

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

DETECTION AND TRACKING BASED ON A DYNAMICAL
HIERARCHICAL OCCUPANCY MAP IN AGENT-BASED

SIMULATIONS

by

Dietmar Josef Teufel

September 2008

 Thesis Advisor: Christian Darken
 Second Reader: Kevin Squire

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2008

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Detection and Tracking Based on a Dynamical
Hierarchical Occupancy Map in Agent-Based Simulations
6. AUTHOR(S) Dietmar Josef Teufel

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Agent-Based Models in military simulation need a model for detection and tracking other agents. It has been suggested
that statistical models, such as occupancy maps or particle filters, can be used for that purpose. An occupancy map is
one possibility for this task. The more volume of space, however, in a simulation, the more the computational demand
of using occupancy maps grow and the more benefit could be obtained by the ability to switch to a coarser granularity
in at least some parts of the volume.
Using both possible benefits of an occupancy map, fine granularity in tracking and detection where needed and less
computational demand by switching to low granularity where possible, parts of the volume will be transferred to a new
occupancy map on a higher hierarchal level with coarser granularity. Only the most interesting areas in the simulation
have fine granularity.
The main contribution of this research will be to provide an improved algorithm and a prototype for using a hierarchy
occupancy maps in agent-based simulations involving large volumes of simulated space.

15. NUMBER OF
PAGES

83

14. SUBJECT TERMS tracking, detection, agents, occupancy map, simulation, probabilistic
target tracking, hierarchical graph, abstract graph

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

DETECTION AND TRACKING BASED ON A DYNAMICAL HIERARCHICAL
OCCUPANCY MAP IN AGENT-BASED SIMULATIONS

Dietmar Josef Teufel
Lieutenant, German Navy

Graduate-Engineer (FH), University of German Armed Forces Munich, 1996

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2008

Author: Dietmar Josef Teufel

Approved by: Christian Darken
Thesis Advisor

Kevin Squire
Second Reader

Peter Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Agent-Based Models in military simulation need a model for detection and

tracking other agents. It has been suggested that statistical models, such as

occupancy maps or particle filters, can be used for that purpose. An occupancy

map is one possibility for this task. The more volume of space, however, in a

simulation, the more the computational demand of using occupancy maps grow

and the more benefit could be obtained by the ability to switch to a coarser

granularity in at least some parts of the volume.

Using both possible benefits of an occupancy map, fine granularity in

tracking and detection where needed and less computational demand by

switching to low granularity where possible, parts of the volume will be

transferred to a new occupancy map on a higher hierarchal level with coarser

granularity. Only the most interesting areas in the simulation have fine

granularity.

The main contribution of this research will be to provide an improved

algorithm and a prototype for using a hierarchy occupancy maps in agent-based

simulations involving large volumes of simulated space.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION... 1
A. PROBLEM ... 1
B. RESEARCH ... 3
C. THESIS ORDER... 4

II. PREVIOUS WORK IN TARGET DETECTION AND ABSTRACT
GRAPHS... 7
A. OCCUPANCY MAP ... 7
B. PARTICLE FILTER.. 10
C. SIMULACRA.. 14
D. ABSTRACT GRAPHS ... 16

III. MODEL AND ALGORITHM.. 19
A. DEVELOPING THE GRAPH.. 19

1. Environment... 19
2. Hierarchy Graph... 22

B. DYNAMIC BEHAVIOR... 27
1. Dynamic Behavior of the Graph ... 27
2. Culling .. 32
3. Distribution of Probability... 34

IV. DESIGN OF THE PROTOTYPE ... 37
A. PURPOSE OF THE PROTOTYPE... 37
B. ARCHITECTURE ... 37

1. Modules and Classes .. 37
2. Event Graph ... 41

C. IMPLEMENTATION ... 43

V. ANALYSES OF THE DYNAMICAL HIERARCHICAL OCCUPANCY MAP. 51
A. VISUAL .. 51

1. Visible Hiding Agent.. 51
2. Leaving the Visible Area ... 53
3. Outside the Close Area ... 55
4. Behavior after Long Time.. 56

B. DISTRIBUTION OF PROBABILITY... 57

VI. CONCLUSION AND FURTHER WORK... 61
A. CONCLUSION ... 61
B. FUTURE WORK... 61

1. Quantitative Research... 62
2. Implement in Simulation ... 62
3. More Hierarchies.. 63
4. Hybrid Model .. 63

LIST OF REFERENCES.. 65

INITIAL DISTRIBUTION LIST ... 67

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

LIST OF FIGURES

Figure 1. Occupancy Map ... 8
Figure 2. Particle Filter (from [2]) ... 11
Figure 3. Game Level with Particle Filters (from [2]).. 12
Figure 4. Particle Filter for Tracking (from [3]) ... 12
Figure 5. Simulacra (after [1]) .. 14
Figure 6. Building Levels (from [5]).. 16
Figure 7. Quick Path with Abstract Graph ... 17
Figure 8. Typical Occupancy Map in a Game Level .. 19
Figure 9. Two Basic Graphs of an Occupancy Map .. 22
Figure 10. Abstracting a Graph in Levels (from [5]) ... 23
Figure 11. Algorithm Developing Next Hierarchy... 24
Figure 12. Building Cliques.. 25
Figure 13. Algorithm Building a Clique .. 26
Figure 14. Algorithm Building a Hierarchy Node.. 27
Figure 15. Algorithm PopDown Node .. 29
Figure 16. Transition between Levels of Hierarchy Graph................................... 30
Figure 17. Algorithm PopUp Node... 31
Figure 18. Algorithm for Cull .. 33
Figure 19. Algorithm Distribute Probability .. 35
Figure 20. Software Architecture Prototype... 38
Figure 21. Sub Modules of the Module Secrete Event Simulation....................... 39
Figure 22. Class Diagram of the Prototype.. 40
Figure 23. Event Graph Building Hierarchy Map ... 41
Figure 24. Event Graph Search Agent Mover.. 42
Figure 25. Basic Graph.. 43
Figure 26. Movers in Simkit ... 44
Figure 27. Search and Hide Agent .. 45
Figure 28. Search Agent in the Hierarchic Map... 46
Figure 29. Distribution of Probability.. 47
Figure 30. Hiding Agent Visible ... 52
Figure 31. Probability Distribution Short after Leaving Visible Area..................... 54
Figure 32. Probability Distribution Hider outside fine Granularity......................... 55
Figure 33. Probability Distribution after Long Time.. 57
Figure 34. Psum Over Time... 59

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1 Occupancy Map Growing Table ... 21
Table 2 Simulation Parameter ... 48
Table 3 Psum Over Time... 58

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

I would like to thank my thesis advisor, Chris Darken, for his guidance and

expertise in this area of research. This helped me to finish my thesis work

successfully. He motivated me during his classes to start a thesis with a topic in

this research area of simulation. During the thesis process, he was patient with

me when I had thesis difficulties. He gave me the right advice at the right time.

I would also like to thank all the Naval Postgraduate School professors,

who lectured in the Department of Computer Science of the Naval Postgraduate

School for their support and council during the study, and especially for

answering any question if needed. Without the timely support of the readers this

Thesis would never have been finished.

Finally, I would like to thank my classmates at the Computer Science

department and at the Moves Institute for their support through the study and

companionship.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. PROBLEM

For years, modeling human-like behavior has been one of the aspects of

research in the fields of artificial intelligence and military simulations. The more

an agent behaves -- in an Agent-Based Simulation -- like a human being, the

more realistic the simulation. Like a human in the real-world, the agent will make

similar decisions and errors. To reach this aim, many methods have been

developed over the years. These were more or less successful.

Tracking and detection are some of the human-like behaviors. They play

an important role in both military simulation and in real-world military. One of the

most important pieces of information in military operations and in military

simulation is the opponent’s position. If the information is correct, there is a

higher probability of success; on the other hand, if the information is wrong, there

will be less success. Key to a military simulation is following the knowledge of the

environment. One resulting variance of such a simulation is the uncertain

reasoning about the opponent’s position.

To ensure realistic behavior and to achieve valid results, agent-based

models in military simulation have models for detection and tracking other

agents. It has been suggested that statistical models, such as occupancy maps

or particle filters, can be used for that purpose. There is likelihood that the agent

will track his opponent on the wrong position. This is because the agent does not

really know about the opponent’s position. Like real persons, he estimates his

position on the location with the highest probability. This possible failure gives an

agent a more human-like behavior and, therefore, makes the outcome of such a

simulation more realistic.

One method for tracking is an occupancy map. It is a directed graph. Each

node of the graph has a geographic position; each edge represents the

 2

possibility to move from one node to the other. Different methods are particle

filters, which represent the position of a target as a set of possibilities. These are

called particles.

Occupancy maps are relatively simple to develop and to use for

probabilistic tracking. Because of this, they are widely used in the area of

simulation, i.e., computer games and robotics.

