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ABSTRACT 

Computer-based vision is becoming a primary sensor mechanism in many 

facets of real world 2-D and 3-D applications, including autonomous robotics, 

augmented reality, object recognition, motion tracking, and biometrics. Vision’s 

ability to utilize non-volatile features to serve as permanent landmarks in motion 

tracking provides a superior basis for applications such as initial self-localization, 

future re-localization, and 3-D scene reconstruction and mapping.  Furthermore, 

the increased reliance of the United States armed forces on the standoff war-

fighting capabilities of unmanned and autonomous vehicles (UXV) in, on, and 

above the sea, necessitates better overall navigation capabilities of these 

platforms.  Towards this end, we draw upon existing technology to measure and 

compare current visual interest point extractor performance.  We utilize an 

inventory of extractors to define and track interest points through physical 

transformations captured in images of various scene classifications.  We then 

perform a preliminary determination of the best-suited extraction descriptor for 

each visual scene given multi-frame interest point persistence with maximum 

viewpoint invariance.  Our research contributes an important cornerstone 

towards the validation of precision, vision-based navigation, thereby increasing 

UXV performance and strengthening the security of the United States and her 

allies worldwide. 
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I. INTRODUCTION  

Consider the ease with which we humans can determine our position 

relative to our surroundings and then accurately update that position through our 

subsequent motion.  Medical and physiological research performed in [1], [2] has 

shown that this phenomenon is a direct result of the remarkably accurate human 

environment sensing and processing ability.  This process of temporal and 

spatial motion perception appears to be a trivial exercise only because we are 

not fully conscious of the complex procedure that we take for granted and yet 

perform flawlessly on a continuous basis.   

Let us picture ourselves in a room that has four walls and a door.  Imagine 

that we visually scan the room and notice that there is a door about 12 feet 

directly across the room.  We also notice a small table, a desk and a chair in the 

room between the door and us.  This is a common situation and we would be 

confident in our ability to walk across the room, avoiding collisions with the small 

table, the desk and the chair, and proceed to the door and out of the room.  We 

clearly could exit the space with minimal cognitive effort.  

Let us now imagine the same scenario except with a small modification: 

the removal of just one of our senses, vision.  We are in the same room except 

that this time, after a brief visual scan of the room, the lights extinguish, leaving 

the room completely devoid of light.  Now if we desired to leave the darkened 

room, would we still be confident in our ability to navigate around the obstacles in 

our quest for the door?  Consider that in this situation, as with a lighted room 

scenario, at the very moment we commence our traversal, neurons in our brain 

would fire causing the routing of electrical impulses through our nervous system 

to muscles in our legs.  The muscles would respond to the stimulation and 

contract and extend in autonomic harmony to produce bi-pedal locomotion.  We 

would be unconsciously aware of our body mechanics and the physical kinetics 

produced by the muscles through a complex sensory feedback system that was 
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developed and fine-tuned during very early childhood development.  This 

odometery feedback system provides us with a muscle-based perception of 

distance and direction traversed.  We would also sense the echo returns of 

sound waves generated by our movement as the pressure waves reach our ears 

from the reflection and refraction by the room and objects.  These forms of 

environmental feedback provide us two pieces of information concerning our 

movement, but interestingly enough they alone are not sufficient for accurate 

motion perception.  Even if we begin with a precise image in our mind of the 

room and the obstacle layout, without vision to verify our motion, the additive 

inaccuracies generated with every step through our muscle-based odometry will 

reduce our confidence in a perceived self-generated location.  This is evident by 

the instinctive reflex we have to place our arms out in front of us in an exploratory 

attempt to detect objects prior to collision when we are unable to employ our 

sense of vision.  

Finally, let us consider that instead of a human traversing the room, we 

are interested in performing a successful traversal with an autonomous, robotic 

system.  Prior research in mechanical robotics has shown that we can 

successfully implement any number of movement contrivances, such as 

mechanisms that are ground-based with wheels, tracks, bi-pedal limbs, quad-

pedal limbs, or even with fixed-wing and rotary wing mechanisms of flight.  These 

assemblies will enable physical locomotion and would allow the system to 

maneuver in 3-D space through successive changes in the system’s pose and 

position.  We can also implement an electro-mechanical sensory feedback 

system to provide onboard odometry, measuring system displacement along 

three axes as a result of motion.  As with the human perception of motion, as 

sensed only through muscle odometry, a robotic odometery system will contain a 

measure of error in the form of noise.  This noise is mainly a result of slippage 

and it builds over time significantly affecting the accuracy and confidence in a 

self-localization position for a robotic system [3].  As a result, we need to update 

and reconcile the onboard odometry with other sensors.  Passive and active 
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sensors are the typical devices used to reconcile odometry.  An example of an 

active sensor is a RADAR or a Light Detection and Ranging (LIDAR) system.  

The highly accurate range measurements these devices provide are used to 

update a system-generated odometry to more accurately reflect the resultant 

pose and position following movement.  Active sensors work well for many 

problem domains; however, due to their expensive price, large package size, 

high power requirements, and in a military application, the detectability of the 

ranging energy emissions, other problem domains require a passive sensor.  A 

passive sensor does not emit energy into the environment to perform a 

measurement, but instead uses energy already available, such as magnetism or 

light.  Unfortunately, devices that measure magnetism suffer from many of the 

same drawbacks as the active sensors; however, devices that operate in the light 

domain such as cameras are comparably inexpensive, can be very small and 

require very minimal power.  With this in mind, various research efforts [4], [5], 

[6], [7], [8], [9] have focused on achieving a human-like perception of motion by a 

computational system through live digital cameras and computer vision.  

Computer-based vision is becoming a primary sensor mechanism in many 

facets of real world 2-D and 3-D applications, including autonomous robotics, 

augmented reality, object recognition, motion tracking, and biometrics. Vision’s 

ability to utilize non-volatile features to serve as permanent landmarks in motion 

tracking provides a superior basis for initial self-localization and future re-

localization.  Through Computer Vision, we can capture unique interest points in 

a scene and track their spatial location through successive scene frames.  The 

movement of each feature provides for a model of motion perception.  A 

keystone in this research area is the interest point detection, selection, 

classification, registration, storage and correlation.   

In computer vision, research has shown that for scene classifications, 

some feature extractors work better than others [10], [11], [12], [13]. However, 

current vision-based applications do not attempt to select interest point extraction 

algorithms based on a quantifiable measure of potential performance for the 
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given scene environment classification.  The unbiased employment of interest 

points can lead to an extraordinarily excessive expenditure of processing power 

and computational time on what will prove to be largely non-usable data within 

the problem domain.  Today’s challenging computer-based vision scenarios are 

pushing the limits of real-time processing, requiring a judicious and efficient use 

of processing power.   

A. MOTIVATION AND BENEFITS 

Ultimately, we would like to create a system capable of perceiving motion 

with six degrees of freedom (6-DOF) for autonomous rotary-wing aerial robots to 

conduct Simultaneous Localization and Mapping (SLAM) using only computer 

vision.  We assume that in order to perform real-time aerial SLAM, a robot needs 

to be equipped with the most efficient mechanism to detect, measure and catalog 

its surroundings.  To enable this capability, this thesis investigates and quantifies 

how suitable the various feature extractors are in a certain environment. 

Ultimately, we would like to employ different feature extractors in different parts 

of a single image.  

The immediate benefit of this study is the ability to provide interest point 

extractor selection based on environment suitability for persistence and viewpoint 

invariance.  This approach can be applied virtually to all feature-based camera-

tracking algorithms to sensibly extract interest points, allowing processing 

resources and algorithms to be applied only to the highest quality points in the 

most computationally efficient manner. 

B. SCOPE OF THESIS 

This thesis does not seek to create a new extraction algorithm or to create 

a new application for their employment, but instead we desire to better employ 

the ones that already exist.  Towards this end, we draw upon existing technology 

and application frameworks to measure and compare current extractor 

performance.  We utilize an inventory of interest point extractors to define and 
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track interest points through identical physical transformations in the 

environments of various scene classifications.  We then determine the best-

suited extractor for each visual scene given multi-frame interest point persistence 

with maximum viewpoint invariance.  The primary metrics for extractor 

performance are consistent with previous work in this area [10], [12], [13], [14] 

and are explained in detail in Chapter III 

C. CHAPTER ORGANIZATION 

The remainder of this thesis is organized as follows.  Chapter II provides 

the reader with an introduction to the theory behind computer vision and interest 

point extraction.  We also explore recent work and the current state of the art to 

include previous performance evaluations and employment in SLAM 

experiments.  Chapter III describes the methodology that we used to conduct our 

research.  Chapter IV provides the results of the actual experiments.  The final 

chapter of the thesis, Chapters V, gives a general summary of our work and 

conclusions and explores the opportunities for future work.  
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II. VISION-BASED FEATURE TRACKING AND APPLICATIONS 

In visual localization and trajectory tracking, the relative motion of a 

camera is determined through the movement of objects and background within 

the camera field of view.  The salient needs typically include a motion-tracking 

system using a camera, and a methodology for obtaining camera trajectories 

(e.g., [5], [6]).  This chapter explores recent work in this field, discusses related 

concepts, and introduces pertinent terminology and the basic mechanics of visual 

motion perception and its application in computer vision.  We will discuss visual 

motion perception in humans and computers and then describe the particular 

aspects of the feature extraction and tracking process in a vision system.  We will 

also explore other research efforts focused along these lines.  

A. VISUAL MOTION PERCEPTION 

As we described in Chapter I, the biological and psychological 

computation of motion in the human brain involves tactile, auditory and visual 

sensory information.  Vision and visual motion perception is by far the overriding 

sensory input.  

According to Itan [15], to perceive the motion of an object we must first 

identify it, note its position, and later identify the same object again, noting its 

new position.  The velocity of the movement is then computed by the change of 

position divided by the time, as /s tδ δ .  This process is the basis for 

“correspondence” motion perception models, which function by matching “things” 

through time.    

From a different perspective, we can also talk about the perception of our 

own motion.  Described in detail by S. Coren, et al. [1], a human automatically 

perceives ego-motion primarily through his or her visual system.  As we move 

forward, our world is visually captured in a radially expanding pattern from the 

center of our visual field and laterally translated periphery.  The change over time 
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of this flow of stimuli produces a structure and event correspondence called 

streaming perspective that forms the basis for our perception of motion.  The 

center of this outward flow, called the focus of expansion [1], indicates the 

direction of our movement. 

 

Figure 1.   Model of Human Vision with Gist and Saliency [From [16]] 

Historically, much research has focused on the problem of replicating a 

human-like perception of ego-motion using computational devices.  More 

recently, C. Siagian and L. Itti [16] have sought to replicate this form of human 

perception as a Gist and Saliency model illustrated in Figure 1.  The main 

problem in reproducing the human biological method is understanding exactly 

how the focus of expansion and flow of stimuli is autonomously processed to 

produce a perception of ego-motion.   

In our research, we seek to enable a more accurate and complete visual 

sensory input to such a system through the existing hardware configuration.  We 
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believe that our work will lead to a substantial increase in system operation by 

improving upon exactly how the images are processed in the intermediate steps 

from capture to motion determination. 

B. VISION SYSTEMS 

While computers do not yet have eyes as we know them, they can be 

equipped with cameras that capture digital images.  Digital images are sampled 

from the physical world and are essentially captured projections of visible light.  

The most common type of camera used in computer vision is a charge coupled 

device (CCD) camera.  A CCD camera uses a small, rectangular piece of silicon 

to receive and measure incoming light. The CCD wafer is a solid-state electronic 

component, segmented into an array of individual light-sensitive cells called 

"photosites.”  In a typical low-end CCD camera, the light spectrum is sampled 

and represented in color by overlaying color filters on the photosites.  

Predominantly a three color filter known as a Bayer filter is used.  Four filter 

areas make up each pixel: one red, one blue and two green, corresponding to 

the sensitivity curves of the color receptive cones found in the human eye.  At the 

high-end of CCD cameras is a 3-wafer CCD camera.  Instead of determining 

color value by overlaying a filter, a 3-wafer camera employs a beam-splitter prism 

that separates the continuous light sample into separate color channels and 

funnels each channel to a separate CCD.  This allows for a more precise 

sampling of the light spectrum for capturing the image.   

Continuous sequences of images produced by a CCD camera typically 

provide the primary input to vision system applications.  Each image is processed 

according to the intended application task, however most systems require an 

implementation of some form for tracking events or objects between consecutive 

images in the sequence.  This thesis is primarily concerned with the form of 

vision tracking described in the next section.  
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C. FEATURE TRACKING 

In the process of producing a perception of ego-motion in a computing 

system, we can sample the visual spectrum of our environment through a CCD 

camera as described above.  The resultant images represent a sequence of 

scenes with a flow, not unlike the flow of stimuli that produces a streaming 

perspective in human motion perception.  To interpret the sequence of images 

for optical flow, the computing system must somehow track salient aspects of the 

scene.  Towards this end, real-time vision tracking applications seek to segment 

a scene into semantically relevant elements in the form of foreground objects and 

background [14]. The process of segmentation, in theory, allows for pinpoint 

localization of an object attribute down to the sub-pixel level.  This level of 

accuracy provides a basis for a highly efficient employment of only the most 

accurate attributes for correspondence.  Unfortunately, automatic scene 

segmentation is a difficult problem and even if the accuracy was sufficient, the 

current technology is too slow to implement in a real-time system.  Carson, et al. 

[17], implemented Blobworld, the best-known example of robust image 

segmentation in which the scenes are segmented based on color and texture.  

Each segment is then matched by shape to a representative object in a database 

lookup.  This implementation performed accurate segmentation with recall scores 

between .2 and .3, at 5 to 7 minutes per image on a 300MHz Pentium II 

processor.  See [17] for additional Blobworld details.  Even with today’s 

processing speeds, the significantly long processing time and required database 

domain knowledge present challenges for use in an online vision tracking 

system. 

Recent tracking efforts have shifted from foreground-background 

segmentation methods to the use of local object attributes known as features. 

The term "feature" is an abstract term that refers to any artifact or region in an 

image and its unique description.  Examples of these features include corner-

based artifacts like Harris [18], and Föstner points [19], Difference of Gaussian 

points (DOG) [20], scale space blobs [21] and Maximally Stable Extremal 
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Regions (MSER) [22].  As described by the research efforts listed above, there 

are a great number of ways of finding these artifacts and describing them.  

Regardless of the specific methods, these artifacts remain projections of object 

attributes in 3-D space onto a 2-D image plane and therefore shall be referred to 

in this thesis as interest points.  

At the core of many tracking efforts utilizing computer vision, is the 

fundamental process of matching interest points from one image to another of 

the same scene.  These efforts include vision-based SLAM [4], object or 

environment modeling [5], geographic registration of aerial imagery, augmented 

reality for training and combat, autonomous & unmanned system navigation, 

system control and data processing.  Interest point based matching methods are 

categorized as wide-baseline or short-baseline (also known as narrow-baseline).  

In short-baseline matching, the interest points within the images of the scene are 

only expected to change position a short distance from frame to frame, and can 

therefore be tracked using filtering techniques such as Kalman filters [23].  Their 

appearance is not expected to change much if at all, particularly their scale and 

orientation usually remains unchanged (rigid translation only).  In wide-baseline 

matching, the interest points can have great and wide changes in appearance, 

and must be matched by some other means.  While both are important, our work 

focuses on the more complex process of wide-baseline matching. 

Finding a wide-baseline correspondence from one image to another is 

accomplished through three basic steps.  First, we must detect interest points 

within each image by scanning and detecting distinctive regions such as gradient 

edges, corners, or unique blobs.  This is done because interest point calculation 

of feature descriptors is computationally expensive and cannot be done for every 

possible location (every pixel).  The interest point detector is crafted in such a 

manner as to maximize the likelihood that the detected interest points are 

distinctive and can be reliably found repeatedly in images taken from different 

vantage points.  The next step of wide-baseline tracking aims at uniquely  
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describing the immediate region surrounding the interest point using a feature 

vector.  This is accomplished by sampling the pixels surrounding the interest 

point, processing them in some fashion, and producing a vector-based 

representation that is robustly tolerant to noise and deformations.  The combined 

actions of detection and description produce an invariant feature vector and shall 

be referred to in this thesis jointly as interest point (or feature) extraction.  We 

also define interest point to represent the center pixel of a detected point or 

region and feature to represent the interest point as described by a feature 

descriptor; however, their usage within this thesis is interchangeable.  Lastly, the 

sets of generated interest points are compared between two images to find 

matches.  Matches are found based on a mathematical Euclidean or 

Mahalanobis distance between the feature vectors.  We describe details of these 

processes below. 

