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ABSTRACT 

Research question 

Using Polarimetric imaging, what is the capability for the detection of disturbed 

surfaces (soil, asphalt, other)?  In particular, what capabilities are provided by a compact 

video imaging system currently being acquired by NPS for various research uses? 

Discussion of topic 

Polarimetric imaging is the final domain in optical systems, following along after 

panchromatic and spectral imaging.  This technology is now viable to test for possible 

phenomenologies and applications of military interest.  Since polarization is strongly 

affected by surface roughness, it is intrinsically sensitive to disturbed surfaces.  As such, 

it should be good for detection of IEDs, and traffic by foot or vehicle.  There are some 

reasons to believe it may help discriminate good and bad landing zones for helicopter 

activities in desert environments, and may help helicopters to avoid “brown outs.” 

Conclusion 

There were no significant changes in the area of degree of linear polarization over 

a fixed amount of time at a fixed target.   

 



 vi

THIS PAGE INTENTIONALLY LEFT BLANK 



 vii

TABLE OF CONTENTS 

I. INTRODUCTION........................................................................................................1 
A.  WHAT IS LIGHT?..........................................................................................1 
B.  WHAT IS POLARIZATION?........................................................................2 

1. Polarization Filters...............................................................................3 
2.  Radar.....................................................................................................4 

C. APPLICATIONS IN POLARIMETRIC IMAGING...................................5 

II. HISTORY AND BASICS OF POLARIMETRY......................................................7 
A. POLARIZATION DEFINED .........................................................................7 
B. EARLY HISTORY ..........................................................................................8 
C. 17TH CENTURY...............................................................................................8 
D. EARLY 19TH CENTURY................................................................................9 
E. LATER 19TH CENTURY ..............................................................................11 
F. 20TH CENTURY.............................................................................................12 
G. POLARIZATION BY REFLECTION ........................................................13 
H. PERCENT POLARIZATION ......................................................................15 
I.  UMOV EFFECT ............................................................................................16 
J.  STOKES VECTORS .....................................................................................16 
K.  DEGREE OF LINEAR POLARIZATION (DOLP) ..................................17 
L.  PHASE ANGLE OF POLARIZATION ......................................................18 
M. PRESENTATION..........................................................................................18 
N.  SATURATION...............................................................................................19 

III. CAMERA OPERATIONS ........................................................................................21 

IV. DATA ANALYSIS AND CONCLUSION ...............................................................31 
A. OBSERVATIONS..........................................................................................31 
B. CONCLUSION ..............................................................................................46 
C. SUMMARY ....................................................................................................47 
D. FUTURE APPLICATIONS..........................................................................48 

APPENDIX:  COMPUTER CODE FOR IMAGE PROCESSING WITH IDL..............49 

LIST OF REFERENCES......................................................................................................57 

INITIAL DISTRIBUTION LIST .........................................................................................61 

 



 viii

THIS PAGE INTENTIONALLY LEFT BLANK  



 ix

LIST OF FIGURES 

Figure 1. Visible light region of the electromagnetic spectrum (From NASA, 2007)......1 
Figure 2. The vector nature of electromagnetic waves (From Olsen, 2000)  (E is in 

the x direction, B is in the y direction, and the wave is propagating in the z 
direction) ............................................................................................................2 

Figure 3. How unpolarized light becomes polarized (From The Physics Classroom 
Tutorial, 2008) ...................................................................................................3 

Figure 4. A polarized filter (top) and a non-polarized image (From Meleg, n.d.) ............4 
Figure 5. Various locations of land and the different polarization angles that can be 

viewed from PALSAR (From Earth Observation Research Center, 1997) .......5 
Figure 6. Maxwell’s equations for a transverse wave (From The Citizens’ 

Compendium, 2008) ..........................................................................................7 
Figure 7. Polarized (left) and unpolarized (right) light (From University of Colorado 

at Boulder, 2008) ...............................................................................................7 
Figure 8. Double refraction (From University of Minnesota, 2008).................................9 
Figure 9. Fresnel rhomb retarder (From CeNing Optics, 2006)......................................10 
Figure 10. Brewster’s Angle (From Molecular Expressions, 2008) .................................11 
Figure 11. Haidinger’s Brush (From Freebase alpha, 2008).............................................11 
Figure 12. A light molecule bouncing off an object and heading out in multiple 

directions (From Dutch, 1997).........................................................................13 
Figure 13. Fresnel Equation (From Olsen, 2007)..............................................................14 
Figure 14. Percent of polarization over the land at Shark Bay (From Israel & Duggin, 

1992, p. 3) ........................................................................................................15 
Figure 15. Percent of polarization over the open ocean and the waters in Shark Bay 

(From Israel & Duggin, 1992, p. 2) .................................................................16 
Figure 16. Stokes Vectors (From: Cady & Krings, 1998).................................................17 
Figure 17. Stokes Vectors, horizontal, vertical, +/- 45, Right/Left-hand and 

Unpolarized (From Cady & Krings, 1998) ......................................................18 
Figure 18. Image of angle of polarization (From Bossa Nova Tech, 2007)......................20 
Figure 19. The Salsa camera (From Bossa Nova Tech, 2007)..........................................21 
Figure 20. Drawing of how camera hooks up to computer ...............................................22 
Figure 21. Diagram of the inner workings of the SALSA camera (From: Bossa Nova 

Tech, 2007) ......................................................................................................23 
Figure 22. Salsa camera with computer setup looking south toward California Pacific 

Highway 1........................................................................................................24 
Figure 23. Front Panel and Visualization Window from the Bossa Nova software 

(From Bossa Nova Tech, 2007) .......................................................................25 
Figure 24. Menu Bar, the Controls window, and Indicators window from the Bossa 

Nova software (From: Bossa Nova Tech, 2007) .............................................26 
Figure 25. Region of Interest window and data from the ROI from the Bossa Nova 

software (From Bossa Nova Tech, 2007) ........................................................26 
Figure 26. Saving in the software (From Bossa Nova Tech, 2007) ..................................27 



 x

Figure 27. Auto Exposure, Gain and Resolution options in the software (From Bossa 
Nova Tech, 2007).............................................................................................29 

Figure 28. Movie recording options in the software (From Bossa Nova Tech, 2007)......29 
Figure 29. Images S(0), S(1), S(2), & S(3) along with RGB composite...........................33 
Figure 30. S(0), S(1), S(2) and DOLP images of Bowling Ball, Styrofoam ball on 

PVC pipe, and Bowling Pin .............................................................................34 
Figure 31. Angle of Linear Polarization in both color and grey scale ..............................35 
Figure 32. Polarization 1 & 2, along with Normal to surface and Vectors of 

polarization ......................................................................................................36 
Figure 33. UMOV effect, Regions of Interest and corresponding graphs ........................37 
Figure 34. S(0), S(1), S(2) and DOLP images of Bowling ball on PVC pipe...................38 
Figure 35. S(0), S(1), S(2) and DOLP images of a foggy morning over Pacific Grove, 

CA....................................................................................................................39 
Figure 36. Angle as color, Polarized 1 & 2, Intensity, Vectors of Polarization and 

