

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

AUTOMATED BEHAVIOR PROPERTY VERIFICATION
TOOL

by

John K. Leo

September 2008

 Thesis Advisor: Mikhail Auguston
 Second Reader: Man-Tak Shing

Approved for public release; distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2008

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Automated Behavior Property Verification Tool

6. AUTHOR(S) Leo, John K.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Computer generated forces (CGF) simulations have entities as actors in their simulation. A type of CGF in
which the entities have limited autonomy is semi-automated forces (SAF). The SAF system for this thesis research is
OneSAF, a near real-time SAF that offers raw data collection of the entities in a particular simulation scenario. The
data collection files vary in size from 500 kilobytes to larger than four gigabytes.

Entity behavior property verification (BPV) is an integral part of SAF simulation software testing. The
purpose for this research is to provide immediate feedback to the system user/developer as to what an entity had done
in a scenario. From the simulation point of view, it provides answers to questions like “Did the entity route shortest
distance to destination?” From the developer’s point of interest, the BPV can provide insight to flaws in the model,
such as a vehicle crossing a river where a bridge does not exist.

Automated BPV (ABPV) takes one step further by minimizing “hard coding” of tools that process collection
files. ABPV allows portability of the product of this thesis to other systems. ABPV Tools (ABPVT) of this thesis is
designed to run in Linux and Windows and will be included in future distributions of OneSAF as an intricate part of
the testing suite.

15. NUMBER OF
PAGES

157

14. SUBJECT TERMS Entity Behavior Verification, Computer Simulation Verification, Analysis of
Real-Time Simulation, OneSAF

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited.

AUTOMATED BEHAVIOR PROPERTY VERIFICATION TOOL

John K. Leo
Lieutenant, United States Navy

B.S., Austin Peay State University, 2002

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2008

Author: John K. Leo

Approved by: Mikhail Auguston
Thesis Advisor

Man-Tak Shing
Second Reader

Peter J. Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Computer generated forces (CGF) simulations have entities as actors in their

simulation. A type of CGF in which the entities have limited autonomy is semi-

automated forces (SAF). The SAF system for this thesis research is OneSAF, a near real-

time SAF that offers raw data collection of the entities in a particular simulation scenario.

The data collection files vary in size from 500 kilobytes to larger than four gigabytes.

Entity behavior property verification (BPV) is an integral part of SAF simulation

software testing. The purpose for this research is to provide immediate feedback to the

system user/developer as to what an entity had done in a scenario. From the simulation

point of view, it provides answers to questions like “Did the entity route shortest distance

to destination?” From the developer’s point of interest, the BPV can provide insight to

flaws in the model, such as a vehicle crossing a river where a bridge does not exist.

Automated BPV (ABPV) takes one step further by minimizing “hard coding” of

tools that process collection files. ABPV allows portability of the product of this thesis to

other systems. ABPV Tools (ABPVT) of this thesis is designed to run in Linux and

Windows and will be included in future distributions of OneSAF as an intricate part of

the testing suite.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. COMPUTER SIMULATION BASICS..1
B. BEHAVIOR VERIFICATION...1
C. ONESAF OBJECTIVE SYSTEM (OOS)..2
D. THESIS ENVIRONMENT AND CONDITIONS...3
E. THE PROBLEM SPACE..5
F. PURPOSE OF STUDY..7

II. MOVE TACTICALLY (MT) SCENARIO ...9
A. SCENARIO OVERVIEW...9
B. PHASE I..9
C. PHASE II ..10
D. PHASE III...13

III. EMPLACE CONTROLLED MINEFIELD (ECM) SCENARIO.........................19
A. SCENARIO OVERVIEW...19
B. PHASE I..20
C. PHASE II ..29
D. PHASE III...38

IV. CONCLUSION ..43
A. SOFTWARE TESTING..43
B. POSITIVES ..44
C. NEGATIVES..46
D. FUTURE WORK...48

LIST OF REFERENCES..51

APPENDIX A MOVE TACTICALLY (MT) SCENARIO RUBY SCRIPT....................53

APPENDIX B PRESCRIPT...61

APPENDIX C POSTSCRIPT..65

APPENDIX D MOVE TACTICALLY (MT) SAMPLE RAW DATA FILES71

APPENDIX E MOVE TACTICALLY (MT) SAMPLE REPORTS75

APPENDIX F MOVE TACTICALLY (MT) PRESENTATION REPORT...................79

APPENDIX G AUTOMATED BEHAVIOR PROPERTY TEST (ABPT) DESIGN
DIAGRAM..91

APPENDIX H SAMPLE ONESAF ENTITY IN A SCENARIO FILE...........................95

APPENDIX I SAMPLE ONESAF DATA COLLECTION FILE....................................99

APPENDIX J TRAC-MONTEREY VERIFICATION PROCESS
METHODOLOGY ..103

 viii

APPENDIX K ONESAF USERS CONFERENCE ORLANDO FLORIDA
PRESENTATION..119

INITIAL DISTRIBUTION LIST ...141

 ix

LIST OF FIGURES

Figure 1 SciTE display showing malformed OneSAF data file.11
Figure 2 MT Entity data set..15
Figure 3 Emplace Controlled Minefield Scenario Layout. ..19
Figure 4 Entity Locations. ..20
Figure 5 An example output of Prescript. ..25
Figure 6 Entity A’s initial movement...27
Figure 7 Entity B’s initial movement. ..27
Figure 8 Entity HMMWV’s initial movement. ..28
Figure 9 Example output of Prescript #2..33
Figure 10 Entity A’s movement. ..34
Figure 11 Entity B’s movement. ..34
Figure 12 Entity HMMWV’s movement. ..35
Figure 13 Entity A, B, and HUMMWV...35
Figure 14 A, B, C - showing HMMWV crossing river..37
Figure 15 GUI Interface Design Diagram..38
Figure 16 GUI prototype. ...40
Figure 17 Automated testing suite results. ...42
Figure 18 Common error message (OneSAF screen capture)..42

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

EXECUTIVE SUMMARY

Chapter I consists of an introduction to the basic ideas of entity based computer

simulation and concept of verifying entity behavior through software testing and data

mining as well as brief introduction to some of the background issues motivating this

study.

Chapter II provides further details of entity behavior verification by applying key

concepts to a particular scenario. This section provides lessons learned and in depth look

at the problems of entity behavior verification as a whole in an environment where

documentation is not provided, or simply does not exist.

Chapter III builds on the knowledge gained from Chapter II, provides prototype

development and further exploration of applying the lessons learned from Section II on a

more advanced scenario.

Chapter IV provides a summary of the work involved as well as errors discovered

in the OneSAF simulation. Chapter IV provides information on where to continue the

work provided from this thesis.

Lastly, the products of this thesis are enclosed in the appendixes starting on page

53. Appendixes F, G, J, and K are the reports, presentations and products submitted to

OneSAF Verifivation and Validation (OV&V) from TRADOC Analysis Center

Monterey (TRAC-Monterey) that fomaly presented the work of this thesis.

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

 I would like to thank Dr. Auguston for his enthusiasm, guidance, inspiration,

wisdom and vision for this project. This project had many twists and turns, and often

appeared to come to a standstill. His support and encouragement had direct impact on the

outcome of this thesis.

 I would also like to thank Dr. Shing for his time, invaluable insight, and guidance

in producing a polished, finished product.

 Any opinions, findings, and conclusions or recommendations expressed in this

material are those of the author, and not necessarily views of OneSAF, TRAC-Monterey,

or Computer Science Department at NPS.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. COMPUTER SIMULATION BASICS

In general terms, a computer simulation is a computer program that simulates the

behavior, action, or characteristic of another system. Computer simulations vary from

one to another depending upon their purpose, target, and audience. Some common

examples of computer simulations are: flight simulators (Microsof® Flight Simulator®),

an automated colony of life forms (SimCity®), and weather forecasting (The Weather

Channel®).

Flight simulators are classified as virtual simulators in that the input source for

guidance and direction is a human interface; humans are the primary actors in these types

of simulations and verify when something is correct or not. Automated colonies and

weather forecasting simulations process data provided by an external input and produce

an output dependant on the inputs; the system is the actor and does not have a feedback

system to know if the current status is correct or not.

Particular types of simulation where the entities and the system are actors in the

simulation are referred to as constructive simulations. In Semi-Automated Forces (SAF),

the actors have some level of autonomy. While the system user generally plans missions

and other high level refinements, a SAF entity has basic knowledge of the current

mission and performs limited tasks like simple route re-planning when faced with an

obstacle.

B. BEHAVIOR VERIFICATION

Software testing is a major component of Software Verification. Software

verification tries to answer the question: Are we building the product right?1 Entity

behavior verification extends the definition of verification by trying to answer: Did the

entity do what was expected? For example, an entity is tasked to relocate from location x

to some location y. In the absence of physical obstacles between point x and point y, the

1 Barry Boehm., “Verifying and Validating Software Requirements and Design Specifications,” In
IEEE Software 1 January 1984, 75-88.

 2

entity is expected to move in a relative straight line from x to y. This is a simple

scenario, yet it does have numerous factors to consider such as: time of day, elapsed time,

weight, terrain, weather, and condition of the entity (tired, hungry, dehydrated, wounded

and etc.).

Since OneSAF system is a real-time military simulation, there are elements of

entity behaviors that must reflect real-time, real-world constraints. For example, some

real world physical constraints of human entities have are strength, endurance, and speed.

The simulation would not reflect real world situation if a soldier was able to carry half his

weight for any distance without fatigue setting in, or an aircraft achieving maximum

elevation and maximum speed from the ground instantaneously. Every different type of

entity has a set of behaviors that should be sensitive to the simulation environment. The

behavior of an entity in a particular scenario must be verified

C. ONESAF OBJECTIVE SYSTEM (OOS)

What is OneSAF?

SAF stands for Semi-Automated Forces. There are many computer generated

forces (CGF) simulations. These are often referred to as constructive simulations. CGFs

model and simulate combat entities and systems. These entities and systems are actors in

the simulation. (In contrast with constructive simulations, the humans are actors in the

virtual simulations.) A SAF is a CGF in which the entities have some level of autonomy.

For instance SAF entities often react to contact, can do some limited route re-planning

when faced with an obstacle, can choose some actions based on their knowledge of the

current situation, etc. SAF entities are semi autonomous, because they generally require

human operators to do holistic planning, provide goals for goal-directed behaviors, etc.2

What is composability?

Composabiltiy is a design philosophy and implementation methodology of

OneSAF that enables users to rapidly tailor the simulation to meet the needs of a specific

2 OneSAF Restricted Site

http://www.onesaf.net/community/index.php?option=com_content&task=category§ionid=5&id=18&It
emid=36#7. Accessed May 5, 2008.

 3

simulation exercise or experiment. The toolbox analogy is useful in explaining

composability. When a person wants to fix a light switch, he or she doesn’t generally

drag the entire work bench from the garage to the site of the repair. Instead, he or she

takes the two or three tools from the bench and takes only those. When that person now

wants to rebuild the master brake cylinder on his car, he takes a different set of tools from

the bench. With OneSAF, the designer of the simulation exercise or experiment can build

an instance (or composition) of OneSAF that has only those tools needed for that job.

OneSAF also supports battlespace composition. The entity, unit, and behavior composer

tools allow the user to modify the way the simulation operates – without recompiling any

software.

Composability is enabled through the OneSAF product line architecture

framework PLAF. Software is commonly developed in a horizontally layered

architecture. In OneSAF, tools are arranged in vertically organized product lines. The

interactions between modules in these product lines are controlled through hundreds of

defined application programmer interfaces (API’s) and data interchange formats (DIFs).

This modular architecture enables developers outside of the OneSAF team to develop

new modules to replace ones built by Team OneSAF. As long as these new modules

comply with the architecture and use the correct API’s and DIFs, a user can build a

composition that includes their own module rather than one of ours. We feel that our

open architecture, open-source software, composability, and modular design will create

numerous business opportunities for industry to build replacement modules or new

modules with functionality we haven’t yet considered.3

D. THESIS ENVIRONMENT AND CONDITIONS

OneSAF’s Verification and Validation (OV&V) group had subcontracted entity

behavior verification to a small Army organization TRADOC Analysis Center Monterey

3 One SAF Public Site

http://www.onesaf.net/community/index.php?option=com_content&task=category§ionid=5&id=18&It
emid=36#9. Accessed May 5, 2008.

 4

(TRAC-Monterey) located at Naval Postgraduate School (NPS) as an independent (from

OneSAF development) verifying authority. TRAC-Monterey requested the assistance of

the Computer Science Department of NPS.

TRAC-Monterey’s responsibility was to verify OneSAF’s entity behavior and

report all findings to OV&V. However, in order to verify entity behavior, scenarios were

required. OV&V did not provide the scenarios they wanted to test (an issue further

discussed in subsequent chapters). TRAC-Monterey tasks quickly expanded to include

scenario design, execute scenario testing, and report all developments to OV&V on a

scheduled weekly basis. TRAC-Monterey had been working on the entity verification

before the work on this thesis began. They spent most of their resources on building test

machines with OneSAF Objective System installed. Then they spent additional months

on scenario design and execution. Once the scenario executed properly, they designed a

methodology to verify entity behavior. By their developed methodology, TRAC-

Monterey was able to satisfy OV&V requirements for three of the 51 scenarios listed

according to the TRAC-Monterey Verification Process Methodology Briefing (shown in

Appendix J TRAC-Monterey Verification Process Methodology 4). The major pitfall for

TRAC-Monterey’s verification methodology was stated on page six of the brief. It states:

“Cannot use the Data Collection Specification Tool [DCST]; therefore, quantitative data

taken from the Status Window.” Translation: “Cannot use the tool provided due to lack

of documentation and developer support. Current verification methodology cannot verify

entity behavior due to lack of necessary entity data. Can only verify what is observed on

screen while the scenario is executed. All quantitative status reported in the Status

Window will be reported.” Proper entity behavior verification was not possible under

current conditions and as slide seven states, “Assumptions. Testing a representative

sample of scenarios for each composite behavior is sufficient to evaluate behavior

performance.”

