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ABSTRACT 

Space-time coding and spatial diversity schemes enhance the performance of 

energy constrained multihop clustered relay networks. The purpose of this thesis is to 

evaluate the performance of techniques such as the decode-and-forward with cooperative 

diversity and the Alamouti space-time coding, which were primarily used in relay 

multiple-input multiple-output communications, in distributed clustered two-hop and 

multihop relaying networks consisting of single-antenna terminals. 

Simulation results, for phase shift keyed and quadrature amplitude modulation 

signals in single carrier Rayleigh and Stanford University Interim channels, show that the 

use of the decode-and-forward with cooperative diversity and the Alamouti cooperative 

space-time coding schemes improve the error probability performance in a power 

constrained, clustered multihop relaying network operating in a multipath fading 

environment. 
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EXECUTIVE SUMMARY 

Space-time coding and cooperative diversity schemes were primarily used in 

multiple-input multiple-output communications, but can also be used to improve the bit 

error performance and the energy consumption in wireless, energy constrained multihop 

relay communication networks.  

The objective of this research is evaluate the performance of the cooperative 

diversity and space-time transmission schemes, namely decode-and-forward with 

cooperative diversity and Alamouti cooperative space-time coding, in clustered multihop 

relay networks consisting of single-antenna elements. Decode-and-forward with 

cooperative diversity is the combination of decode-and-forward and multiple-input 

multiple-output techniques for single antenna terminals, which provides spatial diversity, 

is studied in this thesis. The Alamouti cooperative space-time coding algorithm is a 

combination of Alamouti space-time coding and decode-and-forward. These are 

compared to the non-cooperative relaying schemes of decode-and-forward and amplify-

and-forward. 

The wireless network topology used for the simulation is a network, which is 

formed by clusters that consist of two single-antenna terminals. There are two single-

antenna source terminals that transmit under the same power limitation and one multi-

antenna destination terminal. Simulation is initially conducted in a Rayleigh fading 

channel and Stanford university interim channel models. The performance measure is the 

error probability as a function of the signal to noise ratio or number of signal hops.  

For phase shift keying and quadrature amplitude modulation signals, the obtained 

error probabilities are improved and the performance difference for the two users is 

significantly decreased compared to the non-cooperative schemes. The reduction of 

performance differences between the users in cooperative schemes shows that 

cooperation among terminals leads to sharing of the energy resources of the network, so 

that terminals can extend their lifetime or achieve greater coverage ranges. Decode-and-

forward with cooperative diversity performed well in cases where the signal-to-noise 

difference between the paths was high and Alamouti cooperative space-time coding 



 xviii

performed better than other schemes in severe channel fading conditions. The cooperative 

schemes in multihop scenarios performed better than the non-cooperative schemes. We 

also noted that quadrature amplitude modulation suffered higher error probabilities in 

single carrier modulation; improvement was achieved compared to the non-cooperative 

schemes, but the use of orthogonal frequency division multiplexing is suggested in future 

research. 
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I. INTRODUCTION  

Cooperative wireless networks are a promising technology for future 

communication systems because cooperation in ad hoc networks can save limited 

network resources, including energy savings. In the last decade there has been a large 

ongoing research effort in this field. Cooperative techniques in wireless communication 

networks are the means to adopt the diversity, which is inherent in a wireless medium. 

The diversity achieved in a communication system, when such techniques are 

implemented, can be in code, frequency, space and time domains. The goal of 

cooperative diversity is to increase the reliability and the quality of service (QoS), 

coverage area range, and the data throughputs as well as improve the spectral efficiency 

of the wireless networks while prolonging the life of the nodes or user terminals by 

increasing energy efficiency. In a network consisting of independent users (ad hoc 

networks), achieving full diversity depends on the successful use of distributed coding 

and routing algorithms. Dynamic rather than static topologies and cooperation among 

heterogeneous networks further complicate the research efforts in this area. 

Cooperative communications networks use techniques initially developed for 

multiple-input multiple-output (MIMO) communications. These techniques seek to 

achieve spatial diversity and/or spatial multiplexing gains. In [1], a decode-and-forward 

relaying scheme, was introduced. In [2] the BLAST algorithm was proposed to exploit 

spatial multiplexing gains in multiple-input multiple-output systems. The Alamouti 

space-time code was proposed in [3], based on the maximal ratio combining receive-

diversity scheme as a fairly simple space-time coding technique for a two-antenna 

transmitter and a single or multi-antenna receiver. The Alamouti scheme can be extended 

to a system with 2n×2n antenna elements. Initially, it was introduced as a code which 

could achieve full diversity in a flat fading channel. Later in [4, 5] a modified version for 

multipath fading channels was proposed for the single-antenna receiver case. In [6], work 

done in [4, 5], was expanded to the two-antenna receiver case. This thesis will investigate 

the performance of the distributed form of decode-and-forward and of Alamouti space-

time coding, which provide spatial diversity in clustered multihop relay networks. 
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A. THESIS OBJECTIVE 

The objective of this research is to investigate the performance of the cooperative 

diversity and space-time transmission schemes, namely decode-and-forward with 

cooperative diversity and Alamouti cooperative space-time coding, in clustered multihop 

relay networks consisting of single-antenna elements. Their performance is compared to 

that of non-cooperative relaying schemes, namely non-cooperative decode-and-forward 

and amplify-and-forward.  

Space-time coding was primarily studied for multiple-input multiple-output 

(MIMO) communications. Past work done [3-11] demonstrated that space-time coding 

benefits communications schemes with multiple-antenna elements. Currently, there is 

considerable research interest in extending MIMO communication techniques to wireless 

ad hoc networks to achieve improved performance. Spatial diversity is a common 

characteristic of MIMO communications and ad hoc networks. In this thesis, we 

implement the space-time codes in clustered multihop relay networks. Specifically, we 

implement the distributed forms of decode-and-forward scheme and of Alamouti space-

time coding, which provide spatial diversity gains, in multihop relaying schemes of 

independent and power constrained terminals in order to evaluate their performance. 

Simulation results are obtained for BPSK, QPSK and QAM in Rayleigh and SUI fading 

channels. 

B. RELATED WORK IN COOPERATIVE SPACE-TIME CODING, 
COOPERATIVE DIVERSITY AND SPATIAL MULTIPLEXING 

Cooperative diversity for a simple three-terminal relay channel was first 

introduced in [12]. Later, in [1], several improvements were made in capacity bounds and 

cooperative schemes, such as decode-and-forward, were introduced.  Modifications to 

amplify-and-forward scheme were proposed in [13-16]. Based on these, more relaying 

schemes were introduced in [17-24]. The performance and other characteristics of the 

aforementioned schemes in several environments were studied in [17-27]. Extensions to a 

multi-terminal, multihop network were made in [13-17], where a clustered model and ad 

hoc network architecture were studied and useful results for transmit and receive 
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diversity gains and relaying strategies were obtained. Although compared to MIMO full 

diversity gains are not achieved due to single antenna elements, data rate gains can be 

achieved compared to the non-cooperative cases [13]. Cooperative spatial multiplexing 

schemes are also studied in [9-10, 28-29]. The cooperative form of the decode-and-

forward scheme for single antenna terminals, which provide spatial diversity, is studied in 

this thesis. 

Cooperative space-time coding introduced numerous problems to be solved, such 

as the terminal localization, time synchronization and distributed processing between the 

cooperative terminals. Cooperative space-time coding for clustered networks is still under 

development. In [7] a short range link is proposed in each cluster to achieve 

synchronization and combined processing for Alamouti space-time coding. In [8] the 

performance of cooperative space-time coding is studied. Generally, cooperative space-

time codes adopt both cooperative diversity schemes and cooperative spatial multiplexing 

schemes [11]. The success of a cooperative space-time coding scheme, among others, 

depends on the trade-off between spatial diversity gain and spatial multiplexing gain. In 

this thesis, the cooperative Alamouti space-time coding, which was developed for the 

three node network in [7], is extended to clustered multihop relay networks consisting of 

single-antenna terminals. 

C. THESIS OUTLINE 

This thesis is organized as follows. In Chapter II the fundamental concepts of 

MIMO communications and cooperative relaying networks is reviewed. Chapter III 

introduces the relaying schemes of non-cooperative amplify-and-forward and decode-

and-forward, the cooperative decode-and-forward with cooperative diversity and the 

Alamouti cooperative space-time coding. Chapter IV presents simulation results on PSK 

and QAM. Chapter V presents the conclusions and the significant results that were 

obtained in this work and includes suggestions for future study. This thesis includes two 

appendices. Appendix A lists the six models of the Stanford University Interim (SUI) 

fading channels. In Appendix B, the Matlab code used for the simulation is included. 
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II. DISTRIBUTED IMPLEMENTATION OF MIMO 
TECHNIQUES 

In this chapter a brief review of multiple-input multiple-output (MIMO) 

communications, spatial diversity (SD), spatial multiplexing (SM) and space-time coding 

(STC) is presented. All the aforementioned topics are related to the research reported here 

and are required to comprehend the work done. The Alamouti space-time coding scheme 

for multiple-input multiple-output communications is also examined since its distributed 

form (presented in the next chapter) is the primary technique for relaying messages in 

wireless networks in this work. Also introduced are the relaying channels, the virtual 

antenna arrays and the wireless cooperative communications systems.  

A. MIMO COMMUNICATIONS 

Multiple-input multiple-output (MIMO) [2, 3, 30,31] systems were introduced in 

order to enhance the performance of the wireless communications systems to provide 

robustness, high data rates, and reliability by overcoming the channel fading with the use 

of multiple antennas. A MIMO system offers redundancy through the multiple 

independent channels, which are created between the transmitting and the receiving 

antennas of the system. Using multiple-input multiple output systems, significant 

improvements are made in the coverage ranges of the communication systems and the 

data throughput without the need for additional transmission power or bandwidth 

expansion. Figure 1 shows a schematic diagram of a typical MIMO system with M 

transmission antennas and N reception antennas. In such a system a signal can be carried 

through the M×N different independent channels that exist between the transmitter and 

the receiver. In Figure 1 hi,j(t,τ) represents the fading channel between the ith transmission 

antenna and the jth reception antenna. Variable t is the time variable and τ denotes the 

signal delay variable when multipath fading occurs in the fading channel. When there is 

no multipath fading, then τ=0. A MIMO system can provide both spatial diversity and 

spatial multiplexing gains. These concepts are defined in the next two paragraphs. It is 
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important to note that all the gains provided by this scheme may not be realized 

simultaneously. Instead, there is a trade-off occurring between them. 

 
Figure 1. Typical MIMO System with M Transmitting and N Receiving Antennas, 

which provides an M×N Spatial Diversity Order. 
 

B. SPATIAL DIVERSITY, SPATIAL MULTIPLEXING AND SPACE-TIME 
CODING 

In the next two subsections, the two basic concepts of spatial diversity and spatial 

multiplexing in wireless communication are briefly described. Followed by that, space-

time coding schemes are introduced. 

1. Spatial Diversity 

A signal is said to be spatially diverted when it is being carried to the destination 

not only by one wireless channel, but by multiple parallel independent channels. Hence in 

a spatial diversity scheme [1, 2, 3, 30] the information message is copied in a domain 

(space, time, frequency) several times and is transmitted through all the possible 

independent fading channels hi,j(t,τ) between the ith source and the jth destination of the 

wireless medium that are between the transmitter and the receiver. These multiple copies 
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of the signal to the receiver provide the system with redundancy since the probability that 

all copies experience deep fading is highly reduced [30]. Thus, a system with multiple 

antennas for transmission and reception, like the one depicted in Figure 2, can achieve 

spatial diversity and enhance the quality of service (QoS) of one’s communications. The 

system depicted in Figure 2 has two transmission antennas and two reception antennas 

and achieves spatial diversity order of four. Spatial diversity can be further divided into 

transmission diversity and reception diversity schemes when it occurs at the transmitter’s 

or receiver’s side, respectively. The system of Figure 2 has a transmission diversity order 

of two and a reception diversity order of two since it has two transmission and two 

reception antennas, respectively.  

 
Figure 2. Spatial Diversity Scheme with Quadruple Diversity Gain, since there are 

Four Independent Transmission Channels hi,j ). 
 

2. Spatial Multiplexing 

Spatial multiplexing, on the other hand, is a technique used to increase data rates 

in wireless communications. This is achieved by dividing the data stream and 

transmitting it through multiple independent non-interfering channels. A signal is 

spatially multiplexed when different portions of the signal are being transmitted through 

different independent fading channels. Thus if a channel suffers fading in one of the sub-

channels, then only a small portion of the information will be lost. Also the achieved 

transmission rate is increased by a factor equal to the number of independent channels 

used. A spatial multiplexing scheme is depicted in Figure 3, which divides the stream [X1 

X2] such that symbol X1 is transmitted by transmission antenna 1 and symbol X2 is 

transmitted by transmission antenna 2. Each symbol is transmitted through two 

independent fading channels hi,j; symbol X1 is transmitted through h1,1 and h1,2.    
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Figure 3. Spatial Diversity Scheme with Double Multiplexing Gain, since every two 

Consecutive Symbols are transmitted by Different Antennas. 
 

Without reducing the quality of the signal, spatial multiplexing takes advantage of 

the multiple channels of the wireless medium.  Achieved data rates, compared to a single-

input single–output (SISO) system, can be increased by factor d=min{N, M}, the number 

of the independent channels; for the system in Figure 3, d=2 [30]. 

Both spatial diversity and spatial multiplexing gains, which can be achieved, grow 

with the number of antennas, since more alternative independent channels are provided to 

the system. 

3. Space-time Coding 

Real-time voice and image transmissions over wireless networks demand high 

data rates and quality of service (QoS). Space-time coding was developed to increase 

both reliability and link capacity. There are two broad categories of space-time (ST) 

codes; those targeted to increase reliability/QoS of MIMO communications and those 

developed to offer higher data rates. Alamouti [3] is a scheme targeted to provide 

reliability and BLAST [2] is an architecture that offers higher rates by providing spatial 

multiplexing.  

Alamouti proposed an algorithm that offers transmit diversity to increase 

reliability in a flat fading channel (Rician and Rayleigh) [3]. The technique is optimum 

for two transmission antennas and as many reception antennas as possible. The equations 

for a system with two transmission antennas and one reception antenna (2×1) and a 2×2 

system were derived in [3]. The Alamouti space-time coding scheme can achieve full 

spatial diversity gain (a gain of two for the 2×1 scheme and a gain of four for the 2×2 

scheme) without decreasing the achieved data rates since there is also a spatial 
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multiplexing gain of order two which doubles the achieved data rates. Thus the reduction 

of the achieved rate that occurs because of the retransmission of the symbols at the 

second time slots is offset by the simultaneous increase of the rates since at each time slot 

two symbols are transmitted.   

a. 2×1 Alamouti Space-time Coding Scheme 

The Alamouti space-time coding scheme, as proposed in [3], for the 

system with two transmission antennas and one reception antenna is shown in Figure 4. It 

is assumed that the complex channel coefficients hi,j are constant across two consecutive 

symbol periods and that it is a frequency flat fading (memoryless channel) environment 

for the allocated frequency bandwidth. The information symbols to be transmitted are X1 

and X2. The system during the first symbol period transmits [X1, X2] and during the 

second symbol period transmits [-X2*, X1*] as given in Table 1, where X1* denotes the 

complex conjugate of X1 and T denotes the symbol transmission period. 

 
Figure 4. Alamouti 2×1 Scheme for Frequency Flat Slow Fading Channel. 
 
 

 Antenna 1 Antenna 2 

time t X1 X2 

time t + T -X2
* X1

* 

 

Table 1.   Transmission Sequence for the 2×1 Alamouti Scheme.  
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From [3], for frequency flat, slow fading channel conditions, the channel 

coefficients are assumed to be constant during two consecutive symbol periods, 

1,1 1,1( ) ( )h t h t T= +  

and               (2.1) 

2,1 2,1( ) ( )h t h t T= + , 

the received signals at times t and t+T, respectively are [18]:  

( ) ( ) ( ) ( ) ( ) ( ) ( )0 1,1 1 2,1 2 0R t R t h t X t h t X t n t= = + +  

and                (2.2) 

( ) ( ) ( ) ( ) ( ) ( ) ( )* *
1 1,1 2 2,1 1 0R t R t T h t X t h t X t n t T= + = − + + +  

where 0n  represent noise at the receiver. The estimates of the signals are calculated in the 

decoder/combiner as follows [3]: 

( ) ( ) ( ) ( ) ( )* *
1 1,1 0 2,1 1X̂ t h t R t h t R t= +  

and               (2.3) 

( ) ( ) ( ) ( ) ( )* *
2 1,1 0 2,1 1

ˆ .X t h t R t h t R t= −  

The Alamouti 2×1 scheme for the single carrier (SC) case in a channel 

with multipath fading and inter symbol interference (ISI) is depicted in Figure 5 and has 

been studied in [4]. The channel has memory hence it is represented by its impulse 

response hi,j as a function of the unit delay operator q-1[4]. The single channel impulse 

response hi,j is then represented as a discrete-time filter given by [5] 

( )
0 1

1 1
, , , ,...

P

P
i j i j i j i jh q h h q h q− − −= + + +     (2.4) 

where , ni jh for n=0,1,2,..,P are the discrete-time filter coefficients and P indicates the 

number of the paths. The Stanford University Interim (SUI) channel models are widely 

used in the literature to realize channels with memory [5]. The SUI channels are used in 

this work to simulate the frequency selective multipath fading with P=2.  
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Figure 5. Alamouti 2×1 Scheme for a Frequency Selective Slow Fading Channel. 
 

In a frequency selective channel with intersymbol interference, the space-

time block coding technique [4, 5] is applied to demonstrate intersymbol interference. 

The symbols are transmitted in blocks of N consecutive symbols, given by 

1 1 1 1 1

2 2 2 2 2

[ (1), (2),..., ( ),..., ( )],

[ (1), (2),..., ( ),..., ( )].

