

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution unlimited

AN APPROACH FOR DEVELOPING AND VALIDATING
LIBRARIES OF TEMPORAL FORMAL SPECIFICATIONS

by

James J. Sordi Jr.

Colleen A. Sybor

September 2008

 Thesis Advisor: James B. Michael
 Co-Advisors: Doron Drusinsky
 Man-Tak Shing

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of info rmation is estimated to average 1 hour per
response, including the time for reviewing instruct ion, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any othe r aspect of this collection of information,
including suggestions for reducing this burden, to Washington headquarters Services, Directorate
for Information Operations and Reports, 1215 Jeffer son Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Bud get, Paperwork Reduction Project (0704-0188)
Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2008

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE An Approach for Developing and
Validating Libraries of Temporal Formal Specificati ons

6. AUTHOR(S) James J. Sordi, Colleen A. Sybor

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and
do not reflec t the official policy or position of the Department of Defense or the U.S.
Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; Distribution unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This thesis examines the role of independent validation in the development of
software systems. As software systems become increa singly larger and more
complex the role of software validation becomes cru cial. In particular, one
must make sure that the specification o f a software system is correct with
respect to customer expectations. We introduce an a pproach for developing and
validating reuse libraries of temporal formal speci fications. These libraries
include UML statechart based assertions for formal specifications and their
associated validation test scenarios. We build the validation test scenarios
with the goal of ensuring that specifications withi n the libraries are indeed
error-free and consistent.

15. NUMBER OF
PAGES

101

14. SUBJECT TERMS Validation, Reuse, Requirements, System Reference
Model, Formal Specification, Assertions

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

AN APPROACH FOR DEVELOPING AND VALIDATING LIBRARIES OF
TEMPORAL FORMAL SPECIFICATIONS

James J. Sordi Jr.
Lieutenant, United States Navy

Colleen A. Sybor

Lieutenant, United States Navy

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2008

Authors: James J. Sordi Jr.
 Colleen A. Sybor

Approved by:
James B. Michael

 Co-Advisor

 Doron Drusinsky
 Co-Advisor

 Man-Tak Shing
 Co-Advisor

 Peter J. Denning

Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This thesis examines the role of independent valida tion

in the development of software systems. As software systems

become increasingly larger and more complex the rol e of

software validation becomes crucial. In particular, one must

make sure that the specification of a software syst em is

correct with respect to customer expectations. We i ntroduce

an approach for developing and validating reuse lib raries of

temporal formal specifications. These libraries inc lude UML

statechart based assertions for formal specificatio ns and

their associated validation test scenarios. We buil d the

validation test scenarios with the goal of ensuring that

specifications within the libraries are indeed erro r-free

and consistent.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ..1
A. MOTIVATION ...1
B. INDEPENDENT VALIDATION AND VERIFICATION3
C. THE NEED FOR A STANDARD TECHNIQUE4
D. THE ROLE OF SOFTWARE REUSE6
E. OUTLINE ..7

II. IV&V AND SOFTWARE REUSE9
A. COMPLEXITY OF SOFTWARE DESIGN9
B. DEFINITIONS ..9
C. IV&V BACKGROUND11
D. CURRENT GUIDANCE FOR VALIDATION19
E. SOFTWARE REUSE19
F. FORMAL SPECIFICATION PATTERNS21

III. SYSTEM REFERENCE MODEL25
A. BACKGROUND ..25
B. DEFINITIONS27
C. SYSTEM REFERENCE MODEL DEVELOPMENT27
D. VALIDATING THE SYSTEM REFERENCE MODEL30
E. INCREASING THE USABILITY OF THE SRM33

IV. BUILDING AN ASSERTION LIBRARY35
A. BACKGROUND ..35
B. STATECHART ASSERTIONS36
C. ASSERTION VALIDATION38
D. ASSERTION SCENARIOS40
E. CONCLUSION ..47

V. CONCLUSION ...49
A. SUMMARY AND CONTRIBUTIONS49
B. FUTURE WORK51

APPENDIX: ADDITIONAL ASSERTION DIAGRAMS AND TEST SUITES55
A. ADDITIONAL ASSERTION DIAGRAMS BOUNDED BY TIME55

1. Whenever P Then Less Than N Qs Within T55
2. Whenever P Then Less Than or Equal to N Qs

Within T57
3. Whenever P Then Equal to N Qs Within T59
4. Whenever P Then Greater Than or Equal to N Qs

Within T61
5. Whenever P Then Greater Than N Qs Within T ...63
6. Whenever P Then Q and R Within T65
7. Whenever P Then Q or R Within T69
8. Whenever P Then Q or Rot R Within T72

 viii

9. Whenever P Then Q and Not R within T75
B. ADDITIONAL ASSERTION DIAGRAMS UNBOUNDED BY TIME ...78

1. Whenever P Then Not Q After T79

LIST OF REFERENCES ..83

INITIAL DISTRIBUTION LIST87

 ix

LIST OF FIGURES

Figure 1. Examples of Software Integrity Levels...........17
Figure 2. V&V processes, activities, and tasks............18
Figure 3. Whenever P then Q within T......................40
Figure 4. Whenever P then no Q within T...................44

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

ACKNOWLEDGMENTS

Micah thank you for all your help and support, we

couldn’t have done it without you.

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. MOTIVATION

Software is essential to almost every facet of our

daily lives from business to science, and while the

advantages are numerous and have arguably bettered our

lives, it comes with a cost. The National Institut e of

Standard and Technology (NIST) sponsored a study in 2001 and

found that the annual cost of software errors to th e U.S.

Economy in 2001 was approximately $59.5 billion. 1

Additionally the study found that over half the cos ts have

been borne by the users. This is remarkable because software

practitioners have not yet been held accountable to the same

standards imposed on engineers in traditional engin eering

disciplines.

Over the years, some software defects have resulted in

human injuries, property damage, and in extreme cas es, loss

of human lives. This is a cost that is unacceptable to users

and must not be accepted by software developers. On e of the

most well known examples of software error causing human

fatalities is the THERAC 25 2. This machine was supposed to

save human lives by sending the proper amount of ra diation

into patients, but instead it overdosed humans with massive

1 National Institute of Standards and Technology (NI ST), “Software

errors cost U.S. economy $59.5 billion annually.” N ational Institute of
Standards and Technology (NIST2002-10) (2002),
http://www.nist.gov/public_affairs/releases/n02-10. htm (accessed May 10,
2008).

2 N. Levenson and C. Turner, “Investigation of the T herac 25
accidents.” IEEE Computer (July 1993), 18-41.

 2

amounts of radiation and resulted in several fatali ties. 3

These failures are not just unacceptable but could have been

avoided had the software been validated and verifie d

properly. The IEEE standards, for validation and

verification, help to guide the software developers with two

main questions, “am I building the right product?” and “am I

building the product right?” These questions are

longstanding and will, if answered appropriately, h elp

reduce the risk of mishaps due to software defects.

Another challenge the software industry faces is th at

software is increasing in complexity, making it dif ficult to

detect errors and eliminate them. This also increas es the

importance of validation and testing methods that e nable

earlier and more effective error identification and removal.

Software must be verified and validated to ensure n ot just

quality and safety but also guard against waste, in terms of

money and lives.

Our motivation for the research reported here is to

develop techniques that improve the engineer’s abil ity to

validate software systems. Additionally, these vali dation

techniques will be applicable to the entire softwar e

industry and when used in conjunction with verifica tion will

hopefully result in better software systems and red uce

software defects and their attendant costs.

3 R. Merritt, “Embedded experts: fix code bugs or co st lives.”

Information Week (April 10, 2006), http://www.informationweek.com/n ews/
management/showArticle.jhtml?articleID=185300011 (a ccessed May 05,
2008).

 3

B. INDEPENDENT VALIDATION AND VERIFICATION

The current guideline for validation and verificati on

is the IEEE standard 1012-20044 which has had to ev olve

because of decades of unsuccessful software. The ov erall aim

is to establish guidelines for the software industr y to

follow and help to create better software products.

The following is directly quoted from the IEEE stan dard

1012-2004 5:

Software V&V processes consists of the following:

• Verification process and validation process. The
verification process provides objective evidence
whether the software and its associated products an d
processes conform to requirements (e.g., for
correctness, completeness, consistency, accuracy) f or
all life cycle activities during each life cycle
process acquisition, supply, development, operation ,
and maintenance)satisfy standards, practices, and
conventions during life cycle processes.

• Successfully complete each life cycle activity and
satisfy all the criteria for initiating succeeding life
cycle activities (e.g., building the software
correctly).

• The validation process provides evidence whether th e
software and its associated products and processes
satisfy system requirements allocated to software a t
the end of each life cycle activity.

• Solve the right problem (e.g., correctly model phys ical
laws, implement business rules, use the proper syst em
assumptions).

• Satisfy intended use and user needs.

4 Institute of Electrical and Electronics Engineers , Standard for

Software Verification and Validation,IEEE-STD-1012, June 08, 2005.

5 Institute of Electrical and Electronics Engineers , Standard for
Software Verification and Validation,IEEE-STD-1012, June 08, 2005.

 4

The verification process and the validation process are

interrelated and complementary processes that use e ach

other’s process results to establish better complet ion

criteria and analysis, evaluation, review, inspecti on,

assessment, and test V&V tasks for each software li fe cycle

activity.

The IEEE guidelines leave the software industry to

develop their own validation and verification metho ds. The

industry has yet to integrate these techniques full y,

contributing to the poor record of software acquisi tion. In

fact, the Standish Group reported that the success rate of

software projects was 35% in 2006, and the report c laimed

that software developers fielded only 46% of the re quired

features and functions, which means that the projec ts did

not meet the needs of the customer. 6 These studies indicate

conformance to the V&V guidelines are not enough to

significantly lower the defect rate in software par tition of

systems. The V&V guidelines empower the individual to create

and implement their own IV&V plan of actions, and t he only

consequence to not following the guidelines is unsu ccessful

acquisition of software. Formal V&V (FV&V) techniqu es can be

used to address some of the failings of the existin g

practice of V&V.

