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ABSTRACT 

This thesis examines the role of independent valida tion 

in the development of software systems. As software  systems 

become increasingly larger and more complex the rol e of 

software validation becomes crucial. In particular,  one must 

make sure that the specification of a software syst em is 

correct with respect to customer expectations. We i ntroduce 

an approach for developing and validating reuse lib raries of 

temporal formal specifications. These libraries inc lude UML 

statechart based assertions for formal specificatio ns and 

their associated validation test scenarios. We buil d the 

validation test scenarios with the goal of ensuring  that 

specifications within the libraries are indeed erro r-free 

and consistent. 
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I. INTRODUCTION 

A. MOTIVATION 

Software is essential to almost every facet of our 

daily lives from business to science, and while the  

advantages are numerous and have arguably bettered our 

lives, it comes with a cost.  The National Institut e of 

Standard and Technology (NIST) sponsored a study in  2001 and 

found that the annual cost of software errors to th e U.S. 

Economy in 2001 was approximately $59.5 billion. 1 

Additionally the study found that over half the cos ts have 

been borne by the users. This is remarkable because  software 

practitioners have not yet been held accountable to  the same 

standards imposed on engineers in traditional engin eering 

disciplines.  

Over the years, some software defects have resulted  in 

human injuries, property damage, and in extreme cas es, loss 

of human lives. This is a cost that is unacceptable  to users 

and must not be accepted by software developers. On e of the 

most well known examples of software error causing human 

fatalities is the THERAC 25 2. This machine was supposed to 

save human lives by sending the proper amount of ra diation 

into patients, but instead it overdosed humans with  massive 

                     
1 National Institute of Standards and Technology (NI ST), “Software 

errors cost U.S. economy $59.5 billion annually.” N ational Institute of 
Standards and Technology (NIST2002-10) (2002), 
http://www.nist.gov/public_affairs/releases/n02-10. htm (accessed May 10, 
2008). 

2 N. Levenson and C. Turner, “Investigation of the T herac 25 
accidents.” IEEE Computer (July 1993), 18-41.  
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amounts of radiation and resulted in several fatali ties. 3 

These failures are not just unacceptable but could have been 

avoided had the software been validated and verifie d 

properly. The IEEE standards, for validation and 

verification, help to guide the software developers  with two 

main questions, “am I building the right product?” and “am I 

building the product right?” These questions are 

longstanding and will, if answered appropriately, h elp 

reduce the risk of mishaps due to software defects.  

Another challenge the software industry faces is th at 

software is increasing in complexity, making it dif ficult to 

detect errors and eliminate them. This also increas es the 

importance of validation and testing methods that e nable 

earlier and more effective error identification and  removal. 

Software must be verified and validated to ensure n ot just 

quality and safety but also guard against waste, in  terms of 

money and lives. 

Our motivation for the research reported here is to  

develop techniques that improve the engineer’s abil ity to 

validate software systems. Additionally, these vali dation 

techniques will be applicable to the entire softwar e 

industry and when used in conjunction with verifica tion will 

hopefully result in better software systems and red uce 

software defects and their attendant costs. 

 

                     
3 R. Merritt, “Embedded experts: fix code bugs or co st lives.” 

Information Week (April 10, 2006), http://www.informationweek.com/n ews/ 
management/showArticle.jhtml?articleID=185300011 (a ccessed May 05, 
2008). 
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B. INDEPENDENT VALIDATION AND VERIFICATION 

The current guideline for validation and verificati on 

is the IEEE standard 1012-20044 which has had to ev olve 

because of decades of unsuccessful software. The ov erall aim 

is to establish guidelines for the software industr y to 

follow and help to create better software products.   

The following is directly quoted from the IEEE stan dard 

1012-2004 5:  

Software V&V processes consists of the following: 

• Verification process and validation process. The 
verification process provides objective evidence 
whether the software and its associated products an d 
processes conform to requirements (e.g., for 
correctness, completeness, consistency, accuracy) f or 
all life cycle activities during each life cycle 
process acquisition, supply, development, operation , 
and maintenance)satisfy standards, practices, and 
conventions during life cycle processes. 

• Successfully complete each life cycle activity and 
satisfy all the criteria for initiating succeeding life 
cycle activities (e.g., building the software 
correctly). 

• The validation process provides evidence whether th e 
software and its associated products and processes 
satisfy system requirements allocated to software a t 
the end of each life cycle activity. 

• Solve the right problem (e.g., correctly model phys ical 
laws, implement business rules, use the proper syst em 
assumptions). 

• Satisfy intended use and user needs. 

                     
4 Institute of Electrical and Electronics Engineers , Standard for 

Software Verification and Validation,IEEE-STD-1012,  June 08, 2005. 

5 Institute of Electrical and Electronics Engineers , Standard for 
Software Verification and Validation,IEEE-STD-1012,  June 08, 2005. 
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The verification process and the validation process  are 

interrelated and complementary processes that use e ach 

other’s process results to establish better complet ion 

criteria and analysis, evaluation, review, inspecti on, 

assessment, and test V&V tasks for each software li fe cycle 

activity. 

The IEEE guidelines leave the software industry to 

develop their own validation and verification metho ds. The 

industry has yet to integrate these techniques full y, 

contributing to the poor record of software acquisi tion. In 

fact, the Standish Group reported that the success rate of 

software projects was 35% in 2006, and the report c laimed 

that software developers fielded only 46% of the re quired 

features and functions, which means that the projec ts did 

not meet the needs of the customer. 6  These studies indicate 

conformance to the V&V guidelines are not enough to  

significantly lower the defect rate in software par tition of 

systems. The V&V guidelines empower the individual to create 

and implement their own IV&V plan of actions, and t he only 

consequence to not following the guidelines is unsu ccessful 

acquisition of software. Formal V&V (FV&V) techniqu es can be 

used to address some of the failings of the existin g 

practice of V&V. 

C. THE NEED FOR A STANDARD TECHNIQUE  

The current problem facing the software industry in  

facilitating validation is that there are no concis e, simple 

techniques to conduct validation. The IEEE IV&V gui delines 

are general and meant to guide the industry in the actual 

                     
6 The Standish Group International, "Annual Chaos Re port." (2006). 
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implementation of validation. This leaves the softw are 

industry to its own devices on the implementation o f 

validation and can result, in the worst case scenar io, with 

poor validation processes if validation is conducte d at all. 

This is largely due to the ignorance of validation 

procedures and misunderstanding of the necessity of  

validation. And it has resulted in the industry’s p rimary 

focus on verification because it can be easier to a ccomplish 

and minimal effort is put into validation. Thus muc h effort 

is in “have we built the system right?” but not “ha ve we 

built the right system?” 

Adding to the problem, there is no general consensu s 

among the academic community on how to complete the  

validation phase, many different paths are used. Th e typical 

way for a system to be built, if there is structure  at all, 

is for the software requirements to be gathered, us ing pen 

and paper, use cases built and then code is written  directly 

from the use cases. There is no formal link from th e 

requirements to the formal specification of the sys tem 

behaviors (if one exists) to ensure that the correc t system 

is being built. The formal specification of system behaviors 

includes assertions which precisely model the requi red 

behavior of the system and can be traceable to the system 

requirements providing a means to ensure that the c orrect 

system is being built.  As examples, both Voyager a nd 

Galileo had significant software errors; the primar y cause 

of the faults were directly related to system behav iors that 

had not been identified or developed by the develop ers. One 

can significantly reduce these kids of errors by fo rmally 
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specifying the required behaviors in terms of asser tions and 

validating the correctness of these assertions agai nst 

stakeholder expectations before building the softwa re. 

One way to facilitate the validation process is thr ough 

execution-based validation. Execution-based validat ion is 

the process of inferring certain behavioral propert ies to 

exercise the system under test (SUT) in a known env ironment 

and with selected inputs. This gives the person con ducting 

validation the capability to validate that the syst em being 

built is the correct system based on user requireme nts. In 

our thesis we use the StateRover white-box automati c test-

generator. The white-box test generator constructs a JUnit 

TestCase class from a given statechart assertion mo del and 

the associate embedded assertions. The advantages o f this 

process include: the ability to pinpoint specific e rrors; 

investigate the causes of failures on a specific in put in 

detail; and eliminate errors in their design in an efficient 

manner.  

D. THE ROLE OF SOFTWARE REUSE 

Software reuse is an important concept that can hel p 

clarify validation techniques, making them more rel evant for 

software development teams. Software reuse aims to increase 

the productivity, efficiency and quality of softwar e by 

reusing the applicable software from one project in  another 

project. 7 By reusing the software the developers can save 

resources that would have otherwise been used to de velop the 

software.  

                     
7 W. Lim, Managing software reuse, a comprehensive guide to 

strategically reengineering the organization for reusable components. 
Upper Saddle River, New Jersey: Prentice Hall PTR, (1998): 7. 
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An important part of validation is the creation of 

formal specifications in the form of assertion stat ements to 

capture the correct behavior of the software from n atural 

language requirements. Assertion statements can be difficult 

to define and produce because of natural language 

ambiguities. However, with the use of the reuse con cepts, 

libraries can be established. These libraries will contain 

correct assertion statements which have been thorou ghly 

tested. The assertion development team can then reu se the 

correct assertion statement and use the accompanyin g test 

suite to ensure that the chosen assertion matches t he 

requirements and proper validation is occurring.  