1. Interest Points 

Interest points capture and describe unique attributes of a region, 

centered on an attribute of a scene.  As an abstract data structure, interest points 

can be used for computations in applications such as image mosaics [24], video 

data mining [25], object recognition [26], [27], autonomous vehicle localization 

[4], [5], [6], [9], texture recognition [28], and image matching [29].  Points of 

interest are extracted and described in many different ways.  Typically, a specific 

representation is chosen to fit the expected problem domain.  In some 

implementations, interest points can be defined by physical attributes that are 

exhibited uniquely by an object of interest in the problem space.  For example, 

Harrell et al. [30] used the centroid and diameter of circles to define the features 

used to track fruit for robotic harvesting.   An interest point can also be as simple 

as a corner in a 2-D image described by the defining intensity gradients as 

employed by Saeedi, et al. [5].  On the other hand, it can be as complex as 

Lowe’s [31] Scale Invariant Feature Transform (SIFT), a high-level scale invariant  
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descriptor complete with a 128 dimensional vector computed from the spatial 

distribution of image gradients over a circular region.  We discuss SIFT in detail 

later in this chapter. 

We would like interest points to correspond to semantically meaningful 

object attributes. However, this is infeasible for most applications, as this would 

require a high-level interpretation of the scene content. Instead, detectors select 

local interest points directly based on the underlying intensity patterns of a point 

or region.   In some applications, it is also highly desirable to generate interest 

points that are permanent and easily detectable.  Saeedi, et al. [5] defines these 

long-term interest points as landmarks.  Landmark-based methods perform 

motion tracking by detecting landmarks in the environment and estimate camera 

position based on triangulation.  These methods must either utilize prepositioned 

landmarks or learn a local distinctive pattern suitable for tracking during a training 

phase of deployment.  The MINERVA [32] tour guide robot navigates in this 

fashion and uses the distinct pattern in the ceiling of Smithsonian’s National 

Museum of American History as a mosaic-based landmark template to localize 

and estimated motion.  Systems that localize based on this approach usually 

require an a priori map of the domain space.  On the other hand, natural interest 

point-based designs seek to capture and track naturally occurring object 

attributes that are extracted directly from the environment [25].  The relative 

changes in the interest points provide the mechanism the ability to estimate the 

camera (and hence robot) trajectory and motion. 

Another important characteristic of interest points is invariance.  When 

large out-of-plane transformations1 are expected in the scene, the best approach 

is to model the appearance changes as mathematical point transformations, and 

then develop methods for interest point detection that are unaffected by 

viewpoint changes [14].  Types of desired invariance, or covariance include 

                                            
1 An in-plane transformation occurs when the camera motion is such that 3-D objects 

maintain an undistorted 2-D appearance in the image plane. In an out-of plane transformation, 
the camera moves out of the 2D plane relative to the object, distorting the captured 2-D 
appearance. 
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translation, rotation, illumination, scale and affine (or viewpoint) transformation 

invariance [10].  The concept of transformation invariance is straightforward for 

translation, rotation and illumination.  Intuitively, we want to be able to find the 

same interest point even if due to camera movement, it undergoes a rotation 

transformation, is located in a different area, or is illuminated differently in 

subsequent frames.  Scale invariance involves accounting for changes in overall 

scale.  T. Tuytelaars and K. Mikolajczyk suggest that a detector is considered 

scale invariant if it provides a reliable match at least up to a scale factor of four 

[14].  Affine transformations are generalizations on scale transformations.  A 

scale transformation can be non-uniform (anisotropic) and actually affect regions 

of the image differently in each direction.  The non-uniform scaling changes the 

shape of the image and thus the shape of interest points.  A detector that is 

crafted to only handle scale invariance would not be able to correctly match an 

interest point that has undergone a significant out-of-plane and affine 

transformation. 

2. Interest Point Detection 

Klippenstein and H. Zhang [13] describe interest point extraction as a two-

part process of first detecting an interesting attribute and then capturing the 

attribute as an interest point in a unique, comparable abstract form known as a 

descriptor.  Interest point detectors find the interesting characteristics in a scene 

image that meet the appropriate property criteria as defined below for the 

intended application.  Recently Mikolajczyk et al., analyzed a large inventory of 

interest point detectors [10] and descriptors [11] under varying conditions and 

one of their findings was that the selection of a point detector was less significant 

than the selection of a descriptor.  Their evaluation techniques will discussed in 

detail later in this chapter.   

There are many ways to detect points of interest within an image, most of 

which can be sectioned into three categories defined by Schmidt, et al. in [33], as 

contour based, intensity based and parametric model based.  In a contour-based 
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approach, a detector will first extract the contours of the scene and then use the 

inflection points or polygonal intersections as the interest point locations.  

Intensity based methods seek out regions of high intensity gradients as interest 

points.  Parametric based methods extend intensity-based approaches by 

modeling the intensity as a signal.   

Regardless which of the three methods of detecting interest points 

are employed, detected points are expected to embody certain attributes.  T. 

Tuytelaars and K. Mikolajczyk found that regardless of implementation domain 

and application, in general, detectors based on the principals of the following 

properties should target interest points good for tracking applications: 

Repeatability:  Given two images of the same object or scene, 

taken under different viewing conditions, high repeatability indicates that a high 

percentage of the interest points that are visible in both images are detected in 

both images. Conversely, low repeatability means that only a small number of the 

interest points that are detected in one image and are visible in the other image 

are not detected in the other image. 

Distinctiveness:  The uniqueness of an interest point embodies 

how well it can be matched.  The intensity patterns underlying the detected 

interest points should show a lot of variance, such that interest points can be 

distinguished. 

Locality:  The interest points should be local, so as to limit the risk 

of a interest points including an occluded part and/or parts corresponding to 

different objects or surfaces, and to allow simple approximations of the geometric 

and photometric deformations between two images taken under different viewing 

conditions. 

Quantity:  The number of detected interest points should be 

sufficiently large, such that a reasonable number of points are detected even on 

small objects. 
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Accuracy:  The detected interest points should be accurately 

localized, both in image location, as with respect to scale and possibly shape. 

Efficiency:  Preferably, the detection of interest points in a new 

image should take just fractions of a second, to allow for time-critical 

applications. 

Robustness:  In case of relatively small deformations, it often 

suffices to make sure the interest points detection methods are not too sensitive, 

i.e. the accuracy of the detection may go down a bit, but not drastically so. 

Robustness is defined in this case with respect to image noise, discretization 

effects, compression artifacts, blur, etc., as well as geometric and photometric 

deviations from the mathematical model used to obtain invariant interest points. 

The performance metrics listed below are designed to quantify an 

interest point detector’s capability to seek out and capture the desirable attributes 

defined above.  Previous research [10], [11], [12], [13] employed these metrics 

with some minor differences, specific emphasis, and some omissions.   

Recall: Calculated by dividing the number of correct matches by 

the number of total correspondence, this score measures a descriptor’s ability to 

produce correct correspondences. 

Min-recall:  Calculated by imposing a lower bound on recall, since 

perfect matching is not useful if too few matches are made to further perform 

calculations.  For example, a minimum of four points are required for a 

homography and a minimum of seven points are required for a fundamental 

matrix.  The concept and calculations of a homography and a fundamental matrix 

are explained later in this chapter.   

1-Precision:  Calculated by dividing the number of incorrect 

matches by the number of correct matches plus the number of incorrect matches, 

this score measures the inverse of a descriptor’s exactness or fidelity.  When 

considered against the independent recall measurement, a comparable 

performance curve is formed.  See [10] and [11] for more details. 
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Receiver Operating Characteristics (ROC):  Calculated as the 

detection rate verses the false positive rate, the ROC curve provides a measure 

of true positives to false positives. 

Repeatability:   Calculated for a pair of images as the ratio between 

the number of region-to-region correspondence and the smaller of the number of 

regions in the pair of images, repeatability describes how well the regions of 

interest are similar from image to image.  Two regions are deemed to correspond 

if the overlap error, defined as the error in the image area covered by the 

regions, is sufficiently small.   

Accuracy:  Calculated as a relative ranking among descriptors, 

accuracy is determined by a function of an overlap error; if the overlap threshold 

is relaxed more regions correspond and repeatability goes up.  If a descriptor 

improves in recall as a result, the descriptor is ranked as “less pixel-wise 

accurate” than the others are due to the relaxation of the threshold. 

Distinctiveness:  Calculated by generating eigenvalues from the 

PCA of the descriptors normalized by their variance, this metric demonstrates the 

relative discrimination power of a descriptor.  

In the following section, we describe the implementation 

approaches of three representatives of the most common interest point detector 

types. 

a. Maximally Stable Extremal Regions (MSER) 

First proposed by Matas et al. [22], MSER finds interest points 

defined by image elements coined extremal regions.  Extremal regions are 

unique in that they are closed under continuous, projective transformations of 

image coordinates and under monotonic transformation of image intensities.  

Figure 2 describes the formal concept of operation for MSER.   
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Figure 2.   MSER interest point detector elements. [From [22]] D is a set of 
continuously varied grayscale threshold images; S is the set of extremal 

regions. 

Essentially, if we perform grayscale thresholding of an image, we 

can segment all pixels into those that lie below the threshold and those that lie 

above the threshold.  As we continuously vary the threshold from one extreme 

(all above or all below) to the other, a sequence of segmentation is produced.  

The connected components of the sequence are extremal in the sense that they 

extend from one extreme threshold to the other.  This set is defined as extremal 

regions.  MSER demonstrated the best overall performance capability in 

achieving viewpoint invariance in the recent performance evaluation of 

Mikolajczyk et al. [11]. 

b. Harris Corner Detector 

An interest point detector is primarily an attribute targeting 

mechanism.  The detector finds scene attributes based on domain-dependent 
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properties that will lead to a reliable descriptor.  Although there are many 

implementations, the Harris corner detector [34], the Difference of Gaussian 

detector [35], and the Lucas-Kanade detector [36] stand out as class 

representatives [13].  From the binary corner class of detectors, the Harris corner 

detector [34] is one of the most widely used detectors.  This detector operates by 

first finding a covariance matrix through a Gaussian filter convolution of the 

image.  Then a second-moment matrix is generated through the 2nd Gaussian 

derivatives of the covariance matrix.  The eigenvalues of the second-moment 

matrix represent the strength of the gradient in image intensity parallel and 

perpendicular to the direction of the greatest change.  Two large eigenvalues 

corresponding to a strong change in any direction define a corner.  The Harris 

algorithm considers points with local maxima eigenvalues as corner points.  

c. Difference of Gaussian (DoG) Detector 

To detect appropriate points in a scene, Lowe [35] implemented a 

Gaussian-smoothed pyramid of images with increasing scale.  The DoG maxima 

identify the points of interest.  Another detector also worthy of note was 

developed by Lucas and Kanade [36], as a gradient decent method that is used 

to iteratively align image intensity patches.   

3. Interest Point Descriptors 

After the detection phase, where we identify interest points in an image, 

we need to be able to uniquely describe each point.  As we stated earlier in this 

chapter, there are many different forms of interest point descriptors.  Most 

descriptors contain information that describes the interest point orientation, 

strength, and scale allowing for transformation invariance while still capturing 

salient region information.  The most basic descriptor is comprised only of the 

vector of image pixels [14] in the region of interest.  While this descriptor allows 

for a simple correlation of interest points through a computation of a similarity 

score, the lack of non-translational transformation invariance limits its suitability 
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in most applications.  On the other hand, transformation-invariant descriptors are 

typically high-dimensional vectors requiring significant computational complexity.  

Choosing the appropriate descriptor for an application is a matter of striking a 

fine balance between correspondence performance and processing efficiency.  

Below we describe distribution-based, spatial frequency-based, differential-based 

and gradient moment descriptors. 

a. Scale Invariant Feature Transform (SIFT) 

The SIFT algorithm was proposed by Lowe [20], [31] as a method 

of extracting and describing interest points (which Lowe calls key-points). This 

description process is robustly invariant to scale transforms, but is also invariant 

to other common image transformations and deformations such as image 

rotation, illumination changes and blur.  The SIFT algorithm has four major 

stages: Scale-space extrema detection, Keypoint localization, Orientation 

assignment and Keypoint descriptor. 

 
Figure 3.   SIFT descriptor elements. [From [20]] 

 
1. Scale-space Extrema Detection: In this stage of 

processing, SIFT performs a search over all scales and image locations in the 

image.  The goal is to find each scale-space extrema point through the 
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Difference of Gaussians (DOG) function D(x,y,θ), which can be computed from 

the difference of two nearby scaled images separated by a multiplicative factor k:  

( , , ) ( ( , , ) ( , , ))* ( , )D x y G x y k G x y I x yσ σ σ= − ( , , ) ( , , )L x y k L x yσ σ= −  

Here, L(x,y,σ) is the scale space of an image, built by convolving 

the image I(x,y) with the Gaussian kernel G(x,y,σ), Bingrong et al. [37]. 

2. Keypoint Localization: At each candidate location, a 

detailed model is fit to determine the exact sub-pixel location and scale. Interest 

points (a.k.a. Keypoints) are selected based on measures of their stability. 

3. Orientation Assignment: One or more orientations are 

assigned to each keypoint location based on local image gradient directions. All 

future operations are performed on image data that has been normalized relative 

to the assigned orientation, scale, and location for each feature, thereby 

providing invariance to these transformations.  One or more orientations are 

assigned to each key-point based on local image gradients. For each image 

sample L(x,y) at this scale, the gradient magnitude m(x,y) and orientation θ(x,y) 

is computed using pixel differences : 

2 2( , ) ( ( 1, ) ( 1, )) ( ( , 1) ( , 1))m x y L x y L x y L x y L x y= + − − + + − −  

1( , ) tan (( ( 1 ) ( 1, )) /( ( , 1) ( , 1)))x y L x y L x y L x y L x yθ −= + − − + − −  [37] 

4. Keypoint Descriptor: The local image gradients are 

measured at the selected scale in the region around each keypoint. Typical 

keypoint descriptors use 16 orientation histograms aligned in a grid [37].  Each 

SIFT histogram has eight orientation bins created over a 4X4 support window. 

The resulting interest point vectors are 128 elements with a total support window 

of 16×16 pixels.  In SIFT, the number of generated interest points depends on 

image size and content, as well as algorithm parameters.  An image of size 

500x500 pixels will yield about 2000 stable features.  For a more detailed 

description, see [20], [31]. 
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b. Principal Component Analysis (PCA)-SIFT 

PCA [38] is a common vector space transform technique that has 

been applied to a wide variety of computer vision applications in order to perform 

dimensionality reduction.  Defined mathematically as an orthogonal linear 

transform, PCA transforms vector data into a new lower-dimensional coordinate 

system, preserving the variance in the original data as much as possible.  Ke and 

Sukthankar’s [39] PCA-SIFT combines this idea with SIFT to produce a lower-

dimensional feature descriptor with similar characteristics.  It accepts the same 

input as the standard SIFT descriptor, specifically the sub-pixel location, scale 

and dominant orientations of the interest point. In PCA-SIFT, a 41 × 41 patch is 

extracted at the given scale, and rotated to align its dominant orientation to a 

canonical direction.  The PCA-SIFT process involves pre-computing an 

eigenspace to express the gradient images of local patches.  With each 

candidate patch, the local image gradient is computed and the gradient image 

vector is projected onto the eigenspace to derive a compact feature vector. This 

feature vector is significantly smaller than the standard SIFT interest point vector, 

and can be used with the same matching algorithms.  For a more details, see 

[39]. 

c. Speeded Up Robust Features (SURF) 

The most recently developed descriptor in our inventory is SURF 

[40].  SURF operates in a similar fashion to the SIFT descriptor, except that the 

published version is closely coupled with an interest point detector that is based 

upon generating a Hessian matrix approximation of integral images.  This 

approach drastically reduces computational time in that rather than using two 

different calculations for selecting the location and the scale of an interest point, 

SURF relies on the determinant of the Hessian matrix for both. Given a point x = 

(x, y) in an image I, the Hessian matrix ( , )H x σ  in x at scale σ  is defined as 

follows 
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∂
 with the image I in point x, and similarly for ( , )xyL x σ and 

( , )yyL x σ . 

   
Figure 4.   Left to right: the Gaussian second order partial derivatives in y-

direction and xy-direction, and approximations thereof using box filters. 
The grey regions are equal to zero. [from [40]] 

To produce a SURF descriptor, Haar wavelet responses, centered 

on the Hessian detected interest points, are generated in the x and y directions.  

The characteristic scale is determined as part of the SURF detection and is used 

to determine the Haar sampling step.  The Haar responses are assigned 

Gaussian weights and are then used to determine a characteristic orientation.  

Once the orientation is assigned, 4 X 4 square regions are defined at each 

interest point location and then further divided into regular 4 X 4 sub-regions.  