C. THE NEED FOR A STANDARD TECHNIQUE

The current problem facing the software industry in

facilitating validation is that there are no concis e, simple

techniques to conduct validation. The IEEE IV&V gui delines

are general and meant to guide the industry in the actual

6 The Standish Group International, "Annual Chaos Re port." (2006).

 5

implementation of validation. This leaves the softw are

industry to its own devices on the implementation o f

validation and can result, in the worst case scenar io, with

poor validation processes if validation is conducte d at all.

This is largely due to the ignorance of validation

procedures and misunderstanding of the necessity of

validation. And it has resulted in the industry’s p rimary

focus on verification because it can be easier to a ccomplish

and minimal effort is put into validation. Thus muc h effort

is in “have we built the system right?” but not “ha ve we

built the right system?”

Adding to the problem, there is no general consensu s

among the academic community on how to complete the

validation phase, many different paths are used. Th e typical

way for a system to be built, if there is structure at all,

is for the software requirements to be gathered, us ing pen

and paper, use cases built and then code is written directly

from the use cases. There is no formal link from th e

requirements to the formal specification of the sys tem

behaviors (if one exists) to ensure that the correc t system

is being built. The formal specification of system behaviors

includes assertions which precisely model the requi red

behavior of the system and can be traceable to the system

requirements providing a means to ensure that the c orrect

system is being built. As examples, both Voyager a nd

Galileo had significant software errors; the primar y cause

of the faults were directly related to system behav iors that

had not been identified or developed by the develop ers. One

can significantly reduce these kids of errors by fo rmally

 6

specifying the required behaviors in terms of asser tions and

validating the correctness of these assertions agai nst

stakeholder expectations before building the softwa re.

One way to facilitate the validation process is thr ough

execution-based validation. Execution-based validat ion is

the process of inferring certain behavioral propert ies to

exercise the system under test (SUT) in a known env ironment

and with selected inputs. This gives the person con ducting

validation the capability to validate that the syst em being

built is the correct system based on user requireme nts. In

our thesis we use the StateRover white-box automati c test-

generator. The white-box test generator constructs a JUnit

TestCase class from a given statechart assertion mo del and

the associate embedded assertions. The advantages o f this

process include: the ability to pinpoint specific e rrors;

investigate the causes of failures on a specific in put in

detail; and eliminate errors in their design in an efficient

manner.

D. THE ROLE OF SOFTWARE REUSE

Software reuse is an important concept that can hel p

clarify validation techniques, making them more rel evant for

software development teams. Software reuse aims to increase

the productivity, efficiency and quality of softwar e by

reusing the applicable software from one project in another

project. 7 By reusing the software the developers can save

resources that would have otherwise been used to de velop the

software.

7 W. Lim, Managing software reuse, a comprehensive guide to

strategically reengineering the organization for reusable components.
Upper Saddle River, New Jersey: Prentice Hall PTR, (1998): 7.

 7

An important part of validation is the creation of

formal specifications in the form of assertion stat ements to

capture the correct behavior of the software from n atural

language requirements. Assertion statements can be difficult

to define and produce because of natural language

ambiguities. However, with the use of the reuse con cepts,

libraries can be established. These libraries will contain

correct assertion statements which have been thorou ghly

tested. The assertion development team can then reu se the

correct assertion statement and use the accompanyin g test

suite to ensure that the chosen assertion matches t he

requirements and proper validation is occurring.

E. OUTLINE

This work’s main objective is to facilitate the

assertion validation process. This is accomplished through

the use of libraries which contain consistent and a ccurate

assertions. We intend to demonstrate that these as sertions

are correct and reusable through the use of testing

scenarios. These assertions will provide a type of

engineering control for the IV&V process.

The organization of the thesis is as follows:

Chapter II provides background information about IV &V

and software reuse. The chapter will show a deficie ncy in

the current guidance provided for software validati on, and

will describe reuse techniques that have been accom plished

to date.

 8

Chapter III discusses the NASA System Reference Mod el

(SRM) and the use of assertions in repository libra ries.

Chapter IV discusses the use of patterns to facilit ate

Software reuse.

Chapter V provides conclusions and recommendations for

future research.

 9

II. IV&V AND SOFTWARE REUSE

A. COMPLEXITY OF SOFTWARE DESIGN

Anyone who is associated with software design

understands that software systems can be extremely complex.

They are so complex that most software engineering

researchers often focus their research solely on wa ys to

deal with complexity. The reason these systems are so

complicated can often be traced back to the users’

requirements for that system. A system that is requ ired to

perform several functions will naturally be more co mplex

than a system that is required to perform just one function.

Common problems that occur when developing software include

failing to match the final product to the customers ’ needs,

or dealing with errors in the software that often r eveal

themselves at the worst possible time and are often costly

to fix. One way to try to avoid these problems is t o

implement Independent Verification and Validation (IV&V) and

software reuse into the development of the systems. This

chapter covers IV&V, how IV&V is conducted, and how software

engineers are currently leveraging software reuse i n

building software systems.

B. DEFINITIONS

Independent: Independence in relation to IV&V is

defined by the Institute of Electrical and Electron ics

Engineers (IEEE) using three parameters: technical

independence, managerial independence, and financia l

independence.

 10

Technical Independence: “requires the V&V effort to

utilize personnel who are not involved in the devel opment of

the software.” 8

Managerial Independence: “requires that the

responsibility for the IV&V effort be vested in an

organization separate from the development and prog ram

management organizations.” 9

Financial Independence: “requires that control of the

IV&V budget be vested in an organization independen t of the

development organization.” 10

Verification: “The process of evaluating a system or

component to determine whether the products of a gi ven

deployment phase satisfy the conditions imposed at the start

of that phase.” 11 Software verification answers the

question, “Are we building the product right?”

Validation: “The process of evaluating a system or

component during or at the end of the development p rocess to

determine whether it satisfies specified requiremen ts.”

12Software validation answers the question “Are we bu ilding

the right product?”

8 Institute of Electrical and Electronics Engineers, Standard for

Software Verification and Validation,IEEE-STD-1012, June 08, 2005.

9 Ibid.

10 Ibid.

11 Ibid.

12 Ibid.

 11

Software IV&V: “a series of technical and management

activities performed by someone other than the deve loper of

a system to improve the quality and reliability of that

system and to assure that the delivered product sat isfies

the user’s operational needs.” 13

Software Reuse: “the use of existing software artifacts

in the development of other software artifacts with the goal

of improving productivity and quality, among other

factors.” 14

Requirement Specification: “an organization's

understanding (in writing) of a customer or potenti al

client's system requirements and dependencies at a

particular point in time (usually) prior to any actual

design or development work.” 15

Pattern: “a body of literature to help software

developers resolve recurring problems encountered t hroughout

all of software development.” 16

C. IV&V BACKGROUND

In the early 1940s the first computer was developed to

calculate artillery firing tables for the United St ates

13 R. Lewis, Independent verification & validation: A life cycle

engineering process for quality software. New York: John Wiley & Sons,
(1992): xxiii.

14 W. Lim, Managing software reuse, a comprehensive guide to
strategically reengineering the organization for reusable components.
Upper Saddle River, New Jersey: Prentice Hall PTR, (1998): 7.

15 D. Le Vie, “Writing software requirements specific ations” TECHWR-L
(MAR 2007) http://www.techwrl.com/techwhirl/magazin e/writing/
softwarerequirementspecs.htm (accessed July 15, 200 8).

16 B. Appleton, "Patterns and software: essential con cepts and
terminology” CM Crossroads (2000), http://www.cmcro ssroads.com/
bradapp/docs/patterns-intro.html (accessed Septembe r 20, 2008).

 12

Army's Ballistic Research Laboratory. The design of the

computer was focused primarily on hardware, not pay ing much

attention to software. In fact, some would say in t he early

stages of computing, software was often ignored. Th e

intention of computers at this time was to perform a single

task. When the task was identified the computers we re hard-

wired to accomplish that task. With the role of sof tware

being so small the need for IV&V had not yet been

recognized. However, as time passed and the role an d cost of

software grew, the need for IV&V became evident.

In the mid 1940s John Von Neumann came up with two

concepts that would have a direct impact on softwar e design.

The first was known as “shared program technique.” “This

technique states that the actual computer hardware should be

simple and not need to be hand-wired for each progr am.

Rather, complex instructions should be used to cont rol the

simple hardware, allowing it to be reprogrammed muc h

faster.” 17

The second concept he developed was called “conditi onal

control transfer.” “This idea gave rise to the noti on of

subroutines, or small blocks of code that could be jumped to

in any order, instead of a single set of chronologi cally

ordered steps for the computer to read. The second part of

the idea stated that computer code should be able t o branch

out based on logical statements such as “IF” (expre ssion)

“THEN,” and looped with others such as a “FOR”

17 C. Robat, “Introduction to software history.” Th e History of

Computing Project (October 17, 2006), http://www.th ocp.net
/software/software_reference/introduction_to_softwa re_history.htm
(accessed June 11, 2008).

 13

statement.” 18 The use of these concepts, and others like

them, allowed software to grow into a more signific ant part

of computer design.

As software grew, so did the cost associated with i t.

In the 1950s, software’s cost was only 20% of the o verall

system cost. In the 1980’s, software costs rose to 80%.

Today, software costs can be up to 95% of the overa ll system

cost. 19 These rising costs forced software developers to

find a way to save money.

In the late 1950s, one of the leading software

developers was the Department of Defense (DoD). The DoD

began to notice projects were consistently behind schedule,

over budget, and did not provide the required perfo rmance.