However, with the increasing power of computers in the last years, there is

also a need of the military simulation community about more complex simulation.

The simulation area, also the map the simulation should work increases over the

last few years. Occupancy maps work very exact and fast in small sized

simulation, therefore there are often used in such simulation, because of there

simplicity

The occupancy map, however, has a disadvantage in large-sized

simulation: the larger the volume of space in a simulation, the more the

computational demand of using occupancy maps grows. Also, more benefit could

be obtained by the ability to switch to a coarser granularity in at least some parts

of the volume. In the outer, or in less interesting regions of the simulation, the

probability of each node will be calculated with the same cost as in the area near

the search agent. This is a waste of resources: not only is it unrealistic to

calculate the location of an opponent with such precision, but it is not necessary.

If a simulation is huge and has a wide area, most of the computations about the

probability of an opponent would be less useful. They would only serve to bind

the computer resources for tracking.

On the other hand, if the granularity spread is caused by an increasing

area, there is a different disadvantage: the computational cost remains constant;

further, the granularity in the area close to the searching agent will be wide. This

could lead the searching agent to imprecise tracking and to artificial behavior in

the close area.

 3

There is a need for a solution which combines the advantages of the

occupancy map -- especially the possible high precision in the area close to the

search agent and the simplicity of building and using this kind of probability

tracking. Additionally, the improvement should avoid the disadvantage of high

cost of calculation probabilities in both the simulation’s outer area or in

uninteresting locations.

B. RESEARCH

Using both possible benefits of an occupancy map -- fine granularity in

tracking and detection (where needed) and less computational demand by

switching to low granularity (where possible), parts of the volume will be

transferred to a new occupancy map on a higher hierarchal level with coarser

granularity. Only the most interesting areas in the simulation have fine

granularity. This dynamic behavior itself has computational costs. The focus of

the thesis will be to develop an algorithm to use these hierarchal occupancy

maps and to reduce the cost of the original fine granularity occupancy map.

The scope of this thesis includes retaining the advantages of occupancy

maps, with a fine granularity in detection and tracking, in large-scale simulation.

To achieve this, the occupancy maps are divided into different levels of

abstraction, i.e., a hierarchy. The building of different levels in this hierarchy

during runtime of the simulation (dynamic building) will itself incur computational

cost. In the past, this principle was used for path-finding. In this thesis, this

principle is used to develop the algorithm for such a hierarchical graph for

probabilistic tracking.

After the basics of the hierarchy occupancy map were developed, the

development of a prototype followed. With an experimental prototype, the

concept of the hierarchy occupancy map will be proven. Initial testing of the

prototype will be done, to ensure the software-prototype of the hierarchy

 4

occupancy map fulfill the requirements as described during the modeling process

and behaves as expected. This will test the algorithm for building and working

with a hierarchical occupancy.

Currently, there is no prototype or environment to proof or test the concept

of using hierarchy maps for target detection and tracking. The main contribution

of this thesis is to deliver a prototype for the proof of concept of hierarchical

occupancy maps in agent-based simulation.

The experimental prototype should be implemented in a modular way. In

the future, the prototype could be used beyond the scope of this thesis.

Additionally, different experiments could be done in future work. The prototype

will be useful to test and following improve the algorithm for hierarchal occupancy

maps in future research.

C. THESIS ORDER

The thesis is organized as follows:

• Chapter II, Previous Work in Target Detection and Abstract
Graphs describes various techniques for targeting with probabilty

reasoning. Advantages and disadvantages of the different methods

will be discussed. Additionally, the technique of abstract graphs will

be declared and shown how it is used for path-finding.

• Chapter III, Model and Algorithm describes the development of

the algorithm of the hierarchical graphs. The model will be

described and explanation as to why it is useful in the simulation.

The principles of a hierarchy graph will be declared. The focus will

be on the static and dynamic behavior of such a graph in a

simulation for detection and tracking.

• Chapter IV, Design of the Prototype describes the purpose of the

developed prototype for the agent-based simulation. The

development of the overall Software-Architecture of the prototype

 5

will be declared. Special focus will be placed on the different

classes and modules of the software. They will also be described.

Additionally, the viewpoint from the discrete event simulation will be

discovered and the function of the event graphs will be declared.

Problems and discoveries during implementation are described.

• Chapter V, Analyses of the Dynamical Hierarchal Occupancy
Map describes the initial tests of the prototype. Analysis of the

visual appearance of the prototype will be made. Additionally, some

metrics and quantitative results will be discovered from the

simulation.

• Chapter VI, Conclusion and Further Work summarizes the

contribution this thesis made to this topic. From the basics of the

thesis, it will also give suggestions about further work.

 6

THIS PAGE INTENTIONALLY LEFT BLANK

 7

II. PREVIOUS WORK IN TARGET DETECTION AND
ABSTRACT GRAPHS

Military simulations which are agent-based should have a technique for

target detection and target tracking. In previous simulations -- especially in the

military or game development communities -- they often worked around this

problem. In the past, developers often gave complete environment knowledge to

all agents in the simulation. Target detection and tracking was more and less

simplified or randomized to find the target agent or not. With time, there was a

demand for more realistic simulation and tracking and detection methods. Over

the last few years, several methods were developed and improved. Many of them

work with probability distribution.

With this method, a searcher tracks the target on a map with a distribution

probability of the location of the targets. There are two sub fields: one is the

collaborate tracking of targets; the second is path-finding. In both fields, however,

the agents need a valid representation of the target.

In following chapter, several models for probability distribution and target

detection will be discussed and compared. Also the basics of an abstract graph

will be discussed.

A. OCCUPANCY MAP

Occupancy maps are discrete representations of a probability at a specific

position in a map over time. The essence of an occupancy map is the projection

of a grid in a specific environment. The grid itself is a directed graph. It is adapted

to this environment as displayed in the figure below.

 8

Figure 1. Occupancy Map

Each node of the graph has a specific coordinate in the map. The edge

between two nodes means that an agent can reach the second node over the

edge from the first node. Following the edge represents the possibility of moving.

If there is no edge between two nodes, there is no way to move from the one

node to the other in a direct way. Each node is static, will not move over time,

and stores a value pA, which represents the probability a specific target is placed

at this node [1]. The sum of all values of the nodes in the grid is calculated as

follows:

sum A
n

p p=∑

The expected probability p for the target is at the specific node and is,

then, calculated as follows:

A

SUM

pp
p

=

 9

The edges, which connect two nodes, have a specific parameter λAB which

is a metric of the probability a target moves from node A to node B. This

measurement can depend on the environment. If λAB is small, it is difficult to

move from node A to node B. The probability that a target moves from node A to

B will be less. If a specific node, however, has a beneficial position, the

probability is higher. There are many reasons for setting the parameter λAB to a

specific value. If there is no edge between node A and node B, the parameter λAB

is zero. For each node,

1AB
A
λ ≤∑

The move-cull process is necessary for frequently updating the occupancy

map and the distribution of the probability over the grid. If we define pA(n) as the

value at a specific node after n time steps, the probability the target is at a

specific node will be calculated as follows:

(1) () () ()A A AB A CA C
B C

p n p n p n p nλ λ+ = − +∑ ∑

The probability that the target is at a specific point is calculated as sum to

the probability which is distributed to neighbor nodes and the probabilities which

come from the neighbor nodes.

The cull part of the process reduces the probability of nodes that are

visible during the search process of the searcher. If the target is visible, the

probability of the node, which at the position of the target will be set to one, the

probability of the other nodes will be set to zero. If the target is not visible, the

probability of all visible nodes will be set to zero. The probability at the other

nodes represents the probability that the target is at this specific position.

The advantages of occupancy maps are that they are easy to generate

and the distribution of probability is easy to calculate. If the move-cull process

and the parameter between the edges are synchronized with the speed of the

 10

target, the results of tracking are valid. Therefore, occupancy maps are widely

used in the area of simulation, game development, and in map navigation of

robots as a real world application.

Occupancy maps, however, have some disadvantages. One disadvantage

is the possibility of magic movement of the probability between two nodes that

are not visible to the searcher -- although the edge is visible. The culling process

in the occupancy map cares only about the nodes and not about the edges. For

example, if both nodes are not visible to the searcher, but the edge between

nodes is, there is a possibility that probability distribution will be over this edge.

This could lead to wrong solutions of the probability distribution over the nodes.

Synchronizing the parameters within the edges and with the speed of the target

could be difficult. If the synchronizing is invalid, the wave front of high

probabilities could move too fast or too slow compared to the target agent. This

could increase the error rate of tracking and make the model of tracking invalid.

Additionally, the number of nodes and the computational cost of the tracking

algorithm depend on the number of nodes and the size of the grid. If the map

increases and there is only one single target to track, the computational cost

increases.