DOLP ...............................................................................................................40 
Figure 37. S(0), S(1), S(2) and DOLP images of a pair of fishing boats in Monterey 

Bay, Monterey, CA..........................................................................................41 
Figure 38. S(0), S(1), S(2) and DOLP of a hotel on the beach in Monterey Bay, 

Monterey, CA ..................................................................................................42 
Figure 39. S(0), S(1), S(2)  and DOLP of Herrmann Hall on campus of Naval Post 

Graduate School in Monterey, CA...................................................................43 
Figure 40. S0 (Animation, click to play)...........................................................................44 
Figure 41. S1 (Animation, click to play)...........................................................................45 
Figure 42. DOLP (Animation, click to play).....................................................................45 
Figure 43. Regions of interest, Herrmann Hall .................................................................46 
Figure 44. Change in the degree of linear polarization over four-hour period at 

Herrmann Hall .................................................................................................47 
 



 xi

LIST OF TABLES 

Table 1. Angle of Polarization in regard to Hue (From Bossa Nova Tech, 2007) ........19 
 



 xii

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 xiii

ACKNOWLEDGMENTS 

I would like to acknowledge the following people in their help with this thesis: 

 
• Professor R. C. Olsen 
• Angela Puetz 
• Michelle Lagana 
• Maj. C. Collier USMC 
• LT B. Barrick USN 
• ENS M. Eyler USN 
• Richard Black-Howell  



 xiv

THIS PAGE INTENTIONALLY LEFT BLANK



 1

I. INTRODUCTION 

This thesis deals with observation of visible polarized light with a new camera.  In 

this thesis, the author explores the new opportunity of having a polarized camera to 

gather data and examine the results without the need for outside analysis.  A small review 

of the history of polarization is first presented, to include some basic terms and ideas that 

anyone needs to start to examine the results independently.  The author has included a 

wide variety of data sets from the camera that will then be the focus of this thesis. 

A.  WHAT IS LIGHT? 

Light is defined by the New Oxford Dictionary as “the natural agent that 

stimulates sight and makes things visible.”  Visible light has the range of 390nm to 

740nm, from a violet to a red light, respectively (as seen in Figure 1).  All animals have a 

sense of light, which is the primary method that they use to interpret the world around 

them.  The human eye cannot sense all of the properties of the entire spectrum of light 

under normal circumstances.  The human eye senses light through two basic parameters: 

intensity and color (Olsen, 2007, p. 117).  Intensity defines the magnitude of light that 

any one person can see.  Color describes the wavelength of light seen (Halliday, Resnick, 

& Walker, 2001, p. 803).   

 

 

Figure 1.   Visible light region of the electromagnetic spectrum (From NASA, 2007) 
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The term “polarization” describes the possible orientations of the oscillatory 

process in the plane perpendicular to the transverse wave's path, as seen below in Figure 

2. In terms of electromagnetism, polarization refers to the orientation of the plane of 

electromagnetic vibration normal to the direction of propagation.  Natural light may be 

totally polarized, partially polarized or totally unpolarized. Polarized light is rarely seen 

by the human eye but might be detected by other animals. 

 

 

Figure 2.   The vector nature of electromagnetic waves (From Olsen, 2000)  
(E is in the x direction, B is in the y direction, and the wave is propagating in the z 

direction) 

 

B.  WHAT IS POLARIZATION? 

Historically, polarization analysis is done with polarized filters in optical 

wavelengths, as drawn out in Figure 3.  The differences in the type and orientation of the 

polarized light are the result of unpolarized light that vibrates electromagnetically in all 
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planes equally, normal to the direction of propagation.  When light comes in contact with 

any man-made or natural objects, it becomes polarized to a certain degree.  These 

polarization effects can be shown to be unique based upon several factors: phase angle, 

medium through which light travels, and material with which it is interacting (Egan, 

2004, p. 1).  Polarized filters are used to minimize a few of these factors.  Filters in this 

application can reduce glare on the objects in view.  They will also make objects more 

distinct in a viewable area. 

      

Figure 3.   How unpolarized light becomes polarized (From The Physics Classroom 
Tutorial, 2008) 

1. Polarization Filters 

Commonly used in sunglasses, polarized filters can be used to remove the 

reflecting light, also known as glare, from a surface to allow the details of the surface or 

slightly subsurface objects to be more clearly observed.  This type of filtering of the 

horizontally polarized light often removes the glare; a graphical representation is shown 

in Figure 4.  Glare is created by reflection of polarized light off the surface; that reflected 

light is then interpreted by the eye as glare.  Figure 4 shows the same picture, viewed 

through two different filters.  When comparing the polarized filter (top) to the un-

polarized filter (bottom), it is apparent that the polarized glare is filtered out.  Reduction 

of the glare allows anyone viewing the pictures to make a more accurate assessment of 

what is in the viewing area.  Removal of the glare keeps it from washing out the image.  
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Figure 4.   A polarized filter (top) and a non-polarized image (From Meleg, n.d.) 

2.  Radar 

Surfaces vary widely in radar reflectance, depending on the angle and surface 

roughness.  This is demonstrated by PALSAR, a Japanese L-band synthetic aperture 

radar capable of polarimetric imaging.  Polarimetric imagery is fairly rare in the optical 

wavelength range, but is well established in radar.  In Figure 5, the data shown illustrates 

the differences in horizontal and vertical polarizations, along with the scattering effect in 

+45/-45 degrees of the linearly polarized information, and surface scattering from 

left/right-hand circularly polarized information.  The three columns help show the 

differences between each variable.  
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Figure 5.   Various locations of land and the different polarization angles that can be 
viewed from PALSAR (From Earth Observation Research Center, 1997) 

C. APPLICATIONS IN POLARIMETRIC IMAGING 

Understanding these restrictions or complications concerning the massive amount 

of data required to process or analyze polarimetric imagery can help further computer 

applications in polarimetric imaging.  This statement will be explored later in this thesis.  

Man-made objects tend to polarize light more than naturally occurring objects.  A distinct 

boundary between the man-made or natural objects can be observed with polarimetric 

analysis.  Egan (2003, pp. 158-159) notes that, “Percent polarization is an extremely 

sensitive indicator of boundary areas, whether it be the Mississippi River or roads.  At a 

higher resolution, it could be a sensitive indicator of objects, vehicles, or personnel.” This 
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example shows the difference of objects, based on their ability to polarize light.  In this 

thesis, a new polarizing camera technology is applied to imagery analysis of natural and 

man-made scenes. 



 7

II. HISTORY AND BASICS OF POLARIMETRY 

A. POLARIZATION DEFINED 

Polarization, sometimes called plane polarization or linear polarization, is an 

electromagnetic wave in which the electric vector at a fixed point in space remains 

pointing in a fixed direction, although varying in magnitude. A visualization of this can 

be seen in Figure 2.  Maxwell’s equations dealing with electromagnetic waves in a 

vacuum give transverse wave solutions.  Mathematically they look like this:  

 

Figure 6.   Maxwell’s equations for a transverse wave (From The Citizens’ 
Compendium, 2008) 

Where E is the electric field, B is the magnetic induction field, D is the electric 

displacement, and H is the magnetic field. 

