M

NAVAL
POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

AUTOMATED BEHAVIOR PROPERTY VERIFICATION
TOOL
by
John K. Leo
September 2008
Thesis Advisor: Mikhail Auguston
Second Reader: Man-Tak Shing

Approved for public release; distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 2008 Master’s Thesis

4. TITLE AND SUBTITLE Automated Behavior Property Verification Tool 5. FUNDING NUMBERS

6. AUTHOR(S) Leo, John K.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
N/A AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Computer generated forces (CGF) simulations have entities as actors in their simulation. A type of CGF in
which the entities have limited autonomy is semi-automated forces (SAF). The SAF system for this thesis research is
OneSAF, a near real-time SAF that offers raw data collection of the entities in a particular simulation scenario. The
data collection files vary in size from 500 kilobytes to larger than four gigabytes.

Entity behavior property verification (BPV) is an integral part of SAF simulation software testing. The
purpose for this research is to provide immediate feedback to the system user/developer as to what an entity had done
in a scenario. From the simulation point of view, it provides answers to questions like “Did the entity route shortest
distance to destination?” From the developer’s point of interest, the BPV can provide insight to flaws in the model,
such as a vehicle crossing a river where a bridge does not exist.

Automated BPV (ABPV) takes one step further by minimizing “hard coding” of tools that process collection
files. ABPV allows portability of the product of this thesis to other systems. ABPV Tools (ABPVT) of this thesis is
designed to run in Linux and Windows and will be included in future distributions of OneSAF as an intricate part of
the testing suite.

15. NUMBER OF
PAGES

14. SUBJECT TERMS Entity Behavior Verification, Computer Simulation Verification, Analysis of
Real-Time Simulation, OneSAF

157
16. PRICE CODE
17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION OF
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF ABSTRACT
REPORT PAGE ABSTRACT
Unclassified Unclassified Unclassified uu

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

Approved for public release; distribution is unlimited.

AUTOMATED BEHAVIOR PROPERTY VERIFICATION TOOL

John K. Leo
Lieutenant, United States Navy
B.S., Austin Peay State University, 2002

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
September 2008

Author: John K. Leo

Approved by: Mikhail Auguston
Thesis Advisor

Man-Tak Shing
Second Reader

Peter J. Denning
Chairman, Department of Computer Science

THIS PAGE INTENTIONALLY LEFT BLANK

ABSTRACT

Computer generated forces (CGF) simulations have entities as actors in their
simulation. A type of CGF in which the entities have limited autonomy is semi-
automated forces (SAF). The SAF system for this thesis research is OneSAF, a near real-
time SAF that offers raw data collection of the entities in a particular simulation scenario.
The data collection files vary in size from 500 kilobytes to larger than four gigabytes.

Entity behavior property verification (BPV) is an integral part of SAF simulation
software testing. The purpose for this research is to provide immediate feedback to the
system user/developer as to what an entity had done in a scenario. From the simulation
point of view, it provides answers to questions like “Did the entity route shortest distance
to destination?” From the developer’s point of interest, the BPV can provide insight to
flaws in the model, such as a vehicle crossing a river where a bridge does not exist.

Automated BPV (ABPV) takes one step further by minimizing “hard coding” of
tools that process collection files. ABPV allows portability of the product of this thesis to
other systems. ABPV Tools (ABPVT) of this thesis is designed to run in Linux and
Windows and will be included in future distributions of OneSAF as an intricate part of

the testing suite.

THIS PAGE INTENTIONALLY LEFT BLANK

Vi

TABLE OF CONTENTS

. INTRODUCTION. ...ttt s 1
A COMPUTER SIMULATION BASICS.......cocoiiiiiiceeee 1
B. BEHAVIOR VERIFICATION. ... 1
C. ONESAF OBJECTIVE SYSTEM (OOS).....cccoiiiiiiiiieieieienc e 2
D. THESIS ENVIRONMENT AND CONDITIONS..........ccooiiiiiiiniiie 3
E. THE PROBLEM SPACE. ... 5
F. PURPOSE OF STUDYoiiiiiiiiii s 7
1. MOVE TACTICALLY (MT) SCENARIOcoiiiiiiiiiiiseeieeeeee e 9
A. SCENARIO OVERVIEW ... 9
B. PHASE ... 9
C. PHASE Tl ..o 10
D. PHASE T ..o 13
I1l. EMPLACE CONTROLLED MINEFIELD (ECM) SCENARIO.........cccceevrurne. 19
A. SCENARIO OVERVIEWo 19
B. PHASE ... 20
C. PHASE T ... 29
D. PHASE T ..o 38
IV, CONCLUSION ... 43
A. SOFTWARE TESTING. ... 43
B. POSITIVES ... 44
C. NEGATIVES ..o 46
D. FUTURE WORK ... 48
LIST OF REFERENCES. ... 51
APPENDIX A MOVE TACTICALLY (MT) SCENARIO RUBY SCRIPT.......cccccveee. 53
APPENDIX B PRESCRIPT ..o 61
APPENDIX C POSTSCRIPT ...ttt 65
APPENDIX D MOVE TACTICALLY (MT) SAMPLE RAW DATAFILES 71
APPENDIX E MOVE TACTICALLY (MT) SAMPLE REPORTS ..o 75
APPENDIX F MOVE TACTICALLY (MT) PRESENTATION REPORTccocuenue. 79
APPENDIX G AUTOMATED BEHAVIOR PROPERTY TEST (ABPT) DESIGN
DIAGRAM ..o 91
APPENDIX H SAMPLE ONESAF ENTITY IN A SCENARIO FILE........c.cccccvviennn. 95
APPENDIX | SAMPLE ONESAF DATA COLLECTION FILE.........ccooiiiiiiin, 99
APPENDIX J TRAC-MONTEREY VERIFICATION PROCESS
METHODOLOGY ..ot 103

vii

APPENDIX K

ONESAF USERS CONFERENCE ORLANDO FLORIDA

PRESENTATION ..o
INITIAL DISTRIBUTION LIST .o

viii

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

LIST OF FIGURES

SciTE display showing malformed OneSAF data file...........ccocvvivinieiienns 11
I g Yo = L TS SRS 15
Emplace Controlled Minefield Scenario Layout.ccccoeveriiieiiniesiennnnn, 19
ENLItY LOCALIONS. ..cvvivieie ettt 20
An example output OF PreSCript.cooveiiiiiiie e 25
Entity A’s initial MOVEMENL.ccooiiieie e 27
Entity B’s initial MOVEMENT.oooiiiiiieiieeee e 27
Entity HMMWV’s initial MOVEMENL.ccccoveiiiiiie e 28
Example output Of PresCript #2........ccoov e 33
ENtity A’S MOVEMENT.oiiieiece et sre e 34
ENtity B’S MOVEMENL.ooiiiiiiieieee et 34
Entity HMMWYV’S MOVEMENL.ccveiviiiieeiecie et 35
Entity A, B, and HUMMW YV ..o 35
A, B, C - showing HMMWY CroSSIiNg FVEr........cccccuerivereiieeseesiesieseesieseennns 37
GUI Interface Design DIAgramccoveererieiienienie e see e sree e 38
(10 I o] 0] 0] 1Y/ o LT PSPPSR PR 40
Automated testing SUITE FESUILS.ooeeiiiieiie e 42
Common error message (ONeSAF SCreen Capture)........cvoveevereereereesieesieenuens 42

THIS PAGE INTENTIONALLY LEFT BLANK

EXECUTIVE SUMMARY

Chapter | consists of an introduction to the basic ideas of entity based computer
simulation and concept of verifying entity behavior through software testing and data
mining as well as brief introduction to some of the background issues motivating this

study.

Chapter 11 provides further details of entity behavior verification by applying key
concepts to a particular scenario. This section provides lessons learned and in depth look
at the problems of entity behavior verification as a whole in an environment where

documentation is not provided, or simply does not exist.

Chapter 11 builds on the knowledge gained from Chapter |1, provides prototype
development and further exploration of applying the lessons learned from Section Il on a

more advanced scenario.

Chapter IV provides a summary of the work involved as well as errors discovered
in the OneSAF simulation. Chapter IV provides information on where to continue the
work provided from this thesis.

Lastly, the products of this thesis are enclosed in the appendixes starting on page
53. Appendixes F, G, J, and K are the reports, presentations and products submitted to
OneSAF Verifivation and Validation (OV&V) from TRADOC Analysis Center
Monterey (TRAC-Monterey) that fomaly presented the work of this thesis.

Xi

THIS PAGE INTENTIONALLY LEFT BLANK

Xii

ACKNOWLEDGMENTS

| would like to thank Dr. Auguston for his enthusiasm, guidance, inspiration,
wisdom and vision for this project. This project had many twists and turns, and often
appeared to come to a standstill. His support and encouragement had direct impact on the
outcome of this thesis.

I would also like to thank Dr. Shing for his time, invaluable insight, and guidance
in producing a polished, finished product.

Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author, and not necessarily views of OneSAF, TRAC-Monterey,

or Computer Science Department at NPS.

Xiii

THIS PAGE INTENTIONALLY LEFT BLANK

Xiv

l. INTRODUCTION

A. COMPUTER SIMULATION BASICS

In general terms, a computer simulation is a computer program that simulates the
behavior, action, or characteristic of another system. Computer simulations vary from
one to another depending upon their purpose, target, and audience. Some common
examples of computer simulations are: flight simulators (Microsof® Flight Simulator®),
an automated colony of life forms (SimCity®), and weather forecasting (The Weather
Channel®).

Flight simulators are classified as virtual simulators in that the input source for
guidance and direction is a human interface; humans are the primary actors in these types
of simulations and verify when something is correct or not. Automated colonies and
weather forecasting simulations process data provided by an external input and produce
an output dependant on the inputs; the system is the actor and does not have a feedback

system to know if the current status is correct or not.

Particular types of simulation where the entities and the system are actors in the
simulation are referred to as constructive simulations. In Semi-Automated Forces (SAF),
the actors have some level of autonomy. While the system user generally plans missions
and other high level refinements, a SAF entity has basic knowledge of the current
mission and performs limited tasks like simple route re-planning when faced with an

obstacle.

B. BEHAVIOR VERIFICATION

Software testing is a major component of Software Verification. Software
verification tries to answer the question: Are we building the product right?! Entity
behavior verification extends the definition of verification by trying to answer: Did the
entity do what was expected? For example, an entity is tasked to relocate from location x
to some location y. In the absence of physical obstacles between point x and point y, the

1 Barry Boehm., “Verifying and Validating Software Requirements and Design Specifications,” In
IEEE Software 1 January 1984, 75-88.

entity is expected to move in a relative straight line from x to y. This is a simple
scenario, yet it does have numerous factors to consider such as: time of day, elapsed time,
weight, terrain, weather, and condition of the entity (tired, hungry, dehydrated, wounded

and etc.).

Since OneSAF system is a real-time military simulation, there are elements of
entity behaviors that must reflect real-time, real-world constraints. For example, some
real world physical constraints of human entities have are strength, endurance, and speed.
The simulation would not reflect real world situation if a soldier was able to carry half his
weight for any distance without fatigue setting in, or an aircraft achieving maximum
elevation and maximum speed from the ground instantaneously. Every different type of
entity has a set of behaviors that should be sensitive to the simulation environment. The

behavior of an entity in a particular scenario must be verified

C. ONESAF OBJECTIVE SYSTEM (0OOS)
What is OneSAF?

SAF stands for Semi-Automated Forces. There are many computer generated
forces (CGF) simulations. These are often referred to as constructive simulations. CGFs
model and simulate combat entities and systems. These entities and systems are actors in
the simulation. (In contrast with constructive simulations, the humans are actors in the
virtual simulations.) A SAF is a CGF in which the entities have some level of autonomy.
For instance SAF entities often react to contact, can do some limited route re-planning
when faced with an obstacle, can choose some actions based on their knowledge of the
current situation, etc. SAF entities are semi autonomous, because they generally require

human operators to do holistic planning, provide goals for goal-directed behaviors, etc.2
What is composability?

Composabiltiy is a design philosophy and implementation methodology of
OneSAF that enables users to rapidly tailor the simulation to meet the needs of a specific

2 OneSAF Restricted Site
http://www.onesaf.net/community/index.php?option=com_content&task=category§ionid=5&id=18&It
emid=36#7. Accessed May 5, 2008.

simulation exercise or experiment. The toolbox analogy is useful in explaining
composability. When a person wants to fix a light switch, he or she doesn’t generally
drag the entire work bench from the garage to the site of the repair. Instead, he or she
takes the two or three tools from the bench and takes only those. When that person now
wants to rebuild the master brake cylinder on his car, he takes a different set of tools from
the bench. With OneSAF, the designer of the simulation exercise or experiment can build
an instance (or composition) of OneSAF that has only those tools needed for that job.
OneSAF also supports battlespace composition. The entity, unit, and behavior composer
tools allow the user to modify the way the simulation operates — without recompiling any

software.

Composability is enabled through the OneSAF product line architecture
framework PLAF. Software is commonly developed in a horizontally layered
architecture. In OneSAF, tools are arranged in vertically organized product lines. The
interactions between modules in these product lines are controlled through hundreds of
defined application programmer interfaces (API’s) and data interchange formats (DIFs).
This modular architecture enables developers outside of the OneSAF team to develop
new modules to replace ones built by Team OneSAF. As long as these new modules
comply with the architecture and use the correct API’s and DIFs, a user can build a
composition that includes their own module rather than one of ours. We feel that our
open architecture, open-source software, composability, and modular design will create
numerous business opportunities for industry to build replacement modules or new

modules with functionality we haven’t yet considered.3

D. THESIS ENVIRONMENT AND CONDITIONS

OneSAF’s Verification and Validation (OV&V) group had subcontracted entity

behavior verification to a small Army organization TRADOC Analysis Center Monterey

3 One SAF Public Site
http://www.onesaf.net/community/index.php?option=com_content&task=category§ionid=5&id=18&It
emid=36#9. Accessed May 5, 2008.

3

(TRAC-Monterey) located at Naval Postgraduate School (NPS) as an independent (from
OneSAF development) verifying authority. TRAC-Monterey requested the assistance of
the Computer Science Department of NPS.

TRAC-Monterey’s responsibility was to verify OneSAF’s entity behavior and
report all findings to OV&V. However, in order to verify entity behavior, scenarios were
required. OV&V did not provide the scenarios they wanted to test (an issue further
discussed in subsequent chapters). TRAC-Monterey tasks quickly expanded to include
scenario design, execute scenario testing, and report all developments to OV&V on a
scheduled weekly basis. TRAC-Monterey had been working on the entity verification
before the work on this thesis began. They spent most of their resources on building test
machines with OneSAF Objective System installed. Then they spent additional months
on scenario design and execution. Once the scenario executed properly, they designed a
methodology to verify entity behavior. By their developed methodology, TRAC-
Monterey was able to satisfy OV&V requirements for three of the 51 scenarios listed
according to the TRAC-Monterey Verification Process Methodology Briefing (shown in
Appendix J TRAC-Monterey Verification Process Methodology 4). The major pitfall for
TRAC-Monterey’s verification methodology was stated on page six of the brief. It states:
“Cannot use the Data Collection Specification Tool [DCST]; therefore, quantitative data
taken from the Status Window.” Translation: “Cannot use the tool provided due to lack
of documentation and developer support. Current verification methodology cannot verify
entity behavior due to lack of necessary entity data. Can only verify what is observed on
screen while the scenario is executed. All quantitative status reported in the Status
Window will be reported.” Proper entity behavior verification was not possible under
current conditions and as slide seven states, “Assumptions. Testing a representative
sample of scenarios for each composite behavior is sufficient to evaluate behavior

performance.”

TRAC-Monterey lacked the appropriate resources to analyze the OneSAF system

in order to draw more accurate conclusions on entity behaviors, “Constraints. We do not

4 TRAC-Monterey Verification Process Methodology Briefing, OOS_Verification_Monterey.ppt,
slide#1, accessed 31 July 2008.

4

have enough resources (primarily manpower) to verify all 51 composite behaviors...
Limitations. Difficulty in collecting output data will affect the accuracy of our results.”5
Shortly after this brief was delivered to OV&V, TRAC-Monterey representatives
requested assistance from the CS Department to derive a workable solution that was not
based on the screen outputs of OneSAF simulation. The work conducted on entity
verification pertaining to this thesis started thereafter, around late July of 2007 and
continued through early March of 2008, when the results of entity behavior verification
was presented at the 2008 OneSAF Users Conference (see Appendix K OneSAF Users

Conference Orlando Florida Presentation).

While the environment for this work is done with OneSAF Objective System, the
intended application system is for any independent data producing software system. The
work of this thesis is strictly independent of OneSAF system, OneSAF organization,
TRAC-Monterey and associated affiliates. However the work of this thesis directly
benefited OneSAF and TRAC-Monterey.

E. THE PROBLEM SPACE

OneSAF is a system of systems consisting of modular components written in Java
programming language (estimated over three million lines of Java code) and C for some
components. As of version 1.5, the installation package consisted of eight DVDs.
OneSAF is intended to run on Microsoft® Windows® and various Linux platforms and
included separate DVDs for either platform.6 The following challenges were discovered
and were overcome during the work of this thesis:

1. Lack of system documentation and minimal development support.

2 Instability of the OneSAF Objective System as a whole.

3 Lack of documentation on the Data Collection Module.

4. Data Collection Module instability.

5 Data Collection Module inconsistency.

5 TRAC-Monterey Verification Process Methodology Briefing, OOS_Verification_Monterey.ppt,
slide#7, last accessed 31 July 2008.

6 OneSAF version 1.0 -1.4 installation instructions dictates Debian ™ core, while version 1.5's
instructions are written for Red Hat Linux. This thesis work uses Windows ® and Debian™ Linux. Other
Linux variations have not been tested in this thesis.

6 Lack of documentation of collected data units and conversions.

7. Inconsistencies of units, i.e., meters, kilometers, global coordinates.
8. Lack of documentation for data tags.

9 Lack of documentation to successfully run data collection.

10. Lack of documentation of data collection files.

11. Lack of parsing/viewing/analyzing tools for the collected data files.
12. Data collection files not adhering to XML schemas.

13. Linux installation was inconsistent.

The OneSAF system is not intuitive (ease of use) nor user friendly (lack of help
and feedback). Initial assistance came from members of TRAC-Monterey, a sub-contract
U.S. Army group located at Naval Postgraduate School. It was very apparent that
OneSAF developers provided minimal guidance as to how to run the system.
Nonetheless, a Windows® and a Linux machine had OneSAF version 1.1 installed.
Version 1.2 was already on hand but had not been installed. OneSAF delivered version
1.4 (developmental edition) which offered more stable data collection functionality over
previous versions. Few weeks after version 1.4 installation and initial testing, TRAC-
Monterey received version 1.5. All data collection and analysis for Move Tactically

scenario was performed on version 1.4 prior to receiving version 1.5.

After many system instability issues with version 1.1-1.47, a fresh installation of
version 1.5 was done in virtual machine environment provided by VMware Work Station

6.x. Had this not been done, a delay of estimated six months was foreseeable.8

Performance between the two operating systems (OS) was immediately
noticeable. Every task performed in Windows® had a significant delay and lacked
“robustness.” OneSAF required 1.2 GB of RAM in Windows®, while in Linux a mere
720 MB was sufficient. All work in this thesis was done on the Linux platform, and after
successful debugging and testing, ported to the Windows® virtual machine (VM) where

it was tested for compatibility.

7 \/ersion 1.3 was never received/installed.

8 Delays not limited to the following: multiple re-installations, process of loading scenario- running
scenario - verifying data files, creating scenarios, modifying scenarios, and etc.

6

F. PURPOSE OF STUDY

The purpose of study for this thesis was to provide a solution - if one existed, to
verifying entity behavior in a semi-autonomous computer simulation system. The
computer simulation used for this study is OneSAF. OneSAF is real-time semi-
autonomous system the U. S. Army currently uses in modeling warfare scenarios. As of
the latest release version, the developers of OneSAF had not provided any documentation
to the system, which ultimately impacted the amount research, testing, and data analysis

for this thesis.

The question or problem this thesis wants to explore is: “How do we produce a
behavior property verification tool (BPVT) for an unknown system environment?” The
second problem is to find a way to automate such tool development (ABPVT). The work
of this thesis is to produce tools that would enhance users and developers of data
producing systems like OneSAF.

Additionally, the benefits of this study were to gain working knowledge and
experience with a few of the industry leading tools and technologies such as XML,
Ruby, Java, GNU Plot®, CGI, and real-time Java simulation system to list a few. As a
direct result of the work for this thesis, a working entity behavior verification solution
module for analyzing entity behavior data would be integrated into the testing

components of future releases of OneSAF.

The ultimate application of this thesis is to provide one solution to unravel a large

undocumented system in order to verify certain behavior characteristics for that system.

9 gnuplot is copyrighted, but freely distributable. http://www.gnuplot.info, last accessed 21 July 2008.
7

THIS PAGE INTENTIONALLY LEFT BLANK

II. MOVE TACTICALLY (MT) SCENARIO

A. SCENARIO OVERVIEW

The first scenario analyzed was Move Tactically (MT) Scenario. MT is a simple
scenario in which the mission of an entity (an M1 Abrams Tank), moves from a preset
location to another. This simple mission had certain constraints, for example, the entity
was specified not to exceed the maximum speed to travel. This scenario was chosen to
study the OneSAF environment and to familiarize with the OneSAF interface. OneSAF
system provided minimal or no documentation so all research and work was done in a

systemic - trial and error approach.

MT scenario was selected for its simplicity. The idea behind selecting a simple
scenario was to show two things: (1) Data collection in OneSAF was possible, and (2)
Data files collected were useablel0. If the two criteria were successfully met, then the
following were intermediate goals for entity behavior verification: speed, distance to
target, and deviation distance from shortest path to destination. The final piece for MT
was to present the analysis in presentable reports, summaries and diagrams.

Phase | describes the environment for testing OneSAF on two physical machines.
It details the challenges of an undocumented system and manipulating the system to
achieve certain tasks. In a way, it is similar to “black-box” testing, differing only in the
results. Phase Il is the start of data mining. It covers how outputs were gathered and
what output OneSAF actually provided. Phase Ill provides what was done with the
gathered data and provides a summary of how MT scenario executed and what was done

to provide the analysis in a presentable way.

B. PHASE |

A selling point for OneSAF is that it has been developed to operate in two
personal computer (PC) platforms, Microsof® Windows®, and Linux. TRAC-Monterey
had two machines installed with OneSAF 1.1, one on a Debian Linux distribution and the

10 Data files adhered to industry standard file format for either Windows ® or Linux for the type of
file, for OneSAF, XML files.

9

other on Windows® XP Professional SP2. OneSAF developers did not provide the
scenario files to TRAC-Monterey. The developers provided a list of scenarios they
wanted to have verification testing but did not provide the scenarios, even upon TRAC-
Monterey’s multiple requests. The developers requesting the verification testing made it
clear that they had not worked with, or seen the scenarios in operation, and that TRAC-
Monterey’s task was to create a working scenario, and verify the results utilizing the
limited data collection capabilities of the OneSAF system. The challenges facing TRAC-
Monterey were clear: familiarize with the OneSAF interface, create working scenarios,

perform entity verification testing, and report the results of testing.

For nearly four weeks, TRAC-Monterey had coordinated with OneSAF
developers to have MT scenario execute from start to finish. The scenario itself was not
the main cause of difficulty, rather the learning curve to the OneSAF interface was rather
steep. Even towards the end of the work on this thesis, many components of the OneSAF
interface were still unclear. Thankfully, understanding the interface and being a
proficient user of the OneSAF system were not part of the requirements given to TRAC-

Monterey.

C. PHASE 11

The first data files produced by OneSAF were absolutely unusable. The size of
the data files ranged from 600 Megabytes (MB) to four Gigabytes (GB). The data files
contained detailed items that pertained to OneSAF, but not anything usable in terms of
the mobile entity. The XML parsers available would not open these large XML data
files. Each XML editor or browser would throw a parsing error message. Initial thoughts
for parsing errors were caused by the file sizes, and for whatever the reason, the
editor/browser program was not able to open the large XML data files. It turned out not
to being the case; the data files were malformed. For unknown reasons, the data files
were not closing properly in accordance with XML schemas - simply, they all lacked
closing tags. Standard UNIX editor vi and the newer Vim1l were able to open the files

and simple text searches were possible. Text search is a great tool if one knows what to

11 Vim, http://www.vim.org/download.php, last accessed 20 July 2008.
10

search for. However, since no documentation was provided on the data files, searching
for any recognizable text pertaining to the mobile entity proved useless. An XML viewer
was needed that would display malformed XML files of any size that OneSAF would

create.

“ entity_CollectionTestTank_2007-08-15-09-49-29-496.xml - SciTE

Eile Edit Search V“iew Tools Options Language Buffers Help
1 entity_CollectionTestTank_2007-08-15-09-49-29-496.xml
4875 <entityLocation=GCC: (-284495 4407758248, -3463061.07781912 A
4576 <maxSpeed>18.610000610351562 </maxSpeed=
4877 <stgjCode=61%</stgjCode=
4878 <longSumOfForces>215113.52343307924 </longSumOfForces:
4879 <longFrictionForce =60835.55244421836 </longFrictionForce=
4880 <requestedLinearvelocity=0.0</requestedLinearvelocity =
45881 <vertWeight=601405 6803934871 </vertWeight>
4882 <brakelinearFactor=8.382</brakeLinearFactor:=
4883 zeffectiveMu=0.10115536</effectiveMu=
4884 <brakeDecel=0.0</brakeDecel=
4885 <forceDriving=0.0</forceDriving =
4886 <mass=61326.0</mass>
4887 </ CCTTGroundVehicleMobilityModel =
48B8 </ WVALUES >
45889 <TYPE >tankAbramsM1Al </TYPE >
4890 <TIME=2079673 </TIME =
4891 <COMPONENT =GROUND_MOBILITY «/COMPONENT =
4892 = <ID=
4893 - <uniqueid refID="37621" =
4894 <stringld=0c42db11-77b3-475¢c-a778-21c2765db29% </ stringld >
4895 <funigueid=>
4896 </ID>
4897 </ENTRY =
4898 </ENTRIES =
4899 </S00=>
4900
A
< >

Figure 1 SciTE display showing malformed OneSAF data file.