B. PARTICLE FILTER

A different approach for localization and tracking is particle filters. It is a

particle-based state estimation technique. Particles represent a position of a

target as a finite set of possibilities [1]. Each particle has a weight, which is

proportional to the probability that the target is at this time at the specific position

of the particle. Contrary to occupancy maps, the particle has free movement over

the whole map. There is no grid, which leads the particle to specific positions. If

the particle is visible from the searcher, it will be deleted. If after some time an

area of the map is not visible to the searcher, a set of new particles on a specific

or random place is generated. The new set of particles moves with random

direction (360˚) and speed.

 11

Similar to occupancy maps, a move-cull process is necessary. During

culling, all visible particles will be deleted. If the target is visible, there will be no

generation of new particles. The move-process is the initialization and moving of

new particles. The parameter of each particle, such as velocity, is chosen at

random. Particles can only move to positions which are reachable. The speed of

movement could be selected at random or it could be determined by the

environment. If the environment is difficult to move through, it could decrease the

speed of the particle. If the environment is easy to move through, the particle’s

speed could increase.

Figure 2. Particle Filter (from [2])

Figure 2 demonstrates the particle filter in the special case that the

particles are moving on a fine grid. The NPC is a searcher-agent. It searches for

a player who is hiding in one of three rooms. Every position, which is and was

visible, is white; thus, the particles disappeared. This means that the probability

that the player hides at this specific place is zero. If the searcher-agent searches

in the different rooms, more and more particles are deleted. This follows the

probability that the player is at a place where remaining particle increase.

Also, with occupancy maps, there has to be a collision test of the single

particles to avoid “magic movement.” If a particle hits a wall or barrier, it has to be

considered in the movement of the particle itself. The particle has to be

eliminated or its direction is changed.

 12

Figure 3. Game Level with Particle Filters (from [2])

When a visible target moves out of sight as displayed in the figure above,

a specific number of particles are placed on a specific position. This initial

position could be extrapolated from the position and speed of the target at the

time it disappeared. Now all particles move over time through the map with the

move-process. It is frequently proofed if the particle is visible and will be deleted

with the cull process.

Figure 4. Particle Filter for Tracking (from [3])

 13

Additionally, a good demonstration of particle filter is the tracking of

opponents with real sensors. Particle filters are not only used in the field of

simulation and game development, but also in the field of tracking real data from

sensors. They are also used in making an estimate of the position of the target if

the tracking is interrupted, such as in Radar Technique [4]. Figure 4 is a

simulation of tracking a target with different sensors in Borovies Master Thesis

[4]. At this moment, the searcher uses a bearing-only sensor with a specific

tolerance. The green dots are the particles which are more or less uniformly

distributed in the area in which the target could be. The white dot is the position

which is most likely for the target. It also provides the most likely speed and

direction of the target.

Particle filters have some advantage over occupancy maps: particles

could move exactly between the minimum and maximum speed of the target;

thus, the distribution of the particles is more realistic than in an occupancy map.

This is because there is not static grid to limit the movement. Additionally, the

particles can be spotted and deleted as they move. This avoids magic

teleportation between two hiding places which sometimes occurs in occupancy

maps. The number of particles is completely independent from the size of the

level in a simulation or game. With an occupancy map with increasing level size,

this research increased the number of nodes and noted the computational cost or

the decrease of the granularity level. Particles are independent of that. The

granularity depends on the number of particles generated and this is independent

from the size of the level or map.

Particle filters do come with disadvantages: the random choice of

movement is sometimes not realistic. In a specific environment, a target does not

behave randomly; rather, it will have preferred speed and direction. In such

circumstances, the initialization of the particles with random direction and speed

will lead to a less accurate tracking or the implementation of this behavior lead to

additionally computational cost. Additionally, particles need a collision test. If a

particle reaches an area which cannot be reached by the hiding agent, the

 14

particle has to be deleted or moved to another direction. The algorithm for

detecting this collision, and the following changing of the particle, has an

additional computational cost compared to other methods of tracking. The

computational expense of particle filters is directly proportional to the number of

particles. If the number of particle is too small, there is danger of no reasonable

tracking. The tracking of multiple targets needs multiple sets of different particles.

Every target needs its own set of particles to get its own probability distribution.

C. SIMULACRA

Simulacrum is a hybrid model of tracking and target detection. It combines

the advantages of particle filters and occupancy maps. It was introduced by

Darken and Anderegg in their article [1]. It is based on particle filters which gave

a good visual representation of how the search agent tracked the target agent. A

simulacrum tries to simplify the model for particle filter and also to deliver a more

realistic tracking behavior. For example, the tracking of targets should sometimes

be assumed by the searching agent and be more independent from the

environment where the target is moving. This is because the search-agent does

not know the environment and, therefore, cannot make assumptions about the

speed of the hiding-agent. For the representation, the probability particles are

used, but instead of moving free on the map, they now move on the edges of an

underlying grid -- or navigation path -- similar to an occupancy map.

Figure 5. Simulacra (after [1])

 15

Figure 5 shows a typical example of simulacra. The probability of the

target is represented by the size of each node in the graph. The wandering of the

probability, or dynamic behavior, is displayed as dots moving on the edges from

one node to the neighbor’s node.

The particles of simulacra have a position xn and a weight pn. A behavior

state is optional. This behavior state, however, makes the model more

complicated. On the other hand, it could lead to a more realistic behavior of the

target. To support this, consider that the target hides with higher probability at the

nodes. The search-agent knows these preferred nodes.

The sum of pn is

sum np p=∑

N is the number of current particles, or simulacra, and N* is the number of

desired simulacra. During the dynamic behavior of the probability distribution, if

N<N* there will be a split of simulacra. The simplest approach is to split the

simulacra into two new simulacra with half probability pn. During the move

process, splits occur until the number of simulacra N=N* is achieved. Following

on every node, the probability will split. In models that are more complex, there

could also be a probability not to split. It may also not follow a specific edge to

the next node. This is because the cost to reach this node is too high.

The culling process is the same as with particle filters. If a particle

becomes visible, the particle will be deleted and its value pn will be subtracted

from p. Additionally, N has to be subtracted by one. This is because in the

tracking model now only one particle is lost.

Simulacrum combines the particle filter with the advantages of a

navigation path. The movement of the particles is not random anymore. This

avoids the necessity for collision detections of particles and following reduces the

 16

computational cost compared to basic particle filters. It also solves the problem of

magic movement: if a particle is visible for the searcher wandering between two

nodes, the particle will be deleted.

D. ABSTRACT GRAPHS

Search algorithm, such as A*, normally uses the full representation of the

underlying graph. It also tries to find an optimum solution -- or path -- from one

specific node to the target node. In the field of computer simulations, it is

sometimes not necessary to find the optimal solution. This is because it needs

too many resources and computational power. A near optimal, but very fast,

solution will be more beneficial. A solution for path-finding, developed by N.

Sturtevant and M. Buro [5], is shown in their paper about abstract graphs.

An abstract graph is a reduction of a full-state graph where each node

represents one or more states in the lower level graph. An edge exists between

the nodes in the higher level. This occurs if, in the lower level, an operator can

reach one of the other nodes which is represented by the next higher level node.

A node in a higher level represents the information of a set of one or more nodes

of the lower level.

Figure 6. Building Levels (from [5])

 17

An abstract graph with three levels is displayed in Figure 6. The full

representations of the graph on the first level are the nodes A to D. For the path-

finding algorithm, it is necessary that only nodes which are connected go to the

next level. As the nodes A and B and, on the other side C and D, are connected,

they will be represented by a common node AB and CS in the next level. The

only information necessary for the next level is whether the previous nodes are

connected outside with another node. If it is connected, there will be an edge

between the representation of the node and the target node outside. When this

procedure is repeated with the next level, the result is one single node for this

graph. This means there is -- at minimum -- one path between all nodes of the

graph.

To use an abstract graph for path-finding, the selected start node and

target node in the next level are used until both are represented by the same

node. If there is no common representation, there is no path between the two

nodes. The path could be built from the common node.

Figure 7. Quick Path with Abstract Graph

 18

In Figure 7, the path-building process is displayed. In every lower level,

the algorithm must find a path between the representation of the starting node

and the target node. If the quick path algorithm reaches the full representation of

the lowest level, it is the demanded path from the starting node to the target

node. The path may only be suboptimal; however, for every level to find the path,

the algorithm needs O(log n).

The cost for this is that the path is only suboptimal. Additionally, the cost

of building the abstract graph itself is suboptimal. N. Sturtevant and M. Buro [5]

proofed in their paper that the cost for the initial building of the abstract graph is

O(n).

The idea behind the abstract graph is to use, in every higher level, a

representation of the information of the lower level. In this thesis and, especially

in the following chapter, this principle is used as a representation, not for path-

finding, but for a probability distribution to improve occupancy maps.