X X X X t X N

X X X X t X N

=

=
       (2.5) 

Typically N>1 for channels with ISI. If N=1, the channel is multipath with 

no ISI, which means that the maximum rms delay is smaller than the intersymbol guard 

period. From (2.2), for P=2, assuming that channel fading coefficients remain constant 

during consecutive block transmissions, the received signals, R0 and R1 for the 2×1 

Alamouti system are then expressed as 

( )
( )

0 1 2

0 1 2

0 1,1 1 1,1 1 1,1 1

2,1 2 2,1 2 2,1 2 0

( ) ( 1) ( 2)

                      ( ) ( 1) ( 2)

R t h X t h X t h X t

h X t h X t h X t n t

= + − + −

+ + − + − +
 

and               (2.6) 

( )
( )

0 1 2

0 1 2

* * *
1 1,1 2 1,1 2 1,1 2

* * *
2,1 1 2,1 1 2,1 1 0

( ) ( 1) ( 2)

                        ( ) ( 1) ( 2) .

R t h X t h X t h X t

h X t h X t h X t n t T

= − − − − −

+ + − + − + +
 

where T denotes the symbol transmission period.  
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Substituting (2.4) into (2.6) gives 

   ( ) ( )1 1
0 1,1 1 2,1 2 0( ) ( ) ( ) ( )R t h q X t h q X t n t− −= + +  

and               (2.7) 

   ( ) ( )1 * 1 *
1 1,1 2 2,1 1 0( ) ( ) ( ) ( )R t h q X t h q X t n t T− −= − + + + . 

The decoder calculates the estimated signals as follows [18]: 
* 1 *

1 1,1 0 2,1 1

* 1 *
2 2,1 0 1,1 1

ˆ ( ) ( ) ( ) ( ) ( ),

ˆ ( ) ( ) ( ) ( ) ( ).

X t h q R t h q R t

X t h q R t h q R t

−

−

= +

= −

             (2.8) 

where hi,j(q) [20] represents a non-causal realization of the channel filter hi,j(q-1). 

b. 2×2 Alamouti Space-time Coding Scheme 

The Alamouti space-time coding scheme for the system with two 

transmission antennas and two reception antennas in a memoryless channel, as proposed 

in [3], is shown in Figure 6. The transmission scheme is the same as with the 2×1 system 

case. 

 
Figure 6. Alamouti 2×2 Scheme for a Frequency Flat Slow Fading Channel. 
 

Received signals at receive antenna 1 are: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0 1,1 1 2,1 2 0

* *
1 1,1 2 2,1 1 0

,R t h t X t h t X t n t

R t h t X t h t X t n t T

= + +

= − + + +

  (2.9) 



 13

where 0n  represents noise at receive antenna 1. At receive antenna 2 the received signals 

are: 

  ( ) ( ) ( ) ( ) ( ) ( )2 1,2 1 2,2 2 1R t h t X t h t X t n t= + +  

and              (2.10) 

  ( ) ( ) ( ) ( ) ( ) ( )* *
3 1,2 2 2,2 1 1 .R t h t X t h t X t n t T= − + + +  

at time instances t and t+T, respectively, where 1n  represents noise at receive antenna 2. 

Again, the estimates of the signals in the decoder/combiner are given as [3] 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

* * * *
1 1,1 0 2,1 1 1,2 2 2,2 3

* * * *
2 1,1 0 2,1 1 1,2 2 2,2 3

ˆ ,

ˆ .

X t h t R t h t R t h t R t h t R t

X t h t R t h t R t h t R t h t R t

= + + +

= − + −

        (2.11) 

The 2×2 scheme for frequency selective channel with ISI coefficients 

hi,j(q-1) is shown in Figure 7. The transmission sequence is given by (2.5). 

 
Figure 7. Alamouti 2×2 Scheme for a Frequency Selective Slow Fading Channel. 
 

The received signals are [5]:  

( )

( ) ( )

( )

( ) ( )

1 1
0 1,1 1 2,1 2 0

1 * 1 *
1 0 1,1 2 2,1 1 0

1 1
2 1,2 1 2,2 2 1

1 * 1 *
3 2 1,2 2 2,2 1 1

( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ).

R t h q X t h q X t n t

R t R t T h q X t h q X t n t T

R t h q X t h q X t n t

R t R t T h q X t h q X t n t T

− −

− −

− −

− −

= + +

= + = − + + +

= + +

= + = − + + +

  (2.13) 
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Finally, the estimated symbol blocks as decoded by the decoder/combiner 

are:  
* 1 * * 1 *

1 1,1 0 2,1 1 1,2 2 2,2 3
ˆ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )X t h q R t h q R t h q R t h q R t− −= + + +  

and             (2.14) 
* 1 * * 1 *

2 2,1 0 1,1 1 2,2 2 1,2 3
ˆ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )X t h q R t h q R t h q R t h q R t− −= − + −  

where h(q) represents a non-causal realization of the channel filter. 

In each case the decoded symbol blocks are obtained using a maximum 

likelihood (ML) detector. A maximum likehood detector maps the estimated symbols 

1
ˆ ( )X t and 2

ˆ ( )X t to the most probable reference symbols from the phase shift keying 

modulation (PSK) or quadrature amplitude modulation (QAM) constellation being used. 

The measure used for mapping is the two dimensional distance between the estimated 

and the reference symbol on the constellation grid.  

C. COOPERATIVE COMMUNICATIONS 

The overall concept behind cooperation in wireless communications is to make 

the independent, and by nature non-cooperative, users of the network share their limited 

resources. Cooperation can be classified as implicit or explicit [31]. Implicit cooperation 

is a primitive form of cooperation and does not require any pre-established cooperative 

framework. A wireless communication protocol can be considered an implicit 

cooperation protocol if it applies rules for medium sharing among users (for example 

ALOHA). 

On the other hand, explicit cooperation requires advanced cooperative protocols 

to be pre-established. In this type of cooperation, the elements of the system are directed 

to cooperate by these protocols [31]. Cooperation is also extended to the relaying 

procedures, which are targeted to extend the coverage range of the communication 

systems. The simplest topology where cooperative procedures occur in is a network 

which consists of three independent terminals/devices, as depicted in Figure 8. Of these 
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three terminals one acts as the source terminal (S) of the signal, the other acts as a 

relaying terminal (R), which conveys the signal, and the last is the destination terminal 

(D). This is the fundamental example of cooperation and is further described in this 

chapter as part of the cooperative communications systems. 

 
Figure 8. Three Terminals Network with a Source (S), a Relay (R) and a Destination 

(D) Node.  

1. Distributed Networks 

Distributed networks are networks that do not have a central controller to share 

the medium and control the communication. The two broad categories of distributed 

networks are the ad hoc networks and sensor networks. 

a. Ad hoc Networks 

Ad hoc translated from Latin is “for this,” and literally means “for this 

purpose only.” Thus, ad hoc networks are the networks which consist of terminals that 

move randomly and are brought together only for the temporary purposes of connectivity. 

These terminals are usually single antenna elements, independent, and connect on the 

volunteer basis only to help the wireless communications. An ad hoc network can consist 

of homogeneous or heterogeneous, portable or non-portable elements like mobile phones, 

computers, handhelds, wireless sensors, routers and other devices. These terminals are 

usually under temporary or permanent energy constraints. The portable nature of the 

majority of these devices indicates the dynamic topology and connectivity that 
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characterizes an ad hoc network. An ad hoc network can be established in a room, on an 

airplane or in open space and can use different short-range and long-range interfaces, 

such as ZigBee, Wi-Fi and WiMaX.  

b. Sensor Networks 

Sensor networks are distributed networks of small sensor terminals. These 

terminals may not be autonomous and have power and processing constraints. Yet, an 

operational requirement is to prolong their lifetime as long as possible while preserving 

reliability in data exchange and longer coverage ranges. Sensor networks, in contrast with 

ad hoc networks, are not dynamic and their traffic is usually periodic and of low 

intensity.  

2. Cooperative Networks 

Cooperation in wireless networks is proven to be an advantageous technique. In 

wireless communications cooperation is regarded as the sharing of the resources and the 

encoding and decoding capabilities of the network users. Distributed terminals cooperate 

to relay signals to distant terminals. For practical reasons not all terminals in a given area 

of interest are needed to cooperate. Typically terminals form clusters under the direction 

of specified protocols and selected terminals in the cluster participate in a cooperative 

communication scheme. Next we discuss how independent terminals form clusters to 

cooperate. Also, the concept of cooperative diversity is described along with decode-and-

forward and amplify-and-forward schemes in the three terminal networks of Figure 8. 

a. Clusters and Virtual Antenna Arrays 

In a MIMO system antenna arrays are used to mitigate the fading. The 

terminals that form an ad hoc network are usually single antenna elements which cannot 

exploit spatial diversity gains to overcome fading. The deployment of antenna arrays on 

portable mobile terminals is impractical. Groups of distributed single antenna terminals 

can form virtual antenna arrays (VAA) and overcome this problem.  Of course, 

communicating terminals can have more than one antenna, but this case is an expansion 
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of MIMO relaying and not cooperative relaying, which will be examined here. The 

virtual antenna array concept has been studied for sensor networks, ad hoc networks, 

cellular-type networks and WLAN-type networks [31]. From this point forward, devices 

that form virtual antenna arrays are referred to as mobile terminals (MT) [31]. Figure 9 

depicts a distributed-MIMO clustered multi-relay network model. The terminals (MT) in 

each cluster can cooperate or they do not have to relay information. Several sub-MIMO 

systems are formed by the mobile terminals, which can cooperate through a short range 

link in each cluster [31, 32 and 7]. This link is depicted with a dash-dotted line in the 

vertical direction. 

 
Figure 9. Distributed-MIMO Multi-terminal Relaying Network [After Ref. [32]]. 

 

As can be seen, not all mobile terminals can communicate with others 

because of limited coverage range or incompatibilities in signal modulation and coding  
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schemes. To take advantage of these relaying topologies one needs to employ algorithms 

for resource allocation [31], group forming [25], optimum positioning, routing, and 

synchronization.  

b. Cooperative Diversity  

Cooperative Diversity is the set of techniques used to achieve spatial 

diversity in cooperative networks. These techniques were initially applied to achieve 

spatial diversity between the closely located and correlated antennas in MIMO systems. 

One can either apply transmit diversity, by employing more than one cooperative 

transmitter, or receive diversity, by employing more than one cooperative receiver [13]. 

Of course, both diversity designs can be simultaneously applied to achieve redundancy in 

every hop between the relays of Figure 9.  

c. Three Terminals Relay Network 

The relaying method as shown in Figure 8 was introduced in [33]. In 

Figure 8, the source is considered to have a Line of Sight (LoS) link to both the relay and 

the destination but the fading components between R-D and S-D are different and 

independent. The source tries to send data to the destination and it is aided by the relay. 

This scheme can be full-duplex or half-duplex [30]. Since full-duplex terminals require 

advanced orthogonal modulation and accurate antenna directivity to avoid interference, 

only half-duplex schemes are considered here. In the half-duplex case, cooperation takes 

place in two consecutive time instances. If the LoS link between S and D is lost or 

interfered with, R can still send data to D. If the S-R or R-D link is down then the S-D 

link will send data. Spatial diversity combats fading that occurs in one of the channels. 

Thus, outage probability, which is the probability the link collapses, is diminished, bit 

error rate (BER) is improved, and redundancy is provided in the destination without 

additional cost in bandwidth or power.  

A critical parameter to achieve high data throughputs is that the distant 

transmitters have to transmit in such a way that the symbol streams, which are desired to 
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be received by a specific terminal and be combined at the reception, arrive 

simultaneously at the receiving terminal [13].  

d. Traditional Relaying Protocols 

There are three main schemes for achieving cooperation/relaying, namely 

decode-and-forward, amplify-and-forward, and compress-and-forward. From these the 

first two are of interest and will be used for simulation. There is also coded cooperation 

proposed in [24] but because it is not scalable to larger networks it will not be discussed. 

The decode-and-forward and amplify-and-forward schemes are presented in Figures 10 

and 11, respectively. 

 
Figure 10. Decode-and-Forward Relaying Protocols in a Three-terminal Wireless 

Network. 
 

In both decode-and-forward and amplify-and-forward schemes, it can be 

observed that in the first time slot receive diversity is achieved (R acts as the receiver) 

and in the second time slot transmit diversity is achieved (both S and R transmit). Briefly 

it can be said that in the decode-and-forward scheme as seen in Figure 10, the relay fully 

decodes the received source signal, re-encodes it, and transmits the estimated signal. 



 20

In the amplify-and-forward relaying scheme as seen in Figure 11, the 

received signal is just amplified and transmitted without any decode/encode procedure. 

Since the received signal in relay also contains noise, in amplify-and-forward the relay 

also amplifies noise. 

 
Figure 11. Amplify-and-Forward Relaying Protocols in a Three-terminal Wireless 

Network. 
 

e. Cooperative Spatial Multiplexing  

Cooperative spatial-multiplexing occurs when independent wireless relays 

deliver different and spatially multiplexed portions of the information signal to the 

destination [2]. Cooperative spatial multiplexing takes advantage of the spatial 

(uncorrelated channels due to dispersion of antennas) and frequency (orthogonal 

frequency channels) diversity gain of a multi-terminal network to increase data rates and 

decrease outage probability [34] compared to traditional forwarding schemes. In [34] a 

low complexity cooperative multiplexing scheme for the uplink (mobile terminal to base 

station) of a relay network is proposed. Another cooperative multiplexing technique for 

resource constrained devices (sensor networks) is proposed in [2]. 
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f. Cooperative Space-Time Coding  

Space-time coding techniques that have been successfully applied to 

mitigate inter-symbol interference in MIMO communications are being extended to 

cooperative communications [7, 8, 11, and 35]. Alamouti space-time coding [3] can be 

easily extended for application in a distributed environment [7]. In this thesis we 

investigate the distributed form of Alamouti space-time coding for cooperative 

communications. 

D. SUMMARY 

In this chapter, we introduced the cooperation in wireless networks, the spatial 

diversity and spatial multiplexing gains, the cooperative diversity and cooperative 

multiplexing techniques and the Alamouti space-time coding for MIMO communications. 

Also the distributed architecture of Alamouti space-time coding was briefly introduced 

and we analyze the performance of the distributed form of the Alamouti technique, along 

with cooperative diversity techniques, on specific multi-relaying scenarios in the next 

chapter [31]. Traditional relaying schemes will also be examined for comparison. 
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III. PERFORMANCE ANALYSIS OF COOPERATIVE 
TECHNIQUES IN MULTI-RELAY CHANNELS 

The objective of this chapter is to evaluate the performance of a cooperative 

diversity scheme and a cooperative space-time coding scheme in a multi-hop relay 

network. Followed by a description of the topology used, the theoretical formulas 

describing the non-cooperative and cooperative relaying schemes are introduced. The 

evaluation of cooperative space-time coding scheme is conducted using a distributed 

form of the Alamouti space-time coding. Also the bit error performance evaluations of all 

the schemes in AWGN environment are derived. The theoretical results are compared 

with simulation results for BPSK. 

A. COOPERATIVE COMMUNICATION MODEL 

Multi-relay terminal clusters between a source and a destination terminal required 

for cooperative communication schemes can be created using routing mechanisms 

developed for wireless ad hoc networks [36-41]. Once formed, these multi-relay terminal 

clusters can be treated as virtual antenna arrays as described in Chapter II. Figure 12 

shows virtual antenna arrays consisting of clusters of two relaying terminals, which are 

deployed in a way that only one-hop neighborhoods are formed. For example, in the 

figure, the coverage area (dashed circle) of the cluster on the right most side includes the 

cluster in the middle but not the one on the left most side and vice versa. 

All mobile terminals are assumed to be equipped with single antenna under power 

restrictions. The destination terminal is not of interest and can be equipped with one or 

multiple antennas. For this study, only the source mobile terminals, which are depicted on 

the left side of the network in Figures 13(a) and 13(b), generate information streams. All 

the other mobile terminals can only relay those information streams and do not generate 

their own. Hence an uplink is formed from the source mobile terminals on the left side of 

Figure 13 to the destination terminal on the right hand side of Figure 13. Hence we 

examine the uplink route that is formed and not the down-link from the right side to the 

left side of Figure 13. 
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Figure 12. The Coverage Areas of Mobile Terminals. Areas are indicated by the 

Dashed Circles. 
 

If the clusters contain only one single-antenna mobile terminals, there is no 

cooperation. In the case of more than one relaying terminal in each cluster, like the one 

depicted in Figure 13(b), the terminals can cooperate and thus achieve spatial diversity 

gain. 

 
Figure 13. Multi-hop Relaying Topologies of Cooperative and Non-cooperative 

Schemes. (a) Non-cooperative Scheme and (b) Cooperative Dual-terminal 
Clustered Scheme. 
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This work will evaluate the cooperative communication model of Figure 14. 

Sources and relays are single-antenna mobile terminals. The two source terminals, in the 

right most side cluster, are denoted as SMT1 and SMT2, respectively. A relay terminal is 

denoted as RMTji, for j=1,2 and i=1,…,k; where j indicates whether a relay terminal is on 

the upper or the lower part of the cluster and i is the number of hops to terminal RMTji. 

All terminals in the upper (lower) path are assumed to have the same SNR at reception. 

All mobile terminals operate in half duplex mode. Source and relaying mobile terminals 

operate under a total transmitted power constraint Pmax. Mobile terminals apply coherent 

detection to the received signal using a matched filter. The destination is assumed to be a 

dual-antenna terminal. Evaluation can be extended to models containing more than two 

relaying mobile terminals in each cluster. As direct links (line of sight) can only be 

established between neighboring mobile terminals, relaying is the only way for 

communication between the source and destination. Figure 14(a) and 14(b) show the two-

hop and multiple-hop cooperative relaying schemes, respectively. These schemes have 

one or more intermediate clusters of the relaying terminals RMT1j and RMT2i, for 

i=1,…,k. Parameter hji,n, for j=1,2 and i=1,2 and n=1,..,k, denotes the fading channel 

coefficient of the nth hop between RMTjn-1 and RMTin. 
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Figure 14. Cooperative Dual-relay Schemes. (a) Two-hop Scheme (b) Multi-hop 

Scheme. 
 