These light sources are typically randomly oriented, giving unpolarized light.  

Polarized light can be produced in a variety of ways.  The differences can be seen in the 

Figure 7 below. 

   

Figure 7.   Polarized (left) and unpolarized (right) light (From University of Colorado 
at Boulder, 2008) 
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B. EARLY HISTORY 

As far back as the Viking Age (circa 1000 AD), the cordierite crystal was used to 

observe polarization of the atmosphere as a navigational aid. At around the same time, 

the Muslim scientist Al-Hazen (965-1040 AD) constructed his Ray Theory of Light. Abu 

Ali Hasan Ibn al-Haitham was educated in Basrah, present day Iraq.  He traveled all over 

the Mediterranean before finally settling in Spain.  In his experiments, Al-Hazen used a 

dark room and a narrow slit to discover the pathways over which light travels by 

obtaining an inverted image on a wall. This experiment showed that light travels in a 

wave or ray on a distinct path.  Progress in this line of research languished after Al-

Hazen; Western culture made no more discoveries in the area until the late 1600s.   

C. 17TH CENTURY 

In 1670, Rasmus Bartholinus (1625-1698 AD) discovered the birefringent 

propagation of light through a rhombohedral calcite crystal (Collett, 2005, p. 2).  

Birefringency, also known as double refraction (as seen in Figure 8) is when a ray of light 

is broken down into two rays.   These rays are wavelength-specific indices, which 

separate the incident light during propagation through the material.  The results that 

Bartholinus observed were two rays of light emerging from the crystal where one had 

entered (Collett, 2005, p. 2).  



 9

 

Figure 8.   Double refraction (From University of Minnesota, 2008) 

Although unable to explain them in 1690, Christiaan Huygens also worked on the 

double refractive properties of the calcite crystal.  Huygens then added to this observation 

when he discovered that rotation of multiple crystals would produce minimums and 

maximums in the two exiting rays.  At certain rotations one of the exiting rays would 

vanish while the other ray would grow in intensity.  Because of the opposite behavior of 

the two rays, they were said to be polarized.  Natural light was defined as consisting of 

two independently and oppositely polarized rays. 

D. EARLY 19TH CENTURY 

Early in the 1800s, significant advances occurred in the understanding of how 

materials and environment interact with light to create polarization.  The discovery of 

how to completely filter out the polarized light was made in 1808 by Etienne-Louis 

Malus (1775-1812 AD). Malus is also referred to as the man who discovered that light 

becomes partially plane polarized when reflected.  
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Augustin-Jean Fresnel worked on the laws of interference of polarized rays.  

Fresnel developed the Fresnel Rhomb, a circularly polarized piece of glass having an 

obtuse angle of 126 degrees and an acute angle of 54 degrees, as seen in Figure 9. 

Figure 9.   Fresnel rhomb retarder (From CeNing Optics, 2006) 

 

These angles helped him avoid the diffraction effects caused in his experiments, 

leading him to conclude that the phenomenon of interference is in accordance with his 

wave theory.   

The man responsible for the most advancement in the field of polarized light in 

this century was Sir David Brewster (1781-1868 AD), who discovered the neutral point 

of polarization in the sky as indicated by the Brewster’s Angle in Figure 10, below.  More 

importantly, he established Brewster’s Law, which relates the index of refraction to the 

angle of incidence to determine the amount of polarization induced.  
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Figure 10.   Brewster’s Angle (From Molecular Expressions, 2008) 

E. LATER 19TH CENTURY 

Wilhelm Karl von Haidinger (1795-1871 AD) was one of the first to observe the 

slight polarization dependence of the human eye under certain conditions.  To see the 

Haidinger Brush in Figure 11, polarization of the incident light on the retina must exceed 

fifty percent for a yellow figure that is similar to the Brewster’s Brush to appear.  

 

 

Figure 11.   Haidinger’s Brush (From Freebase alpha, 2008) 
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In 1860, Gustav Kirchhoff (1824-1887) applied his Radiation Law to emanations 

from natural substances.  He found, in accordance with his law, that incandescent 

tourmaline transmits polarized light by a filtration process.  Some crystals such as 

tourmaline selectively absorb light rays vibrating in one plane, but not those vibrations in 

a plane at right angles.  Thus, when a beam of light is transmitted through two filters, the 

resultant light is polarized in one direction.  If one then rotates the second filter by ninety 

degrees from the first, no light is transmitted through the filters.   

F. 20TH CENTURY 

The early 1900s started off with several crucial and important discoveries in the 

field of polarimetry.  The first among these occurred in 1905, when Umov described how 

the albedo and roughness of a surface related to the degree of polarization of the reflected 

light (Konnen, 1985, p. 20).  The so-called Umov Effect binds color and texture as they 

are related to polarization.  Umov’s discovery helped show a difference in polarization 

between natural objects and man-made objects. 

Arguably, the most influential discovery of the twentieth century was made by 

Edwin H. Land, who in 1928 constructed the first polarized sheet filter.  This innovation 

allowed for much simpler and more efficient measurements of light polarization, which 

set the foundation for many discoveries in the remainder of the century. Eastman Kodak 

bought out Land’s company in 1934 for its light polarizers and photographic filters.   

The mid 1900s revealed more about where and how polarized light is found in 

nature.  Scattered light underwater and starlight are both polarized. Biologically, bees 

detect polarized light and use it as the primary method to determine their orientation. In 

an experiment, octopus discriminated between light polarized at 45° from light polarized 

at 135°, and the experimental situation made it very difficult to explain this by the 

perception of scattering or reflexion patterns (Moody, 1962). In 1955, William A. 

Shurcliff discovered that humans have the ability to distinguish between unpolarized light 

and circularly polarized light.  L. F. Jaffe found, in 1956’s “Effect of polarized light in 

polarity of Fucus” that when the egg cells of certain algae are exposed to linear light they 

develop in the direction of the light vibration. 
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In 1984, the crew of the Space Shuttle took on the roll of image collection for 

polarimetric study.  The crew of STS51A took a Hasselblad i500 EL/M 70-mm format 

camera into space to take polarized images of the Shark Bay atoll.  They found that “The 

degree of polarization is sensitive to surface roughness. The ocean exhibited lower 

radiometric values relative to the barren land but higher polarimetric values under similar 

View/illumination geometries” (Israel & Duggin, 1992, p. 3). 

Another advance came with the development of POLDER (POLarization and 

Directionality of the Earth's Reflectances). POLDER is an imager developed jointly by 

the French and Japanese.  The first version of this hardware flew in orbit for eight 

months, from August 1996 to June 1997.  The next evolution flew in space rather 

recently, from December 2002 to October 2003.   POLDER has provided one of the first 

global and systematic measurements of spectral, along with directional and polarized, 

characteristics of solar radiation reflected by the Earth’s atmosphere (CNES, 2008).  

G. POLARIZATION BY REFLECTION 

As light is constantly bounced around in the small irregularities of a rough 

surface, it loses intensity and changes its polarization orientation (Konnen, 1985, p. 136).  

A graphical representation is in Figure 12. 

