.  This will be achieved by first creating a ground truth count of 

Ziphius vocalizations.  Then, Receiver Operating Characteristic (ROC) curves portraying 

the detector’s performance will be constructed via a statistical comparison of the ground 

truth to the detector output. 
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C. OUTLINE 

The remainder of this thesis consists of three chapters.  Chapter II describes the 

methods used to achieve the two primary objectives.  To create the kernel, a principal 

component analysis was conducted upon an ensemble comprised of 150 randomly 

selected Cuvier’s beaked whale vocalizations.  To assess the detector’s performance, a 

ground truth was created by visually reviewing 174.8 minutes of the Naval Postgraduate 

School (NPS)’s Data Acquisition System (DAS) recordings for the Southern California 

Offshore Range (SCORE) and identifying 28,434 occurrences of a Ziphius click.  Chapter 

III contains the ROC curves and a discussion of the automated passive acoustic detector’s 

performance relative to the ground truth.  Chapter IV presents the conclusions of this 

thesis. 
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II. METHODOLOGY  

A. KERNEL DEVELOPMENT 

1. Signal Characterization 

A characterization of the Ziphius signal, derived via recent research results, 

initiated the kernel developmental process.  Although some odontocetes, toothed whales, 

produce clicks and whistles during vocalization, Cuvier’s beaked whales are known only 

to click (Hildebrand, 2005).  Recent research suggest the clicks of Cuvier’s beaked 

whales exhibit a unique spectral and temporal structure that differs significantly from the 

recordings of other non-ziphid toothed whales.  A unique signal is favorable for 

automated acoustic monitoring.   

In September of 2003, research conducted by attaching a digital acoustic 

recording tag (DTAG) directly to a whale reported a click duration of 175 µs with an 

interclick interval (ICI) of 0.4 seconds.  The spectrum swept upwards from 30 to 48 kHz 

(Johnson et al., 2004).  One year later, NATO Undersea Research Center (NURC) and 

Woods Hole Oceanographic Institution (WHOI) collaborated in a concentrated attempt to 

build upon the sparse knowledge of Cuvier’s beaked whales.  Their research found a 

click duration of 200 µs and an average ICI of 0.4 seconds.  The spectrum was frequency 

modulated (FM) and swept upwards from 35 to 45 kHz (Zimmer et al., 2005).  However, 

it should be noted that both of these studies used acoustic recording devices with a cutoff 

frequency of 48 kHz; and hence, no information is provided for the higher frequency 

limit of click energy. Consequently, the click durations are shortened and the bandwidths 

are narrowed. 

On September 26, 2005, further research by NURC, utilizing a towed array, 

reinforced and expanded upon the DTAG Ziphius signal characterization.  This recording 

method was able to capture the entire bandwidth of the signal.  A Passive Acoustic 

Monitoring (PAM) system with a bandwidth of 96 kHz was activated after a visual 
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sighting of two Cuvier’s beaked whales initiating a deep dive.  The PAM recordings 

depicted an upswept energy range of 16 to 60 kHz with a center frequency of 40 kHz.  

The click duration was approximately 300 µs with an average ICI of 0.38 s (Pavan et al., 

2006).  These results mark the first time a sub-surface detection device was able to verify 

characteristic features of the DTAG recordings.  The increase in the signal’s duration and 

bandwidth is explained by the increased bandwidth of the recording method. 

Additional DTAG research indicates significant differences in signal 

characteristics between Cuvier’s beaked whales and other toothed whales.  The Ziphius 

signal was characterized by an upswept FM pulse, an average click duration of 200 to 

300 µs, and an ICI of 0.4 s (Tyack et al., 2006).  Overall, recent research indicates a 

unique signal structure that is favorable for automated acoustic detection. 

2. Ensemble Creation 

Designed specifically to monitor marine mammals, the High-frequency Acoustic 

Recording Package (HARP) was developed by the Scripps Institute of Oceanography 

(SIO).  The HARP, which is capable of a 200 kHz sampling rate and nearly 2 TB of data 

storage per instrument deployment, is ideal for recording Ziphius’s higher frequency 

clicks over long periods of time.  For recordings made at a sampling rate of 200 kHz, 55 

days of continuous recording is possible (Wiggins and Hildebrand, 2007).  To study the 

signals of Cuvier’s beaked whales, long-term, broad-band, underwater acoustic data 

recorded via a HARP, was obtained from two different locations with known Ziphius 

activity: Point Sur and San Nicolas basin.  The NPS Point Sur HARP is moored at: 36 

