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ABSTRACT 

This work extends earlier work derived by Overdyk and investigates the 

use of wavelet transform and image processing tools to estimate hopping times 

occurring in frequency hopping schemes.  The detection algorithm identifies 

frequency hopping time locations found in FH schemes from the information 

provided by the two-dimensional short-term signal temporal correlation function. 

Hopping time locations are shown to be provided by indentifying TCF phase 

discontinuities. The detection scheme has three main stages: 1. Derive the 

analytic version of the FH signal and compute the resulting TCF function; 2. 

Enhance discontinuities via the one-dimensional Wavelet transform; 3. Apply 

morphological image processing operations and the Hough transform to estimate 

hopping time locations.  

Results show that for FH signals imbedded in additive White Gaussian 

noise, reliable detection performance may be obtained for SNR levels above 3 

dB and good detection performance for SNR levels above 6dB for 5% to 20% 

detection accuracy. 
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EXECUTIVE SUMMARY 

This work extends earlier work derived by Overdyk and investigates the 

use of wavelet transform and image processing tools to estimate hopping times 

occurring in frequency hopping schemes.  The detection algorithm identifies 

frequency hopping time locations found in FH schemes from the information 

provided by the two-dimensional short-term signal temporal correlation 

function(TCF).  

Several operations are applied to the TCF phase to emphasize hopping 

time occurrences, which are contained in the TCF phase discontinuities. First, we 

unwrap the TCF phase and apply median filtering to the unwrapped TCF phase 

along the time axis t. Second, we differentiate the unwrapped TCF phase along 

the time axis t, and apply a second median filter to the differentiated phase along 

the time axis t. Next, we apply the Wavelet transform to isolate the hopping time 

information. Finally, we follow an image processing approach to extract the 

hopping time information; we first apply an edge detection algorithm to extract 

the TCF phase region boundaries from the wavelet transformed TCF phase. Next, 

we apply  two erosion steps with diagonal masks, one with 45   and the second 

one with 45  orientations, to remove noisy contributions. Finally we apply the 

Hough transform to estimate the hopping time information and discard lines not 

located close enough to 45   orientations.  

Simulations are conducted for one-hop and no-hop signal configurations 

with signals distorted by additive white Gaussian noise in SNR levels between 

3 dB and 21dB for basic FH and pulse-shaped FH signals. Results show 

reliable detection performance may be obtained for SNR levels above 3 dB and 

good detection performance for SNR levels above 6dB for 5% to 20% detection 

accuracy. 



 xvi

Simulations show that the erosion step improves the probability of correct 

detection (PCD) by 12% when the SNR level is equal to 3 dB. However, the 

erosion operation does not result in consistent significant improvements overall. 

 Results show that the basic one–hop detection scheme reaches 100% 

accuracy for 5% tolerance level for SNR levels above 6dB. Results also show 

that no-hop decision results reach 100% for SNR levels above 6 dB.  

Finally, results show that lower detection performances are obtained when 

half sine pulse-shaping is applied to the symbols.  This is to be expected as 

pulse-shaping results in dampening the signal amplitude at both ends of a 

symbol, thereby making it harder to extract TCF phase discontinuities.  
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I. INTRODUCTION 

Frequency hopping (FH) signal schemes are widely used today in 

communication applications as they are well suited for transmission in the 

presence of distortions and jamming. FH is a technique in which the carrier 

frequency jumps following a pre-determined hopping pattern (HP) only known by 

transmitter and receiver sides. Hopping patterns contain two essential pieces of 

information: when frequency changes occur, and which frequencies are used. 

Hopping patterns are recorded and analyzed at the receiver side to recover the 

information message [1].  Using a Fourier transform approach to analyze a FH 

signal may not be well suited to recover the specific frequency contained in the 

FH signal when hopping time jitter is present, as estimated hopping time 

information may get degraded. A significant amount of research has been 

conducted to identify FH patterns over the years.  For example, in 1993 Hampton 

proposed a scheme that detects signal dwelling time edges by tracking short-

term power variations for FH schemes with signal gaps at frequency switching 

instants [2]. This work introduced the idea that signal discontinuities occurring 

between two frequencies symbols is an important feature. In 1997, Overdyk 

investigated the use of the two-dimensional temporal correlation function to 

detect frequency hopping time locations occurring in frequency hopped (FH) 

schemes [3].  

Recall that Frequency Hopping (FH) schemes are designed to transmit 

digital information in which binary data bits are grouped into blocks of a fixed size, 

and each block is represented by a unique carrier frequency, called a symbol, to 

be sent across the channel [4]. Thus, a FH signal is represented by a succession 

of narrowband tones with different frequencies 0 0,  ,  i= 1 ,..,Nif f f f �  

where if�  is defined as a uniform random variable in the range [0, ],nnssB  nnssB  is 

the available bandwidth, and N is the number of available frequency hops. 
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Figure 1 presents a FH signal with twenty frequency hops, where the signal 

frequencies are statistically uncorrelated and uniformly distributed over the 

bandwidth nnssB =80 Hz. 

 Overdyk focused on one-dimensional processing schemes and 

investigated the use of one-dimensional wavelet transforms in the detection task, 

even though the TCF Phase is a two-dimensional quantity. This thesis extends 

the previous work by taking advantage of the TCF two-dimensional definition and 

applying image processing and morphological operations to detect the frequency 

hopping times.    

 

Figure 1. Frequency Hopped Signal, Twenty Frequency Hops, Sampling 
Frequency Equal to 250 Hz. 
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The thesis is composed of seven chapters including this introduction. 

Chapter II introduces the concept of the Temporal Correlation Function (TCF) 

and its application to non-stationary signals. Chapter II also discusses how to 

extract hopping times from the discontinuities present in the 2-dimensional TCF 

phase.  Chapter III introduces the pre-processing techniques considered to 

enhance the hopping time information obtained from the TCF information. 

Chapter IV briefly introduces the wavelet transform and its application to high 

frequency signal extraction. Chapter V introduces the image morphological 

operations considered in this work and the Hough transform applied to the 

problem. Next, Chapter VI presents the overall detection algorithm implemented 

and resulting detection performance results obtained. Finally, Chapter VII 

provides conclusions and recommendations for further research. 
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II. TEMPORAL CORRELATION FUNCTION (TCF) 

This section introduces the concept of the temporal correlation function 

(TCF) and its application to the detection of frequency hopping times found in 

frequency hopping schemes. 

A.  INTRODUCTION  

The temporal correlation function (TCF) of a signal x(t) is defined as [3, pp. 

47]: 

 *( , ) ,
2 2xTCF t x t x t
           

   
 (2.1) 

where t is the signal time index and   is the lag time index of the signal. 

The phase of the TCF matrix was used previously in Overdyk in conjunction with 

the one-dimensional wavelet transform [3, pp. 47-51] to extract frequency 

hopping time locations. The TCF is used again in this thesis in the first phase of 

the detection algorithm.  

B.  TCF DEFINITION 

Let x(t) be defined as the non-stationary frequency hopping analytic signal: 

 1 22 2( ) ( ) ( ( 1) ( ) , 0 ,i f t i f t
a hop hopx t e u t u t T e u t T u t T t T                  (2.2) 

where hopT is the hopping time at which point the message frequency hops from 

frequency 1f  to 2f , and u(t) is the unit step function defined as : 

 
1  , for t 0

( )
0 , for t<0

u t


 


. (2.3) 

Substituting Equation (2.2) into Equation (2.1) leads to [3, pp. 49]: 
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1 2 12( , ) ( , ) ( , ).TCF t TCF t TCF t  


















 
 

  

. (2.4) 

 

The terms 1( , ),TCF t  2 ( , ),TCF t  12 ( , )TCF t  respectively correspond to the 1st, 

2nd, and 3rd terms included in Equation (2.4). The three terms exist in non-

overlapping triangular shaped regions which make up the complete TCF 

expression. The unit step expressions are used to model the three triangular 

shaped regions present in the TCF Phase expression shown in Equation (2.4). 

They are used to depict the boundary lines between the triangular 

shaped 1( , ),TCF t  2 ( , ),TCF t   and 12 ( , )TCF t   phase regions and have 45   

orientations.  

Note that the phase of the 1( , )TCF t   and 2 ( , )TCF t   terms expressed as a 

function of the variable “t” are constant and equal to 12 f   and 

22 ,f  respectively, while the phase contribution contained in the term 12 ( , )TCF t   

varies in terms of both variables t and . Therefore, the TCF phase expressed as 

a function of “t” for a fixed “ ” exhibits changes in its slope value when going 

from one region to another one. Figure 2 illustrates the behavior of the phase of 

the TCF matrix computed from the signal  ax t in Equation (2.2) where 
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1 15 ,f Hz 2 45 ,f Hz  the hopping time 150hopT  , and the total signal duration 

300.T   Figure 2 shows that the hopping time can easily be extracted at the left 

most tip of the 12 ( , )TCF t   region.  

