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ABSTRACT 

The objective of this study was to determine a methodology for implementing 

feedback loops into a logical, automated, computer assisted probability assessment tool.  

A tool exists called the GO program, which allows for systems to be modeled in a block 

diagram or schematic format and then analyzed in a structured manner to determine the 

probabilities of outcome events.  The challenge was to incorporate a method for 

analyzing feedback loops.  Given the difficulty involved with using computer code to 

analyze feedback loops, reliability engineers would normally create two separate models.  

To allow for a single model to be used and achieve consistent and repeatable results, a 

methodology for creating multiple layers of feedback loops in increasing complexity has 

been analyzed for use with the GO program.  Monte Carlo simulations for each of these 

representative models have been constructed and analyzed to validate the adequacy of the 

GO program to effectively create probabilities of event success and failure.  With the 

demonstrated ability of the GO program to correctly model feedback loops, it clears a 

path for the Department of Defense to investigate the benefits of adopting a standardized 

approach for the analyses of complex systems. 
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EXECUTIVE SUMMARY 

The purpose of this study was to determine a methodology for implementing 

feedback loops into a logical, automated, computer assisted probability assessment tool.  

The GO program allows for systems to be modeled in a block diagram or schematic 

format and then analyzed in a structured manner to determine the probabilities of 

outcome events.  The challenge was incorporating a method for analyzing feedback 

loops.  Feedback loops are difficult to analyze with computer code because feedback 

loops often have elements in the loop that are not independent events.  Dependent events, 

when encountered, need to be accounted for in advance when they are incorporated 

within a block or schematic diagram.  When processing data, computer code cannot 

logically process a failure, which represents the feedback, and a return to the beginning 

sequence to try a different path, which represents the loop.  Given the difficulty involved 

with using computer code to analyze feedback loops, reliability engineers would 

normally create two separate models.  One model would be used to determine the system 

probability and another model to estimate the feedback loops.  These models would then 

be combined in the best manner possible given the background and experience of the 

engineer.  

To allow for a single model to be used and achieve consistent and repeatable 

results, a methodology for creating multiple layers of feedback loops in increasing 

complexity has been analyzed for use with the GO program.  Monte Carlo simulations for 

each of these representative models have been constructed and analyzed to validate the 

adequacy and accuracy of the GO program to effectively create probabilities of event 

success and failure when dependent feedback loop are considered as part of a single 

modeling effort and analysis of a system. 
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I. INTRODUCTION  

A. BACKGROUND 

GO, an event sequence analysis tool, has applications in the disciplines of 

reliability, availability, safety and risk assessment.  The GO Program was first developed 

in FORTRAN program code and ran on VAX IBM machines, it was later further updated 

to operate on personal computers.  The GO program was initially developed by Kaman 

Sciences Corporation with funding provided by the US Army in 1967.  Input to the GO 

Program is a functional and logical model called the GO Model.  This model is a textual 

description of an event sequence diagram.  Event sequence diagrams are constructed 

using different types of modeling elements.  These modeling elements represent the 

functions of components and assemblies, including simple and complex components, 

logical OR and AND gates, contacts, signal generators, etc.  These modeling elements 

also include probabilities of occurrence via the systematic processing of the modeled 

system by the GO Program.  The GO Program evaluates each of the user-defined and 

user-assigned signal states of each of the modeled elements and will produce tables 

displaying the frequency or probability of each modeled element to be in the defined 

signal state.  GO software is used to reduce any diagnostic problem to a deterministic 

solution, when the cause of a system malfunction is inferred from sensor information.  

GO analysis techniques are used to identify the cause, or potential causes, of system 

events or failures.  System safety and reliability engineers are the typical users of this 

type of information and would most directly benefit from the data generated from GO 

analyses.  As such, the input data would be developed and provided by safety and 

reliability engineers. 

B. PURPOSE 

The purpose of this study was to determine a methodology for implementing 

feedback loops into a logical, automated, computer assisted probability assessment tool.  

The GO program allows for systems to be modeled in a block diagram or schematic 
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format and then analyzed in a structured manner to determine the probabilities of 

outcome events.  The challenge was incorporating a method for analyzing feedback 

loops.  Feedback loops are difficult to analyze with computer code as feedback loops will 

often have elements in the loop which are not independent events.  These dependent 

events, when encountered, need to be accounted for in advance when they are 

incorporated within a block or schematic diagram.  When processing data, computer code 

cannot logically process a failure, which represents the feedback, and a return to the 

beginning sequence to try a different path, which represents the loop.  Given the 

difficulty involved with using computer code to analyze feedback loops, reliability 

engineers would normally create two separate models.  One model would be used to 

determine the system probability and another model to estimate the feedback loops.  

These models would then be combined in the best manner possible given the background 

and experience of the engineer.  

To allow for a single model to be used and achieve consistent and repeatable 

results, a methodology for creating multiple layers of feedback loops in increasing 

complexity has been created for use with the GO program.  Monte Carlo simulations for 

each of these representative models have been constructed and analyzed to validate the 

adequacy and accuracy of the GO program to effectively create probabilities of event 

success and failure when dependent feedback loop are considered as part of a single 

modeling effort and analysis of a system. 

C. RESEARCH QUESTIONS 

Can the GO program be revised to allow concurrent performance of safety and 

reliability assessments on dynamic systems which include output feedback control 

functions?  To be able to answer this question, a foundation of the operation of the GO 

program had to be established; starting first with a simple and straightforward example of 

how the GO computer code processes data and arrives at a probability of success and 

failure.  This example would be supported by an accepted method of calculating the same 

probability of success and failure manually.  After this initial step, a feedback loop 

example with a single feedback element would then be introduced.  To further validate 
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the GO analyses, a Monte Carlo simulation would be designed to independently verify 

the results of the analyses.  Next, a feedback loop example with two feedback elements 

and another with three feedback loops would be processed by GO and verified by Monte 

Carlo simulations.  These investigations into increasingly complex model would 

determine the adequacy of the methodology used for designing and implementing 

feedback loops for concurrent performance of safety and reliability assessments on 

dynamic systems. 

D. BENEFITS OF STUDY 

There are multiple benefits to be derived from performing this study and verifying 

the results.  Listed below are ten specific benefits from using the GO program and the 

methodology described in this paper to implement feedback loops to allow for concurrent 

performance of safety and reliability assessments on dynamic systems. 

1. There are no commonly known commercial reliability modeling tools available 
that are driven by a functional model.  Performing reliability modeling using 
mathematical models introduces errors when function-level probabilities of 
occurrence are involved. 
 
2. There are no commonly known commercial FMECA (Failure Modes and 
Effects Criticality Analysis) tools available that are driven by a functional model.  
Performing FMECA manually using worksheets is likely to introduce errors when 
complex systems are involved. 
 
3. There are no commonly known commercial event tree analysis tools available 
that are driven by a functional model.  Performing event tree analysis manually 
using worksheets introduces errors when latent operating modes are involved. 
 
4. There are no commonly known commercial fault tree analysis tools available 
that are driven by a functional model.  Performing fault tree analysis manually 
using logic symbols introduce errors when complex systems are involved. 
 
5. There are no commonly known commercial engineering tools available that 
integrate reliability modeling, FMECA, event sequence analysis, and fault tree 
analysis.  Performing these analyses separately using different methods is labor-
intensive and introduces errors when trying to integrate the results. 
 
6. There is no commonly known commercial suite of integrated safety/reliability 
tools available.  One of the benefits in a future study is the research involved in  
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defining an "enhanced GO" tool which allows integrating safety and reliability 
analyses via output which includes function-level failure cut-sets and function-
level probabilities of success. 
 
7. There are no commonly known commercial reliability modeling tools available 
that are driven by a functional model which is compliant with an industry 
approved standard.  The AIAA S-102 Mission Assurance Standards Working 
Group is interested in coordinating the further development of an "enhanced GO" 
to create an Open Source tool which is driven by a functional model that is 
compliant with the S-102 Functional Diagram Modeling standard. 
 
8. There are no commonly known commercial reliability modeling tools available 
which allow feedback to be included in the model.  One of the topics in this study 
is the research involved in defining an "enhanced GO" which allows feedback to 
be included in the reliability model.  GO automatically generates the reliability 
model from the functional model. 
 
9. There are no commonly known commercial reliability modeling tools available 
which provide output in a format which is compliant with an industry approved 
standard.  The AIAA S-102 Mission Assurance Standards Working Group is 
interested in coordinating the further development of an "enhanced GO" to create 
an Open Source tool which provides output which is compliant with the XML 
data element descriptions defined in the S-102 standards. 
 
10. In the past 25 years, very few commercial reliability analysis tools were 
developed that are driven by functional models and which can perform multiple 
analyses.  One of these tools is called MultiLinx, which was used in the NASA 
Crew Return Vehicle (CRV) program between 1998 and 2003.  This tool was not 
marketed in the public domain after the CRV program ended.  The other tool is 
called eXpress, and it is currently used by many companies to analyze the 
testability of a design.  The eXpress tool is not intended to be used in safety 
design or reliability design assessments.  An "enhanced GO" could become the 
affordable Open Source alternative which supports both safety design and 
reliability design assessments. 

E. SCOPE  

The scope of this thesis is the identification and validation of revisions to the GO 

program that would allow concurrent performance of safety and reliability assessments 

on dynamic systems that include output feedback control functions.  This study will 

directly support Government reviewed and approved analyses methodologies which can  
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then be shared with other government agencies and industry partners.  This revision to 

GO provides a no cost alternative to evaluate the combined safety and reliability 

assessments of complex systems. 

F. CHAPTER SUMMARY 

This study begins with a literature review of the Event Sequence Analysis GO 

program and then a review of Fortran program code.  Then appropriate test 

methodologies of sample systems and the generation of reports were developed and 

performed.  The results of these tests guided the development of the program code.  

Chapter II provides a review of the GO program and takes the reader through a 

history of the development.  It also discusses how GO is used by engineers for analyses 

applications.  Chapter III discusses the systems engineering disciplines of system safety 

and reliability engineering and details how the disciplines are related and the overlap 

which exists between them.  Chapter IV delves into the research and analyses necessary 

to incorporate feedback loops into a model for use with the GO program.  Chapter V 

describes how GO may be utilized by both reliability and system safety engineers in the 

performance of these discipline areas as a common analyses tool.  Chapter VI presents 

conclusions and areas for further research. 

 

 



6 

THIS PAGE INTENTIONALLY LEFT BLANK  



7 

II. EVENT SEQUENCE ANALYSIS GO PROGRAM REVIEW 

A. THE DEVELOPMENT OF GO 

Bill Gately, Larry Williams and Don Stoddard, while working for Kaman 

Sciences Corporation, were the initial developers of the GO program.  Their work began 

in 1967 with funding from the United Stated Army.  Since 1967 the GO codes have been 

developed and refined continually.  Several innovations, improved features and enhanced 

functionality of the GO program were developed in the 1970s, including data consistency 

checks, the development of new operators, and the incorporation of a data type called a 

supertype.  The supertype operator allows a user to create complex operators that can be 

reused when developing block diagrams and translating the blocks into code.  

When GO was first developed, the use and acceptance of GO was widespread as 

GO allowed for unique formulations and also enabled efficiencies in the modeling 

approach.  As the number of users increased and applications of the GO program grew, 

Kaman Sciences Corporation realized a need to continue with updates and modifications 

to the code.  Providing support and maintaining standardized versions became a necessity 

to support the growing number of experienced users.  

Since the inception of GO in 1967 there have been 24 versions of the code created 

as identified in the table below. 
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VERSIONS OF THE GO CODES 

DATE NAME CHARACTERIZATION 
APR 68 GOMAR68 Eleven Logical Operators, Hash Addressing 
JUN 68 GOJUN68 --- 

APR 69 GOAP69 Type 9 & 11 Kind Data Changed, Sensitivity Runs, Format-free 
Data, Modular Programs, Time Points up to 9999 permitted 

MAY 69 GOMAY69 Use of two computer words to store more active signals and 
handle larger problems 

AUG 70 GOAUG70 --- 
1971 RANGO Randomized GO, Component Beta Distributions 
1972 GOCHK72 --- 

APR 74 GOAPR74 Data Checks, Signal Table 

1974 XGO 

100 Active Components, Automatic Signal Deletion, 
Extensive Error Checking, Perfect Component Case, 
Automatic Array Size Optimization, PMIN Reset, Types 5 & 
11 Combined 

1975 Version B --- 

16 FEB 76 Version C New Operators 11-15, Multiple Type 8 Delays, GO1 Signal 
Table, Developed with Public Funds 

26 APR 76 Version D Supertypes GO1, GO2, GO3, Printouts Modified, GO1 Signal 
Table, Developed with Public Funds 

NOV 76 Version E --- 
11 JAN 77  Preliminary Fault Finder 
3 MAY 77 GO Fault Finder SYSFILE, FF1, FF2 
30 NOV 77 GO Types 15 & 17 

3 MAR 78  Version D as documented for EPRI, Master Program GOFF, 
Data Decks Control Sequence, Alpha Descriptors, New Type 4 

1 DEC 78 GOFF Program FG and GO4 Created 

17 AUG 79 GO Efficiency Update, New Program Structure, Procedures and 
CLISTS, LIBRARY GORUN 

1 OCT 79 GO Effect Evaluation EE1, EE2, EE3 
20 MAR 80 GO CDC Version Documented for EPRI 
20 MAY 80 GO IBM Version Documented for B&R, UP&L, EPRI 

30 DEC 80 GO IBM Version Enhanced at UCC, Dallas, Descriptors, Facility 
to Alter Array Sizes, Explanation of Use 

1 SEP 82 KSCGO Version 1.0 Proprietary to KSC, Both VAX and CYBER 
Versions, Developed directly from GO Version C 1976 

Table 1.   Versions of the GO Codes (From Kaman Sciences Corp., 1983). 
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Over the years, GO has been used in a variety of systems for analyses.  