 

Figure 12.   A light molecule bouncing off an object and heading out in multiple 
directions (From Dutch, 1997) 
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This diminishing effect will reduce the noise that a sensor can detect.  A sensor, in 

this case a camera, will measure a higher per capita ratio of polarized light in one 

direction to the total intensity of the image.  The diminishing effect can be detected 

because a significant portion of light is weakened, scattered, and/or completely absorbed 

at the reflecting surface. The highest degree of polarization is created by a single 

reflection.  Therefore, a bright, highly reflective surface will contain polarized light 

tangential to the plane of the reflection, but it will also contain a significant amount of 

light that is not polarized.  This will lower the observed percentage of polarization or 

degree of polarization (Konnen, 1985, p. 137).   

Fresnel’s relations help explain this more. Fresnel states that reflected light will 

be polarized, information that ultimately gives the link between orientation of the surface 

and polarization of the reflected beam of light (Figure 13). 

 

 

Figure 13.   Fresnel Equation (From Olsen, 2007) 
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H. PERCENT POLARIZATION 

Percent polarization is the relationship in intensities between the observed 

polarized light and the total intensity of the beam.   Several characteristics of interacting 

materials and objects will affect percent polarization: material composition, color and 

surface texture.  On STS51A, the report “Characterization of Terrestrial Features Using 

Space-Shuttle-Based Polarimetry” showed some interesting results.  Below is the percent 

in polarization between the land and the ocean, near Shark Bay.  The line depicted in 

Figure 14 is a representation of the azimuth angle of land.  Along the same lines, in 

Figure 15 the two lines are each representing the azimuth angles over the separate oceans 

in the Shark Bay area. 

 

Figure 14.   Percent of polarization over the land at Shark Bay (From Israel & Duggin, 
1992, p. 3) 
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Figure 15.   Percent of polarization over the open ocean and the waters in Shark Bay 
(From Israel & Duggin, 1992, p. 2) 

I.  UMOV EFFECT 

The Umov effect binds color and texture as they are related to polarization.  First 

derived by Nickolay Umov, the rule states that the maximum degree of polarization is 

inversely proportional to the albedo of the material (Konnen, 1985, p. 136).  A translation 

would be that darker objects are higher in degrees of polarization.  For example, snow, 

desert sand, white paint, and most natural objects have a lower degree of polarization, 

while asphalt, brick, and camouflaged vehicles have a higher degree.  Note that the last 

three items are man-made objects.  This effect is created by absorption and multiple 

scattering (or reflection) (Shkuratov & Opanasenko, 1994, p. 1). 

J.  STOKES VECTORS 

George Stokes, from Cambridge, England, defined three aspects of light that later 

came to be called Stokes vectors.  They refer to partially polarized radiation in terms of 

intensity, degree of polarization and the shape of the polarized ellipse.  These equations 

help describe, mathematically, a polarized state of light.  Stokes used a three-dimensional 
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model to describe four parameters, sometimes denoted as I is S(0), Q is S(1), U is S(2) 

and V is S(3), respectively (Cady & Krings, 1998), as seen in Figure 16.  

Stokes Vectors Defined: 

I
Q
U
V

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦   

Figure 16.   Stokes Vectors (From: Cady & Krings, 1998) 

Please note that this research measures linear polarization, not circular, so there is 

no S3 component in the work shown here.   

Through the Stokes Vectors, it is possible to mathematically show what 

polarization will look like in each vector, as seen in Figure 17. 

K.  DEGREE OF LINEAR POLARIZATION (DOLP) 

Much of the analysis done here makes use of the calculated value of the Degree of 

Linear Polarization as featured here: 

0 1
2

S SV
S

+
=  

 

 

 

 

   



 18

 
 
Linearly polarized (horizontal) =  

1
1
0
0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦  

 
 
Linearly polarized (vertical) = 

1
1

0
0

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 
 
Linearly polarized (+45 ) = °  

1
0
1
0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦  

 
 
Linearly polarized (-45 ) = °  

1
0

1
0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

 
 
Right-hand circularly polarized = 

1
0
0
1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦  

 
 
Left-hand circularly polarized =  

1
0
0

1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

1
0

Unpolarized
0
0

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦  

Figure 17.   Stokes Vectors, horizontal, vertical, +/- 45, Right/Left-hand and 
Unpolarized (From Cady & Krings, 1998) 

L.  PHASE ANGLE OF POLARIZATION 

Phase angle will also have an effect on the amount of polarized light that will 

reach the camera.  Phase angle is a combination of two measurements: angle of incidence 

and light measured from the normal.  The strongest angle for polarized light collecting is 

approximately ninety degrees from the sun (Konnen, 1985, p. 137).   Konnen also notes 

that higher degrees of polarization can be achieved when the angle of incidence is grazing 

low to the horizon (p. 136).  This type of grazing may occur during dawn and/or dusk.  

To maximize collection of this highly polarized zodiacal light, a sensor would need to be 

placed at the approximate zenith of the scattering object.   

M. PRESENTATION 

Following Tyo and Parker, the author of this research uses display techniques that 

typically present Polarimetric Imaging as images where the Stokes parameters are 
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encoded in gray scale or color, with intensity, DOLP, or polarized angles as the primary 

element of interest.  An approach typically used here is to encode the average intensity 

(S0) as intensity, the angle of polarization (S1) as hue, and DOLP as saturation (S2) in a 

hue-saturation intensity (also known as Hue Sat value) color scheme (Tyo, et al., 2006; 

Parker, 2007). More commonly, following Parker, the S0 is encoded as intensity, the 

DOLP as hue and the S2 as saturation to obtain a more invariant display approach.  This 

seems to provide measurement parameters that are not as sensitive to external factors, 

such as illumination and view angles.  Figure 18 shows an image of what phase angle of 

polarization can give you visually. 

N.  SATURATION 

Saturation refers to the control of hue in the color. On the outer edge of the color 

wheel are the 'pure' hues, as described above.  The closer you get to the center of the 

color wheel, the less hue affects the color, eventually leaving only the pure color.  This is 

known as de-saturated colors on the center of the wheel.  The combinations of light 

intensity and wavelength distribution across the spectrum are the main causes of 

saturation of a color.  

 

Table 1.   Angle of Polarization in regard to Hue (From Bossa Nova Tech, 2007) 

Angle of 
Polarization Color hue 
0° Red 
30° Yellow 
60° Green 
90° Cyan 
120° Blue 
150° Magenta 
180° Red 
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Figure 18.   Image of angle of polarization (From Bossa Nova Tech, 2007) 
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III. CAMERA OPERATIONS 

The Bossa Nova Tech Salsa Linear Stokes Polarization Camera is easy to use and 

has minimal requirements to operate.  The Camera, depicted in Figure 19, itself has very 

few moving parts.  There are two inputs for data cables in the back of the camera. There 

is one Universal Serial Bus and one IEEE 1394 (Firewire) female connection that goes to 

the PC.  There is also a fifteen volt direct current connection for general power to the 

camera.  Figure 20 is a rough drawing of how the camera hooks up to the computer. 

