
 

 
NAVAL 

POSTGRADUATE 
SCHOOL 

 
MONTEREY, CALIFORNIA 

 
 

THESIS 
 
 
 

Approved for public release; distribution is unlimited 

DEVELOPMENT OF A HUMAN PERFORMANCE MODEL 
AS A BASELINE FOR AUTOMATIC CHANGE 

DETECTION SOFTWARE CAPABILITIES IN MINE 
WARFARE 

 
by 
 

Jason S. Barrett 
 

September 2008 
 

 Thesis Advisor:   Lyn R. Whitaker 
 Second Reader: Richard D Williams 



THIS PAGE INTENTIONALLY LEFT BLANK 

 



 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, 
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send 
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to 
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE   
September 2008 

3. REPORT TYPE AND DATES COVERED 
Master’s Thesis 

4. TITLE AND SUBTITLE  Development of a Human Performance Model as a 
Baseline for Automatic Change Detection Software Capabilities in Mine Warfare 
6. AUTHOR(S)  Jason Barrett 

5. FUNDING NUMBERS 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING ORGANIZATION 
REPORT NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
N/A 

10. SPONSORING/MONITORING 
    AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the official policy 
or position of the Department of Defense or the U.S. Government. 
 
12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE 

13. ABSTRACT (maximum 200 words)  
 

This study focused on the development of a human performance model as a baseline performance capability 
for automatic change detection software for use in mine warfare.  Through a series of survey images, operator 
performance was observed under a variety of sonar image conditions, including increasing clutter levels and changes 
in image altitude and orientation.  While a rough model was developed utilizing only the physical attributes of the 
images, to obtain a close fit between the model and actual observations, the variability of personal proficiency was 
included in the final model.  The inclusion of this parameter greatly improved model accuracy and highlights the need 
to better understand differences between operator performances in mine warfare planning. 

 
 

 
15. NUMBER OF 
PAGES  

51 

14. SUBJECT TERMS Mine Warfare, Change Detection, Clutter Density  

16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION OF 
ABSTRACT 
 

UU 
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)  
 Prescribed by ANSI Std. 239-18 



 ii

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii

Approved for public release; distribution is unlimited 
 
 

DEVELOPMENT OF A HUMAN PERFORMANCE MODEL AS A BASELINE 
FOR AUTOMATIC CHANGE DETECTION SOFTWARE CAPABILITIES IN 

MINE WARFARE 
 
 

Jason S. Barrett 
Lieutenant, United States Navy 

B.S., Georgia Institute of Technology, 2001 
 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER OF SCIENCE IN OPERATIONS RESEARCH 
 
 

from the 
 
 

NAVAL POSTGRADUATE SCHOOL 
September 2008 

 
 
 

Author:  Jason S. Barrett 
 
 
 

Approved by:  Lyn R. Whitaker 
Thesis Advisor 

 
 
 

Richard D. Williams 
Second Reader 

 
 
 

James Eagle 
Chairman, Department of Operations Research 



 iv

THIS PAGE INTENTIONALLY LEFT BLANK 



 v

ABSTRACT 

This study focused on the development of a human performance model as a 

baseline performance capability for automatic change detection software for use in mine 

warfare.  Through a series of survey images, operator performance was observed under a 

variety of sonar image conditions, including increasing clutter levels and changes in 

image altitude and orientation.  While a rough model was developed utilizing only the 

physical attributes of the images, to obtain a close fit between the model and actual 

observations, the variability of personal proficiency was included in the final model.  The 

inclusion of this parameter greatly improved model accuracy and highlights the need to 

better understand differences between operator performances in mine warfare planning. 
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EXECUTIVE SUMMARY 

This study developed a human performance model to determine the minimum 

performance capability of automatic change detection software for use in mine warfare 

applications.  While the adoption of these software programs is within the foreseeable 

future, to date, there has been no work in determining what level of performance such a 

program would be required to meet in order to surpass the capability of human operators 

performing change detection.   

To determine how an operator from the general population would perform when 

conducting change detection analysis, a survey consisting of ten different side scan sonar 

images was created.  Each image consisted of a “historical” image and a “changed” 

image which contained two additional objects which the survey participant was asked to 

identify.  In order to establish the effect of environmental and operational factors such as 

bottom clutter density, changes in sonar height above bottom, and track orientation, and 

object size, each image was unique with regards to each of these. 

While a basic model using only the previously mentioned factors was obtained 

using S-Plus, in order to create a model which better matched the actual performance 

observed in the surveys, the additional factors of participant identification and order of 

performance were also added.  These additional factors greatly improved the prediction 

of performance as compared to the model without the personal factors. 

The importance of recognizing the impact of individual ability in change 

detection applications is key to the development of any standard of performance.  Often 

times in developing performance estimates for mine warfare, only system and 

environmental parameters are considered.  This study demonstrates that while these 

factors are important, the variability among individual operators is significant.  Further 

study should be given to determining what particular individual traits, if any, account for 

a specific level of performance in change detection analysis. 
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I. THE ROLE OF CHANGE DETECTION IN MINE WARFARE 
AND HOMELAND SECURITY  

Following the attacks of September 11, 2001, the United States undertook an 

initiative to identify and protect sites and systems that could make inviting targets for 

terrorist organizations.  Almost immediately, symbolic places such as national 

monuments, and locations where a large a number of casualties could be inflicted, such as 

professional sporting events, took additional measures to prevent, or at least mitigate 

terrorist attacks.  Unfortunately, other, less dramatic sites, such as transportation lines and 

public utilities, which were also identified as possible terrorist targets, did not receive the 

same level of additional security.  Central to the daily conduct of business and trade, the 

destruction of vital infrastructure would have enormous implications on the United States 

economy as well as cause the American people to question their government’s ability to 

protect them. 