B. ANALYSIS OF THE RELAYING TECHNIQUES 

1. Non-cooperative Multi-hop Scheme 

The two non-cooperative methods examined are decode-and-forward and 

amplify-and-forward. Two sources SMT1 and SMT2 transmit two independent signals 

denoted X1 and X2, respectively, which are relayed to the destination by two separate non-

cooperative multi-hop paths. The two parallel paths suffer uncorrelated fading, different 

noise levels, and no interference between them as shown in Figure 15. Variable Rij 

denotes the received signal at relaying terminal RMTji, hji is the fading path coefficient 

between terminal RMTji-1 and terminal RMTji, and ˆ
jiX  is the signal transmitted by 

relaying terminal RMTji. 
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Figure 15. Two Parallel Single-terminal Relay Paths forming a Non-cooperative 

Multiple-hop Scheme with two sources to the left most side and a 
destination to the right most side. 

 

a. Decode-and-Forward 

Decode-and-forward is the first non-cooperative relaying scheme to be 

described. The formulas describing the scheme in flat fading are presented. The resulting 

formulas are used in the simulation of the scheme in the next chapter. The error 

probability for the two-hop case of decode-and-forward in AWGN is derived as well. 

In this scheme, relays RMT1 and RMT2 coherently decode the received 

signals R1 and R2 and transmit their estimates 1X̂ and 2X̂ , respectively. The following 

formulas represent the decode-and-forward scheme in flat fading conditions. The initial 

transmission sequences for N consecutive time slots from the two sources are 

1 1 1 1 1

2 2 2 2 2

[ (1), (2),..., ( ),..., ( )],

[ (1), (2),..., ( ),..., ( )]

X X X X t X N

X X X X t X N

=

=
   (3.1) 

where X1 are the information symbols of source SMT1 and X2 are the information 

symbols of source SMT2. The received signals in the relays RMT1i and RMT2i, 

corresponding to the transmitted symbols 1
ˆ ( ), 1, 2jiX t j− = and 1,... 1i N= + , from the relays 

RMT1i-1 and RMT2i-1, respectively, are 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1, 1 1 0

2 2, 2 1 1

ˆ ,

ˆ

i i i i

i i i i

R t h t X t n t

R t h t X t n t

−

−

= +

= +

      (3.2) 
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where n0 and n1 represent noise received at RMT1i and RMT2i, respectively. For the 

purpose of simplicity the variable t is dropped from now on. Channel state information 

(CSI) hj,i, for j=1,2, and i=1,…,N+1, is known at the receiver. The h1,i
* denotes the 

complex conjugate of h1,i. Receiver filters input using CSI to diminish the fading effects 

as described in Chapter II. The intermediate signals, Sji, calculated in the combiner of 

RMTji, are as follows: 
* * * *

1 1, 1 1, 1, 1 1, 0 1 1, 0

* * * *
2 2, 2 2, 2, 2 2, 1 2 2, 1

ˆ ˆ ,

ˆ ˆ .

i i i i i i i i i i i

i i i i i i i i i i

S h R h h X h n X h n

S h R h h X h n X h n

= = + = +

= = + = +

   (3.3) 

A maximum likehood detector is used to decode the intermediate signal to 

the closest reference signal
ˆ

jiX which is transmitted from RMTji under the power 

constraint of Pmax per symbol. 

b. Bit Error Probability for Decode-and-forward 

In [48] the bit error rate Pb for BPSK modulation with coherent detection 

in AWGN conditions and noise power spectral density N0/2 for a single-hop relaying 

network is calculated based on an energy-per-bit to noise power spectral density (PSD) 

ratio: 

0

2 b
b

EP Q
N

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
     (3.4) 

where Eb is the energy per bit and can be represented as the signal power Ps=Eb/Tb, 

where Tb is the bit period. The noise transmission equivalent bandwidth for BPSK is 

B=Rb=1/Tb; thus the noise power is Pn=N0B=N0/Tb and substituting these into (3.4) 

yields 

                  
0

2

2

s b
b

s

n

PTP Q
N

PQ
P

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠

⎛ ⎞⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
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By defining SNR=Ps/Pn the bit error probability Pb is given by  

 
       ( )2( ) .bP Q SNR=                          (3.5) 

 

In the case of a two-hop relaying scenario with decode-and-forward in 

AWGN, the probability of error at reception can be calculated based on (3.5). Essentially 

the total error probability is the sum of the two possible error cases. The first case occurs 

when there is an error in the first hop, with error probability Pb1, and not in the second 

and the second case occurs when there is an error in the second hop, with error 

probability Pb2, and not in the first. Thus total error probability Pbt is 

1 2 1 2 1 2 1 2(1 ) (1 ) 2 .bt b b b b b b b bP P P P P P P P P= − + − = + −    (3.6) 
 

Considering that in consecutive hops the propagation conditions do not 

change significantly, the bit error probabilities in each can be assumed to be equal. 

Substituting 1 2b b bP P P= = into (3.6) yields 

( ) ( )2
22 2 2 2( ) 2 2( )bt b b r rP P P Q SNR Q SNR= − = −    (3.7) 

 
where SNRr  is the SNR at a relay. The developed formulation can be extended to a multi-

hop with decode-and-forward relaying scheme for BPSK in AWGN with coherent 

detection. 

c. Amplify-and-Forward 

Amplify-and-forward is the second non-cooperative relaying scheme 

examined in this work. Initially the scheme is described and then the bit error probability 

for the two-hop case of amplify-and-forward in AWGN is derived. 

In this strategy, the relays RMT1i and RMT2i in Figure 15 do not estimate 

the reference symbol from the received signal. The RMTs do not employ maximum 

likehood detectors; instead they transmit the signals 1
ˆ

iX and 2
ˆ

iX , which are essentially the 

signals 1̂iS and 2
ˆ

iS amplified by an amplifier gain ‘α’ so that 1̂iSα  and 2
ˆ

iSα  satisfy the 
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power constraint Pmax. The scheme requires no advanced processing and achieves the 

maximum symbol rate that a non-multiplexing single carrier scheme can achieve. 

d. Bit Error Probability for Amplify-and-forward 

For the two-hop case of the amplify-and-forward scheme bit error 

probability Pb at destination is calculated assuming that the noise level in the destination 

and the relay terminal is the same. Based on (3.4) the bit error probability is 

0

2 sd
bt

d

EP Q
N

⎛ ⎞⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

     (3.8) 

where Esd/N0d  is the signal energy per bit to noise power spectral density ratio at the 

destination terminal. But the energy of the received signal Esd in the destination also 

contains the noise present in the relay terminal, which was amplified during the 

transmission of RMTi1. Thus the portion of the signal energy that benefits detection at the 

destination is 

  s
sd b

s n

PE E
P P

=
+

     (3.9) 

where Eb is the bit energy, Ps is the signal power and Pn is the noise power at relay 

RMTi1. The noise term N0t at the destination is the sum of noise present at destination and 

the amplified noise from the relay terminal:  

                      0 0 0
s

t
s n

PN N N
P P

= +
+

      (3.10) 

 

Substituting (3.9) and (3.10) into (3.8) gives 

0 0

2

s
b

s n
bt

s

s n

P E
P PP Q PN N

P P

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟+⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟+⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠

    (3.11) 

Simplifying (3.11) leads to 
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0

2
2

2 12 1

s

b n
bt r

s r

n

P
E PP Q Q SNRPN SNR

P

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎜ ⎟= = ⎜ ⎟⎜ ⎟⎜ ⎟ +⎝ ⎠+⎜ ⎟
⎝ ⎠

.  (3.12) 

where SNRr=Ps/Pn. 

2. Decode-and-Forward with Cooperative Diversity Scheme 

Decode-and-forward with cooperative diversity is the first of the two cooperative 

relaying schemes (the other is Alamouti cooperative space-time coding) to be examined 

in this work. We present the scheme first in a flat fading and then in a frequency selective 

fading environment. Derived equations are then used for simulation. The theoretical error 

probability for the two-hop case of cooperative diversity scheme in AWGN is also 

derived. Note that the cooperative diversity scheme examined is for terminals that form 

dual-terminal clusters. 

a. Decode-and-Forward with Cooperative Diversity Scheme in Flat 
Fading Channel 

The multiple hop case of the decode-and-forward with cooperative 

diversity scheme is presented in Figure 16. The scheme applies equations (3.1) – (3.3) of 

the simple decode-and-forward but the received signal at each receiver is the sum of the 

received signals from the transmitters of the previous hop, thereby improving the SNR 

and robustness at reception.  

Consider two mobile terminals SMT1 and SMT2that act as sources and 

transmit separate streams of data of N symbols 1( )X i  and 2 ( )X i , respectively. Red dashed 

lines in Figure 16 denote the links allocated to relay the information of SMT1 and black 

solid lines the data of SMT2 when each source transmits.  The two sources do not 

transmit simultaneously: When SMT1 transmits SMT2 is in silence mode and vice versa. 

This is to avoid interference between the transmitting half-duplex terminals for the single 

carrier (SC) modulation. Thus SMT2 can transmit only after the neighbor relays have 

transmitted the previously received stream by SMT1. The next available time slot after t  
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is the t+2 because first hop relays transmit at time t+1, so in every two time slots only 

one of the two sources transmits and the medium is allocated to that source, thus reducing 

the data rates by one half. 

 

 
Figure 16. Cooperative Diversity Scheme in Multi-hop Frequency Flat Fading 

Channel. 
 

The intra-cluster cooperation is limited to time synchronization only, and 

processing in each RMT is independent. At time t SMT1 transmits 1X and RMT11 and 

RMT21 receive R11,1 and R21,1, respectively and transmit their maximum-likehood 

decoded symbols 11,1 21,1
ˆ ˆ and X X to the next relay cluster. In both Rji,k and Xji,k, j=1,2 

denotes the upper and lower part of the cluster, respectively, i=1,…,N+1 denotes the 

number of hops to RMTji and k=1,2 denotes the initial source SMTk of the symbol. Next, 

at time t+2 SMT2 transmits 2X and RMT11 and RMT21 receive R11,2 and R21,2, 

respectively, and transmit their decoded symbols 11,2 21,2
ˆ ˆ and X X to the next relay cluster. 

Hence in the first hop only receive-diversity is achieved as shown in Figure 16. On the 

other hand after the first hop the scheme achieves spatial diversity of order four since in 
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each subsequent hop two transmitting terminals and two receiving terminals are 

employed. The flat fading case, which is used in this work, is realistic for narrowband 

single carrier modulation. For the slow flat fading case (channel coefficients remain the 

same for two consecutive symbol transmissions) the respective equations that describe 

the processing at RMT11 and RMT21 are 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

11,1 11, 1 0

21,1 12, 1 1

,i

i

R t h t X t n t

R t h t X t n t

= +

= +

    (3.13) 

where n0 and n1 represent noise received at RMT11 and RMT21, respectively. The 

intermediate processing signals calculated in the decoders/combiners of RMT11 and 

RMT21 are 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

* * *
11,1 11,1 11,1 1 11,1 0 1 11,1 0

* * *
21,1 12,1 12,1 1 12,1 1 1 12,1 1

,S t h t h t X t h t n t X t h t n t

S t h t h t X t h t n t X t h t n t

= + = +

= + = +

 (3.14) 

where h11,i
* denotes the complex conjugate of h11,i. At subsequent hops, the relays receive 

the following signals: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 ,1 11, 1 1,1 21, 2 1,1 0

2 ,1 12, 1 1,1 22, 2 1,1 1

ˆ ˆ ,

ˆ ˆ

i i i i i i

i i i i i i

R t h t X t h t X t n t

R t h t X t h t X t n t

− −

− −

= + +

= + +

   (3.15) 

for i=2,3,…,N+1, where n0i and n1i represent noise received at RMT1i and RMT2i, 

respectively. Finally mobile terminals apply coherent detection since the channel state 

information {h11,i, h12,i, h21,i and h22,i} is known in the receiver. At RMT1i and RMT2i, 

assuming that 1 1,1 1
ˆ ˆ( ) ( )iX t X t− =  and 2 1,1 1

ˆ ˆ( ) ( )iX t X t− = in fair propagation conditions and 

substituting into (3.15) yields 

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )

1 ,1 11, 21, 1 0

2 ,1 12, 22, 1 1

ˆ ,

ˆ

i i i i

i i i i

R t h t h t X t n t

R t h t h t X t n t

= + +

= + +

     (3.16) 



 34

where the transmitted signals 1 ,1 2 ,1
ˆ ˆ and i iX X  are the reference signals, in the database of 

RMT1i-1 and RMT1i-2, respectively; closest to intermediate signals ( )11,1S t and ( )21,1S t . 

Thus the intermediate symbols in the combiner of RMT1i and RMT2i are 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

* *
1 ,1 11, 21, 11, 21, 1 11, 21, 0

*

1 11, 21, 0

ˆ

ˆ
i i i i i i i i

i i i

S t h t h t h t h t X t h t h t n t

X t h t h t n t

= + + + +

= + +
      

and             (3.17) 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

* *
2 ,1 12, 22, 12, 22, 1 12, 22, 1

*

1 12, 22, 1

ˆ

ˆ .

i i i i i i i i

i i i

S t h t h t h t h t X t h t h t n t

X t h t h t n t

= + + + +

= + +
 

The intermediate signals are then sent to the maximum likelihood detector, 

which makes the detection decision based on the distance to the reference signals as 

mentioned before. The decode-and-forward with cooperative diversity scheme presented 

here is a technique where relays do not make a choice whether they should relay or not; 

instead they are designated to relay even if they do not decode a correct input sequence.  

One enhancement that can be applied is the capability for the relay terminal RMTji to 

decide, based on channel state information at reception (CSIR), whether or not it is 

helpful for communication purposes to relay. In this case, for example, when the 

secondary relay terminal RMT2i works under harsh conditions and decides not to relay, 

network performance degrades to the non-cooperative decode-and-forward scheme in 

Figure 15. 

b. Bit Error Probability for Decode-and-forward with Cooperative 
Diversity 

The probability that the destination correctly decodes the symbol is equal 

to the probability that at least one antenna decodes it correctly, hence the probability of 

symbol error is the probability that both reception antennas decode wrongly. The two-hop 

case is examined here to determine a lower bound for the bit error probability.  
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For BPSK in AWGN with power constraint Pmax at all the terminals, from 

[42,43,44] for a channel with transmit or receive diversity of order L=MN, where M is 

the number of the transmitters and N the number of the receivers, the probability of error 

Pb can be expressed as 

2

1 1

0

2
,

ij

M N

ij b
i j

b

h E
P Q

N
= =

⎛ ⎞
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∑∑
    (3.18) 

where hij for i=1,…,M and j=1,…,N, are the channel fading coefficients. Let  1ijh =  for 

AWGN. Since diversity order L=MN, the probability of error in (3.18) can be simplified 

to 

1

0

2
l

L

b
l

b

E
P Q

N
=

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
     (3.19) 

The probability that a relay RMT1 does not decode correctly is denoted as 

Pb and can be calculated analogously from (3.19) for L=1 since in the link between the 

source and the RMT1 there is no diversity gain 

    ( )
0

2 2 .b
b r

EP Q Q SNR
N

⎛ ⎞
= =⎜ ⎟⎜ ⎟

⎝ ⎠
         (3.20) 

Finally in the destination terminal, a diversity order of L=2, the error 

probability of the second hop Pbd is obtained from (3.19):  

( )
0

2 2 .b
bd r

EP Q Q SNR
N

⎛ ⎞
= =⎜ ⎟⎜ ⎟

⎝ ⎠
   (3.21) 

For the calculation of the total error probability Pbt in the two-hop case, 

we use the sum of the error probabilities of all the possible cases, in accordance with the 

bit error probability of the decode-and-forward scheme:  

           (1 )(1 ) (1 ) 1/ 2 (1 ) 1/ 2 (1 )bt bd b b bd b b bd b b bd b bP P P P P P P P P P P P P= − − + − + − + −  
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   ( ) 21 (1 )bd b bd bP P P P= − + −          (3.22) 

where Pb and Pbd are given by (3.20) and (3.21), respectively. There are four possible 

error cases included in (3.22). The last two terms in (3.22) are multiplied by a factor ½ 

because the destination can wrongly decode the transmitted signals of the two relays in 

two equally probable ways, one of which leads to the correct decoding of the original 

transmitted symbols by the two sources. 

Substituting (3.19) and (3.20) into (3.22) yields 

    ( ) ( )( ) ( )( ) ( )2
2 1 2 1 2 2 .bt r r r rP Q SNR Q SNR Q SNR Q SNR= − + −    (3.23) 

where SNRr=Ps/Pn at the relay nodes. 

c. Performance Evaluation of Decode-and-Forward with 
Cooperative Diversity in Rayleigh Fading Channel 

In Figure 17 the bit error probability plot of BPSK for the decode-and-

forward with cooperative diversity scheme is presented and compared with the two non-

cooperative schemes decode-and-forward and amplify-and-forward. Figure 17 is obtained 

by simulating the schemes in Matlab for Rayleigh slow flat fading conditions. Since the 

network resources at each time slot are allocated to only one of the two SMTs, the 

performance of the two users is exactly the same in a slow fading environment. Thus, 

only one curve represents this scheme for both the users SMT1 and SMT2. The 

destination terminal exploits receive diversity and chooses to decode one of the two 

incoming signals at the antennas. For the simulation it is assumed that at all RMT1is the 

reception SNR is 3 dB higher than at the RMT2is, thus the upper part of Figure 15 has 3 

dB higher SNR than the lower part. As expected the difference in performance of the two 

users is almost 3 dB for the non-cooperative schemes. The upper relays of the network do 

not cooperate with the lower relays in order to improve the performance of user SMT2. 

Thus in order for at SMT2 to achieve same error rate as SMT1 it should increase 

transmission power by at least 3 dB. 

The performance of the decode-and-forward with cooperative diversity 

falls between the performance of SMT1 without diversity (upper bound) and that of SMT2 
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without diversity (lower bound). For the cooperative diversity scheme it is obvious that 

the two users share the medium and achieve the same error rates which is an 

improvement over the non-cooperative case for user at SMT2. 

 

Figure 17. Performance of Two-hop C-DIV and Non-cooperative DF and AF 
Schemes for a SNR Difference between the Paths of 3 dB in Rayleigh 
Channel for BPSK. 