17.95´ N, 122 23.63´ W, approximately 40 km off the central coast of California at a 

water depth of 1390 meters.  Acoustic data recorded during the NPS Point Sur HARP’s 

second deployment, which spanned from 24JAN07 until 17JUL07, comprised one half of 

the data that was used in the ensemble creation.  SIO provided data, spanning from 

22AUG07 to 24AUG07, from their Site H HARP, located just east of the San Nicholas 

Basin at a depth of 1013 meters. 
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To evaluate the statistical robustness of the signal, two ensembles were randomly 

extracted from the HARP data sets: one a compilation of Ziphius clicks, the second a 

compilation of ambient noise segments.  The click ensemble will be used to generate a 

kernel which contains the statistically dominant characteristics of the signal. The noise 

ensemble will duplicate the statistical analyses performed on the click ensemble to ensure 

that the ambient noise is not correlated.  Triton software, courtesy of Wiggins (personal 

communication), was used to visually inspect the data and extract 150 random 

vocalizations, following the qualitative characterizations of the Ziphius click from 

previous research.  The total ensemble of clicks consisted of 75 samples from each 

HARP location.  An example of one click extraction from each location is shown in 

Figure 1.  The 100 sample ensemble of random ambient noise segments consisted of 50 

noise segments from each HARP dataset. 

 

Figure 1.   Two examples of Ziphius clicks extracted from HARP data:  a) Spectrogram 
of a click extracted from NPS’s Point Sur HARP with click energy upsweeping 
from 35 to 50 kHz.  b) Time series of a click corresponding to the spectrogram 

above it.  c) Spectrogram of a click extracted from SIO’s Site H HARP with click 
energy upsweeping from 35 to 50 kHz.  (d) Time series of a click corresponding 

to the spectrogram above it 
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Although both ensembles were created solely from HARP data, the subsequent 

analyses had to account for the bandwidth and sampling frequency differences between a 

HARP and a SCORE hydrophone in order to produce results that would be applicable for 

data from either acoustic recording method.  A SCORE hydrophone has a band-pass filter 

installed which limits the frequency response to a bandwidth of 8-40 kHz.  At the time of 

the data collection, the sampling rate of the SCORE hydrophone was set at 80 kHz; 

whereas, the HARP was set at 200 kHz.  To ensure consistency between recording 

methods, the ensembles were processed into two distinct sub-sets. 

In order make the ensembles applicable to a SCORE hydrophone, the first step 

was to decrease the sampling rate from 200 kHz to 80 kHz.  To ensure the bandwidth was 

consistent with a SCORE hydrophone, a band-pass filter with pass bands of 15-40 kHz 

and was applied to the ensemble.  Fifteen kHz was used as the lower pass band to 

eliminate noise that existed at frequencies lower than the Ziphius signal.  The sampling 

rate of the ensembles was then increased to a sampling frequency of 1 MHz, to increase 

the resolution and decrease the potential for correlation quantization errors.  For clarity, 

this first sub-set will be referred to as the ensembles that were band-pass filtered between 

15-40 kHz. 

The ensembles were also processed for applicability to HARP data in a second 

sub-set.  Both ensembles were band passed between15-60 kHz to eliminate noise at 

frequencies lower than the Ziphius signal.  The higher pass band of 60 kHz allows for the 

inclusion of more high-frequency click energy.  As in the first sub-set, the sampling 

frequency was increased for the click and noise segment ensembles to a rate of 1MHz.  

This second sub-set will be referred to as the ensembles that were band-pass filtered 

between 15-60 kHz. 

3. Quantitative Signal Evaluation 

A correlation analysis was performed on both sub-sets of ensembles to assess the 

statistical robustness of the Ziphius signal and evaluate the feasibility for the development 

of an automated detector.  First, the 150 samples of both click ensembles were demeaned, 
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normalized, and aligned via circular shifting.  For both sub-sets of click ensembles, the 

click to click cross-correlation results indicated a statistically high level of correlation 

among the samples.  Figure 2 depicts the values for the 150 click to click cross-

correlations for the click ensemble that was band-pass filtered between 15-40 kHz.  These 

results indicate that the signal is statistically robust.  A cross-correlation was also 

performed on each sub-set’s ensemble of random noise segments to ensure that the noise 

was not correlated.  For both of the sub-set’s noise segment ensembles, the noise to noise 

cross-correlation results indicated a statistically low level of correlation among the 

samples.   