Among the top infrastructure and economical concerns was the ability of the 

United States to protect its port facilities and waterways from attack.  With 361 public 

ports and thousands of miles of navigable waterways spread throughout the country, the 

task of protecting all of them proved daunting.  With a combined economic impact 

reaching into the trillions, the closure of these facilities and routes would have a 

devastating effect on the national economy.  In 2002, the West Coast dock workers strike 

closed 29 Pacific ports, costing the American economy nearly $2 billion a day1.  The 

effects of this closure showed the ripple effect that a port closure could have across the 

economy.  While the strike made a significant impact on the economy, its effect was 

somewhat reduced by the fact that the strike had been anticipated.  Businesses had been 

able to find alternate transportation routes, reduce shipments, and create stockpiles prior 

to the closure of ports.  These measures would not be able to be performed prior to a 

surprise attack, creating even more dramatic economic losses if a port were to be closed.  

                                                 
1 Grace V. Jean,  Improvised Explosive Devices: Could they Threaten U.S. Ports?  National Defense 

Magazine, www.nationaldefensemagazine.org/issues/2008/January/Improvised.htm, 02 February 08. 
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One of the simplest methods by which to attack ports or waterways would be to 

deploy underwater explosives, either in the form of a traditional military-style sea mine 

or a “homemade” improvised explosive device (IED).  With dozens of countries 

manufacturing new mines every year for sale and a world inventory of sea mines in the 

hundreds of thousands, it would be relatively easy for a terrorist group to purchase a mine 

on the black market, be given mines by a sympathetic state, or simply steal them.  

Another option for an underwater explosive would be an IED.  Capable of being 

constructed from common items such as fertilizer and fuel, a terrorist could construct an 

explosive inside the United States and then deploy it in a port or waterway.  It is known 

that numerous terror organizations have extensive explosives training programs and the 

feasibility of an attack using such an explosive was demonstrated in the Oklahoma City 

bombing of 1996.  An attack of this nature was also demonstrated in a maritime setting in 

April 2004 when officials in Louisiana recovered and destroyed a garbage bag from Lake 

Ponchartrain containing several pounds of explosives set to explode with a timer.  It is 

believed that this device had been delivered from a vehicle passing over the lake on a 

bridge.  Had the same device been placed in Los Angeles or New York harbor and 

exploded, the resulting effort to ensure no other explosives were present may have closed 

either port for days and cost billions of dollars. 

While an actual explosion or the discovery of an explosive device would be an 

effective means of disrupting maritime commerce, it is possible to achieve the same 

results with only the threat of an underwater explosive.  In January 1980, the so-called 

“Patriotic SCUBA Diver” crisis closed the Sacramento River for four days while U.S. 

Navy assets surveyed the river.  With only the claim that a mine had been placed in the 

river, the perpetrators had closed a major West Coast waterway and cost hundreds of 

thousands of dollars in shipping delays alone2  

From all indications, the impact of a mining incident in a U.S. port or waterway 

would be disastrous.  With more than 90% of all U.S. trade passing through the nation’s 

ports each year, the closure of any of these facilities would have an enormous effect 

                                                 
2 Scott C. Truver, Underwater IEDs…The Threat is Real!, 30 October 2007, Presentation to the ASNE 

Flagship Seminar, Washington, D.C. 
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throughout the economy.  The closure of any single “key” port, such as Los Angeles, 

New York, or Houston would create untold economic losses through the loss of oil 

imports alone.  While the need to protect these critical assets has been identified, the 

method through which to achieve this goal remains undecided. 

To protect ports and waterways from terrorist mines, the role of the military, 

specifically the Navy, in homeland security missions has been closely studied.  As the 

only governmental agency with current underwater explosive clearance assets, many 

officials feel that the Navy is better suited to undertake the protection of domestic ports 

from this threat than other law enforcement agencies such as the Coast Guard.  With a 

fleet of vessels and aircraft dedicated to mine clearance operations, as well as a number 

of special operations units trained in such methods, it would make sense to employ these 

assets to protect vital maritime economic assets.  While this idea is initially optimistic, 

the limitations of such a plan quickly become apparent.  With a current inventory of 

fourteen minesweepers, some of which remain overseas at all times in support of 

deployed forces, it is impossible to place one in every port.  These vessels also have slow 

transit speeds, which would greatly hinder their movement between ports.  These limited 

speeds could mean days before a minesweeper would reach a port to begin clearance 

operations, which themselves could take days depending on the ports size and bottom 

condition.  Bottom conditions in a port are particularly important to mine clearance 

operations.  In order to ensure the highest probability of successful clearance, any object 

that has the appearance of possibly being a mine must be investigated.  Decades of 

accumulated objects such as steel drums, refrigerators, automobiles and other items could 

add days if not weeks to clearance operations.  Every day spent either transiting to, or 

clearing a port, equates to billions of dollars in lost business as well as the cost in 

declining public morale. 

An alternative to response-based mine clearance operations, is change detection.  

In this process, routine surveys of a port are made, typically using side scan sonar, and 

then compared to one another to determine if there has been any change to the objects on 

bottom.  Following a mining threat or incident, a new survey would be conducted and the 

results compared to those from the most recent survey to identify any new objects that 
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may be present.  These new objects would then be classified as either “mine-like”, 

meaning that they could possibly be mines, or “non mine-like”, indicating that they are 

considered to pose no threat.  This method reduces the time required for clearance 

operations by eliminating the need to investigate every mine-like object such as drums or 

appliances that may have been previously present.  Instead, operators focus on objects 

that have arisen since the introduction of a threat.  Even with reduced time requirements, 

change detection is a time consuming endeavor.  Some estimates conclude that the initial 

survey of the nation’s twenty busiest ports would take three years and cost $14 million3. 

