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ABSTRACT

This thesis examines the role of independent valida tion
in the development of software systems. As software systems
become increasingly larger and more complex the rol e of
software validation becomes crucial. In particular, one must
make sure that the specification of a software syst em is
correct with respect to customer expectations. We i ntroduce
an approach for developing and validating reuse lib raries of
temporal formal specifications. These libraries inc lude UML
statechart based assertions for formal specificatio ns and
their associated validation test scenarios. We buil d the
validation test scenarios with the goal of ensuring that
specifications within the libraries are indeed erro r-free

and consistent.
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. 1 NTRODUCTI ON

A MOT1 VATI ON

Software is essential to almost every facet of our
daily lives from business to science, and while the
advantages are numerous and have arguably bettered
lives, it comes with a cost. The National Institut
Standard and Technology (NIST) sponsored a study in
found that the annual cost of software errors to th

Economy in 2001 was approximately $59.5 billion.

Additionally the study found that over half the cos
been borne by the users. This is remarkable because
practitioners have not yet been held accountable to
standards imposed on engineers in traditional engin

disciplines.

Over the years, some software defects have resulted
human injuries, property damage, and in extreme cas
of human lives. This is a cost that is unacceptable
and must not be accepted by software developers. On

most well known examples of software error causing

our
e of
2001 and
e U.S.

ts have
software
the same

eering

in
es, loss
to users
e of the

human

fatalities is the THERAC 25 2, This machine was supposed to

save human lives by sending the proper amount of ra
into patients, but instead it overdosed humans with

diation

massive

1 National Institute of Standards and Technology (NI ST), “Software
errors cost U.S. economy $59.5 billion annually.” N ational Institute of
Standards and Technology (NIST2002-10) (2002),
http://www.nist.gov/public_affairs/releases/n02-10. htm (accessed May 10,
2008).

2 N. Levenson and C. Turner, “Investigation of the T herac 25
accidents.” | EEE Comput er (July 1993), 18-41.

1



amounts of radiation and resulted in several fatali

ties. 3

These failures are not just unacceptable but could have been
avoided had the software been validated and verifie d
properly. The |IEEE standards, for validation and

verification, help to guide the software developers with two
main questions, “am | building the right product?” and “am |
building the product right?” These questions are

longstanding and will, if answered appropriately, h elp
reduce the risk of mishaps due to software defects.

Another challenge the software industry faces is th at
software is increasing in complexity, making it dif ficult to
detect errors and eliminate them. This also increas es the
importance of validation and testing methods that e nable
earlier and more effective error identification and removal.
Software must be verified and validated to ensure n ot just
guality and safety but also guard against waste, in terms of
money and lives.

Our motivation for the research reported here is to
develop techniques that improve the engineer’s abil ity to
validate software systems. Additionally, these vali dation
techniques will be applicable to the entire softwar e
industry and when used in conjunction with verifica tion will
hopefully result in better software systems and red uce
software defects and their attendant costs.

3 R. Merritt, “Embedded experts: fix code bugs or co st lives.”
I nf ormati on Week (April 10, 2006), http://www.informationweek.com/n ews/
management/showArticle.jhtml?articlelD=185300011 (a ccessed May 05,

2008).
2



B. | NDEPENDENT VALI DATI ON AND VERI FI CATI ON

The current guideline for validation and verificati
is the IEEE standard 1012-20044 which has had to ev
because of decades of unsuccessful software. The ov
is to establish guidelines for the software industr

follow and help to create better software products.

The following is directly quoted from the IEEE stan
1012-2004 >:

Software V&V processes consists of the following:

* Verification process and validation process. The
verification process provides objective evidence
whether the software and its associated products an
processes conform to requirements (e.g., for
correctness, completeness, consistency, accuracy) f
all life cycle activities during each life cycle
process acquisition, supply, development, operation
and maintenance)satisfy standards, practices, and
conventions during life cycle processes.

» Successfully complete each life cycle activity and
satisfy all the criteria for initiating succeeding
cycle activities (e.g., Dbuilding the software
correctly).

 The validation process provides evidence whether th
software and its associated products and processes
satisfy system requirements allocated to software a
the end of each life cycle activity.

* Solve the right problem (e.g., correctly model phys
laws, implement business rules, use the proper  syst
assumptions).

» Satisfy intended use and user needs.

on
olve
erall aim

y to

dard

or

life

ical
em

4 Institute of Electrical and Electronics Engineers , Standard for
Software Verification and Validation,|IEEE-STD-1012, June 08, 2005.

5 Institute of Electrical and Electronics Engineers , Standard for
Software Verification and Validation,IEEE-STD-1012, June 08, 2005.
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The verification process and the validation process
interrelated and complementary processes that use e
other's process results to establish better complet

criteria and analysis, evaluation, review, inspecti
assessment, and test V&V tasks for each software li

activity.

The IEEE guidelines leave the software industry to
develop their own validation and verification metho
industry has yet to integrate these techniques full
contributing to the poor record of software acquisi
fact, the Standish Group reported that the success
software projects was 35% in 2006, and the report ¢
that software developers fielded only 46% of the re
features and functions, which means that the projec
not meet the needs of the customer.
conformance to the V&V guidelines are not enough to
significantly lower the defect rate in software par
systems. The V&V guidelines empower the individual
and implement their own IV&V plan of actions, and t
consequence to not following the guidelines is unsu
acquisition of software. Formal V&V (FV&V) techniqu
used to address some of the failings of the existin

practice of V&V.

C. THE NEED FOR A STANDARD TECHNI QUE

The current problem facing the software industry in
facilitating validation is that there are no concis
techniques to conduct validation. The IEEE IV&V gui
are general and meant to guide the industry in the

6 The Standish Group International, "Annual Chaos Re
4

are
ach
ion
on,

fe cycle

ds. The
Y,
tion. In
rate of
laimed
quired
ts did

6 These studies indicate

tition of
to create
he only
ccessful
es can be

e, simple
delines

actual

port." (2006).



implementation of validation. This leaves the softw
industry to its own devices on the implementation o
validation and can result, in the worst case scenar

poor validation processes if validation is conducte

This is largely due to the ignorance of validation
procedures and misunderstanding of the
validation. And it has resulted in the industry’s p
focus on verification because it can be easier to a
and minimal effort is put into validation. Thus muc

is in “have we built the system right?” but not “ha

built the right system?”

Adding to the problem, there is no general consensu
among the academic community on how to complete
validation phase, many different paths are used. Th
way for a system to be built, if there is structure
is for the software requirements to be gathered, us
and paper, use cases built and then code is written
from the use cases. There is no formal link from th
requirements to the formal specification of the sys
behaviors (if one exists) to ensure that the correc
is being built. The formal specification of system
includes assertions which precisely model the requi
behavior of the system and can be traceable to the
requirements providing a means to ensure that the c
system is being built. As examples, both Voyager a
Galileo had significant software errors; the primar
of the faults were directly related to system behav
had not been identified or developed by the develop
can significantly reduce these kids of errors by fo

necessity of

are

io, with
d at all.

rimary
ccomplish
h effort

ve we

e typical
at all,
ing pen
directly
e
tem
t system
behaviors
red
system
orrect
nd
y cause
iors that
ers. One

rmally



specifying the required behaviors in terms of asser

validating the correctness of these assertions agai

stakeholder expectations before building the softwa

One way to facilitate the validation process is thr
execution-based validation. Execution-based validat
the process of inferring certain behavioral propert
exercise the system under test (SUT) in a known env
and with selected inputs. This gives the person con
validation the capability to validate that the syst
built is the correct system based on user requireme
our thesis we use the StateRover white-box automati
generator. The white-box test generator constructs
TestCase class from a given statechart assertion mo

the associate embedded assertions. The advantages o

process include: the ability to pinpoint specific e
investigate the causes of failures on a specific in
detail; and eliminate errors in their design in an

manner.

D. THE ROLE OF SOFTWARE REUSE

Software reuse is an important concept that can hel

clarify validation techniques, making them more rel
software development teams. Software reuse aims to
the productivity, efficiency and quality of softwar
reusing the applicable software from one project in

project. 7 By reusing the software the developers can save

resources that would have otherwise been used to de

software.

tions and
nst

re.

ough
ion is
ies to
ironment
ducting
em being
nts. In
C test-
a JUnit
del and
f this
rrors;
put in
efficient

evant for
increase
e by
another

velop the

7 'W. Lim, Managi ng software reuse, a conprehensive guide to
strategically reengineering the organization for reusabl e conponents.

Upper Saddle River, New Jersey: Prentice Hall PTR,
6



An important part of validation is the creation of

formal specifications in the form of assertion stat

capture the correct behavior of the software from n

language requirements. Assertion statements can be

to define

and produce

because

of natural

ambiguities. However, with the use of the reuse con

libraries can be established. These libraries will

language

correct assertion statements which have been thorou

tested. The assertion development team can then reu

correct assertion statement and use the accompanyin

suite to ensure that the chosen assertion matches t

requirements and proper validation is occurring.

E. QUTLI NE

This work’s main objective

is

to facilitate

assertion validation process. This is accomplished

the use of libraries which contain consistent and a

assertions. We intend to demonstrate that these as

are correct and

scenarios.

reusable through
These assertions will

the

the use of testing

provide a

engineering control for the IV&V process.