E. OUTLINE 

This work’s main objective is to facilitate the 

assertion validation process. This is accomplished through 

the use of libraries which contain consistent and a ccurate 

assertions.  We intend to demonstrate that these as sertions 

are correct and reusable through the use of testing  

scenarios. These assertions will provide a type of 

engineering control for the IV&V process.  

The organization of the thesis is as follows: 

Chapter II provides background information about IV &V 

and software reuse. The chapter will show a deficie ncy in 

the current guidance provided for software validati on, and 

will describe reuse techniques that have been accom plished 

to date. 
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Chapter III discusses the NASA System Reference Mod el 

(SRM) and the use of assertions in repository libra ries. 

Chapter IV discusses the use of patterns to facilit ate 

Software reuse.  

Chapter V provides conclusions and recommendations for 

future research. 
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II. IV&V AND SOFTWARE REUSE 

A. COMPLEXITY OF SOFTWARE DESIGN 

Anyone who is associated with software design 

understands that software systems can be extremely complex. 

They are so complex that most software engineering 

researchers often focus their research solely on wa ys to 

deal with complexity. The reason these systems are so 

complicated can often be traced back to the users’ 

requirements for that system. A system that is requ ired to 

perform several functions will naturally be more co mplex 

than a system that is required to perform just one function. 

Common problems that occur when developing software  include 

failing to match the final product to the customers ’ needs, 

or dealing with errors in the software that often r eveal 

themselves at the worst possible time and are often  costly 

to fix. One way to try to avoid these problems is t o 

implement Independent Verification and Validation ( IV&V) and 

software reuse into the development of the systems.  This 

chapter covers IV&V, how IV&V is conducted, and how  software 

engineers are currently leveraging software reuse i n 

building software systems.  

B. DEFINITIONS 

Independent:  Independence in relation to IV&V is 

defined by the Institute of Electrical and Electron ics 

Engineers (IEEE) using three parameters: technical 

independence, managerial independence, and financia l 

independence.  
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Technical Independence:  “requires the V&V effort to 

utilize personnel who are not involved in the devel opment of 

the software.” 8 

Managerial Independence:  “requires that the 

responsibility for the IV&V effort be vested in an 

organization separate from the development and prog ram 

management organizations.” 9 

Financial Independence:  “requires that control of the 

IV&V budget be vested in an organization independen t of the 

development organization.” 10 

Verification: “The process of evaluating a system or 

component to determine whether the products of a gi ven 

deployment phase satisfy the conditions imposed at the start 

of that phase.”  11  Software verification answers the 

question, “Are we building the product right?” 

Validation: “The process of evaluating a system or 

component during or at the end of the development p rocess to 

determine whether it satisfies specified requiremen ts.” 

12Software validation answers the question “Are we bu ilding 

the right product?”  

 

 

                     
8 Institute of Electrical and Electronics Engineers,  Standard for 

Software Verification and Validation,IEEE-STD-1012,  June 08, 2005. 

9 Ibid. 

10 Ibid. 

11 Ibid. 

12 Ibid. 
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Software IV&V:  “a series of technical and management 

activities performed by someone other than the deve loper of 

a system to improve the quality and reliability of that 

system and to assure that the delivered product sat isfies 

the user’s operational needs.” 13 

Software Reuse:  “the use of existing software artifacts 

in the development of other software artifacts with  the goal 

of improving productivity and quality, among other 

factors.” 14       

Requirement Specification:  “an organization's 

understanding (in writing) of a customer or potenti al 

client's system requirements and dependencies at a 

particular point in time (usually) prior to any actual 

design or development work.” 15  

Pattern:  “a body of literature to help software 

developers resolve recurring problems encountered t hroughout 

all of software development.” 16 

C. IV&V BACKGROUND 

In the early 1940s the first computer was developed  to 

calculate artillery firing tables for the United St ates 

                     
13 R. Lewis, Independent verification & validation: A life cycle 

engineering process for quality software. New York: John Wiley & Sons, 
(1992): xxiii. 

14 W. Lim, Managing software reuse, a comprehensive guide to 
strategically reengineering the organization for reusable components. 
Upper Saddle River, New Jersey: Prentice Hall PTR, (1998): 7. 

15 D. Le Vie, “Writing software requirements specific ations” TECHWR-L 
(MAR 2007) http://www.techwrl.com/techwhirl/magazin e/writing/ 
softwarerequirementspecs.htm (accessed July 15, 200 8). 

16 B. Appleton, "Patterns and software: essential con cepts and 
terminology” CM Crossroads (2000), http://www.cmcro ssroads.com/ 
bradapp/docs/patterns-intro.html (accessed Septembe r 20, 2008). 
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Army's Ballistic Research Laboratory. The design of  the 

computer was focused primarily on hardware, not pay ing much 

attention to software. In fact, some would say in t he early 

stages of computing, software was often ignored. Th e 

intention of computers at this time was to perform a single 

task. When the task was identified the computers we re hard-

wired to accomplish that task. With the role of sof tware 

being so small the need for IV&V had not yet been 

recognized. However, as time passed and the role an d cost of 

software grew, the need for IV&V became evident.   

In the mid 1940s John Von Neumann came up with two 

concepts that would have a direct impact on softwar e design. 

The first was known as “shared program technique.” “This 

technique states that the actual computer hardware should be 

simple and not need to be hand-wired for each progr am. 

Rather, complex instructions should be used to cont rol the 

simple hardware, allowing it to be reprogrammed muc h 

faster.” 17 

The second concept he developed was called “conditi onal 

control transfer.” “This idea gave rise to the noti on of 

subroutines, or small blocks of code that could be jumped to 

in any order, instead of a single set of chronologi cally 

ordered steps for the computer to read. The second part of 

the idea stated that computer code should be able t o branch 

out based on logical statements such as “IF” (expre ssion) 

“THEN,” and looped with others such as a “FOR”  

                     
17 C. Robat, “Introduction to software history.” Th e History of 

Computing Project (October 17, 2006), http://www.th ocp.net 
/software/software_reference/introduction_to_softwa re_history.htm 
(accessed June 11, 2008). 
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statement.” 18 The use of these concepts, and others like 

them, allowed software to grow into a more signific ant part 

of computer design.   

As software grew, so did the cost associated with i t. 

In the 1950s, software’s cost was only 20% of the o verall 

system cost. In the 1980’s, software costs rose to 80%.  

Today, software costs can be up to 95% of the overa ll system 

cost. 19 These rising costs forced software developers to 

find a way to save money. 

In the late 1950s, one of the leading software 

developers was the Department of Defense (DoD). The  DoD 

began to notice  projects were consistently behind schedule, 

over budget, and did not provide the required perfo rmance. 

This was unacceptable not only for financial reason s but 

because software errors can lead to loss of life, i njury, or 

loss of property especially in military systems. Th e DoD was 

repeatedly surprised by the costly projects because  

“...software development contractors often gave ove rly 

optimistic assessments of the software development status to 

the DoD.” 20 To address this, the DoD launched a plan to 

conduct IV&V on their software systems in an attemp t to get 

accurate assessments of how their projects were doi ng. The 

 

                     
18 C. Robat, “Introduction to software history.” The History of 

Computing Project (October 17, 2006), http://www.th ocp.net 
/software/software_reference/introduction_to_softwa re_history.htm 
(accessed June 11, 2008). 

19 S. Reiss, A practical introduction to software design with C++. 
New York: John Wiley & Sons, 1998, 397-421. 

20 S. Rakin, “Food for thought: What is software qual ity assurance?” 
Software Quality Consulting (Jan. 2005, Vol.2 No.1), 
http://www.swqual.com/newsletter/vol2/no1/vol2no1.h tml (accessed June 
01, 2008). 
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first program to use IV&V was the Atlas Missile Pro gram in 

the late 1950s. An independent software tester was hired to 

conduct unbiased testing of the software. 21 

Over time, the role of IV&V continued to develop an d in 

the 1970’s “... the U.S. Army sponsored the first 

significant such IV&V program for the Safeguard Ant i-

Ballistic Missile System.” 22 The program was designed to 

identify and eliminate the high risks that are comm on with 

military systems. It was successful in meeting its goal and 

“By the mid- to late 1970’s, IV&V was rapidly becom ing 

popular and in some cases was required by the milit ary 

services...” 23 “It was from this effort that IV&V became 

well known within the Department of Defense and the  

aerospace communities as an accepted method of ensu ring 

better quality, performance, and reliability of cri tical 

systems.” 24 

In the decades following the seventies, IV&V became  an 

intricate part of the software development process.  A 

process that started as “...mostly free-form, not v ery 

independent, often started too late to be really ef fective, 

and was sometimes even performed by the very people  who were 

developing the system...” 25 grew into process where “...a 

                     
21 S. Rakin, “Food for thought: What is software qual ity assurance?” 

Software Quality Consulting (Jan. 2005, Vol.2 No.1), 
http://www.swqual.com/newsletter/vol2/no1/vol2no1.h tml (accessed June 
01, 2008). 