 

Figure 19.   The Salsa camera (From Bossa Nova Tech, 2007) 
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Figure 20.   Drawing of how camera hooks up to computer 

On the front of the camera is the mount for lenses.  The mount is a standard Nikon 

‘F’ mount, which is a commercial off the shelf interface for most cameras and camera 

manufactures around the world.  The camera has a native resolution of (659x494) but can 

be reduced to the smaller resolution of (320x240).  These differences in resolution would 

help in the overall acquisition time of an image, from 80ms to 20ms, respectively.  For 

this experiment the author used the auto-exposure on the camera.   This option left the 

camera optimized in exposure time by allowing no one pixel to be over-saturated with 

noisy data.  Within the camera housing was a Successive State System CCD camera.  

This camera, though sensitive to motion in the viewing area, is effective at achieving high 

resolution polarized images. A green lense filter, Hoya 52mm, was supplied by Bossa 

Nova; the filter was necessary to constrain its range for the LCD polarizer.  For the 

images that are displayed in this thesis the author used two different lenses.  One of the 

lenses is an ARSAT H 20mm with an F number of 2.8.  This lens was used for all the 

wide angle images collected.  For the telephoto images collected, the author used a 

NIKKOR 200mm lenses which has an F number of 4.0.  This lens was used for imaging 

across Monterey Bay, California.   
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For this experiment, the author used a Hewlett-Packard Pavilion Slimline s3400z, 

which has a dual core Advance Micro Devices processor (BE-2400) running at 2.30 GHz.  

The system came equipped with 4 GB of memory, and the 32 bit version of Windows 

Vista Home Premium with service pack 1 installed.  To run the Bossa Nova Tech Salsa 

Linear Stokes Polarization Imaging Software—a requirement for taking pictures—the 

software key (an actual, physical device) needs to be inserted into one of the Universal 

Serial Bus (USB) ports on the computer. In addition to the key, the cables need to be 

plugged into the appropriate ports on the computer.  The camera requires at least one 

USB port and one Firewire port on the computer.  The final requirement is power; the 

camera runs off a power adaptor that gives a 15 volt/1.2 amp output.   

The software Bossa Nova has developed is rather simple to use and easily 

navigable.  Throughout this thesis, the author enjoyed a great dialog with the developers 

and made improvements on future versions of the software.  The camera measures 

intensity at four polarized angles (0, 45, 90, 135) sequentially, and calculates the Stokes 

components in real time.  A variety of real-time displays are provided.  A diagram of the 

inner workings of the camera is depicted in Figure 21. 

 

Figure 21.   Diagram of the inner workings of the SALSA camera (From: Bossa Nova 
Tech, 2007) 
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Figure 22 is an image of the author’s actual setup overlooking California Pacific 

Highway 1. 

 

 

Figure 22.   Salsa camera with computer setup looking south toward California Pacific 
Highway 1 

 

The Salsa Linear Stokes Polarization Imaging software combines basic and 

advanced features to use the Salsa camera. Salsa Linear Stokes Polarization imaging 

allows the user to: acquire polarization images at video rate, calculate/visualize 

polarization images (degree of polarization, etc.) at video rate, and control the 

polarization camera.  The software is rather easy to use and has the majority of basic 

options needed to start using the camera right way.  Figure 23 is the first menu the 

operator receives upon opening the software.  It shows the front panel and the 

visualization window.  The visualization window is the live image the operator is 

receiving at that moment in time. 
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Figure 23.   Front Panel and Visualization Window from the Bossa Nova software 
(From Bossa Nova Tech, 2007) 

 

The front panel consists of three parts: the menu bar, the controls, and the 

indicators.  This is shown in Figure 24. From the menu bar the operator can branch off 

into various sub-menus. 

One interesting feature of the live feed window is its ability to pick out a region of 

interest (ROI) and capture the data within that area (Figure 25).  The polarization data is 

averaged in the ROI and displayed in the indicators window on the front panel display. 

The averages are made on the Stokes parameters, which are linear in intensity. Then, the 

polarization information is computed from these averaged Stokes parameters.  It is very 

important to average the Stokes parameters to reduce noise. For instance, if there is a 

very low signal to noise ratio, the degree of polarization will appear to be almost random 

between 0 and 1.  Averaging directly the degree of polarization will always lead to about 

50% degree of polarization. Averaging the Stokes parameters and then calculating the 

degree of polarization will give the real degree of polarization value on the area. The 

signal to noise ratio of the measurement increases with the size of the ROI.   
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Figure 24.   Menu Bar, the Controls window, and Indicators window from the Bossa 
Nova software (From: Bossa Nova Tech, 2007) 

 

 

Figure 25.   Region of Interest window and data from the ROI from the Bossa Nova 
software (From Bossa Nova Tech, 2007) 
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A feature of the Salsa Linear Stokes Polarization Imaging software is the ability 

to save different data points and data sets.  There are four options within the ‘save’ 

command: ‘save current view,’ ‘save all images,’ ‘save I, Q, U as text files,’ and 

‘custom,’ as seen in Figure 26. 

 

Figure 26.   Saving in the software (From Bossa Nova Tech, 2007) 

 

The ‘save current view’ saves only the currently visualized image. This option 

does not save the Stokes text files; therefore, the data saved within these pictures cannot 

be reopened again.  The ‘save all images’ saves all the possible images and data and the 

various processed images from the live feed or ROI window.  This option is very useful 

when you want to have access to all the data possible with other images displayed from 

the software.  The data saved with this option could become a large data space consumer.  

The average data consumed is about 70Mb for a single measurement (illustrations will 

follow).  The ‘save I, Q, U as text files’ is designed more for data analysis than looking at 

the images.   All the polarization information is contained within the text files.  There are 

no processed images saved.  Data collected here can be imported to other data analysis 

programs such as IDL,  MATLAB or Labview.  The ‘custom’ save option is just that: you  
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can do any of the previous options plus a lot more.  For example, if you want intensity, 

degree of polarization and angle of polarization but do not want the unpolarized images, 

this is the option you can use.   

Like any other camera, the Salsa camera is equipped with a few basic functions: 

Auto exposure, Gain and Resolution.  With ‘autoexposure’ you can optimize the 

exposure time to avoid overexposing some parts of the image.  The best exposure time is 

the one that will not overexpose the part of the image you are interested in.  This option 

gives you the advantage of not over-saturating any one pixel, which can lead to dark 

images along with noisy data if there are bright reflections in the image. If the part of the 

image you are interested in is dark, you can manually adjust the exposure time to reduce 

noise.  The Gain function allows you to choose from among three preset camera gains.  

The lowest gain is associated with the lowest noise on the data and images.  Gain can be 

increased if the picture is very dark.  It can also be amplified if you want to decrease the 

acquisition duration by reducing the exposure time.  The Resolution option allows 

changing the resolution of the camera from the native (659x494) resolution to a smaller 

(320x240) resolution.  The lower resolution reduces the acquisition and processing times 

and speeds display.  In low resolution, the maximum exposure time is 20ms, whereas it is 

80ms for the highest resolution.  Something to keep in mind is that there is no 

improvement in speed with a reduced resolution if the exposure time is above 20ms. 

Reduce the resolution of the camera if you want to reduce the acquisition time to avoid 

motion effects.  These options are shown in Figure 27. 