 

The error rate for user at SMT1 increases and the performance is almost 

1.5 dB worse than the performance of SMT1 for the non-cooperative cases. It must be 

noted that all antennas transmit under the same power constraint Pmax for every symbol. 

Thus, for a multiple-hop case (except the two-hop), considering that in cooperative 

diversity the powers of the received signals are summed, meaning that the received signal 

power is twice the power of the received signal in the non-cooperative schemes, then in 

the Figure 17, the cooperative diversity must be plotted by doubling noise in comparison 

with the non-cooperative decode-and-forward and amplify-and-forward schemes. Hence 
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the results for decode-and-forward with cooperative diversity (C-DIV) in the multiple 

hop case are obtained, either for twice the noise level or half the transmitted signal power 

from each SMT. Thus, if one were to plot the bit error rate versus the absolute noise level 

for the multi-hop case, the curve for decode-and-forward with cooperative diversity (C-

DIV) should be shifted by 3 dB to the left.  

d. Decode-and-Forward with Cooperative Diversity in Frequency 
Selective Channel with ISI 

In the frequency selective channel with intersymbol interference (ISI), 

block coding is used to demonstrate the interference. The frequency selective channel 

with ISI is depicted in Figure 18. The SMT1 and SMT2 transmission scheme is given by 

(3.1). For the data sequence X1, the first relays RMT11 and RMT21 receive 

( ) ( ) ( )

( ) ( ) ( )

1
11,1 11,1 1 0

1
21,1 12,1 1 1

( ) ,

( )

R t h q X t n t

R t h q X t n t

−

−

= +

= +

    (3.24) 

where h(q-1) is given by (2.4). The intermediate signals in the decoder/combiner of 

RMT11 and RMT21 are 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

* * *1
11,1 11,1 11,1 11,1 11,1 1 11,1 0

* * *1
21,1 12,1 21,1 12,1 12,1 1 12,1 1

,S t h q R t h q h q X t h q n t

S t h q R t h q h q X t h q n t

−

−

= = +

= = +

 (3.25) 

where n0 and n1 represent noise received at RMT11 and RMT21, respectively. 
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Figure 18. Cooperative Diversity Scheme in Multi-hop Frequency Selective Slow 

Fading Channel. 
 

After the second hop, for the RMT1i and RMT2i the received signals 

generally are written as 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1
1 ,1 11, 1 1,1 21, 2 1,1 0

1 1
2 ,1 12, 1 1,1 22, 2 1,1 1

ˆ ˆ ,

ˆ ˆ

i i i i i i

i i i i i i

R t h q X t h q X t n t

R t h q X t h q X t n t

− −
− −

− −
− −

= + +

= + +

  (3.26) 

where n0i and n1i represent noise received at RMT1i and RMT2i, respectively. Like the 

frequency flat fading case in (3.16), it is assumed that 1 1,1 1
ˆ ˆ( ) ( ) iX t X t− = and 

2 1,1 1
ˆ ˆ( ) ( )iX t X t− = considering that both are estimations of the same symbol. Hence, the 

received symbol equations can be written as follows: 

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )

1 1
1 ,1 11, 21, 1 0

1 1
2 ,1 12, 22, 1 1

ˆ ,

ˆ .

i i i i

i i i i

R t h q h q X t n t

R t h q h q X t n t

− −

− −

= + +

= + +

   (3.27) 

The intermediate signals in the combiner of RMT1i and RMT2i are 
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( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

*

1 ,1 11, 21, 1 ,1

* *1 1
11, 21, 11, 21, 1 11, 21, 0

*

2 ,1 12, 22, 2 ,1

* *1 1
12, 22, 12, 22, 1 12, 22, 1

ˆ ,

ˆ .

i i i i

i i i i i i i

i i i i

i i i i i i i

S t h q h q R t

h q h q h q h q X t h q h q n t

S t h q h q R t

h q h q h q h q X t h q h q n t

− −

− −

= +

= + + + +

= +

= + + + +

(3.28) 

Again, the intermediate signals are sent to the maximum likelihood 

detector, which makes the detection decision and estimates the signals 1 ,1 2 ,1
ˆ ˆ and i iX X to be 

transmitted. In the destination terminal, the detector exploits the two signals to enhance 

signal strength for detection. The same equations describe the system when SMT2 

transmits. This scheme achieves a diversity order of four in each hop count when two 

mobile terminals relay the signal in every hop. The scheme can be expanded to a multi-

terminal scheme by using more than two relaying terminals in the relay cluster. Finally, it 

must be noted that every transmitted symbol requires intra-cluster transmission-time 

synchronization. 

3. Alamouti Cooperative Space-time Coding 

The last scheme discussed will be the distributed implementation of the Alamouti 

space-time coding used in MIMO communication systems. The scheme presented here is 

single-carrier oriented but can be used with OFDM. Two cases of this coding scheme will 

be discussed. The first is when the short-range link, mentioned in Chapter II, in each 

cluster is used only for time-synchronization purposes, which is for the time being the 

more realistic scheme. The second case, named dual-antenna Alamouti cooperative 

space-time coding occurs when the intracluster cooperation includes co-processing 

between the mobile terminals. It is also the upper bound of cooperation of the single-

antenna Alamouti cooperative space-time coding. The dual-antenna cooperative scheme 

presented here uses the equations of the 2×2 Alamouti space-time coding scheme 

discussed in Chapter II.  
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a. Alamouti Cooperative Space-time Coding Scheme in Flat Fading 
Channel 

In Figure 19 the distributed Alamouti cooperative space-time coding 

scheme (C-STC) is presented, which depicts formation of multiple 2×1 parallel 

topologies due to cooperation in transmission and independence in reception, which is 

described later. 

 
Figure 19. Application of Two Parallel 2-by-1 Distributed Alamouti Space-time 

Schemes in Consecutive Hops Due to Non-cooperative Processing of 
Relays in Reception and Synchronization in Transmission.  

 

The system performance between the two independent users SMT1 and 

SMT2 and the destination terminal is evaluated separately. Each cluster consists of two 

single-antenna mobile terminals. From the network establishment stage one of the two 

terminals is authorized to be the cluster leader. The criterion can be the channel state 

information or the SNR at reception. Each single-antenna mobile terminal decodes the 

input sequence independent from the other terminal of the cluster but relays in 

cooperation with it. Also, the transmitting terminals are synchronized and cooperate to 

achieve the space-time transmission sequence. Then, as can be observed in each hop the 

transmitting terminals form two 2×1 Alamouti cooperative space-time coding schemes. 

This type of cooperation cannot be achieved in the physical layer alone, but requires 

cross-layer information exchange with the network layer. Assuming that a mobile 
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terminal can determine the sender of the received sequences, and then, according to its 

hierarchy in the cluster, it can retransmit the proper sequence. Thus, the leader of the 

relay cluster transmits the decoded sequence that was initially transmitted by the leader of 

the previous relay cluster, and the secondary terminal of the relay cluster transmits the 

decoded sequence of the secondary terminal of the previous relay cluster.  

We now develop the equations used for the frequency flat fading case. 

Figure 20 shows the multi-relay scheme for flat fading conditions. 

 
Figure 20. Alamouti Cooperative space-time coding Scheme in Multi-hop Frequency 

Flat Fading Channel. 
 

The transmission scheme from SMT1 and SMT2 is given in Table 2. Note 

that for flat fading conditions we do not use block coding algorithms. 

 

 SMT1 SMT2 

time t X1 X2 

time t + T -X2
* X1

* 

Table 2.   Transmission Sequence for the Dual-Antenna Distributed Alamouti Scheme.  
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From [17], we make the following assumption: 

11,1 11,1

21,1 21,1

( ) ( ),

( ) ( )

h t h t T

h t h t T

= +

= +
     (3.29) 

where T is the symbol period. As previously mentioned, two 2×1 schemes are formed in 

the first hop and the relays RMT11 and RMT21 independently decode the incoming 

sequences [R11,2, R11,0] and [R21,3, R21,1], respectively. The received signals at 

RMT11 for time instances t and t+T are like the 2×1 MIMO Alamouti case described in 

Chapter II given by [3] 

1 ,0 11, 1 1,1 21, 2 1,2 0

* *
1 ,2 11, 1 1,2 21, 2 1,1 1

( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ) ( )

i i i i i i

i i i i i i

R t h t X t h t X t n t

R t h t X t h t X t n t

− −

− −

= + +

= − + +

  (3.30) 

for i=1, where 01n  and 11n represent noise at the receiver RMT11 at the first and second 

transmission periods. The decoded signals are calculated in the combiner of RMT11 as 

follows: 
* *

1 ,1 1 ,1 1 ,0 2 ,1 1 ,2

* *
1 ,2 1 ,1 1 ,0 2 ,1 1 ,2

ˆ ( ) ( ) ( ) ( ) ( ),

ˆ ( ) ( ) ( ) ( ) ( )

i i i i i

i i i i i

X t h t R t h t R t

X t h t R t h t R t

= +

= −

   (3.31) 

for i=1. Estimated symbols are then sent to the maximum likelihood detector. Each relay, 

namely RMT11 and RMT21, makes separate estimations 11,2 11,1
ˆ ˆ[ ( ), ( )]X t X t  

and 21,2 21,1
ˆ ˆ [ ( ), ( )]X t X t . Relays transmit their sequences synchronously [7]. Therefore, at 

the kth cluster the input sequences at RMT1k and RMT2k are given by (3.30) for i=k, and 

the decoded symbols are given by (3.31) for i=k. 

Finally, since the destination terminal is a dual-antenna device, the 2×2 

distributed Alamouti coding scheme can be used at the final reception. The equations for 

this step are same as those presented for the MIMO 2×2 case in Chapter II. The received 

signals at receive antenna 1 of destination are 



 44

1 1,0 11, 1 1 ,1 21, 1 2 ,2 0 1

* *
1 1,2 11, 1 1 ,2 21, 1 2 ,1 1 1

( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ) ( )

N N N N N N

N N N N N N

R t h t X t h t X t n t

R t h t X t h t X t n t

+ + + +

+ + + +

= + +

= − + +

  (3.32) 

and receive antenna 2 of destination the received signals are 

2 1,1 12, 1 1 ,1 22, 1 2 ,2 0 1

* *
2 1,3 12, 1 1 ,2 22, 1 2 ,1 1 1

( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ) ( )

N N N N N N

N N N N N N

R t h t X t h t X t n t

R t h t X t h t X t n t

+ + + +

+ + + +

= + +

= − + +

  (3.33) 

where 0 1Nn +  and 1 1Nn + represent noise on the receive antennas at time instances t1 and 

t1+T, respectively. The estimates of the signals are calculated in the decoder/ combiner as 

follows: 
* *

1 1 11, 1 1 1,0 21, 1 1 1,2

* *
11, 1 2 1,1 21, 1 2 1,3

* *
2 1 12, 1 1 1,0 22, 1 1 1,2

12, 1

ˆ ( ) ( ) ( ) ( ) ( )

                    ( ) ( ) ( ) ( ),

ˆ ( ) ( ) ( ) ( ) ( )

                     

N N N N N

N N N N

N N N N N

N

X t h t R t h t R t

h t R t h t R t

X t h t R t h t R t

h

+ + + + +

+ + + +

+ + + + +

+

= + +

+

= − +
* *

2 1,1 22, 1 2 1,3( ) ( ) ( ) ( ).N N Nt R t h t R t+ + +−

   (3.34) 

The destination terminal decodes symbols using a maximum likelihood 

detector. 

b. Bit Error Probability of Alamouti Cooperative Space-time 
Coding Scheme 

The theoretical bit error probability of BPSK for distributed Alamouti 

space-time coding scheme in an AWGN two-hop fading environment is derived here. 

The work is based on related research done in [49] for a dual-antenna remote telemetry 

transmission scheme with one reception antenna at destination. Similar work is also 

reported by other researchers [45, 46, 47]. From [42, 43] the bit error probability in 

AWGN for two transmission antennas and one reception antenna is given by (3.21). 

Hence the single-hop Alamouti space-time scheme provides the same bit error probability 

as the decode-and-forward with cooperation. This is expected as the schemes achieve the 

same diversity order in the reception. However, for Rayleigh fading, the Alamouti 

cooperative space-time coding performs better since the squares of the fading coefficients 
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and not the coefficients themselves are added in (3.19). Thus the error probability Pbr, in 

relay RMTj, j=1,2 is given by (3.21) for L=2. Additionally, in the second hop the 2×2 

Alamouti scheme provides twice the diversity gain. Thus the bit error probability at the 

destination, Pbd is given by (3.21) for L=4. The total error probability Pbt of the scheme 

consists of four different terms as in (3.22). Considering the same fading conditions and 

SNRs at both hops, the total error probability is given by  

2 2

(1 )(1 ) 1/ 2 (1 ) 1/ 2 (1 ) (1 )

.

bt bd br br bd br br bd br br bd br br

bd bd br bd br br

P P P P P P P P P P P P P

P P P P P P

= − − + − + − + −

= − − +

   (3.35) 

Substituting Pbr and Pbd from (3.19) for L=2 and L=4, respectively, into 

(3.35) yields  
2

0 0 0 0

2

0 0

2 2
2 2 2 2

2
2 2 .

i i i i

i i

b b b b
bt

b b

E E E E
P Q Q Q Q

N N N N

E E
Q Q

N N

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟= + −
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟−
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

        (3.36) 

Finally substituting (3.5) into (3.36) yields    

( ) ( ) ( ) ( )

( ) ( )

2

2

2 ( ) 2( ) 2 ( ) 2( )

2 ( ) 2( )

bt r r r r

r r

P Q SNR Q SNR Q SNR Q SNR

Q SNR Q SNR

= + −

−

       (3.37) 

where SNRr at the relay is 02 /bE N (see (3.6)). The plots of theoretical bit error 

probabilities for the aforementioned schemes for BPSK in AWGN conditions are 

depicted in Figure 21.  It can be observed that both cooperative schemes achieve exactly 

the same performance, measured in bit error probability. This was expected since for 

AWGN formulas both these schemes are the same and from knowledge that space-time 

coding compensates for the effect of propagation and not noise at reception. The 

performance of the cooperative schemes has improved by 1 dB compared to the decode-

and-forward and almost by 2 dB compared to the non-cooperative amplify-and-forward. 
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Figure 21. Calculated Performances of Alamouti Cooperative Space-time Coding, 

Decode-and-Forward with Cooperative Diversity, Decode-and-Forward 
and Amplify-and-Forward Schemes in AWGN for BPSK in the Two-hop 
Relaying Network. 

 

c. Alamouti Cooperative Space-time Coding Scheme in Frequency 
Selective Channel 

For the frequency selective fading case the system is depicted in Figure 

22. 
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Figure 22. Alamouti Cooperative space-time coding Relaying Scheme in Multi-hop 

Frequency Selective Fading Channel. 
 

The transmission sequence is given in Table 2, where 1X and 2X are given 

by (3.1). Relays RMT11 and RMT21 independently decode the incoming sequences 

[R11,2, R11,0] and [R21,3, R21,1], respectively. Channel coefficients remain the same 

for all frame transmission periods. The received signals at RMT11 are given by 
1 1

1 ,0 11, 1 1,1 21, 2 1,2 0

1 * 1 *
1 ,2 11, 1 1,2 21, 2 1,1 1

( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ) ( )

i i i i i i

i i i i i i

R t h q X t h q X t n t

R t h q X t h q X t n t

− −
− −

− −
− −

= + +

= − + +

  (3.38) 

for i=1, where 0in  and 1in represent noise at the receiver RMT11 in time periods [t, t+NT] 

and [t+NT, t+2NT], respectively and N is the number of symbols in the transmitted frame 

and T is the symbol period. The RMT11 decoder calculates the estimations of the input 

signals 
* 1 *

1 ,1 1 ,1 1 ,0 2 ,1 1 ,2

* 1 *
1 ,2 1 ,1 1 ,0 2 ,1 1 ,2

ˆ ( ) ( ) ( ) ( ) ( ),

ˆ ( ) ( ) ( ) ( ) ( )

i i i i i

i i i i i

X t h q R t h q R t

X t h q R t h q R t

−

−

= +

= −

   (3.39) 

for i=1, where h(q) represents an anti-causal channel filter. As a result, mobile terminal 

RMT12 estimates 21,1 21,2
ˆ ˆ( ) and ( )X t X t . At the kth cluster the input sequences for terminal 

RMT1i are given by (3.38) for i=k. The symbols estimated in the combiner of RMT1k 
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are given by (3.39) for i=k. Estimations are then made into the maximum likelihood 

decoder. Finally, at destination the input signals, at the receive antenna 1 are 
1 1

1 1,0 11, 1 1 ,1 21, 1 2 ,2 0 1

1 * 1 *
1 1,2 11, 1 1 ,2 21, 1 2 ,1 1 1

( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ) ( )

N N N N N N

N N N N N N

R t h q X t h q X t n t

R t h q X t h q X t n t

− −
+ + + +

− −
+ + + +

= + +

= − + +

  (3.40) 

where 0 1Nn +  and 1 1Nn + represent noise at the destination antennas. At receive antenna 2 the 

received signals are 
1 1

2 1,1 12, 1 1 ,1 22, 1 2 ,2 0 1

1 * 1 *
2 1,3 12, 1 1 ,2 22, 1 2 ,1 1 1

( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ) ( ).

N N N N N N

N N N N N N

R t h q X t h q X t n t

R t h q X t h q X t n t

− −
+ + + +

− −
+ + + +

= + +

= − + +

  (3.41) 

The combiner estimates the symbols and then a maximum likelihood 

decoder decodes them as follows: 
* 1 *

1 1 11, 1 1 1,0 21, 1 1 1,2

* 1 *
11, 1 2 1,1 21, 1 2 1,3

* 1 *
2 1 12, 1 1 1,0 22, 1 1 1,2

ˆ ( ) ( ) ( ) ( ) ( )

                     ( ) ( ) ( ) ( ),

ˆ ( ) ( ) ( ) ( ) ( )

                    

N N N N N

N N N N

N N N N N

X t h q R t h q R t

h q R t h q R t

X t h q R t h q R t

h

−
+ + + + +

−
+ + + +

−
+ + + + +

= + +

+

= − +
* 1 *
12, 1 2 1,1 22, 1 2 1,3( ) ( ) ( ) ( ).N N N Nq R t h q R t−

+ + + +−

  (3.42) 

 

A critical issue addressed in [7] is how the receiver combines the 

incoming streams arriving from different paths with different phases. This problem is 

common in all the schemes that exploit transmission diversity, such as decode-and-

forward with cooperative diversity and Alamouti cooperative space-time coding. 