TRAC-Monterey lacked the appropriate resources to analyze the OneSAF system

in order to draw more accurate conclusions on entity behaviors, “Constraints. We do not

4 TRAC-Monterey Verification Process Methodology Briefing, OOS_Verification_Monterey.ppt,

slide#1, accessed 31 July 2008.

 5

have enough resources (primarily manpower) to verify all 51 composite behaviors…

Limitations. Difficulty in collecting output data will affect the accuracy of our results.”5

Shortly after this brief was delivered to OV&V, TRAC-Monterey representatives

requested assistance from the CS Department to derive a workable solution that was not

based on the screen outputs of OneSAF simulation. The work conducted on entity

verification pertaining to this thesis started thereafter, around late July of 2007 and

continued through early March of 2008, when the results of entity behavior verification

was presented at the 2008 OneSAF Users Conference (see Appendix K OneSAF Users

Conference Orlando Florida Presentation).

While the environment for this work is done with OneSAF Objective System, the

intended application system is for any independent data producing software system. The

work of this thesis is strictly independent of OneSAF system, OneSAF organization,

TRAC-Monterey and associated affiliates. However the work of this thesis directly

benefited OneSAF and TRAC-Monterey.

E. THE PROBLEM SPACE

OneSAF is a system of systems consisting of modular components written in Java

programming language (estimated over three million lines of Java code) and C for some

components. As of version 1.5, the installation package consisted of eight DVDs.

OneSAF is intended to run on Microsoft® Windows® and various Linux platforms and

included separate DVDs for either platform.6 The following challenges were discovered

and were overcome during the work of this thesis:

1. Lack of system documentation and minimal development support.

2. Instability of the OneSAF Objective System as a whole.

3. Lack of documentation on the Data Collection Module.

4. Data Collection Module instability.

5. Data Collection Module inconsistency.

5 TRAC-Monterey Verification Process Methodology Briefing, OOS_Verification_Monterey.ppt,
slide#7, last accessed 31 July 2008.

6 OneSAF version 1.0 -1.4 installation instructions dictates Debian ™ core, while version 1.5's
instructions are written for Red Hat Linux. This thesis work uses Windows ® and Debian™ Linux. Other
Linux variations have not been tested in this thesis.

 6

6. Lack of documentation of collected data units and conversions.

7. Inconsistencies of units, i.e., meters, kilometers, global coordinates.

8. Lack of documentation for data tags.

9. Lack of documentation to successfully run data collection.

10. Lack of documentation of data collection files.

11. Lack of parsing/viewing/analyzing tools for the collected data files.

12. Data collection files not adhering to XML schemas.

13. Linux installation was inconsistent.

The OneSAF system is not intuitive (ease of use) nor user friendly (lack of help

and feedback). Initial assistance came from members of TRAC-Monterey, a sub-contract

U.S. Army group located at Naval Postgraduate School. It was very apparent that

OneSAF developers provided minimal guidance as to how to run the system.

Nonetheless, a Windows® and a Linux machine had OneSAF version 1.1 installed.

Version 1.2 was already on hand but had not been installed. OneSAF delivered version

1.4 (developmental edition) which offered more stable data collection functionality over

previous versions. Few weeks after version 1.4 installation and initial testing, TRAC-

Monterey received version 1.5. All data collection and analysis for Move Tactically

scenario was performed on version 1.4 prior to receiving version 1.5.

After many system instability issues with version 1.1-1.47, a fresh installation of

version 1.5 was done in virtual machine environment provided by VMware Work Station

6.x. Had this not been done, a delay of estimated six months was foreseeable.8

Performance between the two operating systems (OS) was immediately

noticeable. Every task performed in Windows® had a significant delay and lacked

“robustness.” OneSAF required 1.2 GB of RAM in Windows®, while in Linux a mere

720 MB was sufficient. All work in this thesis was done on the Linux platform, and after

successful debugging and testing, ported to the Windows® virtual machine (VM) where

it was tested for compatibility.

7 Version 1.3 was never received/installed.
8 Delays not limited to the following: multiple re-installations, process of loading scenario- running

scenario - verifying data files, creating scenarios, modifying scenarios, and etc.

 7

F. PURPOSE OF STUDY

The purpose of study for this thesis was to provide a solution - if one existed, to

verifying entity behavior in a semi-autonomous computer simulation system. The

computer simulation used for this study is OneSAF. OneSAF is real-time semi-

autonomous system the U. S. Army currently uses in modeling warfare scenarios. As of

the latest release version, the developers of OneSAF had not provided any documentation

to the system, which ultimately impacted the amount research, testing, and data analysis

for this thesis.

The question or problem this thesis wants to explore is: “How do we produce a

behavior property verification tool (BPVT) for an unknown system environment?” The

second problem is to find a way to automate such tool development (ABPVT). The work

of this thesis is to produce tools that would enhance users and developers of data

producing systems like OneSAF.

Additionally, the benefits of this study were to gain working knowledge and

experience with a few of the industry leading tools and technologies such as XML,

Ruby, Java, GNU Plot9, CGI, and real-time Java simulation system to list a few. As a

direct result of the work for this thesis, a working entity behavior verification solution

module for analyzing entity behavior data would be integrated into the testing

components of future releases of OneSAF.

The ultimate application of this thesis is to provide one solution to unravel a large

undocumented system in order to verify certain behavior characteristics for that system.

9 gnuplot is copyrighted, but freely distributable. http://www.gnuplot.info, last accessed 21 July 2008.

 8

THIS PAGE INTENTIONALLY LEFT BLANK

 9

II. MOVE TACTICALLY (MT) SCENARIO

A. SCENARIO OVERVIEW

The first scenario analyzed was Move Tactically (MT) Scenario. MT is a simple

scenario in which the mission of an entity (an M1 Abrams Tank), moves from a preset

location to another. This simple mission had certain constraints, for example, the entity

was specified not to exceed the maximum speed to travel. This scenario was chosen to

study the OneSAF environment and to familiarize with the OneSAF interface. OneSAF

system provided minimal or no documentation so all research and work was done in a

systemic - trial and error approach.

MT scenario was selected for its simplicity. The idea behind selecting a simple

scenario was to show two things: (1) Data collection in OneSAF was possible, and (2)

Data files collected were useable10. If the two criteria were successfully met, then the

following were intermediate goals for entity behavior verification: speed, distance to

target, and deviation distance from shortest path to destination. The final piece for MT

was to present the analysis in presentable reports, summaries and diagrams.

Phase I describes the environment for testing OneSAF on two physical machines.

It details the challenges of an undocumented system and manipulating the system to

achieve certain tasks. In a way, it is similar to “black-box” testing, differing only in the

results. Phase II is the start of data mining. It covers how outputs were gathered and

what output OneSAF actually provided. Phase III provides what was done with the

gathered data and provides a summary of how MT scenario executed and what was done

to provide the analysis in a presentable way.

B. PHASE I

A selling point for OneSAF is that it has been developed to operate in two

personal computer (PC) platforms, Microsof® Windows®, and Linux. TRAC-Monterey

had two machines installed with OneSAF 1.1, one on a Debian Linux distribution and the

10 Data files adhered to industry standard file format for either Windows ® or Linux for the type of
file, for OneSAF, XML files.

 10

other on Windows® XP Professional SP2. OneSAF developers did not provide the

scenario files to TRAC-Monterey. The developers provided a list of scenarios they

wanted to have verification testing but did not provide the scenarios, even upon TRAC-

Monterey’s multiple requests. The developers requesting the verification testing made it

clear that they had not worked with, or seen the scenarios in operation, and that TRAC-

Monterey’s task was to create a working scenario, and verify the results utilizing the

limited data collection capabilities of the OneSAF system. The challenges facing TRAC-

Monterey were clear: familiarize with the OneSAF interface, create working scenarios,

perform entity verification testing, and report the results of testing.

For nearly four weeks, TRAC-Monterey had coordinated with OneSAF

developers to have MT scenario execute from start to finish. The scenario itself was not

the main cause of difficulty, rather the learning curve to the OneSAF interface was rather

steep. Even towards the end of the work on this thesis, many components of the OneSAF

interface were still unclear. Thankfully, understanding the interface and being a

proficient user of the OneSAF system were not part of the requirements given to TRAC-

Monterey.

C. PHASE II

The first data files produced by OneSAF were absolutely unusable. The size of

the data files ranged from 600 Megabytes (MB) to four Gigabytes (GB). The data files

contained detailed items that pertained to OneSAF, but not anything usable in terms of

the mobile entity. The XML parsers available would not open these large XML data

files. Each XML editor or browser would throw a parsing error message. Initial thoughts

for parsing errors were caused by the file sizes, and for whatever the reason, the

editor/browser program was not able to open the large XML data files. It turned out not

to being the case; the data files were malformed. For unknown reasons, the data files

were not closing properly in accordance with XML schemas - simply, they all lacked

closing tags. Standard UNIX editor vi and the newer Vim11 were able to open the files

and simple text searches were possible. Text search is a great tool if one knows what to

11 Vim, http://www.vim.org/download.php, last accessed 20 July 2008.

search for. However, since no documentation was provided on the data files, searching

for any recognizable text pertaining to the mobile entity proved useless. An XML viewer

was needed that would display malformed XML files of any size that OneSAF would

create.

Figure 1 SciTE display showing malformed OneSAF data file.

Windows® version of Ruby12 installation provides a programming text editor

called SciTE13. SciTE proved useful for opening and browsing malformed XML data

files. Like most XML viewers, SciTE grouped tags so that a single group can be

expanded or collapsed; however, unlike most viewers, SciTE would still display unclosed

tags. When an XML file is opened in SciTE, the opening tags are located along the left

edge of the test area. A faint line extends from an opening tag to the closing tag, if one

exists. If a closing tag does not exist, SciTE continues to tabulate additional opening

12 Ruby: A Programmers Best Friend, http://www.ruby-lang.org/en, last accessed 20 July 2008.
13 SciTE, http://www.scintilla.org/SciTE.html, last accessed 20 July 2008.

 11

 12

tags. At the end of the file, if there are missing closing tags, then the last entry will not a

line to the left edge. Figure 1 is an example of one of the data files from OneSAF. It

illustrates the malformed XML data file produced by OneSAF. The minus signs at line

number 4892 and 4893 represents expanded block of tags between an opening tag and a

closing tag.

After several weeks working with the large (greater than 600 MB) files, a pattern

to the data presented in the XML file was discovered. Entity data was being collected in

between intervals of additional OneSAF data. Sometimes the intervals were alternating,

while most of the time, the intervals were more sporadic. While the early data files

contained entity tags, often they did not have data within the entity tag sets. In another

words, it almost seemed like a template, or a place holder. Nevertheless, this was a step

in the right direction.

One of the previous efforts of TRAC-Monterey was creating automated scenarios

for OneSAF. Automated scenario generation provide means of creating test cases to

maximize systems testing more efficiently. Prior to auto-generated scenarios, a tester

would have to create a scenario and then modify this newly created scenario manually

each and every time a “what-if” was asked. Once modified, the tester would then run the

scenario and the cycle of modify-and-run would be repeated until testing criteria would

be satisfied. It turned out that a speed parameter of the auto generated scenarios did not

match. For example, a maximum speed commanded for the entity was set for 24

kilometers per hour (km/hr). The scenario generator tried to put values like 24, 24.0, and

24.00 in between the speed tags like this: <speed>24.0<\speed>. However, when

OneSAF creates a scenario, values like maximum speed are converted to meters per

second. So, 24 km/hr is roughly 6.67 meters per second (m/s). But OneSAF scenario

would not execute the auto-generated scenario unless the values inserted contained

certain fixed decimal positions, which varied in value depending on which tag - value

pair. In case of the maximum speed value, it was 12 decimal positions - 24 km/hr was

represented as 6.666666666667 m/s. Discovering and allowing for this small detail

produced consistent entity behavior data to be collected. This discovery is really trivial if

documentation was available.

 13

After executing MT scenario dozens of times, the last thing discovered was that

the OneSAF data collector did not stop collection even after the scenario completed. The

scenario time stamp would continue to be recorded along with the last data known. The

data collector was disconnected from the OneSAF interface and therefore never receives

the end of scenario message and to stop collection. This explains why the XML data files

were not closed properly and why most XML viewers and browsers could not open the

data files. In all previous tests prior to this discovery, it was assumed the scenario, and

data collection would cease once the scenario ended. This discovery was presented to

OneSAF developers at the end of the MT scenario verification testing.