 19

III. MODEL AND ALGORITHM

A. DEVELOPING THE GRAPH

In this chapter, the environment of the simulation will be described. It

shows how the occupancy map will work within this environment. The algorithm

and method to build a hierarchy occupancy map will be declared. The focus is on

the dynamic behavior of the graph during runtime of the simulation.

1. Environment

A military agent-based simulation of combat situations is sometimes

comparable to games developed by the computer game industry. There are

similar problems to solve; therefore, there are similar solutions for the problems --

especially in the research field of Artificial Intelligence. The reason is that both,

especially real-time games, are a kind of simulation. The National Research

Council recommends techniques which were originally developed for games in

military simulations [6]. A common major problem is target tracking and

detecting. In both, there is an ever-increasing power of computers and a demand

for larger simulations and larger game levels. If the level of games and the

displayed area of simulation become huge, new difficulties in the field for target

tracking and localization appear.

Figure 8. Typical Occupancy Map in a Game Level

 20

The one-level occupancy map and the other techniques, as described in

the previous chapter, show that particle filters and simulacra have different types

of difficulties when dealing with this increasing complexity. Simulation and

gaming, however, sometimes deal with these kinds of problems differently, too.

When a realistic solution has a computational cost that is too high, the

game developer often cheats. With too realistic behavior, the game player will not

be entertained as well (Bererton, 2004 [2]). For example, the game software tells

the search agent where the human opponent is. Thus, the programmer can avoid

developing a complex target tracking and searching algorithm. Further, the

human player does not have to wait a long time for the agent to find his position.

For the game player, such an artificial intelligence of the opponent agent looks

like a realistic behavior, but, in the background of the agent, it is not realistic

behavior.

In military simulation, this is not a valid solution. To reach valid and more

realistic results from an agent-based model, the agents in the model must make

human-like decisions. A part of this decision is the search for opponents. As

described in previous chapters, the occupancy map is a good method to reach

this human-like behavior in military agent-based simulations. Therefore, it is used

widely. The node represents the probability that the searched agent is at this

specific location. Therefore, for a huge agent-based simulation, the number of

nodes will increase. As the area of the simulated terrain increases, there are

several new problems. If the granularity of the probability tracking is constant, the

number of nodes will increase. Also, the time and memory for tracking and hiding

agent with these probability nodes will increase. The developer of the simulation

can make the decision to decrease the number of nodes or to reduce the

computational cost of the simulation. It will, however, decrease the granularity of

the grid and, with that, the precision of tracking opponent’s agents. Therefore, we

 21

loose quality in the tracking algorithm of the simulation and the realist behavior of

the agents. This could lead to less human and realistic behaviors of the agents in

the military simulation.

Simulation Area Constant Granularity

10m x 10m

Constant Node

100

100m x 100m 100 Nodes 10m x 10m

200m x 200m 400 Nodes 20m x 20m

500m x 500m 2500 Nodes 50m x 50m

1 km x 1 km 10,000 Nodes 100m x 100m

5 km x 5 km 250,000 Nodes 500m x 500m

10 km x 10 km 1,000,000 Nodes 1000m x 1000m

Table 1 Occupancy Map Growing Table

A valid solution would be to track precisely near the agent and to track

less precisely further away. Then the granularity of the grid, or underlying map,

will increase near the agent and decrease with more distance from the agent.

The search agent needs the most precise occupancy map for this position

nearest him. This makes possible, during the run of the simulation, a realistic

search in his neighborhood. The more distance from the searcher a node has,

the less it has to be precise. A precision target and detection over a far distance

is not necessary and not realistic. Following the granularity of an occupancy map

could decrease the furthest nodes of the map away from the searching agent.

To find the target agent, the searching agent will search over the

occupancy map at the areas which have the highest probability. This means that

such an occupancy map is not static: the areas of detailed granularity must move

with the searching agent over the simulation map. There is a need for dynamic

 22

behavior of such an occupancy map. When the searcher moves, there must be

an information exchange between the different levels of this map.

To fulfill the previous written requirements of an occupancy map in an

agent-based simulation with a huge simulation area, graph theory is used to build

an occupancy map with different levels of details. To reach this aim, a graph with

different layers is used. Such a graph already exists in Sturtevant and Buro’s

paper: using map abstraction for path-finding [5]. In this thesis, the technique is

used and modified to develop an occupancy map with different granularity on

different levels. In this paper, it is called hierarchy graph or hierarchy map.

2. Hierarchy Graph

The occupancy map is used as the foundation to develop the basic

hierarchy graph. Each node of the basic graph represents one specific area; the

edge represents the cost to move from one area to the next. The node also holds

the probability that a target is in the specified area.

Figure 9. Two Basic Graphs of an Occupancy Map

Hierarchy graph is a finite sequence of graph’s (G1..Gn) where Gi=(Vi,Ei)

and there exists Vi+1 which is an abstraction of Vi. The different graphs are called

levels of the hierarchy graph. Development of the levels and, therefore, of the

 23

whole hierarchy graph should be done during the initialization of the simulation.

The cost of the building the hierarchy graph is not considered for the runtime of

the simulation itself.

From the basic graph, the first step is to develop one or more of the upper

levels of the hierarchy graph. The method is to put some nodes of the previous

level or hierarchy together as one set of nodes and let them represent a node

from the next level.

Figure 10. Abstracting a Graph in Levels (from [5])

Theoretically, this procedure can be repeated until there is only one node

to represent the whole grid of the simulation. In practice, achieving one node

depends on how huge the simulation area is and how detailed the granularity

should be. The output is a hierarchical graph, which has different levels of sub

graphs. Every level ensures a reduction of the number.

The reduction metrics is chosen based upon the number of nodes. These

nodes are represented by one node in the next hierarchy. During the simulation’s

initiation, a huge reduction has the advantage of less levels of hierarchy. It could,

however, increase the demand for computing the dynamic behavior of the

hierarchy graph. This is because there are more nodes that the probability has to

calculate during the reduction to one node (or expanding to the previous level). In

addition, the granularity of tracking the target decreases faster during the runtime

of the simulation.

 24

Figure 11. Algorithm Developing Next Hierarchy

In the algorithm for developing the next level, the input value n is the

number of maximum nodes in a clique. The term clique in the algorithm is a set

of nodes which are fully connected. The first cliques are searched with n nodes in

the basic or previous graph. If there is no remaining n-clique, the next step is to

search for a clique with n-1 nodes. This process is repeated until there are only

single nodes which are not in a clique. These single nodes can be added to an

existing clique or can be represented by a single node in the next level of the

graph.

Algorithm Developing Next Hierarchy

procedure NextHirachie (G, n) **the overall procedure**

Input: G=(V,E) is a directed graph; with vertex v ∈ V,
 n is number of nodes in cliques,
Output: new hierarchical graph G’; with v’ ∈V’

and u∈ U as edges between G and G’

Create G’ **create an empty Graph g’**
While some v not connected to a node in G’and n >1
 For all v∈ V not connected

procedure BuildNClique (G, G’ v, n) **calls for new clique**
n= n-1

For all v∈ V not connected,
put single node to next clique

 25

Figure 12. Building Cliques

According to Corman [7], a clique is a subset of vertices of the graph

G=(V,E) -- each pair of which is connected by an edge in E. A clique is a

complete sub graph of a graph. This means that every node in the clique could

be reached with one step of each node in the clique. Each clique will be

represented in the next level of the abstract graph as node. The principle was

used by Sturtevant and Buro for building levels of hierarchy for path-finding [5].

For every node in the basic graph, the algorithm proofs first, i.e., the node

could reach n-1 neighbour nodes with one step. If this test is positive, the node is

put on a list of possible clique nodes. To build a clique, each node (of the

possible clique-list) must be able to reach its neighbour node with one step and,

also, the neighbour node must be able to reach this node in a directed graph.

Both must be proven. Further, the algorithm must prove that if one of the nodes --

or the neighbour’s node -- is not already a member of a clique, it will connect to

the graph of the next level. If the algorithm found n nodes which fulfil the

requirement, the algorithm will build and connect -- with a separate procedure --

the hierarchy node of this clique.

 26

Figure 13. Algorithm Building a Clique

The algorithm for building the hierarchy node takes the information from

the underlying clique to the hierarchy node. This represents the clique in the next

level and connects this node to hierarchy graph G’. The new hierarchy node is

created and connected to the right level of the graph with edges. For that, it is

mandatory to prove if the edge of a node of the underlying clique goes inside

(travels to another node of the same clique) or outside (travels to another clique).

In the next level graph, the node is only connected with the edges, which are not

internal edges of the clique. The new hierarchy node represents a more large

area. The internal edges of the clique are inside the new represented area and

are not considered in the next level of wider granularity.