The organization of the thesis is as follows:

type of

Chapter Il provides background information about IV

and software reuse. The chapter will show a deficie

the current guidance provided for software validati

will describe reuse techniques that have been accom

to date.

ements to
atural
difficult

cepts,
contain
ghly
se the
g test
he

through
ccurate

sertions

&V
ncy in
on, and

plished



Chapter Il discusses the NASA System Reference Mod el

(SRM) and the use of assertions in repository libra ries.

Chapter IV discusses the use of patterns to facilit ate

Software reuse.

Chapter V provides conclusions and recommendations for

future research.



1. 1V& AND SOFTWARE REUSE

A COVPLEXI TY OF SOFTWARE DESI GN

Anyone who is associated with software design

understands that software systems can be extremely
that

researchers often focus their research solely on wa

They are so complex most software engineering
deal with complexity. The reason these systems are

complicated can often be traced back to the users’
requirements for that system. A system that is requ
perform several functions will naturally be more co
than a system that is required to perform just one

Common problems that occur when developing software
failing to match the final product to the customers

or dealing with errors in the software that often r
themselves at the worst possible time and are often

to fix. One way to try to avoid these problems is t
implement Independent Verification and Validation (
software reuse into the development of the systems.

chapter covers IV&V, how IV&V is conducted, and how

engineers are currently leveraging software reuse i
building software systems.
B. DEFI NI TI ONS

Independent: Independence in relation to IV&V is
defined by the Institute of Electrical and Electron
Engineers (IEEE) using three parameters: technical
independence, managerial independence, and financia
independence.

complex.

ys to
o)

ired to
mplex
function.
include
' needs,
eveal
costly
0
IV&V) and
This

software

ics



Technical Independence: “requires the V&V effort to

utilize personnel who are not involved in the devel opment of
the software.” 8
Managerial Independence: “requires that the

responsibility for the IV&V effort be vested in an

organization separate from the development and prog ram
management organizations.” o

Financial Independence: “requires that control of the
IV&V budget be vested in an organization independen t of the
development organization.” 10

Verification: “The process of evaluating a system or
component to determine whether the products of a gi ven
deployment phase satisfy the conditions imposed at the start
of that phase.” 11 Software verification answers the

guestion, “Are we building the product right?”

Validation: “The process of evaluating a system or
component during or at the end of the development p rocess to
determine whether it satisfies specified requiremen ts.”
12350ftware validation answers the question “Are we bu ilding

the right product?”

8 Institute of Electrical and Electronics Engineers, Standard for
Software Verification and Validation,IEEE-STD-1012, June 08, 2005.

9 Ibid.
10 bid.
11 bid.
12 pid.
10



Software IV&V: “a series of technical and management

activities performed by someone other than the deve loper of
a system to improve the quality and reliability of that
system and to assure that the delivered product sat isfies
the user’s operational needs.” 13

Software Reuse: “the use of existing software artifacts
in the development of other software artifacts with the goal

of improving productivity and quality, among other

factors.” 14

Requirement Specification: “an organization's
understanding (in writing) of a customer or potenti al
client's system requirements and dependencies at a

particular point in tinme (usually) prior to any actual

design or development work.” 15

Pattern: “a body of literature to help software
developers resolve recurring problems encountered t hroughout
all of software development.” 16
C. | V&V BACKGROUND

In the early 1940s the first computer was developed to
calculate artillery firing tables for the United St ates

13 R. Lewis, | ndependent verification & validation: Alife cycle

engi neering process for quality software.New York: John Wiley & Sons,
(1992): xxiii.

14 w. Lim, Managi ng software reuse, a conprehensive guide to
strategically reengineering the organization for reusabl e conponents.

Upper Saddle River, New Jersey: Prentice Hall PTR, (1998): 7.

15 p. Le Vie, “Writing software requirements specific ations” TECHWR-L
(MAR 2007) http://lwww.techwrl.com/techwhirl/magazin elwriting/
softwarerequirementspecs.htm (accessed July 15, 200 8).

16 B, Appleton, "Patterns and software: essential con cepts and
terminology” CM Crossroads (2000), http://www.cmcro ssroads.com/
bradapp/docs/patterns-intro.html (accessed Septembe r 20, 2008).

11



Army's Ballistic Research Laboratory. The design of the

computer was focused primarily on hardware, not pay ing much
attention to software. In fact, some would say in t he early
stages of computing, software was often ignored. Th e
intention of computers at this time was to perform a single
task. When the task was identified the computers we re hard-
wired to accomplish that task. With the role of sof tware

being so small the need for IV&V had not yet been
recognized. However, as time passed and the role an d cost of

software grew, the need for IV&V became evident.

In the mid 1940s John Von Neumann came up with two

concepts that would have a direct impact on softwar e design.
The first was known as “shared program technique.” “This
technique states that the actual computer hardware should be
simple and not need to be hand-wired for each progr am.
Rather, complex instructions should be used to cont rol the
simple hardware, allowing it to be reprogrammed muc h
faster.” 17

The second concept he developed was called “conditi onal
control transfer.” “This idea gave rise to the noti on of
subroutines, or small blocks of code that could be jumped to
in any order, instead of a single set of chronologi cally
ordered steps for the computer to read. The second part of
the idea stated that computer code should be able t o branch
out based on logical statements such as “IF” (expre ssion)

“THEN,” and looped with others such as a “FOR”

17 C. Robat, “Introduction to software history.” Th e History of
Computing Project (October 17, 2006), http://www.th ocp.net
/software/software_reference/introduction_to_softwa re_history.htm

(accessed June 11, 2008).
12



statement.” 18 The use of these concepts, and others like
them, allowed software to grow into a more signific ant part
of computer design.

As software grew, so did the cost associated with i t.
In the 1950s, software’s cost was only 20% of the o verall
system cost. In the 1980’s, software costs rose to 80%.
Today, software costs can be up to 95% of the overa Il system
cost. 19 These rising costs forced software developers to
find a way to save money.

In the late 1950s, one of the leading software
developers was the Department of Defense (DoD). The DoD
began to notice projects were consistently behind schedule,
over budget, and did not provide the required perfo rmance.
This was unacceptable not only for financial reason s but
because software errors can lead to loss of life, i njury, or
loss of property especially in military systems. Th e DoD was
repeatedly surprised by the costly projects because
“...software development contractors often gave ove rly
optimistic assessments of the software development status to
the DoD.” 20 To address this, the DoD launched a plan to
conduct IV&V on their software systems in an attemp t to get
accurate assessments of how their projects were doi ng. The

18 c. Robat, “Introduction to software history.” The History of

Computing Project (October 17, 2006), http://www.th
/software/software_reference/introduction_to_softwa
(accessed June 11, 2008).

19 5. Reiss, A practi cal
New York: John Wiley & Sons, 1998, 397-421.

20 5. Rakin, “Food for thought: What is software qual
Software Quality Consul ting (Jan. 2005, Vol.2 No.1),
http://www.swqual.com/newsletter/vol2/no1/vol2nol.h
01, 2008).

ocp.net

13

re_history.htm
introduction to software design with C++.

ity assurance?”

tml (accessed June



first program to use IV&V was the Atlas Missile Pro gram in

the late 1950s. An independent software tester was hired to
conduct unbiased testing of the software. 21

Over time, the role of IV&V continued to develop an din
the 1970's *“.. the U.S. Army sponsored the first
significant such V&V program for the Safeguard Ant i-
Ballistic Missile System.” 22 The program was designed to
identify and eliminate the high risks that are comm on with
military systems. It was successful in meeting its goal and
“By the mid- to late 1970’s, IV&V was rapidly becom ing
popular and in some cases was required by the milit ary
services...” 23 “It was from this effort that IV&V became

well known within the Department of Defense and the
aerospace communities as an accepted method of ensu ring
better quality, performance, and reliability of cri tical

systems.” 24

In the decades following the seventies, IV&V became an
intricate part of the software development process. A
process that started as *“...mostly free-form, not v ery
independent, often started too late to be really ef fective,
and was sometimes even performed by the very people who were
developing the system...” 25 grew into process where “...a

21 3. Rakin, “Food for thought: What is software qual ity assurance?”
Software Quality Consulting (Jan. 2005, Vol.2 No.1),
http://www.swqual.com/newsletter/vol2/nol/vol2nol.h tml (accessed June
01, 2008).

22 R, Lewis, I ndependent verification & validation: Alife cycle

engi neering process for quality software. New York: John Wiley & Sons,
1992, xxiii.

23 |pid.
24 \pid.

25 R. Lewis, I ndependent verification & validation: Alife cycle
engi neering process for quality software. New York: John Wiley & Sons,
(1992): xxiii.