MT scenario was executed 20 to 30 times producing data files from 200 Kilobyte

(KB) to 35 MB. The data collection modules of OneSAF was turned off manually once

the scenario finished preventing unnecessary large data files (explained towards the end

of previous phase). The scenario was run multiple times because the results were never

exact copies of another scenario execution. As stated in the introduction, the entities in

OneSAF have limited autonomy. The limited autonomy provided for slight deviations of

an entity’s response. The differences were subtle and viewed from the total scenario,

would not seem any different. However, when viewed from the level of entity’s position

in a given time, the exact locations would differ. After every scenario execution, the data

files were compressed and copied to an analysis machine. A 25 MB XML data file was

able to compress to 590 KB using a standard zip compression program.

D. PHASE III

At this point, an XML parser and an XML viewer were needed. While the files

could have been processed manually, it would have taken far longer than necessary. If a

free tool like SciTE was not available, then an XML viewer would have been necessary

to build. As mentioned earlier, free XML viewers and parsers were available; however

none of the ones tested would open the malformed OneSAF data collection files.

Using SciTE, the data files were opened and scanned for data that pertained to the

entity. The data files contained less than 20 groups of XML tag blocks. An example of a

data file is in Appendix I Sample OneSAF Data Collection FileBlocks in this case refers

 14

to a group of tags marked with an opening tag to the closing tag. The good news

observed from the data files were the fact that data was collected, that they were

sequential, and that they were grouped together in blocks. The bad news is that the

blocks were often nested seven or more levels deep and were found all throughout the

data file without conforming to any certain pattern.

After assessing the data files, the second step was to parse the relevant data out of

the large data files. Since the data files varied greatly in sizes, an intermediate data file

was needed. The data files were sequential and the amount of data they contained was

not exactly known. The parsing had to accommodate for the worst case, a four GB data

file with 500 MB of useable entity data. A parser without writing to an intermediate file

to a storage device for this size is possible, but may not be the most efficient.

This is where Ruby programming language became so indispensible. Parsing

large XML data files in Ruby using the built-in regular expression capability was

extremely fast. Regular expression allows pattern matching instead of an absolute exact

match used in many string comparators. If a pattern matches, then action can be taken as

to what to do with the matching values. During this data mining stage, when a pattern

matches, the data is written to an intermediate file. Once the entire data file is parsed, the

intermediate files are closed for further analysis.

The third step is to take a closer look at the parsed data to see if it contains usable

entity data. It is one thing to have data, and another to have the right data needed for

useful analysis. Unfortunately, parsing the data files is a necessary preparatory step. The

parsed data was then inputted into Microsof® Excel®. Graphs and plotting tools in

Excel® allowed quick visualization of the raw parsed data. On page 14 of Appendix F

Move Tactically (MT) Presentation Report, the diagrams generated from Excel® visually

show that the data parsed from the data collection files are in fact contiguous data of an

entity. Furthermore, an Excel® plot of the entity in MT scenario shows an actual path of

the entity. Thus, preliminary data does show entity tracking throughout the scenario is

possible. Now, it is only a question of what is available for collection, and depending on

what is available, would dictate what can or cannot be verified. The following (Figure 2)

is a block of entity tags from MT scenario.

 15

 <ENTRY refID=”32” >
 <VALUES>
 <CCTTGroundVehicleMobilityModel refID=”33” >
 <vehBin>highMobilityTracked</vehBin>
 <requestedLinearAcceleration>2.451675</requestedLinearAcceleration>
 <slope>-0.007060990631857278</slope>
 <brakeForce>0.0</brakeForce>
 <longWeight>0.0</longWeight>
 <currentSpeed>0.42843525442672326</currentSpeed>
 <linearAcceleration>0.0</linearAcceleration>
 <entityLocation>GCC: (-287361.86191023444, -5464905.17195063, 3265213.5139627373)</entityLocation>
 <maxSpeed>18.610000610351562</maxSpeed>
 <stgjCode>619</stgjCode>
 <longSumOfForces>87488.0034785146</longSumOfForces>
 <longFrictionForce>0.0</longFrictionForce>
 <requestedLinearVelocity>9.0</requestedLinearVelocity>
 <vertWeight>0.0</vertWeight>
 <brakeLinearFactor>8.382</brakeLinearFactor>
 <effectiveMu>0.1011556</effectiveMu>
 <brakeDecel>0.0</brakeDecel>
 <forceDriving>87488.0034785146</forceDriving>
 <mass>61326.0</mass>
 </CCTTGroundVehicleMobilityModel>
 </VALUES>
 <TYPE>tankAbramsM1A1</TYPE>
 <TIME>608</TIME>
 <COMPONENT>GROUND_MOBILITY</COMPONENT>
 <ID>
 <uniqueid refID=”34” >
 <stringId>0c42db11-77b3-475c-a778-91c2765db299</stringId>
 </uniqueid>
 </ID>
 </ENTRY>

Figure 2 MT Entity data set.

One piece of information that is not found in the data file is references to other

objects in the scenario, or any reference to the mission the entity is assigned to carry out.

MT scenario has an entity move from one location tactically to another, without any

reference to the target location. The data collection module records information of the

entity according to preset time intervals, such as every four milliseconds of simulation

running time. According to OneSAF developers, the collection modules were add-on

modules that were independent of the simulation system. This can be demonstrated by

the fact that OneSAF system can run with or without the data collection modules

activated. However, the separation of development of the collection modules has pros

and cons.

On the pro side, the separate modular development allows for independence,

meaning the data collection should not be able to interfere with the running system and

vice versa. This also means that scenario information, like entity location, destination,

 16

mission and so forth are not manipulated by the data collector. The data collector acts as

an external entity with a sole purpose of just recording observed data. The separate role

of the data collector is critical to verification process because in order to verify an entity

behavior in a system, it has to be compared to an external source. Simply, the OneSAF

system cannot verify what happens within itself. In order to verify internal behaviors of

OneSAF’s entities, a credible external recorder must be used.

On the con side, having a separated modular development introduces

inconsistencies, anomalies and possible errors. Inconsistencies are like the example

mentioned earlier about speed specified in the scenario in units of km/hr while speed is

represented in units of m/s in the collection file. In Chapter III, section “B. Phase I,” a

more annoying inconsistency pertaining to an x, y, and z grid coordinate system is

discussed. Anomalies are a bit harder to detect, however, on page 14 of Appendix F

Move Tactically (MT) Presentation Report, and the second graph on the page (titled

“Raw Slope Data” shows slope of a terrain changing +/- eight to nine meters in a span of

few milliseconds. While this drastic change in slope is theoretically possible, the speed

of the entity at these outlier points should reflect equally drastic changes as well.

However, as the first diagram (titled “Raw Speed”) on the same page show, the speed

does not drastically change. A positive slope should slow a moving vehicle down and

conversely, a negative slope should accelerate a vehicle. When these two diagrams are

super imposed, they should complement each other. Since they do not, this is an example

of an anomaly. An example of a possible error that can occur when modules are

developed separately are their inability to communicate together. While it may not be

detrimental to the system, it can be a source of frustration. Take for example the initial

file sizes of the data collection files. The initial file sizes were in gigabytes and not in

kilobytes or megabytes because the data collection modules did not stop collection upon

completion of the scenario.

Since continuous entity behavior collection was possible, the fourth step is what

the work of this thesis is all about: verify entity behaviors. As outlined in the

Scenario Overview of this chapter, since data were collectable and useable, the

intermediate goals of entity verification are entity speed, distance to target, and deviation

 17

distance from shortest path to destination. As stated earlier, the data collection modules

were independent of the scenario; therefore, the scenario information had to come from

external to the data collection file. The first step of verifying entity behavior was to parse

the scenario file. The scenario file was an XML file that OneSAF reads in order to create

the simulation. The scenario file contains location coordinates of entities, commands and

situation information particular to a scenario. Parsing the scenario file alone was a

challenge particularly because of lack of documentation. The key to pairing the scenario

to the data collection file were unique string identifications (ID) like “0c42db11-77b3-

475c-a778-91c2765db299.” In scenarios where a single entity is being tracked this was

an easier feat. In Appendix H Sample OneSAF Entity in a Scenario File, the string ID in

the example can be mapped to the string ID in Appendix I Sample OneSAF Data

Collection File.

The first step to verify entity behavior was to parse the scenario file for entity

location, destination, and commanded speed. If a path for entity was specified in the

scenario file, then that path would also be parsed. Second step was then to parse the data

collection file. For each of the three behaviors, the Ruby script output a temporary data

file. For speed behavior, the output consisted of three fields: time of the recording,

current speed, and current slope. The expected values for the speed raw data file were

zero m/s to the commanded speed. Obviously, a negative value or values greater than

double the commanded value would not be expected. For distance to target, a calculated

value derived from current location and destination was recorded with the current time.

The distance was a simple calculation of the x and y coordinates of the current location

and the destination’s x and y coordinates. The z coordinate was not used for this

calculation. The expected value for the distance to target raw data file was a gradual

decrease in distance over time. The last behavior to verify was the entity’s deviation

distance from the shortest path from start to finish. The shortest path was calculated once

and stored, and the distance from this line to the entity’s current location was calculated

and recorded to the raw data file. Samples of the raw data files are located in Appendix

D Move Tactically (MT) Sample Raw Data Files.

 18

The raw data files alone were a success, however, TRAC-Monterey needed to

present the work in a report to OneSAF developers. Once again, Ruby proved

indispensable to the task. The output lines for the reports were stream lined within the

entire script, from parsing the scenario file to the end of the data collection file. The

reason for inline processing was because the data file would only be accessed once, and

as stated earlier, since there was no definitive data file size. The Ruby script was

modified to accommodate for four reports, one for each of the behaviors and a test

summary. Examples of the reports are in Appendix E Move Tactically (MT) Sample

Reports Adding the reports to the script had little or no impact on the script performance.

In the Linux platform, a 25 MB data file took less than 40 seconds. In Windows®, every

test took about twice as long.

The last step to finish the MT scenario was to create visualization of the data.

The raw data files were imported into Microsoft® Excel® and graphs were generated.

The graphs were an immediate accepted by the OneSAF developers and made a request

to TRAC-Monterey to produce a prototype that would automate the verification tests with

visualizations as part of the testing outputs. This last step eliminated the option using

Excel® for the rest of the work for this thesis. Since OneSAF was developed for

Windows® and Linux, another packaged tool that would run in both environments would

be required. Another issue with Excel® was the fact that it didn’t allow for automated

scripts to generate visualizations. The report TRAC-Monterey turned in to OneSAF is in

Appendix F Move Tactically (MT) Presentation Report.

The success from MT scenario generated new challenges that will be further

discussed in the next chapter.

III. EMPLACE CONTROLLED MINEFIELD (ECM) SCENARIO

A. SCENARIO OVERVIEW

Emplace Controlled Minefield (ECM) scenario is a scenario in which a mobile

unit of two or more soldiers load up into an HMMWV, move to a weapons Conversion

Cache where they convert a specified number of land mines in a kneeling or sitting

posture. Once the mines are converted, the entities load the HMMWV with the converted

mines and relocate to weapons Dump Cache where they offload the converted mines.

From the Dump Cache, the entities randomly place the mines in a designated minefield

area. Once all mines are set in the minefield, the mission is completed. As with the

previous Move Tactically scenario, the work for ECM was broken down into three

phases.

Phase I covers the first iteration through this scenario. It explores many of the

obstacles encountered and what was done to overcome those obstacles. The Ruby scripts

from the previous chapter proved inadequate for the data collected in ECM scenario.

Phase II is where this scenario gets real interesting. Since the previous approach

provided small gains, new scripts were developed to parse the data files. Data files

collected are viewable and verification analysis was initialized. Figure 3 below provides

the overlay to the EMC scenario and a labeled closer view is in Figure 4.

Figure 3 Emplace Controlled Minefield Scenario Layout14.

14 Partial screen capture from OneSAF Objective System with ECM scenario loaded.

 19

For the purpose of this thesis, Emplace Controlled Minefield (ECM) scenario

consists of two soldiers (one highlighted - Entity “A”, the other to the immediate left of

the highlighted entity - Entity “B”) and five mines. The soldiers are commanded to board

the HMMWV (blue square along top edge), then proceed to the Conversion Cache (CC)

located along bottom edge. Once at the CC, they are to dismount the HMMWV, convert

five mines in the sitting position. Each mine takes two minutes to convert per person but

allows division of labor such that two entities could work on one mine thus requiring half

the time needed. So, with two entities working on five mines would require the entities

to work in the sitting posture for five minutes. Once the mines are converted, the entities

load the converted mines into the HMMWV’s cargo area, board the HMMWV, and

proceed to the Dump Cache (DC). At the DC, they are to arm the mines and randomly

place the mines in the minefield. For the purpose of this thesis, each and every step listed

above must be verifiable in terms of location, elapsed time, weight of cargo, cargo

(quantity), entity posture, and entity speed.

Figure 4 Entity Locations15.

B. PHASE I

Initially, the ECM scenario was created and tested in OneSAF version 1.4. After

several unsuccessful attempts to have ECM scenario execute on the 1.4 platform, the 1.4

platform was abandoned and the testing migrated to OneSAF 1.5. Most notable among

the test results were things like no output to the data collection files, scenario failed to

15 Partial screen capture from OneSAF Objective System with ECM scenario loaded.

 20

 21

terminate, collection files did not close properly, collection files were extremely large

(greater than two Gigabytes [GB]), data on some entities would not be collected while

others would - a random selection of which entity the collection module would collect on.