22 R. Lewis, Independent verification & validation: A life cycle 
engineering process for quality software. New York: John Wiley & Sons, 
1992, xxiii. 

23 Ibid. 

24 Ibid. 

25 R. Lewis, Independent verification & validation: A life cycle 
engineering process for quality software. New York: John Wiley & Sons, 
(1992): xxiii. 
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completely independent entity evaluates the work pr oducts 

generated by the team that is designing and/or exec uting a 

given project...” 26 The independent entity will also 

“...monitor and evaluate every aspect of the projec t itself 

from inception to completion.” 27  

While the cost of conducting IV&V is high, the mone y 

saved by preventing errors and rework is far greate r. In 

1993, the National Aeronautics and Space Administra tion 

(NASA) established an IV&V facility in the wake of the Space 

Shuttle Challenger accident. The facility was devel oped as 

part of a plan “to provide the highest achievable l evels of 

safety and cost-effectiveness for mission critical 

software.” 28 “In 2006, NASA allocated $27 Million to the 

IV&V Facility Budget, of which $19 Million went dir ectly to 

IV&V Services.” 29 After conducting a Return on Investment 

analysis, “NASA realized a software rework risk red uction 

benefit of $1.6 Billion in Fiscal Year 2006 alone.” 30 From 

the facilities inception at NASA, it has experience d 

continued growth while providing better software/sy stem 

performance, higher confidence in the software reli ability, 

and a reduced maintenance cost. 

                     
26 C. Nickolett, “Project due diligence: independent verification and 

validation.” White Paper.Comprehensive Consulting S olutions. Mar 2001: 
1-6. http://www.comp-soln.com/IVV_whitepaper.pdf (a ccessed June 01, 
2008). 

27 Ibid. 

28 National Aeronautics and Space Administration (NAS A), "NASA IV&V 
facility - about IV&V." National Aeronautics and Sp ace Administration 
(NASA), http://www.nasa.gov/centers/ivv/ about/inde x.html (accessed June 
01, 2008). 

29 NASA IV&V Facility, “NASA IV&V 2006 annual report. ” NASA IV&V 
Facility, http://www.nasa.gov/centers/ivv/pdf/ 
174321main_Annual_Report_06_Final.pdf (accessed Jun e 01, 2008). 

30 Ibid. 
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When performed correctly IV&V can be a crucial part  of 

the software development process. The process begin s with 

developing Software Integrity Levels (SILs) which “ are a 

range of values that represent software complexity,  

criticality, risk, safety level, security level, de sired 

performance, reliability, or other project-unique 

characteristics that define the importance of the s oftware 

to the user and acquirer.” 31 SILs are then used to determine 

which V&V tasks to perform. The higher the software  

integrity level, the more V&V tasks assigned. SILs are not 

constant and can change as software evolves to ensu re the 

appropriate V&V tasks are being performed. Below is  an 

example of SILs based upon the concepts of conseque nces and 

mitigation potential as well as an example of V&V p rocesses, 

activities, and tasks from the IEEE Standard for 

Verification and Validation. These examples are pro vided as 

guidance on how software developers can incorporate  IV&V 

into their software design to assist in reducing 

specification errors.  

                     
31 Institute of Electrical and Electronic Engineers, Standard for 

Software Verification and Validation,IEEE-STD-1012,  June 08, 2005. 
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Description of Software integrity Level      Level 

Software element must execute correctly or grave consequences (loss of life, loss of 

system, economic or social loss) will occur. No mitigation is possible. 4 

 

Software element must execute correctly or the intended use (mission) of the system/ 

software will not be realized, causing serious consequences (permanent injury, major 

system degradation, economic or social impact). Partial to complete mitigation is possible. 3 

 

Software element must execute correctly or an intended function will not be realized, 

causing minor consequences. Complete mitigation possible. 2 

 

Software element must execute correctly or intended function will not be realized, 

causing negligible consequences. Mitigation not required. 1 

 

Figure 1.   Examples of Software Integrity Levels 
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Figure 2.   V&V processes, activities, and tasks. 
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D. CURRENT GUIDANCE FOR VALIDATION 

Incorporating IV&V into software design is essentia l to 

reducing specification errors. What software engine ers need 

to ensure is when IV&V is applied it is done so cor rectly. 

The definitions for V&V provided at the beginning o f this 

chapter allow for the use of computer-based V&V too ls to 

check the correctness of a system or a specific com ponent 

against a formal specification derived from the nat ural 

language requirements. The specifications are creat ed and 

the final product is then built to satisfy those 

specifications. Validation that is being conducted in 

accordance with the guidelines provided by the IEEE  

evaluates specific components or the final product with the 

specifications. This process is in fact verificatio n. The 

product is being built correctly according to the 

specifications, however, it is not known if the 

specifications themselves are correct. It is impera tive that 

validation be conducted on the specifications that are 

created to ensure that the requirements for the pro ject are 

understood and that the correct product is built.   

E. SOFTWARE REUSE 

Software reuse is a practice that began in the 1950 s 

with the goal of improving software development pro ductivity 

and quality. For the past twenty years a great deal  of 

research has been focused on software reuse and its  role in 

software design. Areas that have been given attenti on 

include but are not limited to reuse libraries, des ign 

patterns, and reuse using formal specifications of 

requirements. While software reuse holds promise of  
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improving software development productivity and sof tware 

quality, the success of reuse is based on the quali ty of the 

reusable artifacts. The reuse of software that has not been 

verified and validated contradicts the intended goa l of 

producing quality software because errors in the so ftware 

may still exist. This reasoning also holds true whe n 

discussing the use of formal requirements specifica tions. 

The use of formal requirements specifications is es sential 

in the automation of the software verification proc ess. 

However, we assert that the correctness of these fo rmal 

specifications must be first validated before they can be 

used to verify correctness of the software.  

Formal specification has been an active area of 

research for more than two decades. The requirement s 

specification of a software component describes the  expected 

functions and behavior of the software. The ability  to reuse 

the software component becomes evident if its struc ture and 

behavior are compatible with new software being des igned.  

Verification has been another popular research topi c 

for over 20 years. Automated finite state verificat ion tools 

have been developed to assist software developers i n 

verifying system specifications. The users of these  tools 

must be capable of specifying the requirements of t he system 

they are developing in the specification language t he tool 

understands. Behavior for a software component is t ypically 

specified using temporal logic in an attempt to avo id the 

ambiguity derived from natural language. 



 21 

F. FORMAL SPECIFICATION PATTERNS 

To assist developers in specifying the behavior in a 

temporal logic, Dwyer suggests the use of property 

specification patterns. “A property specification p attern is 

a generalized description of a commonly occurring 

requirement on the permissible state/event sequence s in a 

finite state model of a system.” 32 These patterns describe 

the essential behavior of a system and provide expr essions 

of this behavior in a range of common temporal logi cs to be 

used with verification tools. The patterns are then  given 

distinct names describing their behavior which allo ws them 

to be mapped to examples of known use, to relations hips to 

other patterns, and to specific formalisms. To faci litate 

verification, Dwyer proposes the development of a s ystem of 

property specific patterns for finite state verific ation 

tools. The system is a set of patterns or library o rganized 

into one or more hierarchies, with connections betw een 

related patterns to facilitate the browsing of the system. 

“A user would search for the appropriate pattern to  match 

the requirement being specified, use the mapping se ction to 

obtain the essential structure of the pattern in th e 

formalism used by a particular (verification) tool,  and then 

instantiate that pattern by plugging in the state f ormula or 

events specific to the requirement.” 33 The use of these 

patterns allows for the specification of critical p roperties 

 

 

                     
32 M. Dwyer, G. Avrunin, et.al. “Patterns in property  specifications 

for finite-state verification.” Proceedings of the 21st international 
conference on software engineering (1999): 411-420.  

33 Ibid. 
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that exist in software systems and guides users of 

verification tools to express these properties in a  

specification language.  

In 2005, Konrad and Cheng went a step further with 

specification patterns and introduced real-time 

specification patterns that can be used to specify real-time 

properties for embedded systems. Similar to Dwyer’s  

specification patterns, the real-time specification  patterns 

contain templates for specifying real-time properti es in 

terms of real-time temporal logic. 34 This pattern system is 

intended to provide strategies for specifying real- time 

properties in a formal specification language, wher e the 

properties are amenable to automated analysis such as 

verification tools. 35 

Specification patterns and the use of libraries to 

store those patterns provide another form of softwa re reuse. 

This form of reuse aims at reducing the cost and im proving 

the quality of formal specification development. Ho wever, 

the effectiveness of the specification pattern reus e depends 

on the correctness and consistency of the resultant  

requirements. Proper validation needs to be perform ed in 

order to confirm that the requirements are understo od.  

Otani et al. explains a concept of developing and 

validating libraries of temporal formal specificati ons. 

These libraries would include UML Statechart based 

assertions for formal specifications and their asso ciated 

                     
34 B. Cheng and S. Konrad, "Real-time specification p atterns." 

Proceedings of the 27th international conference on  software engineering 
(2005): 372-381. 