This was unacceptable not only for financial reason s but

because software errors can lead to loss of life, i njury, or

loss of property especially in military systems. Th e DoD was

repeatedly surprised by the costly projects because

“...software development contractors often gave ove rly

optimistic assessments of the software development status to

the DoD.” 20 To address this, the DoD launched a plan to

conduct IV&V on their software systems in an attemp t to get

accurate assessments of how their projects were doi ng. The

18 C. Robat, “Introduction to software history.” The History of

Computing Project (October 17, 2006), http://www.th ocp.net
/software/software_reference/introduction_to_softwa re_history.htm
(accessed June 11, 2008).

19 S. Reiss, A practical introduction to software design with C++.
New York: John Wiley & Sons, 1998, 397-421.

20 S. Rakin, “Food for thought: What is software qual ity assurance?”
Software Quality Consulting (Jan. 2005, Vol.2 No.1),
http://www.swqual.com/newsletter/vol2/no1/vol2no1.h tml (accessed June
01, 2008).

 14

first program to use IV&V was the Atlas Missile Pro gram in

the late 1950s. An independent software tester was hired to

conduct unbiased testing of the software. 21

Over time, the role of IV&V continued to develop an d in

the 1970’s “... the U.S. Army sponsored the first

significant such IV&V program for the Safeguard Ant i-

Ballistic Missile System.” 22 The program was designed to

identify and eliminate the high risks that are comm on with

military systems. It was successful in meeting its goal and

“By the mid- to late 1970’s, IV&V was rapidly becom ing

popular and in some cases was required by the milit ary

services...” 23 “It was from this effort that IV&V became

well known within the Department of Defense and the

aerospace communities as an accepted method of ensu ring

better quality, performance, and reliability of cri tical

systems.” 24

In the decades following the seventies, IV&V became an

intricate part of the software development process. A

process that started as “...mostly free-form, not v ery

independent, often started too late to be really ef fective,

and was sometimes even performed by the very people who were

developing the system...” 25 grew into process where “...a

21 S. Rakin, “Food for thought: What is software qual ity assurance?”

Software Quality Consulting (Jan. 2005, Vol.2 No.1),
http://www.swqual.com/newsletter/vol2/no1/vol2no1.h tml (accessed June
01, 2008).

22 R. Lewis, Independent verification & validation: A life cycle
engineering process for quality software. New York: John Wiley & Sons,
1992, xxiii.

23 Ibid.

24 Ibid.

25 R. Lewis, Independent verification & validation: A life cycle
engineering process for quality software. New York: John Wiley & Sons,
(1992): xxiii.

 15

completely independent entity evaluates the work pr oducts

generated by the team that is designing and/or exec uting a

given project...” 26 The independent entity will also

“...monitor and evaluate every aspect of the projec t itself

from inception to completion.” 27

While the cost of conducting IV&V is high, the mone y

saved by preventing errors and rework is far greate r. In

1993, the National Aeronautics and Space Administra tion

(NASA) established an IV&V facility in the wake of the Space

Shuttle Challenger accident. The facility was devel oped as

part of a plan “to provide the highest achievable l evels of

safety and cost-effectiveness for mission critical

software.” 28 “In 2006, NASA allocated $27 Million to the

IV&V Facility Budget, of which $19 Million went dir ectly to

IV&V Services.” 29 After conducting a Return on Investment

analysis, “NASA realized a software rework risk red uction

benefit of $1.6 Billion in Fiscal Year 2006 alone.” 30 From

the facilities inception at NASA, it has experience d

continued growth while providing better software/sy stem

performance, higher confidence in the software reli ability,

and a reduced maintenance cost.

26 C. Nickolett, “Project due diligence: independent verification and

validation.” White Paper.Comprehensive Consulting S olutions. Mar 2001:
1-6. http://www.comp-soln.com/IVV_whitepaper.pdf (a ccessed June 01,
2008).

27 Ibid.

28 National Aeronautics and Space Administration (NAS A), "NASA IV&V
facility - about IV&V." National Aeronautics and Sp ace Administration
(NASA), http://www.nasa.gov/centers/ivv/ about/inde x.html (accessed June
01, 2008).

29 NASA IV&V Facility, “NASA IV&V 2006 annual report. ” NASA IV&V
Facility, http://www.nasa.gov/centers/ivv/pdf/
174321main_Annual_Report_06_Final.pdf (accessed Jun e 01, 2008).

30 Ibid.

 16

When performed correctly IV&V can be a crucial part of

the software development process. The process begin s with

developing Software Integrity Levels (SILs) which “ are a

range of values that represent software complexity,

criticality, risk, safety level, security level, de sired

performance, reliability, or other project-unique

characteristics that define the importance of the s oftware

to the user and acquirer.” 31 SILs are then used to determine

which V&V tasks to perform. The higher the software

integrity level, the more V&V tasks assigned. SILs are not

constant and can change as software evolves to ensu re the

appropriate V&V tasks are being performed. Below is an

example of SILs based upon the concepts of conseque nces and

mitigation potential as well as an example of V&V p rocesses,

activities, and tasks from the IEEE Standard for

Verification and Validation. These examples are pro vided as

guidance on how software developers can incorporate IV&V

into their software design to assist in reducing

specification errors.

31 Institute of Electrical and Electronic Engineers, Standard for

Software Verification and Validation,IEEE-STD-1012, June 08, 2005.

 17

Description of Software integrity Level Level

Software element must execute correctly or grave consequences (loss of life, loss of

system, economic or social loss) will occur. No mitigation is possible. 4

Software element must execute correctly or the intended use (mission) of the system/

software will not be realized, causing serious consequences (permanent injury, major

system degradation, economic or social impact). Partial to complete mitigation is possible. 3

Software element must execute correctly or an intended function will not be realized,

causing minor consequences. Complete mitigation possible. 2

Software element must execute correctly or intended function will not be realized,

causing negligible consequences. Mitigation not required. 1

Figure 1. Examples of Software Integrity Levels

 18

Figure 2. V&V processes, activities, and tasks.

 19

D. CURRENT GUIDANCE FOR VALIDATION

Incorporating IV&V into software design is essentia l to

reducing specification errors. What software engine ers need

to ensure is when IV&V is applied it is done so cor rectly.

The definitions for V&V provided at the beginning o f this

chapter allow for the use of computer-based V&V too ls to

check the correctness of a system or a specific com ponent

against a formal specification derived from the nat ural

language requirements. The specifications are creat ed and

the final product is then built to satisfy those

specifications. Validation that is being conducted in

accordance with the guidelines provided by the IEEE

evaluates specific components or the final product with the

specifications. This process is in fact verificatio n. The

product is being built correctly according to the

specifications, however, it is not known if the

specifications themselves are correct. It is impera tive that

validation be conducted on the specifications that are

created to ensure that the requirements for the pro ject are

understood and that the correct product is built.

E. SOFTWARE REUSE

Software reuse is a practice that began in the 1950 s

with the goal of improving software development pro ductivity

and quality. For the past twenty years a great deal of

research has been focused on software reuse and its role in

software design. Areas that have been given attenti on

include but are not limited to reuse libraries, des ign

patterns, and reuse using formal specifications of

requirements. While software reuse holds promise of

 20

improving software development productivity and sof tware

quality, the success of reuse is based on the quali ty of the

reusable artifacts. The reuse of software that has not been

verified and validated contradicts the intended goa l of

producing quality software because errors in the so ftware

may still exist. This reasoning also holds true whe n

discussing the use of formal requirements specifica tions.

The use of formal requirements specifications is es sential

in the automation of the software verification proc ess.

However, we assert that the correctness of these fo rmal

specifications must be first validated before they can be

used to verify correctness of the software.

Formal specification has been an active area of

research for more than two decades. The requirement s

specification of a software component describes the expected

functions and behavior of the software. The ability to reuse

the software component becomes evident if its struc ture and

behavior are compatible with new software being des igned.

Verification has been another popular research topi c

for over 20 years. Automated finite state verificat ion tools

have been developed to assist software developers i n

verifying system specifications. The users of these tools

must be capable of specifying the requirements of t he system

they are developing in the specification language t he tool

understands. Behavior for a software component is t ypically

specified using temporal logic in an attempt to avo id the

ambiguity derived from natural language.

 21

F. FORMAL SPECIFICATION PATTERNS

To assist developers in specifying the behavior in a

temporal logic, Dwyer suggests the use of property

specification patterns. “A property specification p attern is

a generalized description of a commonly occurring

requirement on the permissible state/event sequence s in a

finite state model of a system.” 32 These patterns describe

the essential behavior of a system and provide expr essions

of this behavior in a range of common temporal logi cs to be

used with verification tools. The patterns are then given

distinct names describing their behavior which allo ws them

to be mapped to examples of known use, to relations hips to

other patterns, and to specific formalisms. To faci litate

verification, Dwyer proposes the development of a s ystem of

property specific patterns for finite state verific ation

tools. The system is a set of patterns or library o rganized

into one or more hierarchies, with connections betw een

related patterns to facilitate the browsing of the system.

“A user would search for the appropriate pattern to match

the requirement being specified, use the mapping se ction to

obtain the essential structure of the pattern in th e

formalism used by a particular (verification) tool, and then

instantiate that pattern by plugging in the state f ormula or

events specific to the requirement.” 33 The use of these

patterns allows for the specification of critical p roperties

32 M. Dwyer, G. Avrunin, et.al. “Patterns in property specifications

for finite-state verification.” Proceedings of the 21st international
conference on software engineering (1999): 411-420.

33 Ibid.

 22

that exist in software systems and guides users of

verification tools to express these properties in a

specification language.