 

 

Figure 2.   Click to click cross-correlation results for the click ensemble that was band-
pass filtered between 15-40 kHz: The correlation values range from 0 to 1, with a 

value of 1 indicating a perfect correlation.   
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4. Principal Component Analysis 

Once the signal was determined to be quantitatively robust, both sub-sets of click 

ensembles were analyzed via a principal component analysis (PCA) to further evaluate 

the potential for a matched filter detection scheme.  The goal of the PCA is to isolate the 

desired signal from the noise.  A PCA is a useful statistical technique that was invented in 

1901 by Karl Pearson.  PCA is defined as an orthogonal linear transformation that 

converts data into a new coordinate system such that the greatest variance of the data 

comes to lie on the first coordinate, often referred to as the principal component (Shaw, 

2003).  The second variance ranking lies on the second coordinate, the third variance 

ranking lies on the third coordinate, and so on.  This method of decompressing the data 

makes it possible to retain the characteristics of the signal that contribute most to its 

variance by keeping the components with the highest variance and ignoring the 

components with the least amount of variance. 

Mathematically, the principal component can be obtained by solving the 

following eigenvalue-eigenvector equation: 

A AT  Vi  =  l2
i  

 Vi   (1) 

where, A is a data matrix with 150 columns, and each column contains one realization of 

a realigned click from the ensemble.  A AT is the data covariance matrix.  l2
i
 is the 

eigenvalue which is the variance resolved by the ith component, Vi.   

The PCA was performed via a Matlab routine to yield the components and the 

associated variances.  For the click ensemble that was band-pass filtered between 15-40 

kHz, the PCA’s first component contained 73% of the variance.  The remaining 

components all had values of less than 6% and correspond to noise including multipath 

contamination.  The results of this PCA indicate that there is only one dominant 

component.  The results of the PCA for the first sub-set are shown in Figure 3.   
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Figure 3.   Principal component analysis results for the click ensemble that was band-
pass filtered between 15-40 kHz:  The dominant component is emphasized with a 

red circle and contains 73% of the variance.   

The second sub-set, which was band-pass filtered between 15 and 60 kHz, also 

produces only one dominant component.  The first component of the second subset’s 

PCA contains 66% of the variance.  The remaining components correspond to noise 

including multipath contamination.  Both PCAs indicate that the first component can be 

used as a kernel in a matched-filter detection scheme.  The first components of each 

subset’s PCA were extracted to be used as kernels, shown in Figure 4.  The first subset’s 

kernel is noticeably shorter in duration than that of the second sub-set.  This is because it 

was created from a click ensemble with a narrower bandwidth, 15-40 kHz vice 15-60 

kHz; and therefore, some of the higher frequency click energy was excluded.  The 

variance of the first sub-set’s kernel is also higher, 73% in comparison to 66% of the 

second sub-set’s kernel.  This is because the first sub-set was created from a narrower 

bandwidth; therefore, there was less in-band noise. 
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Figure 4.   Kernels developed for use in a matched-filter detection scheme:  a) Kernel 
created from the PCA of the click ensemble that was band-pass filtered between 

15-40 kHz can be used as a kernel with SCORE hydrophone data.  b) Kernel 
created from the PCA of the click ensemble that was band-pass filtered between 

15-60 kHz can be used as a kernel with HARP data. 

This thesis does not utilize or assess the kernel created from the second sub-set of 

data that was band-pass filtered between 15-60 kHz.  Follow-on research would be 

valuable in assessing the performance of this kernel in a matched-filter detection scheme 

for comparison to the performance of the first sub-set’s kernel.  From this point forward, 

all references to a kernel are with respect to the first sub-set of data that was band-pass 

filtered between 15-40 kHz. 

One final analysis was performed to further investigate the robustness of the 

Ziphius click and evaluate the performance of the kernel on the click ensemble: a cross-

correlation of the kernel to the entire click ensemble.  This cross-correlation is shown in 

Figure 5.  The majority of the clicks within the ensemble are highly correlated to the 

kernel.  The cross-correlation of the kernel to click 51 produces a high correlation value 

with only one dominant arrival and represents minimal multipath effects.  However, it 

should be noted that a few of the clicks have a lower cross-correlation coefficient.  For 
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example, click 98 is not as highly correlated to the kernel.  This particular cross-

correlation example clearly indicates multiple peaks which can be attributed to multipath 

effects.  The normalization of the signal in the presence of multipath arrivals is 

responsible for decreasing the correlation coefficient. Without normalization, the peak 

correlation value for this particular example would be consistent with the higher values of 

the other cases.  Overall, the results of the kernel to click ensemble cross-correlation are 

further evidence that the Ziphius click is a robust signal, and signifies that a kernel can 

feasibly be used in a matched-filter detection scheme. 

A cross-correlation of the kernel to the noise segment ensemble was also 

performed.  All of the noise segments were poorly correlated to the kernel.  This is an 

expected result and verifies that the high correlation coefficients of the kernel to click 

ensemble are not a coincidence. 