The 64-dimensional descriptor vector is generated by summing over Haar 

responses for the sub regions.  The vector includes dimensions that account for 

intensity changes by recording the absolute response values in the x and y 

directions.  If the problem domain requires the additional invariance provided by 

a 128-dimension SURF descriptor, the sub regions can be further sub divided 

into 4 X 4 sub-sub regions. 
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d. Gradient Location and Orientation Histogram (GLOH) 

Mikolajczyk and Schmid introduced GLOH in [11] as an extension 

of the SIFT algorithm.  The GLOH description process operates on detected 

interest points by first computing the SIFT descriptor for a log-polar grid with 3 

bins in a radial direction and 8 bins in an angular direction for 17 location bins.  

The gradient orientations are then quantities into 16 bins.  The result is 272-bin 

histogram.  PCA is then used to reduce the dimensionality of the descriptor to 

128 dimensions. 

e. Shape Context 

The shape context descriptor is described by S. Belongie et al. [41], 

and is also modeled after the SIFT descriptor except it functions on 3-D 

histograms of edge point locations and orientations.  At each interest point, 

edges are extracted by a Canny edge [42] detector, and the interest point region 

is quantized into nine log-polar bins.  These bins are then divided into radii of 6, 

11 and 15, and the orientation is quantized into horizontal, vertical and two 

diagonal bins, resulting in a 36-dimensional descriptor. 

f. Gradient Moments 

Gradient moments were first introduced by Van Gool, et al [43] and 

are designed to characterize the intensity patterns of image regions.  These 

intensity moments are largely invariant to affine transformations for simple 

shapes and do not require the computationally expensive extraction process that 

the distribution-based methods describe above do.  In this application, moments 

are computed for the derivatives of a grayscale image patches as follows: 

,

1
[ ( , )]a p q a

pq x y dM x y I x y
xy

= ∑  



 25 

Here, p + q is the order, a is the degree, and dI is the image gradient in direction 

d.  The second order, second-degree moment gradients are calculated in the x 

and y directions.  The result is a 20 dimensional feature vector. 

g. Normalized Cross Correlation Template Matching 

Normalized Cross Correlation Template Matching (NCCTM) [76], is 

perhaps one of the most basic spatial frequency based descriptor methods.  A 

NCCTM descriptor is created either through the spatial domain or through a 

transform domain.  For the spatial domain, the region surrounding an interest 

point is sampled uniformly, in say a 9 X 9 pixel pattern.  The spatial-domain 

method of cross correlation has two drawbacks; the convolution of a NCCTM 

template with a bright spot may produce a higher correlation than with a 

matching patch and NCCTM templates are not invariant to lighting changes.  For 

this reason, NCCTM achieves better performance through a transform of an 

image such as through Fast Fourier Transform [76].   

h. Steerable Filters and Differential Invariants 

. Freeman and Adelson’s Steerable filters [44] are computed by 

taking the derivative of up to the forth order through convolution with Gaussian 

filters with σ=6.7 for an image patch of size 41.  This results in a feature vector 

dimension of 14.  Koenderink and van Doorn’s differential invariants [45] are 

computed in the same manner except only up to 3rd order for a feature vector 

dimension of 8. 

i. Complex Filters 

In Schaffalitzky and Zisserman’s approach [46], a complex filter 

kernel is employed to generate a feature vector description.  The kernels are 

implemented as a filter containing a unit disk of radius 1.  The filter convolution is 

performed in a 41X41 patch about the interest point from the following equation: 
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( , ) ( ) ( ) ( , )m n
mnK x y x iy x iy G x y= + −  

4. Interest Point Matching 

We have described the basic tenants of finding and describing interest 

points in images, and are now interested in matching them.  For humans, a 

matching interest point can be found in two images relatively accurately, such as 

pinpointing the corner of a window as projected in two different images. For a 

computer there needs to be an algorithmic method for accomplishing the match 

since a computational machine does not contain the conceptual knowledge of a 

corner or a window.  Successfully finding a correspondence of points between 

images is central in the design of vision-based tracking algorithms. 

Correspondence computation comes from the knowledge that the points in 

different images represent projections of the same point onto image planes.  

Autonomously establishing corresponding points between any two images begins 

by finding good interest points in the first image. Ideally, an algorithm is able to 

discern objects or object attributes in an image without any prior information 

about them, and then proceed to track them between progressive frames by 

recognition regardless of inherent transformations in pose and illumination.  

Invariance properties like these have become the standard for which interest 

point extraction, description and matching algorithms are measured [10], [11], 

[12], [13].  The primary goal of any such extraction algorithm is to maximize 

image transformation invariance using techniques described earlier in this 

chapter.  Optimizing the employment of each algorithm based on its particular 

invariance for a given environment is the focus of this thesis. 

For establishing corresponding points between any two images, there are 

two general approaches. In some vision tracking applications such as the 

process of generating 3D structure from images, described as Structure from 

Motion (SFM) in [47] and the real-time application of SFM also known as SLAM 

proposed by [48], the by-frame processing latency is low enough to support a 

high data rate video stream.  This high data rate results in a short transfer 
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distance between any two images.  If the application only requires a superficial 

knowledge of each interest point, then in this case the tracking problem reduces 

to producing chains of correspondence across frames.  As mentioned in opening 

of this chapter, this is known as a narrow- or short-baseline correspondence 

problem and is addressed by several tracking methods [18], [49], [50].  Short-

baseline correspondence is not adequate in cases where only a sparse set of 

widely separated images are available to process.  Another more typical case is 

that we desire to preserve the interest points for tracking through occlusion or for 

long-term retrieval and object identification and matching.  In these, wide-

baseline situations, interest points are found in the first frame and a unique 

descriptor is generated for each point [51].  We then repeat the same processing 

on the second image, and establish correlations between the set of features from 

the first to the second image and consider these corresponding points if they 

match within a certain geometric distance threshold.  

For wide-baseline tracking, there are a number of ways to find the 

“distance” between two potential matching feature vectors.  Four common 

methods are Nearest Neighbor with Distance Ratio (NNDR), Normalized Cross 

Correlation (NCC), Sum-of-Squared-Difference (SSD) and specific to Kanade-

Lucas-Tomasi (KLT) tracking approach is the KLT matching [13].  In NNDR, the 

Euclidean distance between normalized interest point descriptors is calculated 

and compared to neighboring values to determine a match [35].  NCC is a 

threshold-based matching algorithm where a correlation coefficient between 

interest point descriptors is calculated and the coefficients that are above a 

certain threshold are considered matches.  SSD is also a threshold-based 

matching algorithm and is calculated by summing over the difference of interest 

point descriptors.  If the generated distance is below a certain threshold, the pair 

is considered a match.  A gradient descent method is used to the align image 

patch descriptors in successive images [49]. 
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5. Performance Evaluation 

Interest point tracking is a complex problem.  External variables and 

constraints inherent in most application environments complicate the process.  

For example, intuitively interest points can move out of the field of view, an image 

can have repetitive patterns, interest points can blur as a result of camera 

motion, tracked points may be occluded in one of the images and tracked points 

may not be revisited for many frames.  Recent research efforts [10], [11], [12], 

[13] have essentially sought to quantify the performance of interest point 

detectors and descriptors given data sets which specifically test the invariant, or 

covariant, properties of each implementation.  Conversely, this thesis seeks to 

evaluate the performance of interest point descriptors within different scene 

classes.  In the following section, we discuss camera transformation ground truth 

determination and data set development utilized in previous work.  This will 

provide the reader with a solid background for considering our ground truth 

determination presented in the next chapter. 

a. Ground Truth 

One point of departure among the previous interest point evaluation 

research methods is the specific method for determining the ground truth of the 

camera transformation.  While [10] and [11] have focused on employing a planar 

homography between two images to determine ground truth, [13] opted for 

finding a fundamental matrix and [12] a trifocal tensor and point transfer property 

to find a non-planar homography.  The remainder of this section details these 

concepts and processes.  For additional information, refer to [52]. 

A 2-D image homography is a projective transformation mapping of 

points from one image plane to another image plane. 2-D homographies have 8 

degrees of freedom with nine entries formatted in an H matrix. Scale is the 

unrecoverable ninth entry in the matrix.  A homography requires a minimum of 

four pairs of corresponding points, in a feature tracking application we use 

interest points.  If any three points are collinear, the result will not find a unique 
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solution.  To find a homography, we solve for an H that satisfies *E PX H X= , 

where EX  and PX  are an ordered set of corresponding image point pairs.  

A fundamental matrix is similar to a homography in that it is a 

projective transformation mapping of points form one image to another, however 

a fundamental matrix is capable of modeling non-planar 3-D transformations.  A 

fundamental matrix is based upon a geometric relation of the point 

transformations.  This relationship is referred to as epipolar geometry.  To find a 

fundamental matrix, we solve for an F that satisfies 1 2 0Tx Fx = , where 1x  and 2x  

are homogeneous corresponding image point pairs.  For additional information, 

see [72]. 

To find ground truth with Fraundorfer and Bischof’s [12] trifocal 

tensor and point transfer property, an image sequence is defined as 1I – nI , and a 

geometrically correct mapping is found for every detected location in 1I  to the 

other n images in the sequence.  The key to this method is that with a set of 

three images containing portions of the same scene, say 1I , 2I  and 3I , it is 

possible to calculate the point 3x  in 3I  where 1x  and 2x  are corresponding image 

point pairs from 1I , 2I .  The trifocal tensor and the point pair are then used to 

compute a non-planar mapping that projects the point from image 1I  to the target 

image. 

b. Data Sets 

To properly evaluate the performance of interest point descriptors, 

experiment data sets of images have to be carefully designed to demonstrate the 

camera transformations to be tested.  Mikolajczyk, et al. [10], [11] employed a 

data set with two scene types.  One scene type contains homogeneous regions 

with distinctive edge boundaries (e.g. graffiti, buildings), and the other contains 

repeated textures of different forms. The data set includes viewpoint changes, 

scale changes, image blur, JPEG compression and illumination. In the cases of 
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viewpoint change, scale change and blur, the same change in imaging conditions 

is applied to the two different scene types.  In the viewpoint change test, the 

camera varies from a front to parallel view to one with significant foreshortening 

at approximately 60 degrees to the camera. The scale change and blur 

sequences are acquired by varying the camera zoom and focus respectively. 

Fraundorfer and Bischof [12] acquired two image data sets each 

with 19 images taken from viewpoints varying from 0º to 90º.  The first image set 

is piece-wise planar and shows two geometric boxes posed on a turntable.  The 

second image set captures a part of a room. 

Klippenstein and Zhang [13] produced two image data sets for their 

research by manually driving a robot with a digital camera through different scale 

environments.  The large-scale image set was generated on a building floor that 

is typical of an office building.  The robot was operated for 30 meters with an 

image captured at every 150mm translation or 5º rotation.  The small-scale 

image set was acquired in a research lab with an image captured every 100mm 

or 5º rotation. 

D. TRACKING APPLICATIONS 

As mentioned in Chapter I, numerous tracking applications utilize 

computer vision as the primary sensor.  This section provides some examples of 

tracking applications.     

1. Simultaneous Localization and Mapping (SLAM) 

Simultaneous Localization and Mapping (SLAM) was originally presented 

by Hugh Durrant-Whyte and John J. Leonard [53]. The domain of SLAM is 

concerned with real time Structure from Motion (SFM), which is essentially the 

problem of building a map of an unknown environment by an autonomous mobile 

robot while simultaneously navigating the environment using the map. SLAM 

consists of several individual processes: landmark discovery and extraction, data  
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association, state estimation, state update and landmark update.  There are 

many ways to solve each of the SLAM components. Below we describe some 

vision-based SLAM systems. 

a. FastSLAM Based MonoSLAM 

Eade and Drummond [54] have developed a SLAM algorithm 

based on Montemerlo, et al’s FastSLAM [55], using a single camera as a sensor. 

They demonstrated a camera traversing a circular pattern in a three-dimensional 

area, mapping multiple features with a successful closing of the loop.  FastSLAM 

is an algorithm developed for traditional range based sensor SLAM that uses 

particle filters.  A particle represents a probabilistically weighted pose of the 

robot, and each is composed of a historic path estimate and a covariance matrix 

coupled with a set of estimators of individual interest point locations. New 

readings update the particles and cull those that are probabilistically unlikely.  

The demonstration was proof of the usefulness of traditional SLAM algorithms to 

vision based SLAM. 

b. MonoSLAM 

Andrew Davidson’s MonoSLAM [56] is an approach that uses a 

monocular camera to conduct SLAM by way of a sparse map, which means the 

actual map itself is a point cloud of the 3-D Euclidean location of the tracked 

interest points. Essentially the system seeks to track a sparse number of image 

patches and refine their positions through camera motion in 3-D grid map. Using 

quaternion patches to define the interest points, the algorithm is able to both 

store and reacquire patches when they come back into view. The focus of the 

algorithm is a real-time, monocular vision based, SLAM algorithm. An added 

feature of MonoSLAM over a normal occupancy grid approach is that their 

features correspond to a covariance matrix, which defines the probability of the 

true location of the feature.  
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E. IMAGE CLASSIFICATION 

Image classification is a research discipline within computer vision that 

has seen a recent explosion of research efforts [57], [58], [59], [60], [61], [62], 

[63], [64].   Early image content classification experiments centered on the task of 

classifying objects or foreground and background components of visual scenes 

into relevant, semantic categories.  Drawing on the previous work of Campbell, et 

al [57], Israël, et al [65] developed a process for dividing an image into a group of 

adjacent texture pixels, each as a semantic image element.  These elements, or 

patches, are categorized as building, grass, crowd, road, sand, skin, sky, tree, or 

water.  The patches comprise an individual image feature vector that is 

processed to provide an overall scene classification of interior, city/street, forest, 

agriculture/countryside, desert, sea, portrait or crowds.   

More closely related to our work, Rasiwasia and Vasconcelos [58] 

described a process where the task of automatic scene classification is 

accomplished by first defining a method of image representation and then 

employing a weak-supervision machine learning classifier for determining the 

appropriate category.  The image description is composed of a bag of low 

dimensional localized descriptors such as spatial frequency or SIFT-like 

descriptors. The descriptor coefficients are grouped into semantically relevant 

themes called visterms.  The visterms are utilized to classify scenes into learned 

classifications through Support Vector Machines (SVMs) [66]. The benefit of this 

research is a well-performing image theme classification method based upon a 

low-dimensional feature vector. 

In this chapter, we have explored the process of human motion 

perception, visual interest point extraction and tracking, and finally, scene 

classification.  This discussion will provide the reader a solid background of 

knowledge for the next chapter, experiment design. 
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III. EXPERIMENT DESIGN  

As stated in Chapter II, it is our intent to present a unique approach to 

evaluating interest point extraction and correspondence performance by looking 

at specific scene classes.  To that end, we have tested and compared an 

inventory of extractors.  We have focused on a test methodology that achieves 

highly reproducible conditions and a data set collection methodology that 

generates scene image sets with consistent transformations across each scene.  

In particular, we have employed publicly available software and libraries 

wherever possible in our testing.  Our testing platform includes a PC with dual 

Intel Xeon QuadCore CPUs and 16GB RAM, with Redhat Linux and a Windows 

Vista Operating Systems with MS Visual Studio® 2005 and MATLAB®.  

Additional software libraries include the SURF® extraction library [40], Robert 

Hess’s SIFT implementation [67], Krystian Mikolajczyk’s feature detection [10] 

and description [11] library, as well as Intel’s OpenCV [68], and GNU GSL [69].  

The following sections describe our experiment setup. 

A. IMAGE DATA SET 

A few well-known and well-tested  image data sets exist and have been 

utilized in previous research efforts [10], [11], [12], [13]; however, these data sets 

were generated to evaluate the overall performance of feature extractors given 

the viewpoint invariance properties described in Chapter II.  Since we seek to 

evaluate the specific performance of each extraction algorithm and technique for 

a specific scene class, these image data sets are insufficient.  We have 

developed an image data set containing a sequence of consistent camera 

transformations captured from different scene classifications.  The following 

sections provide specific data set details. 
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1. Scene Types 

For our research, the scene categories found in [58] inspired us: office, 

living room, bedroom, kitchen, store, industrial, tall building, inside city, highway, 

coast, open country, mountain, forest and suburb scene classifications.  Since 

our goal is not scene classification, but instead is to determine the best feature 

detector/descriptor to use for each scene category, we broke up the categories 

slightly differently.  As noticed by previous research in semantic scene 

classification [58], indoor scenes can vary greatly in visible attributes and require 

sub-categories.  Based on the presence of an indoor scene’s displayed texture 

pattern and color change frequency variance and intensity (i.e. the frequency of 

variance of observed light wavelength,) we formed the sub-categories of interior 

dense and interior sparse.  We additionally added urban short building and high 

desert scenes.  For our images depicting an indoor dense scene, we captured a 

sequence of images in the Grand Ballroom of the Del Monte Hotel in Monterey, 

CA, centered on a water fountain.  For an indoor sparse scene, we used a wall in 

a typical foyer at the Naval Postgraduate School (NPS).  All outdoor scene image 

sequences were captured on the NPS campus and in the area surrounding 

Monterey, CA and Kernville, CA. 