 

Figure 2. TCF Angle of a Non-stationary Analytic Frequency Hopping Signal; 
Hopping Time Location at t=150. 

Changes in the TCF phase behavior as a function of “t” are emphasized 

with further processing by applying the one-dimensional wavelet transform to 

emphasize the edges and followed by morphological processing operations to 

automate the detection of such edges. The Wavelet transform and morphological 

tools used in this work are discussed later in Sections IV and V.   

The overall algorithm designed to detect hopping time locations can be 

split into three main phases, as illustrated in Figure 3. 
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 Phase 1: a) Compute the TCF phase matrix TCF (t, ) over a short finite 

time window; b) Differentiate the TCF phase matrix along the time index 

(keeping  fixed). 

 Phase 2: Compute the one-dimensional wavelet transform of the 

resulting differentiated TCF phase matrix along the time index (keeping 

  fixed). 

 Phase 3: Apply image morphological tools to clean the image and extract 

hopping time information.  

 

 

Figure 3. Overall FH Signal Hopping Time Estimation Process; Flow Chart and 
Intermediary Representative Results for Each Stage. 

Enhancement of 
Wavelet Based 

TCF Phase 
Region Edges 

 
 
TCF Phase Term 

 
Binary Image 

Processing and 
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III. DETECTING IMPROVEMENT TECHNIQUES 

We showed in Chapter II that the TCF phase matrix clearly exhibits 

hopping time locations when little or no noise is present. The actual detection 

process relies on changes observed between the three TCF phase regions 

discussed earlier. However, hopping time location information degrades 

significantly with increasing noise levels  For example, the top plot of Figure 5 

shows the TCF phase of the FH signal distorted by additive white Gaussian 

Noise(AWGN) with SNR=9 dB for lag  =25. This example shows that the 

hopping time information is very hard to extract, as the noise causes random 

spikes in the phase information. Thus, additional processing becomes 

necessary to increase the robustness of the detection scheme. This section 

discusses three such processing steps; unwrapping the phase information, 

differentiating the phase information to emphasize phase change behavior, and 

applying a median filter to de-emphasize noise effects.  

A. PHASE UNWRAPPING FUNCTION 

The TCF phase, p(t), of the signal, x(t), may be unwrapped as [3, pp. 52]: 

  
( ) ,  ( ) ( 1)

( ) ( ) 2   ,  ( ) ( 1)

( ) 2 ,  ( ) ( 1)  .

p t if p t p t

unwrap p t p t if p t p t

p t if p t p t


 
 

   
     
    

 (3.1) 

Note that phase unwrapping transforms jumps larger than   between 

successive points to their 2 complement. Figure 4 shows the results obtained 

by unwrapping the TCF phase function along the time axis (while the parameter 

 is kept constant). Note that the phase exhibits constant values for times 

between [0 100] and [160 256].  These sections correspond to the 1TCF  and 

2TCF  regions where the phase is constant (when expressed as a function of t, 

for a fixed value of ). The phase behavior in the 12TCF  region is expected to be 

linear (when expressed as a function of t for a fixed  value), as was shown 
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earlier in Equation (3.1). However, noise distortions result in multiple phase 

jumps in the 12TCF  region, i.e., for times in the range [100 160].  These multiple 

jumps can be cleaned up by unwrapping the phase, as shown in the bottom plot 

of Figure 5. Note that the slope of the 12TCF  region is linear, as expected, after 

applying the unwrapping function, and the plot now exhibits a large gap value 

between 1TCF  and 2TCF  regions. 
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Figure 4. Unwrapping Function Impact on the TCF Phase Function; Hopping 
Time Location at t=125;Noise-Free Signal Case.  

Unwrapping the phase function along the time axis (while the variable   is 

kept constant) is useful as the noise level increases when sudden phase jumps 

may occur in 1TCF  or 2TCF  regions with theoretical constant phases (when 

considered as a function of t, with   fixed), as illustrated in Figure 5. Note the 

random phase jumps in the intervals [0 100] and [160 256] which corresponds to 
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the 1TCF  and 2TCF  regions where the phase is expected to be constant in noise-

free cases. After the unwrapping step, the phase behavior in 1TCF  and 2TCF  

regions exhibit very small variations due to the noise, and the 12TCF  region phase 

is again linear.  
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Figure 5. Unwrapped TCF Phase Term at Lag =25, SNR=9 dB. 

B. DIFFERENTIATION  

Recall the expected TCF phase behavior expressed as a function of t, 

while keeping   fixed is a succession of three lines; flat lines in the 1TCF  and 

2TCF  regions, while it is a ramp in the 12TCF  region. This behavior represents two 

discontinuities in the phase expressed as a function of t (while keeping   fixed), 
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which are emphasized by differentiating the phase along the time axis.  Recall 

the first derivative of a line is equal to its slope and is defined as: 

 2 1

2 1

amplitude difference
 = .

m m
slope

t t t




 �
 (3.2) 

The differentiation function computes the difference between adjacent 

points. Differentiating the unwrapped TCF phase along the time axis results in a 

pulse where the ramp used to be, and zero otherwise. Such a step further 

emphasizes the difference between the auto-term and cross-term regions, as 

illustrated in the bottom plot of Figure 6. 
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Figure 6. Unwrapped TCF Phase Term; Differentiation Step Applied to the 
Unwrapped TCF Phase Along the Time Axis,   Fixed.  
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C. MEDIAN FILTER 

Note that the basic differentiation operation used above also emphasizes 

high frequency noise. For example, Figure 6 above exhibits small variations 

within the expected constant regions, or the linear ramp region.  Such 

discontinuities can be smoothed out by using a median filter which is designed to 

remove short-term spike distortions while maintaining long-term signal trends.  

The median filter is a non-linear filter commonly applied to remove isolated 

outliers or short discontinuities. In this filter, input points are sorted by increasing 

values, and the middle point picked as the filter output. Thus, isolated outliers are 

not selected as outputs and short-term distortions can be discarded by selecting 

a median filter of length high enough. Figure 7 shows the median filter output to 

the signal shown in the top plot for a median filter of length 30.  The figure shows 

the small oscillations present on the pulse disappeared without affecting the 

overall shape of the 50-point wide square pulse, as the pulse width is longer than 

the selected median filter length. 
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Figure 7. Median Filter Impact on Pulse-Like Signal; Top Plot: Original Signal, 
Bottom Plot: Median Filter Output with Median Filter of Length 30.  

D. NO-HOP SIGNAL CASE: SHORT-TERM VARIANCE TRACKING 
DECISION SCHEME  

All processing schemes previously discussed focus on emphasizing the   

phase changes between the different TCF phase regions to better detect hopping 

time locations.  However, we need to also consider the case when no hop occurs 

in the time frame under investigation. In such cases, the TCF phase plot 

expressed as a function of time (keeping   fixed) is constant, when there is no 

noise distortion. However, noise introduces artifacts in the TCF phase which may 

result in isolated spikes, as illustrated in Figure 8. In such a case, phase 

unwrapping may still result in artificial discontinuities and subsequent median 

filtering steps are not sufficient to eliminate short term discontinuities in the TCF 

phase behavior (expressed as a function of t). Figure 8 (e) illustrates an example 
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where the TCF phase still exhibits discontinuities after phase unwrapping, 

differentiation and median filtering.  
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Figure 8. Impact Due to Successive Operations Applied to the TCF Phase for 
the No-hop Signal Case, ( , )TCF t  for  =25 Fixed, SNR=12dB: First 
median Length=15, Second Median Length=30; (a) Original TCF Phase, 
(b) After Phase Unwrapping, (c) After Median Filtering, (d) After 
Differentiating, (e) & (f) After Second Median Filter. 

Figure 8 (e) & (f) show two discontinuities remain after applying the 2nd  

median filter. Such discontinuities will be emphasized by the wavelet transform 
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and may later result in an incorrect hop decision. Thus, we investigated a 

different approach to first evaluate whether a hop is present somewhere in the 

time frame or not, prior to applying phase unwrapping on the ( , )TCF t   

expression. Recall that the expected TCF phase term expressed as a function of 

the variable “t” is constant only when there is no hop in the collected frame, and 

that changes are expected to occur when a hop is present. Further, recall that 

noise distortions introduce variations in the 1TCF  and 2TCF  regions which have 

theoretical constant phase regions, while the phase in the 12TCF  region exhibits 

repeated jumps due to noise effects. Figure 9 shows plots of the initial TCF 

phase before unwrapping is applied for a SNR level equal to 9dB for with-hop 

and no-hop cases. Note that phase variations in the no-hop case are significantly 

smaller, due to the absence of the repeated jumps in the 12TCF region located in 

the interval [100 150].  
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Figure 9. ( , )TCF t   Phase Plot for Lag  =25; SNR=9dB; Top Plot: One-hop 
Signal Case, and Bottom Plot: No-hop Signal Case. 
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Thus we implemented a simple ad-hoc scheme which tracks changes in 

the TCF phase variance for a specific lag value before phase unwrapping is 

applied. We split the TCF phase function (expressed in terms of t, for a fixed lag 

 ) into 10 non overlapping windows, and compute the variance of each. Table 1 

illustrates the resulting process for the two TCF phase plots shown in Figure 9. In 

this example, the overall variance for the one-hop and no-hop signal cases are 

equal to 2.2328 and 0.0032, respectively. Note that estimated variance values 

exhibit larger variations in the one-hop case than those observed in the no-hop 

case, due to the repeated phase jumps in the [100 150] interval occurring in the 

12TCF region for the one-hop signal case.  