Algorithm Building a Clique

procedure BuildNClique (G, G’, v, n)

Input: G=(V,E) is a directed graph; with vertex v ∈ V
 G’=(V’,E’) is the hierarchy graph
 n nodes in the clique.
Output: n-clique connected to the graph G’

For vertices w, (reachable from v, with one step **put clique node to list
 and full connected to v

and not connected to G’)
put w to list L ** temporary list **

For all w∈ L

if w not fully connected to minimum n-2 w’ in List L
 delete w from list
if #|list| > n-1

 procedure BuildHirarchieNode (G, G’, L, v)

 27

Figure 14. Algorithm Building a Hierarchy Node

If all nodes are from the lower level and are connected with this algorithm

to the higher level, the procedure for one level is finished. The whole algorithm

now could be repeated to build the next level. The new developed level would be

used as the new basic graph. Then, from the previous hierarchy nodes, new

cliques would. be built for the next level. To build a hierarchy graph, the algorithm

could be used in a recursive way.

B. DYNAMIC BEHAVIOR

1. Dynamic Behavior of the Graph

The dynamic behavior is newly introduced here for the hierarchy graph. It

should ensure that only the nodes on different levels of the graph are considered.

This is necessary for the distribution of the probability in an occupancy map.

Normally, the nodes near the search agent are on the lowest level. Those further

away and outside at a specific range are on the higher level. If in simulation there

Algorithm Building a Hierachy Node

procedure BuildHierarchieNode (G, G’, L)

Input: G=(V,E) is a directed graph; with vertex v ∈ V
 G’=(V’,E’) is the hierarchy graph
 L = list of nodes of the clique (w)
Output: w ∈ L connected to next hierarchy graph G’

Create new node w’ as part of G’ ** the new hierarchy node**
for all w ∈ L ∪ {v}
 connect w to w’ **connect Node to the hierarchy graph**
for all u which are connected to w
 if u not ∈ L **the edges between the levels**

 if u not connected to G’
 connect u to w’ **connect clique with the hierarchy node

 else connect u’ to w’
clear L

 28

are more than two levels with increasing distance from the search agent, the

active node will be on a higher level. If the agent moves for the search during

runtime of the simulation, nodes of the upper hierarchy appear in the distance

should be put down to a lower hierarchy. On the other hand, if cliques of the

lower hierarchy are completely out in the distance; it is not effective to consider

this set of nodes in detail. This changing of the active nodes (better called

dynamic behavior of the hierarchy graph) is the important function of the graph to

reduce the active nodes and, also, the calculation of probability on a specific

point during the runtime of the simulation.

As previous described, each node in an upper hierarchy holds the

information of a whole clique in the lower hierarchy. During the process of

movement of the searcher agent, the clique must give the information to the

hierarchy node. The upper hierarchy node must be switched to active. This

means it will be considered in the culling and distribution processes of probability.

In addition, the clique in the previous level must be set to passive. This means it

is not considered during culling and distributing the probability.

At the start of the simulation, the position of the searching agent on one

node had to be set. The agent achieved the lowest hierarchy beginning in this

area and, more outside, to the upper hierarchy. This is part of the initial process

of the simulation, but the same algorithm can be used during runtime.

The algorithm to place the information of a node from a higher to a lower

level -- or hierarchy -- is called PopDown. The algorithm must first test if an upper

hierarchy node is in a specific distance to put it down to the next level. If this test

is positive, all edges of the upper hierarchy node are disconnected from the

upper hierarchy graph. This means that the edges and the nodes are set to

passive, i.e., they will not be considered during the culling and distributing of

probabilities. The neighbour nodes of the previous active node will be tested and,

if necessary, put down to the clique node.

 29

Figure 15. Algorithm PopDown Node

The edges leaving from the new clique will connect to the neighbour’s

clique or to nodes of the upper hierarchy. The edges of the neighbours’ cliques

are already on the lower level and must set to active. The edges of the node from

the lower level which connects to the higher level or, the opposite, from the edge

of the node of the higher level to the lower level, are temporarily at cross level

edges. This connects both levels.

Algorithm PopDown

Procedure PopDown(G,G’,A)

Input: G=(V,E) is a directed graph of lower hierarchy with vertex v ∈ V
 G’=(V’,E’) is the hierarchy graph

A = agent
Output: graph G’

For all v’∈ V’
 If v’ is in range:
 Disconnect all edges of v’ in G’
 Add all children v of v’ to G’
 For every child v:
 p(v) = p(v’)/number of children of v
 Connect all edges of v to the neighbours

 30

Figure 16. Transition between Levels of Hierarchy Graph

This should ensure that, in the transition area between two levels, the

probability could be distributed between the two levels. Figure 9 shows such a

transition area between two levels. This transition area will be move with the

searcher and, therefore, with the border of the distance which was chosen as the

connection for the levels.

When the detailed nodes are set to active, the last step in the algorithm is

to distribute the probability that the target is in the upper node in the detailed

map. A simple method for this is to only share the probability to the number of

nodes in a clique as

(')()
_ _

p vp v
nodes in Clique

=

This simple formula, however, does not ensure terrain or special points

will lead to a higher probability or that the searched agent is in one of the clique’s

nodes.

 31

Figure 17. Algorithm PopUp Node

If a clique gets out of the chosen distance of the searcher agent, the

algorithm must be used for the opposite way. This algorithm is called Procedure

PopUp (Figure 17). First proof: if the inactive node of the upper hierarchy is out of

range. If this proof is positive, it proofs if all member nodes of the clique in the

detailed map are out of range. The next step is to set the node in the upper

hierarchy active and to set the nodes in the clique passive. Distributing the

probability will now occur only on the upper level node. This node connects or,

better, sets all edges active with upper hierarchy. It also proofs the neighbour

nodes which are still passive. The edges to these nodes will be temporary to the

nodes of the lower hierarchy clique. It is the same principle of the transition

edges which were described previously.

Algorithm PopUp

Procedure PopUp(G,G’,A)

Input: G=(V,E) is a directed graph of lower hierarchy with vertex v ∈ V
 G’=(V’,E’) is the hierarchy graph
 A = agent
Output: graph G’

For all v ∈ V
 If v is out range of agent
 And if all v with same clique is out range of agent
 Add parent v’ to G’
 Connect all edges from v’ to G’
 p(v’) = 0
 For all v in clique
 p(v’) += sum p(v) **calculate probability**
 Disconnect all edges E to GU
 Delete VLow from GU

 32

The last step is to sum up the probability of the lower nodes and to set it in

the upper hierarchy node.

(') ()cliquep v p v=∑

2. Culling

As considered in the previous chapter, a node represents the probability of

an opponent to stay at this location. The occupancy map or, better, the

probability of the nodes must be updated with a move-cull process. This is

different from the previous dynamic behavior of the map or graph. There is no

change in the behavior of the graph itself -- only the probability of the nodes is

changed. If there is a specific time or if it is in simulation with a specific time rate,

the target must be checked for visible range.

If the node is visible and the agent is not on this node, the probability of

the node is set to p(v) = 0. If the agent is visible, the nearest node has the

probability p(v) = 1. For all other nodes -- visible or not -- the probability is set to

zero p(v)=0.

 33

Figure 18. Algorithm for Cull

Over time, the sum of all probabilities will decrease. Thus, the sum will

always be smaller than 1.

()

1

SUM

SUM

p p v

p

=

≤

∑

To calculate the probability at a specific time of a specific node follows

()()
SUM

p vp node
p

=

It is important to note that this is a more theoretic value -- all p(v) always

have the same relation to each other. So the p(v) with the highest value also has

the highest value of p(node).

Algorithm Cull

Procedure Cull (G’,A, T)

Input: G’=(V’,E’) is the hierarchy graph
 A = agent searcher
 T=target
Output: graph G’

If T is visible for A:
 Nearest node p(v)= 1
 All other nodes p(v) = 0
Else
 For all active vertices v of G’

If node is visible for A
 p(v) = 0

 34

3. Distribution of Probability

The distribution of the probability on the occupancy map is basically the

same as ordinary occupancy and hierarchical maps. In other publications (for

example, in Darkens and Andereggs’ paper [1]), distributing the probability is also

called move-process. The difference between ordinary or hierarchy map is that,

in the hierarchy map, some nodes are inactive. The nodes in a clique and the

probability of the position of an agent will be displayed over the hierarchy node.

Only the nodes which are near the searching agent will be distributed to the

lower lever. The hierarchy node is inactive. Switching the node active or inactive

was done during the dynamic behavior of the map (described in the previous

chapters).

Following the algorithm of distributing probabilities between an ordinary

map and an occupancy map is not different. In a directed graph, probability is

going out and probability is going into a node. In each round or time stamp, all

values of the nodes must be copied with a temporary value called pold. The new

p(v) is the sum of the new incoming probability and the outgoing probability to the

next nodes. Each edge from one node to another has a cost. That is the

likelihood an agent takes this way if he was previously in the node. With a higher

cost, the probability to take a specific edge to the next node is less likely.