The camera also has a developing tool that Bossa Nova is experimenting with, 

which uses the camera in a movie making sense.  Within the software there is a sub-

heading for ‘Movie.’  This opens the movie center, shown in Figure 28.  From here, you 

can record as with a normal video camera.  One of the initial troubles with this recording 

option was that it only recorded data in AVI format—not the best format from which to 

attempt to extract further information.  The vendor is developing alternate video storage 

formats that will allow for further processing the data.   
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Figure 27.   Auto Exposure, Gain and Resolution options in the software (From Bossa 
Nova Tech, 2007) 

 

 

Figure 28.   Movie recording options in the software (From Bossa Nova Tech, 2007) 
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IV. DATA ANALYSIS AND CONCLUSION 

A. OBSERVATIONS 

To accomplish the data analysis, a software package was used that does both 

image processing and analysis; this software package is called ENVI.  ENVI is a product 

from ITT Visual Information Solutions.  ENVI is used mostly for looking at images from 

the air and in space, but was used for this thesis to examine data collected from the Bossa 

Nova Technologies Camera.  The ENVI software package also comes with a 

programming language called IDL.  IDL is a coding language that is used in concert with 

ENVI to produce dynamic visualizations and analysis of imagery.  The data was analyzed 

with these two tools; the results will be shown via imagery and a graph explaining the 

analysis.   

ENVI by ITT Visual Information Solutions is an imagery tool used by various 

disciplines that need to gather information for electronic imagery.  Among the users of 

this software package are intelligence agencies, scientific communities and various 

planning organizations.  ENVI is available for different operating systems, such as 

Windows, Apples OS X, Unix and Linux.  ENVI has the ability to take almost any kind 

of electronic data image.  One of ENVI’s built-in features is the ability to identify regions 

of interest (ROIs).  Using these ROIs and the images that were collected, the author ran 

some statistical analyses to measure the DOLP, Hue and Intensity.  As an aside to see 

what information the Bossa Nova Technologies camera and ENVI could give the author 

about the UMOV effect, the author selected an image and some ROIs.  Then, running it 

through some of ENVI’s basic tools, the author has displayed the image and graphs for 

interpretation. 

As a last approach to the static scene, the Umov effect is explored—the reported 

inverse relationship between intensity and the degree of linear polarization.  Figures 29-

39 show a few of the regions of interest in the scene, superimposed on a DOLP image.   

The Styrofoam ball, bowling ball, “bowling pin,” flat table surface (linoleum), wooden 

rail (painted), and background vegetation are all sampled.  The main image shows a 
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scatter plot of the two parameters, the smaller inset plot removes the hard surfaces of the 

bowling ball and pin, to make the vegetation clearer.  There is some correlation between 

the two imaging dimensions, but also some differentiation.  DOLP is sensitive to shade, 

particularly since the reflection in the shaded region includes elements from other nearby 

surfaces.   The Styrofoam ball, table, and PVC pipe show differentiation in brightness, 

but the table in particular is distinguished from those two surfaces by polarization. 

There were two avenues of approach to looking at the images.  The first was to 

look at the images that were single shot images (Figures 29 through 39), like still photos 

or paintings. 

In Figure 29 and Figure 30, the images displayed are images of the varying Stokes 

vectors along with either a RED/GREEN/BLUE composite image or a Degree of Linear 

Polarization.  These images help show the different ways polarization can be detected via 

the Bossa Nova Salsa camera. 
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Raw Measurements at 0º, 45º, and 90º, 135 º  in an RGB composite 

0º, S(0), I  of Bowling Ball, Styrofoam ball on PVC pipe, and 
Bowling Pin 

45º, S(1), Q of Bowling Ball, Styrofoam ball on PVC pipe, and 
Bowling Pin 

90º, S(2), U of Bowling Ball, Styrofoam ball on PVC pipe, and 
Bowling Pin 

135º, S(3), V of Bowling Ball, Styrofoam ball on PVC pipe, and 
Bowling Pin 

 

Figure 29.   Images S(0), S(1), S(2), & S(3) along with RGB composite 
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0º, S(0), I of Bowling Ball, Styrofoam ball 
on PVC pipe, and Bowling Pin 

45º, S(1), Q of Bowling Ball, Styrofoam ball 
on PVC pipe, and Bowling Pin 

90º, S(2), U of Bowling Ball, Styrofoam ball 
on PVC pipe, and Bowling Pin 

DOLP of Bowling Ball, Styrofoam ball on 
PVC pipe, and Bowling Pin 

 

Figure 30.   S(0), S(1), S(2) and DOLP images of Bowling Ball, Styrofoam ball on 
PVC pipe, and Bowling Pin 

 

In Figure 31 and Figure 32 are images showing other information that the Bossa 

Nova Salsa Camera can give to anyone who wants to analyze the data.  The color images 

are very helpful in possibly picking things out that might otherwise be hidden to the 

naked eye.  The images in Figure 32 with the vector lines could also possibly indicate an 

object hidden from view. 
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Angle as Color  θ = 2Arg(S1 + iS2) (0 red, cyan 
90, 180 red) 

Image of Bowling Ball, Styrofoam 
ball on PVC pipe, and Bowling Pin 

 

 

Angle Grey Scale Image of Bowling Ball, Styrofoam 
ball on PVC pipe, and Bowling Pin 

 

Figure 31.   Angle of Linear Polarization in both color and grey scale  
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Polarization1 (H=angle, S=255, L=DOLP) Image is a data fusion of polarization information  

 

 

Polarization2 (H=angle, S=DOLP, 
L=Intensity) 

Also a data fusion of polarization but with 
added intensity information 

  
Normal to surface, Shows proportional to 
the projection of the normal to the surface. 
Overlaid against the intensity image. 

Vectors of polarization, overlaid against the 
intensity image 

 

Figure 32.   Polarization 1 & 2, along with Normal to surface and Vectors of 
polarization 
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Regions of Interest for UMOV Effect 

 
UMOV Effect of all Regions of Interest 

Figure 33.   UMOV effect, Regions of Interest and corresponding graphs  
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I   (S0) Image of Bowling ball on PVC Q  (S1) Image of Bowling ball on PVC 

U (S2) Image of Bowling ball on PVC DOLP Image of Bowling ball on PVC 
 

Figure 34.   S(0), S(1), S(2) and DOLP images of Bowling ball on PVC pipe 

 

In Figure 35, the author has moved off of ‘still’ or ‘staged’ images and on to more 

landscaped images of the surrounding area.  In the following figures, similar images are 

displayed like the ‘still’ images before. 
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I   (S0) Fog over Pacific Grove, CA 30 July 
2008 1050 

Q  (S1) Fog over Pacific Grove, CA 30 July 
2008 1050 

U (S2) Fog over Pacific Grove, CA 30 July 
2008 1050 

DOLP Fog over Pacific Grove, CA 30 July 
2008 1050 

 

Figure 35.   S(0), S(1), S(2) and DOLP images of a foggy morning over Pacific Grove, 
CA 
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Angle as color hue of a sailing ship in 
Monterey Bay, CA 8 August 2008 0921 