2. Image Acquisition 

In support of the goal of evaluating extractor performance based on scene 

type, our experiments required an image sequence that includes camera 

transformations (scale, translation and rotation) that can also be easily recreated 

in multiple scene environments.  Since the metric range scales encountered in 

indoor and outdoor scenes vary widely, we chose to design a pattern that could 

apply to both indoor and outdoor environments by merely adjusting the scale of 

the pattern.  
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Figure 5.   Image capture pattern. 

We started by assuming that our sequence would begin with a reference 

image whose captured scene would mostly be contained within all the other 

images.  This is easily accomplished for relatively shallow scenes such as walls.  

Scenes with great depth such as landscapes have less overlap between the 

reference image and other images.  The advantages of non-planar, “deeper” 

scenes are more complex, non-affine transformations of scene content, which 

has higher demands on the interest point descriptors. 

Our capture pattern is centered on and symmetric about an object or aim 

point in the center of the scene we desire to capture.  For indoor scenes, our 

center point is fixed at 102 cm from the focal vertex, for outdoor scenes, it is 1 

meter.  The central object or benchmark gives us an aim point for each frame.  
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To demonstrate the camera transformations we wish to include in our 

experiments, we have opted for a radial pattern with seven sequence paths on 

which we situate our camera and capture our images.  As illustrated in Figure 5, 

the paths that are at +/- 45 degrees and the path that is perpendicular to the 

plane at the center of the scene are divided into five equidistant unit positions.  

The remaining paths that are oriented at 22.5 degrees and at 67.5 degrees 

contain only one capture point each, located at the end of a four-unit path.  

Hence, there are seven measurement points for four-unit distances, arranged 

circularly around the focal vertex.  For indoor sequences, we chose one unit of 

measurements on the pattern to equal one meter.  For outdoor sequences, we 

centered our pattern five meters from the wall/object and we let one unit of 

measurement equal four meters. 

To capture each scene in a set of images, we employed a 7.1-megapixel 

Canon Powershot Elph SD1000 with optical image stabilization. The camera was 

mounted on a tripod and triggered manually.  We began each experiment run by 

first establishing the sequence pattern in the environment to be captured.  The 

camera and tripod were then aligned to the location of the first position of the 

capture sequence and the viewfinder was used to aim the camera optics directly 

at the center of the central object or benchmark of the scene.  An image was 

captured at each location specified by the sequence pattern in this fashion.  

Our pattern accounts for scale, translation and out-of-plane rotation 

transformations.  To demonstrate in-plane rotation transformations within the 

data set, we formed synthetic rotations through image editing software.  New 

images were created by rotating the captured sequence shots to 035º, 160º, 

200º, and 325º from the initial capture position as shown in the upper left and 

upper right sample images in Figure 6.  The rotation operation preserves the 

image resolution and scale. 



 37 

 

Figure 6.   Sample data set images.  The 045.0 image was rotated 325º, and the 
137.0 image was rotated 035º. 

B. IMAGE PROCESSING METHODOLOGY 

Since we are evaluating how to best employ currently existing extractors 

given our data set, we first obtained implementations of each extractor that we 

desired to include in our experiments from the internet (see [67], [68], [69], [70].)  

We drew upon the sample source code that was available with the SURF and the 

Hess SIFT extractors to create an image-processing test framework.  The 

following sections detail the logic behind the framework design and 

implementation. 

1. Interest Point Detection 

As noted in Chapter II, interest point extraction involves two steps, point 

detection and point description.  The first functional section of our image-

processing framework includes image pre-processing and interest point 
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detection.  Before we can find interest points within a scene, the captured image 

requires some minor preparation and preprocessing operations such as size 

normalization and (for our framework) converting from color to grey scale.   

 

Figure 7.   Detected interest points plotted on a data set image. 

Mikolajczyk, et al. [10], [11] found that in the case of evaluating extractor 

performance, the specific detector employed was less of a performance factor 

than the descriptor algorithm employed.  That said, the MSER detector exhibited 

the best overall performance results.  Therefore, we decided to employ it for each 

descriptor tested except SURF and Hess SIFT in our experiments.  The SURF 

descriptor is tightly coupled to a Hessian-based point detector as discussed in 

Chapter II.  To provide a point of comparison between performance based upon 

MSER generated interest points and other detection means, we employed the 

DoG detector as described by Lowe [20] for the Hess SIFT descriptor.  Using the 

author recommended detector settings of ellipse-style regions and a scale size of 

two, MSER interest points are detected within all the images of the capture 
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sequence and then stored as interest point detection files for future processing.  

As shown in Figure 7, the MSER detection process generates regions, centered 

on a point of interest.  (For more detail on the MSER detector, see Chapter II.)   

2. Interest Point Description 

After detecting the candidate regions within all the images and after saving 

a listing of those interesting points, we need to generate the interest point 

descriptors.  With the corresponding MSER detection file for each image, we 

generated appropriate feature vectors for each description method.  The 

descriptor algorithms are executed with the respective author-recommended 

options and properties.  The descriptors are then stored in files for future 

processing. 

Since our target application is vision-based SLAM, the most relevant 

descriptors are based on viewpoint invariance and provide the greatest potential 

for long-term recall.  We have selected 10 descriptors: two versions of SIFT, 

PCA-SIFT, SURF, GLOH, Gradient Moments, Shape Context, Cross Correlation, 

Steerable Filters, Differential Invariants, and Complex Filters. 

3. Interest Point Correspondence 

After we have generated the interest points for each image, our next task 

is to find matching interest points between two images.  For this research, we 

need to compare each image against the reference image.  For all scenes, the 

image that was captured in the center and closest to the scene center object or 

benchmark was designated as reference image.  For the urban short building 

scenes, we also conduct additional experiment runs using the image captured in 

the center furthest way from the scene center or benchmark for the reference 

image.  For matching efficiency, we use the reference image descriptor vectors 

to build a KD tree.  Beginning with the dimension that has the greatest variance, 

the image descriptor files are loaded and then the nearest points for each vector 

are searched for in the KD tree.  Inspired by Hess [67], the comparison method 
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will find the two nearest neighbors of the input vector within the tree by using a 

Best Bin First (BBF), N-nearest neighbor search.   We compute the vector 

distance of the two closest match neighbors by finding the  sum of the squared 

difference (SSD) of each individual dimension.  If the vector distance of the first 

nearest neighbor is at least twice as “far” as the vector distance of the second 

nearest neighbor, then the first nearest neighbor is considered a potential match.  

This approach has yielded good performance in empirical evaluations of previous 

research [10], [11], [12], [13].  We attempt to store each potential match in a map 

data structure and perform a reverse-lookup.  That is, if the map indicates that 

the matched nearest neighbor is already contained within the map, that is if the 

interest point has already been matched to a different point, then the match with 

the least vector distance is determined to be the best match and the other match 

is removed from the map.  The result is a map containing point correspondences 

for each reference-image to image pair. 

C. CAMERA MOTION DETERMINATION 

The next functional step in our experiment is to determine the 3-D motion 

of the camera for each reference-image to image pair.  As with previous 

performance evaluations [10], [11], [12], [13], in this research, a determination of 

camera motion will serve as ground truth for our experiments and will be used to 

evaluate the correctness of the matches produced by each extraction algorithm.  

The objective of this process is to find outliers, meaning incorrect 

correspondences, not to validate the precise position of an interest point.  The 

assumption is that the transformation of correct correspondences can be 

successfully modeled with a fundamental matrix and that the fundamental matrix 

can be computed with standard methods.  This assumption allows us to use the 

fundamental matrix as a model of interest point movement between two images. 

Additionally, since our images are significantly larger in number (seven 

scenes of 99 images each) and size (7.1 mega-pixels) than images used in 

previous experiments (e.g., [11]), we found it inefficient to employ a hand-based 
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method of determining ground truth.  Because of the size of our images, the 

MSER detector typically generated many interest points.  For example, an image 

in our high-desert stump scene generated 18,066 interest points.  Instead of 

altering the detection threshold to reduce the number of interest points and 

possibly change the results of our experiment, we developed a method that 

utilizes all the detected points.  Additionally, since we expect to see large, out-of-

plane transformations in our images, we use an 8-point Random Sample 

Consensus (RANSAC) [71] to generate a fundamental matrix that describes the 

ground truth camera motion.  This way we can utilize all the detected points in 

our evaluation.  Each RANSAC generated Fundamental matrix is visually verified 

to ensure it accurately describes the camera transformations.  We describe our 

RANSAC approach in the next section. 

1. RANSAC Method 

RANSAC is a robust parameter estimation algorithm introduced by [71] 

that iteratively fits a mathematical model to experiment data.  In our application, 

for each reference-image to image pairing, our data is comprised of the point 

correspondence map and our model is a transformation matrix in space 

producing each match.  RANSAC iteration detailed in Figure 8 develops a 

convergence on a fundamental matrix that provides for the translation of one 

camera position to another.  As a result, the RANSAC algorithm will produce 

inliers that fit the model and outliers that do not fit the model within a specified 

tolerance of 8-pixels in re-projection.  This approach is not consistent with the 1.5 

to 3-pixel tolerances found in the work presented in [10], [11], [12], [13].  

However since we are not implementing an interest point region overlap method 

of determining an overlap error as in [10], [11], [12], [13], and because our 

images are much larger, a 1.5 to 3-pixel threshold is not sufficient to account for 

interest points with larger regions.  To determine an appropriate error threshold, 

we projected interest points from the reference image forward and from the 

subject image backward by transforming each set of descriptor-matched 
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corresponding points with the fundamental matrix.  We then produced a plot 

(such as the one shown in figure 11) of distances of normalized transformed 

point to the corresponding epipolar line (See [72] for additional information on 

epipolar geometry) and determined that a threshold of 8-pixels was conservative 

and appropriate for our data set. 

Determine: 

           n – the smallest number of points required  

           k – the number of iterations required 

           t – the threshold used to identify a point that fits well 

          d – the number of nearby points required to assert a line fits well 

Until k  iterations have occurred: 

          Draw a sample of n  points from the data at random 

          Fit specified model to that set of n  points  

          For each data point outside the sample: 

                    Test the distance from the point to the line against t; if the  

                    distance from the point to the line is less than t , the point  

                    is close 

          end 

          If there are d  or more points close to the line then there is a good fit.   

          Refit the line using all these points. 

end 

 

Use the best fit from this collection, using the fitting error as a criterion. 

Figure 8.   General RANSAC algorithm [from [73]] 

 
We estimate a RANSAC fundamental matrix and then minimize the model 

estimation errors through a Least Squares Error (LSE) algorithm. The resulting 

LSE fundamental matrix is used to re-calculate what interest points are inliers 

and what are not.  While the RANSAC generated inliers are subject to the 

random point selection, meaning the RANSAC-model usually has more error on 
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the inlier point set in a least-squares sense, the LSE solution on the other hand is 

a consensus solution over all inliers (instead of just eight) and has smaller error.   

 

 

Figure 9.   Sample image of matched interest points.  Green lines indicate 
RANSAC inliers, blue lines indicate RANSAC outliers. 

We validated this assumption through a manual inspection of the 

fundamental matrix determined correspondence inliers as shown in Figure 9.  If 
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the visual inspection indicated that the generated ground truth was not accurate, 

the inliers found in that image were invalidated and the measurements were 

updated accordingly.  These inlier/outlier values are essential to our performance 

calculations addressed in the next section. 

D. PERFORMANCE METRICS 

As it is our goal to determine which descriptor offers the best measurable 

performance within different scene types, we started with precision and recall 

metrics.  Since matching the MSER detected regions to produce a repeatability 

score (as in [10], [11], [12], and [13]) does not benefit our research, we derived 

an extractor efficiency score.  The measurement scores introduced in this section 

are generated based upon the partial scene overlap between the scene images 

and the reference image.  We do not calculate the actual overlap region since 

each extraction technique is evaluated against the same images and each 

descriptor has equal potential to generate the maximum number of accurate 

correspondences, the basis of our measurements, within the overlap region.  

1. Precision 

Precision (or 1-precision) is used in many forms of machine learning 

research to measure the fidelity of an operation [10], [11], [12].  In this thesis, a 

high precision score indicates that a high percentage of descriptor-matched 

points were correctly matched and follow the ground truth fundamental matrix.  

We calculate precision with the number of true positive matches relative to the 

total number of descriptor generated correspondence, given by: 

#

# #

correct matches
precision

correct matches false matches

 =
 +  

 

1-precision is often plotted verses recall to build a performance curve as 

presented in [11].  1-precision is calculated by 1 minus precision.   
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2. Recall 

Equally important as precision is the measurement of an application’s 

ability to correctly operate on all intended elements.  A high recall score in this 

thesis indicates that a descriptor correctly described and matched a high 

percentage of all possible point correspondences.  We calculate recall with the 

number of true positive matches relative to the total number of possible 

correspondence given by: 

#

 #         

correct matches
recall

lessor of detected points in reference frame or image frame

 =  

Note that this method, by limiting the maximum possible correspondence 

to the lesser number of detected points in the two images of interest, imposes an 

upper bound on the measurement of recall.   

3. Efficiency 

Previous detector and descriptor evaluations presented in [10], [11], [12], 

[13] utilized a repeatability score introduced by [10].  The repeatability score is 

primarily a measure of the degree of point detector invariance to transformations 

such as translation, rotation, illumination, blur and affine.  Since we employed 

only one detector, the repeatability score did not add significant weight to our 

research.  However, in the spirit of what the repeatability score represents for a 

detector, we developed an efficiency measurement for descriptors.  Given that 

we designed our scene capture pattern in such a fashion as to maximize the 

potential that each image frame contains the scene imaged in the reference 

image, each descriptor, based upon the detected regions, has equal opportunity 

to pick the same regions in the reference image and the subject image. 

We calculate efficiency as a measure to which a descriptor was capable of 

uniquely describing the detected points in both the reference image and the 

subject image, given by: 
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#

 #         

correspondence
efficiency

lessor of detected points in reference frame or image frame
=  

E. DESIGN SUMMARY 

 In this chapter, we have presented our experimental design from the 

image capture sequence that is utilized to generate our image data set to our 

specific methods for extracting and matching interest points.  Since we captured 

99 images at each of seven scenes, our design also includes a novel approach 

to visualize the results of each experiment run.  Additionally, we have explained 

the performance measures that we will use when presenting our results in the 

next chapter. 
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IV. RESULTS AND DISCUSSION 

In this chapter, we present the results of our experiments.  As defined 

formally in the previous chapter, we measure performance through precision, 

recall and efficiency.  Precision provides us with a measure of the detail in which 

an interest point is expressed by a particular descriptor.  Recall is a 

measurement of the relevance of matched points for a particular descriptor.  

Efficiency measures the ability of a particular descriptor to uniquely encode the 

detected points.  For reference, a perfect descriptor would give a recall of 1.0 and 

a precision of 1.0 with a high efficiency score relative to the other detectors.  

Likewise, if a descriptor achieves a high relative efficiency score, but fails to 

achieve a high precision or recall, then this indicates that while the descriptor 

was very efficient (i.e. it found many matches between images), few of the 

matches were correct and therefore the descriptor efficiency would be irrelevant. 

 
 

Figure 10.   Representative data set scene ballroom (“indoor dense”.) The 
reference image is on the left and another image on the right. 

Precision, recall and efficiency scores are calculated for each descriptor 

for each scene.  For example, in our ballroom scene, shown in Figure 10, with 

the Hess SIFT descriptor, comparing the image captured at an aspect angle of 

045, at a distance of 1 meter, and at a camera rotation of 000 against the 
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reference image yields 10972 interest points in the subject image and 7703 in the 

reference image.  Of these, 1007 were matched based on the Euclidean distance 

of the integer-based feature vectors with an average distance of 19670.  

Calculation of the fundamental matrix with RANSAC and LSE produced the 

following:  
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F was calculated from 964 of the 1007 points.  These 964 inliers were 

within a 1.178 pixel distance of the fundamental matrix generated epipolar lines 

on the average.  The following plot (Figure 11) shows the averaged forward and 

backward projection position errors for all 1007 points.  The distinction between 

an inlier and an outlier becomes obvious in this plot as the position error is at 

least one order of magnitude larger for outliers. 