 

Sub-window 1 2 3 4 5 6 7 8 9 10 
One Hop Signal 
TCF phase variance 0.05 2.46 1.24 1.33 4.08 3.32 0.13 0.15 0.2 0.1 

Variance between 
each sub-window 2.2328 

No Hop Signal TCF 
phase Variance 0.07 0.17 0.07 0.26 0.13 0.1 0.14 0.1 0.1 0.12 

Variance between 
each sub-window 3.20E-03 

 

Table 1.   TCF Phase Short-Term Variances Computed within the Estimation Frame; 
10 Non-Overlapping Sub-Windows; One-Hop and No-Hop Cases.   

Thus, we discriminate between no-hop and with-hop scenarios using the 

variation in short-term variance values. By trial and error, we selected a threshold 

value equal to 1 to conduct a first attempt at deciding between no-hop or one--

hop cases; signal frames leading to TCF phase short-term variance values below 

1 are said to contain no hop within the frame. Note the threshold value selected 

was quite conservative in the sense that it was set to decide “no-hop” on only the 

most obvious cases.  When a signal frame is detected to have a hop in this first 

stage, further processing can still lead to a no-hop decision later.  Specific details 
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on the overall decision scheme are presented later in Section VI. Figure 10 

presents no-hop decision results obtained with this ad-hoc decision scheme. 
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Figure 10. Probability of Correct Detection Using the TCF Phase Short-term 
Variance Thresholding Scheme; No-hop Scenarios Only, Random 
Frequency, 250 Experiments, SNR Level Between -6 to 21 dB.  
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IV. WAVELET TRANSFORM 

In Chapter III we showed that the TCF phase term shows step 

discontinuities between three regions when the sample FH signal contains a hop, 

as illustrated in Figure 7.  This step discontinuity presents a high frequency signal 

which is used to estimate the hopping time location in this thesis. Various signal 

processing operations can be used to extract signal or image discontinuities. This 

thesis uses the Wavelet transform which is briefly introduced in this chapter. 

A. INTRODUCTION  

The Fourier transform is used to represent a time domain signal in the 

frequency domain.  The transformation is defined as [5]: 

 2( ) ( ) .i ftx f x t e dt 


   (4.1) 

The Fourier transform ( )x f  is well suited when dealing with stationary 

signals as it shows the contribution of all frequencies contained in a given time-

domain signal. However, it cannot be used to represent signals with time-varying 

characteristics, as the time information gets lost after this transformation. In 

cases where preserving the time information is needed, the Short-Time Fourier 

Transform (STFT) can be used, as it is expressed in terms of both time and 

frequency indices. The STFT is defined as [5]: 

 * 2( , ) ( ) ( ) ,i ftSTFT f x t g t e dt     (4.2) 

where the function ( )g t  is a finite time sliding window centered at  . The length 

of the window function ( )g t  is selected so that the signal is stationary over the 

window length. The length of the time window also relates to the time and 

frequency resolutions of the transform, as a direct result of the Uncertainty 

Principle.  One of the major drawbacks of the STFT is the fixed time and 

frequency resolution once the window length is selected, resulting in time-

frequency partitioning as illustrated in Figure 11 (a).  
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Figure 11. STFT and Wavelet Analysis Time and Frequency Resolution Plot, (a) 
STFT Frequency vs. Time 2-D plot, (b) Wavelet Analysis Scale vs. Time 
2-D plot, (c) STFT Window Examples, (d) CWT Window Examples. [After  
6, 7]. 

As a result, the STFT does not have a variable time-frequency resolution 

which would be useful for signals with time varying behavior. The Wavelet 

transform, which can be viewed as an alternative to the STFT, does not have 

fixed time-frequency resolution.  As a result, it is better suited to handle signals 

with sudden discontinuities, as those present in the TCF phase.  

B. CONTINUOUS WAVELET TRANSFORM (CWT) 

The continuous Wavelet transform (CWT) of a signal x(t) is defined as: 

 
1

( , ) ( ) ( ) ,x

t
CWT a x t h dt

aa

 
   (4.3) 
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where 
1

a
( )
t

h
a


 is a scaled and shifted version of the wavelet function h(t). 

The scale variable is a , and the time shift variable is  .  

The scale variable a  is inversely proportional to the frequency variable, and 

the scale factor is defined as: 

 10log ( ).Scale a  (4.4) 

Figure 11 (b) and (d) illustrate the time varying nature of the time-

frequency resolution provided by the Wavelet transform. Figure 11 (b) shows 

that the partitioning has good time resolution at high frequencies, and vice versa.  

Figure 12 shows Daubechies Wavelet (db) functions for different orders.   

Highpass and lowpass decomposition filters are shown in blue, and green, 

respectively.  Figure 12 (d) also shows the 15th order Daubechies Wavelet 

function (referred to as ‘db15’). Note that Wavelet functions complexities 

increase with their order. The 1st order Daubechies wavelet (db1) is used in our 

work to extract phase discontinuities.  This specific wavelet function is also 

known as the Haar Wavelet.  
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Figure 12. Daubechies Wavelets of Various Orders. Wavelet Highpass Function 
(blue continuous line), Wavelet Lowpass Function (green dash line).  

Figure 13 shows highpass and lowpass Daubechies filters frequency 

responses for different orders. Note that low order wavelet functions, such as 

db1 to db3, have long transition regions, while high order wavelet, such as db15, 

have much steeper and shorter transition regions, becoming closer to  ideal 

filters. However, the filter complexity increases with the filter order.  
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Figure 13. Daubechies Wavelet Analysis Filter Frequency Response, (a) 
Decomposition LPF Response, (b) Decomposition HPF Response. 

C. DISCRETE WAVELET TRANSFORM  

As mentioned earlier, the STFT has constant time-frequency resolution 

partitioning. The STFT can also be viewed as a bank of filters with constant 

bandwidth, as illustrated in Figure 14 (a). Similar to the CWT, the DWT has a 

variable time-frequency partitioning, leading to a partitioning of the frequency axis 

as illustrated Figure 14 (b) for a four-level decomposition. This decomposition 

can also be represented by the decomposition tree structure shown in Figure 14 

(c).  

The one-level DWT decomposition operation generates detail and 

approximation coefficients, which contain the signal high frequency information, 

and low frequency information, respectively. Note that detail and approximation 
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coefficients are derived from highpass and lowpass filters and down-sampled by 

a factor of 2, as the bandwidth has been also decreased by that amount.  

 

Figure 14. Wavelet Decomposition Filter Bank, (a) STFT Filter Bank, (b) Wavelet 
Transform Filter Bank, (c) Wavelet Transform Decomposition Tree. [After 
5, 8]. 

Higher level decompositions are obtained by processing the output of 

successive lowpass filters, where downsampling by 2 is applied at the each filter 

output. These successive filtering and downsampling operations present in the 

DWT operation have led to fast DWT implementations. Note the CWT does not 

include downsampling steps, resulting in a higher complexity transformation.  
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D. WAVELET ANALYSIS EXAMPLE 

We selected the 1st order Daubechies Wavelet (db1) in our work to extract 

the TCF phase discontinuities. We consider both the DWT and CWT operations 

and report on their differences. 

1. DWT Analysis 

Figure 15 (a) shows a representative TCF Phase plot obtained for a fixed 

lag value   =25 from no noise signal. The TCF phase plot exhibits a clear pulse 

in the trace. Figure 15 (b) shows the resulting 1st-level DWT detail wavelet 

coefficients obtained for the Haar wavelet (i.e., for scale parameter a=2). Note 

the wavelet coefficients clearly identify the pulse ends, as the spikes indicate the 

discontinuities. For convenience purposes and maintain the same dimension as 

that of the original TCF plot, we reversed the downsampling operation present in 

the MATLAB DWT transformation by up-sampling the results by 2 (i.e., by adding 

a zero between successive coefficients). Results are illustrated in Figure 15 (c). 