Windows® version of Rubyl? installation provides a programming text editor
called SciTE13. SciTE proved useful for opening and browsing malformed XML data
files. Like most XML viewers, SciTE grouped tags so that a single group can be
expanded or collapsed; however, unlike most viewers, SciTE would still display unclosed
tags. When an XML file is opened in SciTE, the opening tags are located along the left
edge of the test area. A faint line extends from an opening tag to the closing tag, if one

exists. If a closing tag does not exist, SCITE continues to tabulate additional opening

12 Ruby: A Programmers Best Friend, http://www.ruby-lang.org/en, last accessed 20 July 2008.
13 SGiTE, http://www.scintilla.org/SciTE.html, last accessed 20 July 2008.

11

tags. At the end of the file, if there are missing closing tags, then the last entry will not a
line to the left edge. Figure 1 is an example of one of the data files from OneSAF. It
illustrates the malformed XML data file produced by OneSAF. The minus signs at line
number 4892 and 4893 represents expanded block of tags between an opening tag and a

closing tag.

After several weeks working with the large (greater than 600 MB) files, a pattern
to the data presented in the XML file was discovered. Entity data was being collected in
between intervals of additional OneSAF data. Sometimes the intervals were alternating,
while most of the time, the intervals were more sporadic. While the early data files
contained entity tags, often they did not have data within the entity tag sets. In another
words, it almost seemed like a template, or a place holder. Nevertheless, this was a step

in the right direction.

One of the previous efforts of TRAC-Monterey was creating automated scenarios
for OneSAF. Automated scenario generation provide means of creating test cases to
maximize systems testing more efficiently. Prior to auto-generated scenarios, a tester
would have to create a scenario and then modify this newly created scenario manually
each and every time a “what-if” was asked. Once modified, the tester would then run the
scenario and the cycle of modify-and-run would be repeated until testing criteria would
be satisfied. It turned out that a speed parameter of the auto generated scenarios did not
match. For example, a maximum speed commanded for the entity was set for 24
kilometers per hour (km/hr). The scenario generator tried to put values like 24, 24.0, and
24.00 in between the speed tags like this: <speed>24.0<\speed>. However, when
OneSAF creates a scenario, values like maximum speed are converted to meters per
second. So, 24 km/hr is roughly 6.67 meters per second (m/s). But OneSAF scenario
would not execute the auto-generated scenario unless the values inserted contained
certain fixed decimal positions, which varied in value depending on which tag - value
pair. In case of the maximum speed value, it was 12 decimal positions - 24 km/hr was
represented as 6.666666666667 m/s. Discovering and allowing for this small detail
produced consistent entity behavior data to be collected. This discovery is really trivial if
documentation was available.

12

After executing MT scenario dozens of times, the last thing discovered was that
the OneSAF data collector did not stop collection even after the scenario completed. The
scenario time stamp would continue to be recorded along with the last data known. The
data collector was disconnected from the OneSAF interface and therefore never receives
the end of scenario message and to stop collection. This explains why the XML data files
were not closed properly and why most XML viewers and browsers could not open the
data files. In all previous tests prior to this discovery, it was assumed the scenario, and
data collection would cease once the scenario ended. This discovery was presented to

OneSAF developers at the end of the MT scenario verification testing.

MT scenario was executed 20 to 30 times producing data files from 200 Kilobyte
(KB) to 35 MB. The data collection modules of OneSAF was turned off manually once
the scenario finished preventing unnecessary large data files (explained towards the end
of previous phase). The scenario was run multiple times because the results were never
exact copies of another scenario execution. As stated in the introduction, the entities in
OneSAF have limited autonomy. The limited autonomy provided for slight deviations of
an entity’s response. The differences were subtle and viewed from the total scenario,
would not seem any different. However, when viewed from the level of entity’s position
in a given time, the exact locations would differ. After every scenario execution, the data
files were compressed and copied to an analysis machine. A 25 MB XML data file was

able to compress to 590 KB using a standard zip compression program.

D. PHASE 111

At this point, an XML parser and an XML viewer were needed. While the files
could have been processed manually, it would have taken far longer than necessary. If a
free tool like SciTE was not available, then an XML viewer would have been necessary
to build. As mentioned earlier, free XML viewers and parsers were available; however
none of the ones tested would open the malformed OneSAF data collection files.

Using SciTE, the data files were opened and scanned for data that pertained to the
entity. The data files contained less than 20 groups of XML tag blocks. An example of a
data file is in Appendix I Sample OneSAF Data Collection FileBlocks in this case refers

13

to a group of tags marked with an opening tag to the closing tag. The good news
observed from the data files were the fact that data was collected, that they were
sequential, and that they were grouped together in blocks. The bad news is that the
blocks were often nested seven or more levels deep and were found all throughout the

data file without conforming to any certain pattern.

After assessing the data files, the second step was to parse the relevant data out of
the large data files. Since the data files varied greatly in sizes, an intermediate data file
was needed. The data files were sequential and the amount of data they contained was
not exactly known. The parsing had to accommodate for the worst case, a four GB data
file with 500 MB of useable entity data. A parser without writing to an intermediate file

to a storage device for this size is possible, but may not be the most efficient.

This is where Ruby programming language became so indispensible. Parsing
large XML data files in Ruby using the built-in regular expression capability was
extremely fast. Regular expression allows pattern matching instead of an absolute exact
match used in many string comparators. If a pattern matches, then action can be taken as
to what to do with the matching values. During this data mining stage, when a pattern
matches, the data is written to an intermediate file. Once the entire data file is parsed, the
intermediate files are closed for further analysis.

The third step is to take a closer look at the parsed data to see if it contains usable
entity data. It is one thing to have data, and another to have the right data needed for
useful analysis. Unfortunately, parsing the data files is a necessary preparatory step. The
parsed data was then inputted into Microsof® Excel®. Graphs and plotting tools in
Excel® allowed quick visualization of the raw parsed data. On page 14 of Appendix F
Move Tactically (MT) Presentation Report, the diagrams generated from Excel® visually
show that the data parsed from the data collection files are in fact contiguous data of an
entity. Furthermore, an Excel® plot of the entity in MT scenario shows an actual path of
the entity. Thus, preliminary data does show entity tracking throughout the scenario is
possible. Now, it is only a question of what is available for collection, and depending on
what is available, would dictate what can or cannot be verified. The following (Figure 2)

is a block of entity tags from MT scenario.
14

<ENTRY refID="32" >
<VALUES>
<CCTTGroundVehicleMobilityModel refID="33" >
<vehBin>highMobility Tracked</vehBin>
<requestedLinearAcceleration>2.451675</requestedLinearAcceleration>
<slope>-0.007060990631857278</slope>
<brakeForce>0.0</brakeForce>
<longWeight>0.0</longWeight>
<currentSpeed>0.42843525442672326</currentSpeed>
<linearAcceleration>0.0</linearAcceleration>
<entityLocation>GCC: (-287361.86191023444, -5464905.17195063, 3265213.5139627373)</entityLocation>
<maxSpeed>18.610000610351562</maxSpeed>
<stgjCode>619</stgjCode>
<longSumOfForces>87488.0034785146</longSumOfForces>
<longFrictionForce>0.0</longFrictionForce>
<requestedLinearVelocity>9.0</requestedLinearVelocity>
<vertWeight>0.0</vertWeight>
<brakeLinearFactor>8.382</brakeL inearFactor>
<effectiveMu>0.1011556</effectiveMu>
<brakeDecel>0.0</brakeDecel>
<forceDriving>87488.0034785146</forceDriving>
<mass>61326.0</mass>
</CCTTGroundVehicleMobilityModel>
</VALUES>
<TYPE>tankAbramsM1A1</TYPE>
<TIME>608</TIME>
<COMPONENT>GROUND_MOBILITY</COMPONENT>
<ID>
<uniqueid refID="34" >
<stringld>0c42db11-77b3-475c-a778-91¢c2765db299</stringld>
</uniqueid>
</ID>
</[ENTRY>

Figure2 MT Entity data set.

One piece of information that is not found in the data file is references to other
objects in the scenario, or any reference to the mission the entity is assigned to carry out.
MT scenario has an entity move from one location tactically to another, without any
reference to the target location. The data collection module records information of the
entity according to preset time intervals, such as every four milliseconds of simulation
running time. According to OneSAF developers, the collection modules were add-on
modules that were independent of the simulation system. This can be demonstrated by
the fact that OneSAF system can run with or without the data collection modules
activated. However, the separation of development of the collection modules has pros

and cons.

On the pro side, the separate modular development allows for independence,
meaning the data collection should not be able to interfere with the running system and

vice versa. This also means that scenario information, like entity location, destination,

15

mission and so forth are not manipulated by the data collector. The data collector acts as
an external entity with a sole purpose of just recording observed data. The separate role
of the data collector is critical to verification process because in order to verify an entity
behavior in a system, it has to be compared to an external source. Simply, the OneSAF
system cannot verify what happens within itself. In order to verify internal behaviors of
OneSAF’s entities, a credible external recorder must be used.

On the con side, having a separated modular development introduces
inconsistencies, anomalies and possible errors. Inconsistencies are like the example
mentioned earlier about speed specified in the scenario in units of km/hr while speed is
represented in units of m/s in the collection file. In Chapter Ill, section “B. Phase I,” a
more annoying inconsistency pertaining to an X, y, and z grid coordinate system is
discussed. Anomalies are a bit harder to detect, however, on page 14 of Appendix F
Move Tactically (MT) Presentation Report, and the second graph on the page (titled
“Raw Slope Data” shows slope of a terrain changing +/- eight to nine meters in a span of
few milliseconds. While this drastic change in slope is theoretically possible, the speed
of the entity at these outlier points should reflect equally drastic changes as well.
However, as the first diagram (titled “Raw Speed”) on the same page show, the speed
does not drastically change. A positive slope should slow a moving vehicle down and
conversely, a negative slope should accelerate a vehicle. When these two diagrams are
super imposed, they should complement each other. Since they do not, this is an example
of an anomaly. An example of a possible error that can occur when modules are
developed separately are their inability to communicate together. While it may not be
detrimental to the system, it can be a source of frustration. Take for example the initial
file sizes of the data collection files. The initial file sizes were in gigabytes and not in
kilobytes or megabytes because the data collection modules did not stop collection upon

completion of the scenario.

Since continuous entity behavior collection was possible, the fourth step is what
the work of this thesis is all about: verify entity behaviors. As outlined in the
Scenario Overview of this chapter, since data were collectable and useable, the
intermediate goals of entity verification are entity speed, distance to target, and deviation

16

distance from shortest path to destination. As stated earlier, the data collection modules
were independent of the scenario; therefore, the scenario information had to come from
external to the data collection file. The first step of verifying entity behavior was to parse
the scenario file. The scenario file was an XML file that OneSAF reads in order to create
the simulation. The scenario file contains location coordinates of entities, commands and
situation information particular to a scenario. Parsing the scenario file alone was a
challenge particularly because of lack of documentation. The key to pairing the scenario
to the data collection file were unique string identifications (ID) like “Oc42db11-77b3-
475¢-a778-91¢c2765db299.” In scenarios where a single entity is being tracked this was
an easier feat. In Appendix H Sample OneSAF Entity in a Scenario File, the string ID in
the example can be mapped to the string ID in Appendix | Sample OneSAF Data

Collection File.

The first step to verify entity behavior was to parse the scenario file for entity
location, destination, and commanded speed. If a path for entity was specified in the
scenario file, then that path would also be parsed. Second step was then to parse the data
collection file. For each of the three behaviors, the Ruby script output a temporary data
file. For speed behavior, the output consisted of three fields: time of the recording,
current speed, and current slope. The expected values for the speed raw data file were
zero m/s to the commanded speed. Obviously, a negative value or values greater than
double the commanded value would not be expected. For distance to target, a calculated
value derived from current location and destination was recorded with the current time.
The distance was a simple calculation of the x and y coordinates of the current location
and the destination’s x and y coordinates. The z coordinate was not used for this
calculation. The expected value for the distance to target raw data file was a gradual
decrease in distance over time. The last behavior to verify was the entity’s deviation
distance from the shortest path from start to finish. The shortest path was calculated once
and stored, and the distance from this line to the entity’s current location was calculated
and recorded to the raw data file. Samples of the raw data files are located in Appendix
D Move Tactically (MT) Sample Raw Data Files.

17

The raw data files alone were a success, however, TRAC-Monterey needed to
present the work in a report to OneSAF developers. Once again, Ruby proved
indispensable to the task. The output lines for the reports were stream lined within the
entire script, from parsing the scenario file to the end of the data collection file. The
reason for inline processing was because the data file would only be accessed once, and
as stated earlier, since there was no definitive data file size. The Ruby script was
modified to accommodate for four reports, one for each of the behaviors and a test
summary. Examples of the reports are in Appendix E Move Tactically (MT) Sample
Reports Adding the reports to the script had little or no impact on the script performance.
In the Linux platform, a 25 MB data file took less than 40 seconds. In Windows®, every

test took about twice as long.

The last step to finish the MT scenario was to create visualization of the data.
The raw data files were imported into Microsoft® Excel® and graphs were generated.
The graphs were an immediate accepted by the OneSAF developers and made a request
to TRAC-Monterey to produce a prototype that would automate the verification tests with
visualizations as part of the testing outputs. This last step eliminated the option using
Excel® for the rest of the work for this thesis. Since OneSAF was developed for
Windows® and Linux, another packaged tool that would run in both environments would
be required. Another issue with Excel® was the fact that it didn’t allow for automated
scripts to generate visualizations. The report TRAC-Monterey turned in to OneSAF is in

Appendix F Move Tactically (MT) Presentation Report.

The success from MT scenario generated new challenges that will be further

discussed in the next chapter.

18

I1l. EMPLACE CONTROLLED MINEFIELD (ECM) SCENARIO

A. SCENARIO OVERVIEW

Emplace Controlled Minefield (ECM) scenario is a scenario in which a mobile
unit of two or more soldiers load up into an HMMWYV, move to a weapons Conversion
Cache where they convert a specified number of land mines in a kneeling or sitting
posture. Once the mines are converted, the entities load the HMMWYV with the converted
mines and relocate to weapons Dump Cache where they offload the converted mines.
From the Dump Cache, the entities randomly place the mines in a designated minefield
area. Once all mines are set in the minefield, the mission is completed. As with the
previous Move Tactically scenario, the work for ECM was broken down into three

phases.

Phase | covers the first iteration through this scenario. It explores many of the
obstacles encountered and what was done to overcome those obstacles. The Ruby scripts
from the previous chapter proved inadequate for the data collected in ECM scenario.
Phase Il is where this scenario gets real interesting. Since the previous approach
provided small gains, new scripts were developed to parse the data files. Data files
collected are viewable and verification analysis was initialized. Figure 3 below provides

the overlay to the EMC scenario and a labeled closer view is in Figure 4.

E L/

Controllecitinefield

- .

BN
R |

Lat, Lon (31.012286, -92.973918) - x, ¥ (664,57)

Figure 3 Emplace Controlled Minefield Scenario Layout!4.

14 partial screen capture from OneSAF Objective System with ECM scenario loaded.
19

For the purpose of this thesis, Emplace Controlled Minefield (ECM) scenario
consists of two soldiers (one highlighted - Entity “A”, the other to the immediate left of
the highlighted entity - Entity “B”) and five mines. The soldiers are commanded to board
the HMMWYV (blue square along top edge), then proceed to the Conversion Cache (CC)
located along bottom edge. Once at the CC, they are to dismount the HMMWYV, convert
five mines in the sitting position. Each mine takes two minutes to convert per person but
allows division of labor such that two entities could work on one mine thus requiring half
the time needed. So, with two entities working on five mines would require the entities
to work in the sitting posture for five minutes. Once the mines are converted, the entities
load the converted mines into the HMMWYV’s cargo area, board the HMMWYV, and
proceed to the Dump Cache (DC). At the DC, they are to arm the mines and randomly
place the mines in the minefield. For the purpose of this thesis, each and every step listed
above must be verifiable in terms of location, elapsed time, weight of cargo, cargo
(quantity), entity posture, and entity speed.

/ 1'% \Em e

Entity "B"
1

Conversion Cache

antralledtinefiald

]

Dump Cache m\ i

Figure 4 Entity Locations1®.

B. PHASE |

Initially, the ECM scenario was created and tested in OneSAF version 1.4. After
several unsuccessful attempts to have ECM scenario execute on the 1.4 platform, the 1.4
platform was abandoned and the testing migrated to OneSAF 1.5. Most notable among

the test results were things like no output to the data collection files, scenario failed to

15 Partial screen capture from OneSAF Objective System with ECM scenario loaded.
20

terminate, collection files did not close properly, collection files were extremely large
(greater than two Gigabytes [GB]), data on some entities would not be collected while
others would - a random selection of which entity the collection module would collect on.
Migration from OneSAF 1.4 to 1.5 was easier than previous installations of OneSAF on
both Windows® and Linux platforms. However, the physical machines became more
unstable and the decision was made to have both machines rebuilt from a clean formatted
hard drive. Learning from the frustrations from Move Tactically scenario, a more
practical solution was needed. The progress of this thesis and the efforts of TRAC-

Monterey ceased until OneSAF 1.5 was stable.

After a week passed without a working OneSAF platform, focus for this thesis
was redirected to constructing virtual machines (VM), one for Debian® Linux Version 4
and one for Windows® XP SP2. Both VMs had OneSAF 1.5 loaded and running in three
days. The stable VM images were then archived using lossless compression software
called WinRAR®. VMs proved indispensable for the work of this thesis in both saving
time and proving means of testing several different configurations without concern for

platform instability. With this new found success, all tests were conducted in VMs.

In OneSAF version 1.5, the data collection modules were more stable according
to the developers. The developers did not define or clarify what they meant by “stable”
because from data collection and testing point of view, all testing conducted on 1.5 were

similar in results to the 1.4 version.

The first step was to run ECM scenario with data collection modules enabled.
The scenario was executed twenty to thirty times and the data files saved. The only data
files that were of use were the files that were greater than two Megabytes (MB) and less
than 80 MB. Files that were less than two MB were files that were initialized for the
scenario, but did not contain any entity data while the scenario was executed.
Conversely, files that were greater than 80 MB contained fillers like heartbeat

information of the scenario.

Data collection failure was defined as: When data collection was specified for a

particular entity and data was not collected for that specified entity during any test

21

execution. During all test executions, never once a data file was created that was not
specified. In another words, the only “randomness” of data collection files were from
specified entities. If the entity was not specified, collection on an unspecified entity
never occurred. From the initial 20 to 30 tests, only the data collection files from
successful collection were used and analyzed for this thesis. As in the previous scenario,
the XML data files had some structure but were hard to understand the pattern of the re-
occurring tags. As a matter of fact, it can be said there were not any specific ordering or
sequencing of the data sets. The work developed in the previous section provided a
starting point but no useful data were obtained. It was apparent a new XML parser,

analyzer, and data presentation were needed.

One familiar XML tag from the previous chapter was *“entitylLocation.”
However, initial parsing on this known tag produced incomplete scenario data. The
scenario produced 2-80 MB files for each entity the data collection was initialized for.
Yet, the location of the entity was only reported from the initial location of each entity to
that entity’s first stop in the scenario. For example, the soldiers’ locations were recorded
from their initial location to the location of the HMMWYV. The HMMWV’s location was
logged until it reached the Conversion Cache (CC). Based on incomplete location data of
the entities in ECM scenario, it was apparent the data collection files contained unusable
and repeated information (continuous filler information polled every two millisecond).

The data collection files were visually inspected to confirm this observation.16

The Data Collection Specification (DCS) files associated with this scenario were
not collecting the entities behavior after the entity reached its first waypoint. In the case
of the light infantry entities, the first waypoint was the location of the HMMWYV. In the
case of the HMMWYV, it was the location of the Conversion Cache (CC). The tools

developed from the previous section proved inadequate for the current scenario data files.

16 A sample of the repeated data marked by time units in the appendix.
22

The following is a data sample derived from the data collection files used to
generate the graphs below.

<ENTRY refID="95" >
<VALUES>
<ICMobilityModelMR refID="96" >
<slope>4.3450884128308633E-4</slope>
<timeResting>0.0</timeResting>
<bin>normallyLoadedIC</bin>
<entityLocation>GCC: (-283859.98297301884, -5463960.4266113555, 3267075.8437014534)</entityLocation>
<entity Type>ICFullyLoaded</entityType>
<maxSpeed>6.0</maxSpeed>
<stgjCode>619</stgjCode>
<linearVelocity>1.3893916876222037</linearVelocity>
<fuelStatus>3600.0</fuelStatus>
<useEnergyEquations>false</useEnergyEquations>
<inFreeFall>false</inFreeFall>
<postureState>Standing</postureState>
<timeMoving>0.0</timeMoving>
<maxSustainableEnergyLevel>6900.0</maxSustainableEnergyLevel>
<climbModeOn>false</climbModeOn>
<mPenaltyModifier>1.0</mPenaltyModifier>
</ICMobilityModelMR>
</VALUES>
<TYPE>ICFullyLoaded</TYPE>
<TIME>17884</TIME>
<COMPONENT>GROUND_MOBILITY</COMPONENT>
<ID>
<uniqueid refID="97" >
<stringld>3202a396-1885-47d5-a54c-ec37fe3f1c35</stringld>
</uniqueid>
</ID>
</ENTRY>
<ENTRY refID="98" >
<VALUES>
<SuppressionSpeedLimit refID="99" >
<beingSuppressed>false</beingSuppressed>
<dayNight>Day</dayNight>
<entity Type>ICFullyLoaded</entityType>
<maxSpeed>1.67</maxSpeed>
</SuppressionSpeedLimit>
</VALUES>
<TYPE>ICFullyLoaded</TYPE>
<TIME>17884</TIME>
<COMPONENT>MOBILITY_CONTROLLER</COMPONENT>
<ID>
<uniqueid refID="100" >
<stringld>3202a396-1885-47d5-a54c-ec37fe3f1c35</stringld>
</uniqueid>
</ID>
</ENTRY>

The following XML is what fills the bulk of the data file:

<ENTRY refID="7370" >
<VALUES>
</VALUES>
<TYPE>null</TYPE>
<TIME>179604</TIME>
<COMPONENT>null</COMPONENT>
<ID>
<uniqueid reflID="7371" >
<stringld>3202a396-1885-47d5-a54c-ec37fe3f1c35</stringld>
</uniqueid>
</ID>
</[ENTRY>

23

<ENTRY refID="7372" >
<VALUES>
</VALUES>
<TYPE>null</TYPE>
<TIME>179604</TIME>
<COMPONENT>null</COMPONENT>
<ID>
<uniqueid refID="7373" >
<stringld>3202a396-1885-47d5-a54c-ec37fe3f1lc35</stringld>
</uniqueid>
</ID>
</[ENTRY>

... (The rest of the data file is filled with this repeated entry.

Initial view of the data looked promising to have the data required for analysis.
The tools developed in the previous section were not able to parse the data from the ECM
scenario because the data file format was very different. In order to dissect the data files,
a Ruby script was needed to parse the data files. Similar to the scripts from the previous
chapter, a script was needed to display the data format; in particular, the tags associated
with the new data files. The understanding gained from Move Tactically (MT) scenario
was that the format of the data files was supposedly constant. Viewing the data files
from ECM, however, shows the data files to be very different. Thus a more dynamic
script was needed to be able to parse any of the XML data files generated by OneSAF
and present the format of a particular data file to the data analyzer. A Ruby script called
Prescript (Appendix B Prescript) was created to do the task of parsing data files created
by OneSAF. The purpose of this parser was to: (1) detect bad data files, (2) provide an
entity data set tags if the data file was good. The performance of Prescript was amazing,
even in Windows® platform. Almost instantaneously, the result of Prescript is returned.
On command line execution, the Prescript receives the name of the XML data file. If the
data file contains usable entity data, it returns the XML file name, the entity name and all
associated tags with the tag data types. The tag data types are produced by Prescript and
are informative information to users. The bulk of the work for Prescript came from the
Ruby scripts from the previous section (MT). Ruby provides a powerful and extremely
fast regular expression parsing capability. All XML data files from OneSAF were parsed
within seconds, regardless of the size of the file. The following screen (Figure 5 shows

the output of Prescript on an infantry entity of the ECM scenario.

24

entity A 2 MechInf_ Plt_ANTIARMOR_-ICT4 2008-85-17-24-12-37-517.cut.xml
ICMobilityModelMR

slope(float)
timeResting(float)
bin(string)
entitylLocation(float)
entityType(string)
max5peed(float)
stgjCode(integer)
linearVelocity(float)
fuelStatus(float)
useEnergyEquations(string)
inFreeFall(string)
postureState(string)
timeMoving(float)
max5sustainableEnergylLevel(float)
climbModeOn(string)
mPenaltyModifier(float)

Figure 5 An example output of Prescript.

Prescript (Appendix B Prescript) takes the XML filename as the only argument
from the command line. If useable entity data is encountered during the parsing of the
data file, Prescript would output the above screen to the terminal. However, if unusable
data is encountered, Prescript would report an error with the data file. During early
preliminary tests, when Prescript reported an error with a data file, those data files were
processed manually with Ruby’s incorporated editor SciTE'7. SciTE proved useful for
OneSAF data files because none of the XML files were closed with proper XML closing
tags. Much like HTML, proper XML has an opening tag and at some point later followed
by a closing tag. For example, a start tag: <TAG> would have </TAG> to represent the
end to this tag. OneSAF does not properly close their XML data output files which
created a problem of viewing these files with many standard third party XML browser
tools. Standard editor in Linux like Vi and Vim proved useful to viewing the malformed
XML data files. However, it was tedious and painstaking slow because these tools only

provided simple text searching capability, useful if one knows what to search for,

17 SciTE Version 1.72 Jan 15 2007 by Neil Hodgson. Dec 1998-Jan 2007 http://www.scintilla.org
25

worthless if one did not. SciTE was able to group tags when tags had a closing tag, and
revealed unclosed/missing tags. All data files generated by OneSAF were missing

closing tags1s.