In 2005, Konrad and Cheng went a step further with

specification patterns and introduced real-time

specification patterns that can be used to specify real-time

properties for embedded systems. Similar to Dwyer’s

specification patterns, the real-time specification patterns

contain templates for specifying real-time properti es in

terms of real-time temporal logic. 34 This pattern system is

intended to provide strategies for specifying real- time

properties in a formal specification language, wher e the

properties are amenable to automated analysis such as

verification tools. 35

Specification patterns and the use of libraries to

store those patterns provide another form of softwa re reuse.

This form of reuse aims at reducing the cost and im proving

the quality of formal specification development. Ho wever,

the effectiveness of the specification pattern reus e depends

on the correctness and consistency of the resultant

requirements. Proper validation needs to be perform ed in

order to confirm that the requirements are understo od.

Otani et al. explains a concept of developing and

validating libraries of temporal formal specificati ons.

These libraries would include UML Statechart based

assertions for formal specifications and their asso ciated

34 B. Cheng and S. Konrad, "Real-time specification p atterns."

Proceedings of the 27th international conference on software engineering
(2005): 372-381.

35 Ibid.

 23

validation test scenarios. 36 We intend to build the

validation test scenarios with the goal of ensuring that

specifications within the libraries are indeed erro r-free

and consistent. The following chapter describes the NASA

System Reference Model (SRM) and its role in captur ing a

modeler’s understanding of a specific problem.

36 T. Otani, D. Drusinsky, et.al. “Validating UML sta techart based

assertions libraries for improved reliability and a ssurance.”
Proceedings of the Second International Conference on Secure System
Integration and Reliability Improvement (SSIRI 2008), Yokohama, Japan,
July 14-17, 2008, 47-51.

 24

THIS PAGE INTENTIONALLY LEFT BLANK

 25

III. SYSTEM REFERENCE MODEL

A. BACKGROUND

The National Aeronautics and Space Administration

(NASA) has continuously developed their IV&V progra m,

supporting new technologies and better validation a nd

verification techniques in an effort to improve the

validation and verification process. Earlier versio ns of the

V&V process included the Criticality and Risk Asses sment

(CARA) and the Software Integrity Level Assessment Process

(SILAP). Both processes were found lacking because they

relied on manual examination and independent testin g of

target code. These techniques are ineffective for u se in

validation because there are no links from the requ irements

to the system’s features, capabilities, properties and

functions. Without formal specifications of the sys tem

behaviors both CARA and SILAP were unable to valida te the

correctness and completeness of the developer’s

understanding of the requirements. Finally, the pro cesses

were unable to locate the subtle errors in increasi ngly

complex software-intensive system. Both CARA and SI LAP

evaluated the risk of software components in a syst em by

compiling a list of software components and evaluat ing them

to prioritize risk assessment, which cannot show th at the

system being built is the correct system. NASA is i n the

process of replacing SILAP with advanced computer-a ided

validation techniques.

 26

The NASA IV&V Facility recognized a need for valida tion

to be more than a risk assessment; it needed to pro vide a

model for the system to show 37:

• What the system is supposed to do.

• What the system is not supposed to do and

• How the system should respond under adverse conditi ons.

The NASA IV&V Facility now relies on the use of a

System Reference Model (SRM) for each product. “The SRM

provides the basis for validating the completeness and

correctness of the targeted requirements set.” 38 Once the

targeted requirements are developed the independent

validation team is able to validate those requireme nts. The

SRM supports a computer-aided validation technique through

which the independent validation team’s understandi ng and

perception of the problem is validated through the team’s

representation of the SRM’s features, properties, f unction,

and capabilities. It is also during this time that the

development team is able to discover and correct an y

identified problems or concerns with their understa nding of

the requirements for the intended system. This is i mportant

because the model holds the responsibility to be co mplete

and accurate to serve its intended purpose and the

development team holds the responsibility to ensure that the

model fulfills that purpose.

37 K. Woodham, System Reference Model (SRM) development and analysis

guideline, 1st draft (National Aeronautics and Space Administ ration
(NASA), 2007).

38 Ibid.

 27

B. DEFINITIONS

The following definitions are described in the SRM

guideline 39. The definition of dependability will be

customized to the user’s needs and wants of the sys tem.

• Dependability : A dependable system is one that provides
the appropriate levels of correctness and robustnes s in
accomplishing its mission while demonstrating the
appropriate levels of availability, consistency,
reliability, safety, and recoverability.

• Availability : The probability that a system is
operating correctly and is ready to perform its des ired
functions.

• Consistency : The property that invariants will always
hold true in the system.

• Correctness : A characteristic of a system that
precisely exhibits predictable behavior at all time s as
defined by the system specifications.

• Reliability : The property that a system can operate
continuously without experiencing a failure.

• Robustness : A characteristic of a system that is
failure and fault tolerant.

• Safety : The property of avoiding a catastrophic outcome
given a system fails to operate correctly.

• Recoverability : The ease for which a failed system can
be restored to operational use.

C. SYSTEM REFERENCE MODEL DEVELOPMENT

Without a doubt, any process can become overwhelmin g in

both cost and time. Thus, it is necessary for the S RM to

have an appropriate level of specificity so that a

completion point can be reached. “The appropriate l evel of

39 K. Woodham, System Reference Model (SRM) development and analysis

guideline, 1st draft (National Aeronautics and Space Administr ation
(NASA), 2007).

 28

V&V is a function of the time available to do the V &V

evaluations, and this should in turn be a function of the

risk that will be incurred if the V&V is not done, or the

risk that will be mitigated if a given level of V&V is

done.” 40 The SRM still must be developed to a level of

fidelity to support validation of the system and re sult in

completeness and correctness of the targeted requir ements.

The SRM can be extremely detailed and can consist o f

high-level use cases, Unified Modeling Language (UM L)

artifacts such as activity diagrams, sequence diagr ams and

object class diagrams, and a set of formal assertio ns to

describe precisely the necessary behaviors to satis fy system

goals, with respect to the three questions stated

previously. These many artifacts allow the team to properly

express the requirements through the SRM and ensure that

their understanding of the requirements is correct.

The development of the SRM begins with a scoping

period. During this time the SRM development team c ommences

with a front-end analysis. The front-end analysis e nsures

that the team has a clear perspective of the intend ed use of

the model. This high-level abstraction helps the te am ensure

that the model is defined which in-turn drives the

objectives of the model development. The scoping pe riod also

ensures that the SRM development is based on concep t-level

documentation rather than requirements generated by the

40 R. Logan and C. Nitta, “Verification & validation: process and

levels leading to qualitative or quantitative valid ation statements.”
SAE Transactions vol.113, no.5 (2004), http://bill.cacr.caltech.edu
/valworkshop/upload/files/UCRLTR-200131sae04fa.pdf (accessed June 01,
2008).

 29

system developers. Finally, the scoping period shou ld

finalize the level of specificity of the requiremen ts so

that a completion point can be reached.

The scoping period consists of analyzing the

constraints, restrictions and targeted tasks and

requirements to recognize the depth of the modeling needed.

Additionally, requirements that will not be modeled in the

SRM are identified and the team ensures that suffic ient

concept documentation is available to continue. The concept

documents used during the process are found in many forms of

stakeholder inputs from mission statements to conce pts of

operations. The scoping period ends with a clear

understanding of the system elements that need to b e

addressed and the depth that they need to be define d. The

level of fidelity should be determined at this poin t to

ensure completeness and correctness of the targeted system

requirements.

The next stages of the SRM development are accompli shed

through the development of use cases and UML artifa cts as

well as supporting assertions. The SRM team, using the

conceptual documents, will begin by documenting sys tem

behaviors. It is during this time that the system g oals

should be identified and a traceability matrix deve loped,

populated with these top-level goals. Additionally, the

operational environment must be identified and the

traceability matrix should be populated with operat ion

environment characteristics that need to be address ed by the

system model. The top-level use cases developed to address

the overall system goals are peer reviewed to valid ate that

the preliminary use case set spans the high-level

 30

description of the system and is documented in the

traceability matrix. The top-level use cases are ab stracted

from the details of the system and are goal-oriente d. These

use cases help the developers to get a clear unders tanding

of the process and problems to be solved as well as the

goals and objectives of the system. The top-level u se cases

then are refined into lower-level use cases and act ivity

diagrams which can be mapped to sequence diagrams. The

process continues to become more specific to ensure that the

goals and objectives are accomplished but also to v erify

that their constraints are also adequately captured . The

diagrams should provide a complete representation o f the

behavior expected to be displayed by the system.

Additionally, all behaviors should be mapped and de fined

into the traceability matrix and peered reviewed to ensure

correctness. The overall goal is to ensure that the top-

level use cases have been refined into detailed low er-level

uses cases that represent not only the Main Success Scenario

(MSS) but are fully elaborated to ensure necessary

extensions are also represented. Finally, the mode ling team

has to ensure that any dependability considerations are

addressed and represented in the model. This entire effort

should represent the desired system behaviors as we ll as any

necessary extensions and assertions that map to the top-

level goals and requirements. The model is ready to be

validated.

D. VALIDATING THE SYSTEM REFERENCE MODEL

The newly developed SRM is a representation created by

the SRM development team and is a result of the tea ms own

perceptions and understanding of the desired system

 31

behaviors. As such the representation could be wron g if the

team misinterpreted the desired behaviors of the sy stem.

This is why the SRM must be validated to reduce

specification error as well as to ensure that the b ehavior

requirements created by the SRM development team ar e

measured against the SRM for correctness. The SRM i s a model

of the intended system and it must meet any dependa ble

considerations in order for the intended system to be so as

well.