 

Figure 11.   Representative y-axis log scale plot of fundamental matrix re-
projection errors.  Blue points indicate projections with errors that are 

eight or fewer pixels, green points indicate errors over eight pixels.  Note 
that our choice of eight pixels is conservative given the inlier and outlier 

error clustering.  
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The precision of Hess SIFT for this image is 964/1007 = 0.957299, 

meaning that 96% of the correspondences were correct matches based on a 

fundamental matrix.  The recall is 964/7703 = 0.125146., meaning that 13% of 

the possible interest points detected in the reference image were correctly 

matched by the descriptor.  Due to the extreme translation and rotation 

transformations and the out-of-plane transformations in our scenes, the recall 

score is expected to be rather small and is used as a relative comparison 

measure.  If we calculated the regions overlap, we could find a theoretical 

maximum for these values.  Efficiency of this detector-descriptor pairing is 

1007/7703 = 0.130728, since only 13% of the interest points that were detected 

in the reference image were found to be matches in the frame image by the 

descriptor.  Again, due to our test sequence, low values in efficiency are normal 

and expected. 

To better visualize the relative performance of each descriptor, we 

developed a unique, visually appealing method of presenting our results using 

heat maps.  The heat maps are a geometric, top down spatial chart depicting 

each descriptor’s performance at each capture location and image transformation 

as described in Chapter 3.  Figure 12 shows an example of precision, recall, and 

efficiency, respectively, for all image positions in a spatial heat map. 

The descriptor legend digraphs are as follows: HS- Hess SIFT, CF- 

Complex Filters, GH- GLOH, GM- Gradient Moments, DI- Differential Variants, 

CC- Cross Correlation, SF- Steerable Filters, PS- PCA SIFT, SC- Shape 

Context, LS- Lowe SIFT, and SU- SURF.  These digraphs are also found in the 

remaining sections of this chapter.  The error bars in Figure 13 show the 

minimum and maximum values of a particular score in this scene over all camera 

rotations. 

We created cumulative measures for all descriptors, all scenes, all angles, 

all rotations.  Figure 13 is an average over all positions and camera rotations for 

one scene and for one descriptor. 
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Figure 12.   Representative performance heat maps with camera in-plane rotation 
of 000. The (0,-0.120) grid location corresponds with the yellow star on 

the scene image and (0,0) with the focal vertex.  Precision (shown in the 
left graph) improves from 0 to 1, recall (center graph) from 0 to 0.1 and 
efficiency (right graph) from 0 to 0.1 as indicated in each map as blue 

(cold, bad) to red (hot, good.)   

 

Figure 13.   Representative scene performance averaged over all in-plane 
camera rotations.  Precision varies from 0 to 1, recall from 0 to 0.04 and 

efficiency from 0 to 0.045.  The descriptor legend digraphs are as 
follows: HS- Hess SIFT, CF- Complex Filters, GH- GLOH, GM- Gradient 
Moments, DI- Differential Variants, CC- Cross Correlation, SF- Steerable 

Filters, PS- PCA SIFT, SC- Shape Context, LS- Lowe SIFT, and SU- 
SURF.  Error bars indicate the minimum and maximum of the 

measurement among all camera rotations. 

A. INDOOR SCENES 

For the purposes of presenting our experiment results, only a 

representative sample of generated charts is included in this chapter.  Appendix 

A contains a complete compilation of results.  The scenes contained in our indoor 

data set present two indoor environments, one with a dense representation of 

texture patterns and color palette and one with sparse.   
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1. Dense: Ballroom 

In this scene, we see in Figure 16 that the Lowe SIFT descriptor achieved 

the highest precision and recall scores, followed closely by GLOH and Hess 

SIFT.  As we can see in the spatial heat maps in Figure 15, Lowe SIFT was also 

highly invariant to scale and translation transformations.  Additionally, the small 

variance in the precision score indicates that the Lowe SIFT descriptor was also 

highly invariant to rotation as the error bars are calculated over in-plane image 

rotations.  Notice in Figure 15 how the further distances from the reference image 

perform worse for all descriptors in terms of recall and efficiency, which is not 

surprising because of the extreme scale transformations demonstrated by our 

capture pattern. 

The performance scores of the lower dimensional spatial frequency-based 

descriptors in this scene are significantly lower than the performance scores of 

the high dimensional, distribution-based SIFT-like descriptors.  This seems to 

indicate that while the spatial frequency methods may perform very well in a 

short baseline application, their poor performance in a wide-baseline application 

may preclude usage.  The overall low scores in precision and recall for each of 

our experiments are a direct result of the complex and demanding nature of 

descriptor matching in our wide baseline test scenes with non-trivial camera 

transformations. 

Of additional note, in a significant portion of the image overlap area with 

the reference image for all the images captured at a aspect of 22.5 degrees and 

in the images captured at 135.0 degrees at 4 meters, we observed a bright 

reflection of the sun on the wall in the vicinity of the center point.  We believe that 

this localized illumination change, contributed to the overall lower performance in 

the descriptors, except the two SIFT descriptors (each utilizing a different 

detector) for these images.   
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Figure 14.   Ballroom fountain (dense scene) at distances of 5 meters and 
aspects of 000 and 045 degrees respectfully, from left to right. 

 

Figure 15.   Ballroom scene Lowe SIFT performance heat maps with in-plane 
camera rotation of 000. The (0,-0.120) grid location corresponds with the 
yellow star on the scene image and (0,0) with the focal vertex.  Precision 
(shown in the left graph) improves from 0 to 1, recall (center graph) from 

0 to 0.1 and efficiency (right graph) from 0 to 0.1 as indicated in each 
map as blue (cold, bad) to red (hot, good.)   

 

Figure 16.   Ballroom scene performance averaged over all in-plane camera 
rotations.  Precision varies from 0 to 1, recall from 0 to 0.04 and 

efficiency from 0 to 0.045.  Descriptor digraphs are the same as defined 
in Figure 13.  Error bars indicate the minimum and maximum of the 

measurement among all camera rotations. 
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2. Sparse: King Hall 

One of our goals in capturing a sparse indoor scene was to demonstrate 

the relative capability of each descriptor in an environment that is in essence a 

non-descript white wall with minimal peripheral objects.  This scene was captured 

in a typical foyer of an auditorium on the NPS campus.  It was our intuition that 

few, if any, descriptors within our inventory would provide significant performance 

scores due to the sparse texture, color and intensity pattern of the foyer.   

Not surprisingly, our initial assumptions were validated through this 

experiment.  Here, spatial frequency methods, differential invariants and gradient 

moments achieved the highest scores in precision and recall followed closely by 

steerable filters.  The corresponding efficiency scores for these descriptors also 

indicated a higher relative usage of the available detected points.  Of special 

note, only 10 MSER interest points were found in the reference image and an 

average of 150 points were found in the other images.  Upon a closer look, we 

discovered that all 10 points were found on a small black X that was made with a 

marker on a piece of tape that we placed on the wall to help center our camera 

aim point as seen in Figure 20.  

The number of interest points detected is a significant deviation from the 

other scenes (for example, 4432 MSER detected interest points were present in 

the Ballroom reference image and up to 18,066 were found in other scene 

images.)  Of the 10 interest points in the King Hall reference image, the 

differential invariant descriptor, for example, found an average of 8 

correspondences, the minimum number required for RANSAC to estimate a 

fundamental matrix.  Unsurprisingly, the high dimensional, distribution based 

descriptors such as SURF, SIFT and GLOH essentially failed to perform any 

better than the spatial frequency and moment methods in this scene. 
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Figure 17.   King Hall foyer (sparse scene) at distances of 5 meters and aspects 
of 000 and 045 degrees respectfully, from left to right. 

 

Figure 18.   King Hall scene gradient moments performance heat maps with in-
plane camera rotation of 000. The (0,-0.120) grid location corresponds 
with the yellow star on the scene image and (0,0) with the focal vertex.  
Precision (shown in the left graph) improves from 0 to 1, recall (center 

graph) from 0 to 0.1 and efficiency (right graph) from 0 to 0.1 as 
indicated in each map as blue (cold, bad) to red (hot, good.)     

 

Figure 19.   King Hall scene performance averaged over all in-plane camera 
rotations.  Precision varies from 0 to 1, recall from 0 to 0.07 and 

efficiency from 0 to 0.25.  Descriptor digraphs are the same as defined in 
Figure 13.  Error bars indicate the minimum and maximum of the 

measurement among all camera rotations. 
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Figure 20.   King Hall image captured at an aspect of 090.0 at a distance of 4 
meters. 

B. OUTDOOR SCENES 

In capturing portrayals of outdoor scenes, we desired to demonstrate not 

only the performance of each descriptor within non-planar, dense scenes of 

natural texture, but also to demonstrate the environment-relative consistency of 

our data set collection sequence.  As with the indoor scenes, in these 

experiments we designate the image captured perpendicular and closest to the 

scene center of each sequence as the sequence reference image. 

1. High Desert: Tree 

Our first outdoor scene was portrayed in a high-desert classification of 

environment and was captured in the vicinity of the Fairview national park 

campground on the Kern River, east of Bakersfield, CA. Note the limited color 

and texture variations in the scene.  These properties are consistent in all our 

high-desert scenes  

The descriptor with the highest average precision and recall scores was 

the Hess SIFT implementation.  Of particular interest in this experiment is the 
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uniform score distribution of the Hess SIFT precision in the majority of the heat 

map in Figure 22.  This demonstrates a high overall level of invariance to scale 

and translation transformations in positions with less than 67.5 degrees change 

in viewpoint.   

An important consideration in analyzing all the experiment results is as 

mentioned in Chapter III, the Hess SIFT (as well as the SURF) descriptor does 

not use the MSER generated interest points, but instead uses a DoG detector.  

The high performance scores of the Hess SIFT in this scene may indicate that 

the use of a detector other than the MSER detector may provide better 

performance scores for other descriptors in this scene.  The wide variances in 

the Hess SIFT and SURF recall measurements however, indicate that Hess 

SIFT, or at least the DoG detector it uses, and the SURF descriptor, or the 

Hessian determinant it uses, are not as invariant to camera rotation 

transformations as the other descriptors are with the MSER detected interest 

points.   
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Figure 21.   Tree (high desert scene) at distances of 20 meters and aspects of 
000 and 045 degrees respectfully, from left to right. 

 

Figure 22.   Tree scene Hess SIFT performance heat maps with in-plane camera 
rotation of 000. The (0,-1) grid location corresponds with the yellow star 
on the scene image and (0,0) with the focal vertex.  Precision (shown in 
the left graph) improves from 0 to 1, recall (center graph) from 0 to 0.1 
and efficiency (right graph) from 0 to 0.1 as indicated in each map as 

blue (cold, bad) to red (hot, good.)     

 

Figure 23.   Tree scene performance averaged over all in-plane camera rotations.  
Precision varies from 0 to 1, recall from 0 to 0.004 and efficiency from 0 

to 0.005.  Descriptor digraphs are the same as defined in Figure 13.  
Error bars indicate the minimum and maximum of the measurement 

among all camera rotations. 
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2. High Desert: Stump 

Also captured in the vicinity of Kern River, CA, this scene, as does all our 

high-desert scenes, presents a natural-occurring color palette and texture pattern 

with a large metric depth scale and potentially large out-of-plane transformations.  

Instead of a large tree (which occludes a large portion of the background in each 

image as with the previous high-desert scene), we centered this scene on the 

stump of a fallen tree.  This approach will induce more non-planar 

transformations through the change in the distant background.  

Once again, in this example of a high desert scene, the Hess SIFT 

descriptor had the best performance as demonstrated with the highest average 

precision and recall scores.  Hess SIFT also had the highest valid efficiency 

score.  Notice that the highest recall and efficiency scores in Figure 25 are along 

an axis extending from the center of the scene.  This is a result of the large out-of 

plane transformations inherent in the off-axis capture positions for this scene as 

well as the unavailability of most of the reference image distant background 

interest points due to the background regions not being within the field of view of 

both image capture directions. The other observations made for the previous 

scene (Figures 24-26 show sample images and results from the High Desert 

scene) apply to this scene as well. 
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Figure 24.   Stump (high desert scene) at distances of 20 meters and aspects of 
000 and 045 degrees respectfully, from left to right. 

 

Figure 25.   Stump scene Hess SIFT performance heat maps with in-plane 
camera rotation of 000. The (0,-120) grid location corresponds with the 

yellow star on the scene image and (0,0) with the focal vertex.  Precision 
(shown in the left graph) improves from 0 to 1, recall (center graph) from 

0 to 0.1 and efficiency (right graph) from 0 to 0.1 as indicated in each 
map as blue (cold, bad) to red (hot, good.)     

 

Figure 26.   Stump scene performance averaged over in-plane all camera 
rotations.  Precision varies from 0 to 1, recall from 0 to 0.03 and 

efficiency from 0 to 0.03.  Descriptor digraphs are the same as defined in 
Figure 13.  Error bars indicate the minimum and maximum of the 

measurement among all camera rotations. 
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3. High Desert: Hay Bale 

Our final scene captured from a high desert class environment is shown in 

Figure 27.  This scene is centered on a stack of hay bales and presents the 

same basic scene texture as is found in the previous two scenes; however, this 

scene also contains a sparse collection of non-natural straight edges in the form 

of a sign and a fence.  As with the previous high-desert scene, this scene will 

induce more non-planar transformations through the change in the distant 

background.  

Interestingly enough, this scene has generated nearly identical relative 

performance results as the previous two scenes.  This fact demonstrates the 

consistency and repeatability of the scores generated through our methodology 

and image capture sequence.  Again, notice that the highest recall and efficiency 

scores in Figure 28 are generated by the images that were captured along an 

axis extending from the center of the scene. 

Of particular note, our analysis of this scene revealed a significant 

illumination transformation in the images captured at an aspect of 135.0 degrees, 

20 meters and an aspect of 157.0 degrees, 16 meters due to the position of the 

sun.  Only the Hess SIFT descriptor was able to correctly match corresponding 

interest points at these capture positions, for all camera rotations.  This suggests 

a strong invariance of the Hess SIFT descriptor (and/or the DoG detector it 

employs) to a high level illumination change. 
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Figure 27.   Hay bale (high desert scene) at distances of 20 meters and aspects 
of 000 and 045 degrees respectfully, from left to right. 

 

Figure 28.   Hay bale scene Hess SIFT performance heat maps with in-plane 
camera rotation of 000. The (0,-1) grid location corresponds with the 

yellow star on the scene image and (0,0) with the focal vertex.  Precision 
(shown in the left graph) improves from 0 to 1, recall (center graph) from 

0 to 0.1 and efficiency (right graph) from 0 to 0.1 as indicated in each 
map as blue (cold, bad) to red (hot, good.)     

 

Figure 29.   Hay bale scene performance averaged over all in-plane camera 
rotations.  Precision varies from 0 to 1, recall from 0 to 0.045 and 

efficiency from 0 to 0.045.  Descriptor digraphs are the same as defined 
in Figure 13.  Error bars indicate the minimum and maximum of the 

measurement among all camera rotations. 
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4. Short Building: Halligan Hall 

For the short building category in our image data set, we started by 

imaging a typical 4-story building on the NPS campus.  Pictured in Figure 30 is 

Halligan Hall. 

The Hess SIFT descriptor clearly achieved the best relative precision and 

recall scores, followed closely by SURF.  We were surprised at the overall poor 

performance presented by all the descriptors.  Interestingly enough in this scene, 

the off-axis images that contain both the planar sides of the building 

demonstrated higher recall scores in Hess SIFT than the complimentary off-axis 

angles which contain the non-planar distant background (pictured to the right of 

the building in Figure 30.)  This is consistent in SURF, the other relatively high-

performing descriptor, and again shows that non-affine transformations pose 

significant challenges to these types of interest point descriptors. 
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Figure 30.   Halligan Hall (short building scene) at distances of 20 meters and 
aspects of 000 and 045 degrees respectfully, from left to right. 

 
Figure 31.   Halligan Hall scene Hess SIFT performance heat maps with in-plane 

camera rotation of 000. The (0,-1) grid location corresponds with the 
yellow star on the scene image and (0,0) with the focal vertex.  Precision 
(shown in the left graph) improves from 0 to 1, recall (center graph) from 

0 to 0.1 and efficiency (right graph) from 0 to 0.1 as indicated in each 
map as blue (cold, bad) to red (hot, good.)     

 

Figure 32.   Halligan Hall scene performance averaged over all in-plane camera 
rotations.  Precision varies from 0 to 1, recall from 0 to 0.01 and 

efficiency from 0 to 0.012.  Descriptor digraphs are the same as defined 
in Figure 13.  Error bars indicate the minimum and maximum of the 

measurement among all camera rotations. 
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5. Short Building: Unmanned Systems Lab  

On another side of Halligan Hall on the NPS campus, we captured a 

scene that presents a different short building aspect. We centered this scene on 

the front door of the Unmanned Systems Lab.   