Approximation coefficients containing the low frequency signal information are 

shown in Figure 15 (d). Approximation coefficients were not used in our detection 

scheme.  
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Figure 15. Application of the DWT to the Processed TCF Phase for a Fixed Lag 
Value  ; (a) TCF Function for a Fixed Lag Value (b) Detail Coefficients, 
One-Level DWT Transform of (a), Haar Wavelet, (c) Detail Coefficients 
after Up-sampling by 2, (d) Approximation Coefficients, One-Level DWT 
Transform of (a). 

2. CWT Analysis 

Figure 16 shows the CWT transformation of the TCF phase plot function 

considered in Figure 15 (a) for scale values equal to 1, 5, 9, 13, and 17. Results 

show that the first scale value (a=1) is not well suited to extracting the pulse 

discontinuities but that higher scale values can be use to do so. Figure 15 (b) 

shows that a scale value equal to five identifies the two pulse edges accurately 

with the two spikes located around 100 and 146. Figure 15 also shows that these 
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two spikes get larger as the scale value increases, which is to be expected as the 

time resolution decreases for lower frequencies.  
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Figure 16. Application of the CWT to the Processed TCF Phase shown in Figure 
15(a), (Haar Wavelet); (a) Coefficients for Scale=1, (b) Coefficients for 
Scale =5, (c) Coefficients for Scale =9, (d) Coefficients for Scale =13, (f) 
Coefficients for Scale =17. 
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V. IMAGE DETECTION AND ANALYSIS 

Chapter IV showed that the Wavelet transform can be applied to 

emphasize the discontinuities present in the TCF phase which are later used to 

detect the hopping time location. This section introduces the image processing 

tools used in this thesis to identify the hopping time locations. First, we discuss 

edge detection schemes. Next, we present, image morphological operation 

applied to regularize and enhance the TCF image. Finally, we describe how the 

Hough transform is applied to evaluate the actual hopping time.  

A. EDGE DETECTION 

Edge detection has been a topic of intense research in image processing 

over the years, as image edges carry a significant amount of information. 

Applications are commonly found in an ever wider range of areas, as a result of 

the improvement in computational power capabilities. Applications can be found 

in manufacturing with automated categorization of parts, assistive driving 

schemes for automotive applications, radiology for medical applications, etc...  

Human activities categorization has also recently received a significant amount of 

interest due to increased concerns with security applications. In many of these 

applications, a gray scale or color image is first transformed into a binary image 

to simplify later stages of the process, which raises issues with level thresholding.   

The pattern in an image is represented by the pixels which are split into a 

finite number of levels after quantization. For example, 8-bit quantization 

provides 82 256  possible intensity levels for each pixel, and the pixels 

contained in sections with the same colors and intensity will have closer values 

than those associated with discontinuous portions.  A significant amount of the 

image information is contained in the gradient values, and a significant portion of 

the image information may be represented by preserving the pixels with large 

gradients only. Thus, basic edge detection algorithms are based on information 
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derived from the gradient of the image pixels values [9], as the gradient exploits 

sudden changes in pixel values found at the region boundaries. 

1. First Order Gradient 

The simplest method designed to approximate the first order gradient 

along a particular axis computes the intensity level difference between two 

adjacent pixels along that axis. Equation(5.1) [9] derives the expression for the 

pixels energy gradient approximation ( , )xg x y  along the x-axis from the original 

values ( , )p x y . Similarly, Equation (5.2) shows the expression ( , )yg x y for the first 

order gradient approximation along the y-axis. 
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2. Sobel Operator 

The previous first order gradient approximation is simple but sensitive to 

noise distortions. In image processing, the first order spatial gradient 

approximation often uses a Sobel operator that introduces smoothing in the 

gradient computation by weighting the pixels used in the gradient estimation [9]. 

Equations (5.3) and (5.4) show the first order gradient approximation applied by 

the Sobel operator along the x-axis. 
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 Similarly, Equations (5.5) and (5.6) show the first order gradient 

approximation by the Sobel operator along the y-axis: 
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Figure 17 shows the edges detected by the Sobel operator on a gray 

scale image. First, the original gray scale image (top figure) is transformed to 

black-and-white binary format.  Next, the Sobel operator with window size 3 is 

applied, resulting in the figure shown at the bottom of Figure 17. Note that final 

edge values usually include some thresholding on gradient values to clean up the 

results. 

8-bit Gray Scale Image

Binary Plot From Edge Detection  by Sobel Method

 

Figure 17. Edge Detection Using the Sobel Method, Operator Window Size Equal 
to 3. 

B. IMAGE MORPHOLOGICAL OPERATIONS 

Unfortunately, applying edge detection schemes often result in noisy 

images. Figure 18 shows that a “raw” image may contain much unusable 

information from the image background itself or from incomplete shapes due to 
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problems resulting from gradient level threshold steps. For example, a broken 

blob may still contain many pixels close to each other and accompany several 

isolated small groups of noisy pixels. Thus, some type of morphological 

processing is usually necessary to enhance an image and to make it more robust 

for later stages. Next, we discuss basic morphological operations. 

 

Figure 18. Desired  Image Shape and Resulting Potential Image Obtained after 
Basic Edge Detection Stage  [After 10]. 

1. Dilation 

Dilation is the “union” operation between the object and a mask matrix that 

has a particular alignment fitting a specific figure pixel arrangement. Figure 19 

(top plot on the right) illustrates the result obtained after applying a dilation 

operation. Note that the mask enlarged the original object . The dilation operation 

fills in small intrusions found in uneven blobs or between broken line segments, 

resulting in an image with fewer small isolated sections. Note that the dilation 

operation does not add any redundant information in the image when there is no 

Desired image shape Potential undesirable results from basic 
edge detection scheme  

Broken blob Isolated pixels resulting 
from noise distortions  
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original pixel nearby, and the exact type of “fill-in” process depends on the 

specific mask selected for this operation.  

 

Figure 19. The Logical Operation of Dilation and Erosion [After 10]. 

2. Erosion  

Unlike the dilation operation that extends figure pixel trends when they 

match the mask selected, the erosion operation removes isolated or small pixel 

blobs from the image. The erosion operation can be viewed as an intersection 

operation between the object and mask, as shown in the bottom portion of Figure 

19 above. Thus, the erosion mask is designed to remove isolated pixels, as 

pixels grouping which do not totally enclose the mask matrix are removed.   

B 
Mask 

 

A

B 

A 

B 

Dilation is a union operation:

 |  OR  A B x x A x B   

 |  A N D   A B x x A x B   
Erosion is an intersection operation:
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3. Morphological Operation Example 

The mask alignment is crucial to the morphological operation result. The 

dilation operation interpolates pixels when the mask points reach the original 

points. Figure 20 illustrates dilation and erosion operation results on a synthetic 

image block. A few comments can be made: 

 The dilation operator extends the isolated pixels and fills in small 

intrusions found in the broken blob section, resulting in the top plot 

included in Figure 20.  

 The erosion operator removes isolated pixels and significantly shrinks the 

blob section by removing sections that are smaller than the erosion mask 

selected for this task.  

 

Figure 20. Morphological Operation; 2-bit Landscape Alignment Mask [After 10]. 

The mask matrix 

Dilation Operation 

Erosion Operation 

The original point 

New point after dilation 

The points eliminated by erosion 

The results The original point 

Gaining point after dilation 

Losing point after erosion 
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Figure 21 illustrates the dilation masks impacts on the image previously 

shown in Figure 17.  Note the initial image shown at the top of Figure 21 contains 

numerous isolated segments which outline the road boundaries. The bottom plot 

in Figure 21 shows the results after applying the dilation operator when the 

selected mask is a disk with 3-bit radius. Results show the road line sections 

have become more continuous in nature.  

The original image

Dilated image

 

Figure 21. Dilation Operation Impact; 3-bit Radius Mask. 

Applying a particular alignment mask, which matches the desired image 

arrangement, can remove most of the undesirable image pixel contributions. For 

example, a desired image feature is the road line shown on the right side of the 

image with has about a 45 orientation. Using a 3-bit window, a potential mask 

for the erosion operation, the mask matrix may be defined as: 

1 0 0

0 1 0

0 0 1

 
 
 
  

.  
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Applying this mask results in the deletion of isolated pixels which do not 

align along 45  . The bottom plot of Figure 22 shows the image obtained after 

the erosion operation followed by a dilation step with the same alignment mask 

as that present for the erosion operation. Note that the diagonal aligned mask 

discards most features which do not exhibit a 45   orientation, resulting in the 

removal of most of the left side of the image. 

Original Image

Image After Erosion and Dialation Operations

The Angle Is About 45 Degree

 

Figure 22. Erosion Mask Orientation Impact, before and after Mask Application; 3-
bit  Erosion Mask with 45   Orientation.  