 

 
 

Figure 5.   Cross-Correlation of the Kernel to the Click Ensemble:  a) A majority of the 
correlation coefficients indicate that the kernel is highly correlated to the clicks of 
the ensemble.  b) Click 51 is highly correlated to the kernel.  c) Click 98 is poorly 

correlated to the kernel. 
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B. AUTOMATED MATCHED FILTER DETECTOR SCHEME 

The statistically dominant first component produced via the PCA can be used as a 

kernel in a matched filter detection scheme.  The kernel was cross-correlated with 

acoustic data obtained from NPS’s Data Acquisition System (DAS) recordings at 

SCORE, using a matched filter detector designed by Chris Miller (personal 

communication) of NPS’s Ocean Acoustic Laboratory (OAL).  The SCORE data that was 

fed into this detector came from a hydrophone at a depth of 1,497 meters and located at 

32 50.62´ N, 119 5.26´ W in the San Nicolas Basin.  

The automated passive acoustic matched-filter detection schematic is portrayed in 

Figure 6.  The first step in Miller’s detector was to cross-correlate the kernel with the 

SCORE data.  Then, the output of this first box was peak picked above a given threshold.  

The final box of Miller’s detector utilized a rank-ordered culling system with a culling 

window of +/- 390 µs.  The culling window size of +/- 390 µs was selected because it is 

exactly twice the length of the kernel.  This step removes a majority of the multipath 

effects as well as the side lobes that were introduced by the correlation and the sinusoidal 

nature of the detector kernel.  Removing the side lobes by culling the data cleans up the 

output and significantly reduces the number of false alarms.   

 

Figure 6.   Automated passive acoustic matched filter detection schematic: The design 
and development of the detector are courtesy of Miller (personal communication). 
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C. GROUND TRUTH CREATION 

1. Selection Criteria  

To evaluate the performance of the detector, the detector output must be 

compared to an assumed ground truth.  The ground truth was created by visually 

inspecting SCORE data and annotating each instance of an observed Ziphius click.  174.8 

minutes of acoustic data recorded on 23FEB08 by a SCORE hydrophone was reviewed in 

the ground truth creation process.  The duration of a Ziphius signal is less than 400 µs; 

therefore, the time scale used to visually review the SCORE data was divided into 12,800 

smaller segments, each with a length of 0.82 s.  The final log of presumably positive 

Ziphius vocalizations was then used to statistically analyze the automated detector’s 

performance via probabilistic means comparing hits, false alarms, and misses at varying 

threshold levels. 

The ground truth creation proved to be the most arduous and time-consuming 

aspect of this research.  Even at a decreased time scale, the certainty of the ground truth 

remained dependant upon discernment.  An initial ground truth was deliberately 

discarded; because, as the ground truth creation process progressed, the experience level 

and the signal discrimination improved and unacceptable inconsistencies became 

inherent.   

The successive ground truth creation process incorporated specific criteria to 

alleviate subjectivity.  The first criterion mandated that a click selected for inclusion in 

the ground truth must have continuous energy between 22.5 and 35 kHz.  This standard 

was adopted under the notion of continuous eye integration, meaning the eye has the 

ability to visually connect miniscule gaps within the click energy of the spectrogram.  If 

the first condition was not met, the second criterion directed ground truth inclusion if a 

click was part of a distinctive click train, consisting of regular, repeated clicks with a 

constant ICI.  Figure 7 exemplifies an instance in which the energy criterion was not met; 

however, a distinctive click train was present.  Thus, the clicks not spanning 22.5 to 35 

kHz were still included in the ground truth having met the second criterion.  The energy 
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criterion is visibly enhanced with the overlaying of two solid black lines on the 

spectrogram.  The dashed blue lines on the spectrogram and the blue stars on the time 

series indicate identified clicks.  The final criterion established that only one click would 

be selected in the case of a cluster.  A cluster consisted of multiple clicks that were 

visually indistinguishable from one another at the prescribed time scale.  These subjective 

criteria allowed for the creation of a more objective ground truth.  In total, 28,434 clicks 

were identified in the 174.8 minutes of data that was reviewed. 

 

 

Figure 7.   Ground truth creation example:  The upper panel is a spectrogram, and within 
it the energy criterion is exemplified by the solid black lines spanning 22.5 - 35 
kHz.  The lower panel is the corresponding time series of the SCORE data.  The 

click energy does not span the entire width of the energy criterion; however, there 
is a distinctive click train.  The dashed blue lines on the upper panel and 

corresponding blue stars on the lower panel represent the identification of a click 
utilizing the second criterion, which directs the selection of a click if it is part of 
distinct click train.  This is also an example of a time period where the Ziphius 

click was able to be distinguished among competing signals.  Time periods such 
as this were designated as “clutter” for the subsequent statistical analysis. 
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2. Statistical Analysis Exclusions 

The eventual detector output was biased with respect to the ground truth creation.  