The main work done by Prescript (Appendix B Prescript) was to identify a valid
data set. One of the reasons why Ruby was selected for the scripting language was
because of its ability to parse regular expressions swiftly. The longest matching set of
expressions was returned, with their matching set of data types such as an integer, float or

string.

Prescript provided a fast view of the tags that was found in the data files. Once
the tags were identified, a method was needed to process the data contained in the tags.
The next step after Prescript was to produce a way to parse useable data out of the large
XML data files. Another Ruby script was created for this purpose. This script was called
Postscript (Appendix C Postscript). In order to use Postscript, a minimum of three
parameters were required: data filename, entity name, and a tag within the entity’s set of
tags produced by Prescript. When the data files contained data from multiple entities, the
name of the entity was critical to distinguish one entity data set from another. Otherwise,

tags within the entity set would conflict.

Postscript parses an entire data file for the entity name. Upon a match, the tags
following the entity name are parsed for any of the matching tags provided from the
command line. When a match for the parameter is found, the data is sent to a temporary
text file. Once the entire data collection file is parsed, Postscript calls GNU Plot to plot
the data in the temporary data text file. GNU Plot was chosen for this thesis because of
performance and platform independence. Although the binary executable is different, the
commands are the same whether on a Windows® or Linux. Furthermore, GNU Plot can
be wrapped in a Java executable jar file for final deployment, more on deployment in

Phase Ill. The following examples are of Postscript (Appendix C Postscript) processing

18 As of OneSAF 1.5. Later releases had not been tested, however preliminary data view from 2.0 also
shared the same characteristics as all previous releases.

26

three data collection files from OneSAF during initial ECM scenario testing. Postscript
with “entityLocation” on the first set of data files from ECM scenario produced the

following graphs:

-5.4638e+06

‘Mechinf_PIt_A

-5.46385e+06

NTIARMOR_-ICT4_2008-05-17-24-12-37-517 cut.xml.entityLocation.txt" using 2:3 = +

-5.4639e+06

T

-5.46395e+06

-5.464e+06 -

-5.46405e+06

-5.4641e+06

1

A

1

-283980 -283970 -283960 -283950 -283940 -283930 -283920 -283910 -283900 -283890 -283880

-5.4638e+06

Figure 6

Entity A’s initial movement.

ity_A_2_Mechinf |

-5.46385e+06

-5.4639e+06

-5.46395e+06

-5.464e+06

-5.46405e+06

PIt_AR_M249-IC2_2008-05-17-24-12-37-628.cut.xml.entityLocation.txt" using 2:3

T

T

T

-5.4641e+06

'S

1

-283920

-283910

-283900

Figure 7

-283890

-283880

-283870

Entity B’s initial movement.

27

-283860

-28385(

-5.46405e+06

"entity_Hmmwy_2008-05-17-24-12-37-652.cut.xml.entityLocation.txt" using 2:3

-5.46418+406 |- +_+-q.?¢_
-5.46415e+08 |- oy .
-5.4642+06 |- i
-5.464258+06 |- 5 "

-5.4643e+06 |- o -

-5.46435e+06 + .

-5.4644e+06 L L L L .
-284500 -284400 -284300 -284200 -284100 -284000 -283900

Figure 8 Entity HMMWV’s initial movement.

The above figure plots (Figure 6, Figure 7, and Figure 8) are x and y coordinate
plots of the three mobile entities in ECM scenario. The Y-axis is presumed latitude
coordinate and the X-axis presumed longitude coordinate. The filename of the data file
that generated the plots are printed in quotes at the top of each plot. While the
coordinates really do not provide much information, when plotted they do provide a
visual representation of the entity’s movement, velocity and speed. The data for all of
these plots were collected at four milliseconds intervals. The closer the points are to one
another, represents slower velocity. Acceleration and deceleration are visually
represented by the plots gradually distancing themselves either apart or closer together.
Velocity and acceleration can be visually compared from the human entities in Figure 10
and Figure 11 alongside the motorized entity such in this case, the HMMWYV in Figure 12
Acceleration and speed of the entities are characteristics of entity’s behavior, which can

be verified using the work of this thesis.

Entity A’s movement (Figure 6) went from lower left to upper right, entity B’s
movement went from lower right to upper left, and the HMMWV’s movement from

upper right to lower left. The plots of the two entity soldiers also contained additional

28

plots around point (-5.4641e+06, -283920). This was assumed to be the point where the
entities disembarked the HMMWYV and walked to the Conversion Cache (CC). However,
the end points plotted by the HMMWYV did not correspond to locations near the end
points of the soldiers. The only conclusion that can be made is that the data provided in
the set were inconclusive. The same data was collected for the first 10-20 iterations of
the scenario.

As stated earlier, OneSAF did not provide any documentation on their system, so
the exact conversion from the scenario map to the x and y coordinates were not clear.
The HMMWV’s location, however, did match (Figure 8 of HMMWYV tacking) at least
until it reached its first destination, Conversion Cache (CC). From CC waypoint, entity

location (and any other useful data) was not available in any of the data files.

The coordinates were also different from the simulation screen compared to the
data output. For example, the latitude-longitude (lat/long) starting location for entity B
according to the scenario diagram is approximately (31.01, -92.97), however, the data
output reflects roughly (-283860, -5.46e06). The exact conversion of the data output to
the simulation is not defined, since documentation was not available. What is clear is
that a conversion is applied at some point. It is also of note to think the scenario could be
replayed based on the data output files.

C. PHASE 11

Two issues became apparent: (1) the data collector provided an incomplete set of
data and (2) the format of the data files were different from the data files from the
previous scenario. The methods developed in Chapter Il of this thesis would not be

effective for the format of the current data collection files.

All data collection specification had been executed using a built-in tool of the
MCT called Collect Analysis Data. This tool did not allow data customization to collect,
only the specific entity in which to collect. However, one of the OneSAF Desktop
applications did allow limited data collection specification called, Data Collection

Specification Tool (DCST). This was discovered by trial and error, and luck.

29

Like most features of OneSAF, the learning curve to use DCST was quite steep
and extremely non-intuitive. OneSAF simulation system operates by scenario files. A
new scenario file must be named “Scenario.xml”. When a scenario is modified OneSAF
saves the modified scenario file as “ScenarioX.xml”. The “X” represents sequential
number starting with one. OneSAF will allow the latest scenario file to load (for example
a scenario file like “Scenario23.xml”), and run the simulation. However, because the
latest scenario file contains a number at the end of the scenario file name, the data
collection would not collect data. This was caused by the DCST. DCST only recognized
a scenario file named “Scenario.xml.” Even though the OneSAF system by default saved
updated and/or modified scenario files with a sequential number affixed to the end of the
filename, the DCST would not recognize it. The DCST basically did the following:
parsed the scenario file named “Scenario.xml” for all entities that collection could be
specified. The operator then selected an entity and selected either general or AAR1S,
The DCST would then save the specification file. The specification files only work with
a loaded scenario file named “Scenario.xml.” In order to specify the latest scenario file,
that file needed to be renamed as “Scenario.xml.” Then, the operator would have to
specify collection files using the DCST. Once new collection files are created, they had
to be selected with the Collect Analysis Data (CAD). The CAD allows renaming of the
actual data collection file output. This must be done for all entity data is to be collected.
In order for the collection process to begin, the scenario must be saved. However, the
newly saved scenario file now has a numeric value added to the end of the filename. The
newly saved scenario file must be renamed as “Scenario.xml”, and must be reloaded.
This process was critical to the entire data collection process for OneSAF. Any missed
step would result in failed collection. Even if all steps were followed, there was still a bit
of randomness to what entity would be collected on. Luckily, about 1/5 of the tests had

full data collection files.

19 AAR - OneSAF does not specify what AAR is. AAR in this study was presumed to mean "After
Action Review/Report." For the purpose of this study, the name did not contribute anything.

30

When it worked, the DCST provided a systemic collection of more data than the
pre-built Collect Analysis Data (CAD) provided. The Prescript (Appendix B Prescript)
from Chapter 11 was modified to accommodate the different data format that DCST AAR
outputted.

DCST allowed two settings for data collection, general and AAR20, After trial
and error, the general settings proved similar results as stated in previous section.
However, the AAR collection provided more usable data. An example of what AAR

collection provided is shown below.

<ENTRY refID="128" >
<VALUES>
<AAR_EntityData reflD="129" >
<contaminant>null</contaminant>
<contaminationStatus>null</contaminationStatus>
<velocity>
<net.onesaf.core.services.data.dm.rdm.phys.Tuple3dStruct refID= »130 » >
<z>1.1828997366419163</z>
<y>0.7149462845717757</y>
<x>-0.14730872069896997</x>
</net.onesaf.core.services.data.dm.rdm.phys.Tuple3dStruct>
</velocity>
<posture>16</posture>
<catastrophicKill>false</catastrophicKill>
<mobilityKill>false</mobilityKill>
<orientation>
<net.onesaf.core.services.data.dm.rdm.phys.Quat4dStruct refID="131" >
<z>-0.37976037115501066</z>
<w>0.31534386085032484</w>
<y>-0.639351867294955</y>
<x>-0.589550252065652</x>
</net.onesaf.core.services.data.dm.rdm.phys.Quat4dStruct>
</orientation>
<initialContaminationTime>0</initialContaminationTime>
<superiorlD>
<uniqueid refID="132" >
<stringld>2d6f971a-2929-4750-8b4a-38da06253c0e</stringld>
</uniqueid>
</superiorlD>
<entity Type>ICFullyLoaded</entity Type>
<contaminationConcentration>0.0</contaminationConcentration>
<modelName>IC, Loaded</modelName>
<damage>NO_KILL</damage>
<mounted>false</mounted>
<damageString>Healthy</damageString>
<communicationKill>false</communicationKill>
<incapacitatedKill>false</incapacitatedKill>
<firepowerKill>false</firepowerKill>
<unique_id>
<uniqueid refID="133" >
<stringld>3202a396-1885-47d5-a54c-ec37fe3f1c35</stringld>
</uniqueid>
</unique_id>
<affiliation>SUSPECT</affiliation>
<location>

20 AAR - OneSAF does not specify what AAR is. AAR in this study was presumed to mean "After
Action Review/Report.." For the purpose of this study, the name did not contribute anything.

31

<net.onesaf.core.services.data.dm.rdm.phys.Tuple3dStruct refID="134" >
<z>3267083.302499887</z>
<y>-5463955.922321388</y>
<x>-283860.911732261</x>
</net.onesaf.core.services.data.dm.rdm.phys. Tuple3dStruct>
</location>
<name>A/2/MechlInf_PIt:AR M249-1C2</name>
<parent>
<encodableReference refID="0" />
</parent>
</AAR_EntityData>
</VALUES>
<TYPE>ICFullyLoaded</TYPE>
<TIME>9532</TIME>
<COMPONENT>null</COMPONENT>
<ID>
<encodableReference reflD="133" />
</ID>
</[ENTRY>

The revised Prescript (Appendix B Prescript) output of AAR data collection file
produced an output shown in Figure 9. The tags following the entity are listed as they
appear in the data file. Unlike previous iterations, the new AAR Prescript output
contained four tags with child tags. For example, entity’s location from the previous data
files was listed as “entityLocation” without any child tags. However, in the AAR data
file, the same location data were listed as just “location” with x, y, and z child tags. To
make matters a bit more complicated, three entity tags had x, y, and z child tags: velocity,
orientation, and location. The Prescript from previous work would not have been able to
distinguish between these three sets of child tags. Prescript had to be modified so that if
an x, y, or z tag was specified, a default parent tag had to be specified. The default parent
tag specified in Prescript was “location” since most of the entity verification centered on
the entity location in the simulation. In order to specify child tags, the child tag must
immediately follow the parent tag. For example, in order to specify velocity’s x tag, the
command parameters would be as follows: “<filename> <entity name> <velocity> <x>”.
The tags with child tags are identified differently from other tags by a set of parenthesis
around the tag name followed by an asterisk. Likewise, the child tags are identifiable by

an asterisk following the child tag data type.

32

aa 2008-02-29-17-45-36-81.xml
AAR_EntityData

contaminant(string)
contaminationStatus(string)
(velocity)*
z({float)*
y(float)*
¥ (float)*
posture({integer)
catastrophicKill(string)
mobilityKill(string)
(orientation)*
Zz(float)*
w({float)*
y(float)*
x({float)*
initialContaminationTime{integer)
(superiorID)*
stringId(integer)
entityType(string)
contaminationConcentration(float)
modelName(string)
damage(string)
mounted(string)
damageString(string)
communicationKill(string)
incapacitatedKill(string)
firepowerKill(string)
(unique id)*
stringId(integer)
affiliation(string)
[Location)*®
Zz(float)*
y(float)*
¥ (float)*
name(integer)
(parent)*

Figure 9 Example output of Prescript #2.

The following figures (Figure 10, Figure 11, Figure 12, and Figure 13) are the
outputs of Postscript (Appendix C Postscript) on the DCST AAR data collection files. In
all the figures, the entities are roughly located in the upper right quadrant of the plots.

Their destination is to the lower left quadrant of the plots.

33

=5.4638e+006 T T T T T T L T, T
hInf_Plt_ANTIARHOR_run2_2008-02-27-22-59-29-735,xnl.location.split . tut™ using 2:3 +

=9,4639e+866

=9, 46d4e+8086 [i

=3,.4641e+866 b

=3,4642e+866 i

=3,.4643e+866 i

=3,4644e+866 i

=5,4645e+886 b

=5,.4646e+886 b

=5,4647e+006 : L L L L L L : L
-254800 -284700 -284680 -254508 2544008 -2543600 -254208 -284108 -254000 -253900 -28350¢

Figure 10 Entity A’s movement.

=5.4638e+886 T T T T T T L T T
echInf_Flt_AR_HP49,.run2_2@85-02-27-22-59-29-707 .unl, location,split, tut™ using 2:3 _+

=9.4639e+886

=5.464e+886 i

=5.4641e+8086 [b

=5.4642e+806 i

=5.4643e+806 [b

=5.4644e+806 i

=-5.4645e+806 i

-5.4646e+806 b

=5.4647e+006
=2848608 -254788 -2846008 -2845008 -284488 -2843008 -2542008 -254160 -254000 -253900 -23380¢

Figure 11 Entity B’s movement.

34

-5.4533?1'335 T T T T T T T T T
"Entity_Hnpwv_run?_26088-02-27-20-59-29-662 ,xnl, location,split, tut™ using 2:3 _+
=5.4639e+086 - i
=5.464e+8086 [i
-5,4641e+806 .
-5,4642e+806 .
-5,4643e+806 .
-5, 4644e+806 .

=3.46495e+886 1

=3,.4646e+886 4

=5.4647e+006 . L L L L 1 L |
-284800 -284700 -284600 -284500 -284400 -28430808 -234200 -284160 -284000 -253900 -283806¢

Figure 12 Entity HMMWV’s movement.

-5.4533E+BBB T T T T T T T T T
hInf_Plt_ANTIARHOR_run2_20888-02-27=-22-59-29-735, 4nl, location,split,tat™ using 2:3
echInf_Plt_AR_HP49,run?_2008-82-27-22-59-29-707 .4nl, location,split. . txt" using 23

-5, 46pbi¥palnkuy_run2_2008-02-27-22-59-29-662 ,xnl,location.split.txt"” using : 4

=5.464e+006 -
=5.4641e+0886 [
=5.4642e+086 [
=5.4643e+006 [
=5.4644e+0886
=5.4649e+006

=5.4646e+886

=3.4647e+086 : ! ! : ! ! ! !
=2848008 -2847008 -284600 -234900 -254480 284300 -234200 -2841600 284000 -233908 -28386¢

Figure 13 Entity A, B, and HUMMWYV

35

Figure 13 is a composite of the three entities in one of the ECM scenarios. The
composite image shows clearly that the path each entity traveled was what was expected.
Points 1, 2 and 3 are the initial locations of the three entities. Figure 6 and Figure 7
shows what would be equivalent to a smaller scale of the entities initial movement from
points 1 and 3 to point 2. Point 4 is the location of the Conversion Cache. Point 5 is
where the HUMMWYV approaches the river, and travels south in search of a suitable
crossing location. In this particular simulation execution, the entities traveled south,
while in other iterations of this simulation the entities traveled north. Ironically, when the
entities travel north, they do not cross the river. Point 6 is the point where the HMMWV
travels alongside the river bank, then crosses the river, then travels alongside the opposite
river bank, then turns west to the Dump Cache (DC) located at point 7. This simulation
clearly revealed a programming flaw in OneSAF’s mapping system. The point where the
HMMWYV crossed the river is where two pieces of the map adjoin. The terrain has
mouse event listener that highlight and identify the objects when a mouse click is
detected, shown below in Figure 14C (note the images are not to scale). During the work
of this thesis, programmatic “bugs” similar to this were discovered and reported to

OneSAF developers.

36

-
Lat, Lon (30, 999634, -62.960570)

LY
Lat, Lon (30.899634, -92 850370)

B &

«
C Lat, Lon (31 000350, -92 880051 - %, y (335,119)

Figure 14 A, B, C - showing HMMWYV crossing river.2!

21 OneSAF screen captures.

37

D. PHASE 111

OneSAF developers requested a graphical user interface (GUI) that would allow
OneSAF users and developers to use the tools developed in this thesis. While TRAC-
Monterey was requested by OV&YV for this task, the prototype for the verification GUI
was done for this thesis. Since most of OneSAF was developed using Java, the logical
solution for a verification GUI was also to create using Java. OV&V team provided
results of MT scenario (from Chapter Il of this thesis) to OneSAF developers. The
developers were very pleased with the results but were not enthusiastic about using Ruby.

Fortunately Ruby has been implemented for Java as JRuby, and available open source?22.

GUI Interface Design Diagram

Ruby
. .| PreScript
Gul > Process Interface *| (Get Entity
: Tags)
|
: Ruby
| PostScript
{_y{ Graph (Process
Display Data File)

EA

File Selection
Parsed

Data File

Entity Tag(s)
Selection

y

Saved - Compare GNUPIot
Test File Loaded Test to
elected DF*
- / XML Data
File

Figure 15 GUI Interface Design Diagram

22 JRuby, http://jruby.codehaus.org/, Accessed 20 July 2008.
38

http://jruby.codehaus.org/

It is important to point out that the GUI development was not a focus of this
thesis. The GUI provided from this thesis was strictly a prototype/demo of what an
example of a solution may be like. The GUI provides an easier access to the Ruby scripts
and is strictly independent of all processing. The GUI allows users to select a data
collection file, select what tag(s) to verify, run the test, and run the Automated Test Suite
(discussed later this section). It also allows users to open a plot from previous tests. The
GUI provided a more attractive appearance to the ABVT. The main drawback to using
the GUI verses via command line Ruby is the inability to have total control over the

verification tests. This limitation would be addressed for future work in this area.

The basic functions of the GUI were: (1) select an OneSAF xml data file, (2)
parse the data file for entity tags, (3) provide a way to select an entity tag for verification,
and (4) provide visual output when completed. Figure 16 is the screen capture of the

GUI prototype.

39

ABPT Test Prototype

‘ = Open aFile.. H B Save aFile... || Frocess Selected Tag(s) || Qpen Graph H Fun Tests ‘

[] ML Data Filzs ‘| opening: aa_2008-02-20-17-45-36-81 xml.
% [C]aa_2008-02-29-17-45-36-81 xml Graph: aa_2008-02-29-17-45-36-81 xml.png
¢ [AAR_EntityData :
[y contaminant(string) Opening: aa_2008-02-28-17-45-36-81 xml.pna.
D contaminationStatus(string) :
[tvelocity)*
[y zoaty®
[yifloaty*
[y xioat)
D posture{intager)
D catastrophickill{string)
D muobilitykill {string)
D (orientation)®
[zifloaty*
[y winloat)
[vifoat*
[y ximoat)
D initialContaminationTime{integer)
D (superiarlD)*
D stringldiintegen
D entityType(string)
D contaminationConcentration(float)
D modelMame(string)
D damage(string)
D mountedistring)
D damageString(string)
D communicationkill{string)
D incapacitatedkill(string)
D firepowerkill{string)
D (unique_id)*
D stringldiinteger)
[affiliation(string)
D (location)*
[y zfoat)=
[yifloaty*
[y xioat)
D namel(integer)
D (parenf)*

4]] ¥

Figure 16 GUI prototype.

40

Once a GUI prototype was completed, TRAC-Monterey resumed further GUI
development. OneSAF Developers requested for a simple one mouse click that would
launch a series of automated behavior verification tests. The following eight test

parameters were requested:

1. Entities move to the conversion cache.

a. If entity is not at conversion cache, check location relative to conversion cache every 1
minute. If entity is not closer to conversion cache for 10 consecutive minutes, then fail.

b. Report time when entity is within 50 meters of conversion cache as “Time 1”.

2. At conversion cache, entities assume sitting position.
a. After time 1, if entity is within 30 meters of conversion cache, and does not sit within 1
minute, then Fail.
b. Report sitting time as “Time 2”.
3. Entity stands at completion of conversion.

a. Report standing time as “Time 3”.
4. Entities stays at conversion cache for the time required to convert mines.

a. Difference between “Time 2” and “Time 3” is greater than required conversion time.
5. Entities move the mines to the dump cache.

a. After “Time 3", if entity is not at conversion cache, check location relative to dump cache
every 1 minute. If entity is not closer to conversion cache for 10 consecutive minutes,
then Fail.

b. Record arrival at dump cache as “Time 4”.

6. The number of mines and conversion Kits in the conversion cache decrease.

a. After “Time 3”, the numbers decrease.

b. Data not available.

7. The number of mines and conversion Kits in the dump cache increase.
a. After “Time 4”, the numbers increase.
b. Data not available.

8. Entities move to random locations in the minefield.

a. After “Time 4”, the entities move to a location within the minefield within 1 minute,
otherwise Fail.\

Tests six through eight did not pass with any of the data sets. Either the data
collection or the caches failed to update cargo quantities. ECM scenario would always
fail once the entities in the HMMWYV stopped at the Dump Cache. The OneSAF
simulation recognized the scenario failed but would not close the data files appropriately

with closing tags. Figure 18 shows one of the more common error messages once the

scenario fails.

41

ABPT Test Prototype

XML Data Files

9 1 m249_2008-02-29-17-45-36-111x
9] AAR_EntityData

D contaminant(string)

D contaminationStatus(string)

: Opening: m249_2008-02-29-17-45-36-111 xml.

Test1: passed
Test 2: failed
Test 3: passed

[welocity* Test 4; passed
[zifoaty Test5: passed
D yifloaty* Test 6 failed
" Test 7: failed
float)*
[xitoat Test 8 failed

D postura(integer)
D catastrophickill{string)
D mohilitykill(string)

Figure 17 Automated testing suite results.

passed failed passed passed passed failed failed failed

MCT [Login ID: onesaf] - EmplaceControlle

Eile Edit Miew Manage Exercise Control Checkpoint Tools Window Help

(]al®] & (%[u]e[u]s)(a]>]n]s

AES

Alert Messages
B [vews Bl &) a]v] [82)1]@ i
—_
fI!IT\me ﬁ[A\en Issue ﬁ[Instigator 1 Dezcription
(#)|Wed Dec 19 14:49:49 ... Transfer Util: Hmmw... uoblerd
= - MechIn_f_Plt 15 _unable to ernplace minefield
¥ |Wed Dec 19 14:49:49 ... Trans fer Util: Hmmuwv... due to insufficient supphes = Supply -
() [Wed Dec 19 145345 ... Conversion of 5 mine.[Mechinf_PlzEmplace... mineAPM1E84A1 :: Supplies needed = 5
(#|wed Dec 19 1458:46 ... TransferUtil: Hmmuwy.. Supplies available = 0
.C_Z Wed Dec 19 14:58:46 ... Trans ferUtil: Hmmuwv... Additional Info
)| Wed Dec 19 14:58:57 ... TransferUtil: Hmmwy.. Increase the quantity for the available supply
.'2‘ Wed Dec 19 14:58:58 ... TransferUtil: Hmmuwy...
@ Wed Dec 19 15:03:44 . [Mechinf_PIt is unable t... |Mechinf_Plt:EmplaceCo...
@ 19 15: Mechinf_Plt iz unahle M echlnf_Plt:Em plac

N L]

= e]E (Blel®) (@(w]=) (x]w]e]a] |

|k
¥ | on command

[=-Top Lewel

E-E Coalition

5[t/ [HI8] Mechint_pn

L ETHRE rrwvercion;arks

Figure 18 Common error message.23

23 OneSAF screen capture.

42

IV. CONCLUSION

A SOFTWARE TESTING

The purpose of the work for this thesis was to provide a blueprint on how to
approach system behavior verification on a system that may or may not have adequate
documentation. While the work concentrated on entity behavior, the approach would be
parallel to any multitude of system behaviors. The key is to have an independent data

collection tool.

From mid 2005 to mid 2007, TRAC-Monterey was successful in verifying three
out of 51 scenarios as per OneSAF Verification & Validation (OV&V). According to
TRAC-Monterey, the greatest factor in contributing to lack of success was that the
required manpower was not available24, Manpower, as this thesis shows, was not the
greatest issue that hindered entity behavior verification. The greatest hindrance to entity
behavior verification was the lack of documentation, followed closely by lack of
developer support (although with sufficient documentation, developer support may not be

necessary).

TRAC-Monterey perceived manpower as the main problem because all steps
involved with entity verification was done manually. These steps included scenario
creation, test the scenario, modify the scenario to create variations that were of interest to
the entity being verified, re-test the modified scenario, and record all behavior observed
during the tests. For any one scenario, this was an extensive manpower issue. If TRAC-
Monterey had one person for every scenario, all scenarios could be tested and entity
behaviors could be verified in a span of three weeks time. The only thing missing,
however, is the lack of data to enforce the analysis and all analysis would have come
from the tester’s screen2>. The question then becomes, “How do you verify the
analysis?” Traceability and enforcement is not available “observing screen outputs.”

Since OneSAF is a semi-autonomous system, entities should not necessarily behave

24 Appendix J TRAC-Monterey Verification Process Methodology , slides # one and five.
25 Appendix J TRAC-Monterey Verification Process Methodology , slide # six.