Figure 23 shows the application of the erosion operator on the wavelet-

transformed TCF phase matrix.  Two 3-bit erosion masks with  45  and 

45 orientations were separately applied to the matrix. The final image results by 

summing both eroded images. Note the erosion operation removed all separated 

small pixel groupings except for the groupings aligned along 45  .   
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45 degree -45 degree Original Plot Erosion by bits= 3

Removed particle

(a) (b) (c) (d)

 

Figure 23. Erosion Operation of the Edge Detected TCF Phase Term with 3-bit 
Erosion Mask. (a) After 45  Mask Erosion; (b) After 45   Mask Erosion; (c) 
Original Plot; (d) Final Plot: Summation of (a) and (b). 

C. HOUGH TRANSFORM 

The Hough transform is commonly used in image processing applications 

to detect the location and orientation of lines, circles, or ellipses contained within 

a given image. The Hough transform is used in this thesis to locate the location 

of the TCF phase region boundaries which lead to hopping time locations.  

The Hough transform parameterizes a line by representing it in terms of 2 

other parameters:   and  , which characterize a second line orthogonal to the 

line of interest (shown in Figure 24 as the dotted line), and passing through the 

origin (0,0) of the image. The parameter   is the length between the origin of 

the image and the intersection point with the line of interest, while  is the angle 
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between the x-axis and that second line shown in Figure 24 as the dotted line. 

Thus, the points with coordinates (xi,yi) located on a line parameterized by the 

angle   and length   may be written as: 

 
cos( )

,
sin( ) sin( )i iy x

 
 

    (5.7) 

which can be rewritten as:  

 cos sin .i ix y     (5.8) 

 

Figure 24. Hough Transform and Hough Line Equation  [After 11]. 

Equation (5.8) corresponds to a sinusoidal curve in the (  , ) plane.  

Figure 24 show that all points on the line will correspond to sinusoidal curves 

which intersect only at a specific value of   and   shown on the figure as: 

(  , ) in the Hough transformed plot. Thus finding lines in the original image 

plane results in finding isolated points in the Hough transformed plane. Once the 
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parameters (  , ) are identified, the line parameters may be recovered as 

follows. The coordinates of the point ( x , y ) on the line which is at the shortest 

distance   from the origin are   
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Those coordinates are used to compute the line slope which is given by: 

 line slope= .
y y

x x
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




 (5.10) 

Note the line slope value can also be expressed in terms of the angle   

as tan(90 ) . 

Thus, we get: 
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Further, note the hopping time information hopt  is obtained at the 

intersection of the line with the y-axis in the TCF phase plot, as illustrated in 

Figure 23. Thus, the intersection point hopt  can be identified by setting x=0 in 

Equation (5.11) which leads to: 

 (sin tan(90 )cos ).hopt y            (5.12) 



 40

THIS PAGE INTENTIONALLY LEFT BLANK 

 
 



 41

VI. DETECTION ALGORITHM AND SIMULATIONS 

The hopping time detection scheme can be split in three main phases, 

which are illustrated in Figure 25; (1) TCF phase computation, (2) Enhancement 

of the TCF phase region edges using the Wavelet transform, and (3) 

Identification of the hopped frequency timing information via binary image 

processing operations. This section presents these three phases and the 

resulting detection performance results. 

A. DETECTION ALGORITHM 

Figure 25 presents a general flow chart for the detection scheme.  

 

Figure 25. Overall FH Signal Timing Information Detection Algorithm Flow Chart. 
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1. TCF Phase Term Generation 

 First, we describe the processing steps conducted in Phase 1 of the 

detection scheme.  

a. FH Signal Generation 

Recall this study considers the case where only one frequency 

hopped signal scheme may be present in a given signal frame. In such a case, 

the following three scenarios are possible for the received noisy signal frame: 1) 

one frequency hop, as illustrated in Figure 26, 2) no frequency hop, as illustrated 

in Figure 27, or 3) multiple hops present within the analysis frame. The multiple-

hop case can be avoided by selecting a window frame smaller than that of the 

shortest signal duration. In addition, the multiple hop case can be treated 

similarly to that of the one-hop signal case, as it results in a TCF phase with 

similar basic structures repeating for each hopping event. Thus, for simplicity 

purposes we assume that we have either one or no hop in the received frame 

only.  
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Figure 26. One-Hop FH Signal. (a) Basic FH Signal (no pulse shaping). (b) FH 
Signal with Sine Pulse-Shaping. (c) Basic FH Signal, SNR=3 dB. 
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Figure 27. No-Hop FH signal. Basic FH Signal (no pulse shaping). (b) FH Signal 
with Sine Pulse Shaping. (c) Basic FH Signal, SNR=3dB. 

The basic FH scheme considered in this work has rectangular 

symbol pulses, which may result in strong discontinuous signal between symbols. 

For example, the one-hop FH signal x(t) within a time frame has for definition: 

   cos 2 ,   n=1,2,n
n

s

T
x t f t

f


 
  

 
 (6.1) 

where sf  is the sampling frequency, 1f  and 2f  are the symbol frequencies, and 

1T  and 2T  are the symbol pulse signal durations, respectively.  For example, for a 

FH signal sampling frequency 150 ,sf Hz  with first signal frequency 

1 15 ,f Hz second signal frequency 2 45f Hz and signal duration 2 1 sec,T   the 
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total number of samples in the FH frame is equal to  1 2 2 150 300sT T f      and 

the frequency change occurs at sample  1 1 150 150hop st T f     . 

Note that basic FH signals have high spectral sidelobes which may 

be reduced by applying pulse shaping. Half sine wave pulse-shaped FH signals 

have smaller discontinuities between frequency hops, resulting in sidelobes with 

energy 50 dB lower those observed in the basic FH scheme, as illustrated in 

Figure 28. 

Thus, we also considered FH signals with pulse-shaping and 

investigated how pulse shaping affects our estimation algorithm.  We introduced 

pulse shaping to the FH by multiplying basic rectangular symbol pulses with a 

half sine wave function.  As a result, the pulse-shaped FH signal  PSx t  is given 

by: 

   cos 2 sin ,   n=1,2.n n
PS n

s s

T T
x t f t t

f f
 

   
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   
 (6.2) 

Figure 26 (b) and Figure 27 (b) show that the rectangular-truncated 

basic FH signal is smoothed evenly by the half sine function going 

from    sin 0  to sin  .  

In both cases, the frequency jump may be very hard to see in the 

time domain when noise is present, as illustrated in Figure 26 above, where the 

true frequency jump is at time t=150.  
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Figure 28. Frequency Response of Basic FH Signal vs. Sine Pulse-Shaped FH 
Signal. 

In our work, we constrain the potential true hop not to be located 

towards either end of the signal frame.  Note we added this constraint for 

convenience only. In practical applications, this issue could be addressed by 

overlapping successive time window frames, so that the algorithm has multiple 

looks of the same FH hop section. This constraint was added as the TCF phase 

matrix has large discontinuities at its outside boundaries that are removed by 

applying a mask in the first stage of the algorithm. However, such discontinuities 

could also hide discontinuities due to a frequency hop when the true hop location 

is located close to either end of the signal frame and be removed by the mask. 

Specific details regarding the mask implementation are given in Section VI.A.2.f. 
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b. Signal Hilbert Transformation 

Overdyk [3 pp. 47-51] showed that undesirable cross terms present 

in the phase of the TCF derived from the real FH signal may be avoided when 

computing the TCF of the analytic signal derived from the real FH signal. The 

Hilbert transform is used to transform the real FH signal into its analytic version 

and has the following transfer function [after 12]. 
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 (6.3) 

c. Temporal Correlation Function (TCF) Generation 

First, the TCF is computed over a time frame using the analytical 

signal derived using the Hilbert transform, following Equation (6.3). Next, the 

phase information is extracted by computing the phase along the time axis (while 

keeping the lag   constant).  

d. TCF Phase Extraction 

Figure 29 plots the TCF phase obtained for a one-hop FH noisy 

signal with hopping time at sample hopt =150 for SNR equal to 9 dB. Note the 

three visible TCF phase regions and the tip of the cross-term phase region 

pointing at the position of the hopping time hopt .  
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Figure 29. TCF Phase Plot with SNR=9 dB. 