The validation process is twofold and can begin wit h a

formal review and tracing of the UML artifacts to i nclude:

use case definitions and models, supporting asserti ons, and

activity diagrams. Other artifacts reviewed include the

complete set of system-behavior definitions based o n

stakeholder goals and system constraints and operat ions

environments defined in the concept documentation. During

this review the formal tracing of the requirements from the

top-level to the more refined lower-levels and the activity

diagrams and sequence diagrams helps to identify th e

subsystems and components responsible for the syste m

requirements. Additionally, during this process all the

requirements are elicited and peer reviewed. This e nsures

that all targeted requirements have been identified and

traced through the artifacts. During this time all necessary

objects and events are labeled, identified, and che cked to

ensure there are no unnecessary objects or events. The above

process ensures that all targeted requirements are fully

detailed in accordance with their goals. During eac h review

each step is subjected to extensive group review to validate

that the SRM is a complete and unambiguous represen tation of

the system.

 32

The second step of the validation process is to exe cute

as much of the model as possible through computer-a ided

auditing. Run-time verification of formal assertion s is able

to check for inconsistency, omission and errors in the SRM.

By executing as much of the model as possible it in creases

the evidence that the model being developed is the correct

system. The independent validation team is able to use the

evidence of validation to ensure that the SRM is th e correct

system.

The IV&V team’s requirements elicitation and valida tion

tasks produce deliverable packages, consisting of: UML

models for reference model constituents, natural la nguage

assertions, formal representation of the assertions , and a

validation test suite for each assertion. The test suites

are detailed and include tests that cover multiple scenarios

that meet the requirements of the assertions, and w ill be

discussed further in the next chapter. These delive rable

packages are the evidence gathered to decrease spec ification

errors and must be done to validate the SRM and pro vide

evidence of dependability of the system.

The SRM is intricate and detailed in order to show its

dependability. But before dependability can be show n the SRM

assertions must be validated to decrease specificat ion

errors. In fact the assertions should precisely mod el the

required behavior of the system and if they are abl e to do

so the model is on its way to being validated. But

assertions also have to be validated and are valida ted

through an execution-based model checker for depend ability

of the model under test.

 33

E. INCREASING THE USABILITY OF THE SRM

The difficulty with assertions is in their creation . It

not only takes time and effort, but the correctness of the

executable assertions depends on the ability of the modelers

to specify correct assertions. It is difficult to s pecify

and develop correct assertions. The modelers must h ave a

correct representation of the structure and behavio r of the

SRM, the assertions must also be correct. If faulty

assertions are used they are not effective in the I V&V

process. We believe that a library built with corre ct

assertions would enable the assertions to be reused . This

could both decrease the burden on the modelers to d evelop

the assertions and improve the ability of the indep endent

validation teams to validate the dependability of t he

software.

 34

THIS PAGE INTENTIONALLY LEFT BLANK

 35

IV. BUILDING AN ASSERTION LIBRARY

A. BACKGROUND

As mentioned in the previous chapters the SRM is a

representation created by the developers as a resul t of

their own understanding of the desired system behav iors. The

SRM must be validated to reduce specification error s. One of

the ways to do this is through assertions which pre cisely

model the required behavior of the system and are t he

foundation of the SRM. Through testing and modelin g

assertions the independent validation team begins t o

comprehend the problem domain and refine any proble ms to

ensure that the SRM meets the user’s requirements a nd the

correct system is built. The current way to build a ssertions

is to develop the assertions from natural a languag e

description of the user’s understanding anew every time;

this can be a time-consuming and error-prone undert aking. We

believe that an assertion library can help ease the se tasks

by providing validated assertions which can be reus ed.

The purpose of this chapter was to construct an

approach to building an assertion library with a sm all

number of assertions that have been validated for

correctness and are reusable. We define a library t o be a

collection of assertions that are stored, collectiv ely

shared and can be filled with more assertions as ne eded. The

assertions in the library are validated through the use of

test scenarios that we designed. The test scenarios are

patterns which test the assertion for the required behavior.

The purpose of the test suites is to disambiguate t he

 36

assertions, and test for correctness meaning that t he

assertions accurately reflect the natural language statement

as we intended.

The assertion library would be built so that the

assertions are reusable and adaptable for future pr ojects.

Software developers can select from the library any

assertions that meet their needs and adapt them or use them

as an example to build their own. In each case we e nsured

that the assertion was general to increase the abil ity to be

reused as well as be more relevant to the library. We hope

that through this process that software developers will be

able to use our correct assertions in the library f or their

own use and reuse, lessening their burden and reduc ing

specification errors in the software.

B. STATECHART ASSERTIONS

The libraries are built through the use of “UML

statechart based temporal assertions for formal

specifications.” 41 The UML statecharts are developed from

both the research efforts of Harel, who first propo sed the

use of statechart diagrams as a visual approach to modeling

the behavior of complex reactive system, and Drusin sky who

both increased and extended the use of statechart d iagrams

to specify formal assertions. Drusinsky was able to extend

the use of statecharts as formal assertions for tem poral

behavior with “the inclusion of a built-in Boolean flag

bSuccess and a corresponding isSuccess method which

specifies the Boolean status of the assertion true if the

41 D. Harel. Statecharts: A visual approach for complex systems,

Science of Computer Programming, vol.8, no.3. (1987): 231-274.

 37

assertion succeeds and false otherwise.” 42 The statechart

assertion indicates that “formalism is supported by

StateRover, a design entry, code generation, and vi sual

debug animation tool for UML statecharts combined w ith

flowcharts.” 43 Assertion statecharts can be nondeterministic

and deterministic depending on the needs and wants of the

developer and modeler. For example, the developer m ight want

a nondetermistic statechart if there are nested req uirements

which can be more difficult to write and less reada ble in a

deterministic solution. Or alternatively if the ass ertion

needs to be active in runtime, then a deterministic

statechart might be a better solution because of th e

overhead incurred in the nondeterministic statechar t at

runtime.

Finally, it is important to understand the proper u se

of a statechart assertion. Remember that the assert ion uses

the “built-in Boolean variable name bSuccess, and a

corresponding method called isSuccess(), both autom atically

created by the code generator” 44 to make a statement about

the assertion’s correctness. The default settings of the

assertion statechart variable bSuccess is set to tr ue. To

appropriately test success and failure, the modeler needs to

42 D. Drusinsky. Modeling and verification using UML statecharts - a

working guide to reactive system design, runtime monitoring and
execution-based model checking. Elsevier Inc., 2006.

43 D. Drusinsky, M. Shing, K. Demir, “Creation and va lidation of
embedded assertion statecharts”, Proc. 15th IEEE International Workshop
in Rapid System Prototyping, Greece (June 14-16, 2006): 17-23

44 D. Drusinsky. Modeling and verification using UML statecharts - a
working guide to reactive system design, runtime monitoring and
execution-based model checking. Elsevier Inc., 2006.

 38

ensure that the assertion enters the error state an d the on-

entry action assigns bSuccess=false when the assert ion

fails.

C. ASSERTION VALIDATION

Once the natural language has been translated into an

assertion the assertion must then be validated. The

assumptions in the statechart must be tested to ens ure that

the statechart assertion correctly represents the i ntended

behavior the modeler has in mind. We need to run va lidation

test scenarios against the statechart assertion.

In each case the validation test suite resolved the

ambiguities of the natural language specification. The tests

were meaningful in that they ensured each assertion were

distinguishable from each other. The assertions wer e tested

and we did find that, when we tested them, we had t o

disambiguate the natural language ourselves to ensu re that

we truly understood what we were describing.

The two kinds of errors that are commonly found wer e

“implementation errors resulting from mistakes in t he

statechart assertion, and errors or ambiguities in the

natural language statement.” 45 In the first case, the

statechart behavior does not match the modeler’s in tended

behavior. The second case was more difficult becaus e it

depended how we as individuals understood the natur al

language statement and how we as individuals clarif ied the

45 T. Otani, D. Drusinsky, et.al. “Validating UML sta techart based

assertions libraries for improved reliability and a ssurance.”
Proceedings of the Second International Conference on Secure System
Integration and Reliability Improvement (SSIRI 2008), Yokohama, Japan
(July 14-17, 2008): 47-51.

45 Ibid.

 39

ambiguities. It was by running the test scenarios t hat we

were able to identify these errors and modify our

assumptions and assertions accordingly in order to correct

the assertions.

Otani et al. 46 revealed that there are some types of

patterns that must be part of every validation test -suite:

• Obvious success. We expect that the statechart
assertion being validated to succeed on such a test .

• Obvious failure. We expect that the statechart
assertion being validated to be violated on such a
test.

• Event repetitions. We create event repetitions and
assure that the assertion, if applicable, is not
written in a manner that only observes the first
occurrence of a triggering event P in a sequence
of P’s.

• Multiple time intervals. If the assertion requires
it, we check that it handles multiple time interval s
or scenarios. By using this validation test
pattern we assure that an assertion is not written
in a manner that observes only a single time
interval.

• Overlapping time intervals. If the assertion
requires it, we check that the assertion can handle
overlapping time intervals within a scenario.

Once the types of patterns were clarified we then

designed our test suite to adhere to the above cate gories,

combining them if suitable and ensured that there w ere an

appropriate number of tests per test suite that wou ld

validate the assertion.

46 T. Otani, D. Drusinsky, et.al. “Validating UML Sta techart Based

Assertions Libraries for Improved Reliability and A ssurance.”
Proceedings of the Second International Conference on Secure System
Integration and Reliability Improvement (SSIRI 2008), Yokohama, Japan,
(July 14-17, 2008): 47-51.

 40

D. ASSERTION SCENARIOS

The first assertion statement that we described is:

Whenever P then Q within T. The assertion statechar t (shown

in Figure 3) was diagramed as follows:

Figure 3. Whenever P then Q within T

Our interpretation of the assertion statement above is:

if P occurs (timer is reset at every P) then the ev ent Q

will eventually occur within the time interval. The built in

event, timeoutFire(), fires after 30 sec. In case o f a P

repetition before a Q the 30 second duration will b e

measured from the first p. We used the following pa tterns to

 41

correctly disambiguate the natural language and ens ure that

the assertion statement accurately reflects the nat ural

language as we identified and desired. As described earlier

in the chapter we covered all appropriate testing p atterns.