Disciplines such as reliability, availability, safety and risk assessment have benefited 

from studies with GO in systems such as satellites, missiles, conventional and nuclear 

munitions, power plants, processing plants and a variety of other systems.  GO benefits 

the user by the way it handles event development and the probability of occurrence 

associated with the events.  

B. GO ANALYSES, PROCEDURES AND OPERATORS 

To better understand the benefits of GO, an explanation of the principles of the 

different operators and how to encode these operators into a model for analysis is needed.  

To begin, GO operates in a sequence of eight programs.  These programs are identified as 

GO1, GO2, GO3, FF1, FF2, EE1 EE2 and EE3.  This study focuses on the application 

and use of GO1, GO2 and GO3.  Some explanatory information will be presented 

regarding the FF and EE series, but no detailed information will be provided.  The GO 

sequence 1-3, when executed, is used to find the probabilities of the different systems 

states of the modeled system.  The FF series is a fault finder sequence of analyses.  FF 1-

2 is used to determine the sets of operators needed which will cause a selected event.  The 

EE series 1-3, which is not being evaluated in this paper, is used to determine the effects 

on probabilities of system states with respect to uncertainties.   

In each of the series of analyses (GO, FF or EE), the programs must be run in the 

numbered order.  The results of each of the series are used in subsequent programs.  One 

benefit of this sequential execution of the program is that once the data sets are generated 

from the GO series, the FF or EE series may be run multiple times without having to re-

run the previous series.  This allows for different events to be analyzed by the subsequent 

series with a single operation of a previous series.  

GO1, GO2 and GO3 operate with data entered by the user.  The GO1 input file 

contains the model data of operators.  GO2 contains any associated probability 

information related to the operators.  GO3 sets analysis parameters.  Each of these input 

files have data validation checks performed when the associated GO execution program 

is executed.  The checks are done to find most typing or logical errors.  Although the 
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programs are effective in finding most types of modeling element errors, care must be taken 

to prevent logical errors which are consistent with incorrect parameter inputs.  As an 

example, the user may input data which defines two states for a signal generator, one in 

which the signal generated is a value of “0” 80 percent of the time and a value of “1” 20 

percent of the time.  If the user incorrectly assigns the percentages, GO will perform a check 

which will determine there are no typing or logical errors for the entry.  Although the data are 

logically correct, the resulting analyses will produce accurate results for the inaccurately 

entered data.  The GO program will first process the operator records with the GO1 program.  

GO1 will produce an operator file for use with the next phase of the program.  GO2 will read 

and check the input file which contains the “kind” records with the probability data and will 

create a combined operator and kind file.  The creators of the GO Program use the term 

“kind” to define references to different types or “kinds” of modeled elements.  For example, 

a switch may be modeled within GO and depending on the manufacturer or type, the switch 

may have different probabilities of success and failure.  The user will assign a kind value to 

each individual element within the model which has a probability of success and failure 

defined.  If when modeling a system, the user repeats the application of a previously defined 

or kind element, the kind number does not need to be repeatedly referenced within the code.  

If a new “kind” element is used, a unique kind number will be assigned to the element and 

the associated probability data defined accordingly.  With the operator and kind file created, 

GO3 is used to evaluate the event tree and will create a file which contains the results of the 

analysis.  A discussion of parameter inputs will be made later in this paper.   

GO operates with seventeen logical operators called types in modeling systems.  

These types are used so that systems may be effectively modeled in operation or with 

interactions within the system.  A list of the seventeen operators is shown in a diagram in 

Figure 1.  This figure shows all the types of operators and also shows elements of operator 

inputs which would be required when modeling the element in the GO code.  Any inputs into 

an operator are called stimuli and given the nomenclature of S1, S2, …, Sn.  The outputs are 

called responses and have the nomenclature of R1, R2, …, Rn.  These inputs and outputs are 

random variables.  When using GO models, the random variables are referred to as signals.   
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Figure 1.   GO Type Operators (From Kaman Sciences Corp., 1983). 

Each operator is used to model responses from equipment or of human actions 

within a system.  Each of these operators may have probabilities associated with it and 

will evaluate the differing random variable inputs (S) and will generate the appropriate 

response (R).   

An example of how the type operators are used follows.  A type 1 operator is used 

to logically represent an element that will either perform or fail to perform the function 

given a correct input to the type operator.  The type 2 operator is an OR gate and it will 

function just as a logical OR gate and will generate a response with the correct inputs.    
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Type 1 Two State Component 
Type 2 OR Gate 
Type 3 Triggered Generator 
Type 4 Multiple Signal Generator 
Type 5 Signal Generator 
Type 6 Normally Open Contact 
Type 7 Normally Closed Contact 
Type 8 Increment Generator 
Type 9 Function Operator 
Type 10 AND Gate 
Type 11 m out of n Gate 
Type 12 Path splitter 
Type 13 General Purpose, Multiple Input, Multiple Output Operator 
Type 14 Linear Combination Generator 
Type 15 Value/Probability Gate-Generator 
Type 16 Actuated Normally Open Contact 
Type 17 Actuated Normally Closed Contact 

Table 2.   GO Type Operators. 

To successfully create a model in GO, the user must complete several steps.   

1. Learn how the system is configured and actually operates. 
2. Define system success and failure criteria. 
3. Identify the system events about which information is sought. 
4. Represent system elements with standardized GO operators. 
5. Combine the inputs and outputs of operators representing system elements 

into a GO model portraying successful system operation. 
6. Obtain the probabilistic data for component response.  (Kaman Sciences 

Corporation., & Electric Power Research Institute, 1983) 

The GO program uses a methodology of translating functional or block diagrams 

into a code and then generates the event development with the probability of success and 

failure associated with the events.  To best illustrate the benefits of using GO 

methodology, first an understanding of what the industry standard definitions of 

reliability is required.  

MIL-STD 721 defines reliability as:  (1)  The duration or probability of failure-

free performance under stated conditions and (2)  The probability that an item can 

perform its intended function for a specified interval under stated conditions. 
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IEEE defines reliability as “the characteristic of an item expressed by the 

probability that it will perform a required mission under stated conditions for a stated 

mission time” (IEEE Std 577-1976). 

GO may be used to determine a system’s reliability performance measures.  To 

best illustrate the ability of GO, a simple example will be used which demonstrates 

calculating reliability probabilities using a representative model and manual calculations.  

A familiar model is one in which a comparison is made between two systems, one which 

operates with a single generator and the other with two generators.  Functional diagrams 

of a single system and a two generator system are displayed in Figures 2 and 3.  

0.95

Generator A

0.98 0.95

Generator A

0.98

 

Figure 2.   Simple Reliability Model with One Generator. 

0.95

Generator A

0.95

Generator B
0.98

0.95

Generator A

0.95

Generator B
0.98

 

Figure 3.   Simple Reliability Model with Two Generators. 

This system starts with a start signal with a probability of success of 98% which 

leads into the single generator in Figure 2 or the two generators of Figure 3.  Both 

generators in Figure 3 are positioned in parallel providing that if one generator were to 
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fail, the second generator would be available to continue the operation.  All generators in 

both Figures 2 and 3 have a probability of success of 95%.  To calculate the overall 

probability of success for the system in Figure 2, multiply the probability of success of 

the first signal times the probability of success of the generator.  Multiplying 98% and 

95% yields a probability of success of 93.1%.  When two components operate in parallel, 

the probability calculation changes.  The calculation of the parallel generators uses the 

following formula: PA + PB - (PA x PB).  Substituting the values of 95% for both 

generators into the formula results in 0.95 + 0.95 - (0.95 x 0.95) which results in 1.90 - 

0.9025, with a final result of 0.9975.  This parallel combination of generators with a 95% 

probability of success for both generators yields an overall probability of success of 

99.75%.  To complete the calculation of a two generator system as depicted in Figure 3, 

the probability of success for the first signal is multiplied by the probability of success of 

the parallel generators.  Multiplying 98% and 99.75 percent yields a probability of 

success of 97.755%. 

The results of the manual calculations of the parallel generator system will now 

be compared to the results of a two generator system as modeled with the GO program.  

Following the demonstration of the results generated by the GO program is an 

explanation of the code which was used to generate the GO results.  To begin, Figure 4 

shows how a functional model would be developed for use with GO.  The reader will 

note the numbering used in each of the symbols used in Figure 4.  The first number (or in 

the case of the type 2 OR gate, the only number) represents the type of operator being 

used, while the second number is a uniquely assigned identifier called a kind number.  

This numbering convention helps the user identify and track the components when 

translating from a graphical or schematic model to the code which will be used as inputs 

to the GO program.  Additional information related to operator types and kinds will be 

provided in more detail further in this section. 
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Figure 4.   Simple Reliability Model with Two Generators as Modeled with GO. 

GO uses several different operators in the computer code to model function or 

behavior of the elements which make up a system.  The first signal is represented by a 

type 5 operator which is a signal generator.  Generators A and B are represented by a type 

1 operator.  The last operator used in this model is a type 2 which is an OR gate.  The OR 

gate reads the signals present on the inputs and according to the logic of an OR gate will 

generate an output.  When this model of a two generator system operating in parallel is 

processed by the GO program, it generates a table of results which is presented below in 

Table 3, where the numbers shown on the left are the states of the system and the 

numbers along the top of the table are the signals.  State 1 is the operational state and 

State 4 shows the failed state.  As you can see, there is good agreement between the 

operational reliability results shown under signal 4 and the manual calculation.   

 

VAL. 1 2 3 4 
---- ------------ ------------ ------------ ------------ 
1 0.97999996 0.93099993 0.93099993 0.97754997 
4 0.02000000 0.06900001 0.06900001 0.02245000 

Table 3.   GO Probability of Events. 
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C. PROGRAMMING IN GO 

Each of the operator types requires modeling data to be input according to the 

type being used.  Table 4 below shows each operator type and the different modeling 

information required for modeling the type in GO code.   

 
Data 1 

Operator Type 
Data 2 

 
Data 3 

 
Data 4 

 
Data 5 

 
Data 6 

 
1 K S R   
2 0 n S1…Sn R  
3 K S R   
4 K n R1…Rn   
5 K R    
6 K S1 S2 R  
7 K S1 S2 R  
8 K S R   
9 K S1 S2 R  

10 0 n S1…Sn R  
11 m n S1…Sn R  
12 K S m R1…Rn  
13 K n S1…Sn m R1…Rn 
14 K n S1…Sn R  
15 K S R   
16 K S1 S2 R  
17 K S1 S2 R  

      
K:  KIND NUMBER     
S:  STIMULUS (INPUT)    
R: RESPONSE (OUTPUT)    

Table 4.   GO1 Operator Type Data. 

Table 5 contains the input code and data which were used to create the GO1 input 

code as represented in Figure 4. 
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Line 1 GO1 DATA FOR PARALLEL RELIABILITY SYSTEM 
Line 2 ,,,,,4/ 
Line 3 5 1 1 $ SIGNAL GENERATOR 
Line 4 1 2 1 2 $ GENERATOR A 
Line 5 1 3 1 3 $ GENERATOR B 
Line 6 2 0 2 2 3 4 $ OR GATE 
Line 7 0 1 2 3 4 $ FINAL SIGNALS 
Line 8 EOR 

Table 5.   GO1 Code for Parallel Reliability System. 

Line 1 identifies the title of the GO1 code.  Line 2 can be edited to change default 

system parameters.  The number 4 is a user defined value identifying what value the 

failure state for the model should be.  The number 4 was chosen in this model, but it 

could have been any number value which was not being used as a value for a signal 

within the system.  For the purposes of this study, default system parameters for the GO 

program will not be discussed other than the assigned failure state value, using the system 

defaults is sufficient for the purposes of analyses of GO and demonstrating an effective 

use of feedback loops.   