Although there is currently no method in place to perform change detection 

analysis in U.S. ports, there are initiatives underway to both assess the feasibility of such 

operations and to develop the required capability to carry these operations out.  

Recommendations have been made to use both active duty and reserve Navy personnel to 

perform these surveys, as well as the possibility of contracting such tasks to commercial 

companies.  Utilizing small underwater vehicles equipped with side scan sonar, a limited 

number of either military or contracted personnel could rapidly survey a port area in the 

event of a mining incident, rather than waiting for mine clearance ships to arrive.  The 

size of these vehicles would also permit rapid travel between ports by air should a mine 

threat appear in a port without its own dedicated survey team.  Once on scene, operators 

could deploy their vehicles and commence surveying in the new port. 

Even though the speed in which a survey can be performed by underwater 

vehicles is a dramatic improvement over traditional mine clearance assets, the process of 

comparing each survey to its predecessor is extremely time consuming.  These 

comparisons are typically done by operators who visually compare images.  In an 

environment with numerous bottom objects, this task can be daunting.  Numerous factors 

can contribute to the difficulty in performing change detection.  Factors that increase the 

time required for an operator to correctly identify changes include: the number of objects: 

the relative orientation of the images to each other, and changes in both sonar system and 

environmental conditions, such as the height above bottom the image was recorded at and 

                                                 
3 Grace V. Jean, Improvised Explosive Devices: Could they Threaten U.S. Ports?  National Defense 

Magazine, www.nationaldefensemagazine.org/issues/2008/January/Improvised.htm, 02 February 08. 
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object movement.  As a result of this, projects are underway to develop computer 

software which can perform change detection analysis.  One method being investigated, 

allows new objects to be identified in a real-time fashion as the survey is being 

performed.  A historical survey is loaded into the sonar control software and the historical 

image is compared to the current survey as it is being performed.  The algorithm 

compares the objects at each geospatial coordinate (obtained by GPS) to the objects at the 

same GPS position in the historical image.  The second method involves the same use of 

GPS positions, but the comparison between the current survey image and historical 

images is done at the completion of the new survey.  In order to match an object to an 

object in a previous survey, the position as recorded by the software’s navigational 

component must be 100% repeatable4.  Current navigation systems, while very close, 

hold some intrinsic error in their positions, making point-for-point comparisons 

impossible.  Although this issue could be overcome with object shape comparison, such a 

process could be performed only on the clearest of sea floors, minus any similar shaped 

objects.   

While it is probable that in the future automated software programs will be 

developed to rapidly perform change detection, the best option currently is to utilize 

human operators.  This thesis will research the capabilities of these operators in order to 

determine to what standard an automated program must perform in order to exceed our 

current capabilities. 

The preparation and conduct of this study, along with the results, conclusions, and 

recommendations of the study will be discussed as follows: Chapter II will describe the 

Development of Change Detection Scenarios, Chapter III will discuss the results of the 

study survey and develop a human performance model, and Chapter IV will present 

conclusions from the study, along with recommendations and ideas for future work in the 

area of human/ACD software comparison. 

 

                                                 
4 Gary Kozak, Side Scan Sonar Target Comparative Techniques for Port Security and MCM Q-Route 

Requirements, L-3 Communications Klein Associates, Inc, 2006. 
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II. THE DEVELOPMENT OF CHANGE DETECTION 
SCENARIOS 

A. CHANGE DETECTION METHODOLOGY 

The performance of visual change detection is most commonly performed by one 

of two methods, either a side by side comparison of images, or through the utilization of 

transparent overlays.  Both methods have advantages and disadvantages according to the 

situation, and the choice of which methodology is often left to the operator.  The 

following paragraphs highlight some of the differences between the two methods. 

1. Side by Side Comparison 

When performing change detection analysis through side by side image 

comparison, an operator places the most recent historical sonar image next to the recently 

acquired image and differences between the two are noted.  While differences may exist 

where an object that was present in the historical image is no longer present in the current 

image, the operator is mainly looking for objects that are present in the current image that 

are not in the historical.  The presence of a new object could indicate that an underwater 

explosive has been introduced.  The decision as to whether or not a new object could be a 

mine is based on the object’s size, shape, and other factors corresponding to the 

characteristics of the anticipated threat.  Such an object is known as a mine-like object 

(MILO).  An advantage to this methodology is that both images can be displayed on a 

single computer monitor and compared, avoiding any distortions or decreasing the level 

of detail that may result from printing the image.  This also allows for one continuous 

image to be viewed through the use of scrolling rather than viewing a segmented image 

that would result from the printing process without a specialized printer.  One 

disadvantage of this method however is the requirement that follow-on surveys be 

orientated exactly as the historical survey.  Any deviation in track direction results in the 

new and historical images being out of “sequence”, that is, they cannot be compared by 
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simply scrolling through both together.  Instead, a point by point comparison of 

coordinates is required, vastly increasing the time required to complete the analysis. 

2. Overlay Comparison 

Overlay comparison involves using transparent overlays to compare changes in 

bottom objects.  Typically, a previous survey image is placed overtop the new image and 

any objects that show through the historical image from the new image are marked and 

their image is reviewed to determine if they are a MILO.  This method has the advantage 

of being able to overcome differences in survey orientation and object movement.  For 

example, if an initial survey is performed along a north-south axis, the pattern of objects 

on the bottom will be orientated in a particular pattern.  If a follow-on survey is then 

performed along a different axis, the orientation of objects will appear different.  The use 

of overlays allows the operator to “twist” the images in order to match their orientations 

for comparison.  The effect of object movement can also be mitigated through this 

process as the new image can be shifted to overlay the original image, assuming that an 

object can be identified as the same in both images.  This is of particular benefit in areas 

where objects move or “walk” at a known rate.  One disadvantage of this method though 

is the requirement to have available overlay transparencies, printers, and organizers, 

greatly increasing required space and introducing the possibility for errors due to poor 

organization that are not present in completely electronic methods. 