14



completely independent entity evaluates the work pr oducts

generated by the team that is designing and/or exec uting a
given project...” 26 The independent entity will also
“...monitor and evaluate every aspect of the projec t itself
from inception to completion.” 27

While the cost of conducting IV&V is high, the mone y
saved by preventing errors and rework is far greate r. In
1993, the National Aeronautics and Space Administra tion
(NASA) established an IV&YV facility in the wake of the Space
Shuttle Challenger accident. The facility was devel oped as
part of a plan “to provide the highest achievable | evels of

safety and cost-effectiveness for mission critical
software.” 28 “In 2006, NASA allocated $27 Million to the

IV&V Facility Budget, of which $19 Million went dir ectly to
IV&V Services.” 29 After conducting a Return on Investment

analysis, “NASA realized a software rework risk red uction
benefit of $1.6 Billion in Fiscal Year 2006 alone.” 30 From
the facilities inception at NASA, it has experience d
continued growth while providing better software/sy stem
performance, higher confidence in the software reli ability,

and a reduced maintenance cost.

26 C. Nickolett, “Project due diligence: independent verification and
validation.” White Paper.Comprehensive Consulting S olutions. Mar 2001:
1-6. http://www.comp-soln.com/IVV_whitepaper.pdf (a ccessed June 01,
2008).

27 |bid.

28 National Aeronautics and Space Administration (NAS A), "NASA IV&V
facility - about IV&V." National Aeronautics and Sp ace Administration
(NASA), http://www.nasa.gov/centers/ivv/ about/inde x.html (accessed June
01, 2008).

29 NASA V&V Facility, “NASA V&V 2006 annual report. " NASA IV&V
Facility, http://www.nasa.gov/centers/ivv/pdf/
174321main_Annual_Report_06_Final.pdf (accessed Jun e 01, 2008).

30 1pid.

15



When performed correctly IV&V can be a crucial part of
the software development process. The process begin s with
developing Software Integrity Levels (SILs) which “ are a

range of values that represent software complexity,

criticality, risk, safety level, security level, de sired
performance, reliability, or other project-unique

characteristics that define the importance of the s oftware
to the user and acquirer.” 31 SILs are then used to determine

which V&V tasks to perform. The higher the software

integrity level, the more V&V tasks assigned. SILs are not
constant and can change as software evolves to ensu re the
appropriate V&V tasks are being performed. Below is an
example of SILs based upon the concepts of conseque nces and
mitigation potential as well as an example of V&V p rocesses,

activities, and tasks from the |IEEE Standard for
Verification and Validation. These examples are pro vided as
guidance on how software developers can incorporate V&V
into their software design to assist in reducing

specification errors.

31 |nstitute of Electrical and Electronic Engineers, Standard for
Software Verification and Validation,IEEE-STD-1012, June 08, 2005.
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Description of Softwareintegrity Level
Software element must execute correctly or grave consequences (loss of life, loss of

system, economic or social loss) will occur. No mitigation is possible.

Software element must execute correctly or the intended use (mission) of the system/

software will not be realized, causing serious consequences (permanent injury, major

system degradation, economic or social impact). Partial to complete mitigation is possible.

Software element must execute correctly or an intended function will not be realized,

causing minor consequences. Complete mitigation possible.

Software element must execute correctly or intended function will not be realized,

causing negligible consequences. Mitigation not required.

Figure 1. Examples of Software Integrity Levels
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D. CURRENT GUI DANCE FOR VALI DATI ON

Incorporating IV&YV into software design is essentia
reducing specification errors. What software engine
to ensure is when IV&V is applied it is done so cor
The definitions for V&V provided at the beginning o
chapter allow for the use of computer-based V&V too
check the correctness of a system or a specific com
against a formal specification derived from the nat
language requirements. The specifications are creat
satisfy
iIs being conducted

the final product is then built to those
Validation that

accordance with

specifications.
the quidelines provided by the IEEE
evaluates specific components or the final product
specifications. This process is in fact verificatio
product is

being built correctly according to the

specifications, however, it is not known if the
specifications themselves are correct. It is impera

validation be conducted on the specifications that
created to ensure that the requirements for the pro

understood and that the correct product is built.

E. SOFTWARE REUSE

Software reuse is a practice that began in the 1950
with the goal of improving software development pro
and quality. For the past twenty years a great deal
research has been focused on software reuse and its
software design. Areas that have been given attenti
include but are not limited to reuse libraries, des
patterns, and reuse formal

using specifications  of

reuse holds
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improving software development productivity and sof
quality, the success of reuse is based on the quali
reusable artifacts. The reuse of software that has
verified and validated contradicts the intended goa
producing quality software because errors in the so
This

discussing the use of formal requirements specifica

may still exist. reasoning also holds true whe
The use of formal requirements specifications is es

in the automation of the software verification proc
However, we assert that the correctness of these fo
specifications must be first validated before they

used to verify correctness of the software.

Formal specification has been an active area of

research for more than two decades. The requirement
specification of a software component describes the

functions and behavior of the software. The ability

the software component becomes evident if its struc

behavior are compatible with new software being des

Verification has been another popular research topi
for over 20 years. Automated finite state verificat
have been developed to assist software developers i
verifying system specifications. The users of these
must be capable of specifying the requirements of t
they are developing in the specification language t
understands. Behavior for a software component is t
specified using temporal logic in an attempt to avo

ambiguity derived from natural language.
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F. FORVAL SPECI FI CATI ON PATTERNS

To assist developers in specifying the behavior in a
temporal logic, Dwyer suggests the wuse of property
specification patterns. “A property specification p attern is

a generalized description of a commonly occurring

requirement on the permissible state/event sequence sin a
finite state model of a system.” 32 These patterns describe
the essential behavior of a system and provide expr essions
of this behavior in a range of common temporal logi cs to be
used with verification tools. The patterns are then given
distinct names describing their behavior which allo ws them
to be mapped to examples of known use, to relations hips to
other patterns, and to specific formalisms. To faci litate
verification, Dwyer proposes the development of a s ystem of
property specific patterns for finite state verific ation
tools. The system is a set of patterns or library o rganized
into one or more hierarchies, with connections betw een
related patterns to facilitate the browsing of the system.
“A user would search for the appropriate pattern to match
the requirement being specified, use the mapping se ction to
obtain the essential structure of the pattern in th e
formalism used by a particular (verification) tool, and then
instantiate that pattern by plugging in the state f ormula or
events specific to the requirement.” 33 The use of these
patterns allows for the specification of critical p roperties

32 . Dwyer, G. Avrunin, et.al. “Patterns in property specifications
for finite-state verification.” Proceedings of the 21st international
conference on software engineering (1999): 411-420.

33 Ibid.
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that exist in software systems and guides users of

verification tools to express these properties in a

specification language.

In 2005, Konrad and Cheng went a step further with

specification patterns and introduced real-time
specification patterns that can be used to specify
properties for embedded systems. Similar to Dwyer's

specification patterns, the real-time specification
contain templates for specifying real-time properti
terms of real-time temporal logic.
intended to provide strategies for specifying real-
properties in a formal specification language, wher
properties are amenable to automated analysis such

verification tools. 35

Specification patterns and the use of libraries to
store those patterns provide another form of softwa
This form of reuse aims at reducing the cost and im
the quality of formal specification development. Ho
the effectiveness of the specification pattern reus
on the correctness and consistency of the resultant
requirements. Proper validation needs to be perform

order to confirm that the requirements are understo

Otani et al. explains a concept of developing and

validating libraries of temporal formal specificati

UML Statechart

assertions for formal specifications and their asso

These libraries would include based

34 B, Cheng and S. Konrad, "Real-time specification p
Proceedings of the 27th international conference on
(2005): 372-381.

35 |bid.
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validation test scenarios. 36 We intend to build the

validation test scenarios with the goal of ensuring that
specifications within the libraries are indeed erro r-free
and consistent. The following chapter describes the NASA
System Reference Model (SRM) and its role in captur ing a

modeler’s understanding of a specific problem.

36 T. Otani, D. Drusinsky, et.al. “Validating UML sta techart based
assertions libraries for improved reliability and a ssurance.”
Proceedings of the Second International Conference on Secure System
Integration and Reliability Improvement (SSIRI 2008 ), Yokohama, Japan,

July 14-17, 2008, 47-51.
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I'11. SYSTEM REFERENCE MODEL

A BACKGROUND

The National Aeronautics and Space Administration

(NASA) has continuously developed their IV&V progra

supporting new technologies and better validation a

verification techniques in an effort to improve the
validation and verification process. Earlier versio

V&V process included the Criticality and Risk Asses
(CARA) and the Software Integrity Level Assessment
(SILAP). Both processes were found lacking because
relied on manual examination and independent testin
target code. These techniques are ineffective for u
validation because there are no links from the requ

to the system’s features, capabilities, properties

functions. Without formal specifications of the sys
behaviors both CARA and SILAP were unable to valida
correctness and completeness of the developer’s
understanding of the requirements. Finally, the pro

were unable to locate the subtle errors in increasi

complex software-intensive system. Both CARA and SI
evaluated the risk of software components in a syst
compiling a list of software components and evaluat

to prioritize risk assessment, which cannot show th

system being built is the correct system. NASA is i

process of replacing SILAP with advanced computer-a

validation techniques.
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The NASA V&V Facility recognized a need for valida tion
to be more than a risk assessment; it needed to pro vide a
model for the system to show 37:
* What the system is supposed to do.
* What the system is not supposed to do and

* How the system should respond under adverse conditi ons.