 35

Figure 19. Algorithm Distribute Probability

It is important to synchronize the move-process with the cull-process. If

culling is done before moving, it could happen that the node the agent was

recently p(v) is one and will be immediately culled to zero. It will not have the

chance to distribute the probability. For that reason, the move-process should

normally occur before the cull-process.

The speed or velocity that the probability is distributed depends on two

factors. First, the frequency of the culling-move-process: during each move-

process, the probability will be distributed over the edges to the next neighbor. If

the move-process is culled frequently, the speed of the distribution will increase.

Next parameter is the cost of the edges: if there is a high cost, only less parts of

the probability will be distributed to the next node. If there is low cost, a higher

portion will be distributed. During implementation of the model, there must be

synchronization between both parameters. This ensures simulation of the speed

of the hiding agent.

If the agent is not visible for the searcher for a long period during a cull

process, the overall psum will decrease over time. After a long time, this p(v) could

become very small. It could, in a large simulation, lead to the problem that the

Algorithm Distribute Probability

Procedure DistributeProbability (G’)

Input: G’=(V, E) is the hierarchy graph
Output: Graph G’

 For every active vertex v of G’
 Copy p(v) in pold(v)
 For every edge E outgoing
 Get target node v’
 p(v’) = p(v’) + (1/cost of E)*pold(v)

p(v) = p(v) – (1/cost of E)*pold(v)

 36

values are too small to make a reasonable search process. Therefore, there

must be an observer process which will refresh the values of p(v).

 37

IV. DESIGN OF THE PROTOTYPE

In this chapter of the thesis, there is description of the development of the

prototype of the hierarchy occupancy map. The simulation library Simkit was

used to build the prototype. The implementation was done in the programming

language JAVA.

A. PURPOSE OF THE PROTOTYPE

The prototype will show how the hierarchical occupancy map works.

Additionally, it will be used as simulation to deliver data for future analysis of the

hierarchical occupancy map.

To get all parameters from the simulation, listener classes will be added.

The parameters for calculating the results of the simulation will be implemented

in the Simkit-related classes. Also, the alphanumeric results of the simulation will

be displayed in a separate and movable JAVA frame.

First, the prototype has to prove that the theoretical concept and algorithm

developed in the previous chapter will work. Additionally, the performance of the

prototype and the designed map will be proofed. For analysis to be performed

with the delivered data, the map and the data should be displayed over the

Graphical User Interface.

B. ARCHITECTURE

1. Modules and Classes

Modularization will be used to build the software for the prototype. During

the development process, classes and packages will be developed from the

modules of the architecture. Overall, the prototype is built in a layered

architecture concept [9]. The Graphic User Interface (GUI) is the top layer. It

should ensure that the underlying concept of the hierarchy occupancy map is

displayed and that the user can see the alphanumeric values of the simulation. It

is the interface between the user and the simulation. The second layer is the

 38

discrete event simulation itself. It is the core of the prototype in which the

algorithm for the dynamic and static behavior is implemented. The concept of

discrete event simulation with event graph is used to simulate the dynamic

behavior of the occupancy map.

Figure 20. Software Architecture Prototype

Figure 20 displays the architecture of the prototype. The two modules

GraphicUserInterface and DescreteEventSimulation are the two layers as

described previously. The different layers are the single modules of the software.

The interface module should ensure the communication and data exchange

between the two layers. It is a defined interface between the two layers to make

the prototype adaptable for future changes -- if needed.

The RunSimulation module is the overall management module for the

software. It gives the trigger for specific functions to the different modules and

classes of the simulation. OccupancyMapParameter is the centralized module to

hold all input parameters for the simulation. It only holds the parameters. They

will not change during runtime.

 39

The discrete event module is divided into sub modules for running the

simulation. Each of this sub models is an isolated discrete event simulation. The

modules are connected with listeners. This means that a specific event in one

module will cause an event in the next module. With these listeners, the different

modules are able to communicate with each other.

Figure 21. Sub Modules of the Module Secrete Event Simulation

Figure 21 displays the sub modules of the discrete event simulation. After

starting the software simulation, the first module will build the detailed occupancy

map for the simulation. If this basic map is finished, the next module will build the

hierarchical graph. Both modules will only be used at the beginning of the

simulation. They should deliver the hierarchical occupancy map for the later

function of the simulation.

The module Agent Movement is responsible for the algorithm of the

searcher agent and mover agent. The Simkit-Library has a variety of different

kind of movers which will be used in the prototype.

 40

The simulation of the hiding agent and searching agent will influence the

probability of each node in the occupancy map. Therefore, the module Update

Probability in map must ensure updating of probabilities of the nodes during the

runtime of the simulation.

The dynamic behavior of the hierarchical map will be implemented in the

module Updating Map. This module listens to the mover module and implements

the dynamic behavior -- especially the PopUp and PopDown algorithm in the

simulation

Figure 22. Class Diagram of the Prototype

Figure 22 shows the different relations of the different classes. The class

which is the controller of all classes is the class RunSimulation. This class calls

all other classes -- if necessary -- and receives the necessary data from other

classes. The class OccupancyMapParameters is the holder of all parameters for

 41

the simulation. It will deliver on all other classes on demand. The parameters are

defined as constants and will not be changed during runtime.

Window and DrawContent are the classes of the Graphical User Interface.

The class window is the static frame of the prototype. Class DrawContent is

responsible for refreshing the content of the display.

2. Event Graph

The Initial Simulation Class is the trigger to lead all parameters for the

Discrete Event Simulation and it starts the simulation by building the basic map.

This map consist of the graph with nodes and edges which are all own classes.

In Figure 23, the Event Graph for building the map is displayed.

Figure 23. Event Graph Building Hierarchy Map

The Event Graph shows the building of the basic map. After the Run-

Trigger, the first event is to build a specific number of nodes in the basic graph.

 42

Second step is to connect the nodes over the edges. If all nodes are connected,

the building of the basic map is finished and the end-event triggers the next part

of the simulation.

Figure 24. Event Graph Search Agent Mover

The behavior of the search agent is displayed in Figure 24. With the

Simkit-Library, the mover needs only to start a trigger and the target. When the

mover starts with moving, the Event StartAgentMovement will be fired. If the

agent reaches the target, the Event EndMove will be set on the Event List and

the algorithm for searching the next target will work. This next target will be

delivered to the new start movement command. There is no connection between

the events. This is specific for the class of movers in the Simkit-Package [11].

The events or messages will be sent from the package to the event level itself,

when the specific event, here arriving of the target occurs.

An additional element is the Pinger Class. This class is responsible for

synchronization or the simulation with the real-time in the discrete event

simulation.

 43

C. IMPLEMENTATION

The simulation will be created by using the Simkit-Package, especially for

creation of the Graphic User Interface and the Discrete Event Simulation [10].

Simkit is a library in the programming language JAVA which supports

component-based discrete event simulation. In the Simkit-Package, the

simulation time does not depend on the real-time in the computer; rather, it has

its own time step and internal time in the simulation. When an event occurs,

related state variables of the simulation of the occupancy map will change The

Graphical User Interface, which shows the behavior of the simulation, is

implemented in Java (using the package and methods of the Simkit-Package).

The number of nodes of the occupancy map and the area of the simulation could

be chosen free. Figure 25 shows the starting point of the simulation with a basic

grid with high connection.

Figure 25. Basic Graph

 44

The basic graph -- or map -- could have a variable number of nodes with a

variable number of edges which connect the nodes. In the building of the

prototype, a symmetric graph was used where the nodes are connected to each

neighbor.

The agents are displayed as movers in the simulation. In Simkit, movers

are entities which can move over the screen [11]. Before they can move, they

need target and speed data. If they reach the target, the movers will deliver a

message to the Discrete Event Simulation with a time step. In the simulation, two

movers are used to simulate the different agents. One is the searcher, who has

his own sensor suite and, the other, is the hider, who hides from the searcher on

a node outside the sensor range of the searching agent. The searcher agent will

be equipped which a simple sensor with a specific range. The hiding agent will

receive no sensor.

Figure 26. Movers in Simkit

In the upper picture, the red mover is the search agent and the green is

the hiding agent. The hiding agent has no sensor and will only hide. The

searcher has a sensor of a specific range which is displayed in Figure 27 as red

circle.

Additionally, the red searcher has a white circle. The circle is the marker

for the distance from the searcher the hierarchal map will go from the upper

hierarchy to the lower hierarchy.

 45

Figure 27. Search and Hide Agent

This distance, shown in the upper figure as a white circle, is the area the

simulation search will work with the detailed map. If a clique of the basic map

leaves this area, the single nodes will be mapped together to a node on the next

hierarchy. On the other hand, if a node of the upper hierarchy enters this range

from the searcher agent, it will be dispersed in the single detailed nodes of the

clique.