35 Ibid. 
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validation test scenarios. 36 We intend to build the 

validation test scenarios with the goal of ensuring  that 

specifications within the libraries are indeed erro r-free 

and consistent. The following chapter describes the  NASA 

System Reference Model (SRM) and its role in captur ing a 

modeler’s understanding of a specific problem.         

 

 

 

 

 

 

 

 

 

 

 

 

                     
36 T. Otani, D. Drusinsky, et.al. “Validating UML sta techart based 

assertions libraries for improved reliability and a ssurance.” 
Proceedings of the Second International Conference on Secure System 
Integration and Reliability Improvement (SSIRI 2008 ), Yokohama, Japan, 
July 14-17, 2008, 47-51. 
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III. SYSTEM REFERENCE MODEL 

A. BACKGROUND 

The National Aeronautics and Space Administration 

(NASA) has continuously developed their IV&V progra m, 

supporting new technologies and better validation a nd 

verification techniques in an effort to improve the  

validation and verification process. Earlier versio ns of the 

V&V process included the Criticality and Risk Asses sment 

(CARA) and the Software Integrity Level Assessment Process 

(SILAP). Both processes were found lacking because they 

relied on manual examination and independent testin g of 

target code. These techniques are ineffective for u se in 

validation because there are no links from the requ irements 

to the system’s features, capabilities, properties and 

functions. Without formal specifications of the sys tem 

behaviors both CARA and SILAP were unable to valida te the 

correctness and completeness of the developer’s 

understanding of the requirements. Finally, the pro cesses 

were unable to locate the subtle errors in increasi ngly 

complex software-intensive system. Both CARA and SI LAP 

evaluated the risk of software components in a syst em by 

compiling a list of software components and evaluat ing them 

to prioritize risk assessment, which cannot show th at the 

system being built is the correct system. NASA is i n the 

process of replacing SILAP with advanced computer-a ided 

validation techniques. 
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The NASA IV&V Facility recognized a need for valida tion 

to be more than a risk assessment; it needed to pro vide a 

model for the system to show 37:  

• What the system is supposed to do.  

• What the system is not supposed to do and  

• How the system should respond under adverse conditi ons. 

The NASA IV&V Facility now relies on the use of a 

System Reference Model (SRM) for each product. “The  SRM 

provides the basis for validating the completeness and 

correctness of the targeted requirements set.” 38 Once the 

targeted requirements are developed the independent  

validation team is able to validate those requireme nts. The 

SRM supports a computer-aided validation technique through 

which the independent validation team’s understandi ng and 

perception of the problem is validated through the team’s 

representation of the SRM’s features, properties, f unction, 

and capabilities. It is also during this time that the 

development team is able to discover and correct an y 

identified problems or concerns with their understa nding of 

the requirements for the intended system. This is i mportant 

because the model holds the responsibility to be co mplete 

and accurate to serve its intended purpose and the 

development team holds the responsibility to ensure  that the 

model fulfills that purpose. 

                     
37 K. Woodham, System Reference Model (SRM) development and analysis 

guideline, 1st draft (National Aeronautics and Space Administ ration 
(NASA), 2007). 

38 Ibid. 
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B. DEFINITIONS 

The following definitions are described in the SRM 

guideline 39. The definition of dependability will be 

customized to the user’s needs and wants of the sys tem. 

• Dependability : A dependable system is one that provides 
the appropriate levels of correctness and robustnes s in 
accomplishing its mission while demonstrating the 
appropriate levels of availability, consistency, 
reliability, safety, and recoverability. 

• Availability : The probability that a system is 
operating correctly and is ready to perform its des ired 
functions. 

• Consistency : The property that invariants will always 
hold true in the system. 

• Correctness : A characteristic of a system that 
precisely exhibits predictable behavior at all time s as 
defined by the system specifications. 

• Reliability : The property that a system can operate 
continuously without experiencing a failure. 

• Robustness : A characteristic of a system that is 
failure and fault tolerant. 

• Safety : The property of avoiding a catastrophic outcome 
given a system fails to operate correctly. 

• Recoverability : The ease for which a failed system can 
be restored to operational use. 

C. SYSTEM REFERENCE MODEL DEVELOPMENT 

Without a doubt, any process can become overwhelmin g in 

both cost and time. Thus, it is necessary for the S RM to 

have an appropriate level of specificity so that a 

completion point can be reached. “The appropriate l evel of 

                     
39 K. Woodham, System Reference Model (SRM) development and analysis 

guideline, 1st draft (National Aeronautics and Space Administr ation 
(NASA), 2007). 
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V&V is a function of the time available to do the V &V 

evaluations, and this should in turn be a function of the 

risk that will be incurred if the V&V is not done, or the 

risk that will be mitigated if a given level of V&V  is 

done.” 40 The SRM still must be developed to a level of 

fidelity to support validation of the system and re sult in 

completeness and correctness of the targeted requir ements. 

The SRM can be extremely detailed and can consist o f 

high-level use cases, Unified Modeling Language (UM L) 

artifacts such as activity diagrams, sequence diagr ams and 

object class diagrams, and a set of formal assertio ns to 

describe precisely the necessary behaviors to satis fy system 

goals, with respect to the three questions stated 

previously. These many artifacts allow the team to properly 

express the requirements through the SRM and ensure  that 

their understanding of the requirements is correct.   

The development of the SRM begins with a scoping 

period. During this time the SRM development team c ommences 

with a front-end analysis. The front-end analysis e nsures 

that the team has a clear perspective of the intend ed use of 

the model. This high-level abstraction helps the te am ensure 

that the model is defined which in-turn drives the 

objectives of the model development. The scoping pe riod also 

ensures that the SRM development is based on concep t-level 

documentation rather than requirements generated by  the 

 

 

                     
40 R. Logan and C. Nitta, “Verification & validation:  process and 

levels leading to qualitative or quantitative valid ation statements.”  
SAE Transactions vol.113, no.5  (2004), http://bill.cacr.caltech.edu 
/valworkshop/upload/files/UCRLTR-200131sae04fa.pdf (accessed June 01, 
2008). 
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system developers. Finally, the scoping period shou ld 

finalize the level of specificity of the requiremen ts so 

that a completion point can be reached. 

The scoping period consists of analyzing the 

constraints, restrictions and targeted tasks and 

requirements to recognize the depth of the modeling  needed.  

Additionally, requirements that will not be modeled  in the 

SRM are identified and the team ensures that suffic ient 

concept documentation is available to continue. The  concept 

documents used during the process are found in many  forms of 

stakeholder inputs from mission statements to conce pts of 

operations. The scoping period ends with a clear 

understanding of the system elements that need to b e 

addressed and the depth that they need to be define d. The 

level of fidelity should be determined at this poin t to 

ensure completeness and correctness of the targeted  system 

requirements.  

The next stages of the SRM development are accompli shed 

through the development of use cases and UML artifa cts as 

well as supporting assertions. The SRM team, using the 

conceptual documents, will begin by documenting sys tem 

behaviors. It is during this time that the system g oals 

should be identified and a traceability matrix deve loped, 

populated with these top-level goals. Additionally,  the 

operational environment must be identified and the 

traceability matrix should be populated with operat ion 

environment characteristics that need to be address ed by the 

system model. The top-level use cases developed to address 

the overall system goals are peer reviewed to valid ate that 

the preliminary use case set spans the high-level 
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description of the system and is documented in the 

traceability matrix. The top-level use cases are ab stracted 

from the details of the system and are goal-oriente d. These 

use cases help the developers to get a clear unders tanding 

of the process and problems to be solved as well as  the 

goals and objectives of the system. The top-level u se cases 

then are refined into lower-level use cases and act ivity 

diagrams which can be mapped to sequence diagrams. The 

process continues to become more specific to ensure  that the 

goals and objectives are accomplished but also to v erify 

that their constraints are also adequately captured . The 

diagrams should provide a complete representation o f the 

behavior expected to be displayed by the system. 

Additionally, all behaviors should be mapped and de fined 

into the traceability matrix and peered reviewed to  ensure 

correctness. The overall goal is to ensure that the  top-

level use cases have been refined into detailed low er-level 

uses cases that represent not only the Main Success  Scenario 

(MSS) but are fully elaborated to ensure necessary 

extensions are also represented.  Finally, the mode ling team 

has to ensure that any dependability considerations  are 

addressed and represented in the model. This entire  effort 

should represent the desired system behaviors as we ll as any 

necessary extensions and assertions that map to the  top-

level goals and requirements. The model is ready to  be 

validated.  

D. VALIDATING THE SYSTEM REFERENCE MODEL 

The newly developed SRM is a representation created  by 

the SRM development team and is a result of the tea ms own 

perceptions and understanding of the desired system  
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behaviors. As such the representation could be wron g if the 

team misinterpreted the desired behaviors of the sy stem. 

This is why the SRM must be validated to reduce 

specification error as well as to ensure that the b ehavior 

requirements created by the SRM development team ar e 

measured against the SRM for correctness. The SRM i s a model 

of the intended system and it must meet any dependa ble 

considerations in order for the intended system to be so as 

well. 