B. EFFECTS OF SIDE SCAN SONAR EMPLOYMENT IN CHANGE 
DETECTION 

Ideally, every survey of an area would be performed under identical conditions.  

While environmental factors such as attenuation and currents do affect images obtained 

from side scan sonar’s, the major source of difference in detail level among subsequent 

surveys is the height above bottom of the sonar during each survey and the speed at 

which the sonar moves through the water.  While these parameters are within the control 

of the sonar operator, experience level, time constraints, and platform sometimes prevent 

identical conditions.  The following paragraphs give the details of the effect of these 

employment characteristics. 
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1. Height Above Bottom 

A side scan sonar moving through the water can be likened to an airplane moving  

through the sky.  As anyone who has flown can attest, the higher the plane above the 

ground, the larger an area can be seen and the smaller individual objects appear.  This 

same effect occurs with side scan sonars.  The greater the height above bottom, (also 

known as altitude), the wider the potential swath of sea floor that will be visible in the 

recorded image.  While altitude is important to determining swath width, frequency and 

range setting also play important roles.  For the purposes of this research however, these 

factors will be ignored.  Differences in swath width between surveys is important because 

of the impact it has on relative object size.  If an object is viewed as part of a 50 m swath, 

the same object will appear smaller when viewed as part of a 75 m swath.  The actual 

percentage of change in relative size depends on the angle of the sound beam striking the 

bottom at the edge of the swath.  This change in observed size plays an important role in 

determining the presence of new objects in surveys.  If a survey is initially performed at 

one altitude and subsequent surveys are performed at a greater altitude, bottom objects 

may appear significantly smaller, possibly to the point that new objects are so small as to 

avoid detection.  Conversely, if an initial survey is performed at one altitude and then 

subsequent surveys are performed at a lower altitude, objects that were previously 

undetected may now appear large enough to be detected and be reported as a change. 

2. Side Scan Sonar Speed Through the Water 

The resolution of a side scan sonar image is greatly dependent upon the speed at 

which the sonar moves through the water relative to the swath width.  The larger number 

of returns from an object, the better the image obtained.  The period of time in which the 

sonar is performing as either a transmitter or receiver must be carefully matched to the 

speed of the sonar through the water.  Sufficient time must be allowed for the sound 

energy to travel to the bottom and then be reflected back.  If the sonar is moving too 

quickly through the water, some return pulses will be missed as the sonar body will have 

moved out of the line of return.  This situation is demonstrated in Figures 1 and 2. 
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Figure 1.   Side scan sonar traveling at appropriate speed to obtain complete coverage. 

 

 

Figure 2.   Side scan sonar traveling too fast to obtain complete coverage. 

 

C. DEVELOPMENT OF SIDE SCAN SONAR IMAGES FOR CHANGE 
DETECTION ANALYSIS 

The purpose of this research is to determine a baseline performance capability for 

automated change detection software in regards to the ability to detect new objects placed 

in a survey area under various clutter conditions.  The Navy currently identifies three 

different clutter categories based on the density of non-mine bottom objects (NOMBO) 

per square nautical mile.  These categories are defined as follows: 
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NOMBOS/nm2 Clutter Category 

< 15 1 

15 – 40 2 

> 40 3 

Table 1.   U.S. Navy Clutter Categories 

 

It is important to note that the NOMBO density is not related to the MILO density 

of an area, as the determination as to whether a particular object is “mine-like” is left up 

to the individual operator.  NOMBO density is simply a measure of the number of objects 

on the bottom that will produce a sonar return.   

While there are numerous factors that can impact an operator’s ability to discern 

changes in bottom surveys, this project will limit its scope to the effects of increasing 

clutter density, object orientation, and scaling as a result of sonar altitude.  To test the 

role of these factors in operator performance, survey images were created utilizing 

available side scan images, and then altering the image to produce a change.  All images 

were created using Microsoft Paint. 

1. Base Image 

In order to establish a standard bottom on which to test change detection 

performance, a “clean” bottom, clear of any visible objects, was created.  A sample side 

scan sonar image, provided by Klein Associates, was selected based on its clarity and 

bottom composition.  The selected image was taken over a hard sand bottom which 

provides the best surface to avoid object burial and excessive returns.  The side scan 

sonar used was the Klein 5000 system, using a 75 m range, a tow speed of 7.5 kts., and 

pulse frequency of 455 kHz.  Sonar altitude was approximately 10 m.  In order to “clean” 

the image of objects, the image was opened in Microsoft Paint and a small section of 

sand next to any object was copied and placed over the object.  This method allowed for 

maintaining the natural shading and contours of the bottom.  A section of the image 
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equating to a 150 m by 90 m area was used to allow for the image being printed on a 

single page.  The original and “cleaned” images are shown below. 

 

 

Figure 3.   Original side scan sonar image.   

Note the numerous objects on both sides of the sonar track in Figure 3. 

 

Figure 4.   “Cleaned” side scan sonar image.   