Migration from OneSAF 1.4 to 1.5 was easier than previous installations of OneSAF on

both Windows® and Linux platforms. However, the physical machines became more

unstable and the decision was made to have both machines rebuilt from a clean formatted

hard drive. Learning from the frustrations from Move Tactically scenario, a more

practical solution was needed. The progress of this thesis and the efforts of TRAC-

Monterey ceased until OneSAF 1.5 was stable.

After a week passed without a working OneSAF platform, focus for this thesis

was redirected to constructing virtual machines (VM), one for Debian® Linux Version 4

and one for Windows® XP SP2. Both VMs had OneSAF 1.5 loaded and running in three

days. The stable VM images were then archived using lossless compression software

called WinRAR®. VMs proved indispensable for the work of this thesis in both saving

time and proving means of testing several different configurations without concern for

platform instability. With this new found success, all tests were conducted in VMs.

In OneSAF version 1.5, the data collection modules were more stable according

to the developers. The developers did not define or clarify what they meant by “stable”

because from data collection and testing point of view, all testing conducted on 1.5 were

similar in results to the 1.4 version.

The first step was to run ECM scenario with data collection modules enabled.

The scenario was executed twenty to thirty times and the data files saved. The only data

files that were of use were the files that were greater than two Megabytes (MB) and less

than 80 MB. Files that were less than two MB were files that were initialized for the

scenario, but did not contain any entity data while the scenario was executed.

Conversely, files that were greater than 80 MB contained fillers like heartbeat

information of the scenario.

Data collection failure was defined as: When data collection was specified for a

particular entity and data was not collected for that specified entity during any test

 22

execution. During all test executions, never once a data file was created that was not

specified. In another words, the only “randomness” of data collection files were from

specified entities. If the entity was not specified, collection on an unspecified entity

never occurred. From the initial 20 to 30 tests, only the data collection files from

successful collection were used and analyzed for this thesis. As in the previous scenario,

the XML data files had some structure but were hard to understand the pattern of the re-

occurring tags. As a matter of fact, it can be said there were not any specific ordering or

sequencing of the data sets. The work developed in the previous section provided a

starting point but no useful data were obtained. It was apparent a new XML parser,

analyzer, and data presentation were needed.

One familiar XML tag from the previous chapter was “entityLocation.”

However, initial parsing on this known tag produced incomplete scenario data. The

scenario produced 2-80 MB files for each entity the data collection was initialized for.

Yet, the location of the entity was only reported from the initial location of each entity to

that entity’s first stop in the scenario. For example, the soldiers’ locations were recorded

from their initial location to the location of the HMMWV. The HMMWV’s location was

logged until it reached the Conversion Cache (CC). Based on incomplete location data of

the entities in ECM scenario, it was apparent the data collection files contained unusable

and repeated information (continuous filler information polled every two millisecond).

The data collection files were visually inspected to confirm this observation.16

The Data Collection Specification (DCS) files associated with this scenario were

not collecting the entities behavior after the entity reached its first waypoint. In the case

of the light infantry entities, the first waypoint was the location of the HMMWV. In the

case of the HMMWV, it was the location of the Conversion Cache (CC). The tools

developed from the previous section proved inadequate for the current scenario data files.

16 A sample of the repeated data marked by time units in the appendix.

 23

The following is a data sample derived from the data collection files used to

generate the graphs below.

<ENTRY refID=”95” >
 <VALUES>
 <ICMobilityModelMR refID=”96” >
 <slope>4.3450884128308633E-4</slope>
 <timeResting>0.0</timeResting>
 <bin>normallyLoadedIC</bin>
 <entityLocation>GCC: (-283859.98297301884, -5463960.4266113555, 3267075.8437014534)</entityLocation>
 <entityType>ICFullyLoaded</entityType>
 <maxSpeed>6.0</maxSpeed>
 <stgjCode>619</stgjCode>
 <linearVelocity>1.3893916876222037</linearVelocity>
 <fuelStatus>3600.0</fuelStatus>
 <useEnergyEquations>false</useEnergyEquations>
 <inFreeFall>false</inFreeFall>
 <postureState>Standing</postureState>
 <timeMoving>0.0</timeMoving>
 <maxSustainableEnergyLevel>6900.0</maxSustainableEnergyLevel>
 <climbModeOn>false</climbModeOn>
 <mPenaltyModifier>1.0</mPenaltyModifier>
 </ICMobilityModelMR>
 </VALUES>
 <TYPE>ICFullyLoaded</TYPE>
 <TIME>17884</TIME>
 <COMPONENT>GROUND_MOBILITY</COMPONENT>
 <ID>
 <uniqueid refID=”97” >
 <stringId>3202a396-1885-47d5-a54c-ec37fe3f1c35</stringId>
 </uniqueid>
 </ID>
 </ENTRY>
 <ENTRY refID=”98” >
 <VALUES>
 <SuppressionSpeedLimit refID=”99” >
 <beingSuppressed>false</beingSuppressed>
 <dayNight>Day</dayNight>
 <entityType>ICFullyLoaded</entityType>
 <maxSpeed>1.67</maxSpeed>
 </SuppressionSpeedLimit>
 </VALUES>
 <TYPE>ICFullyLoaded</TYPE>
 <TIME>17884</TIME>
 <COMPONENT>MOBILITY_CONTROLLER</COMPONENT>
 <ID>
 <uniqueid refID=”100” >
 <stringId>3202a396-1885-47d5-a54c-ec37fe3f1c35</stringId>
 </uniqueid>
 </ID>
 </ENTRY>

The following XML is what fills the bulk of the data file:
 <ENTRY refID=”7370” >
 <VALUES>
 </VALUES>
 <TYPE>null</TYPE>
 <TIME>179604</TIME>
 <COMPONENT>null</COMPONENT>
 <ID>
 <uniqueid refID=”7371” >
 <stringId>3202a396-1885-47d5-a54c-ec37fe3f1c35</stringId>
 </uniqueid>
 </ID>
 </ENTRY>

 24

 <ENTRY refID=”7372” >
 <VALUES>
 </VALUES>
 <TYPE>null</TYPE>
 <TIME>179604</TIME>
 <COMPONENT>null</COMPONENT>
 <ID>
 <uniqueid refID=”7373” >
 <stringId>3202a396-1885-47d5-a54c-ec37fe3f1c35</stringId>
 </uniqueid>
 </ID>
 </ENTRY>

 … (The rest of the data file is filled with this repeated entry.

Initial view of the data looked promising to have the data required for analysis.

The tools developed in the previous section were not able to parse the data from the ECM

scenario because the data file format was very different. In order to dissect the data files,

a Ruby script was needed to parse the data files. Similar to the scripts from the previous

chapter, a script was needed to display the data format; in particular, the tags associated

with the new data files. The understanding gained from Move Tactically (MT) scenario

was that the format of the data files was supposedly constant. Viewing the data files

from ECM, however, shows the data files to be very different. Thus a more dynamic

script was needed to be able to parse any of the XML data files generated by OneSAF

and present the format of a particular data file to the data analyzer. A Ruby script called

Prescript (Appendix B Prescript) was created to do the task of parsing data files created

by OneSAF. The purpose of this parser was to: (1) detect bad data files, (2) provide an

entity data set tags if the data file was good. The performance of Prescript was amazing,

even in Windows® platform. Almost instantaneously, the result of Prescript is returned.

On command line execution, the Prescript receives the name of the XML data file. If the

data file contains usable entity data, it returns the XML file name, the entity name and all

associated tags with the tag data types. The tag data types are produced by Prescript and

are informative information to users. The bulk of the work for Prescript came from the

Ruby scripts from the previous section (MT). Ruby provides a powerful and extremely

fast regular expression parsing capability. All XML data files from OneSAF were parsed

within seconds, regardless of the size of the file. The following screen (Figure 5 shows

the output of Prescript on an infantry entity of the ECM scenario.

Figure 5 An example output of Prescript.

Prescript (Appendix B Prescript) takes the XML filename as the only argument

from the command line. If useable entity data is encountered during the parsing of the

data file, Prescript would output the above screen to the terminal. However, if unusable

data is encountered, Prescript would report an error with the data file. During early

preliminary tests, when Prescript reported an error with a data file, those data files were

processed manually with Ruby’s incorporated editor SciTE17. SciTE proved useful for

OneSAF data files because none of the XML files were closed with proper XML closing

tags. Much like HTML, proper XML has an opening tag and at some point later followed

by a closing tag. For example, a start tag: <TAG> would have </TAG> to represent the

end to this tag. OneSAF does not properly close their XML data output files which

created a problem of viewing these files with many standard third party XML browser

tools. Standard editor in Linux like Vi and Vim proved useful to viewing the malformed

XML data files. However, it was tedious and painstaking slow because these tools only

provided simple text searching capability, useful if one knows what to search for,

17 SciTE Version 1.72 Jan 15 2007 by Neil Hodgson. Dec 1998-Jan 2007 http://www.scintilla.org

 25

 26

worthless if one did not. SciTE was able to group tags when tags had a closing tag, and

revealed unclosed/missing tags. All data files generated by OneSAF were missing

closing tags18.

The main work done by Prescript (Appendix B Prescript) was to identify a valid

data set. One of the reasons why Ruby was selected for the scripting language was

because of its ability to parse regular expressions swiftly. The longest matching set of

expressions was returned, with their matching set of data types such as an integer, float or

string.

Prescript provided a fast view of the tags that was found in the data files. Once

the tags were identified, a method was needed to process the data contained in the tags.

The next step after Prescript was to produce a way to parse useable data out of the large

XML data files. Another Ruby script was created for this purpose. This script was called

Postscript (Appendix C Postscript). In order to use Postscript, a minimum of three

parameters were required: data filename, entity name, and a tag within the entity’s set of

tags produced by Prescript. When the data files contained data from multiple entities, the

name of the entity was critical to distinguish one entity data set from another. Otherwise,

tags within the entity set would conflict.

Postscript parses an entire data file for the entity name. Upon a match, the tags

following the entity name are parsed for any of the matching tags provided from the

command line. When a match for the parameter is found, the data is sent to a temporary

text file. Once the entire data collection file is parsed, Postscript calls GNU Plot to plot

the data in the temporary data text file. GNU Plot was chosen for this thesis because of

performance and platform independence. Although the binary executable is different, the

commands are the same whether on a Windows® or Linux. Furthermore, GNU Plot can

be wrapped in a Java executable jar file for final deployment, more on deployment in

Phase III. The following examples are of Postscript (Appendix C Postscript) processing

18 As of OneSAF 1.5. Later releases had not been tested, however preliminary data view from 2.0 also
shared the same characteristics as all previous releases.

three data collection files from OneSAF during initial ECM scenario testing. Postscript

with “entityLocation” on the first set of data files from ECM scenario produced the

following graphs:

Figure 6 Entity A’s initial movement.

Figure 7 Entity B’s initial movement.

 27

Figure 8 Entity HMMWV’s initial movement.

The above figure plots (Figure 6, Figure 7, and Figure 8) are x and y coordinate

plots of the three mobile entities in ECM scenario. The Y-axis is presumed latitude

coordinate and the X-axis presumed longitude coordinate. The filename of the data file

that generated the plots are printed in quotes at the top of each plot. While the

coordinates really do not provide much information, when plotted they do provide a

visual representation of the entity’s movement, velocity and speed. The data for all of

these plots were collected at four milliseconds intervals. The closer the points are to one

another, represents slower velocity. Acceleration and deceleration are visually

represented by the plots gradually distancing themselves either apart or closer together.

Velocity and acceleration can be visually compared from the human entities in Figure 10

and Figure 11 alongside the motorized entity such in this case, the HMMWV in Figure 12

Acceleration and speed of the entities are characteristics of entity’s behavior, which can

be verified using the work of this thesis.

Entity A’s movement (Figure 6) went from lower left to upper right, entity B’s

movement went from lower right to upper left, and the HMMWV’s movement from

upper right to lower left. The plots of the two entity soldiers also contained additional

 28

 29

plots around point (-5.4641e+06, -283920). This was assumed to be the point where the

entities disembarked the HMMWV and walked to the Conversion Cache (CC). However,

the end points plotted by the HMMWV did not correspond to locations near the end

points of the soldiers. The only conclusion that can be made is that the data provided in

the set were inconclusive. The same data was collected for the first 10-20 iterations of

the scenario.

As stated earlier, OneSAF did not provide any documentation on their system, so

the exact conversion from the scenario map to the x and y coordinates were not clear.

The HMMWV’s location, however, did match (Figure 8 of HMMWV tacking) at least

until it reached its first destination, Conversion Cache (CC). From CC waypoint, entity

location (and any other useful data) was not available in any of the data files.

The coordinates were also different from the simulation screen compared to the

data output. For example, the latitude-longitude (lat/long) starting location for entity B

according to the scenario diagram is approximately (31.01, -92.97), however, the data

output reflects roughly (-283860, -5.46e06). The exact conversion of the data output to

the simulation is not defined, since documentation was not available. What is clear is

that a conversion is applied at some point. It is also of note to think the scenario could be

replayed based on the data output files.

C. PHASE II

Two issues became apparent: (1) the data collector provided an incomplete set of

data and (2) the format of the data files were different from the data files from the

previous scenario. The methods developed in Chapter II of this thesis would not be

effective for the format of the current data collection files.