Polarized 1 of a sailing ship in Monterey 
Bay, CA 8 August 2008 0921 

Polarized 2 image of a sailing ship in 
Monterey Bay, CA 8 August 2008 0921 

Intensity (S2) a sailing ship in Monterey 
Bay, CA 8 August 2008 0921 

Vectors of Polarization of a sailing ship in 
Monterey Bay, CA 8 August 2008 0921 

DOLP image of a sailing ship in Monterey 
Bay, CA 8 August 2008 0921 

 

Figure 36.   Angle as color, Polarized 1 & 2, Intensity, Vectors of Polarization and 
DOLP 
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I   (S0) image of a pair of fishing boats in 
Monterey Bay, CA on 8 August 2008 1042 

Q  (S1) image of a pair of fishing boats in 
Monterey Bay, CA on 8 August 2008 1042 

U (S2) image of a pair of fishing boats in 
Monterey Bay, CA on 8 August 2008 1042 

DOLP image of a pair of fishing boats in 
Monterey Bay, CA on 8 August 2008 1042 

 

Figure 37.   S(0), S(1), S(2) and DOLP images of a pair of fishing boats in Monterey 
Bay, Monterey, CA 
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I   (S0) image of a hotel across the bay of 
Monterey Bay, CA on 8 August 2008 1342 

Q  (S1) image of a hotel across the bay of 
Monterey Bay, CA on 8 August 2008 1342 

U (S2) image of a hotel across the bay of 
Monterey Bay, CA on 8 August 2008 1342 

DOLP image of a hotel across the bay of 
Monterey Bay, CA on 8 August 2008 1342 

 

Figure 38.   S(0), S(1), S(2) and DOLP of a hotel on the beach in Monterey Bay, 
Monterey, CA 
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I   (S0) Herrmann Hall August 1 2008 at 
1217 

Q  (S1) Herrmann Hall August 1 2008 at 
1217 

U (S2) Herrmann Hall August 1 2008 at 
1217 

DOLP Herrmann Hall August 1 2008 at 
1217 

 

Figure 39.    S(0), S(1), S(2)  and DOLP of Herrmann Hall on campus of Naval Post 
Graduate School in Monterey, CA  

 

These images were useful for learning what ENVI could do; the next step was to 

use the feature that the Bossa Nova Camera software offered for time sequencing of 

images.  The Bossa Nova software did not take a “normal” picture. Instead, the software 

captures three data files: the I, Q, and U of the Stokes Vectors.  These three data files 

then can be used in various imaging software packages; this experiment used ITT Visual 

Information Solutions’ IDL. 
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IDL has the ability to do either easy imagery analysis or rather complex 

programming to get specific data out of a raw data set.  Data sets can be imported into 

IDL for signal processing, mathematical and statistical analysis, but this project used the 

imagery processing tools available in IDL.  The author made his own code for the image 

processing with IDL.   

The Appendix lists the code for IDL that was used to process the images. 

The time-sequenced images—in movie format—are DOLP, Hue (S1) and 

Intensity (S0). 

 

 

Figure 40.   S0 (Animation, click to play) 
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Figure 41.   S1 (Animation, click to play) 

 

 
Figure 42.   DOLP (Animation, click to play) 
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Figure 43 is the image of Regions of Interest that was used for the analysis.  

Description:  Tree is green, Sky is blue, Roof is red, Herrmann Hall wall is white (black 

in the graph in Figure 44). 

 

Figure 43.   Regions of interest, Herrmann Hall 

 

B. CONCLUSION 

Figure 44 shows the graph of the ROIs that were selected for analysis.  According 

to this graph, over the four-hour period of staring at Herrmann Hall there seems to be no 

overall change in the degree of linear polarization in any of the identified regions of 

interest.  There was some assumption that there would be some changes on the region 

selected on the roof of Herrmann Hall.  It was also assumed that there would be no 

changes in the regions in the sky and the tree.   
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Figure 44.   Change in the degree of linear polarization over four-hour period at 

Herrmann Hall 

The graph suggests some consistency in DOLP, even though there were significant 

changes in polarization. 

C. SUMMARY 

In the past, Polarimetric imaging was quickly overlooked because of the 

computing power needed to process the images.  This reexamination of Polarimetric 

imaging in today’s computing world is a tremendous opportunity for scientific and 

military applications. These were the first steps in applying new computing power 

technology in an attempt to solve some of the problems encountered in combat areas 

around the world.  This thesis found no indication of significant changes in the degree of 

linear polarization over a four-hour time period on a static object, Herrmann Hall.   
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D. FUTURE APPLICATIONS 

The next natural evolution for this research would be to move the camera out to 

an area that either sees a high volume of pedestrian traffic or one that rarely sees any 

physical change to the land, to see what information can be extracted from the camera in 

the area of degree of linear polarization.  Besides land, there could be great information 

extracted in the area of shallow waters or shore areas by taking the camera to a shallow 

water area and seeing what information could be extracted over a given period of time. A 

longer-term goal could be a coupling of polarimetric imaging with a Coast Guard 

Automatic Identification System (AIS) tracking system, in either a long loiter airship or a 

low earth satellite system.  These tools could enable protection of the U.S. coastline and 

help protect the U.S. mercantile system and international economics. 
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APPENDIX:  COMPUTER CODE FOR IMAGE PROCESSING 
WITH IDL 

dir = 'S:\Polarimetry\SALSA_Data\pssmith_data\23jul20081134-
ballsncone-time\' 

dir = 'S:\Polarimetry\SALSA_Data\pssmith_data\20aug2008-herman-
timed\' 

dir = 'Q:\20aug2008-herman-timed\' 

cd, dir 

outdir = 'S:\Polarimetry\SALSA_Data\pssmith_data\20aug2008-herman-
timed\Analysis\' 

outdir = 'Q:\20aug2008-herman-timed\Analysis' 

xdim = 782 & ydim = 582 

 

files = file_search( dir, 'I.txt', count = nfiles) 

help, files, nfiles 

 

;nfiles = 1 

 

dolp = fltarr(xdim,ydim, nfiles) 

s0   = uintarr(xdim,ydim, nfiles) 

s1   = intarr(xdim,ydim, nfiles) 

s2   = intarr(xdim,ydim, nfiles) 

dat =  intarr( xdim, ydim) 

 

s0_file = 'I.txt' 

s1_file = 'Q.txt' 

s2_file = 'U.txt' 

 

;Display images to check 
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  !order=1 

  window, 0, xsize = xdim, ysize = ydim 

   window, 1, xsize = xdim, ysize = ydim 

 

for ifile = 0, nfiles-1 do begin 

file = files(ifile) 

nele2 = strlen(file) 

!p.title = strmid( file, nele2-25, 25) 

 

nele = strlen( file) 

nn = nele - 5 

indir = strmid( file, 0, nn) 

help, indir 

 

dat =  uintarr( xdim, ydim) 

  openr, 1, indir+s0_file 

  readf, 1, dat 

  close, 1 

s0(*,*,ifile) = dat 

wset, 1 & tvscl, dat 

;wset, 0 & plot, dat, psym=3, ytitle ='S0' 