The NASA V&V Facility now relies on the use of a

System Reference Model (SRM) for each product. “The SRM
provides the basis for validating the completeness and
correctness of the targeted requirements set.” 38 Once the

targeted requirements are developed the independent

validation team is able to validate those requireme nts. The
SRM supports a computer-aided validation technique through
which the independent validation team’s understandi ng and
perception of the problem is validated through the team’s
representation of the SRM'’s features, properties, f unction,
and capabilities. It is also during this time that the
development team is able to discover and correct an y
identified problems or concerns with their understa nding of
the requirements for the intended system. This is i mportant
because the model holds the responsibility to be co mplete

and accurate to serve its intended purpose and the
development team holds the responsibility to ensure that the

model fulfills that purpose.

37 K. Woodham, System Ref erence Model (SRM devel opnent and anal ysis
gui del i ne, 1stdraft (National Aeronautics and Space Administ ration
(NASA), 2007).

38 |bid.
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B.

DEFI NI TI ONS

The following definitions are described in the SRM

guideline 39, The definition of dependability will be

customized to the user’s needs and wants of the sys tem.

Dependability  : A dependable system is one that provides

the appropriate levels of correctness and robustnes sin
accomplishing its mission while demonstrating the

appropriate levels of availability, consistency,

reliability, safety, and recoverability.

Availability . The probability that a system s
operating correctly and is ready to perform its des ired
functions.

Consistency : The property that invariants will always
hold true in the system.

Correctness : A characteristic of a system that
precisely exhibits predictable behavior at all time s as
defined by the system specifications.

Reliability : The property that a system can operate
continuously without experiencing a failure.

Robustness : A characteristic of a system that is
failure and fault tolerant.

Safety : The property of avoiding a catastrophic outcome
given a system fails to operate correctly.

Recoverability : The ease for which a failed system can
be restored to operational use.

C. SYSTEM REFERENCE MODEL DEVELOPMENT
Without a doubt, any process can become overwhelmin gin
both cost and time. Thus, it is necessary for the S RM to

have an appropriate level of specificity so that a

completion point can be reached. “The appropriate | evel of

39 K. Woodham, System Ref erence Model (SRM devel opnent and anal ysis
gui del i ne, 1stdraft (National Aeronautics and Space Administr ation
(NASA), 2007).
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V&V is a function of the time available to do the V
evaluations, and this should in turn be a function

risk that will be incurred if the V&V is not done,

risk that will be mitigated if a given level of V&V

done.” 40 The SRM still must be developed to a level of
fidelity to support validation of the system and re

completeness and correctness of the targeted requir

The SRM can be extremely detailed and can consist o

high-level use cases, Unified Modeling Language (UM
artifacts such as activity diagrams, sequence diagr

object class diagrams, and a set of formal assertio
describe precisely the necessary behaviors to satis

goals, with respect to the three questions stated
previously. These many artifacts allow the team to

express the requirements through the SRM and ensure

their understanding of the requirements is correct.

The development of the SRM begins with a scoping

period. During this time the SRM development team ¢
with a front-end analysis. The front-end analysis e
that the team has a clear perspective of the intend

the model. This high-level abstraction helps the te

that the model is defined which in-turn drives the
objectives of the model development. The scoping pe
ensures that the SRM development is based on concep

documentation rather than requirements generated by

40 R, Logan and C. Nitta, “Verification & validation:
levels leading to qualitative or quantitative valid
SAE Transacti ons vol.113, no.5 (2004), http://bill.cacr.caltech.edu
/valworkshop/upload/files/UCRLTR-200131sae04fa.pdf
2008).
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system developers. Finally, the scoping period shou
finalize the level of specificity of the requiremen

that a completion point can be reached.

The scoping period consists of analyzing the
constraints,  restricions and targeted tasks and
requirements to recognize the depth of the modeling
Additionally, requirements that will not be modeled
SRM are identified and the team ensures that suffic
concept documentation is available to continue. The
documents used during the process are found in many
stakeholder inputs from mission statements to conce
operations. The scoping period ends with a clear
understanding of the system elements that need to b
addressed and the depth that they need to be define
level of fidelity should be determined at this poin
ensure completeness and correctness of the targeted

requirements.

The next stages of the SRM development are accompli
through the development of use cases and UML artifa
well as supporting assertions. The SRM team, using
conceptual documents, will begin by documenting sys
behaviors. It is during this time that the system g
should be identified and a traceability matrix deve
populated with these top-level goals. Additionally,
operational environment must be identified and the
traceability matrix should be populated with operat
environment characteristics that need to be address
system model. The top-level use cases developed to
the overall system goals are peer reviewed to valid
the preliminary use case set spans the high-level
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description of the system and is documented in the
traceability matrix. The top-level use cases are ab

from the details of the system and are goal-oriente

use cases help the developers to get a clear unders

of the process and problems to be solved as well as
goals and objectives of the system. The top-level u

then are refined into lower-level use cases and act
diagrams which can be mapped to sequence diagrams.
process continues to become more specific to ensure
goals and objectives are accomplished but also to v
that their constraints are also adequately captured
diagrams should provide a complete representation o
by the

Additionally, all behaviors should be mapped and de

behavior expected to be displayed system.
into the traceability matrix and peered reviewed to

correctness. The overall goal is to ensure that the

level use cases have been refined into detailed low

uses cases that represent not only the Main Success

(MSS) but are

extensions are also represented. Finally, the mode

fully elaborated to ensure necessary
has to ensure that any dependability considerations
addressed and represented in the model. This entire

should represent the desired system behaviors as we

necessary extensions and assertions that map to the

level goals and requirements. The model is ready to

validated.
D. VALI DATI NG THE SYSTEM REFERENCE MODEL

The newly developed SRM is a representation created
the SRM development team and is a result of the tea
the desired

perceptions and understanding of
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behaviors. As such the representation could be wron
team misinterpreted the desired behaviors of the sy
This is the SRM must

specification error as well as to ensure that the b

why be validated to reduce

requirements created by the SRM development team ar
measured against the SRM for correctness. The SRM i

of the intended system and it must meet any dependa
considerations in order for the intended system to

well.

The validation process is twofold and can begin wit
formal review and tracing of the UML artifacts to i
use case definitions and models, supporting asserti
activity diagrams. Other artifacts reviewed include
complete set of system-behavior definitions based o
stakeholder goals and system constraints and operat
environments defined in the concept documentation.
this review the formal tracing of the requirements
top-level to the more refined lower-levels and the
diagrams and sequence diagrams helps to identify th

subsystems and components responsible for the syste
requirements. Additionally, during this process all
requirements are elicited and peer reviewed. This e
that all targeted requirements have been identified
traced through the artifacts. During this time all

objects and events are labeled, identified, and che
ensure there are no unnecessary objects or events.
process ensures that all targeted requirements are
detailed in accordance with their goals. During eac
each step is subjected to extensive group review to

that the SRM is a complete and unambiguous represen

the system.
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The second step of the validation process is to exe
as much of the model as possible through computer-a
auditing. Run-time verification of formal assertion
to check for inconsistency, omission and errors in
By executing as much of the model as possible it in
the evidence that the model being developed is the
system. The independent validation team is able to
evidence of validation to ensure that the SRM is th

system.

The IV&V team’s requirements elicitation and valida
tasks produce deliverable packages, consisting of:
models for reference model constituents, natural la
assertions, formal representation of the assertions
validation test suite for each assertion. The test
are detailed and include tests that cover multiple
that meet the requirements of the assertions, and w
discussed further in the next chapter. These delive
packages are the evidence gathered to decrease spec
errors and must be done to validate the SRM and pro
evidence of dependability of the system.

The SRM is intricate and detailed in order to show
dependability. But before dependability can be show
assertions must be validated to decrease specificat
errors. In fact the assertions should precisely mod
required behavior of the system and if they are abl

so the model is on its way to being validated. But

assertions also have to be validated and are valida
through an execution-based model checker for depend
of the model under test.
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E. | NCREASI NG THE USABI LI TY OF THE SRM

The difficulty with assertions is in their creation
not only takes time and effort, but the correctness
executable assertions depends on the ability of the
to specify correct assertions. It is difficult to s
and develop correct assertions. The modelers must h
correct representation of the structure and behavio
SRM, the assertions must also be correct. If faulty
assertions are used they are not effective in the |
process. We believe that a library built with corre
assertions would enable the assertions to be reused
could both decrease the burden on the modelers to d
the assertions and improve the ability of the indep
validation teams to validate the dependability of t

software.
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| V. BU LDI NG AN ASSERTI ON LI BRARY

A BACKGROUND

As mentioned in the previous chapters the SRM is a
representation created by the developers as a resul
their own understanding of the desired system behav
SRM must be validated to reduce specification error
the ways to do this is through assertions which pre
model the required behavior of the system and are t
foundation of the SRM. Through testing and modelin
assertions the independent validation team begins t
comprehend the problem domain and refine any proble
ensure that the SRM meets the user’'s requirements a
correct system is built. The current way to build a
is to develop the assertions from natural a languag
description of the user’s understanding anew every
this can be a time-consuming and error-prone undert
believe that an assertion library can help ease the
by providing validated assertions which can be reus

The purpose of this chapter was to construct an
approach to building an assertion library with a sm
number of assertions that have been validated for
correctness and are reusable. We define a library t
collection of assertions that are stored, collectiv
shared and can be filled with more assertions as ne
assertions in the library are validated through the
test scenarios that we designed. The test scenarios
patterns which test the assertion for the required

The purpose of the test suites is to disambiguate t
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assertions, and test for correctness meaning that t he
assertions accurately reflect the natural language statement

as we intended.