All data collection specification had been executed using a built-in tool of the

MCT called Collect Analysis Data. This tool did not allow data customization to collect,

only the specific entity in which to collect. However, one of the OneSAF Desktop

applications did allow limited data collection specification called, Data Collection

Specification Tool (DCST). This was discovered by trial and error, and luck.

 30

Like most features of OneSAF, the learning curve to use DCST was quite steep

and extremely non-intuitive. OneSAF simulation system operates by scenario files. A

new scenario file must be named “Scenario.xml”. When a scenario is modified OneSAF

saves the modified scenario file as “ScenarioX.xml”. The “X” represents sequential

number starting with one. OneSAF will allow the latest scenario file to load (for example

a scenario file like “Scenario23.xml”), and run the simulation. However, because the

latest scenario file contains a number at the end of the scenario file name, the data

collection would not collect data. This was caused by the DCST. DCST only recognized

a scenario file named “Scenario.xml.” Even though the OneSAF system by default saved

updated and/or modified scenario files with a sequential number affixed to the end of the

filename, the DCST would not recognize it. The DCST basically did the following:

parsed the scenario file named “Scenario.xml” for all entities that collection could be

specified. The operator then selected an entity and selected either general or AAR19.

The DCST would then save the specification file. The specification files only work with

a loaded scenario file named “Scenario.xml.” In order to specify the latest scenario file,

that file needed to be renamed as “Scenario.xml.” Then, the operator would have to

specify collection files using the DCST. Once new collection files are created, they had

to be selected with the Collect Analysis Data (CAD). The CAD allows renaming of the

actual data collection file output. This must be done for all entity data is to be collected.

In order for the collection process to begin, the scenario must be saved. However, the

newly saved scenario file now has a numeric value added to the end of the filename. The

newly saved scenario file must be renamed as “Scenario.xml”, and must be reloaded.

This process was critical to the entire data collection process for OneSAF. Any missed

step would result in failed collection. Even if all steps were followed, there was still a bit

of randomness to what entity would be collected on. Luckily, about 1/5 of the tests had

full data collection files.

19 AAR - OneSAF does not specify what AAR is. AAR in this study was presumed to mean "After

Action Review/Report." For the purpose of this study, the name did not contribute anything.

 31

When it worked, the DCST provided a systemic collection of more data than the

pre-built Collect Analysis Data (CAD) provided. The Prescript (Appendix B Prescript)

from Chapter II was modified to accommodate the different data format that DCST AAR

outputted.

DCST allowed two settings for data collection, general and AAR20. After trial

and error, the general settings proved similar results as stated in previous section.

However, the AAR collection provided more usable data. An example of what AAR

collection provided is shown below.
 <ENTRY refID=”128” >
 <VALUES>
 <AAR_EntityData refID=”129” >
 <contaminant>null</contaminant>
 <contaminationStatus>null</contaminationStatus>
 <velocity>
 <net.onesaf.core.services.data.dm.rdm.phys.Tuple3dStruct refID= »130 » >
 <z>1.1828997366419163</z>
 <y>0.7149462845717757</y>
 <x>-0.14730872069896997</x>
 </net.onesaf.core.services.data.dm.rdm.phys.Tuple3dStruct>
 </velocity>
 <posture>16</posture>
 <catastrophicKill>false</catastrophicKill>
 <mobilityKill>false</mobilityKill>
 <orientation>
 <net.onesaf.core.services.data.dm.rdm.phys.Quat4dStruct refID=”131” >
 <z>-0.37976037115501066</z>
 <w>0.31534386085032484</w>
 <y>-0.639351867294955</y>
 <x>-0.589550252065652</x>
 </net.onesaf.core.services.data.dm.rdm.phys.Quat4dStruct>
 </orientation>
 <initialContaminationTime>0</initialContaminationTime>
 <superiorID>
 <uniqueid refID=”132” >
 <stringId>2d6f971a-2929-4750-8b4a-38da06253c0e</stringId>
 </uniqueid>
 </superiorID>
 <entityType>ICFullyLoaded</entityType>
 <contaminationConcentration>0.0</contaminationConcentration>
 <modelName>IC, Loaded</modelName>
 <damage>NO_KILL</damage>
 <mounted>false</mounted>
 <damageString>Healthy</damageString>
 <communicationKill>false</communicationKill>
 <incapacitatedKill>false</incapacitatedKill>
 <firepowerKill>false</firepowerKill>
 <unique_id>
 <uniqueid refID=”133” >
 <stringId>3202a396-1885-47d5-a54c-ec37fe3f1c35</stringId>
 </uniqueid>
 </unique_id>
 <affiliation>SUSPECT</affiliation>
 <location>

20 AAR - OneSAF does not specify what AAR is. AAR in this study was presumed to mean "After

Action Review/Report.." For the purpose of this study, the name did not contribute anything.

 32

 <net.onesaf.core.services.data.dm.rdm.phys.Tuple3dStruct refID=”134” >
 <z>3267083.302499887</z>
 <y>-5463955.922321388</y>
 <x>-283860.911732261</x>
 </net.onesaf.core.services.data.dm.rdm.phys.Tuple3dStruct>
 </location>
 <name>A/2/MechInf_Plt:AR M249-IC2</name>
 <parent>
 <encodableReference refID=”0” />
 </parent>
 </AAR_EntityData>
 </VALUES>
 <TYPE>ICFullyLoaded</TYPE>
 <TIME>9532</TIME>
 <COMPONENT>null</COMPONENT>
 <ID>
 <encodableReference refID=”133” />
 </ID>
 </ENTRY>

The revised Prescript (Appendix B Prescript) output of AAR data collection file

produced an output shown in Figure 9. The tags following the entity are listed as they

appear in the data file. Unlike previous iterations, the new AAR Prescript output

contained four tags with child tags. For example, entity’s location from the previous data

files was listed as “entityLocation” without any child tags. However, in the AAR data

file, the same location data were listed as just “location” with x, y, and z child tags. To

make matters a bit more complicated, three entity tags had x, y, and z child tags: velocity,

orientation, and location. The Prescript from previous work would not have been able to

distinguish between these three sets of child tags. Prescript had to be modified so that if

an x, y, or z tag was specified, a default parent tag had to be specified. The default parent

tag specified in Prescript was “location” since most of the entity verification centered on

the entity location in the simulation. In order to specify child tags, the child tag must

immediately follow the parent tag. For example, in order to specify velocity’s x tag, the

command parameters would be as follows: “<filename> <entity name> <velocity> <x>”.

The tags with child tags are identified differently from other tags by a set of parenthesis

around the tag name followed by an asterisk. Likewise, the child tags are identifiable by

an asterisk following the child tag data type.

Figure 9 Example output of Prescript #2.

The following figures (Figure 10, Figure 11, Figure 12, and Figure 13) are the

outputs of Postscript (Appendix C Postscript) on the DCST AAR data collection files. In

all the figures, the entities are roughly located in the upper right quadrant of the plots.

Their destination is to the lower left quadrant of the plots.

 33

Figure 10 Entity A’s movement.

Figure 11 Entity B’s movement.

 34

Figure 12 Entity HMMWV’s movement.

Figure 13 Entity A, B, and HUMMWV

 35

 36

Figure 13 is a composite of the three entities in one of the ECM scenarios. The

composite image shows clearly that the path each entity traveled was what was expected.

Points 1, 2 and 3 are the initial locations of the three entities. Figure 6 and Figure 7

shows what would be equivalent to a smaller scale of the entities initial movement from

points 1 and 3 to point 2. Point 4 is the location of the Conversion Cache. Point 5 is

where the HUMMWV approaches the river, and travels south in search of a suitable

crossing location. In this particular simulation execution, the entities traveled south,

while in other iterations of this simulation the entities traveled north. Ironically, when the

entities travel north, they do not cross the river. Point 6 is the point where the HMMWV

travels alongside the river bank, then crosses the river, then travels alongside the opposite

river bank, then turns west to the Dump Cache (DC) located at point 7. This simulation

clearly revealed a programming flaw in OneSAF’s mapping system. The point where the

HMMWV crossed the river is where two pieces of the map adjoin. The terrain has

mouse event listener that highlight and identify the objects when a mouse click is

detected, shown below in Figure 14C (note the images are not to scale). During the work

of this thesis, programmatic “bugs” similar to this were discovered and reported to

OneSAF developers.

A.

B.

C.

Figure 14 A, B, C - showing HMMWV crossing river.21

21 OneSAF screen captures.

 37

D. PHASE III

OneSAF developers requested a graphical user interface (GUI) that would allow

OneSAF users and developers to use the tools developed in this thesis. While TRAC-

Monterey was requested by OV&V for this task, the prototype for the verification GUI

was done for this thesis. Since most of OneSAF was developed using Java, the logical

solution for a verification GUI was also to create using Java. OV&V team provided

results of MT scenario (from Chapter II of this thesis) to OneSAF developers. The

developers were very pleased with the results but were not enthusiastic about using Ruby.

Fortunately Ruby has been implemented for Java as JRuby, and available open source22.

Figure 15 GUI Interface Design Diagram

22 JRuby, http://jruby.codehaus.org/, Accessed 20 July 2008.

 38

http://jruby.codehaus.org/

 39

It is important to point out that the GUI development was not a focus of this

thesis. The GUI provided from this thesis was strictly a prototype/demo of what an

example of a solution may be like. The GUI provides an easier access to the Ruby scripts

and is strictly independent of all processing. The GUI allows users to select a data

collection file, select what tag(s) to verify, run the test, and run the Automated Test Suite

(discussed later this section). It also allows users to open a plot from previous tests. The

GUI provided a more attractive appearance to the ABVT. The main drawback to using

the GUI verses via command line Ruby is the inability to have total control over the

verification tests. This limitation would be addressed for future work in this area.

The basic functions of the GUI were: (1) select an OneSAF xml data file, (2)

parse the data file for entity tags, (3) provide a way to select an entity tag for verification,

and (4) provide visual output when completed. Figure 16 is the screen capture of the

GUI prototype.

Figure 16 GUI prototype.

 40

 41

Once a GUI prototype was completed, TRAC-Monterey resumed further GUI

development. OneSAF Developers requested for a simple one mouse click that would

launch a series of automated behavior verification tests. The following eight test

parameters were requested:

1. Entities move to the conversion cache.

a. If entity is not at conversion cache, check location relative to conversion cache every 1
minute. If entity is not closer to conversion cache for 10 consecutive minutes, then fail.

b. Report time when entity is within 50 meters of conversion cache as “Time 1”.
2. At conversion cache, entities assume sitting position.

a. After time 1, if entity is within 30 meters of conversion cache, and does not sit within 1
minute, then Fail.

b. Report sitting time as “Time 2”.
3. Entity stands at completion of conversion.

a. Report standing time as “Time 3”.
4. Entities stays at conversion cache for the time required to convert mines.

a. Difference between “Time 2” and “Time 3” is greater than required conversion time.
5. Entities move the mines to the dump cache.

a. After “Time 3”, if entity is not at conversion cache, check location relative to dump cache
every 1 minute. If entity is not closer to conversion cache for 10 consecutive minutes,
then Fail.

b. Record arrival at dump cache as “Time 4”.
6. The number of mines and conversion kits in the conversion cache decrease.

a. After “Time 3”, the numbers decrease.
b. Data not available.

7. The number of mines and conversion kits in the dump cache increase.
a. After “Time 4”, the numbers increase.
b. Data not available.

8. Entities move to random locations in the minefield.
a. After “Time 4”, the entities move to a location within the minefield within 1 minute,

otherwise Fail.\

Tests six through eight did not pass with any of the data sets. Either the data

collection or the caches failed to update cargo quantities. ECM scenario would always

fail once the entities in the HMMWV stopped at the Dump Cache. The OneSAF

simulation recognized the scenario failed but would not close the data files appropriately

with closing tags. Figure 18 shows one of the more common error messages once the

scenario fails.

Figure 17 Automated testing suite results.

Figure 18 Common error message.23

23 OneSAF screen capture.

 42

 43

IV. CONCLUSION

A. SOFTWARE TESTING

The purpose of the work for this thesis was to provide a blueprint on how to

approach system behavior verification on a system that may or may not have adequate

documentation. While the work concentrated on entity behavior, the approach would be

parallel to any multitude of system behaviors. The key is to have an independent data

collection tool.

From mid 2005 to mid 2007, TRAC-Monterey was successful in verifying three

out of 51 scenarios as per OneSAF Verification & Validation (OV&V). According to

TRAC-Monterey, the greatest factor in contributing to lack of success was that the

required manpower was not available24. Manpower, as this thesis shows, was not the

greatest issue that hindered entity behavior verification. The greatest hindrance to entity

behavior verification was the lack of documentation, followed closely by lack of

developer support (although with sufficient documentation, developer support may not be

necessary).

TRAC-Monterey perceived manpower as the main problem because all steps

involved with entity verification was done manually. These steps included scenario

creation, test the scenario, modify the scenario to create variations that were of interest to

the entity being verified, re-test the modified scenario, and record all behavior observed

during the tests. For any one scenario, this was an extensive manpower issue. If TRAC-

Monterey had one person for every scenario, all scenarios could be tested and entity

behaviors could be verified in a span of three weeks time. The only thing missing,

however, is the lack of data to enforce the analysis and all analysis would have come

from the tester’s screen25. The question then becomes, “How do you verify the

analysis?” Traceability and enforcement is not available “observing screen outputs.”