Between these two areas of the map, there is a transition area which

connects the upper hierarchy level to the lower hierarchy level. For the

connection itself, temporary edges will be used. Temporary means that these

edges will be created and, if the transition area changes, they will be deleted

during simulation runtime. On the one end of the edge is a node of the basic

node and, on the other end, a node of the hierarchy level.

The cost or parameter of the edge must be calculated from the

parameters which originally connects the cliques of the basic graph which

underlay the transition area.

 46

Figure 28. Search Agent in the Hierarchic Map

Figure 28 shows the first version of the prototype. The red graph is the

upper hierarchy which is symmetric. The green is the detailed graph which is only

active in the outer circle of the agent.

The search agent is in the middle of the detailed area. This area wanders

with the circle over the upper hierarchy. The transition areas are on the outer

sides of the circle. The edges are in green and connect the red nodes of the

hierarchy map with the green nodes of the detailed map.

If the searcher moves off the detailed map, the current edges, which

connect both levels, will be deleted. New edges in the transition phase will be

created during simulation runtime. Such deletion and creation, however, will only

occur if there is need to bring a hierarchy node to a detailed level. It will also

occur to bring a detailed set of nodes in a clique in an upper level.

 47

Thus, this process is a part of the overall PopUp-PopDown process of the

nodes in the simulation.

Figure 29. Distribution of Probability

Figure 29 shows the final version of the prototype. The searcher has the

fine granularity in the inner grid. In the outer grid, the graph has a wider

granularity. The searcher (red dot) has the inner circle as marker –no matter if

the hider is visible or not. This red circle is important for the distribution of the

probability and the move-cull process.

All nodes, which are in the red circle, are visible to the search agent in the

simulation. The nodes of the basic map and the nodes of the hierarchy map,

which are outside of this circle, are not visible to the searching agent.

The green square is the hiding agent. It is also only visible to the

searching agent if the hiding agent is in the red circle.

The white circle is the border for the basic map. Outside the hierarchy

map, it switches to the higher level. Inside, the hierarchy map switches with the

 48

lower level. The red edges on the border for both levels connect these

hierarchies together. These are the temporary nodes as described previously.

The nodes for the hierarchy graph have different colors. The color will

represent the probability for the place of the hiding agent via the sight of the

searching agent. White color signals a high probability the hiding agent will hide

at this place. The less the probability of hiding at a specific node, the darker the

node. If the probability is zero, the node will be black and not visible on the black

background.

In Figure 29, all nodes in the red circle which are visible are black. This

means that the probability for these nodes is zero. Because of the visibly of the

nodes, the cull-process put them to zero. In the right upper area, which is the

place of the hiding agent, the probability is high (white color). It happened

because the hiding agent left the visible area of the searching agent in this

direction.

For running the prototype with the simulation, special parameters are

needed. The initial type of parameters that the prototype will run are the

following.

Parameter Value

Area Dimension 1000 x 1000

Number of Nodes 1200

Nodes in Clique 4

Cost of Edge 5

Sensor Range Search Agent 100

PopUp/PopDown Range 200

Table 2 Simulation Parameter

 49

This will ensure there are well-established and equal conditions for the

initial test runs. The area’s dimension is not too huge or too small to the sensor

range and the PopUp/PopDown Range. If the area is too small relative to the

sensor range, the behavior of the probability distribution is not in a huge

simulation. If the area is too huge, much computational costs are expended

during the initial tests.

 50

THIS PAGE INTENTIONALLY LEFT BLANK

 51

V. ANALYSES OF THE DYNAMICAL HIERARCHICAL
OCCUPANCY MAP

In this chapter, the initial tests and analyses of the prototype will be

described. The first analysis is the visual description of a typical situation. This

occurs during the run of the agent-based simulation with the searcher agent and

hiding agent.

In the second part of the analyses, data collection is performed and, then,

probability is distributed. The cull-procedure and its influence on the probability

distribution will be considered. With diagrams, some difficulties with the

probability distribution could be discovered.

A. VISUAL

The function of the prototype with different scenarios is tested. In these

scenarios, it will be discovered, from the algorithm, if the simulation works as

specified and expected. The primary focus during the test will be on the

probability distribution over time. In the prototype, the probability is colored with

grayscale. A white dot on the node means a high probability; a greyer or black

dot means a low probability. Black dots will not be visible on the simulation. This

means that the probability is zero or very small.

1. Visible Hiding Agent

The first scenario displays a typical configuration in an agent-based

simulation with an occupancy map. The searching agent searches for the hiding

agent who is visible to the searcher.

 52

Figure 30. Hiding Agent Visible

The green hiding agent is in the range of the red searching agent. The

hider moves randomly on the grid of the basic map. As specified in the prototype,

the searching agent should track the hiding agent. For the searching agent, it is

the simplest scenario. The algorithm for this use is only search the nearest node

to the hiding agent, set this node to the probability of one, and set all other nodes

to the probability of zero.

As displayed in the upper hierarchy, the algorithm works. The white dot,

which shows a very high probability, is near the green hiding agent. If the hiding

agent moves to this other node during the test, it jumped from one node to the

other node. There is no additional coloring of probabilities on the whole graph.

This means the probability on other nodes on the graph is very small or equal to

zero.

 53

The searching agent moved during the detection of the hiding agent. As

expected, this did not change the coloring of the nodes. The estimation of the

location of the hiding agent does not depend on the movement of the searching

agent. This is because, if the hiding agent is visible, the location is clear. The

PopUp/PopDown function during the run time worked. If some nodes left the

circle for the inner grid, a new hierarchy node was displayed and the nodes of the

basic grid disappeared. Also, new temporary edges between both levels of nodes

appeared. As expected from the algorithm, this dynamic behavior of the

hierarchal occupancy map had no influence on the single node with high

probability.

2. Leaving the Visible Area

If the hiding agent leaves the visible area of the searching agent, the

second scenario happens. The hiding agent moves away form the searching

agent and, when arriving at a specific range which is out of the sensor range of

the searching agent, the distribution of the estimation of location will start. This is,

then, the ordinary move-cull process as described in Chapter III.

First step in this process is that the probability of each node, which is at

this point only at one node, will be distributed over the edges to the neighboring

nodes. The amount of the probability of each node, which should be distributed is

a specific parameter, and also depends how often the distribution process will be

called.

The second step is the cull-process. It deletes the probability of all nodes

which are visible to the searching agent.

 54

Figure 31. Probability Distribution Short after Leaving Visible Area

Figure 31 gives an example of this behavior. The green hiding agent just

left the visible area of the red searching agent. The distribution of probability

should start then.

As we see around the green hiding agent, there are some white dots. This

means from the leaving point of the hiding agent from the visible range of the

searching agent, there is high probability that the hiding agent is at one of the

surrounding nodes. The estimation of the searching agent is displayed as white

and grey dots. The white dots are near the hiding agent. Thus, because the

hiding agent in real is, the searching agent estimates it.

The result is as expected. After leaving the visible range, there should not

be too many nodes with high probability. All other nodes are dark grey or black.

After these nodes leave, their distribution of probability seems correct. At his

time, there should not be too many nodes with a high or medium probability.

 55

Such nodes would indicate that the distribution of the probability is too fast and

not comparable to the moving-speed of the hiding agent.

3. Outside the Close Area

The third scenario is when the hiding agent was not visible to the

searching agent for some time. As expected, there is a wide distribution of the

probabilities over the occupancy map. If the time is not too long, only a specific

part of the occupancy map should have a higher distribution of the probability.

The close area of the searching agent should have no probability. This is

because the cull-process should set all visible nodes to zero.

The underlying process is the same as in the previous chapter: the

distribution process spreads the distribution over the map and, after that, comes

the cull-process.

It is important that in the transition region, which connects both levels of

the occupancy map, is no barrier for distributing the probability. The distribution

should also happen on the map with high granularity.

Figure 32. Probability Distribution Hider outside fine Granularity

 56

Figure 32 gives an example for such a scenario. The hiding agent left the

visible area some time ago and the searching agent has not found the hiding

agent. The probability is widely distributed on the right area of the occupancy

map. The hiding agent moves in the area of the upper level of the hierarchical

occupancy map and. The probability distribution reached this area as it followed

the distribution works over the transition area with only temporary edges.

Notable is the fact that about the transition areas the nodes of the upper

hierarchy have a higher probability as to the node in the lower hierarchy which

whom they are connected. The reason is these nodes were built with the

dynamic behavior of the map. This was recent and it summed the probability of

the four nodes of the clique in the lower hierarchy.

4. Behavior after Long Time

The last scenario occurs after additional time when the searching agent

not found the hiding agent. Expected is a wide spread of the probability over the

whole map with similar values of p. Only the areas around the searching node

should have less probability. This is because these nodes are visible -- or were

visible for a short time in the past.