43

exactly the same during each iteration of testing. The conclusion is simple: the analysis
by method of observation alone is not enough for entity behavior objective verification or

traceability26.

B. POSITIVES

The scenarios in OneSAF Objective System (OOS) are all user definable. The
only limitations to scenario generation (in theory) are the limitations the real world
imposes. For example, a human entity is not allowed to fly unless he is in a vehicle entity
capable of flying. OneSAF developers did provide samples of some scenarios but
unfortunately, not the ones OV&YV listed on their requirements. Therefore, the scenarios
had to be created by manually.

During the work of this thesis, data collection was implemented, although with
limited capabilities. Enabling data collection freed the tester from having to analyze data
and record scenario outputs during the test execution. This allowed multiple
simultaneous testing of one scenario, limited only by the number of machines that were
available. At the end of the tests, all the data files were collected and analyzed on

different machines.

Twice during the work of this thesis, the physical machines had software
configuration and/or operating system (OS) errors and required reinstallation of the OS
and the OOS. After the two environment failures, virtual machines (VM) were
configured and used for the remainder of the work. In the span of time it took to rebuild
the second physical machine after failure, two VMs (one with Windows® and one with
Linux) were created. Virtualization proved indispensable for the remaining work for this
thesis. When the VMs failed, a 15 minute restore brought the entire OOS environment
back online. Virtualization of the OOS environment also allowed for smoother

transitions to the newer versions of the OOS.

The creation of scenario files were the only step left unchanged during the work

of this thesis. Once the scenario was created, and forgone enough testing, the next step

26Appendix K OneSAF Users Conference Orlando Florida Presentation, slide # four.
44

was to modify the scenarios to emphasize entity behaviors. This was done by opening
the scenario, modify the scenario, and then execute the scenario enough times to have
adequate data. This was a long and tedious process and often the modified scenario
would not run27. A more streamlined and automated way to modify the scenario file was
done by Christopher Eatinger in his thesis titled “TESTING AUTOMATION TOOLS FOR
SECURE SOFTWARE DEVELOPMENT".28 The modified scenario file was tested in the
same manner as the initial tests. This process was repeated until all variations of interest

were tested.

As mentioned earlier, discovering how to use the external data collection module
was the key to the entity data verification. However, if the data files were not useable,
then the efforts would have been in vain. If the first break was the discovery of the
collection tool, then the second break was that the data files were XML files. They could
have been any flat text files but OneSAF developers chose to use XML throughout the
system. The scenario files, data collection files, and entity specification files were all
XML files. The work of this thesis would not have reached the level it had if the data

collection files were binary or any other formatted files.

Ruby programming language proved indispensible for parsing the data files.
Ruby was easy to use and to learn. It proved extremely efficient in that it could parse,
calculate, coordinate multiple input and output files, and execute external programs via
system calls when needed. Ruby was used to parse the data files, create intermediate
files, and then fed those intermediate files to gnuplot along with created gnuplot scripts
that generated either Portable Network Graphics (PNG) or Postscript (PS) format
visualizations depending on the OS environment. Once the visualizations were created,
Ruby was able to make a system call to open the graph, displaying the content to the user,

provided immediate feedback on entity behavior verification. Furthermore, Ruby was

27 One of the challenges of OOS was the lack of overall system stability. Often when a modified
scenario was executed, the system, or one of the components of the system would throw unrecoverable
Java exceptions, which left the tester to re-initialize the OQOS, or sometimes reboot the OS.

28 "TESTING AUTOMATION TOOLS FOR SECURE SOFTWARE DEVELOPMENT,"
Christopher Eatinger, June 2008, NPS.

45

platform independent and was incorporated into the GUI prototype’s executable jar file
with the use of JRuby, Java implementation of Ruby.

This thesis work also brought to the attention of OneSAF developers couple of
errors found during scenario executions. The first is the ability of a HMMWYV entity
being able to cross a river without using a bridge. In the real world, the HMMWYV could
cross a river if the water level was low and the flow of the water was fairly slow.
However, this was not the case in the scenario. Another error was the posture of the
human entity in vehicles. In the ECM scenario, the two human entities posture was
standing while riding (presumably driving the HMMWY) in the HMMWYV. While this is
not an error to reprogram the entire system over for, it does point to the fact that behavior

entity verification on large systems can be useful to detect errors.

Additionally, the work of this thesis was presented during the 2008 OOS User’s
Conference, where it was received well by the attendees. The OV&V and OOS
developers were also impressed enough to incorporate either the ideas or parts of this

thesis into future releases of OneSAF Objective System.

C. NEGATIVES

Stated throughout this thesis is the fact that OOS lacked available documentation.
TRAC-Monterey was not successful in attaining even a user’s guide to the system. To
OneSAF’s credit, their secure site provided documentations about the architecture, but

not of the modules themselves.

How could such a system be created without documentation? It is very possible
the developers do have documentation but that OV&V were not in the know to acquire
them. Perhaps issue with trade secrets or copyright issues also played a role. Whatever

the reason, TRAC-Monterey did not have any documentation.

Besides lack of documentation, there were several other negative issues
discovered. For example, OOS lacked an XML viewer. This was rather an odd

discovery considering almost everything within OOS communicated via XML files.

46

OOS stored states, data, configurations, and others in XML files. Having a native XML
browser that could open XML files created by the OOS would have had significant

impact to this thesis.

Another negative time consuming issue was the fact that TRAC-Monterey was
responsible in creating the scenario files. This meant TRAC-Monterey testers really had
to learn a system, without any documentation. The learning curve to the OOS interface
was incredibly steep. Learning the system may have had the greatest impact to why

TRAC-Monterey was only able to verify three out of 51 scenarios in over a years’ time.

TRAC-Monterey was representative of an independent verification and testing
unit. The perspective of the OOS to TRAC-Monterey and the work of this thesis was that
the OOS system was unstable as a whole. For example, when the system initiates, a
major unrecoverable Java exception is uncaught when a network interface card (NIC)
was not detected or enabled. The system would not start, nor provide any useful
exception error message. The NIC issue did cost the progress by a weeks’ time. OOS
would through Java exceptions throughout the entire verification testing process. An
interesting thing to point out is that once an exception is thrown, the rest of the OOS is
not notified. Often, an unresponsive system was anticipated upon the third execution of
the same scenario. The question that lingered after so many system exceptions was,
“Why was Java used for this real-time simulation system?” OV&V did not have a clear
answer to this question, but hinted to the fact that OOS was developed ground-up to run
in multiple platforms, well two actually. The performance of the OOS (as noted in this
thesis) was much better in Linux than in Windows® machines. In Windows®, the
average memory used after OOS initialized was around 1.25 GB of memory and utilizing
around 25-75% on a dual-core processor. In Debian® Linux, the ram usage was around
720 MB and the processor usage was around 10-50%.2° OOS emphasizes platform

independence and yet during an expo held at NPS in 2007 and at the 2008 User’s

29 These observations were consistent on two Dell Laptops: Dell XPS 1210 4GB Ram 2.1GHz dual-
core Windows® XP, and Dell XPS 1530, 4GB Ram, 2.4 GHz dual-core running Debian® Linux. Both
configured with VMware™ Workstation® and running identical VMs, one Windows® and the other
Linux.

47

Conference, all machines were running Windows® XP. Having a system intended to run
on multi-platforms is always welcome; however, the implementation and performance

should match industry expectations.

The single most important negative issue with the OOS for entity verification was
the data collection module. Even toward the end of the work on this thesis, the data
collector was incredibly unstable and the single most cause or progress delays. Yet,

without it producing the data provided, the work would have come to a halt.

Lastly, the OOS modular development was not seamless. Data inconsistencies,
unit inconsistencies, label inconsistencies, file inconsistencies, and operational
inconsistencies all pointed to the fact that many developers from all over contributed to
the OOS. Documentation would have certainly helped. Because of the lack of
documentation, when inconsistencies were found TRAC-Monterey would contact OV&V
and await their response. OV&V would inquire OOS developers pertaining to the
inconsistency area. More often than not, TRAC-Monterey would not receive a response.
It was clear that a break in communication between the developers and OV&V, and/or
with OV&V and TRAC-Monterey existed.

Despite the numerous shortfalls, the work progressed, and tools were developed.
More importantly, many lessons of the trade were learned.

D. FUTURE WORK

Any system worth building should be worth studying. OOS is a great candidate
for research because it offered all the elements of any large system, both pros and cons.
One thing that is apparent at this stage is that there are numerous things that remain to be
done. The hard challenge of learning and familiarizing with the system really took the

most resources.

The project had great vision that included producing a compiler that would take
requested behavior inputs and would produce a Ruby script that would in turn process a
data file. Another area to improve would be to incorporate a library of prebuilt scripts

that a user could select, run, modify and save as a user defined test. Thus far, this thesis

48

has made great progress in creating a blueprint to verify entity behavior of a CGF
simulation system (with a major handicap of not being provided any documentation).
The work started at an extremely slow rate but progress sped up once data files were

collected.

49

THIS PAGE INTENTIONALLY LEFT BLANK

50

LIST OF REFERENCES

Boehm, Barry. “Verifying and Validating Software Requirements and Design
Specifications,” In IEEE Software 1 January 1984, 75-88.

"OneSAF Verification & Validation." One Semi-Automated Forces OneSAF Developer
Site. Dev.OneSAF.net. 7 Aug 2008
<https://dev.onesaf.net/devsite/Development/Verification_and_Validation/>.

Ruby. <http://www.ruby-lang.org/en/>. Last accessed July 2008.
Jruby. <http://jruby.codehaus.org/>. Last accessed July 2008.

Eatinger,Christopher, "TESTING AUTOMATION TOOLS FOR SECURE SOFTWARE
DEVELOPMENT", NPS Monterey, CA, June 2008.

Thomas, Dave, and Chad Fowler. Programming Ruby, The Pragmatic Programmers'
Guide. 2nd ed. Dallas, TX: Pragmatic Bookshelf, 2005.

51

THIS PAGE INTENTIONALLY LEFT BLANK

52

APPENDIX A MOVE TACTICALLY (MT) SCENARIO RUBY
SCRIPT

#1/usr/bin/env ruby
class Parse
behavior verification prototype in Ruby This is the FINAL Ver for Phase 1
written by John Leo, August 2007
Monterey, CA
#
modified by Mikhail Auguston, August 29, 2007
global vars ALL CONST VARS CAPITALIZED LETTERS

PULLS SYSTEM DATE/TIME INTO RUBY SCRIPT
require “time’
@@time=0

LABELS
@@searchLabel = “null”
@@parseLabel = “null”

SPEED

@@speedCommanded = 0O

@@DEV = 1.15 #modify this to change what slow speed deviation to catch
@@DEVGR = 1.05

@@numOfSlow =0;

@@numOfFast =0;
@@numOfSpeedEntry=0
@@entitySpeed=0

@@SPEED_LOW_DEV = 0O
@@SPEED_HIGH_DEV = 0
@@SPEED_KM_HR = 0

Used later, not implemented
@@numOfSpeedZero=0

DISTANCE
@@distanceNumOf=0
@@distanceNumOfDeviation=0
@@distanceMaxDeviation=0
@@totalNumOfMovement=0;

Not used this iteration
Float @@distanceSegment=0

Float @@distanceDeviation=0
Float @@distanceCurrent=0
Float @@DISTANCE_MAX=0;
Float @@distancePrevious =0;

#Ht ENTITY

@@numOfEntitylLocations=0;

@@entityType="null”

@@taskName=""nul I’

STRUCT to contain a GCC Coord unit and later more information.
Coordinate = Struct.new(:X, :y, 1z, :S)

@@CoordEnti = Coordinate.new(“0”, “0”, “0”, “07)

@@CoordDest = Coordinate.new(“0”, “0”, “0”, “0”)

@@CoordInit = Coordinate.new(“0”, “0”, “0”, “07)

GLOBAL FILE HANDLERS
@@scenarioFile = “null”

@@dataFile = “null”
@@fprintfSpeedReport=0
@@fprintfDeviationFromPathReport=0

@@fprintfSummaryReport=0
@@fprintfDistanceToTargetReport=0
@@printfSpeedRaw=0
@@printfDistanceToTargetRaw=0
@@fprintfDeviationFromPathReportRaw=0
@@fprintfErrorLog=0

#
.openOutputFiles() // initializes all output files

def Parse.openOutputFiles()

@@fprintfSpeedReport = File.new(*#{@@dataFile}_ Speed_Test_Rpt.txt”, “w”)

@@fprintfDeviationFromPathReport=
File.new(“#{@@dataFile}_Distance_Deviation_Rpt.txt”, “w”

@@fprintfSummaryReport= File.new(“#{@@dataFile}_ Test_ Summary Rpt.txt”, “w’)

@@fprintfDistanceToTargetReport=
File.new(“#{@@dataFile} Distance _To_Target Rpt.txt”, “w”

@@printfSpeedRaw=File.new(“#{@@dataFile}_Speed_Raw_Data.txt”, “w”
@@printfDistanceToTargetRaw=File._new(“#{@@dataFile}_Distance_To_Target_Raw_Data.tx
W)

@@fprintfDeviationFromPathReportRaw=File._new(“#{@@dataFile} Distance_Deviation_Raw

_Data.txt”, “w)

#@@fprintfErrorLog=File.new(“#{@@dataFile} Error_Log.txt”, “w’)

~

end

.closeOutputFiles() // closes all output files

def Parse.closeOutputFiles()
@@fprintfSpeedReport.close
@@fprintfDeviationFromPathReport.close
@@fprintfSummaryReport.close
@@fprintfDistanceToTargetReport.close

@@printfSpeedRaw.close
@@printfDistanceToTargetRaw.close
@@fprintfDeviationFromPathReportRaw.close
#@@FprintfErrorLog.close

end

_.headers() // creates all headers on REPORTS

def Parse.headers(outfile, msg)
outfile.puts(Time.now.rfc2822)
outfile.puts(“\n\n\t\t\tBEHAVIOR VERIFICATION SUMMARY FOR: #{@@entityType}\n\t\t\t
for simple Move Tactically behavior\n\nBehavior inputs from scenario file:\n
#{@@taskName}’")
outfile.puts(“\nProperties checked in data collection file:\n #{@@dataFile}’)
outfile.puts(“\nThe COMMANDED SPEED from scenario, #{@@speedCommanded}m/s
(#{@@SPEED_KM_HR} Km/hr).")
outfile.puts(*“\nInitial Coordinates, \n\t\t\tx: #{@@CoordInit.x} \n\t\t\ty:
#{@@CoordInit.y} \n\t\t\tz: #{@@CoordInit.z}”)
outfile.puts(“\nTarget Coordinates, \n\t\t\tx: #{@@CoordDest.x} A\n\t\t\ty:
#{@@CoordDest.y} \n\t\t\tz: #{@@CoordDest.z}"")
outfile.puts(“\nTotal distance #{@@DISTANCE_MAX}m from Initial to Target.\n\n”)
outfile.puts(“#{msg}”)
end

#
.scenario() // Processes the Scenario file

def Parse.scenario()
LABEL VARS
destinationPoint = “point”
sourcelLabel = “position”

54

sourceZ = “z”
sourcey = “y”
sourcex = “x”

getCoords = false
INIT LABELS
if @@searchLabel == “null”
@@searchLabel = “speed”
end
if @@scenarioFile == “null”
@@scenarioFile = “Scenario.xml”
end
LOOK FOR INIT AND TARGET COORDS
File.open(@@scenarioFile,”r”) do |file]
file.each do |line]
Get the initial coordinates
if (line =~ /(<(#{sourceLabel})>)/ && getCoords == false)
getCoords =true
end
if ((line =~ /(<z>)(-?\d+.\d*)/) && getCoords == true)
@@CoordInit[:z] = $2
end
if ((line =~ /(<y>)(-?2\d+.\d*)/) && getCoords == true)
@@CoordInit[:y] = $2
end
if ((line =~ /(=x>)(-2\d+.\d*)/) && getCoords == true)
@@CoordInit[:x] = $2
getCoords = “getDest”

end

if (line =~ /(<(#{destinationPoint})>)/ && getCoords == “getDest™)
getCoords ="dest”

end

if ((line =~ /(<z>)(-?\d+.\d*)/) && getCoords == “dest”)
@@CoordDest[:z] = $2

end

if ((line =~ /(<y>)(-?\d+.\d*)/) && getCoords == “dest”)
@@CoordDest[:y] = $2

end

if ((line =~ /(=x>)(-2\d+.\d*)/) && getCoords == “dest”)
@@CoordDest[:x] = $2
getCoords = “nomore” #do NOT reset to “false”
end
Get Commanded Speed
if (line =~ /(<(#{@@searchLabel})>) (\d+.\d*)/)
@@speedCommanded = line.slice(/\d+.\d*/)
end
if(line =~ /<entityType>([a-zA-Z0-9]+\.*-*_*[a-zA-Z0-9]1*)/)
if(1$1.eql?(“unknown’) && (@@entityType.eql?(“null’)))
@@entityType = $1
end
end
if(line =~ /<taskName>(\/?.*behavior.*\/?)<\/taskName>/)
iT(1$1.eql?(“unknown’) && (@@taskName.eql?(“null’)))
@@taskName = $1
end
end
end
end
Scenario is read, now init the output files
openOutputFiles()

#calc() called to get line distance. Entity Struct not yet created.
calcQ

Initial setting to MAX distance
@@distancePrevious = @@DISTANCE_MAX
@@distanceCurrent = @@DISTANCE_MAX

@@SPEED_LOW_DEV = (@@DEV.to_f - 1) *100

55

@@SPEED_HIGH_DEV = (@@DEVGR.to_f - 1) *100
@@SPEED_KM_HR = ((@@speedCommanded.to_f) * 60 * 60)/1000

end

THE DATA COLLECTION XML FILE IS PARSED HERE

def Parse.data()
@l inecounter=0
@devFlag = 0

@time_temp="null”’; @speed_temp="null”’;

#H#H#REPORT HEADERS

headers(@@fprintfSummaryReport,’’")
headers(@@fprintfDeviationFromPathReport,”File:
#{@@dataFile}_Distance_Deviation_Rpt.txt\n\nTime\t\tENTITY>S_DEVIATION_FROM_THE_PATH\n”)
headers(@@fprintfDistanceToTargetReport,”File:
#{@@dataFile}_Distance_To_Target_Rpt.txt\n\nTIME\tENTITY\”S_PREVIOUS_DISTANCE
\tENTITY\”S_CURRENT_DISTANCE\N")
headers(@@fprintfSpeedReport, “File:
#{@@dataFile}_Speed_Test_Rpt.txt\n\nTIME\tCURRENT_SPEED\t\tSLOPE_OF_TERRAIN\N"")
File.open(@@dataFile,”r”) do |xFfile]
xFile.each do |xline]
@Iinecounter = @linecounter +1
#Slope is read first... I1t’1l have to be re-read every time
if (xline =~ /<slope>(-?\d+.\d*)/)

end

@@CoordEnti[:s] = $1

if (xline =~ /<currentSpeed>(\d+\.\d+)/)

1= 0.0))

#{@@speedCommanded}””

end
if
(@@entitySpeed.to_f > 0.0))

= $z

road, the 10 is literal...

@@distanceDeviation.to_f)

#if (@setBlockFlag==true)
@@numOfSpeedEntry=@@numOfSpeedEntry+1
@@entitySpeed = $1

if(@@entitySpeed.to_f > 0.0)
@@totalNumOfMovement = @@totalNumOfMovement +1
else
@@numOfSpeedZero = @@numOfSpeedZero + 1
end
computedDevSpeed = @@speedCommanded.to_f * @@DEVGR.to_fF
xa4 = @@speedCommanded.to_f / @@DEV.to_f*F
it ((@@entitySpeed.to_f < xad.to_f) && (@@entitySpeed.to_ T

#puts “Cur_speed #{$xa2}, LST com_speed

@@numOfSlow = @@numOfSlow + 1
@devFlag =1
end
if (@@entitySpeed.to_f > computedDevSpeed.to_¥T)
@@numOfFast = @@numOfFast +1
@devFlag =2;
end

((xline =~ /<entityLocation>.*\((["Y1®\V)/) &&

$x, By, $z = $l.split(-,”)
@@Coordenti[:x] = $x; @@CoordEnti[:y] = $y; @@CoordEnti[:z]

calcQ;
@@numOfEntityLocations=@@numOfEntityLocations+1;
@ONUM_OF_OFF_PATH/ROAD here. Deviation from path,
if((@@distanceDeviation.to f > 10.0))
@devFlag = 3
if (@@distanceMaxDeviation.to_¥F <

@@distanceMaxDeviation = @@distanceDeviation
end
if (@@entitySpeed.to_f != 0.0)

56

@@distanceNumOfDeviation=@@distanceNumOfDeviation+1
end
end
if((@@distancePrevious.to_f < @@distanceCurrent.to_f) &&
(@@entitySpeed.to_f 1= 0.0))

@devFlag = 4
@@distanceNumOf=@@distanceNumOf+1
end
end
if (xline =~ /<TIME>(\d+)/)
@@time = $1

if(@devFlag > 0)

$statement= “TIME: #{$1}: Entity Loc.\tx:
#{@@CoordEnti . x}\n\t\t\ty: #{@@CoordEnti.y}\n\t\t\tz: #{@@CoordEnti.z}”
if (@devFlag < 3)
$statementl =
“#{$1N\t#{@0entitySpeed \t#{@@CoordEnti.s}”
if (@@entitySpeed.to_f > 0.0)

@@fprintfSpeedReport.puts(“#{Sstatementl}”)
end
end
if (@devFlag == 3)

@@fprintfDeviationFromPathReport.puts(“#{$1\t\t#{@@distanceDeviation}™)
end
if (@devFlag == 4)

@@fprintfDistanceToTargetReport.puts(“#{$1\t#{@@distancePrevious\t#{@@distanceCu
rrent}”)
end
@devFlag

1l
o

end
end
if ((@time_temp 1= @@time)&&(@linecounter > 100)&& (
@@numOfSpeedZero < 25)) #SKIP THE XML HEADER INFO and limit ZERO speed entries less than
25.

@@printfSpeedRaw.puts(“#{@a@time}\t#{@@entitySpeed}\t#{@@CoordEnti[:s]}")

@@printfDistanceToTargetRaw.puts(“#{@@time}\t#{@@distancePrevious}\t#{@@distanceCu
rrent}”)

@@fprintfDeviationFromPathReportRaw.puts(“#{@@time}\t\t#{@@distanceDeviation}™)
@speed_temp = @@entitySpeed
@time_temp = @@time
@@distancePrevious = @@distanceCurrent
@time_temp = @@time

end
end
end

H#Hit# REPORT SUMMARY GENERATED HERE

@@fprintfSummaryReport.puts(““\n\n\n\t\t\tTEST SUMMARY\n\n’")

@@fprintfSummaryReport.puts(“\n\nl. Deviation of Entity’s speed”)

@@fprintfSummaryReport.puts(*“\nOutput generated when Entity’s speed deviates more
than #{@@SPEED_LOW_DEV}% down\n or more than #{@@SPEED_HIGH_DEV}% up from commanded speed
#{@@speedCommanded}m/s.”")