In this scene, the Lowe SIFT descriptor achieved the highest relative 

precision/recall paired scores, followed closely by GLOH and PCA SIFT.  Similar 

to the results observed in the previous short building scene, all descriptors had 

very low relative recall and efficiency scores (note the scales of the performance 

bar graphs in Figure 35.)  This scene includes out-of-plane transformations 

induced by the outward protrusion of the concrete structure to the left of the door.  

This caused slightly higher scores in the images where the concrete structure 

was closer to the center of the images than those where the concrete structure 

was closer to the outside of the image as shown in Figure 33. 
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Figure 33.   Unmanned Systems Lab (short building scene) at distances of 20 
meters and aspects of 000 and 045 degrees respectfully, from left to 

right. 

 

Figure 34.   USL scene Lowe SIFT performance heat maps with in-plane camera 
rotation of 000. The (0,-1) grid location corresponds with the yellow star 
on the scene image and (0,0) with the focal vertex.  Precision (shown in 
the left graph) improves from 0 to 1, recall (center graph) from 0 to 0.1 
and efficiency (right graph) from 0 to 0.1 as indicated in each map as 

blue (cold, bad) to red (hot, good.)     

 

Figure 35.   USL scene performance averaged over all in-plane camera rotations.  
Precision varies from 0 to 1, recall from 0 to 0.0018 and efficiency from 0 to 

0.003.  Descriptor digraphs are the same as defined in Figure 13.  Error bars 
indicate the minimum and maximum of the measurement among all camera 

rotations. 
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C. ALTERNATE REFERENCE IMAGE 

Through our research analysis, we noticed that no descriptor provided a 

fair measure of performance in the Halligan Hall and (to a lesser extent) the 

Unmanned Systems Lab short building scenes.  We believe this a direct result of 

the large scale transformations of the scene combined with the lack of distance 

background interest points.  We replaced the reference image (the image 

captured perpendicular to and closest to the scene center with the image) with 

the image captured furthest away from and perpendicular to the scene center.  

We then re-ran our experiment on both short building scenes.  

1. Halligan Hall 

We replaced the reference image in the Halligan Hall short-building scene 

experiment with the image captured at a viewpoint aspect of 090.0 degrees and 

20 meters and re-ran the evaluation steps.  As we expected, our performance 

results improved significantly.  In Figure 37, we see that the distribution-based 

methods achieved the highest scores with the Lowe SIFT descriptor slightly 

outperforming the other high performing methods such as Hess SIFT, GLOH, 

and Cross Correlation in precision.  The Lowe SIFT also performed significantly 

better then all descriptors in recall and efficiency.  Like the experiments that 

utilized the closest image as the reference image, the positions that captured the 

scene further away from the reference point performed worse than those 

captured near the reference image did.   
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Figure 36.   Halligan Hall alternate reference scene Lowe SIFT performance heat 
maps with in-plane camera rotation of 000. The (0,-1) grid location 

corresponds with the yellow star on the scene image and (0,0) with the 
focal vertex.  Precision (shown in the left graph) improves from 0 to 1, 
recall (center graph) from 0 to 0.1 and efficiency (right graph) from 0 to 

0.1 as indicated in each map as blue (cold, bad) to red (hot, good.)     

 

Figure 37.   Halligan Hall alternate reference scene performance averaged over 
all in-plane camera rotations.  Precision varies from 0 to 1, recall from 0 
to 0.03 and efficiency from 0 to 0.03.  Descriptor digraphs are the same 
as defined in Figure 13.  Error bars indicate the minimum and maximum 

of the measurement among all camera rotations. 

2. Unmanned Systems Lab 

We also re-ran the USL scene experiment with the image captured at a 

viewpoint aspect of 090.0 degrees and 20 meters as the reference image.  With 

a similar overall performance increase as was seen in the Halligan Hall 

experiment with the alternate reference image, we have concluded that the 

choice of reference image does indeed have a significant impact on all the 

measurements of descriptor performance.  As was seen in the previous 

experiment, Lowe SIFT outperformed all other descriptors.   
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Figure 38.   USL alternate reference scene, Lowe SIFT performance heat maps 
with in-plane camera rotation of 000. The (0,-1) grid location 

corresponds with the yellow star on the scene image and (0,0) with the 
focal vertex.  Precision (shown in the left graph) improves from 0 to 1, 
recall (center graph) from 0 to 0.1 and efficiency (right graph) from 0 to 

0.1 as indicated in each map as blue (cold, bad) to red (hot, good.)   

 

Figure 39.   USL alternate reference scene performance averaged over all in-
plane camera rotations.  Precision varies from 0 to 1, recall from 0 to 

0.03 and efficiency from 0 to 0.03.  Descriptor digraphs are the same as 
defined in Figure 13.  Error bars indicate the minimum and maximum of 

the measurement among all camera rotations. 

D. OVERALL RESULT DISCUSSION 

Given the complex nature of the appearance changes achieved through 

the camera transformations demonstrated by our capture pattern, we were highly 

impressed with the individual performance of every descriptor tested within our 

inventory.  We did not expect to find that every descriptor produces primarily 

accurate Fundamental matrices for almost all image sequences.  Although each 

descriptor did surprisingly well, there were clear and distinctive top performers.  

All the SIFT-based descriptors obtain the best results in each scene except the 

King Hall (sparse scene) where no descriptor had sufficient performance to 

generate a reliable fundamental matrix.  This might be a result of the application 
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of the MSER detected interest points for each descriptor.  It is quite possible that 

the non-distribution-based descriptors require interest points found by other 

attributes than those found by MSER to operate properly.  While this aspect is 

beyond the scope of this thesis, we are intrigued by the possibility that the 

detector/descriptor pairing choice might be the most beneficial study given our 

research interests. 

The performance scores of the MSER-based Lowe SIFT and other SIFT-

derived extractors and the DoG-based Hess SIFT extractor were impressive.  

Specifically, the GLOH and Hess SIFT descriptors typically only correlated 

interest points (near zero percentage of outliers to inliers) that would later find 

accurate fundamental matrices. This occurred even in scenes where other 

descriptors could not find an accurate fundamental matrix.  Our analysis of the 

high-desert Hay Bale scene seems to indicate a strong invariance of the Hess 

SIFT descriptor (and/or the DoG detector it employs) to a high-level illumination 

change.  We also found that in the Ballroom indoor scene, the Hess SIFT and 

SURF recall measurements incurred a wide variation throughout the camera 

rotations.  This indicates that Hess SIFT, (again and/or the DoG detector it 

employs,) and the SURF descriptor, (and/or the Hessian determinant it employs,) 

are not as invariant to camera rotation transformations as the other descriptors 

are with interest points detected by MSER.   
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V. CONCLUSIONS AND FUTURE WORK 

A. SUMMARY 

In this thesis, we have presented a novel evaluation method for vision-

based interest point extraction that bases relative performance merit upon the 

level of demonstrated invariance within a scene type.  We have also presented a 

comparison of our performance measures with the conventional approaches 

introduced by [11].   

In general, we found the use of high-resolution images very time-intensive 

and processing resource demanding.  Our experimental runs for all detectors and 

all scenes took on average 24 hours to complete on our dual Intel Xeon quad 

core processor test platform with 16 GB of RAM.  We also found that compiling 

the results in the form of heat maps, plots, and stacked images with line 

correspondences was very taxing on available hard drive space.  Our total 

compilation of results occupied over 100 GB of hard drive space.  

The following paragraphs address our research questions individually. 

1. Extractor Selection based on Scene Classifications 

It was our goal to determine an appropriate interest point extractor to 

apply to an environment-based scene classification.  We specifically focused on 

interest point description, the second step of extraction, to be a key determination 

of classification-based performance.  Our research did not utilize a sufficient 

number of representative scenes of each class to draw decisive conclusions. It 

has shown that while each descriptor produced a clear level of performance in 

each scene type tested, the high-dimensional scale and rotation invariant 

descriptors (SIFT, GLOH, and sometimes SURF) consistently outperformed the 

other methods.  The fact that the relative performance scores of each descriptor 

were nearly identical in each of the three scene representatives of a high desert 
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scene seems to indicate that our test framework can consistently and quantifiable 

determine a best-suited extractor.  We found that the MSER-based, Lowe SIFT 

extractor produced the highest scores in the dense indoor scene represented by 

the Ballroom images.  We also found that the Lowe SIFT extractor performed the 

best in the two short building scenes when we changed our reference image.  

Additionally, the observation that the same SIFT-derived extractor (Hess SIFT) 

consistently produced the highest scores within the three high desert scenes, 

indicates that perhaps the key to conclusive results in this research is to test only 

SIFT-derived methods and couple them to different detectors to measure the 

overall extractor performance in a given scene type. 

2. Multiple Extractor Employment within a Single Ima ge. 

Ultimately, in an autonomous system platform, we would like to be able to 

sub-segment an image into semantically relevant regions and then employ the 

most suitable extractors in each.  This research only provides the initial 

experimental results of performance-based pairing of an extraction technique to a 

scene classification.  Given that, we believe that while processing resource 

limitations such as space and latency may preclude autonomous system use of 

this method of multiple extractor employment, our results indicate that given 

accurate and consistent sub-scene classification, it should be possible to 

optimally employ the best extractor. 

B. FUTURE WORK 

In the process of conducting this work, we came across many additional 

interesting avenues of inquiry than we were unable to conduct in the allotted 

time.  For example, we were unable to exhaustively test as many scene types as 

we desired. We captured scenes representative of indoor sparse, indoor dense, 

outdoor high desert and outdoor short building.  Future work should include 

image classifications such as office, living room, bedroom, kitchen, store,  
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industrial, tall building, inside city, highway, coast, open country, mountain, forest 

and suburb scene classifications buildings, city/street, agriculture/countryside, 

desert, and sea. 

In addition, inclusion of more examples of each scene type should be 

considered.  While the three high-desert scenes provide a measure of scene 

consistency for this research, for conclusive analysis, more scenes would be 

required for each classification type. 

In this research, we decided to assign the closest, perpendicular (aspect 

of 090.0) image to the scene center as our reference image for both indoor and 

outdoor classifications.  As we discovered in our short building scenes, this may 

not be the best method to analyze descriptor performance.  In future 

experiments, specifically in an outdoor environment with a much larger scale 

environment with natural occurring texture, consideration should be given to 

choosing an alternate image to designate as the reference image.   

Each detector and descriptor contains a set of operating parameters that 

allow fine-tuning of the algorithm to better fit the employment domain.   We tested 

each of the extraction pairs with the author recommended settings.  It would be 

an interesting effort to individually vary each parameter of each detector and 

each parameter of each descriptor to determine which paring of extractors 

perform the best with which set of paired parameters.  However, this complete 

study would be extremely, if not prohibitively, computationally intensive. 

Our efforts primarily employed only one detector for each descriptor with 

the exception of Hess SIFT and SURF.  It is our opinion that the spatial 

frequency methods and the gradient methods might perform better when coupled 

to different detectors.  

Our method of calculating camera motion ground truth performed well in 

our planar and non-planar scenes. However, the employment of additional 

ground truth finding methods such as the Trifocal Tensor method described in 

Chapter II, or employing an average function of all the scene fundamental 
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matrices generated for a camera capture sequence might be beneficial to help 

evaluate the results of images with large out-of-plane transformations.  Another 

option would be to calculate the true fundamental matrix given the actual camera 

movement and the calibration matrix. 

We presented a novel approach to the comparison of interest point 

extractors.  It would be interesting to compare our method of producing 

measurement scores to the scores generated with the conventional method 

found in [11].  The comparison would provide an opportunity to contrast the 

benefits of the two approaches.   

As we stated in Chapter I, our research interests are in autonomous 

systems.  With that said, our research did not seek to explore the clearly 

important issues of processing and memory limitations or time latency 

considerations of each descriptor.  This information would be required prior to 

properly determining which interest point extraction solution to deploy in a vision-

enabled autonomous system.  Most autonomous systems also only have lower 

resolution images available. 

C. CONCLUSION 

The results of this research provide immediate benefit to the current and 

future projects of the NPS Vision lab by facilitating the utilization of the best-

suited extraction techniques.  Furthermore, the increased reliance of the United 

States armed forces on the standoff war-fighting capabilities of unmanned and 

autonomous vehicles (UXV) in, on, and above the sea, necessitates better 

overall navigation capabilities of these platforms.  Our research contributes an 

important cornerstone towards the validation of precision, vision-based 

navigation, thereby increasing UXV performance and strengthening the security 

of the United States and her allies worldwide. 
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APPENDIX A 

This appendix contains the spatial heat maps for each scene, for each 

position, for each camera rotation produced as a result of our research.  Each 

scene section is preceded by an example image of the scene.  The descriptors 

are identified by a two letter digraphs and are defined as follows: HS- Hess SIFT, 

CF- Complex Filters, GH- GLOH, GM- Gradient Moments, DI- Differential 

Variants, CC- Cross Correlation, SF- Steerable Filters, PS- PCA SIFT, SC- 

Shape Context, LS- Lowe SIFT, and SU- SURF.  Precision (shown in the left 

heat map graph) improves from 0 to 1, recall (center heat map graph) from 0 to 

0.1 and efficiency (right heat map graph) from 0 to 0.1 as indicated in each map 

as blue (cold, bad) to red (hot, good.) 



(a) image at
200◦ rotation

(b) HS precision at
200◦ rotation

(c) HS recall at
200◦ rotation

(d) HS efficiency at
200◦ rotation

(e) image at
325◦ rotation

(f) HS precision at
325◦ rotation

(g) HS recall at
325◦ rotation

(h) HS efficiency at
325◦ rotation

(i) image at
000◦ rotation

(j) HS precision at
000◦ rotation

(k) HS recall at
000◦ rotation

(l) HS efficiency at
000◦ rotation

(m) image at
035◦ rotation

(n) HS precision at
035◦ rotation

(o) HS recall at
035◦ rotation

(p) HS efficiency at
035◦ rotation

(q) image at
160◦ rotation

(r) HS precision at
160◦ rotation

(s) HS recall at
160◦ rotation

(t) HS efficiency at
160◦ rotation

Figure 40. Heat maps for descriptor HS in the Ballroom scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=1m.
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(a) image at
200◦ rotation

(b) CF precision at
200◦ rotation

(c) CF recall at
200◦ rotation

(d) CF efficiency at
200◦ rotation

(e) image at
325◦ rotation

(f) CF precision at
325◦ rotation

(g) CF recall at
325◦ rotation

(h) CF efficiency at
325◦ rotation

(i) image at
000◦ rotation

(j) CF precision at
000◦ rotation

(k) CF recall at
000◦ rotation

(l) CF efficiency at
000◦ rotation

(m) image at
035◦ rotation

(n) CF precision at
035◦ rotation

(o) CF recall at
035◦ rotation

(p) CF efficiency at
035◦ rotation

(q) image at
160◦ rotation

(r) CF precision at
160◦ rotation

(s) CF recall at
160◦ rotation

(t) CF efficiency at
160◦ rotation

Figure 41. Heat maps for descriptor CF in the Ballroom scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=1m.
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(a) image at
200◦ rotation

(b) GH precision at
200◦ rotation

(c) GH recall at
200◦ rotation

(d) GH efficiency at
200◦ rotation

(e) image at
325◦ rotation

(f) GH precision at
325◦ rotation

(g) GH recall at
325◦ rotation

(h) GH efficiency at
325◦ rotation

(i) image at
000◦ rotation

(j) GH precision at
000◦ rotation

(k) GH recall at
000◦ rotation

(l) GH efficiency at
000◦ rotation

(m) image at
035◦ rotation

(n) GH precision at
035◦ rotation

(o) GH recall at
035◦ rotation

(p) GH efficiency at
035◦ rotation

(q) image at
160◦ rotation

(r) GH precision at
160◦ rotation

(s) GH recall at
160◦ rotation

(t) GH efficiency at
160◦ rotation

Figure 42. Heat maps for descriptor GH in the Ballroom scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=1m.
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(a) image at
200◦ rotation

(b) GM precision at
200◦ rotation

(c) GM recall at
200◦ rotation

(d) GM efficiency at
200◦ rotation

(e) image at
325◦ rotation

(f) GM precision at
325◦ rotation

(g) GM recall at
325◦ rotation

(h) GM efficiency at
325◦ rotation

(i) image at
000◦ rotation

(j) GM precision at
000◦ rotation

(k) GM recall at
000◦ rotation

(l) GM efficiency at
000◦ rotation

(m) image at
035◦ rotation

(n) GM precision at
035◦ rotation

(o) GM recall at
035◦ rotation

(p) GM efficiency at
035◦ rotation

(q) image at
160◦ rotation

(r) GM precision at
160◦ rotation

(s) GM recall at
160◦ rotation

(t) GM efficiency at
160◦ rotation

Figure 43. Heat maps for descriptor GM in the Ballroom scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=1m.
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(a) image at
200◦ rotation