Since OneSAF is a semi-autonomous system, entities should not necessarily behave

24 A , slides # one and five. ppendix J TRAC-Monterey Verification Process Methodology

ppendix J TRAC-Monterey Verification Process Methodology 25 A , slide # six.

 44

exactly the same during each iteration of testing. The conclusion is simple: the analysis

by method of observation alone is not enough for entity behavior objective verification or

traceability26.

B. POSITIVES

The scenarios in OneSAF Objective System (OOS) are all user definable. The

only limitations to scenario generation (in theory) are the limitations the real world

imposes. For example, a human entity is not allowed to fly unless he is in a vehicle entity

capable of flying. OneSAF developers did provide samples of some scenarios but

unfortunately, not the ones OV&V listed on their requirements. Therefore, the scenarios

had to be created by manually.

During the work of this thesis, data collection was implemented, although with

limited capabilities. Enabling data collection freed the tester from having to analyze data

and record scenario outputs during the test execution. This allowed multiple

simultaneous testing of one scenario, limited only by the number of machines that were

available. At the end of the tests, all the data files were collected and analyzed on

different machines.

Twice during the work of this thesis, the physical machines had software

configuration and/or operating system (OS) errors and required reinstallation of the OS

and the OOS. After the two environment failures, virtual machines (VM) were

configured and used for the remainder of the work. In the span of time it took to rebuild

the second physical machine after failure, two VMs (one with Windows® and one with

Linux) were created. Virtualization proved indispensable for the remaining work for this

thesis. When the VMs failed, a 15 minute restore brought the entire OOS environment

back online. Virtualization of the OOS environment also allowed for smoother

transitions to the newer versions of the OOS.

The creation of scenario files were the only step left unchanged during the work

of this thesis. Once the scenario was created, and forgone enough testing, the next step

26 , slide # four. Appendix K OneSAF Users Conference Orlando Florida Presentation

 45

was to modify the scenarios to emphasize entity behaviors. This was done by opening

the scenario, modify the scenario, and then execute the scenario enough times to have

adequate data. This was a long and tedious process and often the modified scenario

would not run27. A more streamlined and automated way to modify the scenario file was

done by Christopher Eatinger in his thesis titled “TESTING AUTOMATION TOOLS FOR

SECURE SOFTWARE DEVELOPMENT”.28 The modified scenario file was tested in the

same manner as the initial tests. This process was repeated until all variations of interest

were tested.

As mentioned earlier, discovering how to use the external data collection module

was the key to the entity data verification. However, if the data files were not useable,

then the efforts would have been in vain. If the first break was the discovery of the

collection tool, then the second break was that the data files were XML files. They could

have been any flat text files but OneSAF developers chose to use XML throughout the

system. The scenario files, data collection files, and entity specification files were all

XML files. The work of this thesis would not have reached the level it had if the data

collection files were binary or any other formatted files.

Ruby programming language proved indispensible for parsing the data files.

Ruby was easy to use and to learn. It proved extremely efficient in that it could parse,

calculate, coordinate multiple input and output files, and execute external programs via

system calls when needed. Ruby was used to parse the data files, create intermediate

files, and then fed those intermediate files to gnuplot along with created gnuplot scripts

that generated either Portable Network Graphics (PNG) or Postscript (PS) format

visualizations depending on the OS environment. Once the visualizations were created,

Ruby was able to make a system call to open the graph, displaying the content to the user,

provided immediate feedback on entity behavior verification. Furthermore, Ruby was

27 One of the challenges of OOS was the lack of overall system stability. Often when a modified

scenario was executed, the system, or one of the components of the system would throw unrecoverable
Java exceptions, which left the tester to re-initialize the OOS, or sometimes reboot the OS.

28 "TESTING AUTOMATION TOOLS FOR SECURE SOFTWARE DEVELOPMENT,"
Christopher Eatinger, June 2008, NPS.

 46

platform independent and was incorporated into the GUI prototype’s executable jar file

with the use of JRuby, Java implementation of Ruby.

This thesis work also brought to the attention of OneSAF developers couple of

errors found during scenario executions. The first is the ability of a HMMWV entity

being able to cross a river without using a bridge. In the real world, the HMMWV could

cross a river if the water level was low and the flow of the water was fairly slow.

However, this was not the case in the scenario. Another error was the posture of the

human entity in vehicles. In the ECM scenario, the two human entities posture was

standing while riding (presumably driving the HMMWV) in the HMMWV. While this is

not an error to reprogram the entire system over for, it does point to the fact that behavior

entity verification on large systems can be useful to detect errors.

Additionally, the work of this thesis was presented during the 2008 OOS User’s

Conference, where it was received well by the attendees. The OV&V and OOS

developers were also impressed enough to incorporate either the ideas or parts of this

thesis into future releases of OneSAF Objective System.

C. NEGATIVES

Stated throughout this thesis is the fact that OOS lacked available documentation.

TRAC-Monterey was not successful in attaining even a user’s guide to the system. To

OneSAF’s credit, their secure site provided documentations about the architecture, but

not of the modules themselves.

How could such a system be created without documentation? It is very possible

the developers do have documentation but that OV&V were not in the know to acquire

them. Perhaps issue with trade secrets or copyright issues also played a role. Whatever

the reason, TRAC-Monterey did not have any documentation.

Besides lack of documentation, there were several other negative issues

discovered. For example, OOS lacked an XML viewer. This was rather an odd

discovery considering almost everything within OOS communicated via XML files.

 47

OOS stored states, data, configurations, and others in XML files. Having a native XML

browser that could open XML files created by the OOS would have had significant

impact to this thesis.

Another negative time consuming issue was the fact that TRAC-Monterey was

responsible in creating the scenario files. This meant TRAC-Monterey testers really had

to learn a system, without any documentation. The learning curve to the OOS interface

was incredibly steep. Learning the system may have had the greatest impact to why

TRAC-Monterey was only able to verify three out of 51 scenarios in over a years’ time.

TRAC-Monterey was representative of an independent verification and testing

unit. The perspective of the OOS to TRAC-Monterey and the work of this thesis was that

the OOS system was unstable as a whole. For example, when the system initiates, a

major unrecoverable Java exception is uncaught when a network interface card (NIC)

was not detected or enabled. The system would not start, nor provide any useful

exception error message. The NIC issue did cost the progress by a weeks’ time. OOS

would through Java exceptions throughout the entire verification testing process. An

interesting thing to point out is that once an exception is thrown, the rest of the OOS is

not notified. Often, an unresponsive system was anticipated upon the third execution of

the same scenario. The question that lingered after so many system exceptions was,

“Why was Java used for this real-time simulation system?” OV&V did not have a clear

answer to this question, but hinted to the fact that OOS was developed ground-up to run

in multiple platforms, well two actually. The performance of the OOS (as noted in this

thesis) was much better in Linux than in Windows® machines. In Windows®, the

average memory used after OOS initialized was around 1.25 GB of memory and utilizing

around 25-75% on a dual-core processor. In Debian® Linux, the ram usage was around

720 MB and the processor usage was around 10-50%.29 OOS emphasizes platform

independence and yet during an expo held at NPS in 2007 and at the 2008 User’s

29 These observations were consistent on two Dell Laptops: Dell XPS 1210 4GB Ram 2.1GHz dual-

core Windows® XP, and Dell XPS 1530, 4GB Ram, 2.4 GHz dual-core running Debian® Linux. Both
configured with VMware™ Workstation® and running identical VMs, one Windows® and the other
Linux.

 48

Conference, all machines were running Windows® XP. Having a system intended to run

on multi-platforms is always welcome; however, the implementation and performance

should match industry expectations.

The single most important negative issue with the OOS for entity verification was

the data collection module. Even toward the end of the work on this thesis, the data

collector was incredibly unstable and the single most cause or progress delays. Yet,

without it producing the data provided, the work would have come to a halt.

Lastly, the OOS modular development was not seamless. Data inconsistencies,

unit inconsistencies, label inconsistencies, file inconsistencies, and operational

inconsistencies all pointed to the fact that many developers from all over contributed to

the OOS. Documentation would have certainly helped. Because of the lack of

documentation, when inconsistencies were found TRAC-Monterey would contact OV&V

and await their response. OV&V would inquire OOS developers pertaining to the

inconsistency area. More often than not, TRAC-Monterey would not receive a response.

It was clear that a break in communication between the developers and OV&V, and/or

with OV&V and TRAC-Monterey existed.

Despite the numerous shortfalls, the work progressed, and tools were developed.

More importantly, many lessons of the trade were learned.

D. FUTURE WORK

Any system worth building should be worth studying. OOS is a great candidate

for research because it offered all the elements of any large system, both pros and cons.

One thing that is apparent at this stage is that there are numerous things that remain to be

done. The hard challenge of learning and familiarizing with the system really took the

most resources.

The project had great vision that included producing a compiler that would take

requested behavior inputs and would produce a Ruby script that would in turn process a

data file. Another area to improve would be to incorporate a library of prebuilt scripts

that a user could select, run, modify and save as a user defined test. Thus far, this thesis

 49

has made great progress in creating a blueprint to verify entity behavior of a CGF

simulation system (with a major handicap of not being provided any documentation).

The work started at an extremely slow rate but progress sped up once data files were

collected.

 50

THIS PAGE INTENTIONALLY LEFT BLANK

 51

LIST OF REFERENCES

Boehm, Barry. “Verifying and Validating Software Requirements and Design
Specifications,” In IEEE Software 1 January 1984, 75-88.

"OneSAF Verification & Validation." One Semi-Automated Forces OneSAF Developer
Site. Dev.OneSAF.net. 7 Aug 2008
<https://dev.onesaf.net/devsite/Development/Verification_and_Validation/>.

Ruby. <http://www.ruby-lang.org/en/>. Last accessed July 2008.

Jruby. <http://jruby.codehaus.org/>. Last accessed July 2008.

Eatinger,Christopher, "TESTING AUTOMATION TOOLS FOR SECURE SOFTWARE
DEVELOPMENT", NPS Monterey, CA, June 2008.

Thomas, Dave, and Chad Fowler. Programming Ruby, The Pragmatic Programmers'
Guide. 2nd ed. Dallas, TX: Pragmatic Bookshelf, 2005.

 52

THIS PAGE INTENTIONALLY LEFT BLANK

 53

APPENDIX A MOVE TACTICALLY (MT) SCENARIO RUBY
SCRIPT

#!/usr/bin/env ruby
class Parse
behavior verification prototype in Ruby This is the FINAL Ver for Phase I
written by John Leo, August 2007
Monterey, CA

modified by Mikhail Auguston, August 29, 2007

 ### global vars ALL CONST VARS CAPITALIZED LETTERS

 ### PULLS SYSTEM DATE/TIME INTO RUBY SCRIPT
 require ‘time’
 @@time=0

 ### LABELS
 @@searchLabel = “null”
 @@parseLabel = “null”

 ### SPEED
 @@speedCommanded = 0
 @@DEV = 1.15 #modify this to change what slow speed deviation to catch
 @@DEVGR = 1.05
 @@numOfSlow =0;
 @@numOfFast =0;
 @@numOfSpeedEntry=0
 @@entitySpeed=0
 @@SPEED_LOW_DEV = 0
 @@SPEED_HIGH_DEV = 0
 @@SPEED_KM_HR = 0
 ### Used later, not implemented
 @@numOfSpeedZero=0

 ### DISTANCE
 @@distanceNumOf=0
 @@distanceNumOfDeviation=0
 @@distanceMaxDeviation=0
 @@totalNumOfMovement=0;
 ### Not used this iteration
 Float @@distanceSegment=0

 Float @@distanceDeviation=0
 Float @@distanceCurrent=0
 Float @@DISTANCE_MAX=0;
 Float @@distancePrevious =0;

 ### ENTITY
 @@numOfEntityLocations=0;
 @@entityType=”null”
 @@taskName=”null”
 ### STRUCT to contain a GCC Coord unit and later more information.
 Coordinate = Struct.new(:x, :y, :z, :s)
 @@CoordEnti = Coordinate.new(“0”, “0”, “0”, “0”)
 @@CoordDest = Coordinate.new(“0”, “0”, “0”, “0”)
 @@CoordInit = Coordinate.new(“0”, “0”, “0”, “0”)

 ### GLOBAL FILE HANDLERS
 @@scenarioFile = “null”
 @@dataFile = “null”
 @@fprintfSpeedReport=0
 @@fprintfDeviationFromPathReport=0

 54

 @@fprintfSummaryReport=0
 @@fprintfDistanceToTargetReport=0
 @@printfSpeedRaw=0
 @@printfDistanceToTargetRaw=0
 @@fprintfDeviationFromPathReportRaw=0
 @@fprintfErrorLog=0

 #
 # .openOutputFiles() // initializes all output files

 def Parse.openOutputFiles()
 @@fprintfSpeedReport = File.new(“#{@@dataFile}_Speed_Test_Rpt.txt”, “w”)
 @@fprintfDeviationFromPathReport=
File.new(“#{@@dataFile}_Distance_Deviation_Rpt.txt”, “w”)
 @@fprintfSummaryReport= File.new(“#{@@dataFile}_Test_Summary_Rpt.txt”, “w”)
 @@fprintfDistanceToTargetReport=
File.new(“#{@@dataFile}_Distance_To_Target_Rpt.txt”, “w”)
 @@printfSpeedRaw=File.new(“#{@@dataFile}_Speed_Raw_Data.txt”, “w”)
 @@printfDistanceToTargetRaw=File.new(“#{@@dataFile}_Distance_To_Target_Raw_Data.tx
t”, “w”)
 @@fprintfDeviationFromPathReportRaw=File.new(“#{@@dataFile}_Distance_Deviation_Raw
_Data.txt”, “w”)
 #@@fprintfErrorLog=File.new(“#{@@dataFile}_Error_Log.txt”, “w”)
 end