Generally, in these schemes the transmission for the two transmitters in a relay cluster is 

not simultaneous [7]. The receivers, in the establishment stage of the network, inform 

transmitting terminals with what time difference they should transmit, in order that the 

signals arrive simultaneously for reception at the destination. 
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d. Performance Evaluation of Cooperative Alamouti Space-time 
Coding in Rayleigh Fading Channel 

In Figure 23 the performance of Alamouti cooperative space-time coding 

(C-STC) scheme is compared to that of decode-and-forward with cooperative diversity 

(C-DIV), non-cooperative decode-and-forward (DF) and non-cooperative amplify-and-

forward (AF) schemes. The simulation was run for BPSK modulated streams in a 

Rayleigh flat fading environment. The blue lines represent the performances of the 

Alamouti cooperative space-time coding scheme and the red lines are the dual-antenna 

Alamouti cooperative space-time coding (DC-STC). This scheme is for dual-antenna 

terminals and thus uses a 2×2 Alamouti space-time coding scheme, as described in 

Chapter II.  

 
Figure 23. Performance of Two-hop Cooperative C-STC and C-DIV and Non-

cooperative DF and AF Schemes for a SNR Difference between the Paths 
of 3 dB in Rayleigh Channel for BPSK. 
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Relays, RMT1i have a 3 dB higher SNR than RMT2i. In Alamouti 

cooperative space-time coding the medium is equally shared by the two users. The effect 

of this cooperation can be observed in Figure 23 where their performances are almost 

equal for low SNRs and very close for higher SNRs. It is clear that user SMT2 with 

Alamouti cooperative space-time coding can improve its performance almost by 3 dB 

compared to the non-cooperative schemes, and close to 2 dB compared to the cooperative 

diversity scheme. Like in the case of decode-and-forward with cooperative diversity, 

considering the noise level and not SNR at reception, plots can be shifted to the left 

another 3 dB. 

C. SUMMARY 

In this chapter, the formulas describing the cooperative diversity scheme and the 

Alamouti space-time coding scheme were presented and will be used to obtain simulation 

results in the next chapter. Additionally expressions for the probabilities of error were 

derived for BPSK in AWGN for decode-and-forward, amplify-and-forward, cooperative 

diversity and Alamouti space-time coding schemes and presented as plots (see Figure 

21). The next chapter will present the simulation results for MPSK and M-QAM signals. 

The slow frequency selective fading channels are also simulated using Stanford 

University Interim (SUI) channel models.  
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IV. SIMULATION RESULTS 

This chapter completes the work done in Chapter III by simulating the discussed 

schemes with Matlab software. Specifically, this chapter presents the performance results 

and makes comparisons between decode-and-forward, amplify-and-forward, decode-and-

forward with cooperative diversity and cooperative Alamouti space-time coding schemes. 

Also dual-antenna Alamouti cooperative space-time coding scheme is included for 

comparison. The results are divided based on the modulation scheme. The first set of 

results presented is for the phase modulation, such as BPSK and QPSK and the next set 

of results is for quadrature amplitude modulation (QAM) schemes, specifically 16-QAM 

and 64-QAM. The work is concentrated on the dual-hop case, but in BPSK and QPSK 

cases the results are expanded to six hops. Finally, since amplify-and-forward relaying 

scheme always performs worse than decode-and-forward relaying scheme, it will not be 

discussed further on.  

A. SIMULATION MODEL 

The simulation goal was to reach a bit error probability of at most 10-4. The 

Monte Carlo averaging method is used for the simulation. The flat fading scenario was 

simulated using Rayleigh fading model and in that case a simulation run consisted of at 

least 1,000,000 coded symbol transmissions for each nominal signal-to-noise ratio (SNR) 

value and the results are averaged using 10 runs. The outdoor frequency selective fading 

scenarios are simulated using SUI1, SUI3, and SUI6 channel models with frames of 200 

symbols being transmitted. Thus a simulation for a nominal SNR value consisted of 

1,000,000/200=5000 frame transmissions. SUI channel models, discussed in Appendix 

A, simulate three common types of residential terrains found across the United States 

(types A, B and C) [48]. SUI1 is simulating a light channel scenario and SUI3 and SUI6 

are for simulating to be very harsh propagation scenarios based on tables given in 

Appendix A. Since channel coefficients, in simulation, remain the same for two 

consecutive frame transmissions, channels are characterized as slow channels.  
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The simulation code used in this work is presented in Appendix B. The two-hop 

topologies that are examined in this work are depicted in Figure 24. In Figure 24(a) is the 

non-cooperative topology and in Figure 24(b) is the cooperative topology. The simulated 

multiple hops topologies, examined later, are an extension of the two-hop topologies. All 

wireless terminals in simulation have single omni-directional antennas, though the 

‘Dualhop.m’ Matlab file in Appendix B provides the choice to obtain directivity with the 

antennas. This is because the specific part of code that simulates the SUI fading channels 

was taken and modified in [21]. All antenna elements are considered to be uncorrelated, 

thus in ‘Dualhop.m’ parameters rho_tx and rho_rx are set to zero.  The relaying terminals 

are divided into two sets based on the noise level at their reception antennas. In Figure 

24, the terminals in blue color have SNR1 at reception and those in magenta have SNR2. 

This is done to account for the different conditions in the paths for user SMT1 and user 

SMT2. In the simulation the difference in SNR between blue and magenta wireless 

terminals is 3 dB. Both SMTs have equal symbol transmission power Pmax. Figures 

present the symbol error probability and not the bit error probability because of the 

different modulation schemes in use.  
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Figure 24. Relay Schemes for Simulation. (a) Non-cooperative Two Hop (b) 

Cooperative Two Hop Scheme. 
 

B. SIMULATION RESULTS FOR BPSK AND QPSK 

The simulated BPSK and QPSK constellation values under the power constraint 

Pmax = ½=0.5, resulting in a total power constraint for the two sources equal to one, are 

1,2

1,2

1 1 1: ( ) , ,
2 2 2

1 1 1 1: ( ) ( 1 ) / 2 , , , .
2 2 2 2

BPSK X t

j j j jQPSK X t j

⎡ ⎤= ± = −⎢ ⎥⎣ ⎦

+ − − + − −⎡ ⎤= ± ± = ⎢ ⎥⎣ ⎦

  (4.1) 

1. BPSK in Rayleigh Channel  

Figures 25, 26 and 27 show the performances of the relaying schemes in Rayleigh 

channel and an SNR difference between the two paths of 0 dB, 5 dB, and 9 dB, 
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respectively; the SNR in RMT2 (SNR2), as depicted in Figure 24, is lower than the SNR 

at RMT1 (SNR1) by these values. For the two non-cooperative schemes the performance 

difference between SMT1 and SMT2 increases linearly with the SNR difference and 

remains zero for the cooperative schemes. 

In Figure 25, where the SNR difference between the two paths is 0 dB, the non-

cooperative decode-and-forward (DF) reaches the target probability of 10-4 for SNR1 

around 9 dB. Decode-and-forward with cooperative diversity (C-DIV) performs same as 

the DF scheme. This happens because conditions in both paths are the same and thus no 

spatial diversity advantage exists. Alamouti cooperative space-time coding (C-STC) 

outperforms the other schemes by 0.5 dB at the target probability of 10-4 in the lower 

SNR region and performs close to that of the C-DIV in the higher SNR region. However, 

considering that the performance of C-STC can be shifted by 3 dB at the target 

probability of 10-4 (see Chapter III) to the left, its performance is better by at least 3.5 dB 

in the lower SNR region and 4 dB in the higher SNR region compared to the other 

schemes; hence, keeping the error probability the same, potentially the terminals achieve 

energy savings (up to 50%) when they cooperate. On the other hand, by keeping the same 

transmission power the terminals can extend coverage ranges at each hop up to ~20% in 

an urban area cellular radio environment (where path loss exponent is from 2.7 to 3.5), 

based on the log-distance path loss model [59]. The performance difference for users 

SMT1 and SMT2 in C-STC is zero and remains such in all the simulation scenarios. 

Finally, the dual-antenna Alamouti cooperative space-time coding (DC-STC) performs 3 

dB better than C-STC at the target probability of 10-4.   
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Figure 25. Performance of Two-hop Cooperative C-STC, C-DIV and Non-

cooperative DF Schemes for a SNR Difference between the Paths of 0 dB 
in Rayleigh Channel for BPSK. 

 

In Figures 26 and 27, we notice that C-DIV scheme performance remains good as 

the SNR difference between the two paths increases and, along with DF for SMT1, 

provides the best error probability performance. This comes at the cost of doubling the 

transmitted power since two relays transmit simultaneously the same signal. By reducing 

the transmission energy of the relays by one half, the C-DIV error probability plots, in 

Figures 26 and 27, are shifted to the right but are still better, in the cases of high SNR 

difference between the two paths, compared to the other schemes except for the case of 

DF for SMT1.   
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Figure 26. Performance of Two-hop Cooperative C-STC, C-DIV and Non-

cooperative DF Schemes for a SNR Difference between the Paths of 5 dB 
in Rayleigh Channel for BPSK. 

 

In Figure 27, when the 3 dB shift for C-STC is taken into account, its 

performance is better than that of SMT2 but worse than that of SMT1 in the DF scheme. 

As the SNR difference increases, the C-STC performance does not improve as the C-DIV 

performance and is closer to the performance of SMT2 in the DF. Yet C-STC, as C-DIV 

does, shares energy consumption equally among all transmitters in contrast to the DF 

scheme where the secondary path’s transmitters consume more power in order to achieve 

the same target error probability with the transmitters of the path with the higher SNR. 

Hence, as in Figure 25 where the SNR difference was set to zero, in the case of high SNR 

difference between the paths, the cooperative schemes reallocate the power resources of 

the relaying system in a manner that extends the lifetime of the relays of the SNR2 path.  
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Figure 27. Performance of Two-hop Cooperative C-STC, C-DIV and Non-

cooperative DF Schemes for a SNR Difference between the Paths of 9 dB 
in Rayleigh Channel for BPSK. 

 

2. BPSK in SUI Channels 

In Figure 28 the performances of users SMT1 and SMT2 in the SUI1 channel 

(terrain type ‘A’), described in Appendix A, and for an SNR difference of 3 dB between 

paths are shown. In comparison with Figure 23, for the Rayleigh fading with 3 dB SNR 

difference, the performances of all the schemes are worse with the exception of DC-STC. 

In the lower SNR (SNR<10 dB) region of the figure the performance plots of the two 

users, for the DF scheme, have a difference of approximately 2 dB, and the C-STC 

performance is approximately in the middle of the two non-cooperative DF users. For 

SNRs higher than 12 dB the performances of DF and C-DIV saturate slightly above the 

target probability of 10-4. 
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Figure 28. Performance of Two-hop Cooperative C-STC, C-DIV and Non-

cooperative DF Schemes for a SNR Difference between the Paths of 3 dB 
in SUI1 Channel for BPSK. 

 

The C-STC error probability continues to fall, providing a performance difference 

of 8 dB over the C-DIV at the target probability of 10-4 (11 dB in terms of SNR per 

signal). The DC-STC error probability also falls rapidly. Though terrain ‘A’ is a dense 

urban terrain, the SUI1 model is a light interference model for this terrain where the 

secondary paths of the channel have small delays and even smaller relative powers than 

the main path. The SUI3 and SUI6 models, as mentioned earlier, have stronger secondary 

paths, and thus the overall error probabilities for all the relaying schemes are in higher 

levels. 

In a SUI3 environment the C-STC performance is degraded as can be observed in 

Figure 29. None of the schemes approached the target probability of 10-4 for SNR lower 

than 20 dB. The DC-STC outperforms all others but only reaches a 10-2 error probability 

for SNR greater than 13 dB. 
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Figure 29. Performance of Two-hop Cooperative C-STC, C-DIV and Non-

cooperative DF Schemes for a SNR Difference between the Paths of 3 dB 
in SUI3 Channel for BPSK. 

 

Figure 30 presents the error performance results in a SUI6 channel. SUI6 

represents type ‘C’ terrain (see Appendix A.) which is a light obstacle density terrain. All 

schemes perform slightly better than in SUI3 and for high SNRs the performances 

converge at a probability close to 10-2. The C-STC scheme has improved performance 

and the DC-STC has outperformed the other techniques. 
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Figure 30. Performance of Two-hop Cooperative C-STC, C-DIV and Non-
cooperative DF Schemes for a SNR Difference between the Paths of 3 dB 
in SUI6 Channel for BPSK. 

 

3. QPSK in Rayleigh Channel 

We now extend the simulation to include QPSK in Rayleigh and SUI channels. 

Figure 31 presents results for QPSK in a Rayleigh channel. The shape and the relative 

positioning of the error probability plots are very similar to those of BPSK in Rayleigh 

fading channel as shown in Figure 23.  The plots for QPSK are shifted at least 4 dB to the 

right along the SNR axis, compared to the BPSK case, i.e., to obtain the same error 

probability, the scheme requires 4 dB more SNR than BPSK. This occurs for all the 

probability plots of SMT1 and the cooperative schemes of SMT2. On the other hand, the 

error probability plot of SMT2 for the DF scheme is shifted even more to the right, 

increasing the performance difference between SMT1 and SMT2 in the non-cooperative 

schemes. 
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Figure 31. Performance of Two-hop Cooperative C-STC, C-DIV and Non-

cooperative DF Schemes for a SNR Difference between the Paths of 3 dB 
in Rayleigh Channel for QPSK. 

 

4. QPSK in SUI Channels 

Similar observations to the aforementioned for the Rayleigh fading case are also 

applicable to the results for the frequency selective channels shown in Figures 32-34. 

Figure 32 shows the results of the relaying schemes in SUI1 channel. Similar to the 

results for the SUI1 case for BPSK, in the higher SNR region the C-STC scheme 

performs better than C-DIV and DF cases. The DC-STC scheme again outperforms all 

other techniques and has a performance difference over C-STC of around 10 dB at the 

target probability of 10-4. 
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Figure 32. Performance of Two-hop Cooperative C-STC, C-DIV and Non-

cooperative DF Schemes for a SNR Difference between the Paths of 3 dB 
in SUI1 Channel for QPSK. 

 

In the SUI3 channel, as shown in Figure 33, the C-STC scheme for QPSK, unlike 

the BPSK case (see Figure 29), performs better than the other schemes in all SNR ranges. 

None of the schemes however reach the target probability of 10-4 in the SNR range 

simulated. The best error probability observed is 10-1 for SNRs more than 16 dB, which 

is not acceptable performance for most wireless communication applications.  
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Figure 33. Performance of Two-hop Cooperative C-STC, C-DIV and Non-
cooperative DF Schemes for a SNR Difference between the Paths of 3 dB 
in SUI3 Channel for QPSK. 

 

Figure 34 shows the simulation results in a SUI6 channel. The performance of the 

non-cooperative schemes and C-DIV are close. The C-STC scheme performs better in 

SUI6 than in SUI3. A 10 dB performance difference between C-STC scheme and the 

other simulated schemes is noticed in the SNR range simulated. Also, no scheme reaches 

the target error probability of 10-4. 
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Figure 34. Performance of Two-hop Cooperative C-STC, C-DIV and Non-

cooperative DF Schemes for a SNR Difference between the Paths of 3 dB 
in SUI6 Channel for QPSK. 

 

5. Multiple Hops in SUI1 Channel for BPSK and QPSK 

Figure 35 presents error probability over multiple hops. The SUI1 channel is used 

with SNR1i set to 8 dB and SNR2i to 5 dB. What can be noticed is that error probabilities 

tend to increase slowly at each hop. Between the second and the sixth hop, the error 

probability increase is less than a factor of 10 while the differences between the 

performances of the schemes remained the same. 
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Figure 35. Performance in Multiple Hops of C-STC, C-DIV and DF Schemes for 

BPSK in SUI1 Channel and an SNR Difference between the Paths of 3 dB 
in the Low SNR Region. 

 

Figure 36 presents the multihop results for QPSK. The performance trends are 

similar to those of BPSK as the number of hops increases, but the performance is worse 

in comparison with Figure 35. Note that all error probabilities have increased by more 

than a factor of 10. 
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Figure 36. Performance in Multiple Hops of C-STC, C-DIV and DF Schemes for 

QPSK in SUI1 Channel and an SNR Difference between the Paths of 3 dB 
in the Low SNR Region. 
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C. SIMULATION RESULTS FOR QAM 

In this section the simulation results for 16-QAM and 64-QAM modulated signals 

are presented. The rectangular QAM constellations used in the simulation are depicted in 

Figure 37.  

 

(a) 16-QAM                                          (b) 64-QAM 

Figure 37. Constellations used in the Simulation: (a) 16-QAM Rectangular and (b) 
64-QAM Rectangular. 

 

1. 16-QAM 

In Figure 38 the performance of C-STC can be compared to that of C-DIV and 

DF schemes for 16-QAM modulated streams in a Rayleigh channel. For DF the 

performance difference between the two users is equal to the SNR difference. The C-DIV 

improves the performance of SMT2 and reduces the performance of SMT1 to the middle 

of the performance difference of the two users in the non-cooperative case. C-DIV 

performance is similar to that of C-STC. 
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Figure 38. Performance of Two-hop Cooperative C-STC, C-DIV and Non-

cooperative DF Schemes for a SNR Difference between the Paths of 3 dB 
in Rayleigh Channel for 16-QAM. 