(b) DI precision at
200◦ rotation

(c) DI recall at
200◦ rotation

(d) DI efficiency at
200◦ rotation

(e) image at
325◦ rotation

(f) DI precision at
325◦ rotation

(g) DI recall at
325◦ rotation

(h) DI efficiency at
325◦ rotation

(i) image at
000◦ rotation

(j) DI precision at
000◦ rotation

(k) DI recall at
000◦ rotation

(l) DI efficiency at
000◦ rotation

(m) image at
035◦ rotation

(n) DI precision at
035◦ rotation

(o) DI recall at
035◦ rotation

(p) DI efficiency at
035◦ rotation

(q) image at
160◦ rotation

(r) DI precision at
160◦ rotation

(s) DI recall at
160◦ rotation

(t) DI efficiency at
160◦ rotation

Figure 44. Heat maps for descriptor DI in the Ballroom scene at various rotations. The hexagonal
area represents the physical area in front of a target object in the scene located at (0,0). The
reference image was taken from (0,100). The axis scale is 100=1m.
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(a) image at
200◦ rotation

(b) CC precision at
200◦ rotation

(c) CC recall at
200◦ rotation

(d) CC efficiency at
200◦ rotation

(e) image at
325◦ rotation

(f) CC precision at
325◦ rotation

(g) CC recall at
325◦ rotation

(h) CC efficiency at
325◦ rotation

(i) image at
000◦ rotation

(j) CC precision at
000◦ rotation

(k) CC recall at
000◦ rotation

(l) CC efficiency at
000◦ rotation

(m) image at
035◦ rotation

(n) CC precision at
035◦ rotation

(o) CC recall at
035◦ rotation

(p) CC efficiency at
035◦ rotation

(q) image at
160◦ rotation

(r) CC precision at
160◦ rotation

(s) CC recall at
160◦ rotation

(t) CC efficiency at
160◦ rotation

Figure 45. Heat maps for descriptor CC in the Ballroom scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=1m.
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(a) image at
200◦ rotation

(b) SF precision at
200◦ rotation

(c) SF recall at
200◦ rotation

(d) SF efficiency at
200◦ rotation

(e) image at
325◦ rotation

(f) SF precision at
325◦ rotation

(g) SF recall at
325◦ rotation

(h) SF efficiency at
325◦ rotation

(i) image at
000◦ rotation

(j) SF precision at
000◦ rotation

(k) SF recall at
000◦ rotation

(l) SF efficiency at
000◦ rotation

(m) image at
035◦ rotation

(n) SF precision at
035◦ rotation

(o) SF recall at
035◦ rotation

(p) SF efficiency at
035◦ rotation

(q) image at
160◦ rotation

(r) SF precision at
160◦ rotation

(s) SF recall at
160◦ rotation

(t) SF efficiency at
160◦ rotation

Figure 46. Heat maps for descriptor SF in the Ballroom scene at various rotations. The hexag-
onal area represents the physical area in front of a target object in the scene located at (0,0).
The reference image was taken from (0,100). The axis scale is 100=1m.
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(a) image at
200◦ rotation

(b) PS precision at
200◦ rotation

(c) PS recall at
200◦ rotation

(d) PS efficiency at
200◦ rotation

(e) image at
325◦ rotation

(f) PS precision at
325◦ rotation

(g) PS recall at
325◦ rotation

(h) PS efficiency at
325◦ rotation

(i) image at
000◦ rotation

(j) PS precision at
000◦ rotation

(k) PS recall at
000◦ rotation

(l) PS efficiency at
000◦ rotation

(m) image at
035◦ rotation

(n) PS precision at
035◦ rotation

(o) PS recall at
035◦ rotation

(p) PS efficiency at
035◦ rotation

(q) image at
160◦ rotation

(r) PS precision at
160◦ rotation

(s) PS recall at
160◦ rotation

(t) PS efficiency at
160◦ rotation

Figure 47. Heat maps for descriptor PS in the Ballroom scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located
at (0,0). The reference image was taken from (0,100). The axis scale is 100=1m.
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(a) image at
200◦ rotation

(b) SC precision at
200◦ rotation

(c) SC recall at
200◦ rotation

(d) SC efficiency at
200◦ rotation

(e) image at
325◦ rotation

(f) SC precision at
325◦ rotation

(g) SC recall at
325◦ rotation

(h) SC efficiency at
325◦ rotation

(i) image at
000◦ rotation

(j) SC precision at
000◦ rotation

(k) SC recall at
000◦ rotation

(l) SC efficiency at
000◦ rotation

(m) image at
035◦ rotation

(n) SC precision at
035◦ rotation

(o) SC recall at
035◦ rotation

(p) SC efficiency at
035◦ rotation

(q) image at
160◦ rotation

(r) SC precision at
160◦ rotation

(s) SC recall at
160◦ rotation

(t) SC efficiency at
160◦ rotation

Figure 48. Heat maps for descriptor SC in the Ballroom scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located
at (0,0). The reference image was taken from (0,100). The axis scale is 100=1m.
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(a) image at
200◦ rotation

(b) LS precision at
200◦ rotation

(c) LS recall at
200◦ rotation

(d) LS efficiency at
200◦ rotation

(e) image at
325◦ rotation

(f) LS precision at
325◦ rotation

(g) LS recall at
325◦ rotation

(h) LS efficiency at
325◦ rotation

(i) image at
000◦ rotation

(j) LS precision at
000◦ rotation

(k) LS recall at
000◦ rotation

(l) LS efficiency at
000◦ rotation

(m) image at
035◦ rotation

(n) LS precision at
035◦ rotation

(o) LS recall at
035◦ rotation

(p) LS efficiency at
035◦ rotation

(q) image at
160◦ rotation

(r) LS precision at
160◦ rotation

(s) LS recall at
160◦ rotation

(t) LS efficiency at
160◦ rotation

Figure 49. Heat maps for descriptor LS in the Ballroom scene at various rotations. The hexag-
onal area represents the physical area in front of a target object in the scene located at (0,0).
The reference image was taken from (0,100). The axis scale is 100=1m.
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(a) image at
200◦ rotation

(b) SU precision at
200◦ rotation

(c) SU recall at
200◦ rotation

(d) SU efficiency at
200◦ rotation

(e) image at
325◦ rotation

(f) SU precision at
325◦ rotation

(g) SU recall at
325◦ rotation

(h) SU efficiency at
325◦ rotation

(i) image at
000◦ rotation

(j) SU precision at
000◦ rotation

(k) SU recall at
000◦ rotation

(l) SU efficiency at
000◦ rotation

(m) image at
035◦ rotation

(n) SU precision at
035◦ rotation

(o) SU recall at
035◦ rotation

(p) SU efficiency at
035◦ rotation

(q) image at
160◦ rotation

(r) SU precision at
160◦ rotation

(s) SU recall at
160◦ rotation

(t) SU efficiency at
160◦ rotation

Figure 50. Heat maps for descriptor SU in the Ballroom scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=1m.
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(a) image at
200◦ rotation

(b) HS precision at
200◦ rotation

(c) HS recall at
200◦ rotation

(d) HS efficiency at
200◦ rotation

(e) image at
325◦ rotation

(f) HS precision at
325◦ rotation

(g) HS recall at
325◦ rotation

(h) HS efficiency at
325◦ rotation

(i) image at
000◦ rotation

(j) HS precision at
000◦ rotation

(k) HS recall at
000◦ rotation

(l) HS efficiency at
000◦ rotation

(m) image at
035◦ rotation

(n) HS precision at
035◦ rotation

(o) HS recall at
035◦ rotation

(p) HS efficiency at
035◦ rotation

(q) image at
160◦ rotation

(r) HS precision at
160◦ rotation

(s) HS recall at
160◦ rotation

(t) HS efficiency at
160◦ rotation

Figure 51. Heat maps for descriptor HS in the KingHall scene at various rotations. The hexag-
onal area represents the physical area in front of a target object in the scene located at (0,0).
The reference image was taken from (0,100). The axis scale is 100=1m.

87



(a) image at
200◦ rotation

(b) CF precision at
200◦ rotation

(c) CF recall at
200◦ rotation

(d) CF efficiency at
200◦ rotation

(e) image at
325◦ rotation

(f) CF precision at
325◦ rotation

(g) CF recall at
325◦ rotation

(h) CF efficiency at
325◦ rotation

(i) image at
000◦ rotation

(j) CF precision at
000◦ rotation

(k) CF recall at
000◦ rotation

(l) CF efficiency at
000◦ rotation

(m) image at
035◦ rotation

(n) CF precision at
035◦ rotation

(o) CF recall at
035◦ rotation

(p) CF efficiency at
035◦ rotation

(q) image at
160◦ rotation

(r) CF precision at
160◦ rotation

(s) CF recall at
160◦ rotation

(t) CF efficiency at
160◦ rotation

Figure 52. Heat maps for descriptor CF in the KingHall scene at various rotations. The hexag-
onal area represents the physical area in front of a target object in the scene located at (0,0).
The reference image was taken from (0,100). The axis scale is 100=1m.
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(a) image at
200◦ rotation

(b) GH precision at
200◦ rotation

(c) GH recall at
200◦ rotation

(d) GH efficiency at
200◦ rotation

(e) image at
325◦ rotation

(f) GH precision at
325◦ rotation

(g) GH recall at
325◦ rotation

(h) GH efficiency at
325◦ rotation

(i) image at
000◦ rotation

(j) GH precision at
000◦ rotation

(k) GH recall at
000◦ rotation

(l) GH efficiency at
000◦ rotation

(m) image at
035◦ rotation

(n) GH precision at
035◦ rotation

(o) GH recall at
035◦ rotation

(p) GH efficiency at
035◦ rotation

(q) image at
160◦ rotation

(r) GH precision at
160◦ rotation

(s) GH recall at
160◦ rotation

(t) GH efficiency at
160◦ rotation

Figure 53. Heat maps for descriptor GH in the KingHall scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=1m.
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(a) image at
200◦ rotation

(b) GM precision at
200◦ rotation

(c) GM recall at
200◦ rotation

(d) GM efficiency at
200◦ rotation

(e) image at
325◦ rotation

(f) GM precision at
325◦ rotation

(g) GM recall at
325◦ rotation

(h) GM efficiency at
325◦ rotation

(i) image at
000◦ rotation

(j) GM precision at
000◦ rotation

(k) GM recall at
000◦ rotation

(l) GM efficiency at
000◦ rotation

(m) image at
035◦ rotation

(n) GM precision at
035◦ rotation

(o) GM recall at
035◦ rotation

(p) GM efficiency at
035◦ rotation

(q) image at
160◦ rotation

(r) GM precision at
160◦ rotation

(s) GM recall at
160◦ rotation

(t) GM efficiency at
160◦ rotation

Figure 54. Heat maps for descriptor GM in the KingHall scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=1m.
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(a) image at
200◦ rotation

(b) DI precision at
200◦ rotation

(c) DI recall at
200◦ rotation

(d) DI efficiency at
200◦ rotation

(e) image at
325◦ rotation

(f) DI precision at
325◦ rotation

(g) DI recall at
325◦ rotation

(h) DI efficiency at
325◦ rotation

(i) image at
000◦ rotation

(j) DI precision at
000◦ rotation

(k) DI recall at
000◦ rotation

(l) DI efficiency at
000◦ rotation

(m) image at
035◦ rotation

(n) DI precision at
035◦ rotation

(o) DI recall at
035◦ rotation

(p) DI efficiency at
035◦ rotation

(q) image at
160◦ rotation

(r) DI precision at
160◦ rotation

(s) DI recall at
160◦ rotation

(t) DI efficiency at
160◦ rotation

Figure 55. Heat maps for descriptor DI in the KingHall scene at various rotations. The hexagonal
area represents the physical area in front of a target object in the scene located at (0,0). The
reference image was taken from (0,100). The axis scale is 100=1m.
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(a) image at
200◦ rotation

(b) CC precision at
200◦ rotation

(c) CC recall at
200◦ rotation

(d) CC efficiency at
200◦ rotation

(e) image at
325◦ rotation

(f) CC precision at
325◦ rotation

(g) CC recall at
325◦ rotation

(h) CC efficiency at
325◦ rotation

(i) image at
000◦ rotation

(j) CC precision at
000◦ rotation

(k) CC recall at
000◦ rotation

(l) CC efficiency at
000◦ rotation

(m) image at
035◦ rotation

(n) CC precision at
035◦ rotation

(o) CC recall at
035◦ rotation

(p) CC efficiency at
035◦ rotation

(q) image at
160◦ rotation

(r) CC precision at
160◦ rotation

(s) CC recall at
160◦ rotation

(t) CC efficiency at
160◦ rotation

Figure 56. Heat maps for descriptor CC in the KingHall scene at various rotations. The hexag-
onal area represents the physical area in front of a target object in the scene located at (0,0).
The reference image was taken from (0,100). The axis scale is 100=1m.
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(a) image at
200◦ rotation

(b) SF precision at
200◦ rotation

(c) SF recall at
200◦ rotation

(d) SF efficiency at
200◦ rotation

(e) image at
325◦ rotation

(f) SF precision at
325◦ rotation

(g) SF recall at
325◦ rotation

(h) SF efficiency at
325◦ rotation

(i) image at
000◦ rotation

(j) SF precision at
000◦ rotation

(k) SF recall at
000◦ rotation

(l) SF efficiency at
000◦ rotation

(m) image at
035◦ rotation

(n) SF precision at
035◦ rotation

(o) SF recall at
035◦ rotation

(p) SF efficiency at
035◦ rotation

(q) image at
160◦ rotation

(r) SF precision at
160◦ rotation

(s) SF recall at
160◦ rotation

(t) SF efficiency at
160◦ rotation

Figure 57. Heat maps for descriptor SF in the KingHall scene at various rotations. The hexagonal
area represents the physical area in front of a target object in the scene located at (0,0). The
reference image was taken from (0,100). The axis scale is 100=1m.
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(a) image at
200◦ rotation

(b) PS precision at
200◦ rotation

(c) PS recall at
200◦ rotation

(d) PS efficiency at
200◦ rotation

(e) image at
325◦ rotation

(f) PS precision at
325◦ rotation

(g) PS recall at
325◦ rotation

(h) PS efficiency at
325◦ rotation

(i) image at
000◦ rotation

(j) PS precision at
000◦ rotation

(k) PS recall at
000◦ rotation

(l) PS efficiency at
000◦ rotation

(m) image at
035◦ rotation

(n) PS precision at
035◦ rotation

(o) PS recall at
035◦ rotation

(p) PS efficiency at
035◦ rotation

(q) image at
160◦ rotation

(r) PS precision at
160◦ rotation

(s) PS recall at
160◦ rotation

(t) PS efficiency at
160◦ rotation

Figure 58. Heat maps for descriptor PS in the KingHall scene at various rotations. The hexag-
onal area represents the physical area in front of a target object in the scene located at (0,0).
The reference image was taken from (0,100). The axis scale is 100=1m.
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(a) image at
200◦ rotation

(b) SC precision at
200◦ rotation

(c) SC recall at
200◦ rotation

(d) SC efficiency at
200◦ rotation

(e) image at
325◦ rotation

(f) SC precision at
325◦ rotation

(g) SC recall at
325◦ rotation

(h) SC efficiency at
325◦ rotation

(i) image at
000◦ rotation

(j) SC precision at
000◦ rotation

(k) SC recall at
000◦ rotation

(l) SC efficiency at
000◦ rotation

(m) image at
035◦ rotation

(n) SC precision at
035◦ rotation

(o) SC recall at
035◦ rotation

(p) SC efficiency at
035◦ rotation

(q) image at
160◦ rotation

(r) SC precision at
160◦ rotation

(s) SC recall at
160◦ rotation

(t) SC efficiency at
160◦ rotation

Figure 59. Heat maps for descriptor SC in the KingHall scene at various rotations. The hexag-
onal area represents the physical area in front of a target object in the scene located at (0,0).
The reference image was taken from (0,100). The axis scale is 100=1m.
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(a) image at
200◦ rotation

(b) LS precision at
200◦ rotation

(c) LS recall at
200◦ rotation

(d) LS efficiency at
200◦ rotation

(e) image at
325◦ rotation

(f) LS precision at
325◦ rotation

(g) LS recall at
325◦ rotation

(h) LS efficiency at
325◦ rotation

(i) image at
000◦ rotation

(j) LS precision at
000◦ rotation

(k) LS recall at
000◦ rotation

(l) LS efficiency at
000◦ rotation

(m) image at
035◦ rotation

(n) LS precision at
035◦ rotation

(o) LS recall at
035◦ rotation

(p) LS efficiency at
035◦ rotation

(q) image at
160◦ rotation

(r) LS precision at
160◦ rotation

(s) LS recall at
160◦ rotation

(t) LS efficiency at
160◦ rotation

Figure 60. Heat maps for descriptor LS in the KingHall scene at various rotations. The hexagonal
area represents the physical area in front of a target object in the scene located at (0,0). The
reference image was taken from (0,100). The axis scale is 100=1m.
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(a) image at
200◦ rotation