The acoustic signatures of other marine mammals occur approximately within the same 

frequency range as that of a Cuvier’s beaked whale.  Figure 8 (National Resources 

Council, 2003) depicts these overlapping frequency ranges of vocalizations.  Visual 

surveys conducted from July 2006 to April 2007 identified several of these species of 

marine mammals with overlapping vocalization frequencies in the SCORE.  In addition 

to Cuvier’s beaked whales: Risso’s dolphins, Pacific white-sided dolphins, Sperm 

whales, Orcas, Baird’s beaked whales, False killer whales, and Humpback whales have 

all been found in the SCORE (Hildebrand, 2007). 

 

 

Figure 8.   Representative vocalizations of marine mammals (National Resources 
Council, 2003):  Tonal vocalizations are plotted in red; impulsive vocalizations 

are plotted in blue.  The thicker lines represent frequencies near maximum energy 
and the thinner lines indicate the total range of frequencies.  The numbers above 

the line indicate measured source levels in dB re µPA at 1m.   
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The overlapping frequency ranges of other marine mammals and Cuvier’s 

vocalizations create uncertainty within the ground truth.  To diminish this uncertainty, the 

time periods containing such indiscriminant signals were purposefully excluded from the 

subsequent statistical analysis.  Similarly, time periods in which the data recordings were 

interrupted and/or turned off were also eliminated.  Figure 9 is an example of a time 

period that was deliberately removed from the ground truth due to its indistinguishable 

clutter.  A total of 28.89 minutes were selected to be excluded from the statistical 

analysis.  

 

 

Figure 9.   Ground truth exclusion due to indistinguishable clutter:  The upper panel is a 
spectrogram and the lower panel is the corresponding time series for the data that 
was reviewed to create the ground truth.  This is an example where the signal was 

indistinguishable due to the presence of other marine mammals’ vocalizations.  
Time periods such as these were excluded from the statistical analysis because the 

Ziphius signal could not be visually distinguished from amongst the clutter. 
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3. Clutter Categories 

To further remove uncertainty from the remaining ground truth, a sub-category 

consisting of un-excluded clutter was created.  This category consists of time periods 

wherein significant clutter was present; however it differs from the previously discussed 

excluded clutter because in this instance the Ziphius signal remained discernable.  By 

distinguishing the cluttered time periods from the non-cluttered time-periods, two distinct 

sets of statistics were able to be generated for the detector performance analysis.  Figure 7 

is an example where competing signals were present; yet, the Ziphius signal was still able 

to be distinguished among the clutter.  A total of 20.83 minutes were designated as un-

excluded clutter. 

4. Interclick Interval 

During the creation of the ground truth, an unexpected observation was made with 

respect to the ICI.  Previous research has cited an ICI of approximately 0.4 s for Cuvier’s 

beaked whales (Johnson et al, 2004, Zimmer et al, 2005, Pavan et al., 2006, Tyack et al, 

2006).  The data inspected to create the ground truth consistently displayed Ziphius 

vocalizations with a discernable ICI of approximately 0.05 s.  A possible explanation for 

this striking difference could be that these are different animals vocalizing intermittently.  

It is also possible that these are not Cuvier’s beaked whales.  However, the average 0.05 s 

to 0.1 s ICI appears to be regular and is repeated constantly throughout the dataset.  

Figure 10 depicts one of these time periods within the ground truth with a distinctive and 

regular ICI.  This particular example has an ICI of 0.05 s which is not an uncommon 

observation.  The order of magnitude difference between the referenced literature and 

these observations was unexpected.  Further exploration of the ICI dynamics is tangential 

and beyond the scope of this research.   
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Figure 10.   Ground truth example with a distinct 0.05 s ICI:  The upper panel is a 
spectrogram and the lower panel is the corresponding time series of the data that 

was reviewed to create the ground truth.  The solid black lines on the spectrogram 
at 22.5 and 35 kHz are representative of the ground truth’s energy criterion.  The 

dashed blue lines on the spectrogram and blue stars on the time series are 
representative of click identifications.  This figure depicts an ICI of 0.05 s.  
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III. DETECTOR PERFORMANCE RESULTS  

The performance of the automated passive acoustic matched-filter detector was 

assessed by statistically comparing the detector’s output to the ground truth.  A detector 

output hit that corresponded to a ground truth click identification was a correct hit.  A 

detector output hit that did not correspond to a ground truth click identification was a 

false alarm.  A ground truth click identification that did not have an associated detector 

output hit was a miss.  A correct rejection occurred when there were no detector output 

hits and no ground truth click identifications.  Probabilities of detection (P(D)) and 

probabilities of false alarms (P(FA)) were calculated by the following equations:  

HP(D)=
H+M

  (2) 

FAP(FA)=
FA+CR

 (3) 

where, H is the number of correct hits, FA is the number of false alarms, M is the number 

of misses, and CR is the number of correct rejections.   