 #
 # .closeOutputFiles() // closes all output files

 def Parse.closeOutputFiles()
 @@fprintfSpeedReport.close
 @@fprintfDeviationFromPathReport.close
 @@fprintfSummaryReport.close
 @@fprintfDistanceToTargetReport.close

 @@printfSpeedRaw.close
 @@printfDistanceToTargetRaw.close
 @@fprintfDeviationFromPathReportRaw.close
 #@@fprintfErrorLog.close
 end

 #
 # .headers() // creates all headers on REPORTS

 def Parse.headers(outfile, msg)
 outfile.puts(Time.now.rfc2822)
 outfile.puts(“\n\n\t\t\tBEHAVIOR VERIFICATION SUMMARY FOR: #{@@entityType}\n\t\t\t
for simple Move Tactically behavior\n\nBehavior inputs from scenario file:\n
#{@@taskName}”)
 outfile.puts(“\nProperties checked in data collection file:\n #{@@dataFile}”)
 outfile.puts(“\nThe COMMANDED SPEED from scenario, #{@@speedCommanded}m/s
(#{@@SPEED_KM_HR} Km/hr).”)
 outfile.puts(“\nInitial Coordinates, \n\t\t\tx: #{@@CoordInit.x} \n\t\t\ty:
#{@@CoordInit.y} \n\t\t\tz: #{@@CoordInit.z}”)
 outfile.puts(“\nTarget Coordinates, \n\t\t\tx: #{@@CoordDest.x} \n\t\t\ty:
#{@@CoordDest.y} \n\t\t\tz: #{@@CoordDest.z}”)
 outfile.puts(“\nTotal distance #{@@DISTANCE_MAX}m from Initial to Target.\n\n”)
 outfile.puts(“#{msg}”)
 end

 #
 # .scenario() // Processes the Scenario file

 def Parse.scenario()
 ### LABEL VARS
 destinationPoint = “point”
 sourceLabel = “position”

 55

 sourceZ = “z”
 sourcey = “y”
 sourcex = “x”

 getCoords = false
 ### INIT LABELS
 if @@searchLabel == “null”
 @@searchLabel = “speed”
 end
 if @@scenarioFile == “null”
 @@scenarioFile = “Scenario.xml”
 end
 ### LOOK FOR INIT AND TARGET COORDS
 File.open(@@scenarioFile,”r”) do |file|
 file.each do |line|
 ### Get the initial coordinates
 if (line =~ /(<(#{sourceLabel})>)/ && getCoords == false)
 getCoords =true
 end
 if ((line =~ /(<z>)(-?\d+.\d*)/) && getCoords == true)
 @@CoordInit[:z] = $2
 end
 if ((line =~ /(<y>)(-?\d+.\d*)/) && getCoords == true)
 @@CoordInit[:y] = $2
 end
 if ((line =~ /(<x>)(-?\d+.\d*)/) && getCoords == true)
 @@CoordInit[:x] = $2
 getCoords = “getDest”
 end
 if (line =~ /(<(#{destinationPoint})>)/ && getCoords == “getDest”)
 getCoords =”dest”
 end
 if ((line =~ /(<z>)(-?\d+.\d*)/) && getCoords == “dest”)
 @@CoordDest[:z] = $2
 end
 if ((line =~ /(<y>)(-?\d+.\d*)/) && getCoords == “dest”)
 @@CoordDest[:y] = $2
 end
 if ((line =~ /(<x>)(-?\d+.\d*)/) && getCoords == “dest”)
 @@CoordDest[:x] = $2
 getCoords = “nomore” #do NOT reset to ‘false’
 end
 ### Get Commanded Speed
 if (line =~ /(<(#{@@searchLabel})>)(\d+.\d*)/)
 @@speedCommanded = line.slice(/\d+.\d*/)
 end
 if(line =~ /<entityType>([a-zA-Z0-9]+\.*-*_*[a-zA-Z0-9]*)/)
 if(!$1.eql?(“unknown”) && (@@entityType.eql?(“null”)))
 @@entityType = $1
 end
 end
 if(line =~ /<taskName>(\/?.*behavior.*\/?)<\/taskName>/)
 if(!$1.eql?(“unknown”) && (@@taskName.eql?(“null”)))
 @@taskName = $1
 end
 end
 end
 end
 ### Scenario is read, now init the output files
 openOutputFiles()

 #calc() called to get line distance. Entity Struct not yet created.
 calc()

 ### initial setting to MAX distance
 @@distancePrevious = @@DISTANCE_MAX
 @@distanceCurrent = @@DISTANCE_MAX

 @@SPEED_LOW_DEV = (@@DEV.to_f - 1) *100

 56

 @@SPEED_HIGH_DEV = (@@DEVGR.to_f - 1) *100
 @@SPEED_KM_HR = ((@@speedCommanded.to_f) * 60 * 60)/1000

 end

 ### THE DATA COLLECTION XML FILE IS PARSED HERE

 def Parse.data()
 @linecounter=0
 @devFlag = 0
 @time_temp=”null”; @speed_temp=”null”;

 ###REPORT HEADERS
 headers(@@fprintfSummaryReport,””)
 headers(@@fprintfDeviationFromPathReport,”File:
#{@@dataFile}_Distance_Deviation_Rpt.txt\n\nTime\t\tENTITY’S_DEVIATION_FROM_THE_PATH\n”)
 headers(@@fprintfDistanceToTargetReport,”File:
#{@@dataFile}_Distance_To_Target_Rpt.txt\n\nTIME\tENTITY\’S_PREVIOUS_DISTANCE
\tENTITY\’S_CURRENT_DISTANCE\n”)
 headers(@@fprintfSpeedReport, “File:
#{@@dataFile}_Speed_Test_Rpt.txt\n\nTIME\tCURRENT_SPEED\t\tSLOPE_OF_TERRAIN\n”)
 File.open(@@dataFile,”r”) do |xfile|
 xfile.each do |xline|
 @linecounter = @linecounter +1
 #Slope is read first... It’ll have to be re-read every time
 if (xline =~ /<slope>(-?\d+.\d*)/)
 @@CoordEnti[:s] = $1
 end
 if (xline =~ /<currentSpeed>(\d+\.\d+)/)
 #if (@setBlockFlag==true)
 @@numOfSpeedEntry=@@numOfSpeedEntry+1
 @@entitySpeed = $1

 if(@@entitySpeed.to_f > 0.0)
 @@totalNumOfMovement = @@totalNumOfMovement +1
 else
 @@numOfSpeedZero = @@numOfSpeedZero + 1
 end
 computedDevSpeed = @@speedCommanded.to_f * @@DEVGR.to_f
 xa4 = @@speedCommanded.to_f / @@DEV.to_f
 if ((@@entitySpeed.to_f < xa4.to_f) && (@@entitySpeed.to_f
!= 0.0))
 #puts “Cur_speed #{$xa2}, LST com_speed
#{@@speedCommanded}”
 @@numOfSlow = @@numOfSlow + 1
 @devFlag =1
 end
 if (@@entitySpeed.to_f > computedDevSpeed.to_f)
 @@numOfFast = @@numOfFast +1
 @devFlag =2;
 end
 end
 if ((xline =~ /<entityLocation>.*\(([^)]*)\)/) &&
(@@entitySpeed.to_f > 0.0))
 $x, $y, $z = $1.split(‘,’)
 @@CoordEnti[:x] = $x; @@CoordEnti[:y] = $y; @@CoordEnti[:z]
= $z
 calc();
 @@numOfEntityLocations=@@numOfEntityLocations+1;
 ### @@NUM_OF_OFF_PATH/ROAD here. Deviation from path,
road, the 10 is literal...
 if((@@distanceDeviation.to_f > 10.0))
 @devFlag = 3
 if (@@distanceMaxDeviation.to_f <
@@distanceDeviation.to_f)
 @@distanceMaxDeviation = @@distanceDeviation
 end
 if (@@entitySpeed.to_f != 0.0)

 57

 @@distanceNumOfDeviation=@@distanceNumOfDeviation+1
 end
 end
 if((@@distancePrevious.to_f < @@distanceCurrent.to_f) &&
(@@entitySpeed.to_f != 0.0))
 @devFlag = 4
 @@distanceNumOf=@@distanceNumOf+1
 end
 end
 if (xline =~ /<TIME>(\d+)/)
 @@time = $1
 if(@devFlag > 0)

 $statement= “TIME: #{$1}: Entity Loc.\tx:
#{@@CoordEnti.x}\n\t\t\ty: #{@@CoordEnti.y}\n\t\t\tz: #{@@CoordEnti.z}”
 if (@devFlag < 3)
 $statement1 =
“#{$1}\t#{@@entitySpeed}\t#{@@CoordEnti.s}”
 if (@@entitySpeed.to_f > 0.0)

 @@fprintfSpeedReport.puts(“#{$statement1}”)
 end
 end
 if (@devFlag == 3)

 @@fprintfDeviationFromPathReport.puts(“#{$1}\t\t#{@@distanceDeviation}”)
 end
 if (@devFlag == 4)

 @@fprintfDistanceToTargetReport.puts(“#{$1}\t#{@@distancePrevious}\t#{@@distanceCu
rrent}”)
 end
 @devFlag =0
 end
 end
 if ((@time_temp != @@time)&&(@linecounter > 100)&& (
@@numOfSpeedZero < 25)) #SKIP THE XML HEADER INFO and limit ZERO speed entries less than
25.

 @@printfSpeedRaw.puts(“#{@@time}\t#{@@entitySpeed}\t#{@@CoordEnti[:s]}”)

 @@printfDistanceToTargetRaw.puts(“#{@@time}\t#{@@distancePrevious}\t#{@@distanceCu
rrent}”)

 @@fprintfDeviationFromPathReportRaw.puts(“#{@@time}\t\t#{@@distanceDeviation}”)
 @speed_temp = @@entitySpeed
 @time_temp = @@time
 @@distancePrevious = @@distanceCurrent
 @time_temp = @@time
 end
 end
 end

 ### REPORT SUMMARY GENERATED HERE

 @@fprintfSummaryReport.puts(“\n\n\n\t\t\tTEST SUMMARY\n\n”)
 @@fprintfSummaryReport.puts(“\n\n1. Deviation of Entity’s speed”)
 @@fprintfSummaryReport.puts(“\nOutput generated when Entity’s speed deviates more
than #{@@SPEED_LOW_DEV}% down\n or more than #{@@SPEED_HIGH_DEV}% up from commanded speed
#{@@speedCommanded}m/s.”)
 @@fprintfSummaryReport.puts(“\n\n\tTotal speed measurements:
#{@@totalNumOfMovement}”)
 @@fprintfSummaryReport.puts(“\tNumber of entries where Entity’s speed was more
than #{@@SPEED_LOW_DEV}% down than commanded speed: #{@@numOfSlow}”)
 @@fprintfSummaryReport.puts(“\tNumber of entries where Entity’s speed was more
than #{@@SPEED_HIGH_DEV}% up than commanded speed: #{@@numOfFast}”)
 @@fprintfSummaryReport.puts(“\n\tThe data set for SPEED measurments that deviate
from the commanded speed is located in file:\n\t #{@@dataFile}_Speed_Test_Rpt.txt”)

 58

 @@fprintfSummaryReport.puts(“\n\n\tThe column format for data items in that
file:”)
 @@fprintfSummaryReport.puts(“\tTIME\tCURRENT_SPEED\tSLOPE_OF_TERRAIN”)
 @@fprintfSummaryReport.puts(“\n\tThe RAW data set of Speed measurments is located
in file:\n\t #{@@dataFile}_Speed_Raw_Data.txt”)
 @@fprintfSummaryReport.puts(“\n\tThis RAW data file is TAB delimited with NO
HEADERS. The file format is similar to the REPORT
file:\n\tTIME\tCURRENT_SPEED\tSLOPE_OF_TERRAIN”)
 if(@@totalNumOfMovement.to_f == 0.0)
 @@fprintfSpeedReport.puts(“\n\t ZERO DEVIATION ENTRIES FOUND.”)
 end

 ###DISTANCE TO TARGET
 @@fprintfSummaryReport.puts(“\n\n2. Deviation of Entity’s Distance To Target:\n”)
 @@fprintfSummaryReport.puts(“ *Note: Distance calculations use (x, y) coordinates
ONLY. \n”)
 @@fprintfSummaryReport.puts(“\n\tTotal Entity Coordinate entries:
#{@@numOfEntityLocations}”)
 @@fprintfSummaryReport.puts(“\tTotal number of Entity entries when distance DOES
NOT decrease: #{@@distanceNumOf}”)
 @@fprintfSummaryReport.puts(“\n\tANY Distance to Target measurements that are not
strongly less than previous distance are located in file:\n \t
#{@@dataFile}_Distance_To_Target_Rpt.txt”)
 @@fprintfSummaryReport.puts(“\n\tThe column format for data items in that file:”)
 @@fprintfSummaryReport.puts(“\tTIME\tENTITY’S_PREVIOUS_DISTANCE\tENTITY’S_CURRENT_
DISTANCE”)
 @@fprintfSummaryReport.puts(“\n\tThe RAW data set of Distance To Target
measurments is located in file:\n\t #{@@dataFile}_Distance_To_Target_Raw_Data.txt”)
 @@fprintfSummaryReport.puts(“\n\tThis RAW data file is TAB delimited with NO
HEADERS. The file format is similar to the REPORT
file:\n\tTIME\tENTITY’S_PREVIOUS_DISTANCE\tENTITY’S_CURRENT_DISTANCE”)
 if(@@distanceNumOf.to_f == 0.0)
 @@fprintfDistanceToTargetReport.puts(“\n\t ZERO DEVIATION ENTRIES FOUND.”)
 end