Line 3 of the code describes the operator as a type 5 operator and is assigned a 

kind (K) of 1, a response (R) of 1 and following the $ character is a description or 

nomenclature of Generator.  The kind number is used to identify the unique 

characteristics of this type operator.  In addition a different kind number should be 

assigned to each operator type used in a model as the kind number is linked from data 

included in the GO1 input to probability data which would be included with GO2 input 

data.  If multiple type 5 operators are used and the characteristics are the same in the use 

of this type within the code, only one type 5 operator with an assigned kind would need 

to be defined within the GO1 input code.  On the other hand if multiple type 5 operators 

are used and there are characteristics of the type 5 operator that differed on one or more 

operators, then a unique kind number would be assigned to each of the different type 

operators.  The response (R) of 1 identifies that a single response will be generated as an 

output signal.  The nomenclature following the $ symbol identifies this type 5 operator as 

a generator.   
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Line 4 of the code describes the operator as a type 1 operator and is assigned a 

kind (K) of 2, a stimulus (S) of 1, a response (R) of 2 and following the $ character is a 

description or nomenclature of Generator A.  The stimulus of 1 indicates there is an input 

stimulus which comes from signal 1 (as shown in Figure 4); the response (R) of 2 

identifies the response will be output onto signal 2.  The nomenclature following the $ 

symbol identifies this operator as Generator A.   

Line 5 of the code describes the operator as a type 1 operator and is assigned a 

kind (K) of 3, a stimulus (S) of 1, a response (R) of 3 and following the $ character is a 

description or nomenclature of Generator B.  The stimulus of 1 indicates there is an input 

stimulus which that comes from signal 1; the response (R) of 3 identifies the response 

will be output onto signal 3.  The nomenclature following the $ symbol identifies this 

operator as Generator B.   

Line 6 of the code describes the operator as a type 2 operator and is assigned a 

kind (K) of 0, the number of inputs (n) is set as 2, a stimulus (S1) of 2, a stimulus (S2) of 

3, a response (R) of 4 and following the $ character is a description or nomenclature of 

OR Gate.  This kind value is different from any of the other kind values which have been 

assigned so far.  OR gates as well as AND gates (type 10) when used in GO modeling are 

considered to be type operators with perfect kinds.  When the code encounters a type 

operator with a perfect kind, the probability of success for the operator is 100 percent.  

The data type n of 2 identifies this OR gate has two stimulus inputs.  The stimulus of S1 

of 2 indicates there is an input stimulus which will come from signal 2, the stimulus Sn 

(S2) of 4 indicates the second and last input stimulus will come from signal 4.  The 

response (R) of 5 identifies the response will be output onto signal 5.  The nomenclature 

following the $ symbol identifies this operator as an OR gate.   

Line 7 of the code starts with a zero which is an indicator to the program the final 

signals will be identified.  This is where the safety or reliability engineer will identify 

which signals the code will output the probability information associated with the 

individual signals.  In this use, all signals (1, 2, 3 and 4) used in the model will have the 

associated probability data output.  The nomenclature following the $ symbol identifies  
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the line as the Final Signals line of code.  Line 8 is the terminator of EOR.  This is an 

indicator to the GO program the inputs of GO1 are complete and the last line of the 

record has been reached.   

As indicated in the explanations of the GO1 input code, there are probability data 

associated with some of the operators used in GO1.  The probability data are included in 

the GO2 input file and are presented in Table 6.   
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Data 1 Data 2 
Operator 

Type 

Data 3 Data 4 Data 5 Data 6 Data 7 Data 8 

K 1 Pg Pb     
K 3 Pg Pb Pp    
K 4 n m V11…V1n P1   
    V21…V2n P2   

    …
 

   

    Vm1…Vmn Pm   
K 5 n V1 P1…Vn Pn   
K 6 Pg Pb Pp    
K 7 Pg Pb Pp    
K 8 n D1 P1…Dn Pn   
K 9 n X1 Y1…Xn Yn   
K 12 m P1…Pm     
K 13 n m N    
 VS11…VSn1 M1      
  VR1…VRm P11     

  …        

  VR1…VRm PM11     

 …
 

      

 VS1N…VSnN MN      
  VR1…VRm P1N     
  …    

 

     
  VR1…VRm PMnN     

K 14 n a1…an a0    
K 15 V1 V2 V3 V4 P1 P2 
K 16 P1 P2 P3    
K 17 P1 P2 P3    

K:  Kind Number    b:  Probability Bad 
P:  Probability  p:  Probability Premature  
V:  Value  n:  Number of Inputs; 0<=n<=10  
D:  Delay  m:  Number of Outputs; 1<=m<=10 
g:  Probability Good  N:  Number of Output Sets 

Table 6.   GO2 Kind Data. 

Table 7 contains the input code and data which were used to create the GO2 input 

code as represented in Figure 4. 
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Line 1 GO2 DATA FOR PARALLEL RELIABILITY SYSTEM 
Line 2 0/ 
Line 3 1 5 2 1 0.98 4 0.02 $ SIGNAL GENERATOR 
Line 4 2 1 0.95 0.05 $ GENERATOR A 
Line 5 4 1 0.95 0.05 $ GENERATOR B 

Table 7.   GO2 Code for Parallel Reliability System. 

Line 1 identifies the title of the GO2 code.  Line 2 can be edited to change default 

system parameters.  Line 3 lists Kind 1 for the type 5 operator.  The number 2 represents 

the n number of outputs.  The number 1 is the first user defined value V1 of the output 

signal which will be created by the type 5 operator.  The value will occur with a 

probability percentage P1 of 0.98.  The next number is the value V2 (Vn) 4, which is for 

this model the failure value chosen by the user in Line 2 of the GO1 input code.  The V2 

value will occur with a probability of 0.02.  The nomenclature following the $ symbol 

identifies this operator as a Generator. 

Although each of the remaining lines could be explained number by number, the 

intent behind this information was to familiarize the reader with the method by which a 

system is modeled graphically for GO and how the graphical information is then 

interpreted into the GO1 and GO2 code.  The remaining lines for the GO2 table follow 

the same pattern as described in Table 6 for inputting data to support the GO program 

analyses.  For reference, the code for GO3 is included below in Table 8.  As one can see, 

the information necessary for creating the GO3 input is minimal.  Line 1 identifies the 

title of the GO3 code.  Line 2 can be edited to change the default system parameters.  

Line 3 is the terminator of EOR.   

 

Line 1 GO3 DATA FOR PARALLEL RELIABILITY SYSTEM 
Line 2 ,,,1,,,,128/ 
Line 3 EOR 

Table 8.   GO3 Code for Parallel Reliability System. 

GO has the capability of having a failure state value assigned.  In this example, 

the success state was assigned the value of 1, the failure state was assigned the value of 4.  

Referencing Figure 3 above, GO produced the probability of success for each of the 

connectors used in the dual generator system.  After the OR gate operator, signal 5 shows 
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a probability of success of 0.97754991 which matches the probability of success results 

determined by manual calculations.  With this foundation of how GO can be used as an 

analysis tool in place, later in this paper, a further exploration of using GO to analyze 

more complex systems will be developed. 

In addition to being able to produce tables showing probabilities of event success 

and failure, GO can perform a fault finder analysis.  GO uses algorithms to determine 

which functional or component failures would have to happen for an identified signal to 

experience a complete failure.  An example of a fault finder analysis on signal 5 is given 

below in Table 9. 

 

FAULT SETS OF ORDER  1 
-------------------------------------- 
NO. OP(STATE) NAME 
--- ------------- --------------- 
1 1(1) SIGNAL GENERATOR 
   

FAULT SETS OF ORDER  2 
-------------------------------------- 
NO. OP(STATE) NAME 
--- ------------- --------------- 
1 2(1) GENERATOR A 4(1) GENERATOR B 
   

NO HIGHER ORDER FAULT SETS EXIST 

Table 9.   GO Fault Finder Results. 

As can be seen, the signal generator is the only single component which would 

result in a complete failure at signal 5.  If two failures were being investigated, there is 

one set of faults which would result in failure, both generator A and B failing would 

result in failure.  This example is an easy one to evaluate and can be done visually.  In 

more complex systems, having a computer perform the evaluation is useful as the 

analysis will be performed quickly and completely, especially if fault sets of higher 

orders are being evaluated or in cases where there are many components.  

With this understanding of how GO operates to analyze a simple reliability model 

of two generators the next step is to introduce the reader to feedback loops and how GO 

can be utilized to perform an analyses which can support both reliability and system 
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safety assessments with a single computerized tool.  With the introduction of feedback 

loops, the capabilities of GO can be further expanded and used by a variety of users in the 

engineering community.   
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III. SYSTEMS ENGINEERING AND THE ROLE OF SYSTEM 
SAFETY 

A. INTRODUCTION 

Systems engineering is defined by the International Council of Systems 

Engineering (INCOSE) website incose.org as, “Systems Engineering is an 

interdisciplinary approach and means to enable the realization of successful systems.”  

One of the mission assurance elements within systems engineering is the engineering 

discipline of system safety.  MIL-STD-882C defines safety as, “Freedom from those 

conditions that can cause death, injury, occupational illness, or damage to or loss of 

equipment or property, or damage to the environment.”  MIL-STD-882C defines system 

safety as, “The application of engineering and management principles, criteria, and 

techniques to optimize all aspects of safety within the constraints of operational 

effectiveness, time and cost throughout all phases of the system life cycle.”  Often there 

is a misconception that system safety as an engineering entity is focused on protecting 

personnel from accidents by focusing on slips, trips, falls, and toxic chemicals/materials.  

In fact system safety incorporates the necessary requirements into product design to allow 

for safety to be an integral part of the design process and process hazard avoidance at 

every indenture level of the system.   

System safety, as an engineering discipline, contributes to systems engineering 

objectives by applying a set of safety design requirements throughout all life cycle phases 

of a system, whether it is design, manufacturing, sustainment or at the end of service life.  

Safety design requirements follow a pre-established order of precedence.  For example, 

MIL-STD-882C imposes a four-level order of precedence for safety design requirements.  

First in the MIL-STD-882C order of precedence is designing for minimum risk, which is 

accomplished by eliminating hazards through design and by reducing risk to acceptable 

levels throughout the design selection.  Second in the MIL-STD-882C order of 

precedence is the incorporation of safety devices, e.g., power circuitry fuses and anomaly 

detection and response (ADR) software for fast-acting failure modes.  Third in the MIL-
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STD-882C order of precedence is providing warning devices.  Finally, fourth in the MIL-

STD-882C order of precedence is developing appropriate procedures and training.  

System safety also levies requirements on the system design philosophy in terms of fault 

tolerance requirements.  For example, MIL-STD-882C Appendix C, Section 70.1.1a, 

requires mission-critical system functions to be able to continue operating after any single 

fault occurs within the system or within an external entity controlling the system.  MIL-

STD-882C Appendix C, Section 70.1.1b also requires safety-critical system functions to 

be able to continue operating after any dual independent faults occur within the system 

and/or within an external entity controlling the system.  Due to the wide-spread practice 

of allowing high unit-value system designs, e.g., satellites and military aircraft, to 

minimize rather than eliminate all single-point failure modes and using mission-critical 

equipment for system “safing” functions, the practicality of verifying dual-fault tolerance 

is often limited to evaluating the failure of one mission-critical hardware, software, or 

procedural item and the failure of one responding safety-critical software item, e.g., an 

ADR algorithm.  Due to multiple failures being involved, the safety-critical software item 

can be identified using the GO program, Fault Tree Analysis, or an equivalent 

“deductive” analysis methodology.  Then software hazard analysis or software FMECA 

is performed to identify design, processing, or operating features that can either mitigate 

the root causes or compensate for the effects of each software functional failure mode.  

B. OVERLAP BETWEEN SYSTEM SAFETY AND SYSTEM RELIABILITY 
ENGINEERING 

In the last chapter, a simple example of how system reliability is calculated was 

presented.  In this chapter, an explanation of the overlap which exists between system 

safety and reliability engineering will be provided.  As discussed previously, system 

safety contributes to systems engineering through design influence and process hazard 

avoidance.  For complex high unit-value systems even a minor design change can have a 

large impact on the cost and performance of the system.  One of many systems 

engineering elements that contribute to the system design definition is reliability 

engineering.  If a system has a requirement for the generation of power to have a mission 

reliability of 95%, the example single generator design configuration would not satisfy 
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the reliability requirement, but the two generator design configuration would.  If the same 

system has a system safety requirement for the generation of power to be dual-fault tolerant, 

the two generator design configuration would not satisfy the system safety requirement.  One 

possible solution to the problem just described would be to introduce a third generator into 

the system.   