 

In Figure 39, the performances in the SUI1 fading environment for 16-QAM are 

shown. Like the SUI1 cases of the PSK, for SNRs beyond 25 dB the performances 

saturate. The C-DIV scheme, as can be observed in Figure 39, shows the worst 

performance in the SUI1 fading environment. The C-STC and the DC-STC schemes, for 

SNRs beyond 15 dB, perform better than other schemes, although no scheme achieves 

the desired error probability of 10-4. 
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Figure 39. Performance of Two-hop Cooperative C-STC, C-DIV and Non-

cooperative DF Schemes for a SNR Difference between the Paths of 3 dB 
in SUI1 Channel for 16-QAM. 

 

The results for SUI3 and SUI6 channels are not presented, but like PSK 

modulations, the performances degrade in comparison to the SUI1 channel case. 

2. 64-QAM 

The observations for the 64-QAM case are similar to the simulation results for the 

16-QAM case. Figure 40 presents the acquired performances in a Rayleigh channel. 

Again, all the performances are worse compared to the equivalent performances for the 

16-QAM case. 
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Figure 40. Performance of Two-hop Cooperative C-STC, C-DIV and Non-

cooperative DF Schemes for a SNR Difference between the Paths of 3 dB 
in Rayleigh Fading Conditions for 64-QAM. 

 

Figure 41 presents the results for 64-QAM in a SUI1 channel. None of the error 

plots fall below 10-1 for SNRs up to 40 dB. 
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Figure 41. Performance of Two-hop Cooperative C-STC, C-DIV and Non-

cooperative DF Schemes for a SNR Difference between the Paths of 3 dB 
in SUI1 Fading Conditions for 64-QAM. 

 

In the SC modulation implemented in this work the error probabilities are high for 

QAM; the use of OFDM may improve the error probabilities. 

D. SUMMARY 

Chapter IV presented the results of simulation using Matlab.  Results were 

obtained for BPSK, QPSK, 16-QAM and 64-QAM modulations in Rayleigh and SUI 

channels. In the next chapter the significant results and conclusions obtained here are 

summarized and presented with some suggestions for future work. 
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V. CONCLUSIONS AND FUTURE WORK 

In this chapter the work done in this thesis is summarized, the significant results 

obtained from the theoretical investigation and simulations are presented and some 

suggestions for future work are provided.   

A. SUMMARY OF WORK 

Multi-cluster relay schemes for single-antenna terminals for cooperative and non-

cooperative communications in Rayleigh and SUI channels are presented. For the 

purpose of this thesis, each cluster consisted of two terminals. The non-cooperative 

relaying schemes introduced were decode-and-forward where the relay terminal fully 

decodes the received symbol and retransmits and amplify-and-forward where the relay 

terminal just amplifies the received signal and noise after compensating the fading effect. 

The cooperative schemes discussed here are decode-and-forward with cooperative 

diversity (C-DIV) and Alamouti cooperative space-time coding (C-STC). C-DIV applies 

spatial transmit and receive diversity through cooperation and C-STC is based on a 

distributed version of the 2×1 Alamouti space-time coding scheme [3]. The error 

probabilities for the aforementioned schemes were calculated for a two-hop relay 

scenario in an AWGN channel. The Alamouti cooperative space-time coding for dual-

antenna terminals (DC-STC) is also presented. The simulations for the two-hop scenario 

were performed for BPSK, QPSK and QAM in AWGN, Rayleigh, and SUI channels. 

B. SIGNIFICANT RESULTS 

Calculations of the symbol error probability for the C-STC and the C-DIV 

schemes showed that in the AWGN channel both schemes performed similarly and were 

better than the DF and AF schemes by 1 dB and 2 dB, respectively, for the two-hop 

relaying case with two relaying terminals. For PSK, the cooperative schemes in Rayleigh 

and SUI channels achieved or were very close to the target error probability of 10-4. For 
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QAM the resulting error probabilities were high in both Rayleigh and SUI fading 

scenarios. This indicates the use of PSK rather than QAM as more reliable in single-

carrier multi-hop relay scenarios.  

An important result observed in the simulation was that the performance 

difference between the two users had diminished in the cooperative schemes. The 

performances of the cooperative schemes in PSK were better or close to the target error 

probability of 10-4, which did not always occur for the non-cooperative case of SMT2. 

This diminishing of the performance difference indicates sharing of the resources 

between the two users and between the relays in the cluster and that only cooperation can 

facilitate communications in cases where recovery of both user signals are important, 

which is a common scenario for tactical military communications. The improved resource 

sharing potentially leads to better coverage areas and extended terminal lifetime. As an 

example, for BPSK in a single hop scenario the energy consumption of both users can be 

reduced by almost 50% when they cooperated. Alternatively, a 20% increase of coverage 

range can be achieved based on the log-distance path loss model when keeping the same 

energy consumption and sharing it equally.  

Another significant observation is that C-DIV performed well in cases where the 

SNR difference between the paths was high. C-STC didn’t perform as well and was very 

close to the performance of SMT2 in the non-cooperative case. On the other hand C-STC 

performed better than other schemes in severe channel fading conditions. 

In the multihop scenarios we observed that adding more hops to the route of the 

signal as expected degraded the performance, but by no more than a factor of 10 for a 

scenario of six hops. Hence multihop relay topologies for cooperative schemes do not 

severely degrade the quality of the signal and keep error probabilities lower than the 

multihop non-cooperative schemes. 
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C.  SUGGESTIONS FOR FUTURE WORK 

Listed below are some suggestions for improvements that can be made or 

extensions of the research based on the work reported in this thesis. 

In this work a single carrier narrowband modulation was considered. Modern 

wireless systems however have adopted orthogonal frequency division multiplexing 

(OFDM) techniques along with forward error correction. Since OFDM is known to 

provide increased data rates and reliability, a future thesis may extend the investigation of 

the schemes studied in this work to OFDM based cooperative schemes. Use of OFDM 

can probably facilitate the use of QAM which in this work did not perform adequately 

well. Also, investigation can include smart relaying techniques which were not taken into 

account in this work, like the choice of the relay terminal to relay a signal or not. 

In order to perform well, the cooperative schemes require network establishment, 

time synchronization, and terminal localization for simultaneous receptions in order to 

eliminate any undesired interference. Hence, investigation is required on how to 

implement the distributed cooperative algorithms in an environment where terminals are 

randomly dispersed. 

The performance measure used in the simulation was the symbol error probability 

(SER) as a function of SNR in the relay. The actual performance of the investigated 

schemes cannot be completely evaluated only by the error probability, but also needs to 

take into account other parameters such as achieved data rates, outage probabilities, and 

power consumption. A future thesis effort may analyze the behavior of the schemes as a 

function of these parameters.   

Finally the equations for the symbol error probabilities derived here are 

exclusively for the two-hop scheme in the AWGN environment. Performance evaluations 

for fading environments and for multihop schemes are suggested to be derived; also, 

work can be extended from dual-terminal clusters to multi-terminal clustered networks. 
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APPENDIX A. STANFORD UNIVERSITY INTERIM MODELS 

This appendix lists the six Stanford University Interim models used in this work 
 

SUI – 1 Channel 
 Tap 1 Tap 2 Tap 3 Units 

Delay 0 0.2 0.4 μs 
Power 0 -3 -10 dB 

K-factor 10 10 10  
Doppler 0.4 0.4 0.4 Hz 

Terrain Type: C, Antenna correlation: 0.7, RMS Delay Spread: 0.1 μs 
 

SUI – 2 Channel 
 Tap 1 Tap 2 Tap 3 Units 

Delay 0 0.3 0.6 μs 
Power 0 -3 -8 dB 

K-factor 5 5 5  
Doppler 0.4 0.4 0.4 Hz 

Terrain Type: C, Antenna correlation: 0.5, RMS Delay Spread: 0.2 μs 
 

SUI – 3 Channel 
 Tap 1 Tap 2 Tap 3 Units 

Delay 0 0.5 1 μs 
Power 0 -5 -10 dB 

K-factor 0 0 0  
Doppler 0.4 0.4 0.4 Hz 

Terrain Type: Β, Antenna correlation: 0.25, RMS Delay Spread: 0.3 μs 
 

SUI – 4 Channel 
 Tap 1 Tap 2 Tap 3 Units 

Delay 0 2 4 μs 
Power 0 -4 -8 dB 

K-factor 0 0 0  
Doppler 1 1 1 Hz 

Terrain Type: Β, Antenna correlation: 0.5, RMS Delay Spread: 1.3 μs 
 

SUI – 5 Channel 
 Tap 1 Tap 2 Tap 3 Units 

Delay 0 4 11 μs 
Power 0 -3 -5 dB 

K-factor 0 0 0  
Doppler 2 2 2 Hz 

Terrain Type: Α, Antenna correlation: 0.5, RMS Delay Spread: 3.1 μs 
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SUI – 6 Channel 

 Tap 1 Tap 2 Tap 3 Units 
Delay 0 14 20 μs 
Power 0 -10 -12 dB 

K-factor 0 0 0  
Doppler 0.4 0.4 0.4 Hz 

Terrain Type: Α, Antenna correlation: 0.25, RMS Delay Spread: 5.2 μs 
 

For a given close-in reference distance d0, the median path loss (PL in dB) is 

given by 10 0 0 10 010 log ( / )  for  where 20 log (4 / )PL A d d s d d A dγ π λ= + + > = , (λ being the 

wavelength in m), γ is the path-loss exponent with γ=(a-bhb+c/hb) for hb between 10m 

and 80m (hb is the height of the base station in m), d0=100m and a, b, c are constants 

dependent on the terrain category [56]. 

 

Model Parameter Terrain Type A Terrain Type B Terrain Type C 

a 4.6 4 3.6 

b 0.0075 0.0065 0.005 

c 12.6 17.1 20 
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APPENDIX B. MATLAB SOURCE CODE 

This appendix lists the MATLAB codes used in this work 
 

 
Dualhop.m 
 
%% Parameters 
clear all; clc; 
M = input ('give M-PSK order (2,4)or QAM order(16, 64):'); 
if M == 2; 
    dh = [1 -1]/(sqrt(2)); % Possible symbols BPSK 
else if M == 4;  
        dh = [1+j -1+j 1-j -1-j]/(2); % Possible symbols QPSK 
    else if M ==16; 
            qamOrder = M;temp = 0:1:15;dh = qammod(temp,qamOrder);%16QAM 
        else qamOrder = M;temp = 0:1:63;dh = qammod(temp,qamOrder);%64QAM 
        end 
    end 
end 
b = input('For frequency selective channel press 0 and for flat channel press 
1:'); 
number = 5000; number1 = number*200;%STBC 
if b == 1 
    a = input('For AWGN channel press 0 and for Rayleigh channel press 1:'); 
    SUI_index = 1; rho_tx = 0; rho_rx = 0; direct = 0; 
else SUI_index = input('Choose SUI propagation model [1:6]:'); 
    direct = input('For omni antennas press 0, for antennas with directivity 
30deg press 1:'); 
    rho_tx = input('If transmission antennas suffer correlation choose (1) else 
(0):'); 
    rho_rx = input('If reception antennas suffer correlation choose (1) else 
(0):'); 
end 
MonteCarlo = 10; SNR = 0:2:40; %Length of SNR  
SER_matrix_avg  = zeros(1,length(SNR)); 
SER_matrix_avg1 = zeros(1,length(SNR));  
SER_matrix_avg2 = zeros(1,length(SNR)); 
SER_matrix_avg3 = zeros(1,length(SNR)); 
SER_matrix_avg4 = zeros(1,length(SNR)); 
SER_matrix_avg5 = zeros(1,length(SNR)); 
SER_matrix_avg6 = zeros(1,length(SNR)); 
SER_matrix_avg7 = zeros(1,length(SNR)); 
SER_matrix_avg8 = zeros(1,length(SNR)); 
for e=1:MonteCarlo 
    SER_matrix  = []; 
    SER_matrix1 = []; 
    SER_matrix2 = []; 
    SER_matrix3 = []; 
    SER_matrix4 = []; 
    SER_matrix5 = []; 
    SER_matrix6 = []; 
    SER_matrix7 = [];  
    SER_matrix8 = []; 
for SNR1 = 0:2:40 % SNR  at receivers side 
    SNR2 = SNR1-3; tot_errors  = 0; tot_errors1  = 0; 
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%% CSTC Alamouti. Full Data Exchange in Intracluster Link 
    for i = 1:number 
       if M == 2; 
          Datar1 = randint(200,1,M); Data1 = pskmod(Datar1,M)/(sqrt(2));  
          Datar2 = randint(200,1,M); Data2 = pskmod(Datar2,M)/(sqrt(2));  
       else if M==4;  
               Data1 = ((2*round(rand(200,1))-1)+ j*(2*round(rand(200,1))-
1))/(2);  
               Datar1 = pskdemod(2*Data1,M);%random data QPSK 
               Data2 = ((2*round(rand(200,1))-1)+ j*(2*round(rand(200,1))-
1))/(2);  
               Datar2 = pskdemod(2*Data2,M); %random data QPSK 
            else 
               Datar1 = randint(200,1,qamOrder);Data1 = 
qammod(Datar1,qamOrder);%16QAM 
               Datar2 = randint(200,1,qamOrder);Data2 = 
qammod(Datar2,qamOrder);%64QAM 
            end 
       end 
%% Building the Channel from Sources to Relays 
      [h11,h12,h21,h22] = TwobyTwo_channel (SUI_index,direct,rho_tx, rho_rx);% 
SUI fading channel 
      if b == 1;% Flat fading channel 
         if a == 1; 
            h = randn(4,1)/sqrt(2)+j*randn(4,1)/sqrt(2); 
            h11=h(1);h12=h(2);h21=h(3);h22=h(4);%Rayleigh 
         else h11=1;h12=1;h21=1;h22=1;%AWGN 
         end 
      end 
      R1 = awgn(filter(h11,1,Data1) + filter(h12,1,Data2), SNR1, 'measured');% 
Received signals 
      R2 = awgn(filter(h21,1,Data1) + filter(h22,1,Data2), SNR2,'measured'); 
      R3 = awgn(filter(h11,1,-conj(Data2)) + filter(h12,1,conj(Data1)), SNR1, 
'measured'); 
      R4 = awgn(filter(h21,1,-conj(Data2)) + filter(h22,1,conj(Data1)), 
SNR2,'measured'); 
      s0 = non_causal_filter(conj(h11),transpose(R1)) + 
filter(h12,1,conj((transpose(R3)))) + ... 
           non_causal_filter(conj(h21),transpose(R2)) + 
filter(h22,1,conj((transpose(R4)))); 
      s1 = non_causal_filter(conj(h12),transpose(R1)) + filter(-
h11,1,conj((transpose(R3)))) + ... 
           non_causal_filter(conj(h22),transpose(R2)) + filter(-
h21,1,conj((transpose(R4))));  
      H = [h11,h12,h21,h22]; 
      % Maximum Likehood Detector, Computing the distances 
      if M == 2; 
         [decoded1, sa] = ML_BPSK (dh, s0);  
         decoded1= transpose(decoded1);%BPSK 
         [decoded2, sb] = ML_BPSK (dh, s1); 
         decoded2= transpose(decoded2);%BPSK 
      else if M==4;  
              [decoded1, sa] = ML_QPSK (dh, s0); 
              decoded1= transpose(decoded1);%QPSK 
              [decoded2, sb] = ML_QPSK (dh, s1); 
              decoded2= transpose(decoded2);%QPSK              
           else    [decoded1, sa] = ML_QAM (dh, s0, qamOrder, H); 
               decoded1= transpose(decoded1);%QAM 
                   [decoded2, sb] = ML_QAM (dh, s1, qamOrder, H); 
                   decoded2= transpose(decoded2);%QAM 
          end 
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      end 
%% From relays to Destination 
      [h11,h12,h21,h22] = TwobyTwo_channel (SUI_index,direct,rho_tx, rho_rx); % 
SUI fading channel 
      if b == 1;% Flat fading channel 
         if a == 1; 
            h = randn(4,1)/sqrt(2)+j*randn(4,1)/sqrt(2); 
            h11=h(1);h12=h(2);h21=h(3);h22=h(4);%Rayleigh 
         else h11=1;h12=1;h21=1;h22=1;%AWGN 
         end 
      end 
      R1 = awgn(filter(h11,1,decoded1) + filter(h12,1,decoded2), SNR1, 
'measured');% Received signals 
      R2 = awgn(filter(h21,1,decoded1) + filter(h22,1,decoded2), 
SNR1,'measured'); 
      R3 = awgn(filter(h11,1,-conj(decoded2)) + filter(h12,1,conj(decoded1)), 
SNR1, 'measured'); 
      R4 = awgn(filter(h21,1,-conj(decoded2)) + filter(h22,1,conj(decoded1)), 
SNR1,'measured'); 
      s0 = non_causal_filter(conj(h11),transpose(R1)) + 
filter(h12,1,conj((transpose(R3)))) + ... 
           non_causal_filter(conj(h21),transpose(R2)) + 
filter(h22,1,conj((transpose(R4)))); 
      s1 = non_causal_filter(conj(h12),transpose(R1)) + filter(-
h11,1,conj((transpose(R3)))) + ... 
           non_causal_filter(conj(h22),transpose(R2)) + filter(-
h21,1,conj((transpose(R4)))); 
      H = [h11,h12,h21,h22]; 
      % Maximum Likehood Detector, Computing the distances 
      if M == 2; 
         [decoded1, sa] = ML_BPSK (dh, s0);  
         decoded1= transpose(decoded1);%BPSK 
         decoded1 = pskdemod(decoded1,M); 
         [decoded2, sb] = ML_BPSK (dh, s1); 
         decoded2= transpose(decoded2);%BPSK 
         decoded2 = pskdemod(decoded2,M); 
      else if M==4;  
           [decoded1, sa] = ML_QPSK (dh, s0); 
           decoded1= transpose(decoded1);%QPSK 
           decoded1 = pskdemod(decoded1,M); 
           [decoded2, sb] = ML_QPSK (dh, s1); 
           decoded2= transpose(decoded2);%QPSK  
           decoded2 = pskdemod(decoded2,M); 
           else    [decoded1, sa] = ML_QAM (dh, s0, qamOrder, H); 
               decoded1= transpose(decoded1); 
               decoded1 = qamdemod(decoded1,qamOrder);%QAM 
               [decoded2, sb] = ML_QAM (dh, s1, qamOrder, H); 
               decoded2= transpose(decoded2); 
               decoded2 = qamdemod(decoded2,qamOrder);%QAM 
          end 
      end 
      errors = sum(decoded1~=Datar1); tot_errors = tot_errors+errors; 
      errors1 = sum(decoded2~=Datar2);tot_errors1 = tot_errors1+errors1; 
   end 
   ber = tot_errors/(number1); %Computing the SER for spesific SNR 
   ber1 = tot_errors1/(number1); %Computing the SER for spesific SNR 
   SER_matrix = [SER_matrix, ber];%Computing the SER matrix 
   SER_matrix1 = [SER_matrix1, ber1];%Computing the SER matrix 
 