Note that clutter objects have been removed, while maintaining natural features such as 

sand ridges. 
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2. Clutter Images 

In order to determine operator performance under differing levels of clutter, it was 

necessary to devise a method for distributing objects throughout the base image.  While 

Navy clutter categories are based on square nautical miles, that scale would be 

insufficient to show any difference in the limited bottom area used in this research.  A 

Clutter Category of 3 (40 NOMBO/nm2) would indicate an average of 1.16 * 10-5 objects 

per square meter.  With a total area of 13,500 m2 in our image, this would equate to 1.35 

objects throughout, hardly a basis for comparison.  For the purposes of this thesis, we will 

use clutter densities of NOMBO/100 m2.  Six categories of clutter were then defined as 

follows: 

 

Clutter Category NOMBO/100m2 Total Number of Objects 

1 0.07 1 

2 0.5 7 

3 1 14 

4 1.5 20 

5 2 27 

6 2.5 34 

Table 2.   Image Clutter Density Categories 

These categories were selected in order to provide a noticeable difference in 

clutter densities, while keeping the total number of objects at a level that allowed each 

object to reside in its own unique point.  Side scan sonar images of three different objects 

— a round crab pot, a square crab pot, and a cement block — each taken from images 

recorded with the same parameters as the base image, were then inserted at random 

points into the base image.  These points were selected using Microsoft Excel’s Random 

Generator.  Since the base image was opened in Microsoft Paint, each point had a unique 

coordinate comprised of its x and y pixel values.  X values ranged between 0 and 1132 

and Y values ranged between 0 and 688.  The type of object to insert was also chosen at 
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random by Microsoft Excel, using values of 1, 2, and 3 respectively for each type of 

object.  An example image with an inserted object is shown in Figure 5. 

 

Figure 5.   Simulated side scan sonar image showing object type 2 (square lobster pot) 
placed at coordinates (793, 251). 

Images for each clutter level were created in the same manner.  Copies of each 

image had two new objects inserted in the same manner to provide a “change” which 

each operator then attempted to locate.  All images were produced on both paper and 

transparencies in order to allow research participants to perform both side by side and 

overlay comparison techniques.  Participants were asked to indicate the presence of any 

new objects in each image by circling them. 

3. Change of Orientation Images 

In order to determine the effect of altering the track of a side scan over the same 

area and the corresponding change to the orientation of the survey image, a series of 

images were altered to achieve this effect.  Using clutter categories of 2 and 3, two initial 

images were created in the same manner as before.  These image orientations were then 

rotated by 90 degrees by removing the sonar track, and replacing this area of the image 

with a “clean” sand background.  The sonar track was then returned to the image, 

perpendicular to its initial direction.  Particular care was given to ensure that the two 

additional objects were then added to the new image following the same method as 

before.  An example of the resulting image is shown in Figure 6. 
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Figure 6.   Original and orientation altered survey image. 

Note that the new track covers some of the original bottom objects. 

4. Change of Altitude Images 

In order to determine the effects of increasing sonar altitude and the resulting 

reduction in visual object size, a set of images corresponding to a 25% reduction in scale 

were created.  Two images, with clutter categories 2 and three were created in the same 

manner as previously discussed.  Copies of these images were then reduced to 75% of 

their original size, and “clean sand” was added to the images to create the appearance of 

increased area.  Two new objects, scaled to match the increased area, were then inserted 

to provide “change” for analysis.  An example of these images is provided in Figure 7. 
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Figure 7.   Original and altitude altered survey.   

Note the sand ridge in the bottom right corner of the original image has moved slightly to 

the left and up in the altered image. 
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III. ANALYSIS OF DATA 

A. SURVEY RESULTS 

A series of 50 surveys were distributed to Navy Postgraduate School (NPS) 

students and the public, of which 31 were returned.  Each survey was identical, except for 

the random assignment of each image to be printed on either paper or a transparency.  

This allowed users to perform change detection analysis utilizing either side-by-side 

comparison on paper images, or overlay comparisons on the transparencies.  Before 

distribution, the survey format and images was approved by the NPS Institutional Review 

Board.  Each participant returned a signed consent form along with their survey, 

however, no information connecting an individual to performance was recorded.  Each 

survey image was reviewed against a master image to determine if the participant had 

correctly identified the new objects found in the image, assigning a value of one to those 

objects found, and a value of zero if the object was missed.  The conditions of each image 

such as clutter level, object type, altitude and orientation change, and method of analysis 

was recorded along with whether or not the desired object was found.  Using this method, 

a total of 620 data points were created.  A summary of these data was then created, as 

shown in Table 3. 

 

Clutter Category Percentage Found Object Type Percentage Found Detection Method Percentage Found
1 0.58 A 0.37 Side-by-Side 0.61 
2 0.63 B 0.30 Overlay 0.53 
3 0.89 C 0.87    
4 0.61      
5 0.87      
6 0.52         

Table 3.   Summary of Change Detection Survey Results 

For further analysis, the survey results were then loaded into the statistical software 

package S-Plus in the format shown in Table 4. 
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Cltr Object Fnd ID ORDER Alt Orn Over 

1 A 0 A 1 0 0 0 
1 A 1 B 1 0 0 1 

Table 4.   Example of Data Format Loaded into S-Plus 

The values of Cltr (Clutter Category) correspond to those provided in Table 2.  

Object (Object Type) denotes which of the three objects the participant is expected to 

locate.  Fnd (Object Found) is a binary variable with either a value of 1 or zero, 

depending on whether the object was found or not.  ID indicates which participant 

attempted to locate the object, although no individual is connected to any particular 

identification code.  ORDER is the presumed order in which the participant viewed the 

image within the series.  While participants were not directed to analysis the survey 

images in any particular order, nor were they asked to record in what order they analyzed 

the images, it is assumed that all participants performed the required image analysis 

following the sequential numbering of the images themselves and in the order each image 

was described in the survey instructions.  Alt (Altitude Change) is a binary variable, 

assigned either 1 or 0 indicating whether or not the image corresponded to a change in 

sonar altitude.  Orn (Orientation Change) is also a binary variable, indicating an 

orientation change in the image.  Over (Overlay) indicates whether or not the image 

appeared on a transparency and was therefore analyzed using the overlay technique. 