It is important to emphasize that there are often overlapping requirements between 

the disciplines of system safety and reliability engineering.  Aside from cost and 

performance, there are other design attributes which can be influenced by a design change.  

The reliability engineer will focus on the system design satisfying its mission reliability 

requirement through allocation of the system level reliability requirement to the subsystem 

level, assembly level, etc.  In contrast, the system safety engineer will focus on the system 

design satisfying its dual-fault tolerance requirement for all safety-critical functions through 

reduction of the system design to a set of safety-critical functions.  There is often a conflict 

between the reliability engineering effort and system safety effort, because the former has 

“flexibility” at the subsystem and lower levels as long as the system level design meets its 

quantitative requirements, while the latter must rigidly control “hazard risk” at relatively low 

functional hardware/software component levels.  For example, hardware/software component 

single-point-failure-modes (SPFMs) have a greater impact on safety-critical design 

requirements (e.g., dual-fault tolerance) than on mission reliability-critical design 

requirements (e.g., single-fault tolerance).  However, reliability engineers and system safety 

engineers are responsible for identifying and controlling some of the same types of faults, 

such as SPFMs.  So there is a great deal of potential benefit from using common tools such as 

the GO program, among different engineering disciplines.  These common tools would allow 

a complex system design to by simultaneously analyzed quickly in different ways and for 

detailed reports to be automatically generated to yield multiple solutions for further 

optimization or for identifying potential trade space within the system.  With the increasing 

complexity of systems as technology advances, the need for the different engineering 

disciplines to work cooperatively to satisfy system requirements becomes more important.  

As such, the use of more common, powerful and robust computer aided tools becomes more 

important as well.   
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C. CHAPTER SUMMARY 

There are many aspects within the disciplines of system safety and reliability 

which overlap.  The example presented illustrates the relationship between the two 

disciplines and how the design implementation of one discipline may impact the other 

discipline in meeting an important requirement.  The ability to use a common set of tools 

between the two disciplines would be helpful as each would receive benefit from tools 

which could be universally used, allowing for potential savings in work efforts and 

efficiencies in operations as a result.  

The GO program is a tool that can be used for both system safety and reliability to 

analyze system design to ensure all requirements are being met and to assess the degree 

to which each requirement has been met.  A fully defined process for incorporating 

feedback loops is necessary, however, so that GO can be fully support the needs of 

reliability engineers.  Without a defined process for incorporating feedback loops, GO 

would continue to be beneficial for system safety engineers but would have limited 

benefit for reliability engineers.  The limited benefit stems from the difficulty involved 

with using computer code to analyze feedback loops.  When using a computer to analyze 

a circuit or a system, the calculations to arrive at a deterministic result are performed as 

the code processes through the system path.  When feedback is involved, this causes a 

path, which had previously been analyzed, to require another iteration in the calculation 

process.  Unfortunately, due to how reliability or probability calculations are performed, 

the previously used probability values can not be used and therefore require different 

calculations to arrive at the correct reliability or probability calculations.  Currently 

reliability engineers typically use two separate models for determining the reliability of a 

system that has feedback.  One model would be for the system and a separate model 

would be used to estimate the reliability involving the feedback loops.  After the estimate 

was completed, the reliability engineer would then attempt to merge the two models in 

the best manner possible based on the engineer’s own experience.  One of the difficulties 

faced when separate models are created is the merging of the models.  When a system is 

split to take into account different methods of modeling interactions and the associated 

probabilities of the interactions, there is the possibility of introducing error when the 
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separate models are then combined.  In addition, there are several different methods 

available for modeling interactions.  One engineer may choose one method, while another 

engineer a different one.  Given the opportunity for subjective choices to be made when 

modeling probabilities, this creates the opportunity for two qualified engineers to model 

the same system and come up with different results based on the modeling methodologies 

chosen.  If GO could be used with feedback loops incorporated into the functional model, 

there would be no need to have two separate models created and then merged by the 

reliability engineer.  In the next chapter of this paper, a fully defined methodology for 

incorporating feedback loops into a functional design is documented.  
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IV. RESEARCH ANALYSIS 

A. INTRODUCTION 

In this section, the author will present a description of a single model based on an 

example problem, describe the functional behavior and describe how to incorporate a 

single feedback loop into the GO program for analysis.  Once the single model has been 

described and each of the elements within the model documented, this paper will next 

introduce a standard model with two feedback loops as well as a complex model with 

three feedback loops.  Each of these examples will serve to demonstrate what steps would 

be taken by an engineer to follow a standard methodology for performing reliability and 

safety analyses on systems. 

Monte Carlo simulations for each of the examples were created.  Monte Carlo 

simulations were chosen as a tool to use to validate the results of the GO program as 

Blanchard and Fabrycky state, ”Models and their manipulation (the process of 

simulation) are useful tools in systems analysis.”  They further state, “A mathematical 

model employs the language of mathematics and, like other models, may be a description 

and then an explanation of the system it represents (Blanchard and Fabrycky, 2006).  The 

Monte Carlo simulation was a natural selection to use for validating the model 

represented within the GO modeled code as GO is a logical and mathematical analyses 

application. 

B. EXAMPLE PROBLEM 

An engineer may be faced with a problem of how to model the behavior of a 

person faced with a set of actions to be taken.  Each of the actions which could be taken 

will be called tasks.  In the single model, the system is made up of tasks A, B and C.  

Each task has a probability of success and failure.  The person performing the tasks has a 

number of choices which can be taken in accomplishing the tasks.  In all cases, task A is 

to be accomplished first.  In this study, it is preferred but not required that the tasks are 

accomplished in alphabetical order.  The preferred order would follow that A is 
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accomplished, then task B and with successful accomplishment of task B, then task C 

would be performed.  Alternatively, task A could be performed and the choice could be 

made to skip task B and perform task C.  Last, task A could be performed, task B 

attempted and a failure of task B experienced, which would then result in the person 

returning to perform task A again and then perform task C.  In the single model, if a task 

failure is experienced at task A or task C, the system will result in a failure.  It is 

important to note that this model could have been designed to allow the first task to be 

task B or task C, but allowing this complicates the model and does not aid in the purpose 

of demonstrating a methodology for incorporating feedback loops.  The objective of this 

study was to determine a methodology for implementing feedback loops into a logical, 

automated, computer assisted probability assessment tool.  There is not an intention to 

provide for a study which analyzes a comprehensive and exhaustive list of possible task 

path combinations.  A feedback loop used in the context of this study represents an 

opportunity for an action which could be performed more than once and can be accounted 

for via the feedback loop methodology.  In the case of this study, each task path which 

can be accomplished can be traced out in the functional block diagrams and the GO 

models.   

Figures 5, 6, and 7 show the three models each in increasing complexity.  These 

are functional models and, in the next section, will be shown in corresponding functional 

block diagrams that were used to create models with the GO program.  As stated 

previously, the single model has tasks A, B and C.  The standard model adds a task D and 

the complex model adds tasks D and E.  
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Figure 5.   Functional Block Diagram of Single Model with Tasks A, B and C. 
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Figure 6.   Functional Block Diagram of Standard Model with Tasks A, B, C and D. 
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Figure 7.   Functional Block Diagram of Complex Model with Tasks A, B, C, D and E. 

C. EVENT SEQUENCE ANALYSIS (GO PROGRAM) SINGLE FEEDBACK 
LOOP IMPLEMENTATION 

With an understanding of how to use the GO program, an engineer can take a 

functional block diagram and select the appropriate operators so that a representative 

model may be created to be analyzed by GO.  In the case of the single model, the GO 

diagram is represented in Figure 8 below. 
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Figure 8.   GO Diagram of Single Model with Tasks A, B, and C. 

A summary table which shows all of the signals from 1 through 11 and the values 

which can be found on the signals is presented in Table 10.  Each step shown in Figure 8 

will be explained in the paragraphs below detailing how this GO model is structured and 

operates.  

Signal: 1 2 6 7 9 10 11 

Values: 0/10 1/10 3/10 4/10 4/10 1/3/4/10 1/3/4/10 

Table 10.   GO Diagram of Single Model Signals and Values Output. 

Task A in the single model is represented by a type 4 operator which is a value 

generator.  If task A is successful a value of zero or one is generated.  If task A is not 

successful or a path is not chosen, a value of ten is generated.  Signal 1 will either have a 

value of zero or ten.  Signal 2 with either have a value of one or ten or both signal 1 and 2 

will have a value of ten according to the assigned probability of success and failure for 

task A.  

Task B and task C are both represented by a type 1 operator.  If task B is selected 

and task B is successful, it will pass a value of zero to signal 5.  There is an operator 

which follows task B which is a type 15 operator.  This operator may change the value 

which is present at signal 5.  If a value of zero is present, the type 15 operator will always 
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change the value from zero to three.  If the value is ten, a value of ten is passed to signal 

6.  The reason this type 15 operator is included is to allow for a trace of values to be 

established as the model progresses from task A through task C.  This model could have 

been made with just a success or failure value being used, however, to better demonstrate 

how this model works for traceability, the type 15 operator was added and the value 

changed.  

A type 5 operator is used in this model as the methodology to represent the 

beginning of the path in which task B is not successful and the person has returned to task 

A and then proceeded directly from task A to task C.  The path task A to task C already 

exists, but the event of task B failing is a feedback that needs to be modeled separately 

from the first order choice of selecting task A and then task C.  The type 5 operator 

generates a value of zero if it is successful according to the assigned probability of 

success and a value of ten otherwise.  A type 9 operator incorporates the logic necessary 

for the system to recognize if task B has failed and if the choice has been made to 

perform task A and then go to task C.  The type 9 will apply the assigned logic and 

according to the logic will either pass the value of four, indicating that task B had failed 

and the choice was made to return to task A and then attempt task C or the value of ten 

indicating the signal path 9 is failed.  Either a value of four or a value of ten will be 

passed by the type 9 operator to signal 9. 

Task A to task B follow the signal path of 1, 5 then 6.  Task A to task C is path 2.  

The feedback loop of ‘B fails, go back to perform A and then C’ is signal path 7 then 9.  

Signals 2, 6 and 9 are all connected to an OR gate with the output of the OR gate 

connected to signal path 10.  The OR gate reads the signals present and passes the lowest 

value signal on to the task C operator, which is the final operator in this model and is 

signal 11.  The type 1 operator representing task C will succeed or fail according to the 

probabilities associated with the task.  When this system is processed by the GO program, 

it generates a table of results.  These results are the probability of event success and 

failure and are presented below in Table 11.  
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Value: 1 2 5 6 
0 0.80000007 0.00000000 0.64000005 0.00000000 
1 0.00000000 0.10000001 0.00000000 0.00000000 
3 0.00000000 0.00000000 0.00000000 0.64000005 
4 0.00000000 0.00000000 0.00000000 0.00000000 
10 0.20000002 0.90000004 0.36000001 0.36000001 

     
Value: 7 9 10 11 

0 0.00000000 0.00000000 0.00000000 0.00000000 
1 0.00000000 0.00000000 0.10000001 0.08000001 
3 0.00000000 0.00000000 0.64000005 0.51200002 
4 0.80000007 0.28800002 0.20800000 0.16640002 
10 0.20000002 0.71200002 0.05200000 0.24160000 

Table 11.   GO Probability of Events for Single Model. 

This study is not meant to be a tutorial on how to use the GO program, but at the 

same time it is often beneficial to see the code which was used to produce the results as 

shown in Table 12.  The GO program uses several input files which are read in 

individually and processed serially.  There are two input files with the bulk of 

information required to be read in and processed by GO.  The first file is named GO1 and 

the second is GO2.  The code for GO 1 and GO2 are included in Table 12 below. 

 
GO1 DATA FOR FEEDBACK LOOP 
4 1 2 1 2 $ FIRST LVL A 
1 5 1 5 $ SECOND LVL B 
15 8 5 6 $ VALUE CHANGER 
5 2 7 $ SECOND LVL B 
9 6 6 7 9 $ TYPE 9 MODEL1 
2 0 3 2 6 9 10 $ OR GATE 
1 5 10 11 $ THIRD LVL C 
0 1 2 5 6 7 9 10 11$ FINAL SIGNALS 

GO2 DATA FOR FEEDBACK LOOP 
   1   4  2 3  0 10 0.8  
              10  1 0.1  
              10 10 0.1 $ FIRST LVL A 
   8   15 3 10 0 0 0 1 $ VALUE CHANGER 
   2   5  2 4 0.8 10 0.2 $ B FAIL INPUT 
   6   9  1 -6 -6 $ TYPE 9 MODEL1 
   5   1  0.8 0.2  $ SECOND LVL B/C 

Table 12.   GO1 and GO2 Code Input Files for Single Model. 
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The probabilities of success and failure for each of the operator types are 

contained within the GO2 code.  Of interest in this single model is that task A has a 

probability of success to go directly to task B set at 80%, which fits the description the 

preferred path to take is A, then B then C.  The path to go from task A to task C is set at 

10% and there is a failure probability of task A set at 10%.  Both task B and task C are 

represented by the type 1 operator and they both have a probability of success equal to 

80%.  The type 15 operator will always have an output value of either three or ten and 

this is dependent strictly on the input to the type 15 operator.  The type 5 operator has a 

probability of success equal to 80%.  The type 2 operator, which is the OR gate, will 

always operate 100 percent of the time.  There is no probability of success associated 

with this operator type.  The last operator to discuss is the type 9 operator and the logic 

associated with it.  In the GO2 subprogram, the logic required by the GO program to use 

the type 9 operator is identified by the number 1 and the pair of numbers, -6 and -6.  