 

dat =  intarr( xdim, ydim) 

  openr, 1, indir+s1_file 

  readf, 1, dat 

  close, 1 

 s1(*,*,ifile) = dat 

;wset, 1 & tvscl, dat 

;wset, 0 & plot, dat, psym=3, ytitle = 'S1' 
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  openr, 1, indir+s2_file 

  readf, 1, dat 

  close, 1 

s2(*,*,ifile) = dat 

;wset, 1 & tvscl, dat 

;wset, 0 & plot, dat, psym=3, ytitle = 'S2' 

 

endfor 

 

  s0   = float(S0) 

  s1   = float(S1) 

  s2   = float(S2) 

 

;Calculate DOLP 

  dolp = (sqrt(s1^2 + s2^2))/s0 

 

;Display images to check 

  !order=1 

  window, 1, xsize = xdim, ysize = ydim 

  tvscl, dolp(*,*,0) 

  wset, 0 

  plot, dolp(*,*,0), psym = 3, ytitle = 'DOLP' 

 

;Find 2% strecth thresholds 

 ; pct_stretch, s0, 2, min_s0, max_s0 

 ; pct_stretch, s1, 2, min_s1, max_s1 

 ; pct_stretch, dolp, 2, min_dolp, max_dolp 

 

;min_s0 = min(s0) & max_s0 = max(s0) 
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;min_s1 = min(s1) & max_s1 = max(s1) 

;min_dolp = min(dolp) & max_dolp = max(dolp) 

 

;  tree  -  x= 40, y = 400 

nx = 20 

ny = 20 

tree_x =  40 + indgen(nx) 

tree_y = 180 + indgen(ny) 

; herman 

h_x = 405 + indgen(nx) 

h_y = 240 + indgen(ny) 

; roof 

r_x = 370+1 + indgen(nx) 

r_y = 160-2 + indgen(ny) 

;sky 

s_x = 387 + indgen(nx) 

s_y = 75 + indgen(ny) 

 

image = bytscl( s0) 

 

for i = 0, ny-1 do begin 

ty = tree_y(i) 

image( tree_x, ty) = 255 

hy = h_y(i) 

image( h_x, hy) = 0 

ry = r_y(i) 

image( r_x, ry) = 254 

sy = s_y(i) 

image( s_x, sy) = 253 



 53

tv, image 

endfor 

 

rois = fltarr( nx, ny, nfiles, 4) 

 

rois( 0:nx-1, 0:ny-1, 0:nfiles-1, 0) = dolp( tree_x, tree_y, 0:nfiles-1) 

rois( 0:nx-1, 0:ny-1, 0:nfiles-1, 1) = dolp( h_x, h_y, 0:nfiles-1) 

rois( 0:nx-1, 0:ny-1, 0:nfiles-1, 2) = dolp( r_x, r_y, 0:nfiles-1) 

rois( 0:nx-1, 0:ny-1, 0:nfiles-1, 3) = dolp( s_x, s_y, 0:nfiles-1) 

 

roi = reform( rois, 20*20, 48, 4) 

roi2 = congrid( roi, 1, 48, 4) 

 

 

red = 255 

green =   255*256L 

blue =  255* 256L * 256L 

white = red+ green + blue 

 

wset, 0 

 

plot,  roi(*,*,3), psym = 3, /nodata, ytitle = 'DOLP' 

oplot, roi(*,*,3),   psym = 3, color = blue 

oplot, roi (*,*, 1), psym = 3, color = white 

oplot, roi(*,*,2) ,  psym = 3, color = red 

oplot, roi(*,*,0),   psym = 3, color = green 

 

wset, 1 

radius = 0.5 
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circle = 2*!pi*findgen(9)/8 

usersym, radius*sin(circle), radius*cos(circle), /fill 

 

plot, roi2(*, *, 3), psym = 8, /nodata, ytitle = 'DOLP' 

oplot, roi2(*,*,3),   psym = 8, color = blue 

oplot, roi2 (*,*, 1), psym = 8, color = white 

oplot, roi2(*,*,2) ,  psym = 8, color = red 

oplot, roi2(*,*,0),   psym = 8, color = green 

 

lables = strarr( 1, nfiles) 

for ifile = 0, nfiles-1 do begin 

file = files(ifile) 

nc = strlen(file) 

pos = nc-1 

n1 = strpos( file, '\', pos, /reverse_search) 

n2 = strpos( file, '\', n1-1, /reverse_search) 

delta = n1 -n2 

lable = strmid(file, n2+1, delta-1) 

help, lable 

lables( 0, ifile) = lable 

endfor 

 

window, 1, xsize = 900, ysize = 800 

erase, white 

 

!p.title = 'Herman Hall - 20 August 2008' 

plot, roi2(*, *, 3), psym = 8, /nodata, ytitle = 'DOLP', $ 

   xtickname = replicate(' ', nfiles), $ 

 position = [150, 250, 850, 750] , /device, $ 
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  xticklen = -0.05, xstyle = 8,  /noerase, color = 0 

oplot, roi2(*,*,3),   psym = 8, color = blue 

oplot, roi2 (*,*, 1), psym = 8, color = 0 

oplot, roi2(*,*,2) ,  psym = 8, color = red 

oplot, roi2(*,*,0),   psym = 8, color = green 

 

axis, 0, 0.8,  xax = 1, color = 0, xtickname = replicate(' ', 45) 

 

 

for i = 0, 48, 5 do begin 

 xyouts, i, -0.05, lables(0, i), orient = 290, color = 0 

 endfor 

 

xyouts, 24, -0.25, 'Time of Day', align = 0.5, size = 1.8, color = 0 

 

red = 255 

green =   255*256L 

blue =  255* 256L * 256L 

white = red+ green + blue 

window, 2, xsize = 900, ysize = 800 

erase, white 

 

radius = 1.5 

circle = 2*!pi*findgen(9)/8 

usersym, radius*sin(circle), radius*cos(circle), /fill 

 

!p.title = 'Herman Hall - 20 August 2008' 

plot, roi2(*, *, 3), psym = 8, /nodata, ytitle = 'DOLP', $ 

   xtickname = replicate(' ', nfiles), $ 
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 position = [150, 250, 850, 750] , /device, $ 

  xticklen = -0.04, xstyle = 8,  /noerase, color = 0, $ 

   xthick = 2, ythick = 2, charsize = 1.6 

oplot, roi2(*,*,3),   psym = 8, color = blue 

oplot, roi2 (*,*, 1), psym = 8, color = 0 

oplot, roi2(*,*,2) ,  psym = 8, color = red 

oplot, roi2(*,*,0),   psym = 8, color = green 

 

axis, 0, 0.8,  xax = 1, color = 0, xtickname = replicate(' ', 45), xthick = 2 

 

for i = 0, 48, 5 do begin 

 xyouts, i, -0.05, lables(0, i), orient = 290, color = 0,size = 1.3 

 endfor 

 

xyouts, 24, -0.3, 'Time of Day', align = 0.5, size = 1.8, color = 0 

 

;outfile = 'Herman.dat' 

;openw, 5, outfile 

;forwrt, 5, s0 

;forwrt, 5, s1 

;forwrt, 5, s2 

;forwrt, 5, dolp 

;close, 5 

 

;stop 

END 
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