@@fprintfSummaryReport.puts(““\n\n\tTotal speed measurements:
#{@@totalNumOfMovement}’")

@@fprintfSummaryReport.puts(“\tNumber of entries where Entity’s speed was more
than #{@@SPEED_LOW_DEV}% down than commanded speed: #{@@numOfSlow}’")

@@fprintfSummaryReport.puts(“\tNumber of entries where Entity’s speed was more
than #{@@SPEED_HIGH_DEV}% up than commanded speed: #{@@numOfFast}’’)

@@fprintfSummaryReport.puts(“\n\tThe data set for SPEED measurments that deviate
from the commanded speed is located in file:\n\t #{@@dataFile}_Speed_Test Rpt.txt)

57

@@fprintfSummaryReport.puts(“\n\n\tThe column format for data items in that
file:™)

@@fprintfSummaryReport.puts(“\tTIME\tCURRENT_SPEED\tSLOPE_OF_TERRAIN’")

@@fprintfSummaryReport.puts(“\n\tThe RAW data set of Speed measurments is located
in file:\n\t #{@@dataFile}_Speed_Raw_Data.txt’)

@@fprintfSummaryReport.puts(“\n\tThis RAW data file is TAB delimited with NO
HEADERS. The file format is similar to the REPORT
File:\n\tTIME\tCURRENT_SPEED\tSLOPE_OF_TERRAIN")

if(@@totalNumOfMovement.to_f == 0.0)

@@fprintfSpeedReport.puts(“\n\t ZERO DEVIATION ENTRIES FOUND.’")
end

###DISTANCE TO TARGET

@@fprintfSummaryReport.puts(“\n\n2. Deviation of Entity’s Distance To Target:\n”)

@@fprintfSummaryReport.puts(“ *Note: Distance calculations use (X, y) coordinates
ONLY. \n”)

@@fprintfSummaryReport.puts(“\n\tTotal Entity Coordinate entries:
#{@@numOfEntityLocations}™)

@@fprintfSummaryReport.puts(“\tTotal number of Entity entries when distance DOES
NOT decrease: #{@@distanceNumOf}’”)

@@fprintfSummaryReport.puts(“\n\tANY Distance to Target measurements that are not
strongly less than previous distance are located in file:\n \t
#{@@dataFile} Distance To_Target Rpt.txt”)

@@fprintfSummaryReport.puts(“\n\tThe column format for data items in that file:")

@@fprintfSummaryReport.puts(“\tTIMENtENTITY”S_PREVIOUS_DISTANCENtENTITY”S_CURRENT_
DISTANCE™)

@@fprintfSummaryReport.puts(‘“\n\tThe RAW data set of Distance To Target
measurments is located in file:\n\t #{@@dataFile}_ Distance_To_Target_Raw_Data.txt™)

@@fprintfSummaryReport.puts(“\n\tThis RAW data file 1is TAB delimited with NO
HEADERS. The file format is similar to the REPORT
File:\n\tTIME\tENTITY”S_PREVIOUS_DISTANCE\tENTITY”S_CURRENT_DISTANCE™)

if(@@distanceNumOf.to_f == 0.0)

@@fprintfDistanceToTargetReport.puts(*“\n\t ZERO DEVIATION ENTRIES FOUND.’*)
end

###ROUTE DEVIATION FROM THE ROUTE/ROAD

@@fprintfSummaryReport.puts(“\n\n3. Deviation of Entity’s Location from the route
to the target location.\n”)

@@fprintfSummaryReport.puts(‘“\nOutput generated when Entity deviates more than 10m
from the commanded route.\n’)

@@fprintfSummaryReport.puts(*“ *Note: Distance calculations use (X, y) coordinates
ONLY. \n”)

@@fprintfSummaryReport._puts(“\n\tTotal Entity Coordinate entries:
#{@@numOFEntityLocations}”)

@@fprintfSummaryReport.puts(“\tNumber of entries where Entity deviates more than
10m from the route: #{@@distanceNumOfDeviation}’)

@@fprintfSummaryReport.puts(“\tMAX deviation detected for this scenario:
#{@@distanceMaxDeviation}m™)

@@fprintfSummaryReport.puts(“\n\tThe data set of deviation measurments is located
in file:\n\t #{@@dataFile}_ Distance_Deviation_Rpt.txt™)

@@fprintfSummaryReport.puts(‘“\n\tThe column format for data items in that file:”)

@@fprintfSummaryReport.puts(“\tTIMENtENTITY”S_DEVIATION_FROM_THE_PATH")

@@fprintfSummaryReport._puts(‘“\n\tThe RAW data set of Deviation Distance
measurments is located in file:\n\t #{@@dataFile} Distance_Deviation_Raw_Data.txt”)

@@fprintfSummaryReport.puts(“\n\tThis RAW data Tfile is TAB delimited with NO
HEADERS. The file format is similar to the REPORT
File:\n\tTIME\tENTITY”S_DEVIATION_FROM_THE_PATH")

if(@@distanceNumOfDeviation.to_f == 0.0)

@@fprintfDeviationFromPathReport.puts(“\n\t ZERO DEVIATION ENTRIES

FOUND.")

end

end

INPUT FILE PARSED FOR AUTOMATED TESTING OF SEVERAL SCENARIO AND DATA FILES

def Parse.inputfile()
if File.exists?(“inputtest.txt™)
File.open(“inputtest.txt”,”r””) do |infile]
while iLine = infile._gets

58

array = iLine.split
iLine.split(® ©)
if array.size == 4
@@searchLabel = array[2]
@@dataFile = array[1]
@@scenarioFile = array[0]
@@parseLabel = array[3]

searchdata()
else if array.size == 1
@@parseLabel = array[0]
searchdata()
else
puts “ERROR INPUT FILE WITH THIS SEARCH! *
end
end
end
end
else
if @@dataFile == “null” ### HARD CODED FILE FOR ABPVT DEVELOPMENT
ONLY
@@dataFile = “entity_CollectionTestTank _2007-08-15-09-49-29-
496 .xml”
end
if @@parseLabel == “null” ### HARD CODED FILE FOR ABPVT DEVELOPMENT
ONLY
@@parseLabel = *“currentSpeed”
end
searchdata()
end
end
#def Parse.calc(Float cx, Float cy, Float ax, Float ay ,
Float bx, Float by, #Float &distanceSegment,Float &distancelLine)

Float distanceSegment,Float distancelLine)

Based on algorithm from:

http://www.codeguru.com/forum/printthread.php?t=194400

By Philip Nicoletti, posted 06-14-2002 05:18 PM
#
#
d

Converted C code algorithm to Ruby

ef Parse.calc()

Float ax = (@@Coordlnit.x.to _f;Float ay = @@Coordlnit.y.to f;Float az =
@@CoordInit.z.to_f;

Float bx = @@CoordDest.x.to_f;Float by = @@CoordDest.y.to_f;Float bz =
@@CoordDest.z.to_T;

Float cx = (@@CoordeEnti.x.to f;Float cy = @@CoordEnti.y.to f;Float cz =

@@Coordenti.z.to_T;
use only x and y coordinates for distance calculations
INITIAL CALL JUST NEEDS TO CALC MAX DISTANCE; OTW, DO 3 POINT CALCULATION
iT @@DISTANCE_MAX 1= 0.0
Float dista = (bx-cx)*(bx-cx)+(by-cy)*(by-cy)
@@distanceCurrent = Math.sqrt(dista)
Float r_numerator = (cx-ax)*(bx-ax) + (cy-ay)*(by-ay)
Float r_denomenator = (bx-ax)*(bx-ax) + (by-ay)*(by-ay)
Float r = r_numerator / r_denomenator
Float px = ax + r*(bx-ax)
Float py = ay + r*(by-ay)
Float s = ((ay-cy)*(bx-ax)-(ax-cx)*(by-ay)) 7/ r_denomenator
@@distanceDeviation = s.abs * Math.sqrt(r_denomenator)
#// (xx,yy) is the point on the lineSegment closest to (cx,cy)
Float xx pXx
Float yy py

if ((r>=0) & (r<=1))
@@distanceSegment = @@distanceDeviation;

59

http://www.codeguru.com/forum/printthread.php?t=194400
http://www.codeguru.com/forum/printthread.php?t=194400

else
Float distl = (cx-ax)*(cx-ax) + (cy-ay)*(cy-ay)
Float dist2 = (cx-bx)*(cx-bx) + (cy-by)*(cy-by)

if (distl < dist2)
XX = ax
yy = ay
#distanceSegment = sgrt(distl);
@@distanceSegment = Math.sqrt(distl)

else
XX = bx
yy = by)
#distanceSegment = sqrt(dist2);
@@distanceSegment = Math.sqrt(dist2)
end

end

if(cx == 0) ### INITIAL VALUE
@@distanceDeviation =0
@@distanceSegment=0

end
else
Float dista = (ax-bx)*(ax-bx)+(ay-by)*(ay-by)
@@DISTANCE_MAX = Math.sgrt(dista)
end
end
def Parse.searchdata()
scenario()
data(Q) #run it on the data collection file
closeOutputFiles()
end
inputfile()
end

60

APPENDIX B PRESCRIPT

#!/usr/bin/env ruby
#require ‘rexml/document’ #Can’t use because more often than not, the xml data files are not closed properly!!!

The purpose of this script is to parse data collection files and return the (if one exist) entity in that file. Input to
this script are any file names... TODO exact path of file names...
The output is “ “ and “:” delimited string as follows:
<XML collection data file1>.xml <entity name> <propertyl> <p2> <p3> ... : <XML collection data file2>.xml
<entity name2> <propertyl> <p2><p3> ... : ...

HoHH R H R

class ParseControl
STRUCT to contain a GCC Coord unit and later more information.
#require ‘rexml/document’

#@@xml=0

#@ @entityFilename = “entity.tags.txt”
@@entityFile=""

#@ @propertyListStdOut=""
@@propertyList=""

@@terminalList=""

#
.scenario() // Processes the Scenario file

def ParseControl.scenario(input)
LABEL VARS
@inputFile=input
@linecount=0

@propertyCount=-1

@propertyList=""
@terminalList=""

@entityName=

#CAN’T use because xml are mal-formed

#@@xml = REXML::Document.new(File.open(“#{input}”))

1993

#Get any and all co-ords
File.open(@inputFile,”r”) do [file|
file.each do |line|
if @linecount < 30
@linecount +=1
if ((line =~ /(<TYPE>)(null)/) && (@linecount < 30)) then
#puts “File: #{@inputFile} contain NULL entries for entity TYPE in the header.”
#puts @linecount
break
end
end
if (line =~ /(VALUES>)/) then
@propertyCount=0
#@propertyList = “#{@linecount}”
end
if ((line =~ /(<)(.+)(\WrefID=)/) && @propertyCount==0) then
@entityName = $2
if (($2 '= “uniqueid”) && ($2 !'= “ENTRY”) && ($2 != “SuppressionSpeedLimit”)

(%2 != “WeaponControlModel”) && ($2 != “SpeedDataCollection”) && \
($2 != “DriverFSM”) && ($2 != “DirectiveDataCollection”)) then

61

if ($2 =~/Sensor/)

#throw away
else
@terminalList =
“\n#{ @inputFile \n\t#{ @entityName H\n\t\t”
@propertyList = “#{@inputFile} #{@entityName} “
@propertyCount =1
end
end
end
#if ((line =~ /(<)([A-Za-z]+)(>) (-?\WW+H\. ¥ \w*-2\d?)(<)/) && (@propertyCount >0))
if ((line =~ /(<)(.+)(G)(*)(<))) && (@propertyCount >0)) then
local_var = $2
local_var_field = $4
local_var_type ="
@propertyCount +=1
if (local_var_field =~ /-A\d+\.\d+E?-?\d?/) then
local_var_type = “(float)”
else
if (local_var_field =~ \d+/) then local_var_type = “(integer)”
else
if (local_var_field =~ Aw+/) then
local_var_type = “(string)”
end
end
end
#puts “#{local_var_field} #{local_var_type}”
THEHHHHHT R R formating or not?
HHHHHH R
JAVA needs to return this list w/o the data types!
@terminalList = “#{@terminalList}#{local_var}#{local_var_type}n\t\t”
@propertyList = “#{@propertyL.ist} #{local_var} #{local_var_type} “
#
HEHHH R R R
end
if ((line =~ /(<)(\w+)(>\n)/) && (@propertyCount >0)) then
@propertyList = “#{@propertyList}#{$2})* “
@terminalList="#{@terminalList}(#{$2})*\n\t\t”
end
if ((line =~ /(<VVALUES>)/) && (@propertyCount < 6)) then
@propertyCount=-1
@propertyList=""
end
if ((line =~ /(<VVALUES>)/) && (@propertyCount >=6)) then
if ((@propertyList =~ /slopei/) || (@propertyList =~ /stgjCodei/) || (@propertyList =~
[entityLocation/i) \
|| (@propertyList =~ A\Worientation\W/i))
#puts “Entity: #{@entityName} contains the following proprty tags:”
HHHHHHHAHHHH A todo: return to calling Java GUI
HEHHHHH R R

#puts “#{@propertyList}”
#@@entityFile.puts “#{@propertyList} : “

@@propertyList = “#{@ @propertyList}#{@propertyList}: “
@@terminalList = “#{@ @terminalList}#{@terminalList}: “
@propertyList=""

@terminalList=

62

@propertyCount=-1

break
else
#puts “#{@propertyList} but continuing...”
@propertyList=""
@terminalList=""
@propertyCount=-1
end
end
end
end
if @entityName == “” then puts “FILE #@inputFile contains no ENTITY information.” end
end
#
#

def ParseControl.process()
ARGV.each {| x|
if File.exists?(“#{x}")
#puts X
@@newFile =true
scenario(x)

#puts
else
puts
puts “File: #{x} not found!”
puts
end
}

end

#%x{clear}

#puts

#puts

#puts Time.now

#puts “#{ARGV size} FILENAMES entered...”

UNCOMMENT TO OPERATED

if ARGV size > 0 then
#@@entityFile= File.new(“#{@ @entityFilename}”, “w”
process()
#@ @entityFile.close
end
#puts

#puts “property tags:”

#puts “#{@@propertyList}”
puts “#{@@terminalList}”
#puts Time.now

end

63

THIS PAGE INTENTIONALLY LEFT BLANK

64

APPENDIX C POSTSCRIPT

#!/usr/bin/env ruby

class ParseControl

STRUCT to contain a GCC Coord unit and later more information.
Coordinate = Struct.new(:x, 3y, 3z, :S)
@@cCoordInit = Coordinate.new(“0”, “0”, “0”, “0”)
@@CoordInit2 = Coordinate.new(“0”, “0”, “0”, “0")

@ @savePItFilename="save.plt”
@@savePItFile=0

@@linux=false
@Q@inputFile=""
@@xyOutputFilename=0
@@xyOutputFile=0
@@plotScriptName=0
@@plotScriptFile=0

@ @speedLabel=0

#@ @newFile=true

@@entityName=""
@@ARGV=""
@@argv_num=0
@@lineOutputToFile=""

@@CoordFile=0
@@CoordFilename=""

#
#

def ParseControl.getOS()
#puts ARGV
#os = %x{uname}
#if /"cygli =~ os

0s = “cygwin....”
if os=~ /"cygli
#puts “CYGWIN Environment Detected...”
else
#puts “Linux Environment Detected...”
@@linux=true
end
end
#
#

def ParseControl.plotScript()
@@plotScriptName="#{@ @xyOutputFilename}.plt”
@@plotScriptFile = File.new(“#{@@plotScriptName}”, “w”)

#@ @savePltFilename is “save.plt” which is a generic plot formatter for plot-to-file
@@savePItFile = File.new(“#{@ @savePItFilename}”, “w”)

if @@linux
@@savePlItFile.puts “set terminal postscript landscape enhanced color dashed “ +\
“Iw 1 \"Helvetica\” 14”
@@savePltFile.puts “set size 1.0, 0.8”
@@savePltFile.puts “set output \"#{@ @xyOutputFilename}.ps\””
@@savePltFile.puts “replot”
#@ @savePItFile.puts “set terminal postscript”
else

65

@@savePltFile.puts “set terminal png”
@@savePltFile.puts “set size 1.0, 0.8”
@@savePltFile.puts “set output \"#{@@xyOutputFilename}.png\””
@@savePltFile.puts “replot”
#@ @savePItFile.puts “set terminal windows”
end

@@savePltFile.close

HittHHHHHHH A Script file controls WHAT s plotted by simple one liner “plot XFile” #Httt#HHHHHHH#H

usingWhat="1:2"

#Time VS One

if (@@argv_num < 3) then
usingWhat = “1:2”

end

#X VS'Y default

if (@Q@ARGV =~ /entityLocation/i && @@argv_num < 3) then
usingWhat = “2:3”

end

if (@@ARGYV =~ /time/i && @@ARGYV =~ /xcord/i) then
usingWhat = “1:2”
end

if (@@ARGYV =~ /time/i && @@ARGV =~ /ycord/i) then
usingWhat = “1:3”
end

if (@@ARGV =~ /time/i && @@ARGV =~ /slope/i) then
usingWhat = “1:3”
end

if (@@ARGV =~ /currentspeed/i && @@ARGYV =~ /slope/i) then
usingWhat = “2:3”
end

HHHHHHHHHHHHHHHH . SOMETHING TO CUSTOMIZE PLOTS... #####HHHHHHH#
#@ @plotScriptFile.puts(“plot \"#{@ @xyOutputFilename}\” using #{usingWhat}")
@@plotScriptFile.puts(“plot \"#{@ @xyOutputFilename}\” using 2:3")
@@plotScriptFile.puts(“load ‘#{@ @savePItFilename}’”)

#if @@linux then

#@ @plotScriptFile.puts(“!mv my-plot.ps #{ @ @xyOutputFilename}.ps™)
#else

#@@plotScriptFile.puts(“!mv my-plot.png #{@ @xyOutputFilename}.png”)
#end

@@plotScriptFile.close
end

#
experimental multiplots

def ParseControl.plotScripts(x,y,z)
@@plotScriptName="multiPlot.plt”
@@plotScriptFile = File.new(“#{@@plotScriptName}”, “w”
@@plotScriptFile.puts(“plot \"#{x}\"” using 2:3,\"#{y}\” using 2:3,\"#{z}\" using 2:3”)
@@plotScriptFile.puts(“load “#{@ @savePItFilename}’”)
@@plotScriptFile.puts(“!mv my-plot.ps #{@ @plotScriptName}.ps”)
@@plotScriptFile.close

plot()
end

#
#

def ParseControl.plot()
#exec “pgnuplot #{@ @filenameRawDistanceDataScript} #{@ @filenameRawSpeedDataScript}”

66

#exec “pgnuplot #{@ @plotScriptName}”
if @@linux
Y%x{gnuplot #{@ @plotScriptName}}
#%x{rm -f my-plot.ps}
else
Y%ox{plot #{@@plotScriptName}}
#%x{del my-plot.png}
end
end
def ParseControl.openOutputScripts()
end

#
.scenario() // Processes the data XML file

def ParseControl.dataFile()

LABEL VARS
@@entityName = ARGV[1]
@@speed =0
@@time=0
@entityLocked = -1
@var=""

@subLockVar=""

@subLock=false

#Get any and all co-ords
File.open(@@inputFile,”r”) do [file|
file.each do |line|

New set of entity tags found, set flag

if (line =~ /(<#{@@entityName})/) then

@entityLocked = 0
end
once flagged, then process each line until flag is off
if ((line =~/<(\w+)>/) && (@entityLocked == 0)) then

@var = $1

If the line matches one of the search tags entered

if (@@ARGV =~ /#{@var}/) then

IF the tag is alone <xxx>, then a set of other tags are next
if (line =~ /<#{@var}>\n/) # Only <xxxx> found within an entity tag set
@subLockVar=@var
@subLock=true
#puts @subLockVar #this is correct
else
Count tag as an entity property tag
@@argv_num +=1
end

If line contains a form of grid coordinate, then grab it
if ((line =~ /(<#{@var}>GCCAWAW)(-2\d+.2\d*) \WAW) (-2\d+.\d*) \WAW) (-2\d+.\d*)/)\
&& (@entityLocked == 0)) then

@@CoordInit[:x] = $2

@@CoordInit[:y] = $4

@@CoordInit[:z] =$6 # :z not used...

@@lineOutputToFile = “#{@@lineOutputToFile}#{@ @ CoordInit[:x]}\t” +

“#{@@CoordInit[:y]}\t”
#@@argv_num = @@argv_num + 2
end

Some string to int conversion, like posture
if ((line =~ /[(<#{@var}>)(-\d* Ad*E?-Nd?\w*) (<VH#H{@var}>)/) &&\
(@entityLocked == 0)) then
var_num = $2
if (var_num =~ /false/i || var_num =~ /sitting/i) then

67

var_num =0
end
if (var_num =~ /true/i || var_num =~ /standing/i) then
var_num=1
end
@@lineOutputToFile = “#{@@lineOutputToFile}#{var_num}\t”
end
end
end
if (@subLock && line =~ /<([xyz])>(-?\d+.\d+)(<V/[xyz]>)/) then
#if (line =~ /(<)([x-z])(>)(-\d+.\d+)(<V[x-z]>\n)/) then
@@CoordInit2[:"#{$1}"] = $2
var = $1
#puts line
if var =="x” then
@subLock=false
@@lineOutputToFile = “#{@@IineOutputToFile}#{@@CoordInit2[:x]}\t” +

“#{@@CoordInit2[:y]}\t”
#puts “#{@ @CoordInit2[:x]\#{@@CoordInit2[:y]}”
end

end

if ((line =~ /<V#{@@entityName}>/) && (@entityLocked == 0)) then
@entityLocked = 1

end

if ((line =~ /<TIME>(\d+)<VTIME>/) && (@entityLocked == 1) &&\
(@entityLocked == 1)) then
@@lineOutputToFile = “#{$1}\t#{@@lineOutputToFile}”
@@xyOutputFile.puts “#{@@]lineOutputToFile}”
#puts @@lineOutputToFile

@@IlineOutputToFile=""
@entityLocked = -1
@@argv_num=0

end
end
end

@@xyOutputFile.close
end

#
#

def ParseControl.process()
#ARGV.each {| x|
if File.exists?(“#{ARGV[0]}")
#puts ARGV[0]
#@@newFile =true
@@inputFile = ARGV[0]

@@xyOutputFilename ="#{@ @inputFile} #{ARGV[2]}.txt”

@@xyOutputFile = File.new(“#{@ @xyOutputFilename}”, “w”)
#scenario(@@inputFile)
dataFile()
plotScript()
#puts “plotting... #{ARGV[0]}”

plot()
#puts
else
#puts
puts “File: #{ARGV[0]} not found!”
#puts
end

end

68

START HERE

H H

I

R R R R R R B R R R R R A R R e R R R

getOS()

#%x{clear}

#puts

#puts

#puts Time.now

@@argv_num = ARGV .size - 1

#puts “#{ARGV.size} {PARAMERTERS} entered...”

build the argument string to use as a RE parser

foriin2.@@argv_num
#puts ARG VTi]
@@ARGV = “H{@@ARGVH{ARGVIil}

end

#puts @@ARGV

UNCOMMENT TO OPERATED

if ARGV size > 0 then process() end

#clean up temp files
if @@linux
%ox{rm -f #{@@savePItFilename}}
%x{rm -f #{@@plotScriptName}}
else
%x{del #{@ @savePItFilename}}
%x{del #{@@plotScriptName}}
end
end

69

THIS PAGE INTENTIONALLY LEFT BLANK

70

APPENDIX D MOVE TACTICALLY (MT) SAMPLE RAW DATA
FILES

entity_CollectionTestTank_2007-08-15-09-49-29-496.xml_Speed_Raw_Data.txt

21 0 0

309 0 0

408 0 0

608 0.42843525442672326 -0.007060990631857278
815 0.42843525442672326 -0.007060990631857278
916 0.42843525442672326 -0.007060990631857278
1008 0.8038322418472359 -0.007060990605229023
1208 1.2672813683295319 -0.007060990661850841
1408 1.730085814759963 -0.007060990617765217
1608 2.1954382146037354 -0.007060990938389411
1808 2.660595066134107 -0.007060990934562694
2012 3.121721578033425 -0.0070609913201220564
2208 3.5500522114181114 -0.0070609913505428334
2408 3.9728599452675497 -0.007060991574751263
2608 4.381451261475838 -0.007060991675884587
2808 4.775808190967702 -0.007060991955380569
3008 5.156388180118532 -0.0070609922137285785
3124 5.156388180118532 -0.0070609922137285785
3208 5.523071010305859 -0.007060992614881911
3408 5.875534826692347 -0.00706099275698957
3608 6.214330955285862 -0.007060993177459451
3808 6.539714983720519 -0.007060993532419957
3964 6.539714983720519 -0.007060993532419957
4008 6.852064820787036 -0.0070609938504293535
4208 7.151902588058618 -0.0070609944193040786
4408 7.442100818498093 -0.007060994819886979
4608 7.725204561797142 -0.007060995343038279
4808 8.001387257148904 -0.007060995605431053
5008 8.270825062925232 -0.007060996107677742
5208 8.535027561832864 -0.0070609966120411816
5292 8.535027561832864 -0.0070609966120411816
5408 8.793408840618643 -0.007060997177282813
5608 9.045145338523852 -0.0070609976404916175
5808 9.239684882820328 -0.00706099821151307
6008 9.392993631345002 -0.007060998797643769
6208 9.52609585465716 -0.007060999202391782
6408 9.50098594017439 -0.007060999867755768
6452 9.50098594017439 -0.007060999867755768
6607 9.444262747065336 -0.0070610004059010745
6807 9.387512289431182 -0.007061000822560226
7007 9.336798002266386 -0.007061001469055528
7207 9.292479261160183 -0.007061001944445033
7407 9.253944107074545 -0.007061002472492417
7607 9.22047644532638 -0.007061003106418662
7808 9.19127229972116 -0.007061003645920216
8007 9.166188237714188 -0.007061004128632975
8133 9.166188237714188 -0.007061004128632975
8187 9.166188237714188 -0.007061004128632975
8207 9.144284182610876 -0.007061004508102542
8407 9.125267125242841 -0.007061005081376637
8607 9.108756565948076 -0.007061005678802745
8807 9.09442214417055 -0.007061006292748306
9007 9.081977039442355 -0.007061006783585233
9207 9.071172234568875 -0.00706100728749659

entity_CollectionTestTank_2007-08-15-09-49-29-496.xml_Distance_To_Target_Raw_Data.txt

21
309
408

2871.41395446089
2871.41395446089
2871.41395446089

2871.41395446089
2871.41395446089
2871.41395446089

71

608
815
916
1008
1208
1408
1608
1808
2012
2208
2408
2608
2808
3008
3124
3208
3408
3608
3808
3964
4008
4208
4408
4608
4808
5008
5208
5292
5408
5608
5808
6008
6208
6408
6452
6607
6807
7007
7207
7407
7607
7808
8007
8133
8187
8207
8407
8607
8807
9007
9207
9407
9607
9655
9807
10007
10207
10407
10603
10807
11007
11207
11403
11607
11807
12007
12203

entity_CollectionTestTank_2007-08-15-09-49-29-496.xml_Distance_Deviation_Raw_Data.txt

2871.41395446089
2871.29866380205
2871.29866380205
2871.29866380205
2871.14355246423
2870.8901424028

2870.54418833091
2870.1051807533

2869.57315877546
2868.93644373432
2868.24076043617
2867.44633338114
2866.57020298652
2865.61521561551
2864.58412615892
2864.58412615892
2863.47971354705
2862.30482106947
2861.06218177103
2859.75447758796
2859.75447758796
2858.38431488897
2856.95419563712
2855.46604739414
2853.92128880452
2852.32130383159
2850.66744121307
2848.96074782584
2848.96074782584
2847.20238770779
2845.39368957886
2843.54609074328
2841.66783585627
2839.76296548742
2837.86311627299
2837.86311627299
2835.9840522615

2834.10689379968
2832.23987642541
2830.3817212627

2828.53127180511
2826.6875147393

2824.84040791319
2823.01667119431
2823.01667119431
2823.01667119431
2821.18815004337
2819.36343169125
2817.54201493001
2815.72346461179
2813.90740294245
2812.09350192202
2810.28147678207
2808.47108028727
2808.47108028727
2806.66209778891
2804.85434292932
2803.04765391359
2801.24189027165
2799.4730135787

2797.63266574195
2795.82900870231
2794.02587745867
2792.25924734164
2790.42092347022
2788.61898922216
2786.81735374696

2871.29866380205
2871.29866380205
2871.29866380205
2871.14355246423
2870.8901424028

2870.54418833091
2870.1051807533

2869.57315877546
2868.93644373432
2868.24076043617
2867.44633338114
2866.57020298652
2865.61521561551
2864.58412615892
2864.58412615892
2863.47971354705
2862.30482106947
2861.06218177103
2859.75447758796
2859.75447758796
2858.38431488897
2856.95419563712
2855.46604739414
2853.92128880452
2852.32130383159
2850.66744121307
2848.96074782584
2848.96074782584
2847.20238770779
2845.39368957886
2843.54609074328
2841.66783585627
2839.76296548742
2837.86311627299
2837.86311627299
2835.9840522615

2834.10689379968
2832.23987642541
2830.3817212627

2828.53127180511
2826.6875147393

2824.84040791319
2823.01667119431
2823.01667119431
2823.01667119431
2821.18815004337
2819.36343169125
2817.54201493001
2815.72346461179
2813.90740294245
2812.09350192202
2810.28147678207
2808.47108028727
2808.47108028727
2806.66209778891
2804.85434292932
2803.04765391359
2801.24189027165
2799.4730135787

2797.63266574195
2795.82900870231
2794.02587745867
2792.25924734164
2790.42092347022
2788.61898922216
2786.81735374696
2785.05200018731

21
309
408
608
815
916
1008
1208
1408
1608
1808
2012
2208
2408
2608
2808
3008
3124
3208
3408
3608
3808
3964
4008
4208
4408
4608
4808
5008
5208
5292
5408
5608
5808
6008
6208
6408
6452
6607
6807
7007
7207
7407
7607
7808
8007
8133
8187
8207
8407
8607
8807
9007
9207
9407
9607
9655
9807
10007
10207
10407
10603
10807
11007
11207
11403

0

0

0
0.00095756711790557
0.00095756711790557
0.00095756711790557
0.0022458702062105
0.00435060676915896
0.00722397453180222
0.0108701985460707
0.0152889439957207
0.020577195382559
0.0263551689474201
0.0329532038086292
0.0402297510373278
0.0481611468992202
0.0567244878401434
0.0567244878401434
0.0658966659602398
0.0756540392819832
0.085973879607918
0.0968338819072812
0.0968338819072812
0.10821236788214
0.120088525447509
0.132446313721869
0.145273917632107
0.158559808038961
0.172292749159254
0.186464011505775
0.186464011505775
0.201063892574449
0.216081322433598
0.231421303983066
0.24701535655974
0.262829910379761
0.278602300078891
0.278602300078891
0.294201661996188
0.309784739560092
0.325283169202989
0.340707574283677
0.356067561006759
0.371371546992257
0.386702887811379
0.401839807838191
0.401839807838191
0.401839807838191
0.41701599823074
0.432160187132825
0.447276535880607
0.462368658184164
0.47743969064092
0.492492358542043
0.507529025371762
0.522551744093102
0.522551744093102
0.537562296635114
0.552562230881782
0.567552890366388
0.582535440565685
0.597211516245326
0.612480146557917
0.627443929107376
0.642402919994531
0.657058672352201

73

THIS PAGE INTENTIONALLY LEFT BLANK

74

APPENDIX E MOVE TACTICALLY (MT) SAMPLE REPORTS

Thu, 03 Jul 2008 11:48:05 -0700

BEHAVIOR VERIFICATION SUMMARY FOR: tankAbramsM1A1
for simple Move Tactically behavior

Behavior inputs from scenario file:
/PAIR/compositions/behavior/composite/mr/moveTactically_CB.xml
Properties checked in data collection file:
entity_CollectionTestTank_2007-08-15-09-49-29-496.xml
The COMMANDED SPEED from scenario, 9.0m/s (32.4 Km/hr).
Initial Coordinates,

X: -287361.97703322954

y: -5464905.16566183

z: 3265213.5159455426

Target Coordinates,
X: -284493.6358636792
y: -5465037.970153228
z: 3265149.889087235

Total distance 2871.41395446089m from Initial to Target.