The assertion library would be built so that the
assertions are reusable and adaptable for future pr ojects.

Software developers can select from the library any

assertions that meet their needs and adapt them or use them
as an example to build their own. In each case we e nsured
that the assertion was general to increase the abil ity to be
reused as well as be more relevant to the library. We hope
that through this process that software developers will be
able to use our correct assertions in the library f or their
own use and reuse, lessening their burden and reduc ing

specification errors in the software.
B. STATECHART ASSERTI ONS

The libraries are built through the use of “UML
statechart based temporal assertions for formal

specifications.” 41 The UML statecharts are developed from

both the research efforts of Harel, who first propo sed the
use of statechart diagrams as a visual approach to modeling
the behavior of complex reactive system, and Drusin sky who
both increased and extended the use of statechart d lagrams
to specify formal assertions. Drusinsky was able to extend
the use of statecharts as formal assertions for tem poral
behavior with “the inclusion of a built-in Boolean flag

bSuccess and a corresponding isSuccess method which

specifies the Boolean status of the assertion true if the

41 p. Harel. Statecharts: A visual approach for conpl ex systemns,
Sci ence of Computer Programm ng, vol.8, no.3. (1987): 231-274.
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assertion succeeds and false otherwise.” 42 The statechart

assertion indicates that “formalism is supported by

StateRover, a design entry, code generation, and vi sual
debug animation tool for UML statecharts combined w ith
flowcharts.” 43 Assertion statecharts can be nondeterministic

and deterministic depending on the needs and wants of the
developer and modeler. For example, the developer m ight want
a nondetermistic statechart if there are nested req uirements
which can be more difficult to write and less reada ble in a
deterministic solution. Or alternatively if the ass ertion

needs to be active in runtime, then a deterministic

statechart might be a better solution because of th e
overhead incurred in the nondeterministic statechar t at
runtime.

Finally, it is important to understand the proper u se
of a statechart assertion. Remember that the assert ion uses

the “built-in Boolean variable name bSuccess, and a

corresponding method called isSuccess(), both autom atically

created by the code generator” 44 to make a statement about

the assertion’s correctness. The default settings of the

assertion statechart variable bSuccess is set to tr ue. To

appropriately test success and failure, the modeler needs to
42 p, Drusinsky. Model i ng and verification using UML statecharts - a

wor ki ng guide to reactive systemdesign, runtime nonitoring and
execution- based nodel checki ng. Elsevier Inc., 2006.

43 p. Drusinsky, M. Shing, K. Demir, “Creation and va lidation of
embedded assertion statecharts”, Proc. 15'" | EEE International Wrkshop
in Rapi d System Prot ot ypi ng, Greece (June 14-16, 2006): 17-23

44 p, Drusinsky. Model i ng and verification using UML statecharts - a

wor ki ng guide to reactive systemdesign, runtime nonitoring and
execution- based nodel checki ng. Elsevier Inc., 2006.

37



ensure that the assertion enters the error state an
entry action assigns bSuccess=false when the assert

fails.
C. ASSERT| ON VALI DATI ON

Once the natural language has been translated into
assertion the assertion must then be validated. The
assumptions in the statechart must be tested to ens
the statechart assertion correctly represents the i
behavior the modeler has in mind. We need to run va
test scenarios against the statechart assertion.

In each case the validation test suite resolved the
ambiguities of the natural language specification.
were meaningful in that they ensured each assertion
distinguishable from each other. The assertions wer
and we did find that, when we tested them, we had t
disambiguate the natural language ourselves to ensu

we truly understood what we were describing.

The two kinds of errors that are commonly found wer
“implementation errors resulting from mistakes in t

statechart assertion, and errors or ambiguities in

natural language statement.” 45 In the first case,

statechart behavior does not match the modeler's in
behavior. The second case was more difficult becaus
depended how we as individuals understood the natur

language statement and how we as individuals clarif

45 T, Otani, D. Drusinsky, et.al. “Validating UML sta
assertions libraries for improved reliability and a
Proceedings of the Second International Conference
Integration and Reliability Improvement (SSIRI 2008
(July 14-17, 2008): 47-51.

45 |pid.
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ambiguities. It was by running the test scenarios t hat we
were able to identify these errors and modify our
assumptions and assertions accordingly in order to correct

the assertions.

Otani et al. 46 revealed that there are some types of

patterns that must be part of every validation test -suite:

* Obvious success. We expect that the statechart
assertion being validated to succeed on such a test

* Obvious failure. We expect that the statechart
assertion being validated to be violated on such a
test.

* Event repetitions. We create event repetitions and
assure that the assertion, if applicable, is  not
written in a manner that only observes the first
occurrence of a triggering event P ina  sequence
of P’s.

* Multiple time intervals. If the assertion requires
it, we check that it handles multiple time interval S
or scenarios. By using this validation test
pattern we assure that an assertion is not written
in a manner that observes only a single time
interval.

* Overlapping time intervals. If the assertion
requires it, we check that the assertion can handle
overlapping time intervals within a scenario.

Once the types of patterns were clarified we then

designed our test suite to adhere to the above cate gories,
combining them if suitable and ensured that there w ere an
appropriate  number of tests per test suite that wou Id

validate the assertion.

46 T Otani, D. Drusinsky, et.al. “Validating UML Sta techart Based
Assertions Libraries for Improved Reliability and A ssurance.”
Proceedings of the Second International Conference on Secure System
Integration and Reliability Improvement (SSIRI 2008 ), Yokohama, Japan,

(July 14-17, 2008): 47-51.
39



D. ASSERTI ON SCENARI OS

The first assertion statement that we described is:
Whenever P then Q within T. The assertion statechar t (shown
in Figure 3) was diagramed as follows:

whenever P then O within T static final int T = 30;
TRTimeoutSimulatedTime tirmer = rgw
TRTimeoutSirmulatedTime( T, this)

™ PLY

@
.

(it > Cr

Or-Entry ftirmer restart();

«
N QLY
S QLY
A \\4 tirnecLtFire[1f
OEH’DI‘
Or-EntryfbSuccess = falke;
Figure 3. Whenever P then Q within T
Our interpretation of the assertion statement above ¥

if P occurs (timer is reset at every P) then the ev ent Q
will eventually occur within the time interval. The built in
event, timeoutFire(), fires after 30 sec. In case o faP

repetition before a Q the 30 second duration will b

measured from the first p. We used the following pa tterns to
40



correctly disambiguate the natural language and ens ure that

the assertion statement accurately reflects the nat ural
language as we identified and desired. As described earlier
in the chapter we covered all appropriate testing p atterns.

Obvious success:

P Q
30
>
P; incrTime(25); Q; incrTime(6)(timeout has occurre d).
We expected this test to be a success. Our expectat ion was
confirmed.
Q
30
>

Q; incrTime(31) (timeout has occurred). We expected
this test to be a success because we are testing fo
violations of the assertion and Q by itself does no t violate

the assertion. Our expectation was confirmed.

Obvious failure:

30

>

P; incrTime(31) (timeout has occurred). We expected
this test to fail because it did not meet the const raints of

the assertion. Our expectation was confirmed.
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Overlapping time intervals:

In this test and the next test we ensure that the

assertion observes more than the first P in a seque nce of
P’s.
P P Q
30 < 30
>
P; incrTime(15); P; incrTime(5); Q; incrTime(26)

(timeout has occurred). Our goal in this test was t 0 ensure
that the assertion could handle overlapping time in tervals.

We expected success. Our expectation was confirmed.

P QF Q
30 < 30
>
P; incrTime(5); Q; P; incrTime(31) (timeout has
occurred); Q. Our goal in this test was to test ove rlapping
time intervals for an expected failure as this test does not
meet the constraints of the assertion. Our expectat ion was
confirmed.

Multiple Intervals:

We tested for multiple intervals in this test and t he
next to ensure that the assertion would observe mor e than a

single time interval.
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30 ) 30
>
P; incrTime(10); Q; incrTime(20); P; incrTime(10); Q;
incrTime(21) (timeout has occurred). We expected su ccess
because it meets the requirements of the assertion. We set

bSuccess = true. Our expectation was confirmed.

P Q P
30 ) 30
>
P; incrTime(10); Q; incrTime(20); P; incrTime(31)
(timeout has occurred). We tested for multiple int ervals

expecting failure because of the constraints of the

assertion. Our expectation was confirmed.