B. MODEL DEVELOPMENT 

To examine the data, the sample prediction of detections (p-hat) for each object 

type by clutter category was calculated and plotted against clutter categories in Microsoft 

Excel to determine the existence of effects from physical survey variables.  P-hat values 

which remained constant suggest that the variable under consideration may not impact 

survey performance by itself.  P-hat values that fluctuate suggest that the variable under 

consideration does impact survey performance.  Figures 8 through 10 show these 

relationships: 
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P-hat vs Clutter Category for Images With No Altitude or 
Orientation Change
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Figure 8.   P-hat vs Clutter Category for Images With No Altitude or Orientation Change 

 

P-hat vs Clutter Category for Images With Altitude Change
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Figure 9.   P-hat vs Clutter Category for Images With Altitude Change 
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P-hat vs. Clutter Category for Images With Orientation Change
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Figure 10.   P-hat vs Clutter Category for Images With Orientation Change 

As can be seen in Figure 8, increasing clutter density has a negative effect on the 

probability of detection for the smallest object (Object A), but little effect on the largest 

object (Object C).  However, increasing clutter density appears to have a slight positive 

effect on the probability of detection for the mid sized object (Object B).  Figure 9 shows 

a dramatic increase in the probability of detection of Object B when subjected to an 

altitude change while Figure 10 shows a sizable drop in the probability of detection for 

Object C when viewed with an orientation change.  These trends suggest the possibility 

of an interaction between object type and the variables Clutter, Altitude, and Orientation. 

It is important to note that in Figures 8-10, line segments are not smooth due to 

the integer values of clutter categories.  Also, not all image traits were present over all 

clutter categories for all objects, creating some single point data series. 

This initial analysis suggested that the variables Object, Clutter, Altitude, and 

Orientation should be considered in the model.  Once contributing physical survey traits 

were determined, an initial model was created in S-Plus to encompass the possible effects 

of both independent variables and their interactions.  The response variable, Fnd, is a 

Bernouli variable taking values of 0 or 1 as previously described.  As such, the model 
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was assumed to be a logistic regression model.5  In particular, let n be the number of 

observations, then let Yi with i = 1..n represent the binary variable Fnd.  The logistics 

regression model assumes that Yi ~ Bernouli(Pi) where Pi=P(Yi=1) for i = 1...n, where 

Y1..Yn are independent and that the distribution of the response variables is linked to the 

explanatory variables through log-odds: 

log(Pi/1-Pi) = β0+ β1xi1+ … βkxik 

where β0…βk represent the coefficients corresponding to the  explanatory variables 

xi1…xik for i = 1…n.  In this analysis, some of the explanatory variables are binary (such 

as Alt and Orn); some are numeric such as those for Clutter and Order; and the 

categorical variables with l levels (ID with 31 levels and Object with three levels) are 

represented y l-1 categorical variables 

 From this initial model, the S-Plus automated stepwise regression function, 

stepAIC6 developed a consolidated model to predict the success or failure of detecting a 

new object.  This function performs a stepwise regression using a backward elimination, 

removing variables and interactions that are found to not significantly contribute to the 

model prediction value.5  The stepAIC function recommended the following prediction 

model which included the variables Clutter, Object, Order, Altitude, Orientation, and the 

interaction between them.  S-Plus also provided coefficients for the prediction model as 

shown in Table 5. 

 

 

 

 

 

 

                                                 
5 Jay L. Devore, Probability and Statistics for Engineering and the Sciences. Belmont: Thomson, 

Brooks, Cole, 2004. 
6 W.N. Venables, B.D. Ripley, Modern Applied Statistics With S. New York: Springer, 2002. 
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Term Coefficient Standard Error 
Intercept -1.189939 0.721035 
ObjectB -0.09552016 1.276822 
ObjectC 2.436686 0.910995 

Cltr 3.199586 1.151499 
ORDER -1.718773 0.571076 

Alt 4.424374 6.285507 
Orn 25.06601 8.202927 

ObjectB:Cltr 0.4416618 0.480964 
ObjectC:Cltr 0.323061 0.206186 
ObjectB:Alt 1.63891 0.745733 
ObjectC:Alt 1.698297 1.158843 
ORDER:Alt 0.768086 0.369562 

Cltr:Orn -0.8528581 0.467001 

Table 5.   S-Plus stepAIC Recommended Prediction Model Coefficients  

Note that the coefficients for ObjectB corresponds to a binary explanation 

variable which takes a value of 1 if Object B was present and 0 otherwise.  Similarly, for 

ObjectC, the coefficient corresponds to the binary variable which takes a value of 1 if 

Object C is present and 0 otherwise.  Values of 0 for both Objects B and C indicate that 

Object A is present.  When multiplied by the appropriate variable values, these estimated 

coefficients yield estimates of the log odds which can then be translated into a predicted 

probability of detection for a set of given conditions.  For example, if Object B is present, 

in a Clutter Category of 4, with an apparent altitude change between images, and the 

image is the fifth one viewed by the participant, the model equation would be: 

log(P-hat/(1-(P-hat)))= -1.189939+-0.09552016+3.199586(4)+-1.718773(5)+ 4.424374 

+0.4416618(4)+ 1.63891+0.768086(5) 

log(P-hat/1-(P-hat))=14.59 

P-hat=0.34 

Indicating that under these conditions, the predicted probability of detection would be 

0.34.  A plot of the predicted probability of detection values, and the probability of 

detection values from the survey is given in Figure 11. 
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Figure 11.   Plot of the Response Variable vs. the Estimated Probability of Detection 

for Model 1 

In Figure 11, the dashed line is the identity function and serves as a frame of 

reference.  The solid line is a smoothed version of the sample proportion of detections vs. 

the estimated probability of detection from the actual survey data.  Since Fnd is a binary 

term in the data set, the sample probability of detection for the data is an average of all 

data points with the same conditions. 