 
 
 



 82

 
%% CSTC Alamouti. Time Synchronization Only in Intracluster Link 
   tot_errors  = 0; tot_errors1  = 0; 
   for i = 1:number 
       if M == 2; 
          Datar1 = randint(200,1,M); Data1 = pskmod(Datar1,M)/(sqrt(2));  
          Datar2 = randint(200,1,M); Data2 = pskmod(Datar2,M)/(sqrt(2));  
       else if M==4;  
               Data1 = ((2*round(rand(200,1))-1)+ j*(2*round(rand(200,1))-
1))/(2);  
               Datar1 = pskdemod(2*Data1,M);%random data QPSK 
               Data2 = ((2*round(rand(200,1))-1)+ j*(2*round(rand(200,1))-
1))/(2);  
               Datar2 = pskdemod(2*Data2,M); %random data QPSK 
           else 
                Datar1 = randint(200,1,qamOrder);Data1 = 
qammod(Datar1,qamOrder);%16QAM 
                Datar2 = randint(200,1,qamOrder);Data2 = 
qammod(Datar2,qamOrder);%64QAM 
           end 
       end 
%% Building the Channel for the first 2x1 system 
      [h1,h2] = TwobyOne_channel (SUI_index,direct,rho_tx);% SUI fading channel 
      if b == 1;% Flat fading channel 
         if a == 1; 
            h = randn(2,1)/sqrt(2)+j*randn(2,1)/sqrt(2); 
            h1=h(1);h2=h(2);%Rayleigh 
         else h1=1;h2=1;%AWGN 
         end 
      end 
      R1 = awgn(filter(h1,1,Data1) + filter(h2,1,Data2), SNR1, 
'measured');%Received signals 
      R2 = awgn(filter(h1,1,-conj(Data2)) + filter(h2,1,conj(Data1)), SNR1, 
'measured'); 
      s0 = non_causal_filter(conj(h1),transpose(R1)) + 
filter(h2,1,conj((transpose(R2)))); 
      s1 = non_causal_filter(conj(h2),transpose(R1)) + filter(-
h1,1,conj((transpose(R2)))); 
      H=[h1,h2]; 
      % Maximum Likehood Detector, Computing the distances 
      if M == 2; 
         [decoded11, s11] = ML_BPSK (dh, s0);decoded11= 
transpose(decoded11);%BPSK 
         [decoded12, s12] = ML_BPSK (dh, s1);decoded12= 
transpose(decoded12);%BPSK 
      else if M==4;  
              [decoded11, s11] = ML_QPSK (dh, s0);decoded11= 
transpose(decoded11);%QPSK 
              [decoded12, s12] = ML_QPSK (dh, s1);decoded12= 
transpose(decoded12);%QPSK              
           else    [decoded11, s11] = ML_QAM (dh, s0, qamOrder, H); 
               decoded11= transpose(decoded11);%QAM 
                   [decoded12, s12] = ML_QAM (dh, s1, qamOrder, H); 
                   decoded12= transpose(decoded12);%QAM 
          end 
      end 
%% Building the Channel for the second 2x1 system 
      [h1,h2] = TwobyOne_channel (SUI_index,direct,rho_tx);% SUI fading channel 
      if b == 1;% Flat fading channel 
         if a == 1; 
            h = randn(2,1)/sqrt(2)+j*randn(2,1)/sqrt(2); 
            h1=h(1);h2=h(2);%Rayleigh 
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         else h1=1;h2=1;%AWGN 
         end 
      end 
      R1 = awgn(filter(h1,1,Data1) + filter(h2,1,Data2), SNR2, 
'measured');%Received signals 
      R2 = awgn(filter(h1,1,-conj(Data2)) + filter(h2,1,conj(Data1)), SNR2, 
'measured'); 
      s0 = non_causal_filter(conj(h1),transpose(R1)) + 
filter(h2,1,conj((transpose(R2)))); 
      s1 = non_causal_filter(conj(h2),transpose(R1)) + filter(-
h1,1,conj((transpose(R2))));H=[h1,h2]; 
      % Maximum Likehood Detector, Computing the distances 
      if M == 2; 
         [decoded21, s21] = ML_BPSK (dh, s0); 
         decoded21= transpose(decoded21);%BPSK 
         [decoded22, s22] = ML_BPSK (dh, s1); 
         decoded22= transpose(decoded22);%BPSK 
      else if M==4;  
              [decoded21, s21] = ML_QPSK (dh, s0); 
              decoded21= transpose(decoded21);%QPSK 
              [decoded22, s22] = ML_QPSK (dh, s1); 
              decoded22= transpose(decoded22);%QPSK              
           else    [decoded21, s21] = ML_QAM (dh, s0, qamOrder, H); 
               decoded21= transpose(decoded21);%QAM 
                   [decoded22, s22] = ML_QAM (dh, s1, qamOrder, H); 
                   decoded22= transpose(decoded22);%QAM 
           end 
      end 
%% From relays to Destination 
      [h11,h12,h21,h22] = TwobyTwo_channel (SUI_index,direct,rho_tx, rho_rx);% 
SUI fading channel 
      if b == 1;% Flat fading channel 
         if a == 1; 
            h = randn(4,1)/sqrt(2)+j*randn(4,1)/sqrt(2); 
            h11=h(1);h12=h(2);h21=h(3);h22=h(4);%Rayleigh 
         else h11=1;h12=1;h21=1;h22=1;%AWGN 
         end 
      end 
      R1 = awgn(filter(h11,1,decoded11) + filter(h12,1,decoded22), 
SNR1,'measured');% Received signals 
      R2 = awgn(filter(h21,1,decoded11) + filter(h22,1,decoded22), 
SNR1,'measured'); 
      R3 = awgn(filter(h11,1,-conj(decoded12)) + filter(h12,1,conj(decoded21)), 
SNR1,'measured'); 
      R4 = awgn(filter(h21,1,-conj(decoded12)) + filter(h22,1,conj(decoded21)), 
SNR1,'measured'); 
      s0 = non_causal_filter(conj(h11),transpose(R1)) + 
filter(h12,1,conj((transpose(R3)))) + ... 
           non_causal_filter(conj(h21),transpose(R2)) + 
filter(h22,1,conj((transpose(R4)))); 
      s1 = non_causal_filter(conj(h12),transpose(R1)) + filter(-
h11,1,conj((transpose(R3)))) + ... 
           non_causal_filter(conj(h22),transpose(R2)) + filter(-
h21,1,conj((transpose(R4)))); 
       H = [h11,h12,h21,h22]; 
      % Maximum Likehood Detector, Computing the distances 
      if M == 2; 
         [decoded1, sa] = ML_BPSK (dh, s0);  
         decoded1= transpose(decoded1);%BPSK 
         decoded1 = pskdemod(decoded1,M); 
         [decoded2, sb] = ML_BPSK (dh, s1); 
         decoded2= transpose(decoded2);%BPSK 
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         decoded2 = pskdemod(decoded2,M); 
      else if M==4;  
              [decoded1, sa] = ML_QPSK (dh, s0); 
              decoded1= transpose(decoded1);%QPSK 
              decoded1 = pskdemod(decoded1,M); 
              [decoded2, sb] = ML_QPSK (dh, s1); 
              decoded2= transpose(decoded2);%QPSK  
              decoded2 = pskdemod(decoded2,M); 
           else    [decoded1, sa] = ML_QAM (dh, s0, qamOrder, H); 
               decoded1= transpose(decoded1); 
                   decoded1 = qamdemod(decoded1,qamOrder);%QAM 
                   [decoded2, sb] = ML_QAM (dh, s1, qamOrder, H); 
                   decoded2= transpose(decoded2); 
                   decoded2 = qamdemod(decoded2,qamOrder);%QAM 
          end 
      end 
      errors = sum(decoded1~=Datar1);tot_errors = tot_errors+errors; 
      errors1 = sum(decoded2~=Datar2);tot_errors1 = tot_errors1+errors1; 
   end 
   ber = tot_errors/(number1); %Computing the SER for spesific SNR 
   ber1 = tot_errors1/(number1); %Computing the SER for spesific SNR 
   SER_matrix2 = [SER_matrix2, ber];%Computing the SER matrix 
   SER_matrix3 = [SER_matrix3, ber1];%Computing the SER matrix 
 
 
%% C-Div DF 
   tot_errors  = 0; 
   for i = 1:number                          
       if M == 2; 
          Datar = randint(200,1,M); Data = pskmod(Datar,M)/(sqrt(2)); %Random 
data BPSK 
       else if M==4;  
               Data = ((2*round(rand(200,1))-1)+ j*(2*round(rand(200,1))-
1))/(2);  
               Datar = pskdemod(2*Data,M);%random data QPSK 
            else 
               Datar = randint(200,1,qamOrder);Data = 
qammod(Datar,qamOrder);%16QAM 
            end 
       end 
%% Building the Channel for the first 1x1 system 
      [h1] = OnebyOne_channel (SUI_index,direct);% SUI fading channel 
      if b == 1;% Flat fading channel 
         if a == 1; 
            h1 = randn(1,1)/sqrt(2)+j*randn(1,1)/sqrt(2);%Rayleigh 
         else h1=1;%AWGN 
         end 
      end 
      R1 = awgn(filter(h1,1,Data), SNR1, 'measured'); 
      s0 = non_causal_filter(conj(h1),transpose(R1)); H=h1; 
      % Maximum Likehood Detector, Computing the distances 
      if M == 2; 
         [decoded1, sa] = ML_BPSK (dh, s0); 
         decoded1= transpose(decoded1);%BPSK 
      else if M==4;  
              [decoded1, sa] = ML_QPSK (dh, s0); 
              decoded1= transpose(decoded1);%QPSK 
           else    [decoded1, sa] = ML_QAM (dh, s0, qamOrder, H); 
               decoded1= transpose(decoded1);%QAM 
           end 
      end 
%% Building the Channel for the second 1x1 system 
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      [h1] = OnebyOne_channel (SUI_index,direct);% SUI fading channel 
      if b == 1;% Flat fading channel 
         if a == 1; 
            h1 = randn(1,1)/sqrt(2)+j*randn(1,1)/sqrt(2);%Rayleigh 
         else h1=1;%AWGN 
         end 
      end 
      R1 = awgn(filter(h1,1,Data), SNR1, 'measured'); 
      s0 = non_causal_filter(conj(h1),transpose(R1)); H=h1; 
      % Maximum Likehood Detector, Computing the distances 
      if M == 2; 
         [decoded2, sb] = ML_BPSK (dh, s0); 
         decoded2= transpose(decoded2);%BPSK 
      else if M==4;  
              [decoded2, sb] = ML_QPSK (dh, s0); 
              decoded2= transpose(decoded2);%QPSK 
           else    [decoded2, sb] = ML_QAM (dh, s0, qamOrder, H); 
               decoded2= transpose(decoded2);%QAM 
          end 
      end 
%% From relays to Destination 
      [h11,h12,h21,h22] = TwobyTwo_channel (SUI_index,direct,rho_tx, rho_rx);% 
SUI fading channel 
      if b == 1;% Flat fading channel 
         if a == 1; % Rayleigh 
            h = randn(4,1)/sqrt(2)+j*randn(4,1)/sqrt(2); 
            h11=h(1);h12=h(2);h21=h(3);h22=h(4);%Rayleigh 
         else h11=1;h12=1;h21=1;h22=1;%AWGN 
         end 
      end 
      R1 = awgn(filter(h11,1,decoded1) + filter(h12,1,decoded2), SNR1, 
'measured'); 
      R2 = awgn(filter(h21,1,decoded1) + filter(h22,1,decoded2), 
SNR1,'measured'); 
      s0 = non_causal_filter(conj(h11+h12),transpose(R1)); 
      s1 = non_causal_filter(conj(h21+h22),transpose(R2)); 
      H = [h11+h12,h21+h22];  
      s = s0/2+s1/2; 
      % Maximum Likehood Detector, Computing the distances 
      if M == 2; 
         [decoded, sa] = ML_BPSK (dh, s);  
         decoded = transpose(decoded);%BPSK 
         decoded = pskdemod(decoded,M); 
      else if M==4;  
              [decoded, sa] = ML_QPSK (dh, s0); 
              decoded = transpose(decoded);%QPSK 
              decoded = pskdemod(decoded,M); 
           else     [decoded, sa] = ML_QAM (dh, s0, qamOrder, H); 
                    decoded = transpose(decoded); 
                    decoded = qamdemod(decoded,qamOrder);%QAM 
           end 
      end 
      errors = sum(decoded~=Datar); tot_errors = tot_errors+errors; 
   end 
   ber = tot_errors /(number1);  
   SER_matrix4 = [SER_matrix4, ber];%Computing the SER matrix 
 
 
%% Non-Cooperative DF (Two parallel channels) 
    tot_errors  = 0; tot_errors1  = 0; 
       for i = 1:number                          
           if M == 2; 
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              Datar = randint(200,1,M); Data = pskmod(Datar,M)/(sqrt(2)); 
%Random data BPSK 
           else if M==4;  
                    Data = ((2*round(rand(200,1))-1)+ j*(2*round(rand(200,1))-
1))/(2);  
                    Datar = pskdemod(2*Data,M);%random data QPSK 
                 else 
                    Datar = randint(200,1,qamOrder);Data = 
qammod(Datar,qamOrder);%16QAM 
                 end 
           end 
%% Building the 1st Channel from Source to Relay 
      [h1] = OnebyOne_channel (SUI_index,direct);% SUI fading channel 
      if b == 1;% Flat fading channel 
         if a == 1; 
            h1 = randn(1,1)/sqrt(2)+j*randn(1,1)/sqrt(2);%Rayleigh 
         else h1=1;%AWGN 
         end 
      end 
      R = awgn(filter(h1,1,Data), SNR1, 'measured'); 
      s0 = non_causal_filter(conj(h1),transpose(R));H = h1; 
      % Maximum Likehood Detector, Computing the distances 
      if M == 2; 
         [X, sa] = ML_BPSK (dh, s0);X= transpose(X);%BPSK 
      else if M==4;  
              [X, sa] = ML_QPSK (dh, s0);X= transpose(X);%QPSK 
           else    [X, sa] = ML_QAM (dh, s0, qamOrder, H);X= transpose(X);%QAM 
          end 
      end 
%% Building the Channel from Relay to Destination 
      [h1] = OnebyOne_channel (SUI_index,direct);% SUI fading channel 
      if b == 1;% Flat fading channel 
         if a == 1; 
            h1 = randn(1,1)/sqrt(2)+j*randn(1,1)/sqrt(2);%Rayleigh 
         else h1=1;%AWGN 
         end 
      end 
      R = awgn(filter(h1,1,X), SNR1, 'measured'); 
      s0 = non_causal_filter(conj(h1),transpose(R));H=h1; 
      % Maximum Likehood Detector, Computing the distances 
      if M == 2; 
         [decoded3, sa] = ML_BPSK (dh, s0);  
         decoded3= transpose(decoded3);%BPSK 
         decoded3 = pskdemod(decoded3,M); 
      else if M==4;  
             [decoded3, sa] = ML_QPSK (dh, s0); 
             decoded3= transpose(decoded3);%QPSK 
             decoded3 = pskdemod(decoded3,M); 
           else    [decoded3, sa] = ML_QAM (dh, s0, qamOrder, H); 
               decoded3= transpose(decoded3); 
               decoded3 = qamdemod(decoded3,qamOrder);%QAM 
           end 
      end 
      errors = sum(decoded3~=Datar); tot_errors = tot_errors+errors; 
      end 
      ber = tot_errors /(number1); %Computing the SER for spesific SNR 
      SER_matrix5 = [SER_matrix5, ber];%Computing the SER matrix 
%% 2nd Channel     
   for i = 1:number                          
       if M == 2; 
          Datar1 = randint(200,1,M); Data1 = pskmod(Datar1,M)/(sqrt(2)); 
%Random data BPSK 
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       else if M==4;  
               Data1 = ((2*round(rand(200,1))-1)+ j*(2*round(rand(200,1))-
1))/(2);  
               Datar1 = pskdemod(2*Data1,M);%random data QPSK 
            else 
               Datar1 = randint(200,1,qamOrder);Data1 = 
qammod(Datar1,qamOrder);%16QAM 
            end 
       end 
%% Building the 2nd Channel from Source to Relay 
      [h1] = OnebyOne_channel (SUI_index,direct);% SUI fading channel 
      if b == 1;% Flat fading channel 
         if a == 1; 
            h1 = randn(1,1)/sqrt(2)+j*randn(1,1)/sqrt(2);%Rayleigh 
         else h1=1;%AWGN 
         end 
      end 
      R = awgn(filter(h1,1,Data1), SNR1, 'measured'); 
      s0 = non_causal_filter(conj(h1),transpose(R));H = h1; 
      % Maximum Likehood Detector, Computing the distances 
      if M == 2; 
         [X1, sa] = ML_BPSK (dh, s0);X1= transpose(X1);%BPSK 
      else if M==4;  
         [X1, sa] = ML_QPSK (dh, s0);X1= transpose(X1);%QPSK 
           else    [X1, sa] = ML_QAM (dh, s0, qamOrder, H);X1= 
transpose(X1);%QAM 
          end 
      end 
%% Building the 2nd Channel from Relay to Destination 
      [h1] = OnebyOne_channel (SUI_index,direct);% SUI fading channel 
      if b == 1;% Flat fading channel 
         if a == 1; 
            h1 = randn(1,1)/sqrt(2)+j*randn(1,1)/sqrt(2);%Rayleigh 
         else h1=1;%AWGN 
         end 
      end 
      R = awgn(filter(h1,1,X1), SNR2, 'measured'); 
      s0 = non_causal_filter(conj(h1),transpose(R));H = h1; 
      % Maximum Likehood Detector, Computing the distances 
      if M == 2; 
         [decoded4, sa] = ML_BPSK (dh, s0);  
         decoded4= transpose(decoded4);%BPSK 
         decoded4 = pskdemod(decoded4,M); 
      else if M==4;  
              [decoded4, sa] = ML_QPSK (dh, s0); 
              decoded4= transpose(decoded4);%QPSK 
              decoded4 = pskdemod(decoded4,M); 
           else    [decoded4, sa] = ML_QAM (dh, s0, qamOrder, H); 
               decoded4= transpose(decoded4); 
               decoded4 = qamdemod(decoded4,qamOrder);%QAM 
           end 
      end 
      errors1 = sum(decoded4~=Datar1); tot_errors1 = tot_errors1+errors1; 
   end 
   ber1 = tot_errors1 /(number1); %Computing the SER for spesific SNR 
   SER_matrix6 = [SER_matrix6, ber1];%Computing the SER matrix 
 