(b) SU precision at
200◦ rotation

(c) SU recall at
200◦ rotation

(d) SU efficiency at
200◦ rotation

(e) image at
325◦ rotation

(f) SU precision at
325◦ rotation

(g) SU recall at
325◦ rotation

(h) SU efficiency at
325◦ rotation

(i) image at
000◦ rotation

(j) SU precision at
000◦ rotation

(k) SU recall at
000◦ rotation

(l) SU efficiency at
000◦ rotation

(m) image at
035◦ rotation

(n) SU precision at
035◦ rotation

(o) SU recall at
035◦ rotation

(p) SU efficiency at
035◦ rotation

(q) image at
160◦ rotation

(r) SU precision at
160◦ rotation

(s) SU recall at
160◦ rotation

(t) SU efficiency at
160◦ rotation

Figure 61. Heat maps for descriptor SU in the KingHall scene at various rotations. The hexag-
onal area represents the physical area in front of a target object in the scene located at (0,0).
The reference image was taken from (0,100). The axis scale is 100=1m.
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(q) image at
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(r) HS precision at
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(s) HS recall at
160◦ rotation

(t) HS efficiency at
160◦ rotation

Figure 62. Heat maps for descriptor HS in the OutHay scene at various rotations. The hexagonal
area represents the physical area in front of a target object in the scene located at (0,0). The
reference image was taken from (0,100). The axis scale is 100=4m.
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(t) CF efficiency at
160◦ rotation

Figure 63. Heat maps for descriptor CF in the OutHay scene at various rotations. The hexagonal
area represents the physical area in front of a target object in the scene located at (0,0). The
reference image was taken from (0,100). The axis scale is 100=4m.
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160◦ rotation

Figure 64. Heat maps for descriptor GH in the OutHay scene at various rotations. The hexagonal
area represents the physical area in front of a target object in the scene located at (0,0). The
reference image was taken from (0,100). The axis scale is 100=4m.
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Figure 65. Heat maps for descriptor GM in the OutHay scene at various rotations. The hexagonal
area represents the physical area in front of a target object in the scene located at (0,0). The
reference image was taken from (0,100). The axis scale is 100=4m.
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(s) DI recall at
160◦ rotation

(t) DI efficiency at
160◦ rotation

Figure 66. Heat maps for descriptor DI in the OutHay scene at various rotations. The hexagonal
area represents the physical area in front of a target object in the scene located at (0,0). The
reference image was taken from (0,100). The axis scale is 100=4m.
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160◦ rotation

Figure 67. Heat maps for descriptor CC in the OutHay scene at various rotations. The hexagonal
area represents the physical area in front of a target object in the scene located at (0,0). The
reference image was taken from (0,100). The axis scale is 100=4m.
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(t) SF efficiency at
160◦ rotation

Figure 68. Heat maps for descriptor SF in the OutHay scene at various rotations. The hexagonal
area represents the physical area in front of a target object in the scene located at (0,0). The
reference image was taken from (0,100). The axis scale is 100=4m.
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(t) PS efficiency at
160◦ rotation

Figure 69. Heat maps for descriptor PS in the OutHay scene at various rotations. The hexagonal
area represents the physical area in front of a target object in the scene located at (0,0). The
reference image was taken from (0,100). The axis scale is 100=4m.
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(q) image at
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160◦ rotation

(t) SC efficiency at
160◦ rotation

Figure 70. Heat maps for descriptor SC in the OutHay scene at various rotations. The hexagonal
area represents the physical area in front of a target object in the scene located at (0,0). The
reference image was taken from (0,100). The axis scale is 100=4m.
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000◦ rotation

(k) LS recall at
000◦ rotation

(l) LS efficiency at
000◦ rotation
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160◦ rotation

(t) LS efficiency at
160◦ rotation

Figure 71. Heat maps for descriptor LS in the OutHay scene at various rotations. The hexagonal
area represents the physical area in front of a target object in the scene located at (0,0). The
reference image was taken from (0,100). The axis scale is 100=4m.
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160◦ rotation

(t) SU efficiency at
160◦ rotation

Figure 72. Heat maps for descriptor SU in the OutHay scene at various rotations. The hexagonal
area represents the physical area in front of a target object in the scene located at (0,0). The
reference image was taken from (0,100). The axis scale is 100=4m.

108



(a) image at
200◦ rotation

(b) HS precision at
200◦ rotation

(c) HS recall at
200◦ rotation
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(t) HS efficiency at
160◦ rotation

Figure 73. Heat maps for descriptor HS in the OutHaligan scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=4m.
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160◦ rotation

(t) CF efficiency at
160◦ rotation

Figure 74. Heat maps for descriptor CF in the OutHaligan scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=4m.
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(t) GH efficiency at
160◦ rotation

Figure 75. Heat maps for descriptor GH in the OutHaligan scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=4m.
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160◦ rotation

Figure 76. Heat maps for descriptor GM in the OutHaligan scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=4m.
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(t) DI efficiency at
160◦ rotation

Figure 77. Heat maps for descriptor DI in the OutHaligan scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=4m.
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160◦ rotation

Figure 78. Heat maps for descriptor CC in the OutHaligan scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=4m.
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Figure 79. Heat maps for descriptor SF in the OutHaligan scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=4m.
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160◦ rotation

Figure 80. Heat maps for descriptor PS in the OutHaligan scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=4m.
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(t) SC efficiency at
160◦ rotation

Figure 81. Heat maps for descriptor SC in the OutHaligan scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=4m.
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160◦ rotation

Figure 82. Heat maps for descriptor LS in the OutHaligan scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=4m.
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160◦ rotation

Figure 83. Heat maps for descriptor SU in the OutHaligan scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=4m.
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Figure 84. Heat maps for descriptor HS in the OutStump scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=4m.
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Figure 85. Heat maps for descriptor CF in the OutStump scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=4m.
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Figure 86. Heat maps for descriptor GH in the OutStump scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=4m.
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160◦ rotation

Figure 87. Heat maps for descriptor GM in the OutStump scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=4m.
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(t) DI efficiency at
160◦ rotation

Figure 88. Heat maps for descriptor DI in the OutStump scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=4m.
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160◦ rotation

Figure 89. Heat maps for descriptor CC in the OutStump scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=4m.
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(t) SF efficiency at
160◦ rotation

Figure 90. Heat maps for descriptor SF in the OutStump scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=4m.
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(e) image at
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160◦ rotation

(t) PS efficiency at
160◦ rotation

Figure 91. Heat maps for descriptor PS in the OutStump scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=4m.
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(t) SC efficiency at
160◦ rotation

Figure 92. Heat maps for descriptor SC in the OutStump scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=4m.
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(h) LS efficiency at
325◦ rotation

(i) image at
000◦ rotation

(j) LS precision at
000◦ rotation

(k) LS recall at
000◦ rotation
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160◦ rotation

(t) LS efficiency at
160◦ rotation

Figure 93. Heat maps for descriptor LS in the OutStump scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=4m.
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(e) image at
325◦ rotation

(f) SU precision at
325◦ rotation

(g) SU recall at
325◦ rotation
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160◦ rotation

(t) SU efficiency at
160◦ rotation

Figure 94. Heat maps for descriptor SU in the OutStump scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=4m.
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(d) HS efficiency at
200◦ rotation

(e) image at
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325◦ rotation

(i) image at
000◦ rotation
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035◦ rotation
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(p) HS efficiency at
035◦ rotation

(q) image at
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(r) HS precision at
160◦ rotation

(s) HS recall at
160◦ rotation

(t) HS efficiency at
160◦ rotation

Figure 95. Heat maps for descriptor HS in the OutTree scene at various rotations. The hexagonal
area represents the physical area in front of a target object in the scene located at (0,0). The
reference image was taken from (0,100). The axis scale is 100=4m.
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(d) CF efficiency at
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(s) CF recall at
160◦ rotation

(t) CF efficiency at
160◦ rotation

Figure 96. Heat maps for descriptor CF in the OutTree scene at various rotations. The hexagonal
area represents the physical area in front of a target object in the scene located at (0,0). The
reference image was taken from (0,100). The axis scale is 100=4m.
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(d) GH efficiency at
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(p) GH efficiency at
035◦ rotation

(q) image at
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(r) GH precision at
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(s) GH recall at
160◦ rotation

(t) GH efficiency at
160◦ rotation

Figure 97. Heat maps for descriptor GH in the OutTree scene at various rotations. The hexag-
onal area represents the physical area in front of a target object in the scene located at (0,0).
The reference image was taken from (0,100). The axis scale is 100=4m.
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(e) image at
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160◦ rotation

(t) GM efficiency at
160◦ rotation

Figure 98. Heat maps for descriptor GM in the OutTree scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located
at (0,0). The reference image was taken from (0,100). The axis scale is 100=4m.
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(s) DI recall at
160◦ rotation

(t) DI efficiency at
160◦ rotation

Figure 99. Heat maps for descriptor DI in the OutTree scene at various rotations. The hexagonal
area represents the physical area in front of a target object in the scene located at (0,0). The
reference image was taken from (0,100). The axis scale is 100=4m.
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035◦ rotation
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160◦ rotation

(t) CC efficiency at
160◦ rotation

Figure 100. Heat maps for descriptor CC in the OutTree scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=4m.
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(t) SF efficiency at
160◦ rotation

Figure 101. Heat maps for descriptor SF in the OutTree scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=4m.
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160◦ rotation

(t) PS efficiency at
160◦ rotation

Figure 102. Heat maps for descriptor PS in the OutTree scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=4m.
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(e) image at
325◦ rotation

(f) SC precision at
325◦ rotation

(g) SC recall at
325◦ rotation

(h) SC efficiency at
325◦ rotation

(i) image at
000◦ rotation

(j) SC precision at
000◦ rotation

(k) SC recall at
000◦ rotation

(l) SC efficiency at
000◦ rotation

(m) image at
035◦ rotation

(n) SC precision at
035◦ rotation

(o) SC recall at
035◦ rotation

(p) SC efficiency at
035◦ rotation
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(t) SC efficiency at
160◦ rotation

Figure 103. Heat maps for descriptor SC in the OutTree scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=4m.
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(t) LS efficiency at
160◦ rotation

Figure 104. Heat maps for descriptor LS in the OutTree scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=4m.
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(q) image at
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(t) SU efficiency at
160◦ rotation

Figure 105. Heat maps for descriptor SU in the OutTree scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=4m.

141



(a) image at
200◦ rotation

(b) HS precision at
200◦ rotation

(c) HS recall at
200◦ rotation
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160◦ rotation

(t) HS efficiency at
160◦ rotation

Figure 106. Heat maps for descriptor HS in the OutUSL scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=4m.
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(t) CF efficiency at
160◦ rotation

Figure 107. Heat maps for descriptor CF in the OutUSL scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=4m.
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(q) image at
160◦ rotation

(r) GH precision at
160◦ rotation
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(t) GH efficiency at
160◦ rotation

Figure 108. Heat maps for descriptor GH in the OutUSL scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=4m.

144



(a) image at
200◦ rotation

(b) GM precision at
200◦ rotation

(c) GM recall at
200◦ rotation

(d) GM efficiency at
200◦ rotation

(e) image at
325◦ rotation

(f) GM precision at
325◦ rotation

(g) GM recall at
325◦ rotation

(h) GM efficiency at
325◦ rotation

(i) image at
000◦ rotation

(j) GM precision at
000◦ rotation

(k) GM recall at
000◦ rotation

(l) GM efficiency at
000◦ rotation

(m) image at
035◦ rotation

(n) GM precision at
035◦ rotation

(o) GM recall at
035◦ rotation

(p) GM efficiency at
035◦ rotation
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160◦ rotation

Figure 109. Heat maps for descriptor GM in the OutUSL scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=4m.
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(t) DI efficiency at
160◦ rotation

Figure 110. Heat maps for descriptor DI in the OutUSL scene at various rotations. The hexag-
onal area represents the physical area in front of a target object in the scene located at (0,0).
The reference image was taken from (0,100). The axis scale is 100=4m.
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(t) CC efficiency at
160◦ rotation

Figure 111. Heat maps for descriptor CC in the OutUSL scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=4m.
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Figure 112. Heat maps for descriptor SF in the OutUSL scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=4m.
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(t) PS efficiency at
160◦ rotation

Figure 113. Heat maps for descriptor PS in the OutUSL scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=4m.
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Figure 114. Heat maps for descriptor SC in the OutUSL scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=4m.
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160◦ rotation

Figure 115. Heat maps for descriptor LS in the OutUSL scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=4m.
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Figure 116. Heat maps for descriptor SU in the OutUSL scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,100). The axis scale is 100=4m.
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160◦ rotation

Figure 117. Heat maps for descriptor HS in the OutHaliganRef scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,500). The axis scale is 100=4m.
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(t) CF efficiency at
160◦ rotation

Figure 118. Heat maps for descriptor CF in the OutHaliganRef scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,500). The axis scale is 100=4m.
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160◦ rotation

Figure 119. Heat maps for descriptor GH in the OutHaliganRef scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,500). The axis scale is 100=4m.
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160◦ rotation

Figure 120. Heat maps for descriptor GM in the OutHaliganRef scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,500). The axis scale is 100=4m.
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(t) DI efficiency at
160◦ rotation

Figure 121. Heat maps for descriptor DI in the OutHaliganRef scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,500). The axis scale is 100=4m.
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160◦ rotation

Figure 122. Heat maps for descriptor CC in the OutHaliganRef scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,500). The axis scale is 100=4m.
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(t) SF efficiency at
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Figure 123. Heat maps for descriptor SF in the OutHaliganRef scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,500). The axis scale is 100=4m.
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(t) PS efficiency at
160◦ rotation

Figure 124. Heat maps for descriptor PS in the OutHaliganRef scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,500). The axis scale is 100=4m.
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Figure 125. Heat maps for descriptor SC in the OutHaliganRef scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,500). The axis scale is 100=4m.
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Figure 126. Heat maps for descriptor LS in the OutHaliganRef scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,500). The axis scale is 100=4m.
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160◦ rotation

Figure 127. Heat maps for descriptor SU in the OutHaliganRef scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,500). The axis scale is 100=4m.
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Figure 128. Heat maps for descriptor HS in the OutUSLRef scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,500). The axis scale is 100=4m.
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(t) CF efficiency at
160◦ rotation

Figure 129. Heat maps for descriptor CF in the OutUSLRef scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,500). The axis scale is 100=4m.
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Figure 130. Heat maps for descriptor GH in the OutUSLRef scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,500). The axis scale is 100=4m.
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Figure 131. Heat maps for descriptor GM in the OutUSLRef scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,500). The axis scale is 100=4m.
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Figure 132. Heat maps for descriptor DI in the OutUSLRef scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,500). The axis scale is 100=4m.
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Figure 133. Heat maps for descriptor CC in the OutUSLRef scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,500). The axis scale is 100=4m.
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Figure 134. Heat maps for descriptor SF in the OutUSLRef scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,500). The axis scale is 100=4m.

170



(a) image at
200◦ rotation

(b) PS precision at
200◦ rotation

(c) PS recall at
200◦ rotation

(d) PS efficiency at
200◦ rotation

(e) image at
325◦ rotation

(f) PS precision at
325◦ rotation

(g) PS recall at
325◦ rotation

(h) PS efficiency at
325◦ rotation

(i) image at
000◦ rotation

(j) PS precision at
000◦ rotation

(k) PS recall at
000◦ rotation

(l) PS efficiency at
000◦ rotation

(m) image at
035◦ rotation

(n) PS precision at
035◦ rotation

(o) PS recall at
035◦ rotation

(p) PS efficiency at
035◦ rotation

(q) image at
160◦ rotation

(r) PS precision at
160◦ rotation

(s) PS recall at
160◦ rotation
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Figure 135. Heat maps for descriptor PS in the OutUSLRef scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,500). The axis scale is 100=4m.
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Figure 136. Heat maps for descriptor SC in the OutUSLRef scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,500). The axis scale is 100=4m.
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Figure 137. Heat maps for descriptor LS in the OutUSLRef scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,500). The axis scale is 100=4m.
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Figure 138. Heat maps for descriptor SU in the OutUSLRef scene at various rotations. The
hexagonal area represents the physical area in front of a target object in the scene located at
(0,0). The reference image was taken from (0,500). The axis scale is 100=4m.
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