Obvious success:

P; incrTime(25); Q; incrTime(6)(timeout has occurre d).

We expected this test to be a success. Our expectat ion was

confirmed.

Q; incrTime(31) (timeout has occurred). We expected

this test to be a success because we are testing fo r

violations of the assertion and Q by itself does no t violate

the assertion. Our expectation was confirmed.

Obvious failure:

P; incrTime(31) (timeout has occurred). We expected

this test to fail because it did not meet the const raints of

the assertion. Our expectation was confirmed.

 42

Overlapping time intervals:

In this test and the next test we ensure that the

assertion observes more than the first P in a seque nce of

P’s.

P; incrTime(15); P; incrTime(5); Q; incrTime(26)

(timeout has occurred). Our goal in this test was t o ensure

that the assertion could handle overlapping time in tervals.

We expected success. Our expectation was confirmed.

P; incrTime(5); Q; P; incrTime(31) (timeout has

occurred); Q. Our goal in this test was to test ove rlapping

time intervals for an expected failure as this test does not

meet the constraints of the assertion. Our expectat ion was

confirmed.

Multiple Intervals:

We tested for multiple intervals in this test and t he

next to ensure that the assertion would observe mor e than a

single time interval.

 43

P; incrTime(10); Q; incrTime(20); P; incrTime(10); Q;

incrTime(21) (timeout has occurred). We expected su ccess

because it meets the requirements of the assertion. We set

bSuccess = true. Our expectation was confirmed.

P; incrTime(10); Q; incrTime(20); P; incrTime(31)

(timeout has occurred). We tested for multiple int ervals

expecting failure because of the constraints of the

assertion. Our expectation was confirmed.

The second core assertion statement that we describ ed

was: Whenever P then no Q within T. The assertion s tatechart

(as shown in Figure 4) was diagramed as follows:

 44

Figure 4. Whenever P then no Q within T

Our interpretation of the assertion is if P, then

within the time interval for P no Q will appear. Th e built

in event, timeoutFire(), fires after 30 sec. A P re petition

would reset the timer. We used the following patter ns to

disambiguate the assertion statement.

Obvious success:

 45

P; incrTime(31) (timeout has occurred). We expected

this test to be a success because no Q occurred whi ch meets

the requirements of our assertion. Our expectation was

confirmed.

Q; incrTime(31) (timeout has occurred). We expected

this test to be a success because we are testing fo r

violations of the assertion and Q by itself does no t violate

the assertion. Our expectation was confirmed.

Obvious failure:

P; incrTime(25); Q; incrTime(6) (timeout has occurr ed).

This test was expected to be a failure because it v iolates

the requirements of the assertion. Our expectation was

confirmed.

Overlapping time intervals:

In this test and the next test we ensure that the

assertion observes more than the first P in a seque nce of

Ps.

 46

P; incrTime(15); P; incrTime (5); Q; incrTime(26)

(timeout has occurred). Our goal in this test was t o ensure

that the assertion could handle overlapping time in tervals.

The test was expected to be a failure. Our expectat ion was

confirmed.

P; incrTime(10); P; incrTime(31)(timeout has occurr ed);

Q. The test was expected to be a success because Q was not

injected during the P intervals. Our expectation wa s

confirmed.

Multiple Intervals:

We tested for multiple intervals in this test to en sure

that the assertion would observe more than a single time

interval.

P; incrTime(30); P; incrTime(15); Q; incrTime(16)

(timeout has occurred). This test was expected to b e a

failure because it does not meet the constraints of the

assertion. Our expectation was confirmed.

 47

E. CONCLUSION

When we first defined the assertions in natural

language we discovered that almost all assertions c an be

ambiguous and difficult to define at first. The nat ural

language statements meant different things to diffe rent

people. “If P then Q within T” could mean an inter val T

measured from the first or the last P depending on how it

was defined and what the software developers wants to test.

We disambiguated each assertion according to the mo st

general and useful definition; this meant that in m ost cases

the assertion would be general and not specific so as to be

more useful. There was additional difficulty as can be

expected with any new system as StateRover is still in

development. But we were able to succeed after seve ral

restarts and debugging help. Finally, during our

disambiguation period we fell victim to the statech art

default which is bSuccess = true. During the testin g period

we expected one result and received something compl etely

different. This led us to additional testing and

clarification of the assertions and we had to ensur e every

time that the assertion test was not successful bec ause the

bSuccess flag was set to true, but rather because t he test

was actually correct.

This process is incredibly interesting and requires

clarity of thinking as well as the ability to break down

natural language. It is not simple but the process invokes

greater understanding of the validation process and the

validity of the assertion library. We feel that the se

assertion statements can be built upon and reused f or the

benefit of validation purposes.

 48

Additional assertion statecharts and validation tes t

suites that we defined and tested can be found in A ppendix

A. A final assertion statechart and validation test suite

that has merit but is not as valuable as previous m entioned

assertions can be found in Appendix B.

 49

V. CONCLUSION

A. SUMMARY AND CONTRIBUTIONS

Software has become a vital part of our everyday li ves.

Whether we refer to our military systems, medical s ystems,

or our financial systems, software is a part of the m and has

become something that we now depend on. In our thes is we

concentrate on requirements and their formal specif ication,

and we discuss a method to reduce specification err ors. We

strive to find a better technique to answer the que stion

“Are we building the right product?” Validation pre sents a

means of assuring that software satisfies the user’ s

requirements. It is viewed as a way of saving time and money

that could otherwise be wasted if a product design is not

built correctly and rework needs to be conducted. A problem

that can exist when conducting validation is not co nducting

validation early enough in the design process. Ofte n the

user’s requirements are reviewed and specifications are

developed. The product design is then built accordi ng to the

specifications. Once the product design is built va lidation

is conducted by comparing the resultant product wit h the

original requirements. As software partition of sys tems

continues to grow and become more complex we assert that

validating a product after it is developed is too l ate in

the process. At that stage the amount of time and c ost of

rework that may need to be performed is too large.

Validation needs to begin earlier in the design pro cess by

ensuring the specifications themselves are correct and

consistent.

 50

At present several ways to conduct validation exist .

Some guidance that is provided actually describes

verification when referring to validation by having the

product design compared to the specifications for t he

project. Others suggest what we have already mentio ned and

that is to check the final product against the user

requirements. To conduct validation we introduced a process

of developing and validating temporal formal specif ications

in the form of statechart assertions. Included in o ur work

are validation test scenarios intended to ensure

specifications are in fact correct prior to moving forward

with a project. The goal is to make available multi ple

libraries of pre-vetted assertions to facilitate va lidation.

This research described the attributes of IV&V as w ell

as software reuse and explores a concept of combini ng the

process of validation and reuse in an attempt to yi eld a

repeatable validation technique. Sample requirement s were

identified and then formal specifications in the fo rm of

statechart assertions were created to capture the

requirements. Testing scenarios were then developed to

determine if the statechart assertions were accurat e and

consistent with the original requirements. Once the se

assertions are proven to be accurate they can be st ored in a

library for future reuse. Our intentions are to ens ure that

specifications used to build a product are validate d prior

to time and money going into building the final pro duct. By

using an assertion repository filled with correct a ssertions

to build the specifications for a design, the engin eer can

be sure that the specifications used to build the f inal

product are correct. If errors are found in the

specifications the engineer can go back and find ou t where

 51

the error is coming from. This would be faster and cheaper

than correcting software that has already been deve loped in

accordance with incorrect specifications.

B. FUTURE WORK

The goal in both the DoD and the software industry is

to produce software that is cost effective, reliabl e,

maintainable, and above all usable. The current gui dance on

verification and validation that exists does not pr ovide a

technique to show engineers how to create software that

possesses these attributes. The guidance that does exist

leaves software engineers to develop their own veri fication

and validation methods.

The amount of work that could be conducted in the

software industry to ensure reliable software is be ing

produced is abundant. We have established an approa ch for

developing and validating statechart assertions as a road

map to produce reliable software. One avenue of fut ure work

would be to further expand this approach by develop ing

additional assertions that apply to a specific doma in. For

example, select a domain of interest such as theatr e

ballistic missile defense. Then, determine requirem ents that

exist within that domain. Once the requirements for the

specific domain are understood, translate the natur al

language of the requirements into assertions as we did in

chapter IV. Then validate the assertions through th e use of

test cases to ensure that the statechart assertions

correctly represent the intended behavior the model er has in

mind.

 52

Another avenue of future work would be to create a

library to store the assertions in. When creating t he

library the developer will need to consider the siz e of the

library and how many assertions will be placed in i t. The

developer will need to decide if several libraries are to be

developed to categorize the different assertions or if the

assertions will be organized within one library in a manner

that will be easy to search. Once the organization of the

library is decided information retrieval will need to be

focused on. How will assertions be retrieved or cal led from

the library? What will be the best interface to fac ilitate

information retrieval and the use of the assertions ? The

goal should be to find an acceptable interface that does not

cause errors of its own. Another area to look at is the

adaptation of the assertions to a library environme nt. Do

they perform as expected? One goal the developer sh ould seek

is to automate the processes of organizing, retriev ing

information from, and interfacing the libraries as much as

possible in an attempt to reduce errors.

Finally, once a library is developed, a future proj ect

could focus on how to best maintain that library to

facilitate future use. One item to consider is if c ertain

assertions are used more frequently than others. In this

case the developer would want to set up the library in a way

that the frequently used assertions can be searched before

the rest of the library is searched. A way to enabl e this

would be to maintain a count of how often each asse rtion is

used. Also if an assertion is proven not to be used , a way

to comment the assertion out in the library to elim inate it

from future searches may prove useful. Doing this m ay be a

way to enable faster searches thereby saving time i n the

 53

development process. By commenting the assertion ou t rather

than removing it from the library it can still be i ncluded

in future searches if it is decided that it is need ed.