 
%% Non-Cooperative AF. (Two parallel channels) 
   tot_errors  = 0; tot_errors1 = 0; 
   for i = 1:number                          
       if M == 2; 
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       Datar = randint(200,1,M); X = pskmod(Datar,M)/(sqrt(2))%Random data BPSK 
       else if M==4;  
               X = ((2*round(rand(200,1))-1)+ j*(2*round(rand(200,1))-1))/(2);  
               Datar = pskdemod(2*X,M);%random data QPSK 
            else 
                Datar = randint(200,1,qamOrder);X = 
qammod(Datar,qamOrder);%16QAM 
           end 
        end 
%% Building the Channel from Source to Relay 
      [H] = OnebyOne_channel (SUI_index,direct);% SUI fading channel 
      if b == 1;% Flat fading channel 
         if a == 1; 
            H = randn(1,1)/sqrt(2)+j*randn(1,1)/sqrt(2);%Rayleigh 
         else H=1;%AWGN 
         end 
      end 
      R = awgn(filter(H,1,X), SNR1, 'measured'); 
      S = non_causal_filter(conj(H),transpose(R)); 
%% Building the Channel from Relay to Destination 
      [H] = OnebyOne_channel (SUI_index,direct);% SUI fading channel 
      if b == 1;% Flat fading channel 
         if a == 1; 
            H = randn(1,1)/sqrt(2)+j*randn(1,1)/sqrt(2);%Rayleigh 
         else H=1;%AWGN 
         end 
      end 
      for k=1:length(S) 
          S(k) = sqrt(X(k)*X(k)')*S(k)/sqrt(S(k)*S(k)');  
      end 
      S = transpose(S); 
      R = awgn(filter(H,1,S), SNR1, 'measured'); 
      s0 = non_causal_filter(conj(H),transpose(R)); 
      % Maximum Likehood Detector, Computing the distances 
      if M == 2; 
         [decoded3, sa] = ML_BPSK (dh, s0);  
         decoded3= transpose(decoded3);%BPSK 
         decoded3 = pskdemod(decoded3,M); 
      else if M==4;  
              [decoded3, sa] = ML_QPSK (dh, s0); 
              decoded3= transpose(decoded3);%QPSK 
              decoded3 = pskdemod(decoded3,M); 
           else    [decoded3, sa] = ML_QAM (dh, s0, qamOrder, H); 
               decoded3= transpose(decoded3); 
               decoded3 = qamdemod(decoded3,qamOrder);%QAM 
           end 
      end 
      errors = sum(decoded3~=Datar); tot_errors = tot_errors+errors; 
   end 
   ber = tot_errors /(number1); %Computing the SER for spesific SNR 
   SER_matrix7 = [SER_matrix7, ber];%Computing the SER matrix 
%% 2nd Channel 
   for i = 1:number                          
       if M == 2; 
          Datar = randint(200,1,M); X = pskmod(Datar,M)/(sqrt(2)); %Random data 
BPSK 
       else if M==4;  
               X = ((2*round(rand(200,1))-1)+ j*(2*round(rand(200,1))-1))/(2);  
               Datar = pskdemod(2*X,M);%random data QPSK 
            else 
                Datar = randint(200,1,qamOrder);X = 
qammod(Datar,qamOrder);%16QAM 
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           end 
        end 
%% Building the Channel from Source to Relay 
      [H] = OnebyOne_channel (SUI_index,direct);% SUI fading channel 
      if b == 1;% Flat fading channel 
         if a == 1; 
            H = randn(1,1)/sqrt(2)+j*randn(1,1)/sqrt(2);%Rayleigh 
         else H=1;%AWGN 
         end 
      end 
      R = awgn(filter(H,1,X), SNR2, 'measured'); 
      S = non_causal_filter(conj(H),transpose(R)); 
%% Building the Channel from Relay to Destination 
      [H] = OnebyOne_channel (SUI_index,direct);% SUI fading channel 
      if b == 1;% Flat fading channel 
         if a == 1; 
            H = randn(1,1)/sqrt(2)+j*randn(1,1)/sqrt(2);%Rayleigh 
         else H=1;%AWGN 
         end 
      end 
      for k=1:length(S) 
          S(k) = sqrt(X(k)*X(k)')*S(k)/sqrt(S(k)*S(k)');  
      end 
      S = transpose(S); 
      R = awgn(filter(H,1,S), SNR2, 'measured'); 
      s0 = non_causal_filter(conj(H),transpose(R)); 
      % Maximum Likehood Detector, Computing the distances 
      if M == 2; 
         [decoded4, sa] = ML_BPSK (dh, s0);  
         decoded4= transpose(decoded4);%BPSK 
         decoded4 = pskdemod(decoded4,M); 
      else if M==4;  
              [decoded4, sa] = ML_QPSK (dh, s0); 
              decoded4= transpose(decoded4);%QPSK 
              decoded4 = pskdemod(decoded4,M); 
           else    [decoded4, sa] = ML_QAM (dh, s0, qamOrder, H); 
                   decoded4= transpose(decoded4); 
                   decoded4 = qamdemod(decoded4,qamOrder);%QAM 
           end 
      end 
      errors1 = sum(decoded4~=Datar); tot_errors1 = tot_errors1+errors1; 
   end 
   ber = tot_errors1 /(number1); %Computing the SER for spesific SNR 
   SER_matrix8 = [SER_matrix8, ber];%Computing the SER matrix 
end 
    SER_matrix_avg  = SER_matrix_avg  + SER_matrix;  
    SER_matrix_avg1 = SER_matrix_avg1 + SER_matrix1;  
    SER_matrix_avg2 = SER_matrix_avg2 + SER_matrix2; 
    SER_matrix_avg3 = SER_matrix_avg3 + SER_matrix3; 
    SER_matrix_avg4 = SER_matrix_avg4 + SER_matrix4; 
    SER_matrix_avg5 = SER_matrix_avg5 + SER_matrix5; 
    SER_matrix_avg6 = SER_matrix_avg6 + SER_matrix6;  
    SER_matrix_avg7 = SER_matrix_avg7 + SER_matrix7;  
    SER_matrix_avg8 = SER_matrix_avg8 + SER_matrix8; 
    % Plot 
end 
SER_matrix_avg  = SER_matrix_avg  /MonteCarlo;  
SER_matrix_avg1 = SER_matrix_avg1 /MonteCarlo;  
SER_matrix_avg2 = SER_matrix_avg2 /MonteCarlo; 
SER_matrix_avg3 = SER_matrix_avg3 /MonteCarlo; 
SER_matrix_avg4 = SER_matrix_avg4 /MonteCarlo; 
SER_matrix_avg5 = SER_matrix_avg5 /MonteCarlo; 
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SER_matrix_avg6 = SER_matrix_avg6 /MonteCarlo;  
SER_matrix_avg7 = SER_matrix_avg7 /MonteCarlo;  
SER_matrix_avg8 = SER_matrix_avg8 /MonteCarlo; 
%% Plot Average 
figure (MonteCarlo+1) 
semilogy (SNR, SER_matrix_avg,'r'); 
hold on;semilogy (SNR, SER_matrix_avg1,'r--');hold on; 
semilogy (SNR, SER_matrix_avg2,'b'); 
hold on;semilogy (SNR, SER_matrix_avg3,'b--');hold on; 
semilogy (SNR, SER_matrix_avg4,'c'); 
hold on;semilogy (SNR, SER_matrix_avg5,'g');hold on; 
semilogy (SNR, SER_matrix_avg6,'g--'); 
hold on;semilogy (SNR, SER_matrix_avg7,'y');hold on; 
semilogy (SNR, SER_matrix_avg8,'y--');grid 
 
 
ML-BPSK 
 
function [decoded, s] = ML_BPSK (dh, S); 
% Author : Konstantinos Alexopoulos, Naval Postgraduate School, June 
2008 
% This function compute symbol distances for baseband BPSK 
for i=1:length(S) 
    d11 = ((dh(1)-real(S(i)))^2+(imag(S(i)))^2); 
    d12 = ((dh(2)-real(S(i)))^2+(imag(S(i)))^2); 
    D1 = [d11 d12];     %Distances for the received symbol 
    [sc1, posi1] = min(D1); 
    decoded(i)=[dh(posi1)];%The decisions 
    s(i) = sc1; 
end 
 
ML-QPSK 
 
function [decoded, s] = ML_QPSK (dh, S); 
% Author : Konstantinos Alexopoulos, Naval Postgraduate School, June 
2008 
% This function compute symbol distances for baseband QPSK 
%Computing the distances for the first symbol 
for i=1:length(S) 
    d11 = ((real(dh(1))-real(S(i)))^2+(imag(dh(1))-imag(S(i)))^2); 
    d12 = ((real(dh(2))-real(S(i)))^2+(imag(dh(2))-imag(S(i)))^2); 
    d21 = ((real(dh(3))-real(S(i)))^2+(imag(dh(3))-imag(S(i)))^2); 
    d22 = ((real(dh(4))-real(S(i)))^2+(imag(dh(4))-imag(S(i)))^2); 
    D1 = [d11 d12 d21 d22];     %Distances for the received symbol 
    [sc1, posi1] = min(D1); 
    decoded(i)=[dh(posi1)];%The decisions 
    s(i) = sc1; 
end 
 
ML-QAM 
 
function [decoded, s] = ML_QAM (dh, S, QAM_order, H); 
% Author : Konstantinos Alexopoulos, Naval Postgraduate School, June 
2008 
% This function compute symbol distances for baseband QPSK 
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%Computing the distances for the first symbol 
for j=1:length(S) 
    for i=1:QAM_order 
        D1(i) = ((real(dh(i))-real(S(j)))^2+(imag(dh(i))-
imag(S(j)))^2); 
    end 
%Building the decisions vector for the first symbol 
    for k = 1:QAM_order 
        X1_dec(k) = ((abs(dh(k)))^2)*sum(sum((abs(H)).^2)-1)+D1(k);  
    end 
    [sc1, posi1] = min(X1_dec); 
    decoded(j)=[dh(posi1)];%The decisions 
    s(j) = sc1; 
end 
 
 
OnebyOne_channel 
 
function [h1] = OnebyOne_channel (SUI_index,direct); 
% Title         : Correlated MISO channel creater based on 3-tap SUI 
channels 
% Author        : Derya Saglam, Naval Postgraduate School, November 
2004 
% Modified      : Konstantinos Alexopoulos, Naval Postgraduate School, 
June 2008 
% SUI_index     : SUI channel index, 1-6 
% direct        : antenna directivity; 0=Omni antenna, 1=30deg 
directional antenna 
% rho_rx        : receive correlation coefficient  
% Output : 
%   h1      : SIMO channels  
% ----------------------------------------------------------- 
  
% Square root of the correlation matrix 
Rr = 1; 
  
% Generating two independent SUI channels 
[h1 paths_r1 paths_c1 Fnorm] = SUI_model(SUI_index,direct); 
  
k = length(h1); 
  
V = zeros(1,k); 
V(1,:) = transpose(paths_r1); 
paths_r1 = V(1,:); 
% Adding the LOS components to the correlated paths 
h1 = paths_r1 + transpose(paths_c1); 
  
% Multiplying all coefficients with F normalization factor 
h1 = h1 * 10^(Fnorm/20); 
 
TwobyOne_channel 
 
function [h1,h2] = TwobyOne_channel (SUI_index,direct,rho_tx); 
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% Title         : Correlated MISO channel creater based on 3-tap SUI 
channels 
% Author        : Derya Saglam, Naval Postgraduate School, November 
2004 
% Modified      : Konstantinos Alexopoulos, Naval Postgraduate School, 
June 2008 
% SUI_index     : SUI channel index, 1-6 
% direct        : antenna directivity; 0=Omni antenna, 1=30deg 
directional antenna 
% rho_tx        : transmit correlation coefficient  
% Output : 
%   h1, h2      : MISO channels  
% ----------------------------------------------------------- 
  
% Square root of the correlation matrix 
Rt = sqrtm([1 rho_tx;rho_tx' 1]); 
  
% Generating two independent SUI channels 
[h1 paths_r1 paths_c1 Fnorm] = SUI_model(SUI_index,direct); 
[h2 paths_r2 paths_c2 Fnorm] = SUI_model(SUI_index,direct); 
  
k = length(h1); 
  
V = zeros(k,2); 
V(:,1) = paths_r1; 
V(:,2) = paths_r2; 
  
% Generating the correlated part of the channel assuming that tap 
correlations are identical 
for i = 1:k 
    V(k,:) = V(k,:)* Rt; 
end 
paths_r1 = V(:,1); 
paths_r2 = V(:,2);   
  
% Adding the LOS components to the correlated paths 
h1 = paths_r1 + paths_c1; 
h2 = paths_r2 + paths_c2; 
  
h1 = transpose(h1); h2 = transpose(h2);  
  
% Multiplying all coefficients with F normalization factor 
h1 = h1 * 10^(Fnorm/20); 
h2 = h2 * 10^(Fnorm/20); 
 
OnebyTwo_channel 
 
function [h1,h2] = OnebyTwo_channel (SUI_index,direct,rho_rx); 
% Title         : Correlated MISO channel creater based on 3-tap SUI 
channels 
% Author        : Derya Saglam, Naval Postgraduate School, November 
2004 
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% Modified      : Konstantinos Alexopoulos, Naval Postgraduate School, 
June 2008 
% SUI_index     : SUI channel index, 1-6 
% direct        : antenna directivity; 0=Omni antenna, 1=30deg 
directional antenna 
% rho_rx        : receive correlation coefficient  
% Output : 
%   h1, h2      : SIMO channels  
% ----------------------------------------------------------- 
  
% Square root of the correlation matrix 
Rr = sqrtm([1 rho_rx;rho_rx' 1]); 
  
% Generating two independent SUI channels 
[h1 paths_r1 paths_c1 Fnorm] = SUI_model(SUI_index,direct); 
[h2 paths_r2 paths_c2 Fnorm] = SUI_model(SUI_index,direct); 
  
k = length(h1); 
  
V = zeros(2,k); 
V(1,:) = transpose(paths_r1); 
V(2,:) = transpose(paths_r2); 
  
% Generating the correlated part of the channel assuming that tap 
correlations are identical 
for i = 1:k 
    V(:,k) = Rr * V(:,k) ; 
end 
paths_r1 = V(1,:); 
paths_r2 = V(2,:);   
  
% Adding the LOS components to the correlated paths 
h1 = paths_r1 + transpose(paths_c1); 
h2 = paths_r2 + transpose(paths_c2); 
  
% Multiplying all coefficients with F normalization factor 
h1 = h1 * 10^(Fnorm/20); 
h2 = h2 * 10^(Fnorm/20); 
  
TwobyTwo_channel 
 
function [h11,h12,h21,h22] = TwobyTwo_channel (SUI_index,direct,rho_tx, 
rho_rx); 
% Title         : Correlated MISO channel creater based on 3-tap SUI 
channels 
% Author        : Derya Saglam, Naval Postgraduate School, November 
2004 
% Modified      : Konstantinos Alexopoulos, Naval Postgraduate School, 
June 2008 
% SUI_index     : SUI channel index, 1-6 
% direct        : antenna directivity; 0=Omni antenna, 1=30deg 
directional antenna 
% rho_tx        : transmit correlation coefficient  
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% rho_rx        : receive correlation coefficient  
% Output : 
% h11, h12, h12, h22     : MIMO channels  
% ----------------------------------------------------------- 
  
% Square roots of the correlation matrices 
Rr = sqrtm([1 rho_rx;rho_rx' 1]); 
Rt = sqrtm([1 rho_tx;rho_tx' 1]); 
  
% Generating four independent SUI channels 
[h11 paths_r11 paths_c11 Fnorm] = SUI_model(SUI_index,direct); 
[h12 paths_r12 paths_c12 Fnorm] = SUI_model(SUI_index,direct); 
[h21 paths_r21 paths_c21 Fnorm] = SUI_model(SUI_index,direct); 
[h22 paths_r22 paths_c22 Fnorm] = SUI_model(SUI_index,direct); 
  
G =[]; 
  
% Generating the correlated part of the channel assuming that tap 
correlations are identical 
for i = 1:length(h11) 
    H = Rr * [paths_r11(i) paths_r12(i);paths_r21(i) paths_r22(i)] * 
Rt; 
    G = [G ;H]; 
end 
  
H = reshape(G,2,6); 
  
paths_r11 = H(1,1:3); 
paths_r12 = H(1,4:6);  
paths_r21 = H(2,1:3); 
paths_r22 = H(2,4:6); 
  
% Adding the LOS components to the correlated paths 
h11 = paths_r11 + transpose(paths_c11); 
h12 = paths_r12 + transpose(paths_c12); 
h21 = paths_r21 + transpose(paths_c21); 
h22 = paths_r22 + transpose(paths_c22); 
  
% Multiplying all coefficients with F normalization factor 
h11 = h11 * 10^(Fnorm/20); 
h12 = h12 * 10^(Fnorm/20); 
h21 = h21 * 10^(Fnorm/20); 
h22 = h22 * 10^(Fnorm/20); 
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