2. TCF Phase Region Edges Enhancement 

Discontinuities between the three TCF regions phase components are 

clearly visible in medium to high SNR levels.  However, further processing is 

needed to extract them in medium to low SNR levels. This section describes the 

various steps taken in Phase 2 for their enhancements. 

a. TCF Phase Term Unwrapping Along the Time Axis t 

The raw phase plot clearly shows the position of the hopping time 

in high SNR levels.  However, the TCF phase information becomes degraded 

when the SNR level decreases and boundaries between the three TCF phase 

regions blurred. In such a case, unwrapping the TCF phase term, as defined 
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earlier in Chapter III.A, along the time axis “t” is applied to emphasize 

discontinuities between TCF cross-term and auto-term phase regions.  

b.  Applying Median Filtering to the Unwrapped TCF Phase 
Along the Time Axis t (filter length 15)  

Next, we apply a median filter to the unwrapped TCF phase along 

the time axis t (while keeping the variable   constant) to remove noise outliers 

while preserving long term trends in the TCF phase. The median filter described 

earlier in Chapter III.C, has been used extensively in signal processing for such a 

purpose and its length equal to 15 was selected by trial and error.  

c. Differentiating the Unwrap TCF Phase Along the Time 
Axis t 

Next, we differentiate the resulting TCF phase along the time axis 

to emphasize the discontinuities present at the boundaries of the three TCF 

phase regions. The resulting TCF phase expressed as a function of t becomes a 

step. Figure 30 presents the result obtained after unwrapping, applying the 

median filter of length 15, and differentiating the TCF phase shown previously in 

Figure 29. Note the region referred to as 12 ( , )TCF t   is now a high-level plateau in 

the figure, while regions referred to as 1( , )TCF t   and 2 ( , )TCF t   are now low-level 

plateaus.  
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Figure 30. Differentiation Operation Applied to  Unwrapped TCF Phase. 

d. Applying Median Filtering to the Differentiated Phase 
Along the Time Axis t (filter length 30)   

Figure 30 shows that small noisy discontinuities are still contained 

in the TCF phase after differentiation. A second stage median filter of length 30 

suppresses the small noisy spikes, as illustrated in Figure 31. The resulting TCF 

phase is used to extract the hopping time hopt  information. Note that the median 

filters are responsible for the disappearance of the TCF phase discontinuities for 

values of   below 10, as shown in Figure 31 (“missing tip” annotation).  However, 

discontinuities present for larger values of   are sufficient to extract the hopping 

time information.  
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Figure 31. Median Filtering of the Differentiated TCF Phase Along the Time Axis t, 
Median Filter Length Equal to 30.  

e. Computing the Wavelet Transform Along the Time Axis t 

Next, the Wavelet transform is applied to the resulting unwrapped 

and differentiated TCF phase along the time axis to emphasize the signal 

discontinuities along that axis. Note that only the first third of the TCF phase 

along the   axis is processed via the wavelet transform as the hopping location 

information may be recovered from that range. Two different wavelet transform 

approaches were considered in this work; a one-level discrete wavelet transform 

(DWT) using Haar wavelets, and the continuous wavelet transform. Note the 

MATLAB-based DWT implementation includes a down-sampling operation, 

which gets reversed by up-sampling the results by a factor of two. This last up-

sampling step was added for convenience purposes only, to keep the same 

number of samples as those in the original TCF phase expression.  
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Figure 32 shows the results obtained by applying the one-level 

DWT to results shown in Figure 31.  

 

Figure 32. DWT Detail Coefficients Obtained after Applying the One-Level DWT 
Transform (Haar wavelets) to the TCF Phase Shown in Figure 31. 

f. Removing TCF Boundary Edges  

Applying the continuous or discrete wavelet transform produces 

discontinuities at the TCF phase outside boundaries that may be significantly 

larger than those observed between the TCF regions. Thus, a triangular mask is 

applied to the outside boundaries regions to remove these discontinuities which 

would overwhelm the discontinuities of interest contained within the TCF phase.  

The mask is with the same size as that of the TCF phase, and is designed to 

zero out the 15 values found along the edges of the TCF phase plane.   
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g. Threshold Wavelet Coefficients  

The wavelet transform contains many small value coefficients due 

to noise contributions. Coefficients with small magnitude are not representative of 

the boundaries between the TCF regions and zeroed out to clean up the image.  

In this work, we only keep WT coefficients with magnitude above 40% of the 

coefficient with largest magnitude.  

 

Figure 33. Figure 32 after Thresholding DWT Coefficients; Threshold Equal to 
40% of the Coefficient with Largest Magnitude. 

3. Binary Image Processing and Estimation 

Phase 3 follows an image processing approach to the detection of 

hopping time location(s). Morphological tools are used to extract edges from the 

processed TCF phase information obtained after wavelet transformation of the 

TCF phase expression.  
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a.  Edge Detection Operation 

First, we apply an edge detection algorithm to extract the TCF 

phase region boundaries from the wavelet transformed TCF phase obtained in 

Stage 2. The function used in our implementation is the MATLAB function “edge” 

which finds edges using the Sobel operator [13]. Figure 34 shows the original 

plot obtained after applying the edge detection function. Note the gray scale 

image has been transformed into a binary black-and-white image, and the two 

45   lines that intersect at the location hopt  along the y-axis.  

b. Erosion Operation Using a Diagonal Alignment Mask 

Initial simulations showed that resulting image usually contains 

what we refer to as “noisy pixel” contributions, i.e., small broken line segments 

and isolated pixels due to noise distortions, as shown in Figure 34 (2-bit erosion 

figure) and Figure 23 (3-bit erosion figure). Thus, we added an erosion step in an 

effort to remove these noisy pixel contributions. We applied two diagonal masks, 

one with 45   and the second one with 45 orientations to remove such noisy 

contributions. We considered masks with 2- and 3-bit size and compared the 

resulting hopping time detection performances obtained with each. Results 

showed the 3-bit mask may be more successful at removing isolated segments 

than the 2-bit mask is, as shown in Figure 34 and Figure 23. However, they also 

indicate that the 3-bit mask may end up removing too much of the line detail, 

making it harder to accurately estimate the hopping time, as simulations showed 

that the 2-bit mask results in better detection performances than those obtained 

with the 3-bit mask.  
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45 degree -45 degree Original Plot Erosion by 2-bit Mask

 

Figure 34. 2-bit Mask Erosion Operations with 45  and -45 Orientations. 

c. Hopping Time Index Estimation Using the Hough 
Transform 

Next, the Hough transform is applied to the processed image using 

the MATLAB function “hough”. Note the user needs to indicate the maximum 

number of lines to be detected in the image by the MATLAB function 

“houghpeaks”, which was selected to be up to six in our work.  This specific 

number was selected as we restricted our study to scenarios where we have at 

most one hop in each collected frame. Figure 35 below shows six peaks in the 

Hough transform plane, each corresponding to an estimated line equation 

represented in the Hough plane by its and    parameters.  
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Figure 35. Hough Transform Plot with 6 Peaks. 

Recall that the lines of interest in the TCF plane are expected to 

have 45   orientations. Thus, we discard lines not located close enough to these 

orientations, and estimate hopt  from the remaining line parameters using Equation 

(5.12).  

 

Peak Value no. 1 2 3 4 5 6 

  50 45 -40 -45 -37 53 

  111.3651 106.3487 -90.2961 -104.342 -81.2664 114.375

Estimated 
Hopping Time 145.3769 150.3998 140.4757 147.562

Median Value 
Hopping Time 146 

Discarded 

Table 2.   Hopping Time Evaluation Process Using Hough Transform Parameters. 
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Note that allowing for six lines in the TCF phase processed image 

results in six possible hopping time locations. Thus the final hopping time location 

is identified by selecting the median point among possible values once those 

judged too far away have been discarded.  

B. SIMULATION RESULTS 

The detection scheme considered in this study requires the user to select 

the following parameters: median filter lengths, wavelet function type in Stage 2; 

erosion mask size, and hopping time location tolerance level in Stage 3.  This 

section presents detection performance results obtained in terms of these 

parameters. 

1.  Signal Generation Specifics  

Five hundred trials were run per simulation to compute performance 

results shown in Figure 36 to 50. In each trial, the signal has an even chance to 

contain one-hop or no-hop. Therefore, each simulation run contains about 250 

no-hop and one-hop signals. Note we also ran simulations with 1000 trials, which 

led to similar results as those obtained for 500 trials/runs.  As a result, all 

performance results included in this document use 500 trials/run.    

 All signals were generated with sampling frequency Fs=128 Hz and total 

signal length Ts =2(s), resulting in 256 samples/signal. Recall, that we only 

consider FH signals with at most one hop per frame in this work. Next, we 

describe the constraints applied to the FH signal snippets generated.  

a.  One-Hop FH Signal Case 

The first signal frequency 1f  is randomly selected between 0.15Fs 

and 0.25Fs, i.e., 19.2 Hz and 32 Hz, and the frequency hopping location hopt  is 

uniformly distributed between 0.6 and 1.4 seconds, i.e., between samples 153 

and 358.  
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We constrain hopt  to be at least 10% away from both signal frame 

ends to insure the hopping time location information is not removed when the 

TCF mask is applied, as described in Section VI.A.2.f. 

We assign a minimum hopping frequency jump equal to 0.2Fs=25.6 

Hz i.e., the second signal frequency 2f  is set at: 2 1 10.2 25.6sf f F f     Hz. 