The second core assertion statement that we describ ed
was: Whenever P then no Q within T. The assertion s tatechart

(as shown in Figure 4) was diagramed as follows:
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Whenever P then no Q within T static final int T = 20;

TRTimeoutSimulated Time timer = neww
TRTimeoutSirmulatedTime( T, thi);

. ™y, PLY

“

v

Ot NPV Or
> Or-Entry ftirmer restart();
< \Q tirneoutFire[f
N QLY l
\\4 ary O Error
On-Entry fhSuccess = false;
Figure 4. Whenever P then no Q within T

Our interpretation of the assertion is if P, then

within the time interval for P no Q will appear. Th e built
in event, timeoutFire(), fires after 30 sec. A P re petition
would reset the timer. We used the following patter ns to

disambiguate the assertion statement.

Obvious success:

30
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P; incrTime(31) (timeout has occurred). We expected
this test to be a success because no Q occurred whi ch meets
the requirements of our assertion. Our expectation was
confirmed.

Q
30

>

Q; incrTime(31) (timeout has occurred). We expected
this test to be a success because we are testing fo r
violations of the assertion and Q by itself does no t violate

the assertion. Our expectation was confirmed.

Obvious failure:

P Q
30
>
P; incrTime(25); Q; incrTime(6) (timeout has occurr ed).
This test was expected to be a failure because it v iolates
the requirements of the assertion. Our expectation was
confirmed.

Overlapping time intervals:

In this test and the next test we ensure that the
assertion observes more than the first P in a seque nce of
Ps.
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30 < 30
>
P; incrTime(15); P; incrTime (5); Q; incrTime(26)
(timeout has occurred). Our goal in this test was t 0 ensure
that the assertion could handle overlapping time in tervals.
The test was expected to be a failure. Our expectat ion was
confirmed.
P P Q
30 < » 30
>

P; incrTime(10); P; incrTime(31)(timeout has occurr ed);
Q. The test was expected to be a success because Q was not
injected during the P intervals. Our expectation wa S
confirmed.

Multiple Intervals:

We tested for multiple intervals in this test to en sure
that the assertion would observe more than a single time
interval.

P P Q
30 " > 30
>

P; incrTime(30); P; incrTime(15); Q; incrTime(16)

(timeout has occurred). This test was expected to b e a
failure because it does not meet the constraints of the

assertion. Our expectation was confirmed.
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E. CONCLUSI ON

When we first defined the assertions in natural
language we discovered that almost all assertions c
ambiguous and difficult to define at first. The nat
language statements meant different things to diffe
people. “If P then Q within T” could mean an inter
measured from the first or the last P depending on
was defined and what the software developers wants
We disambiguated each assertion according to the mo
general and useful definition; this meant that in m
the assertion would be general and not specific so
more useful. There was additional difficulty as can
expected with any new system as StateRover is still
development. But we were able to succeed after seve
restarts and debugging help. Finally, during our
disambiguation period we fell victim to the statech
default which is bSuccess = true. During the testin
we expected one result and received something compl
different. This led wus to additional testing and
clarification of the assertions and we had to ensur
time that the assertion test was not successful bec
bSuccess flag was set to true, but rather because t

was actually correct.

This process is incredibly interesting and requires
clarity of thinking as well as the ability to break
natural language. It is not simple but the process
greater understanding of the validation process and
validity of the assertion library. We feel that the
assertion statements can be built upon and reused f

benefit of validation purposes.
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Additional assertion statecharts and validation tes
suites that we defined and tested can be found in A
A. A final assertion statechart and validation test
that has merit but is not as valuable as previous m

assertions can be found in Appendix B.
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V. CONCLUSI ON

A SUMVARY AND CONTRI BUTI ONS

Software has become a vital part of our everyday li
Whether we refer to our military systems, medical s
or our financial systems, software is a part of the
become something that we now depend on. In our thes
concentrate on requirements and their formal specif
and we discuss a method to reduce specification err
strive to find a better technique to answer the que
“Are we building the right product?” Validation pre
means of assuring that software satisfies the user
requirements. It is viewed as a way of saving time
that could otherwise be wasted if a product design
built correctly and rework needs to be conducted. A
that can exist when conducting validation is not co
validation early enough in the design process. Ofte
user's requirements are reviewed and specifications
developed. The product design is then built accordi
specifications. Once the product design is built va
is conducted by comparing the resultant product wit
original requirements. As software partition of sys
continues to grow and become more complex we assert
validating a product after it is developed is too |

the process. At that stage the amount of time and ¢

rework that may need to be performed is too large.

Validation needs to begin earlier in the design pro
ensuring the specifications themselves are correct

consistent.
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At present several ways to conduct validation exist

Some guidance that is provided

verification when referring to validation by having

actually  describes

product design compared to the specifications for t

project. Others suggest what we have already mentio

that is to check the final product against the user

requirements. To conduct validation we introduced a
of developing and validating temporal formal specif
in the form of statechart assertions. Included in o
intended to

are validation test scenarios

specifications are in fact correct prior to moving

with a project. The goal is to make available multi

libraries of pre-vetted assertions to facilitate va

ensure

This research described the attributes of IV&V as w

as software reuse and explores a concept of combini
process of validation and reuse in an attempt to yi
repeatable validation technique. Sample requirement
identified and then formal specifications in the fo
created to

statechart assertions were

capture

the

requirements. Testing scenarios were then developed

determine if the statechart assertions were accurat

consistent with the original requirements. Once
assertions are proven to be accurate they can be st
library for future reuse. Our intentions are to ens
specifications used to build a product are validate

to time and money going into building the final pro
using an assertion repository filled with correct a

to build the specifications for a design, the engin

be sure that the specifications used to build the f
correct. If found in

product are errors are

specifications the engineer can go back and find ou
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the error is coming from. This would be faster and cheaper
than correcting software that has already been deve loped in

accordance with incorrect specifications.

B. FUTURE WORK

The goal in both the DoD and the software industry IS
to produce software that is cost effective, reliabl e,
maintainable, and above all usable. The current gui dance on
verification and validation that exists does not pr ovide a
technigue to show engineers how to create software that
possesses these attributes. The guidance that does exist
leaves software engineers to develop their own veri fication

and validation methods.

The amount of work that could be conducted in the

software industry to ensure reliable software is be ing
produced is abundant. We have established an approa ch for
developing and validating statechart assertions as a road
map to produce reliable software. One avenue of fut ure work
would be to further expand this approach by develop ing
additional assertions that apply to a specific doma in. For
example, select a domain of interest such as theatr e
ballistic missile defense. Then, determine requirem ents that
exist within that domain. Once the requirements for the
specific domain are understood, translate the natur al
language of the requirements into assertions as we did in
chapter IV. Then validate the assertions through th e use of

test cases to ensure that the statechart assertions
correctly represent the intended behavior the model er hasin

mind.
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Another avenue of future work would be to create a

library to store the assertions in. When creating t he
library the developer will need to consider the siz e of the
library and how many assertions will be placed in i t. The
developer will need to decide if several libraries are to be
developed to categorize the different assertions or if the
assertions will be organized within one library in a manner
that will be easy to search. Once the organization of the
library is decided information retrieval will need to be
focused on. How will assertions be retrieved or cal led from
the library? What will be the best interface to fac ilitate
information retrieval and the use of the assertions ? The
goal should be to find an acceptable interface that does not
cause errors of its own. Another area to look at is the
adaptation of the assertions to a library environme nt. Do
they perform as expected? One goal the developer sh ould seek
is to automate the processes of organizing, retriev ing
information from, and interfacing the libraries as much as

possible in an attempt to reduce errors.

Finally, once a library is developed, a future proj ect
could focus on how to best maintain that library to

facilitate future use. One item to consider is if c ertain
assertions are used more frequently than others. In this
case the developer would want to set up the library in a way

that the frequently used assertions can be searched before
the rest of the library is searched. A way to enabl e this
would be to maintain a count of how often each asse rtion is

used. Also if an assertion is proven not to be used , a way
to comment the assertion out in the library to elim inate it

from future searches may prove useful. Doing this m ay be a
way to enable faster searches thereby saving time i n the
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development process. By commenting the assertion ou t rather
than removing it from the library it can still be i ncluded

in future searches if it is decided that it is need ed.
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APPENDI X:  ADDI TI ONAL ASSERTI ON DI AGCRAMS AND TEST
SUl TES

A ADDI TI ONAL ASSERTI ON DI AGRAMS BOUNDED BY TI ME

1. Whenever P Then Less Than N Q Wthin T

. I OInit \4 PLY OF‘ OError
SoerererereTet ot Or-Ertrytimer restat(y ..
On-EntryfbSuccess = false;
T .‘*O Init ", QLY OCDunt Q
\Q [Truelf P -
Or-Entryfont ++; | w QLY A
™, timeoutFire] K
mcl\:{ 2 o, timeoutFire[] \4 [Fakse]/
TRTimeoutS@muIatedT?me timer = new ot < M
TR TimeoutSimulatedTime (30, the);
fftirmeoutFire (transition)
Whenever P then less thanM Q's within T
P
30
(- »
>
P; incrTime(31) (timeout has occurred). We expected an

obvious success. Our expectation was confirmed.

P Q

30
« >
>
P; incrTime(5); Q; incrTime(26) (timeout has occurr ed).

We expected an obvious success. Our expectation was

confirmed.

55



30
>

>

P; incrTime(5); Q; incrTime(5); Q; incrTime(21)
(timeout has occurred). We expected failure since w e set N

to 2. Our expectation was confirmed.