 As can be seen from Figure 11, the predicted and actual values follow the same 

trend, but are noticeably different across much of the range of predicted values.  A 

number of estimated coefficients are also suspicious in this model, namely the estimated 

coefficient for clutter.  Generally, it is understood that an increased clutter level should 

have a negative impact on the ability of an operator to identify a new object in a sonar 

image.  However, in this model, clutter has a positive coefficient, indicating that 

increasing clutter levels actually make the identification of new objects easier when 

considered with all other variables.  In an attempt to more accurately match the prediction 

values of the model with the actual survey observations, the effects of personnel were 

included and tested.  This model retains the original terms from the first model, but also 

includes the effects of ID and the effects of the interaction between Object and ID.  
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Executing the model in S-Plus, 130 unique coefficients were calculated to include the 

interactions between every survey participant and each object type.  Table 6 shows the 

new coefficient values for this model, less the coefficients for ID and ID interactions. 

 

Term Coefficient Standard Error 
Intercept -8.58168 74.66609 
ObjectB 4.807992 74.67846 
ObjectC 13.58109 74.69453 

Cltr -1.1684 0.767215 
ORDER -0.01696 0.111884 

ObjectBCltr 3.163356 0.606853 
ObjectCCltr 0.685227 0.330696 
ObjectBAlt 0.808273 0.864277 
ObjectCAlt 1.756599 0.94787 
ORDER:Alt -0.11654 0.080048 

Cltr:Orn -0.88933 0.63293 

Table 6.   S-Plus Determined Coefficient for Second Model 

The likelihood ratio test of the first model (the null hypothesis) versus the second 

model (the alternative hypothesis) yields a test statistic with a value of 242.9, which is the 

difference in the residual deviances of the two models.  Under the null hypothesis, the 

likelihood ratio test statistic has an approximate Chi-Squared distribution with 120 

degrees of freedom (the difference between the number of coefficients in the two 

models)7.  This gives a P-value of less than 0.1%, indicating that there is strong evidence 

to reject the null hypothesis in favor of the model which includes ID and its interactions.  

Figure 12 shows the improved performance of the second model in estimating detection. 

                                                 
7Jay L. Devore, Probability and Statistics for Engineering and the Sciences. Belmont: Thomson, 

Brooks, Cole, 2004.  
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Figure 12.   Plot of the Response Variable vs. the Estimated Probability of Detection 
for Model 2 

A second measure of how well the model fits the actual data is the 

Misclassification Rate.  This value relays the percentage of a models calculated 

probability of detection that would indicate a different result than the observed success or 

failure of detecting an object.  For example, if a model indicated that an object should be 

found (probability of detection > 50%) based on the image parameters, but the survey 

participant failed to detect the object, that would be a misclassification.  With a 

misclassification rate of 0.1613, the second model’s rate is much lower than the first 

model’s misclassification rate of 0.3935.  With models that have many parameters such 

as the second model, there is always the concern that the model is over fit, i.e. it predicts 

the data used to fit the model very well (too well), but is not useful for predicting new 

observations.  To check whether the second model fit was too good, a cross-validated 

misclassification rate8 was computed to be 0.2419, which is close to the observed 

misclassification rate.  A misclassification rate much higher than the observed rate would 

indicate over fitting, which is not the case for the second model fit. 

                                                 
8 W.N. Venables, B.D. Ripley, Modern Applied Statistics With S. New York: Springer, 2002. 
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C. REASONS FOR MODEL DIFFERENCES 

By adding the personnel identification term to the model, the inherent difference 

between individual proficiency in any task was introduced.  While often considered to be 

marginally important in prediction models, the fact that some people perform particular 

tasks better than others cannot be ignored.  Figure 13 shows the predicted probability of 

detection of Object A for each survey participant across all clutter conditions, absent any 

other factors.  If all or most individuals performed similarly in each clutter category, the 

plot would show a tight band of predicted probability of detection values.  However, it is 

clear that the trend of predicted probability of detection values varies widely with each 

person.  For example, participant “T” maintains a fairly constant level of predicted 

detection across all clutter categories.  Participant “A”s predicted detection rate drops 

sharply in clutter conditions three and higher.  Participant “H” by contrast is predicted to 

do poorly in clutter conditions one through three, but dramatically improves in clutter 

condition four through six. 
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Figure 13.   ID P-hat for Object A, No Altitude or Orientation Change 
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While the ability to identify Object A varied widely, less variability was present 

among participants in their ability to identify Objects B and C.  Indicated by the more 

compacted nature of the plots for each participant, this phenomenon is most likely due to 

the increasing size of these objects over Object A.  The specific dimensions of each 

object will be discussed in Chapter IV. 
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Figure 14.   ID P-hat Object B, No Altitude or Orientation Change. 
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ID P-hat Object C, No Altitude or Orientation Change
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Figure 15.   ID P-hat for Object C, No Altitude of Orientation Change. 

While it can be seen from the above plots that the performance of the 31 

individuals varies widely, this data set is only a small sample of an essentially infinite 

population of potential operators.  In order to better model the effects of different levels 

of personal proficiency, it would be best to model ID as a random variable.  To do this, a 

sizable population would need to be studied and the effects of each person recorded.  S-

Plus could then inject this factor, according to the corresponding distribution using the 

Non-Linear Mixed Effects Model (nlme).  This function allows for both fixed value 

parameters and random variables to be evaluated within the same model.9. 