The validation process is twofold and can begin wit h a 

formal review and tracing of the UML artifacts to i nclude: 

use case definitions and models, supporting asserti ons, and 

activity diagrams. Other artifacts reviewed include  the 

complete set of system-behavior definitions based o n 

stakeholder goals and system constraints and operat ions 

environments defined in the concept documentation. During 

this review the formal tracing of the requirements from the 

top-level to the more refined lower-levels and the activity 

diagrams and sequence diagrams helps to identify th e 

subsystems and components responsible for the syste m 

requirements. Additionally, during this process all  the 

requirements are elicited and peer reviewed. This e nsures 

that all targeted requirements have been identified  and 

traced through the artifacts. During this time all necessary 

objects and events are labeled, identified, and che cked to 

ensure there are no unnecessary objects or events. The above 

process ensures that all targeted requirements are fully 

detailed in accordance with their goals. During eac h review 

each step is subjected to extensive group review to  validate 

that the SRM is a complete and unambiguous represen tation of 

the system.  
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The second step of the validation process is to exe cute 

as much of the model as possible through computer-a ided 

auditing. Run-time verification of formal assertion s is able 

to check for inconsistency, omission and errors in the SRM. 

By executing as much of the model as possible it in creases 

the evidence that the model being developed is the correct 

system. The independent validation team is able to use the 

evidence of validation to ensure that the SRM is th e correct 

system.   

The IV&V team’s requirements elicitation and valida tion 

tasks produce deliverable packages, consisting of: UML 

models for reference model constituents, natural la nguage 

assertions, formal representation of the assertions , and a 

validation test suite for each assertion.  The test  suites 

are detailed and include tests that cover multiple scenarios 

that meet the requirements of the assertions, and w ill be 

discussed further in the next chapter. These delive rable 

packages are the evidence gathered to decrease spec ification 

errors and must be done to validate the SRM and pro vide 

evidence of dependability of the system.  

The SRM is intricate and detailed in order to show its 

dependability. But before dependability can be show n the SRM 

assertions must be validated to decrease specificat ion 

errors. In fact the assertions should precisely mod el the 

required behavior of the system and if they are abl e to do 

so the model is on its way to being validated. But 

assertions also have to be validated and are valida ted 

through an execution-based model checker for depend ability 

of the model under test.  
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E. INCREASING THE USABILITY OF THE SRM  

The difficulty with assertions is in their creation . It 

not only takes time and effort, but the correctness  of the 

executable assertions depends on the ability of the  modelers 

to specify correct assertions. It is difficult to s pecify 

and develop correct assertions. The modelers must h ave a 

correct representation of the structure and behavio r of the 

SRM, the assertions must also be correct. If faulty  

assertions are used they are not effective in the I V&V 

process. We believe that a library built with corre ct 

assertions would enable the assertions to be reused . This 

could both decrease the burden on the modelers to d evelop 

the assertions and improve the ability of the indep endent 

validation teams to validate the dependability of t he 

software.  
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IV. BUILDING AN ASSERTION LIBRARY 

A. BACKGROUND 

As mentioned in the previous chapters the SRM is a 

representation created by the developers as a resul t of 

their own understanding of the desired system behav iors. The 

SRM must be validated to reduce specification error s. One of 

the ways to do this is through assertions which pre cisely 

model the required behavior of the system and are t he 

foundation of the SRM.  Through testing and modelin g 

assertions the independent validation team begins t o 

comprehend the problem domain and refine any proble ms to 

ensure that the SRM meets the user’s requirements a nd the 

correct system is built. The current way to build a ssertions 

is to develop the assertions from natural a languag e 

description of the user’s understanding anew every time; 

this can be a time-consuming and error-prone undert aking. We 

believe that an assertion library can help ease the se tasks 

by providing validated assertions which can be reus ed.  

The purpose of this chapter was to construct an 

approach to building an assertion library with a sm all 

number of assertions that have been validated for 

correctness and are reusable. We define a library t o be a 

collection of assertions that are stored, collectiv ely 

shared and can be filled with more assertions as ne eded. The 

assertions in the library are validated through the  use of 

test scenarios that we designed. The test scenarios  are 

patterns which test the assertion for the required behavior.  

The purpose of the test suites is to disambiguate t he 
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assertions, and test for correctness meaning that t he 

assertions accurately reflect the natural language statement 

as we intended. 

The assertion library would be built so that the 

assertions are reusable and adaptable for future pr ojects. 

Software developers can select from the library any  

assertions that meet their needs and adapt them or use them 

as an example to build their own. In each case we e nsured 

that the assertion was general to increase the abil ity to be 

reused as well as be more relevant to the library. We hope 

that through this process that software developers will be 

able to use our correct assertions in the library f or their 

own use and reuse, lessening their burden and reduc ing 

specification errors in the software. 

B. STATECHART ASSERTIONS 

The libraries are built through the use of “UML 

statechart based temporal assertions for formal 

specifications.” 41 The UML statecharts are developed from 

both the research efforts of Harel, who first propo sed the 

use of statechart diagrams as a visual approach to modeling 

the behavior of complex reactive system, and Drusin sky who 

both increased and extended the use of statechart d iagrams 

to specify formal assertions. Drusinsky was able to  extend 

the use of statecharts as formal assertions for tem poral 

behavior with “the inclusion of a built-in Boolean flag 

bSuccess and a corresponding isSuccess method which  

specifies the Boolean status of the assertion true if the 

                     
41 D. Harel. Statecharts: A visual approach for complex systems, 

Science of Computer Programming, vol.8, no.3. (1987): 231-274. 
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assertion succeeds and false otherwise.” 42 The statechart 

assertion indicates that “formalism is supported by  

StateRover, a design entry, code generation, and vi sual 

debug animation tool for UML statecharts combined w ith 

flowcharts.” 43 Assertion statecharts can be nondeterministic 

and deterministic depending on the needs and wants of the 

developer and modeler. For example, the developer m ight want 

a nondetermistic statechart if there are nested req uirements 

which can be more difficult to write and less reada ble in a 

deterministic solution. Or alternatively if the ass ertion 

needs to be active in runtime, then a deterministic  

statechart might be a better solution because of th e 

overhead incurred in the nondeterministic statechar t at 

runtime. 

Finally, it is important to understand the proper u se 

of a statechart assertion. Remember that the assert ion uses 

the “built-in Boolean variable name bSuccess, and a  

corresponding method called isSuccess(), both autom atically 

created by the code generator” 44 to make a statement about 

the assertion’s correctness.  The default settings of the 

assertion statechart variable bSuccess is set to tr ue. To 

appropriately test success and failure, the modeler  needs to 

 

 

                     
42 D. Drusinsky. Modeling and verification using UML statecharts - a 

working guide to reactive system design, runtime monitoring and 
execution-based model checking. Elsevier Inc., 2006. 

43 D. Drusinsky, M. Shing, K. Demir, “Creation and va lidation of 
embedded assertion statecharts”,  Proc. 15th IEEE International Workshop 
in Rapid System Prototyping, Greece (June 14-16, 2006): 17-23  

44 D. Drusinsky. Modeling and verification using UML statecharts - a 
working guide to reactive system design, runtime monitoring and 
execution-based model checking. Elsevier Inc., 2006. 



 38 

ensure that the assertion enters the error state an d the on-

entry action assigns bSuccess=false when the assert ion 

fails. 

C. ASSERTION VALIDATION 

Once the natural language has been translated into an 

assertion the assertion must then be validated. The  

assumptions in the statechart must be tested to ens ure that 

the statechart assertion correctly represents the i ntended 

behavior the modeler has in mind. We need to run va lidation 

test scenarios against the statechart assertion.  

In each case the validation test suite resolved the  

ambiguities of the natural language specification. The tests 

were meaningful in that they ensured each assertion  were 

distinguishable from each other. The assertions wer e tested 

and we did find that, when we tested them, we had t o 

disambiguate the natural language ourselves to ensu re that 

we truly understood what we were describing.  

The two kinds of errors that are commonly found wer e 

“implementation errors resulting from mistakes in t he 

statechart assertion, and errors or ambiguities in the 

natural language statement.”  45  In the first case, the 

statechart behavior does not match the modeler’s in tended 

behavior. The second case was more difficult becaus e it 

depended how we as individuals understood the natur al 

language statement and how we as individuals clarif ied the 

                     
45 T. Otani, D. Drusinsky, et.al. “Validating UML sta techart based 

assertions libraries for improved reliability and a ssurance.” 
Proceedings of the Second International Conference on Secure System 
Integration and Reliability Improvement (SSIRI 2008 ), Yokohama, Japan 
(July 14-17, 2008): 47-51. 

45 Ibid. 
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ambiguities. It was by running the test scenarios t hat we 

were able to identify these errors and modify our 

assumptions and assertions accordingly in order to correct 

the assertions.  

Otani et al. 46 revealed that there are some types of 

patterns that must be part of every validation test -suite: 

• Obvious success. We expect that the statechart 
assertion being validated to succeed on such a test .  

• Obvious failure. We expect that the statechart 
assertion being validated to be violated on such a 
test.  