 57

Figure 33. Probability Distribution after Long Time

Figure 33 shows such a scenario. After some time, the hiding agent is in a

completely different area of the occupancy map and not visible in this figure.

Many dots are white which is the indicator for a widespread probability over the

complete hierarchical occupancy map.

In the inner circle, the nodes are dark. This is because they are visible

and, therefore, culled to the zero value of the probability. The right side of the

basic grid has nodes with higher probabilities than the left side. The reason is the

searcher agent moved from the left to the right side. Following the nodes on his

left side was recently visible and the probability of these nodes was set to zero.

B. DISTRIBUTION OF PROBABILITY

In the previous chapter, some typical scenarios for the hierarchical

occupancy map were analyzed. After looking at the visual distribution of

probability, this chapter will measure Psum. As in previous chapters, nodded

Psum is the sum of all P values of the nodes and necessary to calculate the

probability that the hiding agent is at a specific node.

 58

()()
SUM

p vp node
p

=

With the permanent culling of all visible nodes, the Psum will decrease

over time. Only if the hiding agent is visible, the nearest node will set to the value

of one. This means a refresh of Psum. In a long search, in which the hiding agent

is not long visible for the searching agent, Psum has the tendency to become

small. Following also the values for the distribution of the probability has the

tendency to become small. How it appears over time in shown in Table 3.

Time Step Psum

1 1.0

10 0.70

20 0.44

30 0.31

40 0.29

50 0.24

Table 3 Psum Over Time

One time step in the table. Figure 34 is the time the searching agent

moves from one node to another node. Figure 34 shows the values from the

table and more time steps.

 59

Figure 34. Psum Over Time

With time, the value of Psum decreases. The decrease, however, is not

linear. It appears as a more negative exponential. If Psum is so small, the p

values also become smaller. Over time, it is possible that the single p values of

the nodes are too small. Thus, there is no good estimation of the hiding agent

possible.

However this is not a problem specific to only the hierarchical occupancy

map. Of all the maps, this is more problematic because it deals with huge

simulation areas. The prototype itself has no algorithm for a periodic refresh of

the value of Psum. Such an algorithm could decrease the performance of the

prototype itself and therefore was not considered.

Probabilty over time

0

0.2

0.4

0.6

0.8

1

1.2

1 12 23 34 45 56 67 78 89 100 111 122 133 144

Time Steps

Ps
um Series1

 60

THIS PAGE INTENTIONALLY LEFT BLANK

 61

VI. CONCLUSION AND FURTHER WORK

A. CONCLUSION

As described in the previous chapters, the prototype is as specified and

was used for testing. Some visual analyses were made to proof the algorithm.

The result was positive. This means that no error in the prototype occurred. This

proofs that the underlying concept of a hierarchical occupancy map could work in

every simulation with a huge area.

Some additionally proofs about the probability distribution were made.

These test showed some problems with psum over time. The value of psum will

decrease over time only if the hiding agent is not visible over time. After some

time, it is too small to be recognized in the simulation or as data in the computer

memory. This is a specific problem, however, of occupancy maps -- not only

hierarchy occupancy maps. The solution could be a refresher algorithm after

some time without viewing the hiding agent or the acceptance of the problem.

The acceptance could be considered as this happens in real-time. If, over time,

no one views a hider, no one can estimate its position.

During the work with the prototype, the author of this study became sure

that the prototype could be used for a variety of different tests, proofs, and

analyses.

B. FUTURE WORK

Given that the concept was proofed as workable, offers a wide variety of

future work. There could be different extensions to the underlying concept of a

hierarchical occupancy map, the algorithm, or the prototype itself. During this

thesis, only some additional tests were made with the prototype and the

hierarchy occupancy maps. Therefore, there is a wide and open field for

additional tests and improvements of the prototype.

 62

1. Quantitative Research

There is still a set of quantitative research questions that are unsolved.

One of these questions is what is the optimum size required to open a level in the

hierarchy maps? With this experimental prototype, someone could prove how

significant the reduction of computational cost is. The result could be an

improved and optimized algorithm for building hierarchical occupancy maps,

especially the dynamic behavior.

Investigating the problem of the Psum would be useful. An implementation

of a refresh algorithm could lead to a high computational cost, which consumes

the benefits of the decrease of computational cost of the hierarchy occupancy

map. On the other hand, to ignore the problem, could lead to a unrealistic

behavior of the searching agent, because the agent loose targets with far

distance.

2. Implement in Simulation

With the prototype, the underlying concept of a hierarchical occupancy

map was proofed. The next logical step would be to choose a simulation and/or a

computer game. The goal would be to improve the tracking behavior of the

agents in this simulation. It would be useful to choose an occupancy map that

has already been tested and implement it for targeting and tracking. It is

important to note that changing the complete tracking and targeting concept of a

simulation has an inherent risk. This is significantly reduced when using a

simulation with an old occupancy map.

Additionally, this proposed implementation of a simulation of the

hierarchical occupancy map should have a large enough area. This is critical to

demonstrate the advantages between the same simulation with and without

hierarchical occupancy map,

 63

3. More Hierarchies

A logical additional step to improve the hierarchical occupancy map is

additional levels of abstraction. The question is how many levels are useful and,

especially, where the optimum distance between such levels is. If there are too

many levels in a small area, there is a huge computational cost in the dynamic

behavior between the levels. If the levels are too far away, the computational

cost would not be reduced significantly enough.

Overall, a hierarchical occupancy map with only two levels will not be

significant enough to reduce the computational cost of large simulations.

Following up on additional levels is a necessary consideration for future

expansions of the prototype.

4. Hybrid Model

As in the paper of Simulacra described in Chapter I [1], the occupancy

map has some disadvantages. The hierarchical occupancy map will not solve

these. One is, for example, the magic movement of estimation of probable

locations for targets. With a higher granularity in the outer regions of the

hierarchical occupancy map, the partiality that such magic movement occurs will

increase. There are larger areas without nodes that are only connected with

edges.

By combing particle with occupancy map, this problem could be avoided.

The particles could wander over the edges from one node to the other. There

would be no reason why particles would not also move over the temporary

edges.

In such a model, the temporary edges, however, and the PopUp-

PopDown algorithm would be the challenge. How should particles which are on

the temporary edges during this process behave? The second problem would be

the division of the particles if they are located on a node which will be divided in

its sub nodes from an upper hierarchy to a lower hierarchy.

 64

THIS PAGE INTENTIONALLY LEFT BLANK

 65

LIST OF REFERENCES

[1] C. Darken and B. Anderegg, “Particle filters and simulacra for more
realistic opponent tracking,” in Game AI Programming Wisdom 4, St.
Rabin, Ed. Boston, MA: Charles River Media, 2008, pp. 419-42.

[2] C. Bererton, “State estimation for Game AI using particle filters,” in

Proceedings of the AAAI Workshop on Challenges in Game AI, Technical
Report WS-04-04, AAAI Press, 2004.

[3] D. Borovies, “Particle filter-based tracking in a detection sparse discrete
event simulation environment,” M.S. thesis, Monterey, CA: Naval
Postgraduate School, 2007. [Online]. Available: Naval Postgraduate
School – Dudley Know Library, http://bosun.nps.edu/ . [Accessed
September 15, 2008].

[4] B. Ristic, S. Arulampalm, and N. Gordeon, Beyond the Kalman Filter –
Particle Filters for Tracking Application, Norwood: Artech House
Publishers, 2004.

[5] N. Sturtevant and M. Buro, “Partial Pathfinding Using Map Abstraction and
Refinement,” in Proceeding of the Twentieth National Conference on
Artificial Intelligence, 2005, pp. 1392-1397.

[6] National Research Council, Committee on Modeling and Simulation for
Defense Transformation, Defense Modeling, Simulation, and Analysis:
Meeting the Challenge, Washington D.C.: The National Academies Press,
2006. [Online]. Available: The National Academies Press,
http://www.nap.edu/catalog.php?record_id=11726. [Accessed September
15, 2008].

[7] T. H. Corman, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithm, 2nd edition. Cambridge: The MIT Press, 2001.

[8] Averill M. Law, Simulation Modeling and Analyses, 4th edition. New York,
NY: McGraw-Hill, 2007.

[9] Eric Braude, Software Design – From Programming to Architecture,
Hoboken, NJ: John Wiley and Sons, 2004.

[10] Arnold Buss, “Component-Based Simulation Modeling with Simkit,” in
Proceeding of the 2002 Winter Simulation Conference, 2002, pp. 243 –
249.

 66

[11] Arnold Buss and P. Sanchez, “Simple Movement and Detection in
Discrete Event Simulation,” in Proceeding of the 2005 Winter Simulation
Conference, 2005, pp. 992 - 1000

 67

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