                                                 
9W.N. Venables, B.D. Ripley, Modern Applied Statistics With S. New York: Springer, 2002.  
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IV. CONCLUSIONS, RECOMMENDATIONS AND FUTURE 
WORK 

A. CONCLUSIONS 

Based on the results of this study, it is possible to model human change detection 

performance as a baseline for automatic change detection software.  These models 

however must be narrowly tailored to account for anticipated objects, environmental 

conditions, and the abilities of an operator that could reasonably be expected to perform 

such an analysis. 

One goal of this study was to determine if the method of image analysis, whether 

it be comparing images side by side or through the use of overlays, produced different 

probabilities of detection.  Based on both regression analyses of the data, and a 

comparison of detection rates, the method of visual comparison played no discernable 

role in determining the probability of detection under the survey conditions. 

Contrary to expectations, survey participants actually performed better under 

more demanding conditions.  Only when viewed in the presence of all other variables did 

clutter value appear to have a negative effect on locating new objects.  Changes in 

altitude between images actually appeared to improve performance in the final model.  

While unexpected, this finding could be explained, at least to some degree, by the 

principle of underwork and overwork.  Researches in the fields of human factors and 

psychology have observed that the performance level of some people follows a curved 

path, tasks that are perceived as trivial or unchallenging receive little effort and therefore 

are performed poorly.  The same level of performance is seen when a task is viewed as 

overly complicated.  Subjects feel as though in spite of there best efforts, a task is 

impossible to complete successfully, and therefore devote little energy to completion1011.  

                                                 
10 Wendelin Schnedler, Task Diffuiculty, Performance Measure Characteristics and the Trade Off 

Between Insurance and Well-Allocated Effort. 
www.bristol.ac.uk/cmpo/publications/papers/2006/wp147.pdf.  05 August 2008. 

11 Guido H. E. Gendolla, et al.  Self-focus and task difficulty effects on effort-related cardiovascular 
reactivity, Psychophysiology, Vol. 45, 12 February 2008. 
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Only those tasks which are viewed as sufficiently challenging yet possible to complete 

receive a sufficient level of effort.  The increase in bottom clutter or change in scale due 

to altitude change could cue survey participants that a particular image is more likely to 

have a “change” than an image with a lower level of clutter and therefore cause a rise in 

the level of care and attention given to images with higher clutter values or that have a 

constant scale.  It is impossible to say however, at what clutter level or change in altitude 

a decline in performance may be seen as either the identification of new objects becomes 

more difficult, or at least the perception of the task does. 

 The size of a “new” object inserted into each image greatly impacted the 

likelihood that it would be detected.  The largest object, a 1.1 m squared, 45 cm high 

square lobster trap was found at a rate more than twice the next smallest object, a one 

meter long, half meter wide, 30 cm tall cement block.  The smallest object used in the 

survey, a one meter diameter crab pot, only 25 cm in height, was also found at nearly the 

same rate as the cement block (29% vs 34%).  The most notable difference between the 

appearances of these objects was the large acoustic shadow cast by the lobster trap.  Both 

the crab pot and cement block, with their smaller shadows, proved to be more difficult to 

detect, confirming the commonly held notion that “proud” objects are easier to find than 

those flush with the bottom. 

 One very prominent factor in this model, while often overlooked in mine warfare 

planning, was individual performance.  While most MCM planning guides rely on sonar 

system performance characteristics to determine a probability of detection in various 

clutter and bottom conditions, this study revealed that even under identical 

circumstances, the ability of individuals to detect objects varied widely, in some 

instances, making the largest contribution to whether or not an object was found.  The 

probability of detection for individuals varied widely, with some always near zero and 

others always near one.  Some individuals demonstrated a linear relationship between 

performance and clutter, with both positive and negative trends being present.  Others 

demonstrated a more asymptotic relationship, hovering near one or zero over a series of 

scenarios, and then rapidly moving to the other extreme.  The greatest variability between 
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personal performances was found when searching for the smallest object, the crab pot, 

and the least variability when searching for the largest object, the lobster pot.  

 In summary, from this study, we can conclude that it is possible to model human 

performance to create a baseline performance for automatic change detection software.  

Key to the development of any model however, is the understanding of the individual 

performance of likely operators in a particular change detection environment. 

B. RECOMMENDATIONS 

Based on the results of this study, the following recommendations are made: 

• Develop a method to include personal performance in probability of 

detection calculations.  Standardized personnel performance estimates 

may be based on such measures as years of experience performing 

change detection, formal training, and the sonar system employed.  

These estimates should be specific enough to account for the particular 

environment (i.e. bottom type, burial rates, etc.) in which any 

operation will take place.  

• Develop individual human performance models for each unique 

environment in which operations may take place.  Compare these 

models to an automated change detection software’s performance 

model for the same environment, realizing that in each situation, a 

human operator, or an automated system may perform better than the 

other. 

• Consider assigning Navy MCM personnel to monitor a single, or 

limited number of locations for change detection purposes.  Increased 

experience in a particular environment would likely increase 

familiarity and result in the more likely detection of new objects.  This 

may require alterations to the Navy’s policy of rotating personnel 

through a number of assignments in varying locations. 
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C. FUTURE WORK 

While this study did find that it is possible to develop a human performance 

model as a baseline for an automatic change detection software package, more research is 

required to refine such a model.  The following are recommendations for continuing work 

in this area: 

• Determine what personal metrics, such as years experience, age, or 

formal training impact the ability to identify objects during change 

detection. 

• Investigate any differences in detection rate when survey participants 

view the same image on both a sonar system display screen and a 

printed image. 

• Attempt to determine the smallest sized object individuals can identify 

during change detection analysis. 

• Study the effects of increasing clutter levels on detection rates using a 

larger range of clutter values and a variety of different sized and 

shaped objects. 

• Compare both human and change detection software performance over 

a series of identical scenarios. 

• Evaluate theoretical human performance models against actual 

performance under differing conditions. 
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