File: entity_CollectionTestTank_2007-08-15-09-49-29-496.xml_Distance_To_Target_Rpt.txt

TIME ENTITY’S_PREVIOUS_DISTANCE ENTITY’S_CURRENT_DISTANCE
ZERO DEVIATION ENTRIES FOUND.

Thu, 03 Jul 2008 11:48:05 -0700

BEHAVIOR VERIFICATION SUMMARY FOR: tankAbramsM1A1l
for simple Move Tactically behavior

Behavior inputs from scenario file:
/PAIR/compositions/behavior/composite/mr/moveTactically_CB.xml
Properties checked in data collection file:
entity_CollectionTestTank_2007-08-15-09-49-29-496.xml
The COMMANDED SPEED from scenario, 9.0m/s (32.4 Km/hr).
Initial Coordinates,

X: -287361.97703322954

y: -5464905.16566183

z: 3265213.5159455426

Target Coordinates,
X: -284493.6358636792
y: -5465037.970153228
z: 3265149.889087235

Total distance 2871.41395446089m from Initial to Target.
File: entity_CollectionTestTank_2007-08-15-09-49-29-496.xml_Speed_Test_Rpt.txt

TIME CURRENT_SPEED SLOPE_OF_TERRAIN
608 0.42843525442672326 -0.007060990631857278
815 0.42843525442672326 -0.007060990631857278

1008 0.8038322418472359 -0.007060990605229023
1208 1.2672813683295319 -0.007060990661850841
1408 1.730085814759963 -0.007060990617765217
1608 2.1954382146037354 -0.007060990938389411
1808 2.660595066134107 -0.007060990934562694
2012 3.121721578033425 -0.0070609913201220564
2208 3.5500522114181114 -0.0070609913505428334
2408 3.9728599452675497 -0.007060991574751263
2608 4.381451261475838 -0.007060991675884587
2808 4.775808190967702 -0.007060991955380569
3008 5.156388180118532 -0.0070609922137285785
3208 5.523071010305859 -0.007060992614881911
3408 5.875534826692347 -0.00706099275698957

3608 6.214330955285862 -0.007060993177459451
3808 6.539714983720519 -0.007060993532419957
4008 6.852064820787036 -0.0070609938504293535

75

4208

4408

4608

6208

6408

110605
110805
111005
111205
111405
111605
111805
112005
112205
112405
112604
112805
113004
113204
113404
113604
113804
114004
114208
114408
114608
114808
115008
115208
115408
115608
115808
116008
116208
116408
123807
124007
124207
124407
124607
124807
125007
125207
125407
125607
125807
126007
126207
126407
126607
126806
127006
127206
127406
127606
127807
128006
128206
128406
128606
128806
129006
129206
129406
136809
137009
137209
137409

7.151902588058618
7.442100818498093
7.725204561797142
9.52609585465716
9.50098594017439
7.819840467467071
7.78076647184685
7.766065484096864
7.751364496688694

-0.0070609944193040786
-0.007060994819886979
-0.007060995343038279
-0.007060999202391782
-0.007060999867755768
0.008851702047446564
0.008851699755941578
0.008851697590139596
0.008851695052097819

7.736663509558387 0.008851692988930182
7.7219625227189335 0.008851690829287717
7.707261536220452 0.008851688297520477
7.692560550052885 0.008851685840425949
7.677859564137374 0.008851683968874147
7.663158578553312 0.008851681507809683
7.6487458111942965 0.008851679194719964
7.634675337598406 0.00885167698302447
7.6212578569386835 0.008851674513260743
7.608334798400123 0.008851672313270331
7.596010530756319 0.008851670305100257
7.58432017057321 0.008851667801070606
7.573296313338535 0.008851665544127973
7.5646705610717735 0.008851663493500306
7.560936291301335 0.008851661314250414
7.5619502223197905 0.008851658666687579
7.567589924344026 0.008851656656259976
7.5777293057908715 0.008851654327844516
7.592199499799755 0.008851651825561024
7.610798679996644 0.008851649808622852
7.634048504657821 0.00885164744528355
7.6628170008158545 0.008851645222611948

7.696765933693851
7.735535480162836
7.778749885077808
7.826021604583755
7.793624346883217
7.777483198162732

0.008851642800750792
0.008851640645963554
0.008851638194158573
0.008851635835011473
0.008851542846615157
0.00885154047569281

7.7627822318869235 0.008851538141037674

7.748081265906763
7.733380300261873
7.718679334936104
7.703978369920438
7.689277405175763
7.67457644078027

7.660003610888861
7.645887574826878
7.632270140136243
7.619191387268283
7.606689399123925
7.594799980790489
7.583607592026687
7.573775363759782
7.568710314886449
7.568367104902753
7.57265882250181

7.581546041496571
7.594616334142856
7.611923431446251
7.633375740967703
7.66041118931869

7.692700398602957
7.72989110171979

7.771614032584505
7.817487108276351
7.790513202503865
7.775573250388492
7.760855483481168
7.746138510789903

0.008851535945806344
0.008851533456381011
0.00885153108685266
0.008851528784290519
0.008851526772135854
0.008851524179406933
0.008851522053288763
0.00885151964370201
0.008851517376009532
0.008851515142016764
0.008851512916503435
0.008851510543620877
0.008851508277733622
0.008851506320139757
0.008851503852386644
0.008851501526922823
0.008851499375647887
0.008851496919237922
0.008851494622325706
0.008851492505968839
0.008851490293273256
0.008851488032785015
0.008851485780637436
0.008851483465677434
0.008851481138347106
0.008851478717015304
0.00897085570131928
0.008976772090645069
0.008976297888467322
0.0089703995603434

76

137609 7.731422330858784 0.008964512100344546
137810 7.716633365108576 0.008958635745947685
138009 7.701992343232535 0.00895274171542515
138209 7.687278532588095 0.00894691684416804
138409 7.672565508680277 0.00894107433790814
138609 7.658004736633625 0.008935242963571843
138809 7.643904224699935 0.008929422303936008
139009 7.630305876955325 0.008923612400783432
139209 7.617249892206271 0.008917812977624173
139409 7.60477448578443 0.00891202322586393
139609 7.592915365733645 0.008907130253845263
139809 7.5817044184853035 0.008907128027286326
140009 7.572174777470604 0.008907125984650932
140209 7.567403652788363 0.008907123978016074
140409 7.567345521646484 0.0089071218454011

140609 7.571911757748897 0.00890711958410706
140809 7.580975595927996 0.008907117605767345
141009 7.594375306805454 0.008907115044572755
141204 7.611288612442124 0.008907112945595319
141408 7.633592461185847 0.008907111153316771
141604 7.660197856674736 0.008907109067214147

Thu, 03 Jul 2008 11:48:05 -0700

BEHAVIOR VERIFICATION SUMMARY FOR: tankAbramsM1A1
for simple Move Tactically behavior

Behavior inputs from scenario file:
/PAIR/compositions/behavior/composite/mr/moveTactically_CB.xml
Properties checked in data collection file:
entity_CollectionTestTank_2007-08-15-09-49-29-496.xml
The COMMANDED SPEED from scenario, 9.0m/s (32.4 Km/hr).
Initial Coordinates,

X: -287361.97703322954

y: -5464905.16566183

z: 3265213.5159455426

Target Coordinates,
X: -284493.6358636792
y: -5465037.970153228
z: 3265149.889087235

Total distance 2871.41395446089m from Initial to Target.

TEST SUMMARY

1. Deviation of Entity’s speed

Output generated when Entity’s speed deviates more than 15.0% down
or more than 5.0% up from commanded speed 9.0m/s.

Total speed measurements: 1666
Number of entries where Entity’s speed was more than 15.0% down than commanded speed: 279
Number of entries where Entity’s speed was more than 5.0% up than commanded speed: 5

The data set for SPEED measurments that deviate from the commanded speed is located in file:
entity_CollectionTestTank_2007-08-15-09-49-29-496.xml_Speed_Test_Rpt.txt

The column format for data items in that file:

TIME CURRENT_SPEED SLOPE_OF_TERRAIN

The RAW data set of Speed measurments is located in file:
entity_CollectionTestTank_2007-08-15-09-49-29-496.xml_Speed_Raw_Data.txt

This RAW data file is TAB delimited with NO HEADERS. The file format is similar to the REPORT file:

TIME CURRENT_SPEED SLOPE_OF_TERRAIN

77

2. Deviation of Entity’s Distance To Target:
*Note: Distance calculations use (x, y) coordinates ONLY.
Total Entity Coordinate entries: 1666
Total number of Entity entries when distance DOES NOT decrease: 0

ANY Distance to Target measurements that are not strongly less than previous distance are located in file:
entity_CollectionTestTank_2007-08-15-09-49-29-496.xml_Distance_To_Target_Rpt.txt

The column format for data items in that file:

TIME ENTITY’S_PREVIOUS_DISTANCE ENTITY’S_CURRENT_DISTANCE

The RAW data set of Distance To Target measurments is located in file:
entity_CollectionTestTank_2007-08-15-09-49-29-496.xml_Distance_To_Target_Raw_Data.txt

This RAW data file is TAB delimited with NO HEADERS. The file format is similar to the REPORT file:

TIME ENTITY’S_PREVIOUS_DISTANCE ENTITY’S_CURRENT_DISTANCE

3. Deviation of Entity’s Location from the route to the target location.

Output generated when Entity deviates more than 10m from the commanded route.
*Note: Distance calculations use (x, y) coordinates ONLY.
Total Entity Coordinate entries: 1666
Number of entries where Entity deviates more than 10m from the route: 931
MAX deviation detected for this scenario: 23.1664158903602m

The data set of deviation measurments is located in file:
entity_CollectionTestTank_2007-08-15-09-49-29-496.xml_Distance_Deviation_Rpt.txt

The column format for data items in that file:

TIME ENTITY’S_DEVIATION_FROM_THE_PATH

The RAW data set of Deviation Distance measurments is located in file:
entity_CollectionTestTank_2007-08-15-09-49-29-496.xml_Distance_Deviation_Raw_Data.txt

This RAW data file is TAB delimited with NO HEADERS. The file format is similar to the REPORT file:

TIME ENTITY’S_DEVIATION_FROM_THE_PATH

78

APPENDIX F MOVE TACTICALLY (MT) PRESENTATION
REPORT

Phase 1 Prototype Report
28 August 2007

Executive Summary: TRAC-Monterey has successfully created a working prototype of
the OneSAF Behavior Verification Automation tool. In its prototype form, the software
developed for this project auto-generates executable OneSAF scenarios and checks the
output of data files collected from OneSAF during the execution of these auto-generated
scenarios for specified parameter characteristics.

The following is a flow chart representation of the prototype operation.

Selecta Select Manual Pa&zmgter
Behavior for | Parameters to Identification of .
o intervals
Verification Vary Parameter
Enumerations

Combinatorial

¢ Test Generator
) Test
%e; se el,(li)ﬁ : g::ﬁ!?ii Manually replace Scenario
Scenario for the file cand date i Terp}lalate
behavior paramete_rs with ile
Metavariables
Auto- Execute OneSAF Data
generated with Data Collection Collection Automaled Property Test
Test using Auto-generated Siles Checking Reports
Scenarios Test Scenarios

Prototype Execution: The following portion of the report will describe each portion of
the Prototype software flowchart in detail.

Select aBehavior
for Verification

The first step in the execution of the prototype software is to select a
behavior for verification. In the case of this prototype demonstration, we have selected
the MoveTactically behavior for simplicity. It should be noted again, that the tests
executed in this prototype demonstration are intentionally simple, and are not intended to
constitute a complete verification. We chose move tactically over more robustly
79

documented behaviors, such as Emplace controlled Minefield in order to facilitate our
early work on OneSAF version 1.1. It is also important to stress that this is a prototype,
intended to demonstrate the feasibility of the Behavior Verification Automation
Concepts. Therefore, it was more important for us to use a behavior that functioned on
our existing OneSAF setups, rather than wait to get the most current version of OneSAF
functioning with new, robust behaviors. Future work will focus on traceable verification
of those robust behaviors using the techniques demonstrated in this prototype.

SelectParameters
toVary

The next step was to select the parameters of the behavior which we will
vary based on the selected scenario. For our purposes in this prototype, we selected 6
parameters to vary in the MoveTactically behavior:

Movement Technique

Speed

Formation Spacing

Hitch / Unhitch

Halt Duration

Weapons Control Status

It is important to note that although we input a final destination, we did not vary that
parameter. For the prototype, we consciously limited the number of parameters we
varied in order to facilitate the demonstrative nature of this report.

Develop aBaseline
Scenarioforthe
behavior

We then developed a simple baseline scenario for the behavior. In the
case of this execution, the baseline scenario consisted of an Abrams Tank, located in
open terrain. The tank is given the Composite Behavior MoveTactically, to a destination
point nearby. The destination location is not uniquely significant, though for the
purposes of this prototype demonstration, a location was chosen without any apparent
intervening terrain; approximately 2km away from the tank’s starting location.

Baseline
Scenariofile

Once manually created, the scenario is saved using OneSAF GUI. This
saved scenario file is used as the baseline for our scenario generation. All parameters that
will be varied must have an input entered into them, so that they will be changed from
their default values. During our initial development, we found that the structure of the
scenario file was different depending on whether or not default values were used.

’/.4—‘

Manually replace
candidate parameters
withMetavariables

In this manual process, the specific parameter values in the Baseline
Scenario are replaced with the metavariables used by the combinatorial testing tool. This
is done by manually editing the scenario XML file.

80

Test
Scenario
Template

File

J Once, the Baseline Scenario has had its parameter values replaced by
metavariables, it is saved as the Test Scenario Template file. This is simply the Scenario
XML file with the parameters of interest replaced by metavariables.

Attached example of this file in the *“Combinatorial Scenario Generator\Scenario

Template” folder:
Scenario.xml

Manualldentification

of Parameter
Enumerations

Depending on the given parameter, the value intervals are identified
using a combination of the available options in the OneSAF GUI and the enumerations
specified in the OneSAF source code. This process is a research / information gathering
process.

Parameter
value
intervals

J Once the parameter enumerations are determined, the desired range of
values is saved in an input specification file to be used by the Combinatorial Generator.
This file will specify either the discrete values to be tested, or a range of possible values,
such as a speed parameter between a maximum and minimum value.

Attached example of this file in the “Combinatorial Scenario Generator\Input Description
File” folder:

inputSpecification.txt

Combinatorial Test
Ganarator

This is a software process that uses the Input Specification file and the
Test Scenario Template File as inputs. The software generates a set of pair-wise
combinatorial parameter value tuples from the given input values, and outputs as many
test scenarios, based on the Test Scenario Template file, as are required for complete
pair-wise combinatorial testing of the parameters.

Auto-
generated
Test
Scenarios

These are the files generated by the Combinatorial Test Generator
Process. The number of auto-generated test scenarios corresponds to the number of pair-

81

wise combinatorial parameter value tuples. With six varied parameters, the Test
Generator produced 33 distinct tests scenarios. We have included 5 as examples.

Attached examples of these files in the “Combinatorial Scenario Generator\Output
Scenarios” folder. Note that the files are organized as scenario xml files, with

corresponding folders:
gen_driver0.0

gen_driverl.0
gen_driver2.0
gen_driver3.0
gen_driver4.0

Execule OneSAF wilh

DataCollection using

Auto-generated Tast
Scenarnos

Currently, the resulting auto-generated test scenario files are executed in
OneSAF using the Collect Analysis Data option under the Tools menu. In future, we
intend this process to be executed in a more automated fashion using scripts or the
OneSAF Autopilot mode.

Data
Collection
Files

From the OneSAF executions of our test scenarios, we generated these
data collection files.
Attached examples of these files are in the “Behavior Verification Prototype\OneSAF

Data Collection Files” folder:

entity_CollectionTestTank_2007-08-15-09-49-29-496 .xml
entity_CollectionTestTank 2007-08-15-16-52-04-366.xml
entity_CollectionTestTank 2007-08-17-15-47-38-512_xml
entity_CollectionTestTank _2007-08-20-16-20-41-807 .xml
entity_CollectionTestTank_2007-08-21-10-33-26-867 .xml

AutomatedProperty
Checking

This tool takes the data collection XML files as input, selects necessary
data from Data Collection File, and verifies properties of the behavior. These parameter
value tests are currently manually written in Ruby. For approximately a 20MB XML
data collection file, verification with the scripts took approximately 2-4 seconds per file.
In future iterations, we will develop a user interface to automate the generation of those
Ruby scripts. Additionally, it is important to note again that these tests were developed
for demonstration purposes only. They are not traced back to any documentation.
Developing robust tests and documentation traceability will be addressed in future phases
of this project, not in this prototype. This prototype is intended to demonstrate feasibility
of the methodology.

82

Test
Reports

_—

(graphs) of corresponding aspects of behavior.

Attached examples of these files are in the “Behavior Verification Prototype\Verification

Reports and Raw Data output” folder:

entity_CollectionTestTank_2007-08-15-09-49-29-496.
entity_CollectionTestTank 2007-08-15-09-49-29-496.
entity_CollectionTestTank_2007-08-15-09-49-29-496.
entity_CollectionTestTank _2007-08-15-09-49-29-496.
entity_CollectionTestTank _2007-08-15-09-49-29-496.
entity_CollectionTestTank_2007-08-15-09-49-29-496.
entity_CollectionTestTank 2007-08-15-09-49-29-496.
entity_CollectionTestTank_2007-08-15-09-49-29-496.
entity_CollectionTestTank_2007-08-15-16-52-04-366_
entity_CollectionTestTank_2007-08-15-16-52-04-366_2.
entity_CollectionTestTank_2007-08-15-16-52-04-366_2.

entity_CollectionTestTank_2007-08-15-16-52-04-366_2.
entity_CollectionTestTank_2007-08-15-16-52-04-366_2.
entity_CollectionTestTank _2007-08-15-16-52-04-366_2.
entity_CollectionTestTank_2007-08-15-16-52-04-366_2.
entity_CollectionTestTank 2007-08-17-15-47-38-512_3.
entity_CollectionTestTank_2007-08-17-15-47-38-512_3.
entity_CollectionTestTank _2007-08-17-15-47-38-512_3.
entity_CollectionTestTank 2007-08-17-15-47-38-512_3.
entity_CollectionTestTank 2007-08-17-15-47-38-512_3.
entity_CollectionTestTank _2007-08-17-15-47-38-512_3.
entity_CollectionTestTank 2007-08-17-15-47-38-512_3.
entity_CollectionTestTank 2007-08-20-16-20-41-807_5.
entity_CollectionTestTank _2007-08-20-16-20-41-807_5.
entity_CollectionTestTank_2007-08-20-16-20-41-807_5.
entity_CollectionTestTank 2007-08-20-16-20-41-807_5.
entity_CollectionTestTank 2007-08-20-16-20-41-807_5.
entity_CollectionTestTank _2007-08-20-16-20-41-807_5.
entity_CollectionTestTank _2007-08-20-16-20-41-807_5.
entity_CollectionTestTank_2007-08-21-10-33-26-867_4.
entity_CollectionTestTank 2007-08-21-10-33-26-867_4.
entity_CollectionTestTank_2007-08-21-10-33-26-867_4.
entity_CollectionTestTank _2007-08-21-10-33-26-867_4.
entity_CollectionTestTank_2007-08-21-10-33-26-867_4.
entity_CollectionTestTank 2007-08-21-10-33-26-867_4.
entity_CollectionTestTank_2007-08-21-10-33-26-867_4.

83

xml_Distance_Deviation_Rpt.txt

xml_Distance_To_Target_Raw_Data.

xml_Distance_To_Target Rpt.txt
xml_Speed_Raw_Data. txt
xml_Speed_Test_Rpt.txt
xml_Test_Summary_Rpt.txt

xml_Distance_Deviation_Raw_Data.

xml_Distance_Deviation_Rpt.txt

xml_Distance_To_Target Raw_Data.

xml_Distance_To_Target_Rpt.txt
xml_Speed_Raw_Data. txt
xml_Speed_Test_Rpt.txt
xml_Test_Summary_Rpt.txt

xml_Distance_Deviation_Raw_Data.

xml_Distance_Deviation_Rpt.txt

xml_Distance_To_Target_Raw_Data.

xml_Distance_To_Target_Rpt.txt
xml_Speed_Raw_Data.txt
xml_Speed_Test_Rpt.txt
xml_Test_Summary_Rpt.txt

xml_Distance_Deviation_Raw_Data.

xml_Distance_Deviation_Rpt.txt

xml_Distance_To_Target_Raw_Data.

xml_Distance_To_Target_Rpt.txt
xml_Speed_Raw_Data. txt
xml_Speed_Test_Rpt.txt
xml_Test_Summary_Rpt.txt

The Ruby scripts generate text files that contain Test Summary and
several data files for each verified property. These files can be used for visualization

xml_Distance_Deviation_Raw_Data.txt
xml_Distance_Deviation_Rpt.txt
xml_Distance_To_Target_Raw_Data.txt
xml_Distance_To_Target_Rpt.txt
xml_Speed_Raw_Data
xml_Speed_Raw_Data. txt
xml_Speed_Test_Rpt.txt

xml _Test_Summary_Rpt.txt
2_.xml_Distance_Deviation_Raw_Data.

t~t

t™~t

™t

t™~t

t~xt

t™~t

t™~t

t™t

Output Samples:
The following is an example of the test summary output. This test summary, specifically,
is found in the file:

entity_CollectionTestTank_2007-08-15-09-49-29-496.xml_Speed_Test_ Rpt.txt.
Thu, 30 Aug 2007 23:58:00 -0700

BEHAVIOR VERIFICATION SUMMARY FOR: tankAbramsM1A1l

for simple Move Tactically behavior

Behavior inputs from scenario file:
/PAIR/compositions/behavior/composite/mr/moveTactically CB.xml
Properties checked in data collection file:
entity_CollectionTestTank_2007-08-15-09-49-29-496 .xml
The COMMANDED SPEED from scenario, 9.0m/s (32.4 Km/hr).
Initial Coordinates,

X: -287361.97703322954

y: -5464905.16566183

z: 3265213.5159455426

Target Coordinates,
X: -284493.6358636792
y: -5465037.970153228
z: 3265149.889087235

Total distance 2871.41395446089m from Initial to Target.
TEST SUMMARY
1. Deviation of Entity’s speed

Output generated when Entity’s speed deviates more than 15.0% down
or more than 5.0% up from commanded speed 9.0m/s.