• Event repetitions. We create event repetitions and 
assure that the assertion, if applicable, is  not 
written in a manner that only observes the first 
occurrence of a triggering event P in a  sequence 
of P’s.  

• Multiple time intervals. If the assertion requires 
it, we check that it handles multiple time interval s 
or scenarios. By using this  validation test 
pattern we assure that an  assertion is not written  
in a manner that observes only a single time 
interval.  

• Overlapping time intervals. If the assertion 
requires it, we check that the assertion can handle  
overlapping time intervals within a  scenario. 

Once the types of patterns were clarified we then 

designed our test suite to adhere to the above cate gories, 

combining them if suitable and ensured that there w ere an 

appropriate number of tests per test suite that wou ld 

validate the assertion. 

                     
46 T. Otani, D. Drusinsky, et.al. “Validating UML Sta techart Based 

Assertions Libraries for Improved Reliability and A ssurance.” 
Proceedings of the Second International Conference on Secure System 
Integration and Reliability Improvement (SSIRI 2008 ), Yokohama, Japan, 
(July 14-17, 2008): 47-51. 
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D. ASSERTION SCENARIOS 

The first assertion statement that we described is:  

Whenever P then Q within T. The assertion statechar t (shown 

in Figure 3) was diagramed as follows: 

 

 

Figure 3.   Whenever P then Q within T 

 

Our interpretation of the assertion statement above  is: 

if P occurs (timer is reset at every P) then the ev ent Q 

will eventually occur within the time interval. The  built in 

event, timeoutFire(), fires after 30 sec. In case o f a P 

repetition before a Q the 30 second duration will b e 

measured from the first p. We used the following pa tterns to 
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correctly disambiguate the natural language and ens ure that 

the assertion statement accurately reflects the nat ural 

language as we identified and desired. As described  earlier 

in the chapter we covered all appropriate testing p atterns.  

 

Obvious success: 

 

 

P; incrTime(25); Q; incrTime(6)(timeout has occurre d). 

We expected this test to be a success. Our expectat ion was 

confirmed. 

 

 

Q; incrTime(31) (timeout has occurred). We expected  

this test to be a success because we are testing fo r 

violations of the assertion and Q by itself does no t violate 

the assertion. Our expectation was confirmed. 

Obvious failure:  

 

P; incrTime(31) (timeout has occurred). We expected  

this test to fail because it did not meet the const raints of 

the assertion. Our expectation was confirmed.   
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Overlapping time intervals:  

In this test and the next test we ensure that the 

assertion observes more than the first P in a seque nce of 

P’s.   

 

P; incrTime(15); P; incrTime(5); Q; incrTime(26) 

(timeout has occurred). Our goal in this test was t o ensure 

that the assertion could handle overlapping time in tervals. 

We expected success. Our expectation was confirmed.   

 

P; incrTime(5); Q; P; incrTime(31) (timeout has 

occurred); Q. Our goal in this test was to test ove rlapping 

time intervals for an expected failure as this test  does not 

meet the constraints of the assertion. Our expectat ion was 

confirmed. 

Multiple Intervals: 

We tested for multiple intervals in this test and t he 

next to ensure that the assertion would observe mor e than a 

single time interval. 
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P; incrTime(10); Q; incrTime(20); P; incrTime(10); Q; 

incrTime(21) (timeout has occurred). We expected su ccess 

because it meets the requirements of the assertion.  We set 

bSuccess = true. Our expectation was confirmed.  

 

P; incrTime(10); Q; incrTime(20); P; incrTime(31) 

(timeout has occurred).  We tested for multiple int ervals 

expecting failure because of the constraints of the  

assertion. Our expectation was confirmed.  

The second core assertion statement that we describ ed 

was: Whenever P then no Q within T. The assertion s tatechart 

(as shown in Figure 4) was diagramed as follows: 
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Figure 4.   Whenever P then no Q within T 

 

Our interpretation of the assertion is if P, then 

within the time interval for P no Q will appear. Th e built 

in event, timeoutFire(), fires after 30 sec. A P re petition 

would reset the timer. We used the following patter ns to 

disambiguate the assertion statement.  

 

Obvious success: 
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P; incrTime(31) (timeout has occurred). We expected  

this test to be a success because no Q occurred whi ch meets 

the requirements of our assertion. Our expectation was 

confirmed.  

 

Q; incrTime(31) (timeout has occurred). We expected  

this test to be a success because we are testing fo r 

violations of the assertion and Q by itself does no t violate 

the assertion. Our expectation was confirmed.  

Obvious failure: 

 

P; incrTime(25); Q; incrTime(6) (timeout has occurr ed). 

This test was expected to be a failure because it v iolates 

the requirements of the assertion. Our expectation was 

confirmed.  

Overlapping time intervals: 

In this test and the next test we ensure that the 

assertion observes more than the first P in a seque nce of 

Ps. 
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P; incrTime(15); P; incrTime (5); Q; incrTime(26) 

(timeout has occurred). Our goal in this test was t o ensure 

that the assertion could handle overlapping time in tervals. 

The test was expected to be a failure. Our expectat ion was 

confirmed.  

 

 

P; incrTime(10); P; incrTime(31)(timeout has occurr ed); 

Q. The test was expected to be a success because Q was not 

injected during the P intervals. Our expectation wa s 

confirmed. 

Multiple Intervals: 

We tested for multiple intervals in this test to en sure 

that the assertion would observe more than a single  time 

interval. 

 

P; incrTime(30); P; incrTime(15); Q; incrTime(16) 

(timeout has occurred). This test was expected to b e a 

failure because it does not meet the constraints of  the 

assertion. Our expectation was confirmed.  
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E. CONCLUSION 

When we first defined the assertions in natural 

language we discovered that almost all assertions c an be 

ambiguous and difficult to define at first. The nat ural 

language statements meant different things to diffe rent 

people.  “If P then Q within T” could mean an inter val T 

measured from the first or the last P depending on how it 

was defined and what the software developers wants to test. 

We disambiguated each assertion according to the mo st 

general and useful definition; this meant that in m ost cases 

the assertion would be general and not specific so as to be 

more useful. There was additional difficulty as can  be 

expected with any new system as StateRover is still  in 

development. But we were able to succeed after seve ral 

restarts and debugging help. Finally, during our 

disambiguation period we fell victim to the statech art 

default which is bSuccess = true. During the testin g period 

we expected one result and received something compl etely 

different. This led us to additional testing and 

clarification of the assertions and we had to ensur e every 

time that the assertion test was not successful bec ause the 

bSuccess flag was set to true, but rather because t he test 

was actually correct.  

This process is incredibly interesting and requires  

clarity of thinking as well as the ability to break  down 

natural language. It is not simple but the process invokes 

greater understanding of the validation process and  the 

validity of the assertion library. We feel that the se 

assertion statements can be built upon and reused f or the 

benefit of validation purposes.  
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Additional assertion statecharts and validation tes t 

suites that we defined and tested can be found in A ppendix 

A. A final assertion statechart and validation test  suite 

that has merit but is not as valuable as previous m entioned 

assertions can be found in Appendix B.  
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V. CONCLUSION 

A. SUMMARY AND CONTRIBUTIONS 

Software has become a vital part of our everyday li ves. 

Whether we refer to our military systems, medical s ystems, 

or our financial systems, software is a part of the m and has 

become something that we now depend on. In our thes is we 

concentrate on requirements and their formal specif ication, 

and we discuss a method to reduce specification err ors. We 

strive to find a better technique to answer the que stion 

“Are we building the right product?” Validation pre sents a 

means of assuring that software satisfies the user’ s 

requirements. It is viewed as a way of saving time and money 

that could otherwise be wasted if a product design is not 

built correctly and rework needs to be conducted. A  problem 

that can exist when conducting validation is not co nducting 

validation early enough in the design process. Ofte n the 

user’s requirements are reviewed and specifications  are 

developed. The product design is then built accordi ng to the 

specifications. Once the product design is built va lidation 

is conducted by comparing the resultant product wit h the 

original requirements. As software partition of sys tems 

continues to grow and become more complex we assert  that 

validating a product after it is developed is too l ate in 

the process. At that stage the amount of time and c ost of 

rework that may need to be performed is too large. 

Validation needs to begin earlier in the design pro cess by 

ensuring the specifications themselves are correct and 

consistent. 



 50 

At present several ways to conduct validation exist . 

Some guidance that is provided actually describes 

verification when referring to validation by having  the 

product design compared to the specifications for t he 

project. Others suggest what we have already mentio ned and 

that is to check the final product against the user  

requirements. To conduct validation we introduced a  process 

of developing and validating temporal formal specif ications 

in the form of statechart assertions. Included in o ur work 

are validation test scenarios intended to ensure 

specifications are in fact correct prior to moving forward 

with a project. The goal is to make available multi ple 

libraries of pre-vetted assertions to facilitate va lidation.  