Without going into the specific algorithm, the engineer who programs the code performs 

a set of additions and subtractions to determine under which conditions and which 

outputs will be allowed to be passed to signal 9.  Once the algorithm is mastered, the 

engineer will find the type 9 operator very useful.  

The last item to discuss in this section is the interpretation of the results.  Table 11 

contains the results which will be examined are the probabilities of events found on 

signal 11.  With a working knowledge of the single feedback system, one can predict the 

values.  For value zero, there is a 0% probability of this event at signal 11.  This is easily 

confirmed knowing that value zero only appears on signal 1 and does not propagate 

further.  Value one happens 8% of the time and makes sense as it is a first level choice 

between taking the preferred path the alternate path directly to task C.  It should be 

expected that value three would occur most often as it represents the preferred path.  

Value four is 16.64% which represents the probability of task B failing and then returning 

back to task A and then attempting task C.  This system as designed and with the 

probabilities of success and failure associated with it have an overall failure rate as 

expressed in value ten of 24.16%.  
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To independently support the results are as calculated by the GO program, a 

Monte Carlo simulation was set up with Microsoft Excel ™.  Random numbers were 

generated and propagated into a table.  The same logic derived from the functional 

diagram was applied to the Monte Carlo Simulation.  A step by step explanation of the 

GO code and the relationship of GO code to each of the Excel cells code used in the 

simulation is explained in Appendix A.  The Monte Carlo simulation can be found in 

Appendix B.  Note the Monte Carlo simulation and results included in Appendix B have 

been truncated to only include the first five rows of randomly generated inputs.  For the 

interested reader, increasing the elements to a higher number for increased fidelity of the 

random results can be accomplished by creating a one-variable data table with the 

number of experiments desired.  Instructions on creating this one-variable data table may 

be found by using the Excel help function or index tool and following the instructions for 

creating one-variable data tables.  Note that in this particular table set up, the table is row-

oriented.  

D. EVENT SEQUENCE ANALYSIS (GO PROGRAM) STANDARD 
FEEDBACK LOOP IMPLEMENTATION 

Building on the foundation of a simple feedback loop, a standard feedback loop 

includes two opportunities for feedbacks to be looped into the analysis of a system.  The 

functional block diagram and appropriate operators of this representative model is 

presented in the GO diagram in Figure 9 below. 
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Figure 9.   GO Diagram of the Standard Model with Tasks A, B, C and D. 

Less detail will be presented in the operation of this model as the behavior of the 

model is largely similar to that of the simple model.  The key differences between this 

model and that of the simple model is this model adds an additional task, task D and also 

has a second feedback to consider, namely what options become additionally available 

when a task is added.  With these changes, additional operators needed to be added as 

well as operator types changed to allow for a representative model to be created.  Task A 

has three paths, the additional path to take is one from task A directly to task D.  A choice 

can be made after accomplishing task B to go directly to task D.  If task B fails, there are 

now two options, either accomplish task A and go to task C or accomplishment of task A 

and go to task D.  Last, there is now another option should task C fail.  If task C should 

fail, there is now an option to return to task A and the go directly to task D.  

Although each change made in the diagram could be discussed, the selection of 

which operators to use in the creation of a model is largely a choice made by the 

engineer.  The important information to highlight is to identify what operator types are 

required to correctly model the feedback loop implementation.  Of note, the type 5 

operator is added to this model prior to the single input needed to model the failure of 

task C and the choice to perform task A and then go to task D.  The change of the 
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operator type for task B failing from a type 5 to a type 4 is made to satisfy the need to 

have multiple task choices available after task B.  The additions and uses of the type 9 

operators in this model are the same as in the simple model.  The last operators added are 

the OR gates used to receive all possible paths which can be taken prior to task D as well 

as the type 1 operator used to model task D.   

As was provided for the single model, the standard model also had a Monte Carlo 

simulation set up with Microsoft Excel ™.  Random numbers were generated and 

propagated into a table.  The same logic which is applied to the functional diagram was 

applied to the Monte Carlo Simulation.  This simulation can be found in Appendix B.  

The Monte Carlo simulation for the various signals and the GO results match very well 

for this model also.  

E. EVENT SEQUENCE ANALYSIS (GO PROGRAM) COMPLEX 
FEEDBACK LOOP IMPLEMENTATION 

Continuing with the manner of presentation from section B, a complex feedback 

loop model is introduced.  The functional block diagram and appropriate operators of this 

representative model is presented in the GO diagram in Figure 10 below. 



42 

4-1

9-9

9-6 9-74-34-2

12-4 15-8 2 12-14 2 1-131

2
2

3

3

4

7

8
12

5 6

9
10

11

13
14 4

15 16
4

12

Task A Task B

Task B
Fails; 
A to C or 
A to D or
A to E

Task C Fails;
A to D or
A to E

Task C Task D

2 1-13

Task E

26

8

9-10

9-11

17

9-125-5
24

Task D Fails;
A to E

4

18

19

19

18 18

1821

21
20 20

25

22 23

27
17

4-1

9-9

9-6 9-74-34-2

12-4 15-8 2 12-14 2 1-131

2
2

3

3

4

7

8
12

5 6

9
10

11

13
14 4

15 16
4

12

Task A Task B

Task B
Fails; 
A to C or 
A to D or
A to E

Task C Fails;
A to D or
A to E

Task C Task D

2 1-13

Task E

26

8

9-10

9-11

17

9-125-5
24

Task D Fails;
A to E

4

18

19

19

18 18

1821

21
20 20

25

22 23

27
17

 

Figure 10.   GO Diagram of the Standard Model with Tasks A, B, C, D and E. 

The key differences between this model and that of the standard model is this 

model adds an additional task, task E and also has a third feedback to consider, naturally, 

the options which become additionally available when this newest task is added.  With 

these changes, once again, additional operators are needed as well as the requisite 

operator types changed to allow for a representative model to be created.  Task A has a 

total of four paths, this additional path to take is one from task A directly to task E.  A 

choice can be made after accomplishing task B to go directly to task D or E.  If task B 

fails, there are now three options, either accomplish task A and go to task C or D and now 

task E.  Last, there is now another option should task D fail.  If task D should fail, there is 

now an option to return to task A and the go directly to task E.  At this point in this 

demonstration, these changes to system paths or choices are to be expected.  

Note the type 5 operator is moved again in this model prior to the single input 

needed to model the failure of task D and the choice to perform task A and then go to 

task E.  An additional choice is made for the type 4 operators for tasks B failing and task 

C failing is made to satisfy the need to have the additional task choice available after task 

B and C.  Once again, the additions and uses of the type 9 operators in this model are the 
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same as how the type 9 operators used in the standard and simple models.  As expected, 

an OR gate is used to receive all possible paths which can be taken prior to task E as well 

as the type 1 operator used to model task E.   

A Monte Carlo simulation was created with Microsoft Excel TM with random 

numbers generated and propagated into a table.  The Monte Carlo simulation results for 

the various signals match the GO results.  Both the codes for the Monte Carlo and the GO 

program are available for review in Appendix B. 

F. CHAPTER SUMMARY 

The feedback loop can be a complicated element to integrate into a GO block 

diagram.  The approach for simplifying the integration is to analyze how many feedbacks 

are required and to select the appropriate operator types to fit the system.  When 

advancing from a simple feedback loop with one feedback element and one path after the 

element to the most complex feedback loop described in this study, the steps required to 

select the operator type become clear.  One feedback loop with one path after the 

feedback element requires a type 5 operator with a type 9 operator.  One feedback loop 

with two or more paths after the feedback element would necessitate selecting a type 4 

operator and for each path added and an additional type 9 operator included.  Lastly, with 

two or more feedback loops integrated into a system, the engineer must determine if a 

type 5 operator is needed, which represents a single path after the feedback element, or if 

type 4 operators are needed, representing more than one path after the feedback element.  

The remaining aspects of integrating feedback loops involve adding the additional signals 

required so that all additional paths available in the circuit are represented in the GO 

block diagram.  
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V. APPLICATION OF STUDY 

A. INTRODUCTION 

With the ability of the GO program to perform analyses for both reliability 

engineering and system safety, there are benefits and efficiencies that may be leveraged 

within systems engineering.  System safety engineers have overlapping interests with 

engineering disciplines across those within systems engineering.  Obviously there is a 

link between the disciplines of system safety and reliability.  In addition, disciplines of 

design architecture, software engineering, mission assurance and specialty engineering to 

name a few would receive benefit from modeling elements of their disciplines with the 

GO program. 

To best illustrate the benefits of using a common tool, such as the GO program, 

for multi-disciplinary work within systems engineering, a survey designed by Mr. Tyrone 

Jackson was sent out to mission assurance engineering experts in the field of defense 

systems engineering, manufacturing and development.  The survey was designed to 

collect the opinions of the mission assurance experts regarding mission assurance 

deficiency analysis methodologies.  The results of the survey were then correlated to 

determine areas of commonality.   

There are three tables presented in this study which reference information 

presented as part of the survey.  The first table is a list of deficiency analysis 

methodologies that are presented in Table 13 below.  This list is included in the survey 

and it represents the set of deficiency analysis methodologies currently being applied by 

mission assurance experts.  The methodology list also includes an opportunity for a tool 

or methodology not identified within the survey to be manually written in and identified 

by the survey taker, which is listed in the survey as item W.  The second table contains 

lists of products grouped according to unit-values, from Category 1 through 5, that are 

presented in Table 14.  These lists are included in the survey as Figure 3, and they 

represent products which are grouped according to the relative impact of their worst-case 

failure, in terms of potential human, environmental, and financial losses, in that order.  
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For example, the products in the Category 5 list represent products which have the 

highest unit-values, and the products listed in the Category 1 column represent systems 

which have the lowest unit-values.  The third and final table contains the survey 

questions that are presented in Table 15.  The survey questions relate the preferred 

mission assurance approaches among mission assurance experts who took the survey, 

with respect to their selection of particular deficiency analysis methodologies for 

particular unit-value categories of products.  The results of the survey correlate the 

commonality of preferred approaches among mission assurance experts, as demonstrated 

by each selecting nearly all of the deficiency analysis methodologies for Category 5 unit-

value products. 

 

A. Functional Diagram Modeling 
B. System Reliability Modeling 
C. Component Reliability Predictions 
D. Product Failure Mode, Effects and Criticality Analysis 
E. Sneak Circuit Analysis 
F. Design Concern/Rule Analysis 
G. Parts Stress Derating Analysis 
H. Worst Case Analysis 
I. Human Error Predictions 
J. Environmental Event Survivability Predictions 
K. Anomaly Detection and Response/Failure Coverage Analysis 
L. Maintainability Predictions 
M. Operational Dependability/Availability Modeling 
N. Hazard/Safety Analysis 
O. Software Component Reliability Predictions  
P. Process Failure Mode, Effects and Criticality Analysis 
Q. Event Tree Analysis 
R. Fault Tree Analysis 
S. Fishbone Analysis 
T. Similarity/Allocations Analysis 
U. Parts Engineering Analysis 
V. Stress and Damage Simulation Analysis 
W. Other Deficiency Analysis Methodology:__________________________ 

Table 13.   List of Deficiency Analysis Methodologies Used in Survey. 
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Unit-Value Category 1 

• Motorized/ manual hand tools  
• Fire arms 
• Explosive devices 
• Consumer  electronics 
• Personal computers 
• Household appliances 
• Battery operated toys 
• Infant/ children toys 

Unit-Value Category 2 

• Automobiles/ trucks/ motorcycles 
• Recreational vehicles/ motor homes 
• Industrial electronics 
• Experimental/ kit aircraft  
• Computer servers 
• Farm equipment 
• Medical/ laboratory equipment 
• Factory machinery 
• Test equipment/ software  
• Mobil construction/ demolition/ 

mining equipment 
• Mobil communications equipment 

Unit-Value Category 3 

• Experimental satellites 
• Small private aircraft/helicopters 
• Commercial buses 
• Oil tankers/ rigs 
• Freighters 
• Ground-mobile/  ground-fixed  military 

electronics 
• Ground-mobile/  ground-fixed  

conventional military weapons 
• Freight trains 
• Unmanned terrestrial exploration 

vehicles 
• Amusement park rides 
• Elevators/ escalators 

Unit-Value Category 4 

• Communications satellites 
• Fossil fuel/hydro-electric power plants 
• Water filtration plants 
• Short-range missiles/rockets  
• Commercial passenger aircraft/ 

helicopters 
• Military aircraft/ helicopters 
• Military drones/ unmanned vehicles 
• Ocean liners 
• Diesel-powered naval vessels 
• Passenger trains 
• Airborne military electronics 
• Extraterrestrial exploration vehicles   

Unit-Value Category 5 

• Defense satellites 
• Launch vehicles 
• Long-range missiles 
• Nuclear-powered naval vessels 
• Nuclear weapons 
• Nuclear power plants 
• Manned spacecraft 
• Space stations 
• Extraterrestrial manned habitats 

 

Table 14.   List of Unit-Value Category Definitions. 
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1. Which of the deficiency analysis methodologies would you recommend be used to 
assess deficiencies of a Capability Level 1 product in Figure 3?   