P Q Q Q

30
>

>

P; incrTime(5); Q; incrTime(5); Q; incrTime(5); Q ;
incrTime(16)(timeout has occurred). We expected fai lure

since we set N to 2. Our expectation was confirmed.

30 30
>
P; incrTime(5); Q; incrTime(26)(timeout has occurre d);
P; incrTime(5); Q; incrTime(5) Q; incrTime(21) (tim eout has
occurred). We tested for multiple intervals in this test to
ensure that the assertion would observe more than a single
time interval. We expected failure in the second in terval

since we set N to 2. Our expectation was confirmed.
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2. Whenever P Then Less Than or Equal to N @ Wthin

T
._'O Init; \4 — E O i O Errar
SeopopaET ot On-Entryftimer restat(y ...
‘-L.OI N On-Entry/bSuccess = false;
t it ™
\4 [Trueli OCDunt_Q
On-Entryfont ++; 2 QLY
™, timeoutFire[ K
mcri; 2 -, timeoutFire [1f \4 [Fake]f
TRTimeoutSimulatedTime timer = new ot <= M
TR Time outSirmulatedTirme (30, th);
fftimmeoutFire (transition)
Whenever P thenless than or equal to M Q's within T
P
30
(- »
>
P; incrTime(31) (timeout has occurred). We expected an
obvious success. Our expectation was confirmed.
P Q
30
« >
>
P; incrTime(5); Q; incrTime(26) (timeout has occurr ed).

We expected an obvious success. Our expectation was

confirmed.

30
>
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P; incrTime(5); Q; incrTime(5); Q; incrTime(21)
(timeout has occurred). We expected an obvious succ

expectation was confirmed.

P Q Q Q
30

>

P; incrTime(5); Q; incrTime(5); Q; incrTime(5); Q ;
incrTime(16)(timeout has occurred). We expected obv

failure since we set N to 2. Our expectation was co

P Q PQQAQ

30| T 30
>

P; incrTime(5); Q; incrTime(26)(timeout has occurre
P; incrTime(5); Q; incrTime(5) Q; incrTime(5); Q;
incrTime(16) (timeout has occurred). We tested for
intervals in this test to ensure that the assertion
observe more than a single time interval. We expect
failure in the second interval since we set N to 2.

expectation was confirmed.
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3. Whenever P Then Equal to N Q@ Wthin T

. ' OInit \Q PLY O F O Errar
& On-Entryftimer . restat(y ...

On-EntryfbiSuccess = false;
- OInit QLY OCDunt_Q
™, [Truelf ", QL
On-Entryfont ++;
N timeoutFirb\ /< timeoutFire[}
Nt =2;

ntont; [False]/

TRTimeoutSimulated Time timer = new cht==H

TR TirmeoutSimulated Time (20, the);
JftimeoutFire (transition)

whenever Pthen equal to NO's within T

P
30
o >
>
P; incrTime(31) (timeout has occurred). We expected
obvious failure since we set N to 2. Our expectatio n was
confirmed.
P Q
30
>
P; incrTime(5); Q; incrTime(26) (timeout has occurr ed).
We expected obvious failure since we set N to 2. Ou r

expectation was confirmed.
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30
>

>

P; incrTime(5); Q; incrTime(5); Q; incrTime(21)
(timeout has occurred). We expected obvious success

set N to 2. Our expectation was confirmed.

P Q Q Q
30

>

P; incrTime(5); Q; incrTime(5); Q; incrTime(5); Q ;
incrTime(16)(timeout has occurred). We expected obv
failure since we set N to 2. Our expectation was co

P Q Q PQQAQ

30 30
>

P; incrTime(5); Q; incrTime(5); Q; incrTime(21)(tim
has occurred); P; incrTime(5); Q; incrTime(5) Q;
incrTime(5); Q; incrTime(16) (timeout has occurred)
tested for multiple intervals in this test to ensur
the assertion would observe more than a single time
interval. We expected failure. Our expectation was

confirmed.
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4. VWhenever P Then G eater Than or

Equal to N s

Wthin T
™, timeoutFire[]f
O Init O p O Errar
e =
g On-Entryftimer restati}. .. On-EntryfbSuccess = false;
> Ot
Ny QLlent 44 “, [Falself
™y [Truglf
it =M
ntM=2;
ntcont =0;

TRTimeoutSimulated Time timer = new
TR TrmeoutSimulated Time (30, th);
fitimeoutFire (transition)

+Whenever P then there must be greater than or equal to N Q's within T

P; increment time to 31; timeout. We expected obvio

failure since we set N to 2. Our expectation was co

P Q
30

>

P; incrTime(5); Q; incrTime(26) (timeout has occurr

We expected failure since we set N to 2. Our expect

confirmed.
P Q Q
.30
< >
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P; incrTime(5); Q; incrTime(5); Q; incrTime(21)
(timeout has occurred). We expected success since w

to 2. Our expectation was confirmed.

P Q Q Q

30
>

>

P; incrTime(5); Q; incrTime(5); Q; incrTime(5); Q ;
incrTime(16)(timeout has occurred). We expected suc

since we set N to 2. Our expectation was confirmed.

PQQPAQ

A
N

30 < 30

>

P; incrTime(5); Q; incrTime(5); Q; incrTime(5) P;
incrTime (5); Q; incrTime(26)(timeout has occurred)
goal in this test was to ensure that the assertion
handle overlapping time intervals and that the asse
observes more than the first P in a sequence of Ps.
was expected to be a failure since we set N to 2 wh

violates the second P. Our expectation was confirme

P Q Q PQ

30 30

>

P; incrTime(5); Q; incrTime(5); Q; incrTime(21)(tim
has occurred); P; incrTime(5); Q; incrTime(26) (tim
occurred). We tested for multiple intervals in this
ensure that the assertion would observe more than a
time interval. We expected failure since we set N t

expectation was confirmed.
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5. Whenever P Then Greater Than N Q Wthin T

nth=2;
ntont;
TRTimeoutSimulatedTime timer = rew
TRTimeoutSimulatedTime(30, ths); Ocont 0 1N, timeoutFirellf
] Etror
. O It On-Ertry,timer restat(l. .
P ety
. O Init On-Entry/bSuccess = false;
S PLY
™, QLlont ++; lT\q [Falze]/
™, [Truel ot =

Whenever P then Greater than b GQ's within T

P
30
o >
>
P; incrTime(31)(timeout has occurred). We expected
failure since we set N to 2. Our expectation was co nfirmed.
P Q
30
‘ >
P; incrTime(5); Q; incrTime(26) (timeout has occurr ed).
We expected failure since we set N to 2. Our expect ation was
confirmed.
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30
>

>

P; incrTime(5); Q; incrTime(5); Q; incrTime(21)
(timeout has occurred). We expected failure since w

to 2. Our expectation was confirmed.

P Q Q Q

30
>

>

P; incrTime(5); Q; incrTime(5); Q; incrTime(5); Q;
incrTime(31)(timeout has occurred). We expected suc

since we set N to 2. Our expectation was confirmed.

PQQQP Q

30 M »30
>

P; incrTime(5); Q; incrTime(5); Q; incrTime(5) Q;
incrTime (5); P; incrTime(10); Q; incrTime(21)(time
occurred). Our goal in this test was to ensure that
assertion could handle overlapping time intervals a
the assertion observes more than the first P in a s
of P’s. The test was expected to be a failure since
to 2. Our expectation was confirmed.
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PQQQ PQ

30| T 30
>

P; incrTime(5); Q; incrTime(5); Q; incrTime(5); Q;

incrTime(16)(timeout has occurred); P; incrTime(5); Q;
incrTime(26) (timeout has occurred). We tested for multiple
intervals in this test to ensure that the assertion would
observe more than a single time interval. We expect ed
failure since we set N to 2. Our expectation was co nfirmed.

6. Whenever P Then Q and R Wthin T

o static finalint T = 30;
Whenever Pthen Qand R within T TRTimeoutSimulatedTime timer = res
TRTimeoutSimulatedTime( T, this)

SR
Oo
™,
S N, QL
Op ¢ ™, timeoutFire(1f
N PLY O Errar

Or-Entry ftirmer restart();
> 1 i)

¥ On-EntryfbSuccess = false;

\4 tirmeoutFire (17
T \q tireoutFire[1f

RIS p O

QLY
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P; incrTime(31) (timeout has occurred). We expected

failure. Our expectation was confirmed.

Q

Q; incrTime(31) (timeout has occurred). We expecte

success. Our expectation was confirmed.

R

R; incrTime(31) (timeout has occurred). We expected

success. Our expectation was confirmed.

30

>

P; incrTime(5); Q; incrTime(26) (timeout has occurr
We expected failure. Our expectation was confirmed.
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30

>

P; incrTime(5); R; incrTime(26) (timeout has occurr ed).

We expected failure. Our expectation was confirmed.