By calculating the P(D) and P(FA) at varying threshold levels, Receiver 

Operating Characteristic (ROC) curves were created.  The ROC curves are shown in 

Figure 11.  Table 1 displays the detector performance results at varying thresholds which 

were used to create the ROC curves.  At an acceptable P(FA) of 0.1%, the automated 

passive acoustic matched-filter detector had an overall P(D) of 44%.  The P(D) increased 

as the threshold was lowered; however, this detection improvement also increased the 

P(FA).  The tradeoff between P(D) and P(FA) is an important factor to consider when 

utilizing the detector.  The category of data being processed by the detector also affected 

the P(D) and P(FA) rate.  As described in the previous chapter, the data was separated 

into two distinct categories for further detector assessment.  At an acceptable P(FA) of  
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0.1%: the detector had a P(D) of 61% and 26% in uncluttered and cluttered data, 

respectively.  The detector had a lower P(FA) when processing the uncluttered data in 

comparison to the cluttered data.  

ROC curves
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Figure 11.   ROC curves to assess the detector’s performance: The orange curve is the 
overall performance of the detector, combining both the uncluttered and cluttered 

time periods.  The detector performed best during the uncluttered time periods, 
shown by the green line.  The detector performance was degraded during the 

cluttered time periods, shown by the blue line. 

 
DETECTOR PERFORMANCE RESULTS 

  UNCLUTTERED CLUTTERED COMBINED 
THRESHOLD P(D) P(FA) P(D) P(FA) P(D) P(FA) 

5.00E-04 86.0815% 0.6355% 92.1336% 8.8121% 89.6917% 1.8614% 
1.00E-03 79.1634% 0.3016% 90.3412% 5.7345% 85.8094% 1.1161% 
1.25E-03 66.7453% 0.1314% 86.7028% 3.2769% 78.6127% 0.6030% 
1.50E-03 55.2777% 0.0703% 80.7665% 2.0337% 70.4451% 0.3646% 
1.75E-03 46.2646% 0.0416% 74.0090% 1.3750% 62.7993% 0.2415% 
2.00E-03 39.0050% 0.0259% 67.9076% 0.9926% 56.2827% 0.1709% 
3.00E-03 20.1885% 0.0059% 49.4160% 0.3792% 37.7543% 0.0619% 
5.00E-03 7.4456% 0.0010% 26.3202% 0.0996% 19.0952% 0.0158% 

Table 1.   Automated passive acoustic matched-filter detector performance results for the 
uncluttered, cluttered, and combined time periods. 
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Figure 12 is an example of a cluttered time period.  The detector output statistics 

are depicted for two different threshold levels, which are accentuated with a horizontal 

orange line in the middle and bottom panels.  The dashed blue lines on the spectrograms 

indicate the location of the ground truth selections.  When the threshold level is set at 

0.005, as in the middle panel of Figure 12, the number of false alarms, even in a cluttered 

time period is acceptably low.  The detector does hit on several of the ground truths; 

however, at this threshold the detector misses even more Ziphius clicks than it correctly 

detects. When the threshold is lowered by an order of magnitude, as in the bottom panel, 

the detector is able to accurately hit each of the ground truths with zero misses.  The 

tradeoff is the significant increase in false alarms because the threshold level is now 

located within the clutter.  These low values of detector output may contain Ziphius 

clicks; however, the statistics declare these as false alarms when compared to the ground 

truth.  The ground truth is a conservative estimate because of the inability to visually 

detect a Ziphius click when it is embedded in the noise.  The actual statistical output for 

the cluttered data would contain fewer false alarms if it were being compared to a perfect 

ground truth.  The cluttered ROC curve would be shifted significantly to the left in the 

case of a perfect ground truth. 
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Figure 12.   Detector output statistics for a cluttered time period:  The upper panel is the 
spectrogram with ground truth click identifications marked by the dashed blue 

line.  The middle panel is the corresponding detector output for a given threshold 
and the bottom panel is the corresponding detector output for a lowered threshold.  
The threshold level is denoted by the solid orange line on the middle and bottom 
panels.  In the middle panel, the detector misses several of the ground truth click 
identifications; however, the false alarm rate is very low.  The detector is able to 
hit all of the ground truth click identifications with no misses when the threshold 

is at the lowest level; however, there is a significant increase in false alarms. 
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In comparison to the cluttered time periods, the detector output statistics indicated 

much lower false alarm rates when the detector was processing uncluttered data.  Figure 