Total speed measurements: 1666

Number of entries where Entity’s speed was more than 15.0% down than commanded
speed: 279

Number of entries where Entity’s speed was more than 5.0% up than commanded speed:
5

The data set for SPEED measurments that deviate from the commanded speed is
located in file:
entity_CollectionTestTank_2007-08-15-09-49-29-496.xml_Speed_Test_Rpt.txt

The column format for data items in that file:
TIME CURRENT_SPEED SLOPE_OF_TERRAIN
The RAW data set of Speed measurments is located in file:
entity_CollectionTestTank_2007-08-15-09-49-29-496.xml_Speed_Raw_Data.txt
This RAW data file is TAB delimited with NO HEADERS. The file format is similar
to the REPORT file:
TIME CURRENT_SPEED SLOPE_OF_TERRAIN
2. Deviation of Entity’s Distance To Target:
*Note: Distance calculations use (X, y) coordinates ONLY.
Total Entity Coordinate entries: 1666
Total number of Entity entries when distance DOES NOT decrease: O

ANY Distance to Target measurements that are not strongly less than previous
distance are located in file:
entity_CollectionTestTank_2007-08-15-09-49-29-496 .xml_Distance_To_Target Rpt.txt
The column format for data items in that Ffile:
TIME ENTITY”S_PREVIOUS_DISTANCE ENTITY”S_CURRENT_DISTANCE
The RAW data set of Distance To Target measurments is located in file:
entity_CollectionTestTank_2007-08-15-09-49-29-
496.xml_Distance_To_Target _Raw_Data.txt
This RAW data file is TAB delimited with NO HEADERS. The file format is similar
to the REPORT file:
TIME ENTITY”S_PREVIOUS_DISTANCE ENTITY”S_CURRENT_DISTANCE
3. Deviation of Entity’s Location from the route to the target location.

Output generated when Entity deviates more than 10m from the commanded route.

84

*Note: Distance calculations use (X, y) coordinates ONLY.
Total Entity Coordinate entries: 1666
Number of entries where Entity deviates more than 10m from the route: 931
MAX deviation detected for this scenario: 23.1664158903602m

The data set of deviation measurments is located in file:
entity_CollectionTestTank_2007-08-15-09-49-29-496.xml_Distance_Deviation_Rpt.txt
The column format for data items in that file:
TIME ENTITY”S_DEVIATION_FROM_THE_PATH
The RAW data set of Deviation Distance measurments is located in file:
entity_CollectionTestTank_2007-08-15-09-49-29-
496 .xml_Distance_Deviation_Raw_Data.txt
This RAW data file is TAB delimited with NO HEADERS. The file format is similar
to the REPORT file:
TIME ENTITY”S_DEVIATION_FROM_THE_PATH

Examples of raw data visualization:

The output text files were imported to Excel to generate the following graphs. For future
iterations, we will examine auto generation of data visualization to assist in the
verification process.

85

Rew Spesd Data
anthy_ColleetionTaaiTunk 2007351500 4820488 soul_Spasd_Raw_Buin et

160000 200000 260000 300000 350000 400020
Timejre)

Rew Siops Data (Maiches Spasd Paoints)
antly_CollactionTesiTank 2007 -88-15.08.49-20458 >cul_Spend_Rew_Drinin

Timeimal

86

Distanzs From Path Devistion
antly_CollactiosTesiTank_2007-08-15.09.49-29.498 5on|_Distunca_Devirtion_Rarw_Duin.bet

0 50000 100000 150000 200000 250000 300000 350000 400020
Timafm)
Distance To Targst

antiiy_CollactionTesiTank_2007.08:15.09.45-28-488 oon|_Disinnce_To_Target_Aaw Duin.bd

0 £0000 100000

180000 200000 280000 300000 36000 400000
Timafm)

87

Included files:

The following is the file structure and location of the attached files for this prototype.
Instructions for implementing the software is located in the Source Code and
Documentation folders of each major component of this prototype.

Combinatorial Scenario Generator

Source Code and Documentation

Scenario Template

Input Description File

Output Scenarios

Behavior Verification Prototype
e OneSAF Data Collection Files
e Verification Reports and Raw Data Output

Limitations of Prototype:

As a prototype, this milestone demonstrates the fundamental concepts which make the
Automation of Behavior Verification possible. However, it is a prototype, and at this
stage, only a demonstration of concepts. It is not a completed product, and does not
execute from start to finish without manual intervention. Similarly, the parameter
characteristic tests are not fully mature. Future work will focus on creating “linking
software” which binds the significant pieces of software in this prototype together in a
user friendly manner. Future work will also focus on developing a means of producing
more significant parameter characteristic tests based on expectations extracted from the
development documentation.

Issues:

In the Scenario.xml there are four sets of GCC coordinates. We assume the first set
contains the Initial (mission start point) followed by the Target (destination, mission end
point) coordinates. We would like to know precisely which of the four sets are the actual
Initial and Target coordinates.

Additionally, when we create our own data collection specification, we could never
collect more than the first data point. Consequently, our work-around was to only use the
“Collect Analysis Data” function in the Tools menu in the MCT. This provided us with a
very basic, but useable, set of information.

Lastly, we encountered a consistent behavior failure when executing our scenarios, both
in OneSAF version 1.5 (Engineering Drop) and version 1.1. We verified the fault by
reproducing it with manually created scenarios in the MCT. Below are the screen shots
from the execution of both the manual and automatically generated scenarios.

88

MCT [Login ID: onesaf] - gen_driver].0

Lk Edn Yew Hanege Egerciie Cenirol Chechpont Testi Windew el

‘m[a[8] (&) (x[s[e]u]a (S]>[n]a)

» ' ' : -
e, Lon (D0.992507, -90 810023)

0 1 3 T A _
—_—— T — —
h)lt Coalition |mﬁm: 0011250 | |Sim Time: Aug 10, 2007 004451 CMT {UTCY #-S(& 1.00 "Ch(tlllﬂlﬁm??!mll Mm"m localhos "w sim state o “Running’, ”_ Aderts

The scenario was recreated in OneSAF Version 1.1, and we still received the same

exceEtion:

B ®je) -9

Due to the exception being thrown by the Primitive Behavior
net.onesaf.models.beh.primitive. mr.DetermineRoutesToCircularHalt, we believe that the
source of this fault is setting a haltDuration value. ‘haltDuration’ was randomly selected
for the purposes of this Prototype demonstration as a parameter to be varied. The
scenarios that successfully completed were those with haltDuration set to 0.

Conclusion:
In this prototype, we have successfully demonstrated the feasibility of auto-generating the
OneSAF scenario files outside of OneSAF, using our combinatorial test methodology.
We also have successfully demonstrated the feasibility of using automated scripts to mine
data from the OneSAF generated Data Collection output files to evaluate behavior
characteristics of entities.
Future work will focus on three specific areas:

- increasing the level of automation of these processes

- improving traceability of the behavior tests

- creating tools to automate the creating of Ruby test scripts

90

APPENDIX G AUTOMATED BEHAVIOR PROPERTY TEST
(ABPT) DESIGN DIAGRAM

ABPT Design Diagram

GUl

Process Interface

¥

Ruby
PreScript

File Selection

Saved
Test File

. Graph
Display

Entity Tag(s)
Selection

~ Compare

"l (Get Entity
Taags)

Ruby
PostScript
(Process
Data File)

A

Parsed
Data File

k.

GNUPIlot

Loaded Test to
elected DF?

_/7XMLDmB
File

* A previously saved test may be applied to a different data file only if the Entity Tags matches.

CHANGE #1

1. --—--- > is new, GUI can call "Open Graphic"
2. PostScript can call now call GNUPIot to create plot, then display it!

91

Automated Behavior Property Testing (ABPT) Tool

Design Specification

Automated Behavior Property Testing (ABPT) and Verification Tool is a small
set of programs written in Java and Ruby Scripting Language that can parse, analyze, and
process specialized XML data collection files generated from OneSAF’s Data Collection
subcomponent. ABPT is designed with efficiency (minimizing resource usages while
maximizing processing speed), portability, and adaptability from concept to deliverable

product. The following document provides technical design specifications.

The heart of ABPT is three Ruby scripts, Prescript, Postscript, and Comparator
script. These scripts components are designed to communicate with each other and with
other applications via standard input/output commonly known as pipe and filter
implementation. A graphical user interface (GUI) written in Java with standard Java
Swing Class components provides usability to a broader audience for these tools.
Between the GUI and the scripts is a Java interface that provides command interpreter
services for the GUI, allowing the GUI to run command line applications and passing

messages from those applications back to the GUI.

The inputs for Prescript are XML data collection files generated from OneSAF.
Prescript parses the data files and returns a set of XML tags that describe characteristics
of a particular entity per file parsed. Currently, the GUI allows single data file to be
selected, however, the Prescript does allow for multiple files when used directly. Future
implementations may remove this limitation if required. The format for Prescript input is
the name of a data file for single file usage, or space separated list of files for multiple
file. The output of Prescript is sent to standard out (default to the output screen) if used
directly, or displayed in the GUI in multi-selectable listing. The format of the output is as
follows: FILENAME ENTITYNAME TAG-1(data type) TAG-2(data type) ... TAG-
n(data type) :. A colon (*:”) separates each set of tags. There may be some tags that
have “child” tags associated with them. The “parent” of those tags will be noted as

“(TAG-X)*”, notice the parenthesis, an asterisk and no data type. The “child” tag(s) are
92

noted as “TAG-x(data type)*”. Lastly, there may be some tags that look like a “parent”
tag but do not have any “child” tags.

The format for the input for Postscript is as follows: FILENAME
ENTITYNAME TAG-1 TAG-2 ...TAG-n. Each field is space delimited as well. While
it may be highly unlikely two have more than two tags as input, the Postscript does not
limit the number of tags. However, graphing the parsed data may be limited to two tags
as x and y coordinates. Postscript parses the XML data file using the tags specified. The
parsed data are written to a data file named as follows: FILENAME.TAG-1.txt. Allow
with the parsed data file, there are two intermediate files that are also generated. These
two files are scripts that allow plotting of the parsed data file and allow the plot to be
saved in a file with similar naming convention but in either a Portable Network Graphics
(png) or Postscript (ps) depending on the operating system (Windows for former, Linux
for latter). When Postscript completes, it returns the name of the plot or an error as to
why a plot was not generated. By default, if a plot successfully generates, it will

automatically be displayed.

93

THIS PAGE INTENTIONALLY LEFT BLANK

94

APPENDIX H SAMPLE ONESAF ENTITY IN A SCENARIO FILE

<actor>
<net.onesaf.core.services.data.dm.rdm.phys.RDMGroundVehicle refID="31" >
<relativeRank>1</relativeRank>
<towedEntity>
<encodableReference refID="0" />
</towedEntity>
<currentBehaviorName>null</currentBehaviorName>
<brakeLightsOn>false</brakeLightsOn>
<attachment>
<encodableReference refID="0" />
</attachment>
<sectorOfFire>
<net.onesaf.core.services.data.dm.rdm.phys.SectorOfFire refID="32" >
<angleFromHeading>0.0</angleFromHeading>
<angleOfSector>1.0474</angleOfSector>
</net.onesaf.core.services.data.dm.rdm.phys.SectorOfFire>
</sectorOfFire>
<weaponMaxRange>0.0</weaponMaxRange>
<wcs>Hold</wcs>
<towingEntity>
<encodableReference refID="0" />
</towingEntity>
<crewState>CREW_HEALTHY </crewState>
<lowContrast>false</lowContrast>
<rank>NONE</rank>
<radarCrossSectionSignaturelndex>0</radarCrossSectionSignaturelndex>
<unitRole>null</unitRole>
<engineOn>false</engineOn>
<priorRoutelD>
<encodableReference refID="0" />
</priorRoutelD>
<currentBehaviorState>NOT_READY </currentBehaviorState>
<mass>61326.0</mass>
<radarEnabled>false</radarEnabled>
<formationRank>0</formationRank>
<activity>Undefined</activity>
<currentRoutelD>
<encodableReference refID="0" />
</currentRoutelD>
<entity Type>tankAbramsM1Al</entity Type>
<movementMedium>NONE</movementMedium>
<trailingEffectsCode>NoTrail</trailingEffectsCode>
<smokePlumePresent>false</smokePlumePresent>
<routelndex>0</routelndex>
<fightingPositionType>none</fightingPositionType>
<load>0.0</load>
<oldSpatial>
<encodableReference refID="0" />
</oldSpatial>
<overlay>
<encodableReference refID="0" />
</overlay>
<distanceThreshold>FINE</distance Threshold>
<rigStatus>derig</rigStatus>
<ID>
<uniqueid refID="33" >
<stringld>0c42db11-77b3-475c-a778-91c2765db299</stringld>
</uniqueid>
</ID>
<routeOffset>
<encodableReference refID="0" />
</routeOffset>
<followByOffset>

95

<encodableReference refID="0" />
</followByOffset>
<address>
<EPAddress refID="34" >
<multicast>false</multicast>
<ID>
<uniqueid refID="35" >
<stringld>d9h5dc38-13be-49fa-b71d-d9e54cf7519e</stringld>
</uniqueid>
</ID>
</EPAddress>
</address>
<formationPosition>0</formationPosition>
<entityRole>UNDEFINED</entityRole>
<repairLevelEnum>Field</repairLevelEnum>
<contaminationData>
<encodableReference refID="0" />
</contaminationData>
<stuck>false</stuck>
<sensorMaxRange>0.0</sensorMaxRange>
<URN>0</URN>
<tentDeployed>false</tentDeployed>
<formationRole>null</formationRole>
<role>NONE</role>
<spatial>
<net.onesaf.core.services.data.dm.rdm.phys.Spatial Struct refID="36" >
<angularVelocity>
<net.onesaf.core.services.data.dm.rdm.phys.Vector3dStruct refID="37" >
<z>0.0</z>
<y>0.0</y>
<x>0.0</x>
</net.onesaf.core.services.data.dm.rdm.phys.Vector3dStruct>
</angularVelocity>
<linearAcceleration>
<net.onesaf.core.services.data.dm.rdm.phys.Vector3dStruct refID="38" >
<z>0.0</z>
<y>0.0</y>
<x>0.0</x>
</net.onesaf.core.services.data.dm.rdm.phys.Vector3dStruct>
</linearAcceleration>
<predictionEnum>STATIC</predictionEnum>
<velocity>
<net.onesaf.core.services.data.dm.rdm.phys.Vector3dStruct refID="39" >
<z>0.0</z>
<y>0.0</y>
<x>0.0</x>
</net.onesaf.core.services.data.dm.rdm.phys.Vector3dStruct>
</velocity>
<maxExtentVector>
<net.onesaf.core.services.data.dm.rdm.phys.Vector3dStruct refID="40" >
<z>0.0</z>
<y>1.78<ly>
<x>3.67</x>
</net.onesaf.core.services.data.dm.rdm.phys.Vector3dStruct>
</maxExtentVector>
<position>
<GCC refID="41" >
<z>3265213.5159455426</z>
<ellipsoid>WGS_84</ellipsoid>
<y>-5464905.16566183</y>
<x>-287361.97703322954</x>
</GCC>
</position>
<orientation>
<net.onesaf.core.services.geometry.DISEulerAngles refID="42" >
<psi>-0.04652540040089834</psi>
<phi>-2.105512361461992</phi>
<theta>0.0036097009098530826</theta>

96

</net.onesaf.core.services.geometry.DISEulerAngles>
</orientation>
<minExtentVector>
<net.onesaf.core.services.data.dm.rdm.phys.Vector3dStruct refID="43" >
<z>-1.54</z>
<y>-1.78<ly>
<x>-3.67</x>
</net.onesaf.core.services.data.dm.rdm.phys.Vector3dStruct>
</minExtentVector>
</net.onesaf.core.services.data.dm.rdm.phys.Spatial Struct>
</spatial>
<mountedOn>
<encodableReference refID="0" />
</mountedOn>
<currentFuelLevel>0.0</currentFuelLevel>
<name>CollectionTestTank</name>
<moppLevel>Mopp0</moppLevel>
<cfs>Non_CFS</cfs>
<orientationThreshold>FINE</orientationThreshold>
<driverMoving>false</driverMoving>
<configurationName>null</configurationName>
<powerPlantOn>false</powerPlantOn>
<specificRoute>
<encodableReference refID="0" />
</specificRoute>
<towStatus>false</towStatus>
<damage>NO_KILL</damage>
<compositionName>entity/mr/COMBAT/ARMOR/Tank_M1A1_Abrams_Armor</compositionName>
<affiliation>
<encodableReference refID="10" />
<[affiliation>
<parent>
<encodableReference refID="0" />
<[parent>
<bumperNum>null</bumperNum>
</net.onesaf.core.services.data.dm.rdm.phys.RDMGroundVehicle>
</actor>
</net.onesaf.core.services.data.dm.rdm.org. RDMActorCapabilities>

97

THIS PAGE INTENTIONALLY LEFT BLANK

98

APPENDIX | SAMPLE ONESAF DATA COLLECTION FILE

<?xml version="1.0" encoding="UTF-8" ?>

<?version version="1.0.0" date="8-15-2007" ?>

<?copyright statement="This work was generated under U.S. Government contract and the government has unlimited data rights
therein.” classification="Unclassified” projectName="OneSAF Objective = System Architecture =~ & Integration”
contractNumber="#N61339-00-D-0710" taskOrder="0008" copyrights="Copyrights 2001-2003. Science Applications International
Corporation, Lockheed Martin Information Systems, Dynamics Research Corporation. All rights reserved.”
distributionStatementD="DISTRIBUTION AUTHORIZED TO THE DEPARTMENT OF DEFENSE AND U.S. DOD
CONTRACTORS ONLY DUE TO CRITICAL TECHNOLOGY, EFFECTIVE 20 JUNE 1994.0THER REQUESTS SHALL BE
REFERRED TO THE PCO.” 7>

<SOD xmins:xsi="http://www.w3.0rg/2001/XML Schema-instance”
xsi:noNamespaceSchemalocation="entity_CollectionTestTank_2007-08-15-09-49-29-496.xsd” >
<HEADER>

<HEADER_DATA refID="1" >
<DCS>/PAIR/dataCollection/DCS_Entity_CollectionTestTank.xml</DCS>
<RUNID>1</RUNID>
<SCENARIONAME>/PAIR/scenario/tool Test/gen_driver0.0/Scenario.xmI</SCENARIONAME>
<START>1186702320703</START>
</HEADER_DATA>
</HEADER>
<ENTRIES>
<ENTRY refID="2" >
<VALUES>
<net.onesaf.core.models.beh.primitive.mr.PlanMount refID="3" >
<mountMappings>
</mountMappings>
<distances></distances>
<overloadFlag>false</overloadFlag>
<taskAction>hitchToEntity</taskAction>
<towMappings>
</towMappings>
</net.onesaf.core.models.beh.primitive.mr.PlanMount>
</VALUES>
<TYPE>PlanMount</TYPE>
<TIME>21</TIME>
<COMPONENT>BEHAVIOR</COMPONENT>
<ID>
<uniqueid refID="4" >
<stringld>0c42db11-77b3-475¢c-a778-91¢c2765db299</stringld>
</uniqueid>
</ID>
</ENTRY>
<ENTRY refID="5" >
<VALUES>
<net.onesaf.core.models.beh.primitive.com.AssertFactOrState refID="6" >
<collActivatedEntityName></collActivatedEntityName>
<inPrimaryPosition>false</inPrimaryPosition>
<overwatchLocation>
<double>0.0</double>
<double>0.0</double>
<double>0.0</double>
</overwatchLocation>
<ENTRY refID="7" >
<VALUES>
<net.onesaf.core.models.beh.primitive.com.AssertFactOrState refID="8" >
<collActivatedEntityName></coll ActivatedEntityName>
<inPrimaryPosition>false</inPrimaryPosition>
<overwatchLocation>
<double>0.0</double>
<double>0.0</double>
<double>0.0</double>
</overwatchLocation>
<ENTRY refID="9" >
<VALUES>

99

http://www.w3.org/2001/XMLSchema-instance

<net.onesaf.core.models.beh.primitive.Ir.SetSectorOfFire refID="10" >
<sensorOrientation>0.0</sensorOrientation>
<sensingArc>60.01159946200243</sensingArc>
</net.onesaf.core.models.beh.primitive.lr.SetSectorOfFire>
</VALUES>
<TYPE>SetSectorOfFire</TYPE>
<TIME>21</TIME>
<COMPONENT>BEHAVIOR</COMPONENT>
<ID>
<uniqueid refID="11" >
<stringld>0c42db11-77b3-475c-a778-91c2765db299</stringld>
</uniqueid>
</ID>
</ENTRY>
<ENTRY refID="12" >
<VALUES>
<net.onesaf.core.models.beh.primitive.mr.MoveAlongRoute refID="13" >
<nextActionLocation>0</nextActionLocation>
<startAtFirstPoint>false</startAtFirstPoint>
<anchorState>false</anchorState>
<routeType>CROSS_COUNTRY</route Type>
<routeCompleted>false</routeCompleted>
<linearVelocity>9.0</linearVelocity>
<gear>Forward</gear>
</net.onesaf.core.models.beh.primitive.mr.MoveAlongRoute>
</VALUES>
<TYPE>MoveAlongRoute</TYPE>
<TIME>21</TIME>
<COMPONENT>MoveAlongRoute</COMPONENT>
<ID>
<uniqueid refID="14" >
<stringld>0c42db11-77b3-475c-a778-91c2765db299</stringld>
</uniqueid>
</ID>
</ENTRY>
<ENTRY refID="15" >
<VALUES>
<DriverFSM refID="16" >
<currentState>MOVING_ON_ROUTE</currentState>
</DriverFSM>
</VALUES>
<TYPE>BasicData</TYPE>
<TIME>21</TIME>
<COMPONENT>BasicData</COMPONENT>
<ID>
<uniqueid refID="17" >
<stringld>0c42db11-77b3-475c-a778-91c2765db299</stringld>
</uniqueid>
</ID>
</ENTRY>
<ENTRY refID="18" >
<VALUES>
<DirectiveDataCollection refID="19" >
<RouteName>-</RouteName>
<NumberOfEntityObstacles>0</NumberOfEntityObstacles>
<CurrentPath>
<GCC refID="20" >
<z>3265213.5159455426</z>
<ellipsoid>WGS_84</ellipsoid>
<y>-5464905.16566183</y>
<x>-287361.97703322954</x>
</GCC>
<GCC refID="21" >
<z>3265199.934094777</z>
<ellipsoid>WGS_84</ellipsoid>
<y>-5464965.762319956</y>
<x>-286363.90710664436</x>
</GCC>

100

</CurrentPath>
<NumberOfTerrainObstacles>2</NumberOfTerrainObstacles>
</DirectiveDataCollection>
</VALUES>
<TYPE>BasicData</TYPE>
<TIME>21</TIME>
<COMPONENT>BasicData</COMPONENT>
<ID>
<uniqueid refID="22" >
<stringld>0c42db11-77b3-475c-a778-91c2765db299</stringld>
</uniqueid>
</ID>
</ENTRY>
<ENTRY refID="23" >
<VALUES>
<WeaponControlModel refiID="24" >
<targetSpeed>0.0</targetSpeed>
<wcs>Free</wcs>
<targetLocation>null</targetLocation>
<weaponType>null</weaponType>
<targetRange>0.0</targetRange>
<munitionType>null</munitionType>
<currentTargetType>null</currentTargetType>
<targetActivity>false</targetActivity>
<acquisitionLevelAchieved>null</acquisitionLevel Achieved>
<perceptionTime>0</perceptionTime>
<suppression>false</suppression>
<targetDirection>null</targetDirection>
</WeaponControlModel>
</VALUES>
<TYPE>tankAbramsM1A1</TYPE>
<TIME>309</TIME>
<COMPONENT>WEAPON_CONTROLLER</COMPONENT>
<ID>
<uniqueid refID="25" >
<stringld>0c42db11-77b3-475c-a778-91¢c2765db299</stringld>
</uniqueid>
</ID>
</ENTRY>
<ENTRY refID="26" >
<VALUES>
<SuppressionSpeedLimit refID="27" >
<beingSuppressed>false</beingSuppressed>
<dayNight>Day</dayNight>
<entityType>tankAbramsM1A1</entity Type>
<maxSpeed>18.61</maxSpeed>
</SuppressionSpeedLimit>
</VALUES>
<TYPE>tankAbramsM1A1</TYPE>
<TIME>408</TIME>
<COMPONENT>MOBILITY_CONTROLLER</COMPONENT>
<ID>
<uniqueid refID="28" >
<stringld>0c42db11-77b3-475c-a778-91c2765db299</stringld>
</uniqueid>
</ID>
</ENTRY>
<ENTRY refID="29" >
<VALUES>
<SpeedDataCollection refID="30" >
<modelWithTheLowestSpeed>FORMATION_SPEED_LIMITER</modelWithTheLowestSpeed>
<CommandedSpeed>9.0</CommandedSpeed>
</SpeedDataCollection>
</VALUES>
<TYPE>BasicData</TYPE>
<TIME>408</TIME>
<COMPONENT>BasicData</COMPONENT>
<ID>

101

<uniqueid refID="31" >
<stringld>0c42db11-77b3-475c-a778-91¢c2765db299</stringld>
</uniqueid>
</ID>
</ENTRY>
<ENTRY refID="32" >
<VALUES>
<CCTTGroundVehicleMobilityModel refID="33" >
<vehBin>highMobilityTracked</vehBin>
<requestedLinearAcceleration>2.451675</requestedLinearAcceleration>
<slope>-0.007060990631857278</slope>
<brakeForce>0.0</brakeForce>
<longWeight>0.0</longWeight>
<currentSpeed>0.42843525442672326</currentSpeed>
<linearAcceleration>0.0</linearAcceleration>
<entityLocation>GCC: (-287361.86191023444, -5464905.17195063, 3265213.5139627373)</entityLocation>
<maxSpeed>18.610000610351562</maxSpeed>
<stgjCode>619</stgjCode>
<longSumOfForces>87488.0034785146</longSumOfForces>
<longFrictionForce>0.0</longFrictionForce>
<requestedLinearVelocity>9.0</requestedLinearVelocity>
<vertWeight>0.0</vertWeight>
<brakeLinearFactor>8.382</brakeL inearFactor>
<effectiveMu>0.1011556</effectiveMu>
<brakeDecel>0.0</brakeDecel>
<forceDriving>87488.0034785146</forceDriving>
<mass>61326.0</mass>
</CCTTGroundVehicleMobilityModel>
</VALUES>
<TYPE>tankAbramsM1A1</TYPE>
<TIME>608</TIME>
<COMPONENT>GROUND_MOBILITY</COMPONENT>
<ID>
<uniqueid refID="34" >
<stringld>0c42db11-77b3-475c-a778-91c2765db299</stringld>
</uniqueid>
</ID>
</ENTRY>

102

APPENDIXJ TRAC-MONTEREY VERIFICATION PROCESS METHODOLOGY

Overview

» Problem Statement: Develop and execute quantitative and qualitative tests
that verify that the orderable composite behaviors within the OneSAF
Objective System (O0S) perform to their design specifications.