 54

THIS PAGE INTENTIONALLY LEFT BLANK

 55

APPENDIX: ADDITIONAL ASSERTION DIAGRAMS AND TEST
SUITES

A. ADDITIONAL ASSERTION DIAGRAMS BOUNDED BY TIME

1. Whenever P Then Less Than N Qs Within T

P; incrTime(31) (timeout has occurred). We expected an

obvious success. Our expectation was confirmed.

P; incrTime(5); Q; incrTime(26) (timeout has occurr ed).

We expected an obvious success. Our expectation was

confirmed.

 56

P; incrTime(5); Q; incrTime(5); Q; incrTime(21)

(timeout has occurred). We expected failure since w e set N

to 2. Our expectation was confirmed.

P; incrTime(5); Q; incrTime(5); Q; incrTime(5); Q ;

incrTime(16)(timeout has occurred). We expected fai lure

since we set N to 2. Our expectation was confirmed.

P; incrTime(5); Q; incrTime(26)(timeout has occurre d);

P; incrTime(5); Q; incrTime(5) Q; incrTime(21) (tim eout has

occurred). We tested for multiple intervals in this test to

ensure that the assertion would observe more than a single

time interval. We expected failure in the second in terval

since we set N to 2. Our expectation was confirmed.

 57

2. Whenever P Then Less Than or Equal to N Qs Within
T

P; incrTime(31) (timeout has occurred). We expected an

obvious success. Our expectation was confirmed.

P; incrTime(5); Q; incrTime(26) (timeout has occurr ed).

We expected an obvious success. Our expectation was

confirmed.

 58

P; incrTime(5); Q; incrTime(5); Q; incrTime(21)

(timeout has occurred). We expected an obvious succ ess. Our

expectation was confirmed.

P; incrTime(5); Q; incrTime(5); Q; incrTime(5); Q ;

incrTime(16)(timeout has occurred). We expected obv ious

failure since we set N to 2. Our expectation was co nfirmed.

P; incrTime(5); Q; incrTime(26)(timeout has occurre d);

P; incrTime(5); Q; incrTime(5) Q; incrTime(5); Q;

incrTime(16) (timeout has occurred). We tested for multiple

intervals in this test to ensure that the assertion would

observe more than a single time interval. We expect ed

failure in the second interval since we set N to 2. Our

expectation was confirmed.

 59

3. Whenever P Then Equal to N Qs Within T

P; incrTime(31) (timeout has occurred). We expected

obvious failure since we set N to 2. Our expectatio n was

confirmed.

P; incrTime(5); Q; incrTime(26) (timeout has occurr ed).

We expected obvious failure since we set N to 2. Ou r

expectation was confirmed.

 60

P; incrTime(5); Q; incrTime(5); Q; incrTime(21)

(timeout has occurred). We expected obvious success since we

set N to 2. Our expectation was confirmed.

P; incrTime(5); Q; incrTime(5); Q; incrTime(5); Q ;

incrTime(16)(timeout has occurred). We expected obv ious

failure since we set N to 2. Our expectation was co nfirmed.

P; incrTime(5); Q; incrTime(5); Q; incrTime(21)(tim eout

has occurred); P; incrTime(5); Q; incrTime(5) Q;

incrTime(5); Q; incrTime(16) (timeout has occurred) . We

tested for multiple intervals in this test to ensur e that

the assertion would observe more than a single time

interval. We expected failure. Our expectation was

confirmed.

 61

4. Whenever P Then Greater Than or Equal to N Qs
Within T

P; increment time to 31; timeout. We expected obvio us

failure since we set N to 2. Our expectation was co nfirmed.

P; incrTime(5); Q; incrTime(26) (timeout has occurr ed).

We expected failure since we set N to 2. Our expect ation was

confirmed.

 62

P; incrTime(5); Q; incrTime(5); Q; incrTime(21)

(timeout has occurred). We expected success since w e set N

to 2. Our expectation was confirmed.

P; incrTime(5); Q; incrTime(5); Q; incrTime(5); Q ;

incrTime(16)(timeout has occurred). We expected suc cess

since we set N to 2. Our expectation was confirmed.

P; incrTime(5); Q; incrTime(5); Q; incrTime(5) P;

incrTime (5); Q; incrTime(26)(timeout has occurred) . Our

goal in this test was to ensure that the assertion could

handle overlapping time intervals and that the asse rtion

observes more than the first P in a sequence of Ps. The test

was expected to be a failure since we set N to 2 wh ich

violates the second P. Our expectation was confirme d.

P; incrTime(5); Q; incrTime(5); Q; incrTime(21)(tim eout

has occurred); P; incrTime(5); Q; incrTime(26) (tim eout has

occurred). We tested for multiple intervals in this test to

ensure that the assertion would observe more than a single

time interval. We expected failure since we set N t o 2. Our

expectation was confirmed.

 63

5. Whenever P Then Greater Than N Qs Within T

P; incrTime(31)(timeout has occurred). We expected

failure since we set N to 2. Our expectation was co nfirmed.

P; incrTime(5); Q; incrTime(26) (timeout has occurr ed).

We expected failure since we set N to 2. Our expect ation was

confirmed.

 64

P; incrTime(5); Q; incrTime(5); Q; incrTime(21)

(timeout has occurred). We expected failure since w e set N

to 2. Our expectation was confirmed.

P; incrTime(5); Q; incrTime(5); Q; incrTime(5); Q;

incrTime(31)(timeout has occurred). We expected suc cess

since we set N to 2. Our expectation was confirmed.

P; incrTime(5); Q; incrTime(5); Q; incrTime(5) Q;

incrTime (5); P; incrTime(10); Q; incrTime(21)(time out has

occurred). Our goal in this test was to ensure that the

assertion could handle overlapping time intervals a nd that

the assertion observes more than the first P in a s equence

of P’s. The test was expected to be a failure since we set N

to 2. Our expectation was confirmed.

 65

P; incrTime(5); Q; incrTime(5); Q; incrTime(5); Q;

incrTime(16)(timeout has occurred); P; incrTime(5); Q;

incrTime(26) (timeout has occurred). We tested for multiple

intervals in this test to ensure that the assertion would

observe more than a single time interval. We expect ed

failure since we set N to 2. Our expectation was co nfirmed.

6. Whenever P Then Q and R Within T

 66

P; incrTime(31) (timeout has occurred). We expected

failure. Our expectation was confirmed.

Q; incrTime(31) (timeout has occurred). We expecte d

success. Our expectation was confirmed.

R; incrTime(31) (timeout has occurred). We expected

success. Our expectation was confirmed.

P; incrTime(5); Q; incrTime(26) (timeout has occurr ed).

We expected failure. Our expectation was confirmed.

 67

P; incrTime(5); R; incrTime(26) (timeout has occurr ed).

We expected failure. Our expectation was confirmed.

P; incrTime(5); Q; incrTime(5); R; incrTime(21)(tim eout

has occurred). We expected success. Our expectation was

confirmed.

P; incrTime(5); R; incrTime(5); Q; incrTime(21)(tim eout

has occurred). We expected success. Our expectation was

confirmed.

P; incrTime(5);P; incrTime(5); Q; incrTime (5); R;

incrTime(26)(timeout has occurred). Our goal in thi s test

and the next was to ensure that the assertion could handle

overlapping time intervals and that the assertion o bserves

more than the first P in a sequence of Ps. The test was

expected to be a success. Our expectation was confi rmed.

 68

P; incrTime(5);Q; incrTime(10) P; incrTime (5); R;

incrTime(26)(timeout has occurred). The test was ex pected to

be a failure. Our expectation was confirmed.

P; incrTime(5); Q; incrTime(5); R; incrTime(21)(tim eout

has occurred); P; incrTime(5); Q; incrTime(26) (tim eout has

occurred). We expected failure. Our expectation was

confirmed.

In this assertion statement we did not differentiat e

between Q or R coming first, our intention was to e nsure

that the combination of both Q and R regardless of order

resulted in a successful test.

 69

7. Whenever P Then Q or R Within T

P; incrTime(31) (timeout has occurred). We expected

failure. Our expectation was confirmed.

Q; incrTime(31) (timeout has occurred). We expected

success. Our expectation was confirmed.

 70

R; incrTime(31) (timeout has occurred). We expected

success. Our expectation was confirmed.

P; incrTime(5); Q; incrTime(26) (timeout has occurr ed).

We expected success. Our expectation was confirmed.

P; incrTime(5); R; incrTime(26) (timeout has occurr ed).

We expected success. Our expectation was confirmed.

P; incrTime(5); Q; incrTime(5); R; incrTime(21)(tim eout

has occurred). We expected success. Our expectation was

confirmed.

 71

P; incrTime(5); R; incrTime(5); Q; incrTime(21)(tim eout

has occurred). We expected success. Our expectation was

confirmed.

P; incrTime(5);Q; incrTime(15); P; incrTime(5); R;

incrTime(26)(timeout has occurred). Our goal in thi s test

and the next was to ensure that the assertion could handle

overlapping time intervals and that the assertion o bserves

more than the first P in a sequence of P’s. The tes t was

expected to be a success. Our expectation was confi rmed.

P; incrTime(5);Q; incrTime(10) P; incrTime(31) (tim eout

has occurred); R. The test was expected to be a suc cess.

Our expectation was confirmed.

 72

P; incrTime(5); Q; incrTime(31)(timeout has occurre d);

P; incrTime(5); Q; incrTime(5); R; incrTime(21) (ti meout has

occurred). We tested for multiple intervals in this test and

the next to ensure that the assertion would observe more

than a single time interval. We expected success. O ur

expectation was confirmed.