13 is an uncluttered example wherein the false alarm rate remains low even at a threshold 

level of 0.0005.  The ground truth for the uncluttered time periods is also conservative in 

comparison to what a perfect ground truth would indicate.  As in the cluttered data, this 

inherent flaw causes a resultant increase in the false alarm rate.  The availability of a 

perfect ground truth would serve to lower the P(FA) and shift the uncluttered ROC curve 

to the left.  However, it is not as significant of a shift as would occur with the cluttered 

data ROC curve. 

The unavoidable ground truth bias does not alone account for the detector’s 

performance failures.  Even in uncluttered data, the detector has displayed limitations 

when in the presence of a vocalizing Cuvier’s beaked whale.  Figure 13 exemplifies the 

detector’s failure to hit a ground truth even at the lowest analyzed threshold level.  In this 

instance, the detector correctly hits 10 of 11 ground truths within a distinct click pattern.  

Unexpectedly, the detector fails to correctly hit one of the seemingly stronger clicks 

within the click train.  This statistical miss could potentially be a consequence of 

multipaths or environmental effects.  The cross-correlation of the kernel to the SCORE 

click ensemble, shown in previously in Figure 5, verifies this resultant decrease in the 

correlation value when multipath effects are present.  However, it can most likely be 

attributed to the low signal to noise ratio (SNR). 
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Figure 13.   Uncluttered data example portraying the detector’s limitations with a low 
SNR:  The upper panel is the spectrogram of an uncluttered time period, with the 

ground truth click identifications emphasized with the dashed blue line.  The 
lower panel is the corresponding detector output for a threshold of 5E-4, which is 

depicted with the solid orange line  

Another shortcoming of the detector is its performance when other marine 

mammals are vocalizing within the same time period as Cuvier’s beaked whales.  Figure 

14 is a designated cluttered time period wherein there appears to be delphind activity as 

well as Ziphius clicks.  The detector performed well to hit each of the ground truths at a 

threshold of 0.001, shown in the bottom panel; however, it also hits on the apparent 

delphind clicks.  The correlation values for the non-Ziphius vocalizations vary throughout 

the time period which makes it difficult to select a threshold that will still detect the 

Cuvier’s clicks while correctly rejecting the undesired vocalizations.  Increasing the 
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threshold, shown in the middle panel of Figure 14, improves the detector’s performance 

by dramatically lowering the number of false alarms.  However, at this particular 

threshold level, there are several missed detections.   

 

 
 

Figure 14.   Detector performance in the presence of delphinid activity: The top panel is a 
spectrogram with the ground truth identifications marked with dashed blue lines.  
The middle and lower panels display the corresponding detector output at a given 
threshold, marked with the orange line.  The P(D) is better at the lower threshold; 

however, the P(FA) increases as well. 
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The detector performance was degraded when other marine mammals vocalized 

within the same time period as a Cuvier’s. In spite of this, the detector performed well in 

the presence of multiple Ziphius.  Figure 15 portrays an ICI that is approximately one half 

the routinely observed 0.05s ICI.  The shortened ICI and alternating magnitude strengths 

on the spectrogram suggest that there are two Cuvier’s beaked whales vocalizing 

intermittently.  This example also depicts the conservative bias inherent to the ground 

truth.  The false alarms in the initial portion of this window most likely contain Ziphius 

clicks that were visually indiscernible. 

 

 

Figure 15.   Detector performance in the presence of two Cuvier’s beaked whales:  The 
upper panel is the spectrogram and the ground truth click identifications are 

emphasized with the dashed blue lines.  The lower panel is the corresponding 
detector output.  The detector performs well in the presence of multiple Ziphius. 
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The detector performance was also analyzed during time periods where no 

Ziphius activity was observed.  The detector performed perfectly in these instances where 

the ground truth contained zero clicks.  The respective detector output statistics indicated 

zero hits, zero misses, and zero false alarms at all analyzed thresholds during these 

known quiet periods.   
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IV. CONCLUSIONS 

The unique spectral and temporal structures of Cuvier’s beaked whales’ 

vocalizations are favorable for automated detection via a matched-filter.  A kernel was 

generated for two different types of acoustic recording devices: a HARP and a SCORE 

hydrophone.  The kernel, that was generated from data band-pass filtered between 15 – 

40 kHz, had a 390 µs duration.  This is slightly greater than the click durations cited in 

recent research: 175 µs (Johnson et al., 2004), 200 µs (Zimmer et al., 2005), 250 µs 

(Johnson et al., 2004 and Tyack et al., 2006), and 300 µs (Pavan et al., 2006).  This 

difference can likely be attributed to the available bandwidth of the acoustic recording 

instrument or the nature of the comparison.  An acoustic recording instrument with a 

narrower bandwidth would capture a shorter duration of the click than an instrument with 

a wider bandwidth.  Also, this is not a direct click to click comparison.  The kernel is a 

compilation of 150 different clicks that were statistically analyzed to extract one 

dominant component, which accounted for 73% of the variance. 