Highlight letters which correspond to methodologies applicable to Capability Level 1 products. 
 

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]  
 

2. Which of the deficiency analysis methodologies would you recommend be used to 
assess deficiencies of a Capability Level 2 product in Figure 3?   

Highlight letters which correspond to methodologies applicable to Capability Level 2 products. 
 

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]  
 

3. Which of the deficiency analysis methodologies would you recommend be used to 
assess deficiencies of a Capability Level 3 product in Figure 3?   

Highlight letters which correspond to methodologies applicable to Capability Level 3 products. 
 

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]  
 

4. Which of the deficiency analysis methodologies would you recommend be used to 
assess deficiencies of a Capability Level 4 product in Figure 3?   

Highlight letters which correspond to methodologies applicable to Capability Level 4 products. 
 

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]  
 

5. Which of the deficiency analysis methodologies would you recommend be used to 
assess deficiencies of a Capability Level 5 product in Figure 3?   

Highlight letters which correspond to methodologies applicable to Capability Level 5 products. 
 

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] 

Table 15.   List of Deficiency Analysis Methodologies Survey Questions. 

 

The results of the survey revealed there are extensive overlapping engineering 

design areas, requirements and analyses.  Figures 11, 12 and 13 are examples of these 

overlapping areas with the figures taken directly from the results generated by the author 

of the survey.  The author states, “Without detailed planning, this overlap may result in 

instances of duplication in effort or process escapement among different disciplines.”  

The results of this survey directly support the development and use of common use tools 

such as the GO program for inter-disciplinary application and use of analyses 

methodologies. 
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• SC Elec        
Pwr 

 
• SC Propulsion 

 
• SC Guidance  

 
• SC Thermal Cntl 

 
• SC Computer 

 
• SC  ADR 

• SC Communication 
 

• SC Health & Status 

• Payload 
Communication 

  
• Payload Telemetry 

 
• Payload Computer 

 
• Payload Anomaly 
Detection & Response 

 
• Payload Mission 

Equipment 

Satellite         
Mission-Critical 

Functions: 

Satellite           
Safety-Critical 

Functions: 

 

Figure 11.   Example Overlap of Safety-Critical and Mission-Critical Design Attributes. 

 

• Single Fault 
Tolerance    

(Mission-Critical) 
 

• Critical Item 
Control       

(Safety-Critical)

• Mishap Probability 
 

• Dual Fault Tolerance 
(Safety-Critical ) 

 
• Environmental & 

Occupational Health 
Requirements 

• System Reliability 
 

• Critical Item Control 
(Mission-Critical) 

 
• Maximum Time To 

Restore Function 
 

• Operational 
Dependability 

Reliability & 
Maintainability 
Requirements: 

System Safety 
Requirements: 

 

Figure 12.   Example Overlap of System Safety and Reliability / Maintainability 
Requirements. 
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• Functional 
Diagram Modeling 

 
• FMECA 

 
• Event Tree 

Analysis 
 

• Fault Tree 
Analysis 

• Safety Checklists 
 

• Environmental & 
Occupational Health 

Analysis 

• Parts Stress 
Derating Analysis 

 
• System Reliability 

Modeling 
 

• Component Reliability 
Predictions 

 
• Maintainability 

Predictions 
 

• Operational 
Dependability 

Modeling 

Reliability & 
Maintainability 

Analyses: 
System Safety 

Analyses: 

 

Figure 13.   Example Overlap of System Safety and Reliability / Maintainability Analyses. 

B. RECOMMENDATIONS 

A better understanding of the benefits of using a systematic, structured, updateable 

and repeatable method of analyses provides a more complete assessment of the performance 

of a system as a whole as well as offer opportunities for identifying previously unknown 

risks.  Beginning with architectural considerations and continuing through the final 

integration of system elements, there are benefits to having a common tool to be used across 

all disciplines for design selections and risk, reliability and safety analyses.  

Eliminating or reducing the amount of rework from similar disciplines with differing 

requirements is an immediate application which could lead to reducing cost and schedule for 

complex and often cost intensive systems.  Taking advantage of the inventory of computer 

aided tools currently available and finding and exploiting the synergies of easy to use tools 

will also immediately reduce the logistical footprint of multiple analyses techniques.  With 

the ability of the GO program to perform analyses for both reliability engineering and system 

safety, these benefits and efficiencies may be leveraged within systems engineering efforts.   
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VI. CONCLUSIONS 

A. KEY POINTS AND RECOMMENDATIONS 

With the demonstrated ability of the GO program to correctly model feedback 

loops, it clears a path for the Department of Defense to investigate the benefits of 

adopting a standardized approach for the analyses of complex systems.  The use of 

computerized tools aids greatly in assessing complex systems and the ability of the 

systems to meet requirements.  In the introduction chapter of this study, ten points were 

made regarding the benefits of using the GO program as a common analyses tool across 

multiple disciplines.  The list of benefits is repeated below. 

1. There are no commonly known commercial reliability modeling tools available 
that are driven by a functional model.  Performing reliability modeling using 
mathematical models introduces errors when function-level probabilities of 
occurrence are involved. 
 
2. There are no commonly known commercial FMECA (Failure Modes and 
Effects Criticality Analysis) tools available that are driven by a functional model.  
Performing FMECA manually using worksheets is likely to introduce errors when 
complex systems are involved. 
 
3. There are no commonly known commercial event tree analysis tools available 
that are driven by a functional model.  Performing event tree analysis manually 
using worksheets introduces errors when latent operating modes are involved. 
 
4. There are no commonly known commercial fault tree analysis tools available 
that are driven by a functional model.  Performing fault tree analysis manually 
using logic symbols introduce errors when complex systems are involved. 
 
5. There are no commonly known commercial engineering tools available that 
integrate reliability modeling, FMECA, event sequence analysis, and fault tree 
analysis.  Performing these analyses separately using different methods is labor-
intensive and introduces errors when trying to integrate the results. 
 
6. There is no commonly known commercial suite of integrated safety/reliability 
tools available.  One of the benefits in a future study is the research involved in 
defining an "enhanced GO" tool which allows integrating safety and reliability 
analyses via output which includes function-level failure cut-sets and function-
level probabilities of success. 
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7. There are no commonly known commercial reliability modeling tools available 
that are driven by a functional model which is compliant with an industry 
approved standard.  The AIAA S-102 Mission Assurance Standards Working 
Group is interested in coordinating the further development of an "enhanced GO" 
to create an Open Source tool which is driven by a functional model that is 
compliant with the S-102 Functional Diagram Modeling standard. 
 
8. There are no commonly known commercial reliability modeling tools available 
which allow feedback to be included in the model.  One of the topics in this study 
is the research involved in defining an "enhanced GO" which allows feedback to 
be included in the reliability model.  GO automatically generates the reliability 
model from the functional model. 
 
9. There are no commonly known commercial reliability modeling tools available 
which provide output in a format which is compliant with an industry approved 
standard.  The AIAA S-102 Mission Assurance Standards Working Group is 
interested in coordinating the further development of an "enhanced GO" to create 
an Open Source tool which provides output which is compliant with the XML 
data element descriptions defined in the S-102 standards. 
 
10. In the past 25 years, very few commercial reliability analysis tools were 
developed that are driven by functional models and which can perform multiple 
analyses.  One of these tools is called MultiLinx, which was used in the NASA 
Crew Return Vehicle (CRV) program between 1998 and 2003.  This tool was not 
marketed in the public domain after the CRV program ended.  The other tool is 
called eXpress, and it is currently used by many companies to analyze the 
testability of a design.  The eXpress tool is not intended to be used in safety 
design or reliability design assessments.  An "enhanced GO" could become the 
affordable  Open Source alternative which supports both safety design and 
reliability design assessments. 

Each of the above numbered items may be integrated into a government approved 

approach for use throughout the entire lifecycle of a system.  There are opportunities to 

improve the way the government and the contractor use the best practices available for 

acquiring systems of ever increasing cost and complexity.  Common tools with 

universally available, documented, and understood methodologies for their use will 

improve the government’s oversight of defense acquisition systems and increase the 

contractor’s awareness of the impacts of design decisions and changes throughout the life 

cycle systems engineering process.  
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B. AREAS TO CONDUCT FURTHER RESEARCH 

The GO program is currently designed to read in data files, perform analyses and 

write data files presented in a table format for review.  Each of the files read are created 

by the engineers who have a high familiarity with the system being modeled.  This 

technology has an opportunity to be updated with the power and complexity of the 

computers of today and the improved ease of use with graphical user interfaces.  One 

initial area in which the ease of the use of this program can be greatly improved would be 

for a computer or software engineer to design a graphical user interface.  Another benefit 

which may be gained is in possibly having the GO code updated to operate in code which 

is more advanced than FORTRAN, potentially allowing for greater application of the 

code or for obtaining intermediate levels of results of analyses.  The interested reader will 

find all of the input files used to create the single, standard and complex models in 

Appendix C. 
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APPENDIX A. MONTE CARLO SIMULATION AND GO CODES  

 

GO Code 1   4  2 3  0 10 0.8     10  1 0.1     10 10 0.1 $ FIRST LVL A 
Value of 0 with probability of 0.8 is a given property for the 
probability of this value on signal 1 

Explanation 
Value of 10 with a combined probability of 0.2 is a given property 
for the probability of this value on signal 1 

Excel Code =IF(rand_num<sig_1_percent,0,10) 

Explanation If the random number is less than the assigned signal 1 percent 
(0.80), the value is 0 else the value is 10. 

Math: N/A based on random number generator 

Signal 1 

Note: 

There is an value of 10 on signal 1 and 10 on signal 2 10% of the 
time.  This is done to allow for a condition for the value 4, which 
originates at signal 7 to be output at the OR gate The logic of the 
OR gate is that the signal with the lowest value will be passed at 
the gate 

Table 16.   GO1 and Excel Code Signal 1 for Single Model. 

GO Code 1   4  2 3  0 10 0.8  10  1 0.1     10 10 0.1 $ FIRST LVL A 
Value of 10 with probability of 0.1 is a given property for the 
probability of this value on signal 2.  Explanation Value of 0 with a combined probability of 0.9 is a given property 
for the probability of this value on signal 2 

Excel Code =IF(AND(rand_num>=0.8,rand_num<0.9),1,10) 

Explanation If the random number is less than the assigned signal 2 percent 
(net 0.10), the value is 0 else the value is 10. 

Math: N/A based on random number generator 

Signal 2 

Note: No notes for this signal 

Table 17.   GO1 and Excel Code Signal 2 for Single Model. 
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GO Code 5   1  0.8 0.2  $ SECOND LVL C 

Explanation The type 1 operator passes signals based on a predetermined 
success/failure rate 

Excel Code =IF(rand_num5<0.8,signal_1,10) 

Explanation 

If the random number is less than the assigned signal 5 percent 
(0.80), the value on signal 1 is passed else the output value is 10. 
Based on the random number generator, any random numbers 
less than signal 1's assigned percentage (0.80) will be passed. 
The multiplication is 0.80 times the probabilities of the values 
found on signal 10 
Value Signal 1 Multiply Signal 5 

0 0.80000007 Multiplied by 0.80 0.64000006 
1 0.00000000 Multiplied by 0.80 0.00000000 
3 0.00000000 Multiplied by 0.80 0.00000000 
4 0.00000000 Multiplied by 0.80 0.00000000 

Math: 

10 0.20000002  0.36000001 

Signal 5 

Note: 

The failure value is represented by the addition of 0.80 * 0.2 = 
0.16 plus the 0.20 failure rate of the type 1 operator, totaling 0.36 
An alternative way to get this number is to add all of the values for 
the signals 0-4 and subtract from 1 which will also yield the 
overall failure rate. 

Table 18.   GO1 and Excel Code Signal 5 for Single Model. 