Thus, the duration of the FH signal with frequency 2f  is Ts - hopt .  

b.  No-Hop Signal Case 

The no-hop signal of duration Ts=2s contains one frequency only in 

the signal frame. The frequency is chosen randomly between 0.15Fs and 0.25Fs, 

i.e., between 19.2 Hz and 32 Hz, using the same procedure as that followed with 

the first frequency selection in the one-hop signal case.  

c. Pulse Shaped FH Signal 

The pulse shaped FH signal is computed by applying a half sine 

waveform to the basic FH signal in each interval with constant frequency, 

following the derivation given in Equation (6.2). 

2. Performance Results 

Each simulation run has 500 trials where each signal is generated to 

contain at most one hop within the collection frame. The signals are imbedded in 

additive white Gaussian noise in SNR levels between -6 dB to 21 dB in 3 dB 

increments.  

a. Detection Accuracy Performance Results 

Overdyk derived statistics for the accuracy of estimated hopping 

time locations in his earlier work [3 pp. 70], and similar statistics are computed 

here for comparison purposes. Note that noise distortions and processing steps 

are both responsible for introducing some inaccuracy in estimated hopping time 
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locations. As a result, detection performance results are given in terms of specific 

hopping time accuracy levels, and a hopping time location is said to be 

accurately estimated when it falls within the selected tolerance. For example, 

using a 5% tolerance level, the estimated hopt  time has to be within at most 5% 

away from the true hopping time location.  Thus, for a frame size equal to 256 

and a 5% tolerance level, the estimated hopping time location is considered to be 

accurately estimated when it is located within 256 0.05 12  sample points from 

the true hopping time location. Figure 36 shows hopping time detection 

performance results for various tolerance levels and SNR levels between -3dB to 

21dB. The following three overall comments can be made: 

 Detection performance results obtained for a 0% tolerance level are 

poor.  This behavior is the result of the various filtering and image 

processing steps contained in Stages 2 and 3 of the algorithm 

which introduce some small errors in the hopping time location. 

However, detection performance results significantly increase for 

SNR levels between 0 and 21dB when a small 5% tolerance level is 

introduced in the final detection stage.  

 The results obtained for tolerance levels between 20% to 40% are 

very similar. Therefore all detection performance results presented 

later in this work use a 20% tolerance level. 

 The algorithm provides reliable detection for SNR level above 3dB. 

Performance results degrade significantly for SNR levels below 3dB, 

and the detection scheme, as proposed in this work, may not be 

very useful in environments below 3dB. 
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Figure 36.  One-Hop Detection Performance Results for Different Accuracy 
Tolerance Levels, SNR Levels between -6db to 21dB, Frame Size=256. 

b. Median Filter Length 

The final detection algorithm has two median filters included in 

Stage 2; one before the TCF phase differentiation step and one following it. 

These two filters are added to remove small discontinuities in the traces, while 

preserving the long term trends. Figure 37 presents hop timing detection 

performance results obtained for various median filter length combinations, as a 

function of the SNR level for a 20% detection tolerance level. Results show the 

best overall performance is  obtained when the two median filters’ lengths equal 

15 and 30, respectively. 
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Figure 37. One-Hop Correct Detection Performance Results as a Function of the 
Median Filter Lengths; wd1: 1st Median Filter Length, wd2: 2nd Median 
Filter Length, 500 Trials per Simulation, SNR Levels Between -6dB to 
21dB, 20% Tolerance Level.  

Figure 38 presents detection performance results obtained for the 

no-hop FH signal case, for the same combination of median filter lengths as 

those presented in Figure 37. Results show best results are obtained for a 

combination of longer median filter lengths (lengths 30 and 60, respectively for 

first and second median filters) than those selected for the one-hop case.  

However, these lengths also lead to poor performances for the one-hop signal 

case.  
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Figure 38. No-Hop Correct Detection Performance Results as a Function of the 
Median Filter Lengths; wd1: 1st Median Filter Length, wd2: 2nd Median 
Filter Length, 500 Trials per Simulation, SNR Levels Between -6dB to 
21dB, 20% Tolerance Level.  

c. Pulse Shaped FH Signal 

Figure 39 and Figure 40 present one-hop and no-hop detection 

performance results obtained for the basic FH signal case and pulse shaped 

signal case, i.e., when no pulse shaping is applied to each symbol, and when half 

sine wave pulse shaping is applied.  Results show detection performances 

degrade slightly when pulse shaping is introduced for SNR levels below 6dB.  

This behavior is the result of smaller TCF phase discontinuities at symbol ends 

due to the pulse shaping operation that decreases signal contributions at these 

locations.   
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Figure 39. One-Hop Detection Performance Results for Basic FH Signal and Half 
Sine Wave Pulse Shaped FH Signal; 20% Tolerance Level, SNR Levels 
Between -6db to 21dB, Frame Size=256. 
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Figure 40. No-Hop Detection Performance Results for Basic FH Signal and Half 
Sine Wave Pulse Shaped FH Signal; 20% Tolerance Level, SNR Levels 
between -6db to 21dB, Frame Size=256. 

d. No-Hop Signal Decision Using TCF Phase Variance 
Information 

Recall that we introduced in Chapter III.D a basic scheme designed 

to test whether the analysis frame contained a hop or not, by tracking changes in 

the TCF phase short-term variance within the frame before applying any phase 

unwrapping. This basic step is added in Stage 1 in this set of experiments. Figure 

41 and Figure 42 present no-hop and one-hop detection results obtained with 

and without this step added in Stage 1. Results show that one-hop detection 

performances are identical with and without this step added. Thus, the stage 1 

TCF phase variance tracking algorithm does not degrade one-hop signal 

detection performances. Results also show that no-hop detection performance 
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improves for SNR level above 3 dB with this step added in Stage 2 of the 

detection algorithm, and reaches 100% accuracy for SNR levels above 6 dB. 
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Figure 41. No-Hop Signal Estimation. (a) Basic No-Hop Decision (Blue Square), 
(b). Variance Tracking Added in Stage 1 Followed by No-Hop Decision 
(Green Dot), (c) Variance Tracking (Red Diamond). 
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Figure 42. One-Hop Signal Estimation; (a) Basic One-Hop Estimation with 2-bit 
Erosion Mask (Blue Diamond), (b). Variance Tracking Added in Stage 1 
Followed by One-Hop Estimation (Green Star), 20% Detection Tolerance 
Level.  

e. Morphological Erosion Step 

In Chapter V we discussed the morphological erosion step added in 

an effort to clean up the image before applying the Hough Transform and 

improve resulting detection performances. Figure 43 presents detection results 

obtained with and without the edge detection and morphological 2-bit erosion 

steps. When bypassing edge and morphological steps, the Hough transform is 

directly applied to a binary image obtained from the wavelet transform.  In this 

scenario, all WT coefficients with magnitude larger than the threshold value are 

kept and transformed to 1, while others are set to zero.  Results show one-hop 
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detection performances degrade for SNR levels below 6 dB showing 

morphological operations improve hopping detection performances in lower SNR 

environments. 
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Figure 43. One-Hop Signal Estimation; (a) Basic One-Hop Estimation with 2-bit 
Erosion Mask (Blue Diamond), (b). Binary Thresholded Wavelet 
Transform Directly Applied to Hough Transform (Green Star). 

Figure 44 presents no-hop decision performance results obtained 

with and without the edge detection and morphological 2-bit erosion steps 

applied in Stage 2. Results show no-hop decision results are only slightly better 

when edge and erosion steps are omitted in Stage 2.  However, recall that these 

no-hop decision results do not take into account improvements added when 

adding the stage 1 variance block. 
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Figure 44. No-Hop Signal Estimation; (a) Basic One-Hop Estimation with 2-bit 
Erosion Mask (Blue Diamond), (b). Binary Thresholded Wavelet 
Coefficient before Hough Estimation (Green Star). 

Figure 45 and Figure 46 show detection performance results 

obtained for one-hop and no-hop cases when applying 2-bit, 3-bit, or no erosion 

mask to the edge detected binary image. Results show that the 3-bit mask 

removed too much information and degraded one-hop detection performances 

for SNR levels between 0 to 6dB. Results also show the 2-bit erosion mask did 

not lead to significant performance improvements for the one-hop detection case. 
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Figure 45. One-Hop Estimation Algorithm for Different Erosion Mask Lengths, (a) 
No Erosion Mask (Blue Dot), (b) 2-bit Erosion Mask (Green Square), (c) 3-
bit Erosion Mask (Red Triangle). 
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Figure 46. No-Hop Estimation Algorithm for Different Erosion Mask Lengths, (a) 
No Erosion Mask (Blue Dot), (b) 2-bit Erosion Mask (Green Square), (c) 3-
bit Erosion Mask (Red Triangle). 

f. Morphological Dilation Step After Erosion Operation 

In this experiment, the dilation operation was applied after the 

erosion operation with the same alignment mask. Figure 47, and Figure 48 

present one-hop detection and no-hop decision performance results for a 2- and 

3-bit erosion operation followed by either 2-bit or 3-bit dilation steps applied 

afterwards. Results show adding a dilation step has no positive impact on 

performance.  
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Figure 47. One-Hop Detection Performances for Various Combinations of Erosion 
and Dilation Masks, 2 and 3-bit Erosion Masks, 20% Hopping Time 
Tolerance Level. 
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Figure 48. No-Hop Detection Performances for Various Combinations of Erosion 
and Dilation Masks, 2 and 3-bit Erosion Masks, 20% Hopping Time 
Tolerance Level.  

g. Continuous Wavelet Transform (CWT) vs. Discrete 
Wavelet Transform (DWT) Performance 

This section reports results obtained when using the Continuous 

Wavelet Transform (CWT) instead of the Discrete Wavelet Transform (DWT) in 

Stage 2. Recall that DWT coefficients have half the size of the original data, while 

CWT coefficients have the same size as the original data, and thus have better 

resolution than the DWT coefficients.  However, the CWT computational 

complexity is higher than that of the DWT.  