» Guidance.

— Initial: work should be complete by mid-December in advance of the
00S government acceptance testing (GAT) in January.

— Subsequent: work should continue at current depth of analysis until
resources expire; mid-December is no longer a deadline.
» Current progress.
— Developed and refined the methodology.

— Completed verification of 3 composite behaviors; almost complete with
the 4th.

— Reporting results to PM OneSAF and OOS development team.
 Projected endstate under current project.

— Verification process completed by 03 March 2006.

— Approximately 10 composite behaviors {of 51) tested (or retested).

— Endstate approved by PM OneSAF.

103

0O0S Behavior Composer

Fie [Too Mt

(B|=]0]a] e (XINje] (2 (&

[Emcuiion P aetsta ipprs Oty Constants” Muse Tets’Capatdty
=

Sequence: (1)

Tequance (1)

06 January 2006

104

Sequence Container |

Parallel Container |

i R T Primitive Behavior |
e _ &L
Addltlo_n_al &gﬁte Behavior |
cOmT%%s;tlon e = Order Sender |
=) =
| Conditional Branch |
Execution
Plot p——

005 Behavior Model Analysis

2

VV&A Definitions from DA Pam 5-11

» Verification: the process of determining that an M&S
accurately represents the developer's conceptual
description and specifications.

+ Validation: the process of determining the extent to which an
M&S is an accurate representation of the real world from the
perspective of the intended use of the M&.S.

+ Accreditation: the official determination that a model,
simulation, or federation of M&S is acceptable for use for a
specific purpose.

105

Background

« Behavior modeling is a relatively new concept; no
established verification processes specific to behavior
models.

 Behavior model verification had not received the
attention during OOS development that physical model
verification had.

* Primary references include:
— Suggested verification process from PM OneSAF.
— TRAC-WSMR primitive behavior verification methodology.
— AMSAA physical model verification methodology.

— VWV&A Recommended Practices Guide Reference
Document (DMSO website).

— Applicable regulations.

106

Constraints, Limitations, Assumptions

+ Constraints.
— We do not have enough resources {primarily manpower) to
verify all 51 composite behaviors.
» Limitations.

— Documentation of the behavior implementation is incomplete,
limiting our ability to determine with certainty the desired
behavior performance.

— For any given behavior, there are too many potential inputs to
test each possible combination.

— Difficlztulty in collecting output data will affect the accuracy of our
results.

« Assumptions.

— Documentation in conjunction with OOS development team
consultations provides enough information to evaluate behavior
performance.

— Testing a representative sample of scenarios for each
composite behavior is sufficient to evaluate behavior
performance.

107

00S Verification Methodology

Prioritize composite behaviors for testing.
Select composite behavior to test.

Study the behavior documentation.
— Focus on solution space documentation — Use Cases.

— Refer to problem space documentation, if necessary — Task
Bescrlptlc;ns, Process Step Descriptions, and Behavior Process
ocuments.

Develop criteria (visual/qualitative and quantitative) to evaluate behavior
performance.
Design tests.

— Develop scenarios to ensure each behavior input is tested at least
once.

— Choose a representative sampling of units and equipment for each
scenario.

— Include tests of potential points of failure and extreme cases.

Execute scenarios and record data (visual and quantitative).

— Conduct excursions (slight variations within a scenario to test
parameter of interest further).

— Cannot use the Data Collection Specification Tool; therefore,
quantitative data taken from the Status Window.

Analyze data, conduct traceability verification, and report results.

108

OO0S Verification Methodology Flowchart

METHODOLOGY PREPARATION
Conduct
Background
Research
Develop _| Prioritize
4 “|Methodology| 4+ Behaviors
Conduct User | |
Training | ___________ | |
1
ITEST PREPARATION
Select Study Behavior . .| Develop | Design
Behavior Documentation| 4 | Criteria 4 Tests
I E—— [|
] !
A

Traceability
Verification
Analyze
Data

Execute Report
Tests Results

Fail

Behavior
Complete

Receive

L ey e e e i e e W

Primary Flow Feedback Flow
_— —— ——

06 January 2006

109

v

Corrected |— —
Behavior

005 Behavior Model Analysis

Prioritized List of Composite Behaviors (First 15)

Move tactically.

Attack by fire.

Mount / dismount.

Tailgate resupply.

Occupy position.

Clear room.

Send call for fire.

Move tactically (rotary wing aircraft).
Attack by fire (rotary wing aircraft).
Tow to location.

Attack built up area.

Conduct raid.

Execute sniper mission.

Conduct ambush.

Conduct air reconnaissance.

Full Iist (60) in backup slides .

110

Example Behavior Test Design
Tailgate Resupply (1 of 3)

General inputs.

— Trigger (4 options — on command, completion of previous task,
at time, crossing of phase line).

— Enable reactions for this task {yes/no).

Required inputs.

— Logistics release point (LRP) — location where the resupply
operation is to take place.

— Unit to resupply.
— Return location — location to which the supplying unit moves
after the resupply operation.
Optional input.
— Formation — formation in which the supplying unit moves
enroute to the LRP (7 options — wedge, column, line, etc).
Rules of engagement (ROE).

— Choice of “use default ROE only” or “allow asset level
overrides”.

— Weapons control status (3 options — free, tight, hold).
— Fire control measures (as needed).

111

Example Behavior Test Design
Tailgate Resupply (2 of 3)

+ Test design concept.

— Not test engagement or reactive behaviors as part of this test
set.
- Engagement is not intrinsic to the behavior.
- Will examine extensively in later behaviors.

— Test to ensure each remaining parameter entry has the desired
effect.
- Supplying unit moves to correct locations and in the correct
formation.
- Correct unit is resupplied.

— Test other potential conditions.
- Resupply of different supply classes (lll, V, and VIII).
- One or more supply units.
- Resupply of one or more units, or a sub-element of a single unit.
- Insufficient quantity of supplies.
- Incorrect supplies.
- No supplies.

* Final number of scenarios — 6.

112

Example Behavior Test Design
Tailgate Resupply (3 of 3)

SCENARIO # 1 2 3 4 5 6
GENERAL SETTINGS
. Mech Infantry - . . .
Resupply Unit Type Armor Infantry IEv Military Police Medical Field Arty
Resupply Unit Echelon Platoon Fire Team Platoon Platoon Section Platoon
SCENARIO CHARACTERISTICS
Classes of Supply Delivered Class lll and vV Class V Class Il Class Il & ¥ Class 1l & VIl Classes Il &V
Units Hear the LRP Multiple Single Multiple Single Multiple Single
Units to he Resupplied Single Single Single Single Multiple Single
Level of Resup ply Subunit(s) Unit(s) Subunit(s) Unit(s) Unit(s) Subunit(s)
Req'd Supplies Available? Yes, all Yes, some None Yes, some Yes, all Yes, all
Unreqg'd Supplies Available? Yes Yes Yes No No No
Sufficient for Sufficient for Insufficient for Sufficient for Sufficient for Sufficient for
Supply Amounts
All Types All Types All Types Some Types All Types Some Types
Medical
Section to
. Section 2, receive Class .
. Section A, . Mechanized | Military Police 11l and VL. Section 2,
Unit to Resupply Armor Platoon Fire Team Artillery
Infantry Platoon Transport
1 Platoon
Platoon 1 Platoon to
receive Class
11 only.
Formation Vee Wedge Column Line EchelonLeft EchelonRight

113

Example Behavior Test Data Collection
Tailgate Resupply

* Visual verification.
— Movement to the correct LRP.
— Movement to the correct entities for resupply.
— Movement to the correct return location.
— Movement formation.

« Data verification.
— Entities participating in the resupply operation.

— Accuracy of:
- Type and amount of supplies delivered.
- Type and amount of supplies received.

114

Example Behavior Test Results
Tailgate Resupply

VERIFICATION RESULTS

OVERALL VERIFICATION STATUS
VERIFICATION STATUS BY SCENARIO
SCENARIO #

Scenario Verification Status

Trigger

LRP Location

Unit to Resupply

Return Location

Amher
Formation {Unable to

Verify)
Weapon Control Status Unverified Unverified Unverified Unverified Unverified Unverified
Fire Control Measures Unverified Unverified Unverified Unverified Unverified Unverified

Supplies Delivered

Supplies Received

Supply Accuracy

06 January 2006 005 Behavior Model Analysiz 13

115

Results — Composite Behavior Functionality

General
— Behavior documentation is insufficient.

Move tactically.
— Red (failed verification).

— Significant problems with formations, route planning, and individual
combatant movement.

— Questionable results in terms of speed and final orientation.
Tailgate resupply.

— Green (passed verification).

Attack by fire.

— Some problems with weapons control status and some individual
combatant behavior execution.

— ldentified faults appear to be due primarily to non-behavior-specific
errors.

Mount / dismount.
— In progress.

00S development team has been taking steps to update behavior
documentation and to fix errors in behavior execution.

116

00S Behavior Model Analysis

Prioritized List of Composite Behaviors

Move tactically.

Attack by fire.

Mount ! dismount.

Tailgate resupply.

Occupy position.

Clear room.

Send call for fire.

Move tactically (rotary wing aircraft).
Attack by fire (rotary wing aircraft).
Tow to location.

Attack built up area.

Conduct raid.

Execute sniper mission.

Conduct ambush.

Conduct air reconnaissance.
Conduct ground reconnaissance.

Platform follow route {fixed wing aircraft).

Unit follow route (fixed wing aircraft).
UAY conduct surveillance.

Conduct repair.

Conduct casualty movement.
Conduct MEDEVAC.

Conduct entity RWA MEDEVAC.
Conduct entity treatment.

Passage of lines forward.

Passage of lines rearward.

117

Provide treatment.
Cross level supply.

Drop cargo.
Loadiunload supply.
FARP resupply.

Prepare for resupply.
Service station resupply.
Transfer cargo to basic load.
Conduct capture rescue.
Conduct interview.
Breach wall.

Clear and mark lane.
Construct HVIED.
Construct obstacle.

Cue radar.

Emplace bridge.
Emplace minefield.
Employ smoke,

Fire and relocate.
Hitchfunhitch.

Maneuver and occupy fire support position.

Perform river crossing.
Prepare fighting position.
Retrieve bridge.
Withdraw.

THIS PAGE INTENTIONALLY LEFT BLANK

118

APPENDIX K ONESAF USERS CONFERENCE ORLANDO FLORIDA PRESENTATIONS?0

OneSAF Behavior Verification
Automation

MAJ Michael Martin, USA
Lt John Leo, USN

Ms. Jane Wu, Rolands and Associates Corp.
9 March 2008

30

http://www.onesaf.net/community/systemdocuments/UserConference2008/Presentations/Grand%20Ballroom/9Apr08%20Wednesday/1330%20Testing
%20Automation%20Tools.pdf, last accessed 21 July 2008.

119

Purpose and Agenda

Purpose: To provide information about the TRAC-
Monterey OneSAF Behavior Verification Automation
project to the OneSAF User community.

Agenda:

* Team

» Verification and Implications

* Methodology

« Combinatorial Scenario Generation
» Automated Property Checking
 Example Test Output

120

Team

Person

Organization

MAJ Michael Martin, USA

TRAC-Monterey

Dr. Mikhail Auguston

Naval Postgraduate School
Computer Science Department

LT John Leo, USN

Naval Postgraduate School
Computer Science Department

Ms. Jane Wu

Rolands and Associates Corp

121

Behavior Verification Automation Overview

* Project Objective Statement: Support the development
of OneSAF creating concepts and tools to automate
portions of the behavior verification process developed
in FY06. The focus for this project will be on automating
the verification of orderable behaviors.

* Project Intent:

— The automation will reduce the time and manpower
requirements for this process.

— Integrate an automated behavior verification tool into the
OOS Behavior Composer.

— Provide a generalized methodology for automating the
verification of behavior, to include simulation design
considerations to facilitate verification.

— Produce results that are objective and traceable.

122

Verification and Implications

* Verification: The process of determining that a model
implementation and its associated data accurately
represents the developer's conceptual description and
specifications. (DODI 5000.61, May 13, 2003)

» Strict comparison between the conceptual model and
documentation that describes a simulation, and the
performance of the simulation.

* Verification is constrained by documentation. Checking
implementation without traceability in documentation of
conceptual modeling crosses the thin line to Validation.

» Validation. The process of determining the degree to
which a model and its associated data are an accurate
representation of the real world from the perspective of
the intended uses of the model. (DODI 5000.61, May 13,
2003)

123

Methodology
Flowchart

Conduct

Background

Research

Conduct User

METHODOLOGY PREPARATION

Develop

"| Behaviors

Prioritize

L) > Methodology
1

Training :
L
ITEST PREPARATION
I
Select Study Behavio I Develop | Design
Behavior " |Documentation | Criteria $ | Tests
_____)
I I
———————————————— o e —
' { |
1 | |
TﬁST EXECUTION AND AiIALYSIS |
| ;rag:ft_eal::‘i_lity I Pass |
Execute Srification Report N erificatio Behavior |
Tests Results " Status Complete
1 | Analyze I |
Data
I | | | Receive I
— — J A
Corrected f=— =— =J

Primary Flow
—_—

Feedback Flow

—_—— -

124

Behavior

FY 06 Results
T'ime Planning Factors

Initial Verification (37-57 hrs):

6-8 hrs Documentation review (Use Case, BPDs, TDs,
test threads, etc...) and scenario design.

24-40 hrs Behavior testing.

7-9 hrs Test results analysis/compiling.

Re-verification (19-45 hrs):

4-6 hrs Initial Verification results review, scenario design.

8-40 hrs Behavior testing varied greatly because only
select scenarios were re-tested (anywhere
from 2 — 7 scenarios).

7-9 hrs Test results analysis/compiling.

125

FY 06 Results
T'ime Planning Factors

Initial Verification (37-57 hrs):

6-8 hrs Documentation review (Use Case, BPDs, TDs,
test threads, etc...) and scenario design.

24-40 hrs Behavior testing.

7-9 hrs Test results analysis/compiling.

Re-verification (19-45 hrs):

4-6 hrs Initial Verification results review, scenario design.

8-40 hrs Behavior testing varied greatly because only
select scenarios were re-tested (anywhere
from 2 — 7 scenarios).

7-9 hrs Test results analysis/compiling.

126

Methodology

Automation Restructuring of Verification Methodology

Knowledge Acquisition / Knowledge Engineering
Capabilities Domain Behavior Ruby Scripts for
Description > Behavior >»| Specification Expectation
Document Description Document Testing
Test Preparation
Selecta Select Manual Paraiineter
Behavior for >»| Parameters to >| ldentification of f—>] :: uel N
Verification Vary Parameter intervais
I |__Enumerations | —
¢ . / Test
DBeveI::_op a ::z:::zz Manually replace Seanalio) /
e > file —> candidate —>| Template
Scenario for the parameters with File
behavior -_— Metavariables

Combinatorial
Test Generator

Test Execution

Auto-
generated
Test
Scenarigs

Xecute OnesSA
with Data Collection
using Auto-
generated Test

Data

“| Collection
Files

Automated Prope

\ 4

Checking

127

Test
Reports

Methodology:
Behavior Specification Document (1 of 2)

« Current expectations for behavior performance are
explicitly defined in the Capabilities Definition Document
(CDD). Example from “Emplace Controlled Minefield”:

— Expected result 1: Life forms move to the location of the
pre-conversion cache, and assume sitting postures.
When the interval needed to perform conversion elapses,
the designated entities move between the conversion site
and the mine dump as many times as may be needed to
simulate transportation of the converted mines. The on-
hand supplies of mines and conversion kits are
decremented from the pre-conversion cache, and
incremented at the mine dump cache.

« Convert “Natural language” descriptions into “Atomic

Expectations” by decomposing the specific wording of
the Expectation.

128

Methodology:
Behavior Specification Document (2 of 2)

« Example of Resulting Atomic Expectations:

1. Entities move to the conversion cache.

a. If entity is not at conversion cache, check location relative
to conversion cache every 1 minute. If entity is not closer
to conversion cache for 10 consecutive minutes, then fail.

b. Report time when entity is within 50 meters of conversion

cache as “Time 1”.

2. At conversion cache, entities assume sitting position.
a. After time 1, if entity is within 30 meters of conversion
cache, and does not sit within 1 minute, then fail.
b. Report sitting time as “Time 2”.

3.
- Establish objective criteria and thresholds to account for

unexpected situation which might delay objective
performance, such as no-go terrain.

« Recommend adding “negative expectations” to
conceptual modeling: define circumstances when a

behavior should fail.

129

Methodology:
Combinatorial Scenario Generation

» Allows rapid, automated creation of a large number of
OneSAF scenarios using a baseline scenario.

 From baseline scenarios, meta-variables are inserted to
mark candidate values to be changed.

* List of possible alternate variables to be substituted into
each meta-variable is researched and created.

Result:

» A set of scenarios that is pair-wise combinatorial
exhaustive for identified variables, and are ready to
execute in OneSAF.

130

Methodology:
Automated Property Checking

* Input scenarios from Combinatorial Scenario
Generation.

* The results of the scenario execution are captured using
the built in OneSAF data collection tools.

* Quantitative measures of behavior performance
evaluated using Ruby script tests.

* Tests informed by behavior documentation, providing
traceability for expectations.

* Ruby is able to evaluate approximately 40 GB of
collected data in less than 5 seconds, and renders
objective pass or fail evaluations of behavior
performance as specified.

« Output data format is malleable, and contributes to
creating graphs for rapid Examination.

131

Example of Test Execution

(1 .0of 4)

4 June 2007

ABPT Test Prototype

= Open aFile...

Save a File...

Frocess Selected Tag(s)

QOpen Graph

Run Tests

E‘] initialContaminationTimed(ir = |

[(superioriD)*

D] stringld{integer)
D entityType(string)
D] contaminationConcentratior
[y modelName(string)

D damage(string)

D mounted(string)

D damageString(string)

D communicationkill{string)
D incapacitatedkill{string)
D firepowerkill{string)

[(unique_id)*

D] stringld{integer)

[affiliation(string)

(3 [tocation)~]

[zifoat)*

Y vioaty* nE

Y x(floaty*
—

Il

[4]

Opening: aa_2008-02-29-17-45-36-81 xml.

M []

[»

132

00S Behavior Verification Automation

13

Example of Test Execution
(2 of 4)

| =3 Open aFile.. H (@ save aFile... H Process Selected Taa(s) H Open Graph “ Run Tests ‘

D (superioriD)*
[stringld(integer)
[entityType(strin
D contaminationd

L) initialContaminationTime(n 2| *| o pening: aa_2008-02-29-17-45-36-81 xm,

t Jabber Server g F7 32bit

[y modelName(st
[y damage(stringl§ 4= -~
[y mounted(string &2 @
D damagestring(2 Q
[y communicatior§ —

[incapacitatedki |£| 8
DﬁrepowerKilI(st o A
[(wnique_id)* N ¢
[y stringlddinteger] o &
[y affiliation(stringl
[y (ocation)*
[ztnoat*
[yoan=
D x(float)*

s
Ml

New Te | ELa

Document

{evince:1704
failed

I am done!
onesaf@debig

4 June 2007

-5.4638e+006

=5.4639e+006

=5,464e+0086

=-9.4641e+006

=-9.4642e+006

=5.4643e+006

=5,4644e+006

=-95.4645e+806

-9.4646e+006

=5.4647e+006

"aa_2088-02-29-17-45-36-81.xnl,txt" using 2:3 _ +

133

-284800 -284700 -284600 -284500 -284400 -284300 -284200 -284100 -254000 -283900 -28383:

0O0S Behavior Verification Automation

14

Example

of Test Execution

(3 of 4)

4 June 2007

ABPT Test Prototype

= Open aFile... Save aFile...

Process Selected Tag(s)

Open Graph

Run Tests

L initialContaminationTime(n 4| | opening: aa_2008-02-26-17-45-36-81 xml.

:| passed failed passed passed passed failed failed failed

D (superiorlD)*

D stringld{integer)
D entityType(string)
[y contaminationConcentratiof
D modelMame(string)

D damage(string)

D mountedistring)

D damageString(string)

D communicationkill{string)
D incapacitatediill{string)
D firepowerkill(string)

D (unigque_id)*

D stringld{integer)

[affiliation(string)

D (location)*

[zifloa™

[vifloat* B

[x(floaty*

4]

Test1: passed
Test 2: failed
Test 3. passed
Test 4: passed
Test 5: passed
Test 6: failed
Test 7: failed
Test g failed

i | [

| »

134

0O0S Behavior Verification Automation

15

Example of Test Execution
(4 of 4)

4 June 2007

I aa_2008-02-29-17-45-36-81.xml.DemoTest. txt - Notepad M=1E3
File Edit Format View Help

Test Dump Cache Location: #<struct ParseControl::

Coordinate x="-284747.3745508371", y="-5464616.250159841", z="3265872.436€
Test Conversion Cache Location: #<struct ParseControl::

Coordinate x="-283919.1500508141", y="-5464088.624770039", z="3266852.7732
Test Entity Location: #<struct ParseControl::

Coordinate x="-283971.49201045325", y="-5463959,229318535", z="3267069.728
Test HMMWV Location: #<struct ParseControl::

Coordinate x="-283880.3934018612", y="-5463847.884809588", z="3267266.4111
Distance from Entity to Dump Cache: 1016.69567835367m

Distance from Entity to HUMMWV: 143.862977030331m

Distance from Entity to Conversion Cache: 139.581028828209m

Entity moves to Conversion Cache.

Entity is 49.1952496882875m of Cache, Timel is: 211032

Entity took 4 minutes to sit at Conversion Cache from 30m away,
should only take 1 minute. Time2 is: 242056

Entity is standing after converting mines at Time 3: 542504.
Entity took 5 minutes to convert two mines.

Entity is Tocated at the Dump Cache. Timed is: 682536

No data of #of mines and conversion kits at Conversion Cache.
No data of #of mines and conversion kits at Dump Cache.

HMMWY with Entities are stuck at Dump Cache.

00S Behavior Verification Automation 16

135

Examples of Output Data Visualization
(7 of 3)

Raw Speed Data

entity_CollectionTestTank_2007-08-15.09-4929-496.xm|_Speed_Raw_Data.bxt

0 50000 100000 150000 200000 250000 300000 350000 400000
Time{ms)

4 June 2007 00S Behavior Verification Automation 17

136

Examples of Output Data Visualization
(2 of 3)

Elevation(m)

4 June 2007

Raw Slope Data [Matches Speed Points)
entity_CollectionTestTank 2007-08-1503-43 29 496.xm|_Speed_Raw_Daia.xls

Time(ms)

00S Behavior Verification Automation

137

18

Examples of Output Data Visualization
(3 of 3)

Distance From Path Deviation
entity_CollectionTestTank_2007 08-15.09.49.29 436.xm|_Distance_Deviation_Raw_Data.txt

Distance(m)

200000 250000 300000 350000 400000
Time(ms)

0 50000 100000 150000

4 June 2007 00S Behavior Verification Automation 19

138

Project End State

* OneSAF Behavior Verification Automation methodology
addressing OOS specific architecture.

 Generalized Behavior Verification Automation
methodology.

« Recommendations regarding expanding CM\KE process
products.

« Software to create combinatorial (pair wise) OneSAF
scenarios for testing of behaviors.

» Software to test data output from OneSAF data
collections files against Ruby Scripts.

* Feedback on OneSAF data collection tools.

* Design documentation of all software products and
automation concepts:

— Data collection of behavior inputs.
— Data collection of simulation run outputs.

139

Questions?

MAJ Michael Martin, USA
LT John Leo, USN

Ms. Jane Wu, Rolands and Associates
9 March 2008

140

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Ft. Belvoir, Virginia

Dudley Knox Library
Naval Postgraduate School
Monterey, California

Dr. Mikhail Auguston
Naval Postgraduate School
Monterey, California

Dr. Man-Tak Shing
Naval Postgraduate School
Monterey, California

John K. Leo

Naval Postgraduate School
Monterey, California

141

	I. INTRODUCTION
	A. COMPUTER SIMULATION BASICS
	B. BEHAVIOR VERIFICATION
	C. ONESAF OBJECTIVE SYSTEM (OOS)
	D. THESIS ENVIRONMENT AND CONDITIONS
	E. THE PROBLEM SPACE
	F. PURPOSE OF STUDY

	II. MOVE TACTICALLY (MT) SCENARIO
	A. SCENARIO OVERVIEW
	B. PHASE I
	C. PHASE II
	D. PHASE III

	III. EMPLACE CONTROLLED MINEFIELD (ECM) SCENARIO
	A. SCENARIO OVERVIEW
	B. PHASE I
	C. PHASE II
	D. PHASE III

	IV. CONCLUSION
	A. SOFTWARE TESTING
	B. POSITIVES
	C. NEGATIVES
	D. FUTURE WORK

	LIST OF REFERENCES
	APPENDIX A MOVE TACTICALLY (MT) SCENARIO RUBY SCRIPT
	APPENDIX B PRESCRIPT
	APPENDIX C POSTSCRIPT
	APPENDIX D MOVE TACTICALLY (MT) SAMPLE RAW DATA FILES
	APPENDIX E MOVE TACTICALLY (MT) SAMPLE REPORTS
	APPENDIX F MOVE TACTICALLY (MT) PRESENTATION REPORT
	APPENDIX G AUTOMATED BEHAVIOR PROPERTY TEST (ABPT) DESIGN DIAGRAM
	APPENDIX H SAMPLE ONESAF ENTITY IN A SCENARIO FILE
	APPENDIX I SAMPLE ONESAF DATA COLLECTION FILE
	APPENDIX J TRAC-MONTEREY VERIFICATION PROCESS METHODOLOGY
	APPENDIX K ONESAF USERS CONFERENCE ORLANDO FLORIDA PRESENTATION
	INITIAL DISTRIBUTION LIST