P Q R
y . 30
>
P; incrTime(5); Q; incrTime(5); R; incrTime(21)(tim eout
has occurred). We expected success. Our expectation was
confirmed.
P R Q
P ’330
>
P; incrTime(5); R; incrTime(5); Q; incrTime(21)(tim eout
has occurred). We expected success. Our expectation was
confirmed.
P PAQR
30 e T30
>

P; incrTime(5);P; incrTime(5); Q; incrTime (5); R;

incrTime(26)(timeout has occurred). Our goal in thi S test
and the next was to ensure that the assertion could handle
overlapping time intervals and that the assertion o bserves
more than the first P in a sequence of Ps. The test was
expected to be a success. Our expectation was confi rmed.
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PQ PR

30 < » 30
>
P; incrTime(5);Q; incrTime(10) P; incrTime (5); R;
incrTime(26)(timeout has occurred). The test was ex pected to

be a failure. Our expectation was confirmed.

PQR FQ
30 ) " 30
>
P; incrTime(5); Q; incrTime(5); R; incrTime(21)(tim eout
has occurred); P; incrTime(5); Q; incrTime(26) (tim eout has

occurred). We expected failure. Our expectation was

confirmed.

In this assertion statement we did not differentiat e
between Q or R coming first, our intention was to e nsure
that the combination of both Q and R regardless of order

resulted in a successful test.
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7. Whenever P Then Q or RWthin T

ywhenever Pthen Q or R within T static finalint T = 30;
TRTirmeoutSimulatedTirme timer = rew

TRTimeoutSimulated Time( T, thi),

N QLY
Rl
Ot & Or Oenor
On-Entry/timer restart(y ™, timeoutFira[]f | On-EntryfbSuccess = false;
- LY I —_—
o

P; incrTime(31) (timeout has occurred). We expected

failure. Our expectation was confirmed.

Q

Q; incrTime(31) (timeout has occurred). We expected

success. Our expectation was confirmed.
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R; incrTime(31) (timeout has occurred). We expected

success. Our expectation was confirmed.

P Q
30

>

P; incrTime(5); Q; incrTime(26) (timeout has occurr
We expected success. Our expectation was confirmed.

P R
30

>

P; incrTime(5); R; incrTime(26) (timeout has occurr
We expected success. Our expectation was confirmed.

P Q R

- 30
>

>

P; incrTime(5); Q; incrTime(5); R; incrTime(21)(tim
has occurred). We expected success. Our expectation

confirmed.
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30

>

P; incrTime(5); R; incrTime(5); Q; incrTime(21)(tim

has occurred). We expected success. Our expectation

confirmed.

PQ PR

30 30

A
A

>

P; incrTime(5);Q; incrTime(15); P; incrTime(5);
incrTime(26)(timeout has occurred). Our goal in thi
and the next was to ensure that the assertion could
overlapping time intervals and that the assertion o
more than the first P in a sequence of P’s. The tes

expected to be a success. Our expectation was confi

P P Q R

30| BOJ
>

P; incrTime(5);Q; incrTime(10) P; incrTime(31) (tim
has occurred); R. The test was expected to be a suc

A
A

Our expectation was confirmed.
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P Q PQR

30 ) " 30
>
P; incrTime(5); Q; incrTime(31)(timeout has occurre d);
P; incrTime(5); Q; incrTime(5); R; incrTime(21) (ti meout has
occurred). We tested for multiple intervals in this test and
the next to ensure that the assertion would observe more
than a single time interval. We expected success. O ur

expectation was confirmed.

8. Whenever P Then Q or Rot R Wthin T

TRTimeoutSimulatedTime timer = new
~, PLY TR TimeoutSimulatedTime{ 30, th);
fitimenutFire (transition)

Whenever P then Qo not R within T

™, PLY

. Oinit . Op _ \Q timeoutFire[1f OS

On-Entry/timer restart(;

()
™,
\Q[l’ Tx tirmeoutFire[1f
T PV Oa

RLY
O Errar
«

On-Entry /hSuccess = false) \Q R[1

P; incrTime(31) (timeout has occurred). We expected

obvious success. Our expectation was confirmed.
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Q; incrTime(31) (timeout has occurred). We expecte

success. Our expectation was confirmed.

R

R; incrTime(31) (timeout has occurred). We expected

success. Our expectation was confirmed.

P Q
30

>

P; incrTime(5); Q; incrTime(26) (timeout has occurr ed).
We expected success. Our expectation was confirmed.

P R
30

>

P; incrTime(5); R; incrTime(26) (timeout has occurr ed).
We expected failure. Our expectation was confirmed.
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30
>

>

P; incrTime(5); Q; incrTime(5); R; incrTime(21)(tim
has occurred). We expected failure. Our expectation

confirmed.

30| 30

A
A

>

P; incrTime(15);P; incrTime(5); Q; incrTime(26)(tim
has occurred); R. Our goal in this test and the ne
ensure that the assertion could handle overlapping
intervals and that the assertion observes more than
first P in a sequence of P’s. The test was expected

success. Our expectation was confirmed.

P P Q R

30 < » 30

>

P; incrTime(5);Q; incrTime(10) P; incrTime(21);
incrTime(10) (timeout has occurred). The test was e

to be a failure. Our expectation was confirmed.
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F Q PR

A
A
N

30 30

>

P; incrTime(5); Q; incrTime(26) (timeout has occurr
P; incrTime(5); R; incrTime(26) (timeout has occurr
tested for multiple intervals in this test to ensur
the assertion would observe more than a single time
interval. We expected failure. Our expectation was

confirmed.

9. Whenever P Then Q and Not Rwithin T

— TR TimeoutSimulated Time timer = new
wWhenever P then Q and not B within T TR TimeoutSimulatedTime (20, the)
FHtimeoutFire (transition)

S PLY
O; | O g R
it P
N, PLY
@, y
On-Entryftimer . restart(); > O Error
\4 tirnecutFire[]f
. QLY l
@
S R
S timeoutFire[]{¢
O Success
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P; incrTime(31) (timeout has occurred). We expected

obvious failure. Our expectation was confirmed.

Q; incrTime(31) (timeout has occurred). We expected

success. Our expectation was confirmed.

R

R; incrTime(31) (timeout has occurred). We expected

success. Our expectation was confirmed.

30

>

P; incrTime(5); Q; incrTime(26) (timeout has occurr ed).
We expected success. Our expectation was confirmed.
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30

>

P; incrTime(5); R; incrTime(26) (timeout has occurr ed).

We expected failure. Our expectation was confirmed.

P Q R
p » 30
>
P; incrTime(5); Q; incrTime(5); R; incrTime(21)(tim eout
has occurred). We expected failure. Our expectation was
confirmed.
P Q Q
P ’330
>

P; incrTime(5); Q; incrTime(5); Q; incrTime(21)
(timeout has occurred). We expected success. Our ex pectation

was confirmed.

PQQF Q

30 < » 30

>

P; incrTime(5); Q; incrTime(5); Q; incrTime(5); P;

incrTime(20); Q; incrTime(15) (timeout has occurred ). Our
goal in this test was to ensure that the assertion could
handle overlapping time intervals and that the asse rtion
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observes more than the first P in a sequence of P’s . The

test was expected to be a success. Our expectation was
confirmed.
PQAQ FQ
30 ) 30
>

P; incrTime(5); Q; incrTime(5); Q; incrTime(21)

(timeout has occurred); P; incrTime(5); Q; incrTime (26)
(timeout has occurred). We tested for multiple inte rvals in

this test to ensure that the assertion would observ e more
than a single time interval. We expected success. O ur

expectation was confirmed.

B. ADDI Tl ONAL ASSERTI ON DI AGRAMS UNBOUNDED BY TI ME

We felt that this assertion statement should be

separated from the other assertion statements becau se the
time is unbounded. It still has merit as an asserti on
statement but may not be as useful as the other ass ertions.
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1. Whenever P Then Not Q After T

TRTirmeoutSirmulatedTirme timer = new:
wWhenever P thennat Q after T TR Time autSimulated Tinme(30, ths);
FitimenutFire (transition)

: P
.—P Olnlt « PLY OF‘ . Osuccess

On-Entryftimer.restatly ™, timeoutFire[}

| | ™, QLY

™,
« QLY O Error

Or-Entry/bSuccess = false;

P; incrTime(31) (timeout has occurred). We expected

obvious success. Our expectation was confirmed.
Q

Q; incrTime(31) (timeout has occurred). We expected

success. Our expectation was confirmed.

P Q
30

>

P; incrTime(5); Q; incrTime(26) (timeout has occurr ed).

We expected success. Our expectation was confirmed.
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30

>

failure. Our expectation was confirmed.

P Q

30

A

30

>

was to ensure that the assertion could handle overl
time intervals and that the assertion observes more
first P in a sequence of Ps. We expected success. O

P;

incrTime(10);
incrTime(21)(timeout has occurred). Our goal in thi

expectation was confirmed.

P

30

P

30

Q

>

Q. We expected failure. Our expectation was confirm

P; incrTime(31) (timeout has occurred); Q . We expe

P; incrTime(5); P; incrTime(31)(timeout has occurre
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P Q P Q

30 30 J
>

P; incrTime(5); Q; incrTime(26)(timeout has occurre
P; incrTime(31)(timeout has occurred); Q. We tested

multiple intervals in this test to ensure that the

A

would observe more than a single time interval. We

failure. Our expectation was confirmed.
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