The consistently observed ICI in this study was approximately 0.05 s.  This 

observation is in disagreement with other recently published research: 0.38 s (Pavan et 

al., 2006), 0.40 s (Johnson et al., 2004 and 2006, and Tyack et al., 2006), 0.43 s (Zimmer 

et al., 2005).  The ICI was not the focus of this project.  It was, however, a consistently 

observed phenomenon during the ensemble and ground truth creation.  The difference of 

an entire order of magnitude is a significant result.  One possible explanation is that there 

were multiple animals vocalizing intermittently.  However, the extremely concise and 

repetitive intervals are suggestive of a single animal.  It is also possible that these 

vocalizations are made by a species other than a Ziphius cavirostris or that this species 

simply vocalizes at varying ICIs.  Further exploration of this unexpected disparity was 

beyond the scope of this research. 

A total of 174.8 minutes of data from NPS’s DAS recordings at a SCORE 

hydrophone were reviewed.  Specific criteria were adhered to in an attempt to limit 

subjectivity.  The objective selection criteria included: spectrogram energy between 22.5 



 
 

32

and 35 kHz and/or a distinctive click train pattern, and a single selection of a cluster.  

Following this criteria, 28,434 clicks were selected for inclusion in the ground truth.  

Time segments when the data recordings were interrupted or when the signal could not be 

confidently discerned due to indistinguishable clutter were removed.  28.89 minutes were 

purposefully excluded from the statistical analysis.  The remaining ground truth was then 

separated into categories of cluttered and non-cluttered data to further distinguish the 

ROC curves. 

Despite all attempts to produce a precise ground truth, it was an inherently 

conservative estimate.  At times, signals could not be visually discerned that the detector 

was able to detect.  The cluttered data times were affected by this prejudice more so than 

the uncluttered data times.  During the cluttered time periods, actual signals became 

hidden with the noise; thus, causing misses in the ground truth.  These ground truth 

misses became detector false alarms in the detector evaluation.  If this bias could be 

removed, the detector performance would be improved.  The detector’s performance in 

cluttered time periods would improve significantly as compared to a slight improvement 

during the uncluttered time periods.   

At an acceptable false alarm rate of 0.1%: the overall detector’s P(D) is 44%.  The 

detector performed best in uncluttered time periods with a 61% P(D) for a 0.1% false 

alarm rate  The detector’s performance degrades in cluttered data: the detector has a P(D) 

of 26% at a 0.1% false alarm rate.  The detector performance is perfect in the absence of 

clicks.  The detector does not distinguish well between non-ziphid type vocalizations and 

Cuvier’s beaked whales’ vocalizations.   

The greatest problem for the detector is the significant number of false alarms 

from other than desired marine mammals.  The detector definitely detects clicks.  

However, it cannot be absolutely certain as to what species’ clicks are being detected due 

to the inability to visually discern the differences at the time scale used.  The kernel that 

was developed from the second sub-set of the ensemble, which was band-pass filtered  
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from 15-60 kHz, was not utilized or assessed in this research.  Assessing this second 

kernel with HARP data recordings can provide further insight as to the competency of the 

detector. 

Potential follow-on research that could build upon the premises established in this 

thesis includes: 

* An in-depth investigation of the ICI disparities between this thesis and other 
research 

* Increasing the ensemble sample size, performing a PCA, and then comparing the 
resultant kernel to the kernel used in this research   

* With the availability of an enhanced kernel, repeating the detector performance 
analysis 

* Applying the detector to other SCORE hydrophones within the NPS DAS 

* Duplicating this research with the unevaluated kernel and assessing the detector’s 
performance when processing NPS and/or SIO HARP data 

* Comparing temporally coincident detector results from a SCORE hydrophone 
with results from the nearby SIO site H HARP 

* Assessing the classification performance of the kernel to correctly identify a 
Ziphius  click from other marine mammals’ vocalizations 

* A study utilizing the optimum detector to assess the geographic call density 
distribution 

* A study utilizing the optimum detector to assess the seasonal and/or diurnal 
variability call patterns 
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