8. Whenever P Then Q or Rot R Within T

P; incrTime(31) (timeout has occurred). We expected

obvious success. Our expectation was confirmed.

 73

Q; incrTime(31) (timeout has occurred). We expecte d

success. Our expectation was confirmed.

R; incrTime(31) (timeout has occurred). We expected

success. Our expectation was confirmed.

P; incrTime(5); Q; incrTime(26) (timeout has occurr ed).

We expected success. Our expectation was confirmed.

P; incrTime(5); R; incrTime(26) (timeout has occurr ed).

We expected failure. Our expectation was confirmed.

 74

P; incrTime(5); Q; incrTime(5); R; incrTime(21)(tim eout

has occurred). We expected failure. Our expectation was

confirmed.

P; incrTime(15);P; incrTime(5); Q; incrTime(26)(tim eout

has occurred); R. Our goal in this test and the ne xt was to

ensure that the assertion could handle overlapping time

intervals and that the assertion observes more than the

first P in a sequence of P’s. The test was expected to be a

success. Our expectation was confirmed.

P; incrTime(5);Q; incrTime(10) P; incrTime(21); R;

incrTime(10) (timeout has occurred). The test was e xpected

to be a failure. Our expectation was confirmed.

 75

P; incrTime(5); Q; incrTime(26) (timeout has occurr ed);

P; incrTime(5); R; incrTime(26) (timeout has occurr ed). We

tested for multiple intervals in this test to ensur e that

the assertion would observe more than a single time

interval. We expected failure. Our expectation was

confirmed.

9. Whenever P Then Q and Not R within T

 76

P; incrTime(31) (timeout has occurred). We expected

obvious failure. Our expectation was confirmed.

Q; incrTime(31) (timeout has occurred). We expected

success. Our expectation was confirmed.

R; incrTime(31) (timeout has occurred). We expected

success. Our expectation was confirmed.

P; incrTime(5); Q; incrTime(26) (timeout has occurr ed).

We expected success. Our expectation was confirmed.

 77

P; incrTime(5); R; incrTime(26) (timeout has occurr ed).

We expected failure. Our expectation was confirmed.

P; incrTime(5); Q; incrTime(5); R; incrTime(21)(tim eout

has occurred). We expected failure. Our expectation was

confirmed.

P; incrTime(5); Q; incrTime(5); Q; incrTime(21)

(timeout has occurred). We expected success. Our ex pectation

was confirmed.

P; incrTime(5); Q; incrTime(5); Q; incrTime(5); P;

incrTime(20); Q; incrTime(15) (timeout has occurred). Our

goal in this test was to ensure that the assertion could

handle overlapping time intervals and that the asse rtion

 78

observes more than the first P in a sequence of P’s . The

test was expected to be a success. Our expectation was

confirmed.

P; incrTime(5); Q; incrTime(5); Q; incrTime(21)

(timeout has occurred); P; incrTime(5); Q; incrTime (26)

(timeout has occurred). We tested for multiple inte rvals in

this test to ensure that the assertion would observ e more

than a single time interval. We expected success. O ur

expectation was confirmed.

B. ADDITIONAL ASSERTION DIAGRAMS UNBOUNDED BY TIME

We felt that this assertion statement should be

separated from the other assertion statements becau se the

time is unbounded. It still has merit as an asserti on

statement but may not be as useful as the other ass ertions.

 79

1. Whenever P Then Not Q After T

P; incrTime(31) (timeout has occurred). We expected

obvious success. Our expectation was confirmed.

Q; incrTime(31) (timeout has occurred). We expected

success. Our expectation was confirmed.

P; incrTime(5); Q; incrTime(26) (timeout has occurr ed).

We expected success. Our expectation was confirmed.

 80

P; incrTime(31) (timeout has occurred); Q . We expe cted

failure. Our expectation was confirmed.

P; incrTime(10); P; incrTime(10); Q;

incrTime(21)(timeout has occurred). Our goal in thi s test

was to ensure that the assertion could handle overl apping

time intervals and that the assertion observes more than the

first P in a sequence of Ps. We expected success. O ur

expectation was confirmed.

P; incrTime(5); P; incrTime(31)(timeout has occurre d);

Q. We expected failure. Our expectation was confirm ed.

 81

P; incrTime(5); Q; incrTime(26)(timeout has occurre d);

P; incrTime(31)(timeout has occurred); Q. We tested for

multiple intervals in this test to ensure that the assertion

would observe more than a single time interval. We expected

failure. Our expectation was confirmed.

 82

THIS PAGE INTENTIONALLY LEFT BLANK

 83

LIST OF REFERENCES

Appleton, B. "Patterns and software: essential conc epts and
terminology” CM Crossroads (2000),
http://www.cmcrossroads.com/bradapp/docs/patterns-
intro.html (accessed September 20, 2008).

Cheng, B. and Konrad, S. "Real-time specification p atterns."

Proceedings of the 27th international conference on
Software engineering (2005): 372-381.

Drusinsky,D. Modeling and verification using UML statecharts

- a working guide to reactive system design, runtime
monitoring and execution-based model checking.
Elsevier, 2006.

D.Drusinsky, M.Shing, K.Demir, “Creation and valida tion of

embedded assertion statecharts”, Proc. 15th IEEE
International Workshop in Rapid System Prototyping,
Greece (June 14-16, 2006): 17-23.

Dwyer, M., Avrunin, G., et.al. “Patterns in propert y

specifications for finite-state verification.”
Proceedings of the 21st international conference on
software engineering(1999):411-420.

Harel,D. Statecharts: A visual approach for complex systems,

science of computer programming, vol.8, no.3. 1987:
231-274.

Institute of Electrical and Electronics Engineers, Standard

for Software Verification and Validation, IEEE-STD-
1012, June 08, 2005.

Le Vie, D., “Writing software requirements specific ations”

TECHWR-L (MAR 2007) http://www.techwrl.com/techwhir l/
magazine/writing/softwareequirementspecs.htm (acces sed
July 15, 2008).

Levenson, N. and Turner, C., “Investigation of the Therac 25

accidents.” IEEE Computer (July 1993): 18-41.

Lewis, R. Independent verification & validation: A life

cycle engineering process for quality software. New
York: John Wiley & Sons, 1992, xxiii.

 84

Lim, W. Managing software reuse, a comprehensive guide to
strategically reengineering the organization for
reusable components. Upper Saddle River, New Jersey:
Prentice Hall PTR, 1998, 7.

Logan, R., and Nitta, C., “Verification & validatio n:

process and levels leading to qualitative or
quantitative validation statements.” SAE Transactions
vol.113, no.5 (2004),
http://bill.cacr.caltech.edu/valworkshop/upload/fil es/U
CRLTR-200131sae04fa.pdf (accessed June 01, 2008).

Merritt, R., “Embedded experts: fix code bugs or co st

lives.” Information Week (10 APR 2006),
http://www.informationweek.com/news/management/show Arti
cle.jhtml?articleID=185300011 (accessed May 05, 200 8).

National Institute of Standards and Technology (NIS T).

“Software errors cost U.S. economy $59.5 billion
annually.” National Institute of Standards and
Technology (NIST2002-10) (2002),
http://www.nist.gov/public_affairs/releases/n02-10. htm
(accessed May 10, 2008).

National Aeronautics and Space Administration (NASA), "NASA

IV&V facility - about IV&V." National Aeronautics a nd
Space Administration (NASA),
http://www.nasa.gov/centers/ivv/ about/index.html
(accessed June 01, 2008).

NASA IV&V Facility, “NASA IV&V 2006 annual report.” NASA

IV&V Facility, http://www.nasa.gov/centers/ivv/pdf/
174321main_Annual_Report_06_Final.pdf (accessed Jun e
01, 2008).

Nickolett, C., “Project due diligence: independent

verification and validation.” White Paper.Comprehen sive
Consulting Solutions. Mar 2001: 1-6. http://www.com p-
soln.com/IVV_whitepaper.pdf (accessed June 01, 2008).

 85

Otani, T., Drusinsky, D., et.al, “Validating UML st atechart
based assertions libraries for improved reliability and
assurance.” Proceedings of the Second International
Conference on Secure System Integration and Reliabi lity
Improvement (SSIRI 2008), Yokohama, Japan (July 14- 17
2008): 47-51.

Rakin, S., “Food for thought: What is software qual ity

assurance?” Software Quality Consulting (Jan. 2005,
Vol.2
No.1),http://www.swqual.com/newsletter/vol2/no1/vol 2no1
.html (accessed June 05, 2008).

Reiss, S. A practical introduction to software design with
C++. New York: John Wiley & Sons, 1998, 397-421.

Robat, C., “Introduction to software history.” The History

of Computing Project (October 17, 2006),
http://www.thocp.net/software/software_reference/in trod
uction_to_software_history.htm (accessed June 11,
2008).

The Standish Group International, "Annual Chaos Rep ort."

(2006).

Woodham, K. System Reference Model (SRM) development and

analysis guideline, 1st draft (National Aeronautics and
Space Administration (NASA), 2007).

 86

THIS PAGE INTENTIONALLY LEFT BLANK

 87

INITIAL DISTRIBUTION LIST

1. Dudley Knox Library
 Naval Postgraduate School
 Monterey, CA

2. Defense Technical Information Center
 Ft. Belvoir, VA

3. Professor Bret Michael
 Naval Postgraduate School
 Monterey, CA

4. Professor Man-Tak Shing
 Naval Postgraduate School
 Monterey, CA

5. Professor Doron Drusinsky
 Naval Postgraduate School
 Monterey, CA

6. Professor Tom Otani
 Naval Postgraduate School
 Monterey, CA

7. Dr. Butch Caffall
 NASA IV&V Facility
 Fairmont, WV

8. Mr. Steve Raque
 NASA IV&V Facility
 Fairmont, WV