This research described the attributes of IV&V as w ell 

as software reuse and explores a concept of combini ng the 

process of validation and reuse in an attempt to yi eld a 

repeatable validation technique. Sample requirement s were 

identified and then formal specifications in the fo rm of 

statechart assertions were created to capture the 

requirements. Testing scenarios were then developed  to 

determine if the statechart assertions were accurat e and 

consistent with the original requirements. Once the se 

assertions are proven to be accurate they can be st ored in a 

library for future reuse. Our intentions are to ens ure that 

specifications used to build a product are validate d prior 

to time and money going into building the final pro duct. By 

using an assertion repository filled with correct a ssertions 

to build the specifications for a design, the engin eer can 

be sure that the specifications used to build the f inal 

product are correct. If errors are found in the 

specifications the engineer can go back and find ou t where 



 51 

the error is coming from. This would be faster and cheaper 

than correcting software that has already been deve loped in 

accordance with incorrect specifications. 

B. FUTURE WORK 

The goal in both the DoD and the software industry is 

to produce software that is cost effective, reliabl e, 

maintainable, and above all usable. The current gui dance on 

verification and validation that exists does not pr ovide a 

technique to show engineers how to create software that 

possesses these attributes. The guidance that does exist 

leaves software engineers to develop their own veri fication 

and validation methods. 

The amount of work that could be conducted in the 

software industry to ensure reliable software is be ing 

produced is abundant. We have established an approa ch for 

developing and validating statechart assertions as a road 

map to produce reliable software. One avenue of fut ure work 

would be to further expand this approach by develop ing 

additional assertions that apply to a specific doma in. For 

example, select a domain of interest such as theatr e 

ballistic missile defense. Then, determine requirem ents that 

exist within that domain. Once the requirements for  the 

specific domain are understood, translate the natur al 

language of the requirements into assertions as we did in 

chapter IV. Then validate the assertions through th e use of 

test cases to ensure that the statechart assertions  

correctly represent the intended behavior the model er has in 

mind. 
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Another avenue of future work would be to create a 

library to store the assertions in. When creating t he 

library the developer will need to consider the siz e of the 

library and how many assertions will be placed in i t. The 

developer will need to decide if several libraries are to be 

developed to categorize the different assertions or  if the 

assertions will be organized within one library in a manner 

that will be easy to search. Once the organization of the 

library is decided information retrieval will need to be 

focused on. How will assertions be retrieved or cal led from 

the library? What will be the best interface to fac ilitate 

information retrieval and the use of the assertions ? The 

goal should be to find an acceptable interface that  does not 

cause errors of its own. Another area to look at is  the 

adaptation of the assertions to a library environme nt. Do 

they perform as expected? One goal the developer sh ould seek 

is to automate the processes of organizing, retriev ing 

information from, and interfacing the libraries as much as 

possible in an attempt to reduce errors. 

Finally, once a library is developed, a future proj ect 

could focus on how to best maintain that library to  

facilitate future use. One item to consider is if c ertain 

assertions are used more frequently than others. In  this 

case the developer would want to set up the library  in a way 

that the frequently used assertions can be searched  before 

the rest of the library is searched. A way to enabl e this 

would be to maintain a count of how often each asse rtion is 

used. Also if an assertion is proven not to be used , a way 

to comment the assertion out in the library to elim inate it 

from future searches may prove useful. Doing this m ay be a 

way to enable faster searches thereby saving time i n the 
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development process. By commenting the assertion ou t rather 

than removing it from the library it can still be i ncluded 

in future searches if it is decided that it is need ed. 
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APPENDIX: ADDITIONAL ASSERTION DIAGRAMS AND TEST 
SUITES 

A. ADDITIONAL ASSERTION DIAGRAMS BOUNDED BY TIME 

1. Whenever P Then Less Than N Qs Within T 

 

 

P; incrTime(31) (timeout has occurred). We expected  an 

obvious success. Our expectation was confirmed. 

 

P; incrTime(5); Q; incrTime(26) (timeout has occurr ed).  

We expected an obvious success. Our expectation was  

confirmed.  
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P; incrTime(5); Q; incrTime(5); Q; incrTime(21) 

(timeout has occurred). We expected failure since w e set N 

to 2. Our expectation was confirmed.  

 

 

P; incrTime(5); Q; incrTime(5); Q; incrTime(5); Q ;  

incrTime(16)(timeout has occurred). We expected fai lure 

since we set N to 2. Our expectation was confirmed.  

 

 

P; incrTime(5); Q; incrTime(26)(timeout has occurre d); 

P; incrTime(5); Q; incrTime(5) Q; incrTime(21) (tim eout has 

occurred). We tested for multiple intervals in this  test to 

ensure that the assertion would observe more than a  single 

time interval. We expected failure in the second in terval 

since we set N to 2. Our expectation was confirmed.  
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2. Whenever P Then Less Than or Equal to N Qs Within 
T 

 

 

P; incrTime(31) (timeout has occurred). We expected  an 

obvious success. Our expectation was confirmed. 

 

P; incrTime(5); Q; incrTime(26) (timeout has occurr ed). 

We expected an obvious success. Our expectation was  

confirmed.  
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P; incrTime(5); Q; incrTime(5); Q; incrTime(21) 

(timeout has occurred). We expected an obvious succ ess. Our 

expectation was confirmed. 

  

 

P; incrTime(5); Q; incrTime(5); Q; incrTime(5); Q ;  

incrTime(16)(timeout has occurred). We expected obv ious 

failure since we set N to 2. Our expectation was co nfirmed. 

 

 

P; incrTime(5); Q; incrTime(26)(timeout has occurre d); 

P; incrTime(5); Q; incrTime(5) Q; incrTime(5); Q; 

incrTime(16) (timeout has occurred). We tested for multiple 

intervals in this test to ensure that the assertion  would 

observe more than a single time interval. We expect ed 

failure in the second interval since we set N to 2.  Our 

expectation was confirmed. 
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3. Whenever P Then Equal to N Qs Within T 

 

 

P; incrTime(31) (timeout has occurred). We expected  

obvious failure since we set N to 2. Our expectatio n was 

confirmed. 

 

P; incrTime(5); Q; incrTime(26) (timeout has occurr ed). 

We expected obvious failure since we set N to 2. Ou r 

expectation was confirmed.  
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P; incrTime(5); Q; incrTime(5); Q; incrTime(21) 

(timeout has occurred). We expected obvious success  since we 

set N to 2. Our expectation was confirmed.  

 

 

P; incrTime(5); Q; incrTime(5); Q; incrTime(5); Q ;  

incrTime(16)(timeout has occurred). We expected obv ious 

failure since we set N to 2. Our expectation was co nfirmed. 

 

 

P; incrTime(5); Q; incrTime(5); Q; incrTime(21)(tim eout 

has occurred); P; incrTime(5); Q; incrTime(5) Q; 

incrTime(5); Q; incrTime(16) (timeout has occurred) . We 

tested for multiple intervals in this test to ensur e that 

the assertion would observe more than a single time  

interval. We expected failure. Our expectation was 

confirmed. 
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4. Whenever P Then Greater Than or Equal to N Qs 
Within T 

 

 

 

P; increment time to 31; timeout. We expected obvio us 

failure since we set N to 2. Our expectation was co nfirmed. 

 

P; incrTime(5); Q; incrTime(26) (timeout has occurr ed). 

We expected failure since we set N to 2. Our expect ation was 

confirmed.  
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P; incrTime(5); Q; incrTime(5); Q; incrTime(21) 

(timeout has occurred). We expected success since w e set N 

to 2. Our expectation was confirmed.  

 

P; incrTime(5); Q; incrTime(5); Q; incrTime(5); Q ;  

incrTime(16)(timeout has occurred). We expected suc cess 

since we set N to 2. Our expectation was confirmed.  

 

P; incrTime(5); Q; incrTime(5); Q; incrTime(5) P; 

incrTime (5); Q; incrTime(26)(timeout has occurred) . Our 

goal in this test was to ensure that the assertion could 

handle overlapping time intervals and that the asse rtion 

observes more than the first P in a sequence of Ps.  The test 

was expected to be a failure since we set N to 2 wh ich 

violates the second P. Our expectation was confirme d.  

 

P; incrTime(5); Q; incrTime(5); Q; incrTime(21)(tim eout 

has occurred); P; incrTime(5); Q; incrTime(26) (tim eout has 

occurred). We tested for multiple intervals in this  test to 

ensure that the assertion would observe more than a  single 

time interval. We expected failure since we set N t o 2.  Our 

expectation was confirmed.  
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5. Whenever P Then Greater Than N Qs Within T 

 

 

 

P; incrTime(31)(timeout has occurred). We expected 

failure since we set N to 2. Our expectation was co nfirmed. 

 

P; incrTime(5); Q; incrTime(26) (timeout has occurr ed). 

We expected failure since we set N to 2. Our expect ation was 

confirmed. 
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P; incrTime(5); Q; incrTime(5); Q; incrTime(21) 

(timeout has occurred). We expected failure since w e set N 

to 2. Our expectation was confirmed.  

 

P; incrTime(5); Q; incrTime(5); Q; incrTime(5); Q; 

incrTime(31)(timeout has occurred). We expected suc cess 

since we set N to 2. Our expectation was confirmed.  