GO Code 8   15 3 10 0 0 0 1 $ VALUE CHANGER 
Value of 3 with probability of 0.8 is a given property due to the 
inputs going to the type 15 operator.  

Explanation 
Value of 10 with probability of 0.2 is a given property due to the 
inputs going to the type 15 operator. 

Excel Code =IF(signal_5=0,3,10) 
Explanation If Signal 5 =0, the output is three else the output is 10. 

Math: N/A based on inputs received which are determined by random 
numbers generated at Signal 1 and Signal 5 

Signal 6 

Note: 

Note:  15-8 has no probability associated with it.  It simply has an 
output based on the input received.  The code for this type 
operator is for any input of 0, the output is 3, otherwise the output 
is 10. 

Table 19.   GO1 and Excel Code Signal 6 for Single Model. 
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GO Code 2   5  2 4 0.8 10 0.2 $ B FAIL INPUT 

Value of 4 with probability of 0.8 is a given property due to the 
inputs going to the type 5 operator Explanation Value of 10 with probability of 0.2 is a given property due to the 
inputs going to the type 5 operator 

Excel Code =IF(rand_num2<sig_7_percent,4,10) 

Explanation 
Similar to the type four operator on signals 1 and 2, if the random 
number (this time random number 2) is less than the assigned 
signal 7 percent (0.80), the value is 4 else the value is 10. 

Math: N/A based on random number generator 

Signal 7 

Note: No notes for this signal 

Table 20.   GO1 and Excel Code Signal 7 for Single Model. 

GO Code 6   9  1 -6 -6 $ TYPE 9 MODEL1 

Explanation Value of 4 is output when the input on signal 6 is 10 and the input 
on signal 7 is 4, otherwise the output is 10 

Excel Code =IF(AND(signal_7=4,signal_6=10),4,10) 

Explanation 

Excel populates this data based on the values available from the 
previous signals generated from the random numbers This will not 
produce an exact probability value, but on average, due to the 
nature of probability the average result will approximately equal 
the probability value. 

Math: Based on logic assigned to type 9 operator 

Signal 9 

Note: No notes for this signal 

Table 21.   GO1 and Excel Code Signal 9 for Single Model. 
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GO Code No probability data for a type 2 operator which is an or gate. 

The or gate will take the lowest value from the signals present 
Explanation This or gate receives signals from 2, 6 and 9 to pass on as signal 

10. 
Excel Code =MIN(signal_2,signal_6,signal_9) 

Explanation Excel function MIN does the same operation as described for the 
type 2 operator for the GO program 
Signal 2 probability value is directly associated with percentage 
value assigned on line 2 of the code, with line 2 being 0.10 for 
value 1, the or gate signal is 0.1 
Signal 6 probability value is directly associated with percentage 
value assigned on line 1 of the code, with line 1 being 0.80 for 
value 0, the or gate signal is 0.80 
Signal 9 probability value is directly associated with percentage 
value assigned on line 3 of the code, with line 3 being 0.10 for 
value 10 to be present at the same time on signals 1 and 2, 
multiplied by the percentage assigned to the signal 7 operator, 
which is 0.80 The probability for signal 9 to be passed at the or 
gate is 0.80 * 0.10 = 0.08 
The last value passed at the or gate is 10 which only happens in 
this case when signals 1 and 2 are 10 and when signal 7 results 
in a 10 (in this case 20 percent) 

Math: 

0.20 times 0.10  
(signal 7 failure times signal 1 and 2 failure) = 0.02 

Signal 
10 

Note: No notes for this signal 

Table 22.   GO1 and Excel Code Signal 10 for Single Model. 
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GO Code 5   1  0.8 0.2  $ SECOND LVL C 

Explanation The type 1 operator passes signals based on a predetermined 
success/failure rate 

Excel Code =IF(rand_num3<0.8,MIN(signal_2,signal_6,signal_9),10) 

Explanation 

If the random number is less than the assigned signal 11 percent 
(0.80), the value on signal 10 is passed else the output value is 
10.  Based on the random number generator, any random 
numbers less than signal 11's assigned percentage (0.80) will be 
passed. 
The multiplication is 0.80 * the probabilities of the values found 
on signal 10 
Value Signal 10 Multiply Signal 11 

0 0.00000000 Multiplied by 0.80 0.00000000 
1 0.10000001 Multiplied by 0.80 0.08000001 
3 0.64000005 Multiplied by 0.80 0.51200002 
4 0.20800000 Multiplied by 0.80 0.16640002 

Math: 

10 0.05200000  0.24160000 

Signal 
11 

Note: 

The failure value is represented by the addition of 0.80 * 0.052 = 
0.0416 plus the 0.20 failure rate of the type 1 operator, totaling 
0.2416  An alternative way to get this number is to add all of the 
values for the signals 0-4 and subtract from 1 which will also yield 
the overall failure rate. 

 

Table 23.   GO1 and Excel Code Signal 11 for Single Model. 
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APPENDIX B. MONTE CARLO SIMULATIONS  

 
 
RV1 RV2 RV3 RV4  Signal 1 

0.72 0.56 0.71 0.08 Description 
A to B 

signal 1, 
state 0/10 

    Likelihood 80% 

 Random 
Variable1 

Random 
Variable2 

Random 
Variable3 

Random    
Variable4 RV 1 

     =IF(rand_num<sig_1_percent,0,10) 
Exp 

# 0.72 0.56 0.71 0.08 0 

1 0.05 0.54 0.99 0.23 0 
2 0.52 0.60 0.99 0.02 0 
3 0.29 0.07 0.03 0.52 0 
4 0.20 0.40 0.30 0.83 0 
5 0.74 0.39 0.92 0.88 0 

Table 24.   Single Model Simulation Description for Signal 1. 

Signal 2 Signal 5 Signal 6 
A to C 

signal 2, 
state 1/10 

B to C 
signal 2, 

state 1/10 

B to C signal 6, 
state 3/10 

10% 80% N/A 

RV 1 RV 2 N/A 
=IF(AND(rand_num>=0.8,rand_num<0.9),

1,10) 
=IF(rand_num2<0.8,signal_1,

10) 
=IF(signal_5=0,3,

10) 
10 0 3 
10 0 3 
10 0 3 
10 0 3 
10 0 3 
10 0 3 

Table 25.   Single Model Simulation Description for Signals 2, 5 and 6. 
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Signal 7 Signal 9 

Task B fails; A to C 
signal 7, 

state 4/10 

Task B Fails; A to C 
signal 9, 

state 4/10 
80% N/A 

RV 3 N/A 
=IF(rand_num3<sig_7_percent,4,10) =IF(AND(signal_7=4,signal_6=10),4,10) 

4 10 
10 10 
10 10 
4 10 
4 10 

10 10 

Table 26.   Single Model Simulation Description for Signals 7 and 9. 

Signal 10 Signal 11 
Or Gate to Task C 

signal 10 
state 1/3/4/10 

Task C 
signal 11, 

state 1/3/4/10 
N/A N/A 

N/A RV 4 
=MIN(signal_2,signal_6,signal_9) =IF(rand_num4<0.8,MIN(signal_2,signal_6,signal_9),10) 

3 3 
3 3 
3 3 
3 3 
3 10 
3 10 

Table 27.   Single Model Simulation Description for Signals 10 and 11. 
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RV1 RV2 RV3 RV4 RV5  Signal 1 

0.29 0.27 0.76 0.04 0.99 Description 
A to B 

signal 1, 
state 0/10 

     Likelihood 80% 

 
Random 
Variable

1 

Random 
Variable

2 

Random 
Variable

3 

Random   
Variable

4 

Random 
Variable5 RV 1 

      =IF(rand_num<sig_
1_percent,0,10) 

Exp 
# 0.29 0.27 0.76 0.04 0.99 0 

1 0.17 0.60 0.86 0.05 0.02 0 
2 0.84 0.64 0.35 0.32 0.28 10 
3 0.64 0.74 0.11 0.96 0.22 0 
4 0.96 0.62 0.07 0.23 0.99 10 
5 0.38 0.12 0.30 0.90 0.91 0 

Table 28.   Standard Model Simulation Description for Signal 1. 

Signal 2 Signal 3 Signal 4 Signal 5 
A to C 

signal 2, 
state 1/10 

A to D 
signal 3, 

state 2/10 

B to D 
signal 4, 

state 0/10 

B to C 
signal 5, 

state 0/10 
10% 10% 60% 10% 

RV 1 RV 1 RV 1 RV 1 

=IF(AND(rand_num>
=0.8,rand_num<0.9),

1,10) 

=IF(rand_num>0.9,2,
10) 

=IF(AND(rand_num<
(sig_4_percent*sig_1

_percent)),0,10) 

=IF(AND(rand_num<
((sig_4_percent*sig_
1_percent)+(sig_5_p
ercent*sig_1_percent
)),rand_num>=(sig_4
_percent*sig_1_perc

ent)),0,10) 
10 10 0 10 
10 10 0 10 
1 10 10 10 

10 10 10 10 
10 2 10 10 
10 10 0 10 

Table 29.   Standard Model Simulation Description for Signals 2, 3, 4 and 5. 
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Signal 6 Signal 7 Signal 8 Signal 9 

B to C 
signal 6, 

state 3/10 

Task B fails; A to C 
signal 7, 

state 4/10 

Task B fails; A to D 
signal 8, 

state 5/10 

Task B Fails; A to C 
signal 9, 

state 4/10 
N/A 80% 20% N/A 

N/A RV 2 RV 2 RV 1 

=IF(signal_5=0,3,10) =IF(rand_num2<sig_
7_percent,4,10) 

=IF(rand_num2>=si
g_7_percent,5,10) 

=IF(AND(signal_6=10,s
ignal_7=4),4,10) 

10 4 10 4 
10 4 10 4 
10 4 10 4 
10 4 10 4 
10 4 10 4 
10 4 10 4 

Table 30.   Standard Model Simulation Description for Signals 6, 7, 8 and 9. 

Signal 10 Signal 11 Signal 12 Signal 13 
Or Gate to Task C 

signal 10 
state 1/3/4/10 

Task C 
signal 11, 

state 1/3/4/10 

Task B fails; A to D 
signal 12, 
state 5/10 

Task C fails; A to D 
signal 13, 
state 6/10 

N/A 80% N/A N/A 

N/A RV 3 N/A RV 4 

=MIN(signal_2,signal_
6,signal_9) 

=IF(AND(rand_num3<
Q12),MIN(signal_2,sign

al_6,signal_9),10) 

=IF(AND(signal_8=
5,signal_4=10),5,10

) 

=IF(rand_num4<0.8
,6,10) 

4 4 10 6 
4 10 10 6 
1 1 10 6 
4 4 10 10 
4 4 10 6 
4 4 10 10 

Table 31.   Standard Model Simulation Description for Signals 10, 11, 12 and 13. 
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Signal 14 Signal 15 Signal 16 

Task C fails; A to D 
signal 14, 
state 6/10 

Or Gate to Task D 
signal 15, 

state 0/1/3/4/5/6/10 

Task D 
signal 16, 

state 0/1/2/3/4/5/6/10 
N/A N/A 80% 

N/A N/A RV 5 

=IF(AND(signal_13=6,si
gnal_11=10),6,10) 

=MIN(signal_3,signal_4,signa
l_11,signal_12,signal_14) 

=IF(rand_num5<0.8,MIN(signal
_3,signal_4,signal_11,signal_12

,signal_14),10) 
10 0 10 
6 0 0 
10 1 1 
10 4 4 
10 2 10 
10 0 10 

Table 32.   Standard Model Simulation Description for Signals 14, 15 and 16. 

RV1 RV2 RV3 RV4 RV5 RV6 RV7  

0.72 0.21 0.99 0.43 0.00 0.10 0.91 Description 

       Likelihood 

 
Random 
Variable

1 

Random 
Variable

2 

Random 
Variable

3 

Random 
Variable

4 

Random 
Variable

5 

Random 
Variable

6 

Random 
Variable7 

        
Exp 

# 0.33 0.52 0.36 0.99 0.69 0.70 0.51 

1 0.06 0.58 0.08 0.92 0.48 0.13 0.73 
2 0.86 0.05 0.32 0.20 0.36 0.43 0.35 
3 0.92 0.01 0.59 0.11 0.46 0.47 0.44 
4 0.17 0.81 0.33 0.02 0.37 0.95 0.76 
5 0.76 0.54 0.92 0.79 0.99 0.26 0.79 

Table 33.   Complex Model Simulation Description for Random Variables. 
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Signal 1 Signal 2 Signal 3 Signal 17 

A to B 
signal 1, 

state 0/20 

A to C 
signal 2, 

state 1/20 

A to D 
signal 3, 

state 2/20 

A to D 
signal 17, 
state 7/20 

70% 10% 10% 10% 

RV 1 RV 1 RV 1 RV 1 

=IF(rand_num<sig_
1_percent,0,20) 

=IF(AND(rand_num
>=0.7,rand_num<0.