The CWT-based experimental algorithm has the same parameter 

settings as those selected for the DWT case. Figure 49 and Figure 50 present 

one-hop detection and no-hop decision performances for SNR levels between –6 
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and 21dB when using a one-level DWT transform and the CWT for scales equal 

to 1, 5, and 9. Results show that one-hop detection performances obtained for 

the DWT and CWT (with scale equal to 5) are very similar, but that the CWT 

performance is much worse for scale equal to 1. The one-hop results may be 

explained by recalling that the CWT with scale equal to 1 was shown in Section 

IV.C to be not well suited to extracting the TCF phase discontinuities. Results 

also show that for the no-hop detection case, the CWT (with scale equal to 1) is 

significantly better for the range of SNR levels investigated than with other scales 

selected. Thus, overall the CWT with scale value equal to 5 may be best suited 

for the one-hop and no-hop detection problems under investigation. 
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Figure 49. One-Hop Detection Performances for CWT at Different Scale Values 
and One-level DWT Transform, 2-bit Erosion Mask, 20% Detection 
Tolerance Level.    
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Figure 50. No-Hop Detection Performances for CWT at Different Scales and One-
level DWT Transform, 2-bit Erosion Mask, 20% Detection Tolerance Level. 
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VII. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

This thesis extended earlier work derived by Overdyk [3] and investigated 

the use of wavelet transform and image processing tools to estimate hopping 

times occurring in frequency hopping schemes, and investigated its robustness 

to additive white Gaussian noise distortions. The detection algorithm identifies 

frequency hopping time locations found in FH schemes from the information 

provided by the two-dimensional short-term signal temporal correlation function. 

Hopping time locations are shown by indentifying TCF phase discontinuities. The 

detection scheme has three main stages: 1. Derive the analytic version of the 

FH signal and compute the resulting TCF function; 2. Enhance discontinuities via 

the one-dimensional Wavelet transform; 3. Apply morphological image 

processing operations and the Hough transform to estimate hopping time 

locations.  

Results show reliable detection performance may be obtained for SNR 

levels above 3 dB and good detection performance for SNR levels above 6dB for 

5% to 20% detection accuracy 

Simulations show that the erosion step improves the probability of correct 

detection (PCD) by 12% when the SNR level is equal to 3 dB. However, the 

erosion operation does not result in consistent significant improvement overall. 

Results also show that similar performance may be obtained both for DWT (scale 

a=2) and CWT (scale=5) implementations.  

Results show that the basic one–hop detection scheme reaches 100% 

accuracy for 5% tolerance level and above when SNR level is above 6dB level. 

However, the no-hop decision scheme results in a 70% accuracy at 3dB, 

increasing to 90% and above only for high SNR levels. Results also show that 

adding the short-term variance tracking step at the beginning of the detecting 
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process boosts no-hop decision results to 100% at SNR levels above 6 dB 

without degrading the one-hop detection results. 

Finally, basic FH and pulse-shaped FH signal types were investigated. 

Results show that lower detection performance is obtained when half sine pulse-

shaping was applied to the symbols.  This is to be expected, as pulse-shaping 

results in dampening the signal amplitude at both ends of a symbol, thereby 

making it harder to extract TCF phase discontinuities. 

B. RECOMMENDATIONS 

This thesis applied one-dimensional wavelet and two-dimensional image 

processing schemes to extract hopping time locations.  The algorithm developed 

was successful in identifying hopping times. However, improvements in the 

detection performance could potentially be obtained by refining the scheme 

proposed in this work.  

First, Basic FH and pulse-shaped FH signals were investigated. Results 

show that lower detection performances are obtained when half sine pulse-

shaping is applied to the symbols. Thus, more sophisticated schemes may be 

needed to extract the smaller phase discontinuities in such scenarios.  

Results also show the specific morphological erosion and dilation 

operations applied in this work do not improve resulting detection performance 

significantly, even though, they initially appeared to clean up the TCF phase 

information. Simulations showed that for low SNR levels the selected erosion 

operation could further erode fragmented line segments present in the image, 

and contribute to additional detection errors. A different set of morphological 

erosion/dilation operations which do not have this drawback would be needed to 

improve detection performance.  

In Chapter III, we discussed a basic no-hop identification scheme which 

was based on short-term variance tracking of the basic TCF Phase expression 

for a specific lag value  .  We showed the scheme to be quite successful in 
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improving one-hop detection performance.  However, further improvements may 

be obtained by tracking the TCF phase behavior for several lag values and 

combining the results.   

The proposed scheme requires the user to select several parameters 

along the way; median filter lengths, wavelet type and length, morphological 

mask types and sizes.  The results provided are the best that were obtained by 

selecting these parameters by trial and error when using the DWT 

implementation. These results indicate that the set of parameters selected for the 

DWT may not be the best for the CWT implementation, and further investigation 

is needed to determine whether the CWT could lead to better one-hop detection 

performance than reported here. 



 78

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 79

LIST OF REFERENCES 

[1] M. Song; S. Wigginton, “Frequency Hopping Pattern Detection in Wireless 
Ad Hoc Networks,” 2005 International Conference on Information 
Technology, Coding and Computing, Vol. 2, 4-6 April 2005, pp. 633 – 638. 

[2] J. R. Hampton, “An Edge Detection Technique For Fine Acquisition In 
Frequency Hopping Radios,” 1993 IEEE Communications 
Conference, Vol.1, 11-14 Oct. 1993, pp. 198 – 202. 

[3]  H. F. Overdyk, Detection And Estimation of Frequency Hopping Signals 
Using Wavelet Transforms, MSEE Thesis, Naval Postgraduate School, 
Sep. 1997.  

[4]  B. Sklar, Digital Communications Fundamentals and Applications, Prentice 
Hall PTR, 2001, pp. 738-745 

[5]  O. Rioul; M. Vetterli, “Wavelets and signal processing,” IEEE Signal 
Processing Magazine, Vol. 8, Oct. 1991, pp.14 – 38. 

[6]  M. Misit; Y. Misiti; G. Oppenheim; J.M. Poggi, “Wavelet Toolbox User’s 
Guide”, The MathWorks, Mar. 1996, pp. 1-5. 

[7]  P.M. Bentley; J.T.E. McDonnell, “Wavelet transforms: an introduction,” 
IEEE Electronics & Communication Engineering Journal, Vol. 6, Aug. 1994, 
pp.175 – 186. 

[8]  R. Cristi, “Muti-Resolution Decomposition,” Unpublished Course Notes, 
Naval Postgraduate School, Dec. 2007. 

[9]  Y. Wang; J. Ostermann; Ya. Zhang, Video Processing and 
Communications, Prentice Hall, 2002, pp. 562-563.  

[10]  R. Cristi, “The Elements of Image Analysis and Computer Vision,”          
Unpublished Course Notes, Naval Postgraduate School, Dec. 2007. 

[11]  R. Cristi, “Find Lines on an Image,” Unpublished Course Notes, Naval 
Postgraduate School, Dec. 2007. 

[12] Wikipedia, “Hilbert transform,” [Online] 
http://en.wikipedia.org/wiki/Hilbert_transform#Domain_of_definition, Aug 
2008. 

[13]  MATLAB Help Menu, “Find edges in grayscale image,” The MathWorks, 
[Online] http://www.mathworks.com, Jan. 2007. 



 80

THIS PAGE INTENTIONALLY LEFT BLANK 



 81

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
 Kingman Rd., STE 0944 

Ft. Belvoir, Virginia  
 

2. Dudley Knox Library 
Naval Postgraduate School 
Monterey, California  
 

3. Chairman, Code EC 
Department of Electrical and Computer Engineering 
Naval Postgraduate School 
Monterey, California 
 

4. Prof. Monique P. Fargues, Code EC/Fa 
Naval Postgraduate School 
Monterey, California 
 

5. Prof. Roberto Cristi, Code EC/Cx 
Naval Postgraduate School 
Monterey, California 