 

P; incrTime(5); Q; incrTime(5); Q; incrTime(5) Q; 

incrTime (5); P; incrTime(10); Q; incrTime(21)(time out has 

occurred). Our goal in this test was to ensure that  the 

assertion could handle overlapping time intervals a nd that 

the assertion observes more than the first P in a s equence 

of P’s. The test was expected to be a failure since  we set N 

to 2. Our expectation was confirmed.  
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P; incrTime(5); Q; incrTime(5); Q; incrTime(5); Q; 

incrTime(16)(timeout has occurred); P; incrTime(5);  Q; 

incrTime(26) (timeout has occurred). We tested for multiple 

intervals in this test to ensure that the assertion  would 

observe more than a single time interval. We expect ed 

failure since we set N to 2. Our expectation was co nfirmed. 

6. Whenever P Then Q and R Within T 
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P; incrTime(31) (timeout has occurred). We expected  

failure. Our expectation was confirmed. 

 

Q; incrTime(31) (timeout has occurred).  We expecte d 

success. Our expectation was confirmed.  

 

R; incrTime(31) (timeout has occurred). We expected  

success. Our expectation was confirmed.  

 

 

P; incrTime(5); Q; incrTime(26) (timeout has occurr ed).  

We expected failure. Our expectation was confirmed.   
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P; incrTime(5); R; incrTime(26) (timeout has occurr ed).  

We expected failure. Our expectation was confirmed.  

 

P; incrTime(5); Q; incrTime(5); R; incrTime(21)(tim eout 

has occurred). We expected success. Our expectation  was 

confirmed. 

 

P; incrTime(5); R; incrTime(5); Q; incrTime(21)(tim eout 

has occurred). We expected success. Our expectation  was 

confirmed. 

 

P; incrTime(5);P; incrTime(5); Q; incrTime (5); R; 

incrTime(26)(timeout has occurred). Our goal in thi s test 

and the next was to ensure that the assertion could  handle 

overlapping time intervals and that the assertion o bserves 

more than the first P in a sequence of Ps. The test  was 

expected to be a success. Our expectation was confi rmed.  
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P; incrTime(5);Q; incrTime(10) P; incrTime (5); R; 

incrTime(26)(timeout has occurred). The test was ex pected to 

be a failure. Our expectation was confirmed.  

 

P; incrTime(5); Q; incrTime(5); R; incrTime(21)(tim eout 

has occurred); P; incrTime(5); Q; incrTime(26) (tim eout has 

occurred). We expected failure. Our expectation was  

confirmed.  

In this assertion statement we did not differentiat e 

between Q or R coming first, our intention was to e nsure 

that the combination of both Q and R regardless of order 

resulted in a successful test.  
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7. Whenever P Then Q or R Within T 

 

 

P; incrTime(31) (timeout has occurred). We expected  

failure. Our expectation was confirmed. 

 

Q; incrTime(31) (timeout has occurred). We expected  

success. Our expectation was confirmed.  
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R; incrTime(31) (timeout has occurred). We expected  

success. Our expectation was confirmed. 

 

P; incrTime(5); Q; incrTime(26) (timeout has occurr ed).  

We expected success. Our expectation was confirmed.   

 

P; incrTime(5); R; incrTime(26) (timeout has occurr ed). 

We expected success. Our expectation was confirmed.  

 

P; incrTime(5); Q; incrTime(5); R; incrTime(21)(tim eout 

has occurred). We expected success. Our expectation  was 

confirmed. 
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P; incrTime(5); R; incrTime(5); Q; incrTime(21)(tim eout 

has occurred). We expected success. Our expectation  was 

confirmed. 

 

 

P; incrTime(5);Q; incrTime(15); P; incrTime(5); R; 

incrTime(26)(timeout has occurred). Our goal in thi s test 

and the next was to ensure that the assertion could  handle 

overlapping time intervals and that the assertion o bserves 

more than the first P in a sequence of P’s. The tes t was 

expected to be a success. Our expectation was confi rmed.  

 

P; incrTime(5);Q; incrTime(10) P; incrTime(31) (tim eout 

has occurred); R. The test was expected to be a suc cess.  

Our expectation was confirmed. 
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P; incrTime(5); Q; incrTime(31)(timeout has occurre d); 

P; incrTime(5); Q; incrTime(5); R; incrTime(21) (ti meout has 

occurred). We tested for multiple intervals in this  test and 

the next to ensure that the assertion would observe  more 

than a single time interval. We expected success. O ur 

expectation was confirmed. 

8. Whenever P Then Q or Rot R Within T 

 

 

P; incrTime(31) (timeout has occurred). We expected  

obvious success. Our expectation was confirmed. 
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Q; incrTime(31) (timeout has occurred).  We expecte d 

success. Our expectation was confirmed.  

 

R; incrTime(31) (timeout has occurred). We expected  

success. Our expectation was confirmed. 

 

P; incrTime(5); Q; incrTime(26) (timeout has occurr ed). 

We expected success. Our expectation was confirmed.   

 

P; incrTime(5); R; incrTime(26) (timeout has occurr ed). 

We expected failure. Our expectation was confirmed.   
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P; incrTime(5); Q; incrTime(5); R; incrTime(21)(tim eout 

has occurred). We expected failure. Our expectation  was 

confirmed. 

 

 

P; incrTime(15);P; incrTime(5); Q; incrTime(26)(tim eout 

has occurred); R.  Our goal in this test and the ne xt was to 

ensure that the assertion could handle overlapping time 

intervals and that the assertion observes more than  the 

first P in a sequence of P’s. The test was expected  to be a 

success. Our expectation was confirmed.  

 

P; incrTime(5);Q; incrTime(10) P; incrTime(21); R; 

incrTime(10) (timeout has occurred). The test was e xpected 

to be a failure. Our expectation was confirmed. 

 



 75 

 

P; incrTime(5); Q; incrTime(26) (timeout has occurr ed); 

P; incrTime(5); R; incrTime(26) (timeout has occurr ed). We 

tested for multiple intervals in this test to ensur e that 

the assertion would observe more than a single time  

interval. We expected failure. Our expectation was 

confirmed.  

9. Whenever P Then Q and Not R within T  
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P; incrTime(31) (timeout has occurred). We expected  

obvious failure. Our expectation was confirmed. 

 

 

Q; incrTime(31) (timeout has occurred). We expected  

success. Our expectation was confirmed.  

 

R; incrTime(31) (timeout has occurred). We expected  

success. Our expectation was confirmed. 

 

 

P; incrTime(5); Q; incrTime(26) (timeout has occurr ed). 

We expected success. Our expectation was confirmed.  
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P; incrTime(5); R; incrTime(26) (timeout has occurr ed). 

We expected failure. Our expectation was confirmed.    

 

 

P; incrTime(5); Q; incrTime(5); R; incrTime(21)(tim eout 

has occurred). We expected failure. Our expectation  was 

confirmed. 

 

P; incrTime(5); Q; incrTime(5); Q; incrTime(21) 

(timeout has occurred). We expected success. Our ex pectation 

was confirmed. 

 

 

P; incrTime(5); Q; incrTime(5); Q; incrTime(5); P; 

incrTime(20); Q; incrTime(15) (timeout has occurred ). Our 

goal in this test was to ensure that the assertion could 

handle overlapping time intervals and that the asse rtion 
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observes more than the first P in a sequence of P’s . The 

test was expected to be a success. Our expectation was 

confirmed. 

 

 

P; incrTime(5); Q; incrTime(5); Q; incrTime(21) 

(timeout has occurred); P; incrTime(5); Q; incrTime (26) 

(timeout has occurred). We tested for multiple inte rvals in 

this test to ensure that the assertion would observ e more 

than a single time interval. We expected success. O ur 

expectation was confirmed.  

B. ADDITIONAL ASSERTION DIAGRAMS UNBOUNDED BY TIME 

We felt that this assertion statement should be 

separated from the other assertion statements becau se the 

time is unbounded. It still has merit as an asserti on 

statement but may not be as useful as the other ass ertions.  
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1. Whenever P Then Not Q After T 

 

 

P; incrTime(31) (timeout has occurred). We expected  

obvious success. Our expectation was confirmed. 

 

Q; incrTime(31) (timeout has occurred). We expected  

success. Our expectation was confirmed. 

 

P; incrTime(5); Q; incrTime(26) (timeout has occurr ed). 

We expected success. Our expectation was confirmed.  
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P; incrTime(31) (timeout has occurred); Q . We expe cted 

failure. Our expectation was confirmed. 

 

 

P; incrTime(10); P; incrTime(10); Q; 

incrTime(21)(timeout has occurred). Our goal in thi s test 

was to ensure that the assertion could handle overl apping 

time intervals and that the assertion observes more  than the 

first P in a sequence of Ps. We expected success. O ur 

expectation was confirmed.  

 

P; incrTime(5); P; incrTime(31)(timeout has occurre d); 

Q. We expected failure. Our expectation was confirm ed. 
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P; incrTime(5); Q; incrTime(26)(timeout has occurre d); 

P; incrTime(31)(timeout has occurred); Q. We tested  for 

multiple intervals in this test to ensure that the assertion 

would observe more than a single time interval.  We  expected 

failure. Our expectation was confirmed. 
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