8),1,20) 

=IF(AND(rand_num
>=0.8,rand_num<0.

9),2,20) 

=IF(rand_num>0.9,
7,20) 

0 20 20 20 
0 20 20 20 
20 20 2 20 
20 20 20 7 
0 20 20 20 
20 1 20 20 

Table 34.   Complex Model Simulation Description for Signals 1, 2, 3 and 17. 

Signal 4 Signal 5 Signal 18 Signal 6 
B to D 

signal 4, 
state 0/20 

B to C 
signal 5, 

state 0/20 

B to E 
signal 18, 
state 0/20 

B to C 
signal 6, 

state 3/20 
50% 10% 10% N/A 

RV 1 RV 1 RV 1 N/A 

=IF(AND(rand_num
<(sig_4_percent*sig
_1_percent)),0,20) 

=IF(AND(rand_num
<(sig_4_percent*sig
_1_percent+sig_5_p
ercent*sig_1_percen
t),rand_num>=((sig_
4_percent*sig_1_per
cent+sig_5_percent*

sig_1_percent)-
(sig_5_percent*sig_
1_percent))),0,20) 

=IF(AND(rand_num
<(sig_4_percent*sig
_1_percent+sig_5_p
ercent*sig_1_perce
nt+sig_18_percent*
sig_1_percent),rand
_num>=(sig_4_perc
ent*sig_1_percent+
sig_5_percent*sig_1

_percent)),0,20) 

=IF(signal_5=0,3,20
) 

0 20 20 20 
0 20 20 20 
20 20 20 20 
20 20 20 20 
0 20 20 20 
20 20 20 20 

Table 35.   Complex Model Simulation Description for Signals 4, 5, 6 and 18. 
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Signal 7 Signal 8 Signal 19 Signal 9 
Task B fails; A to C 

signal 7, 
state 4/20 

Task B fails; A to D 
signal 8, 

state 5/20 

Task B Fails; A to E 
signal 9, 

state 8/20 

Task B Fails; A to C 
signal 9, 

state 4/20 
80% 10% 10% N/A 

RV 2 RV 2 RV 2 N/A 

=IF(rand_num2<sig
_7_percent,4,20) 

=IF(AND(rand_num
2>=sig_7_percent,r
and_num2<(sig_7_
percent+sig_8_perc

ent)),5,20) 

=IF(AND(rand_num2>
=(sig_7_percent+sig_8
_percent),rand_num2<
(sig_7_percent+sig_8_
percent+sig_19_perce

nt)),8,20) 

=IF(AND(signal_6=20,
signal_7=4),4,20) 

4 20 20 4 
4 20 20 4 
4 20 20 4 
4 20 20 4 
20 5 20 20 
4 20 20 4 

Table 36.   Complex Model Simulation Description for Signals 7, 8, 9 and 19. 

Signal 10 Signal 11 Signal 21 Signal 12 
Or Gate to Task C 

signal 20, 
state 1/3/4/20 

Task C 
signal 11, 

state 1/3/4/20 

Task C 
signal 21, 

state 1/3/4/20 

Task B fails; A to D 
signal 12, 
state 5/20 

N/A 60% 10% N/A 

N/A RV 3 RV 3 N/A 

=MIN(signal_2,signal_
6,signal_9) 

=IF(AND(rand_num3<V
16),MIN(signal_2,signal

_6,signal_9),20) 

=IF(rand_num3>(1-
sig_21_percent),MIN(si
gnal_2,signal_6,signal_

9),20) 

=IF(AND(signal_8=
5,signal_4=20),5,20

) 

4 4 20 20 
4 4 20 20 
4 4 20 20 
4 4 20 20 
20 20 20 20 
1 20 1 20 

Table 37.   Complex Model Simulation Description for Signals 10, 11, 12 and 21. 
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Signal 20 Signal 13 Signal 14 Signal 22 
Task B fails; A to E 

signal 20, 
state 9/21 

Task C fails; A to D 
signal 13, 
state 6/20 

Task C fails; A to D 
signal 14, 
state 9/20 

Task C fails; A to E 
signal 22, 
state 9/20 

N/A 80% N/A 20% 

N/A RV 4 N/A RV 4 
=IF(AND(signal_19
=8,signal_18=20),8,

20) 

=IF(rand_num4<0.8
,6,20) 

=IF(AND(signal_13=6,si
gnal_11=20),6,20) 

=IF(rand_num4>sig_
13_percent,9,20) 

20 20 20 9 
20 20 20 9 
20 6 20 20 
20 6 20 20 
20 6 6 20 
20 6 6 20 

Table 38.   Complex Model Simulation Description for Signals 13, 14, 20 and 22. 

Signal 23 Signal 15 Signal 16 Signal 24 
Task C fails; A to 

E 
signal 23, 
state 9/20 

Or Gate to Task D 
signal 15 

state 0/1/2/3/4/5/6/20 

Task D 
signal 16, 

state 0/1/2/3/4/5/6/20 

Task D fails; A to 
E 

signal 24, 
state 10/20 

N/A N/A 80% 80% 

N/A N/A RV 5 RV 6 

=IF(AND(signal_
22=9,signal_21=

20),9,20) 

=MIN(signal_3,signal_4,si
gnal_11,signal_12,signal_

14) 

=IF(rand_num5<0.8,MIN(
signal_3,signal_4,signal_
11,signal_12,signal_14),2

0) 

=IF(rand_num6<
AF16,10,20) 

9 0 0 10 
9 0 0 10 

20 2 2 10 
20 4 4 10 
20 0 0 20 
20 6 20 10 

 

Table 39.   Complex Model Simulation Description for Signals 15, 16, 23 and 24. 
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Signal 25 Signal 26 Signal 27 
Task C fails; A to E 

signal 25, 
state 10/20 

Or Gate to Task E 
signal 26 

state 0-10/20 

Task E 
signal 27, 

state 0-10/20 
N/A N/A 80% 

N/A N/A RV 7 

=IF(AND(signal_24=10,
signal_16=20),10,20) 

=MIN(signal_16,signal_17,sig
nal_18,signal_20,signal_21,si

gnal_23,signal_25) 

=IF(rand_num7<AI16,MIN(
signal_16,signal_17,signal
_18,signal_20,signal_21,si

gnal_23,signal_25),20) 
20 0 0 
20 0 0 
20 2 2 
20 4 4 
20 0 0 
10 1 1 

Table 40.   Complex Model Simulation Description for Signals 25, 26 and 27. 
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APPENDIX C. GO PROGRAM CODE 

GO1 DATA FOR SINGLE FEEDBACK LOOP 
,,,,,10/ 
4 1 2 1 2 $ FIRST LVL A 
1 5 1 5 $ SECOND LVL B 
15 8 5 6 $ VALUE CHANGER 
5 2 7 $ SECOND LVL B 
9 6 6 7 9 $ TYPE 9 MODEL1 
2 0 3 2 6 9 10 $ OR GATE 
1 5 10 11 $ THIRD LVL C 
0 11$ FINAL SIGNALS 
EOR 
� 

Table 41.   GO1 Data For Single Feedback Loop. 
GO2 DATA FOR SINGLE FEEDBACK LOOP 
0/ 
   1   4  2 3  0 10 0.8  
              10  1 0.1  
              10 10 0.1 $ FIRST LVL A 
   8   15 3 10 0 0 0 1 $ VALUE CHANGER 
   2   5  2 4 0.8 10 0.2 $ B FAIL INPUT 
   6   9  1 -6 -6 $ TYPE 9 MODEL1 
   5   1  0.8 0.2  $ SECOND LVL B/C 
EOR 
� 

Table 42.   GO2 Data For Single Feedback Loop. 
GO3 DATA FOR SINGLE FEEDBACK LOOP 
,,,1/ 
EOR 
� 

Table 43.   GO3 Data For Single Feedback Loop. 



72 

 
GO1 DATA FOR STANDARD FEEDBACK LOOP 
,,,,,10/ 
4 1 3 1 2 3 $ FIRST LVL A 
12 4 1 2 4 5 $ PATH SPLITTER 
15 8 5 6 $ VALUE CHANGER 
4 2 2 7 8 $ SECOND LVL B 
9 6 6 7 9 $ TYPE 9 MODEL1 
9 9 4 8 12 $ TYPE 9 MODEL2 
2 0 3 2 6 9 10 $ OR GATE 
1 5 10 11 $ THIRD LVL C 
5 3 13 $ DECISION C INPUT 
9 7 11 13 14 $ TYPE 9 MODEL3 
2 0 5 3 4 11 12 14 15 $ OR GATE 
1 5 15 16 $ FOURTH LVL D 
0 16 $ FINAL SIGNALS 
EOR 
� 

Table 44.   GO1 Data For Standard Feedback Loop. 
GO2 DATA FOR STANDARD FEEDBACK LOOP 
0/ 
   1   4  3 3  0 10 10 0.8  
              10  1 10 0.1  
              10 10  2 0.1 $ FIRST LVL A 
   4   12 2 0.6 0.1 $ PATH SPLITTER  
   8   15 3 10 0 0 0 1 $ VALUE CHANGER 
   2   4  2 2 4  10 0.8  
              10  5 0.2 $ SECOND LVL B 
   6   9  1 -6 -6 $ TYPE 9 MODEL1 
   9   9  1 -5 -5 $ TYPE 9 MODEL2 
   5   1  0.8 0.2  $ THIRD LVL C/D 
   3   5  2 6 0.8 10 0.2  $ DECISION C INPUT 
   7   9  1 -4 -4  $ TYPE 9 MODEL3 
EOR 
� 

Table 45.   GO2 Data For Standard Feedback Loop. 
GO3 DATA FOR STANDARD FEEDBACK LOOP 
,,,1/ 
EOR 
� 

Table 46.   GO3 Data For Standard Feedback Loop. 
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GO1 DATA FOR COMPLEX FEEDBACK LOOP 
,,,,,20/ 
4 1 4 1 2 3 17 $ FIRST LVL A 
12 4 1 3 4 5 18 $ B PATH SPLITTER 
15 8 5 6 $ VALUE CHANGER 
4 2 3 7 8 19 $ SECOND LVL B 
9 6 6 7 9 $ TYPE 9 MODEL1 
9 9 4 8 12 $ TYPE 9 MODEL2 
9 10 18 19 20 $ TYPE 9 MODEL21 
2 0 3 2 6 9 10 $ OR GATE 
12 14 10 2 11 21 $ B PATH SPLITTER 
4 3 2 13 22 $ DECISION C INPUT 
9 7 11 13 14 $ TYPE 9 MODEL3 
9 11 21 22 23 $ TYPE 9 MODEL32 
2 0 5 3 4 11 12 14 15 $ OR GATE 
1 13 15 16 $ FOURTH LVL D 
5 5 24 $ DECISION D INPUT 
9 12 16 24 25 $ TYPE 9 MODEL33 
2 0 7 16 17 18 20 21 23 25 26 $ OR GATE 
1 13 26 27 $ FIFTH LVL E 
0 26 $ FINAL SIGNALS 
EOR 
� 

Table 47.   GO1 Data For Complex Feedback Loop. 
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GO2 DATA FOR COMPLEX FEEDBACK LOOP 
0/ 
   1   4  4 4  0 20 20 20 0.7  
              20  1 20 20 0.1  
              20 20  2 20 0.1  
              20 20 20  7 0.1 $ FIRST LVL A 
   4   12 3 0.5 0.1 0.1 $ PATH SPLITTER  
   8   15 3 20 0 0 0 1 $ VALUE CHANGER 
   2   4  3 3 4  20 20 0.8  
              20  5 20 0.1  
              20 20  8 0.1 $ SECOND LVL B 
   6   9  1 -16 -16 $ TYPE 9 MODEL1 
   9   9  1 -15 -15 $ TYPE 9 MODEL2 
  10   9  1 -12 -12 $ TYPE 9 MODEL22 
  14  12  2 0.6 0.1 $ PATH SPLITTER 
   3   4  2 2 9  20 0.8  
              20 10 0.2 $ SECOND LVL B 
   7   9  1 -11 -11  $ TYPE 9 MODEL3 
  13   1  0.8 0.2  $ THIRD LVL C/D/E 
  11   9  1 -10 -10  $ TYPE 9 MODEL31 
   5   5  2 11 0.8 20 0.2 $ DECISION D INPUT 
  12   9  1 -9 -9  $ TYPE 9 MODEL4 
EOR 
� 

Table 48.   GO2 Data For Complex Feedback Loop. 

GO3 DATA FOR COMPLEX FEEDBACK LOOP 
,,,1/ 
EOR 
� 

Table 49.   GO3 Data For Complex Feedback Loop. 
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