 ###ROUTE DEVIATION FROM THE ROUTE/ROAD
 @@fprintfSummaryReport.puts(“\n\n3. Deviation of Entity’s Location from the route
to the target location.\n”)
 @@fprintfSummaryReport.puts(“\nOutput generated when Entity deviates more than 10m
from the commanded route.\n”)
 @@fprintfSummaryReport.puts(“ *Note: Distance calculations use (x, y) coordinates
ONLY. \n”)
 @@fprintfSummaryReport.puts(“\n\tTotal Entity Coordinate entries:
#{@@numOfEntityLocations}”)
 @@fprintfSummaryReport.puts(“\tNumber of entries where Entity deviates more than
10m from the route: #{@@distanceNumOfDeviation}”)
 @@fprintfSummaryReport.puts(“\tMAX deviation detected for this scenario:
#{@@distanceMaxDeviation}m”)
 @@fprintfSummaryReport.puts(“\n\tThe data set of deviation measurments is located
in file:\n\t #{@@dataFile}_Distance_Deviation_Rpt.txt”)
 @@fprintfSummaryReport.puts(“\n\tThe column format for data items in that file:”)
 @@fprintfSummaryReport.puts(“\tTIME\tENTITY’S_DEVIATION_FROM_THE_PATH”)
 @@fprintfSummaryReport.puts(“\n\tThe RAW data set of Deviation Distance
measurments is located in file:\n\t #{@@dataFile}_Distance_Deviation_Raw_Data.txt”)
 @@fprintfSummaryReport.puts(“\n\tThis RAW data file is TAB delimited with NO
HEADERS. The file format is similar to the REPORT
file:\n\tTIME\tENTITY’S_DEVIATION_FROM_THE_PATH”)
 if(@@distanceNumOfDeviation.to_f == 0.0)
 @@fprintfDeviationFromPathReport.puts(“\n\t ZERO DEVIATION ENTRIES
FOUND.”)
 end
 end

 ### INPUT FILE PARSED FOR AUTOMATED TESTING OF SEVERAL SCENARIO AND DATA FILES

 def Parse.inputfile()
 if File.exists?(“inputtest.txt”)
 File.open(“inputtest.txt”,”r”) do |infile|
 while iLine = infile.gets

 59

 array = iLine.split
 iLine.split(‘ ‘)
 if array.size == 4
 @@searchLabel = array[2]
 @@dataFile = array[1]
 @@scenarioFile = array[0]
 @@parseLabel = array[3]
 searchdata()

 else if array.size == 1
 @@parseLabel = array[0]
 searchdata()

 else
 puts “ERROR INPUT FILE WITH THIS SEARCH! “
 end
 end
 end
 end
 else
 if @@dataFile == “null” ### HARD CODED FILE FOR ABPVT DEVELOPMENT
ONLY
 @@dataFile = “entity_CollectionTestTank_2007-08-15-09-49-29-
496.xml”
 end
 if @@parseLabel == “null” ### HARD CODED FILE FOR ABPVT DEVELOPMENT
ONLY

 @@parseLabel = “currentSpeed”

 end

 searchdata()

 end
 end
 #def Parse.calc(Float cx, Float cy, Float ax, Float ay ,
 # Float bx, Float by, #Float &distanceSegment,Float &distanceLine)
 # Float distanceSegment,Float distanceLine)
 # Based on algorithm from:
 # http://www.codeguru.com/forum/printthread.php?t=194400
 # By Philip Nicoletti, posted 06-14-2002 05:18 PM
 # Converted C code algorithm to Ruby
 #
 def Parse.calc()
 Float ax = @@CoordInit.x.to_f;Float ay = @@CoordInit.y.to_f;Float az =
@@CoordInit.z.to_f;
 Float bx = @@CoordDest.x.to_f;Float by = @@CoordDest.y.to_f;Float bz =
@@CoordDest.z.to_f;
 Float cx = @@CoordEnti.x.to_f;Float cy = @@CoordEnti.y.to_f;Float cz =
@@CoordEnti.z.to_f;
 # use only x and y coordinates for distance calculations
 ### INITIAL CALL JUST NEEDS TO CALC MAX DISTANCE; OTW, DO 3 POINT CALCULATION
 if @@DISTANCE_MAX != 0.0
 Float dista = (bx-cx)*(bx-cx)+(by-cy)*(by-cy)
 @@distanceCurrent = Math.sqrt(dista)
 Float r_numerator = (cx-ax)*(bx-ax) + (cy-ay)*(by-ay)
 Float r_denomenator = (bx-ax)*(bx-ax) + (by-ay)*(by-ay)
 Float r = r_numerator / r_denomenator
 Float px = ax + r*(bx-ax)
 Float py = ay + r*(by-ay)
 Float s = ((ay-cy)*(bx-ax)-(ax-cx)*(by-ay)) / r_denomenator
 @@distanceDeviation = s.abs * Math.sqrt(r_denomenator)
 #// (xx,yy) is the point on the lineSegment closest to (cx,cy)
 Float xx = px
 Float yy = py

 if ((r >= 0) && (r <= 1))
 @@distanceSegment = @@distanceDeviation;

http://www.codeguru.com/forum/printthread.php?t=194400
http://www.codeguru.com/forum/printthread.php?t=194400

 60

 else
 Float dist1 = (cx-ax)*(cx-ax) + (cy-ay)*(cy-ay)
 Float dist2 = (cx-bx)*(cx-bx) + (cy-by)*(cy-by)

 if (dist1 < dist2)
 xx = ax
 yy = ay
 #distanceSegment = sqrt(dist1);
 @@distanceSegment = Math.sqrt(dist1)

 else
 xx = bx
 yy = by
 #distanceSegment = sqrt(dist2);
 @@distanceSegment = Math.sqrt(dist2)

 end
 end
 if(cx == 0) ### INITIAL VALUE
 @@distanceDeviation =0
 @@distanceSegment=0
 end
 else
 Float dista = (ax-bx)*(ax-bx)+(ay-by)*(ay-by)
 @@DISTANCE_MAX = Math.sqrt(dista)

 end
 end
 def Parse.searchdata()
 scenario()
 data() #run it on the data collection file
 closeOutputFiles()

 end
 inputfile()
end

 61

APPENDIX B PRESCRIPT

#!/usr/bin/env ruby
#require ‘rexml/document’ #Can’t use because more often than not, the xml data files are not closed properly!!!

The purpose of this script is to parse data collection files and return the (if one exist) entity in that file. Input to
this script are any file names... TODO exact path of file names...
The output is “ “ and “:” delimited string as follows:
<XML collection data file1>.xml <entity name> <property1> <p2> <p3> ... : <XML collection data file2>.xml
<entity name2> <property1> <p2> <p3> ... : ...

class ParseControl
STRUCT to contain a GCC Coord unit and later more information.
#require ‘rexml/document’

 #@@xml=0
 #@@entityFilename = “entity.tags.txt”
 @@entityFile=””

 #@@propertyListStdOut=””
 @@propertyList=””
 @@terminalList=””

.scenario() // Processes the Scenario file

 def ParseControl.scenario(input)
 ### LABEL VARS
 @inputFile=input
 @linecount = 0

 @propertyCount=-1
 @propertyList=””
 @terminalList=””
 @entityName=””
 #CAN’T use because xml are mal-formed
 #@@xml = REXML::Document.new(File.open(“#{input}”))

 #Get any and all co-ords
 File.open(@inputFile,”r”) do |file|
 file.each do |line|
 if @linecount < 30
 @linecount += 1
 if ((line =~ /(<TYPE>)(null)/) && (@linecount < 30)) then
 #puts “File: #{@inputFile} contain NULL entries for entity TYPE in the header.”
 #puts @linecount
 break
 end
 end
 if (line =~ /(<VALUES>)/) then
 @propertyCount=0
 #@propertyList = “#{@linecount}”
 end
 if ((line =~ /(<)(.+)(\WrefID=)/) && @propertyCount==0) then
 @entityName = $2
 if (($2 != “uniqueid”) && ($2 != “ENTRY”) && ($2 != “SuppressionSpeedLimit”)

&& \
 ($2 != “WeaponControlModel”) && ($2 != “SpeedDataCollection”) && \
 ($2 != “DriverFSM”) && ($2 != “DirectiveDataCollection”)) then

 62

 if ($2 =~/Sensor/)
 #throw away
 else
 @terminalList =

“\n#{@inputFile}\n\t#{@entityName}\n\t\t”
 @propertyList = “#{@inputFile} #{@entityName} “
 @propertyCount = 1
 end
 end
 end
 #if ((line =~ /(<)([A-Za-z]+)(>)(-?\w+\.*\w*-?\d?)(<)/) && (@propertyCount >0))
 if ((line =~ /(<)(.+)(>)(.*)(<)/) && (@propertyCount >0)) then
 local_var = $2
 local_var_field = $4
 local_var_type =””
 @propertyCount +=1

 if (local_var_field =~ /-?\d+\.\d+E?-?\d?/) then

 local_var_type = “(float)”

 else
 if (local_var_field =~ /\d+/) then local_var_type = “(integer)”
 else
 if (local_var_field =~ /\w+/) then

local_var_type = “(string)”
 end
 end
 end
 #puts “#{local_var_field} #{local_var_type}”
 ###################### formating or not?

##################
 # JAVA needs to return this list w/o the data types!
 @terminalList = “#{@terminalList}#{local_var}#{local_var_type}\n\t\t”

 @propertyList = “#{@propertyList} #{local_var} #{local_var_type} “
 #
 ###

 end

 if ((line =~ /(<)(\w+)(>\n)/) && (@propertyCount >0)) then

 @propertyList = “#{@propertyList}(#{$2})* “
 @terminalList=”#{@terminalList}(#{$2})*\n\t\t”
 end

 if ((line =~ /(<\/VALUES>)/) && (@propertyCount < 6)) then
 @propertyCount=-1
 @propertyList=””
 end

 if ((line =~ /(<\/VALUES>)/) && (@propertyCount >= 6)) then

 if ((@propertyList =~ /slopei/) || (@propertyList =~ /stgjCodei/) || (@propertyList =~

/entityLocation/i) \
 || (@propertyList =~ /\Worientation\W/i))
 #puts “Entity: #{@entityName} contains the following proprty tags:”

 ###################### todo: return to calling Java GUI

####################
 #puts “#{@propertyList}”
 #@@entityFile.puts “#{@propertyList} : “

 @@propertyList = “#{@@propertyList}#{@propertyList}: “
 @@terminalList = “#{@@terminalList}#{@terminalList}: “
 @propertyList=””
 @terminalList=””

 63

 @propertyCount=-1

 break
 else
 #puts “#{@propertyList} but continuing...”
 @propertyList=””
 @terminalList=””
 @propertyCount=-1
 end
 end
 end
 end
 if @entityName == “” then puts “FILE #@inputFile contains no ENTITY information.” end
end

def ParseControl.process()
ARGV.each { | x |
 if File.exists?(“#{x}”)
 #puts x
 @@newFile =true
 scenario(x)
 #puts
 else
 puts
 puts “File: #{x} not found!”
 puts
 end

 }
end

 #%x{clear}
 #puts
 #puts
 #puts Time.now
 #puts “#{ARGV.size} FILENAMES entered...”

 # UNCOMMENT TO OPERATED
 if ARGV.size > 0 then
 #@@entityFile= File.new(“#{@@entityFilename}”, “w”)
 process()
 #@@entityFile.close
 end

 #puts
 #puts “property tags:”
 #puts “#{@@propertyList}”
 puts “#{@@terminalList}”
 #puts Time.now

end

 64

THIS PAGE INTENTIONALLY LEFT BLANK

 65

APPENDIX C POSTSCRIPT

#!/usr/bin/env ruby
class ParseControl
STRUCT to contain a GCC Coord unit and later more information.
 Coordinate = Struct.new(:x, :y, :z, :s)
 @@CoordInit = Coordinate.new(“0”, “0”, “0”, “0”)
 @@CoordInit2 = Coordinate.new(“0”, “0”, “0”, “0”)

 @@savePltFilename=”save.plt”
 @@savePltFile=0

 @@linux=false
 @@inputFile=””
 @@xyOutputFilename=0
 @@xyOutputFile=0
 @@plotScriptName=0
 @@plotScriptFile=0
 @@speedLabel=0
 #@@newFile=true

 @@entityName=””
 @@ARGV=””
 @@argv_num=0
 @@lineOutputToFile=””

 @@CoordFile=0
 @@CoordFilename=””

 #
 #

 def ParseControl.getOS()
 #puts ARGV
 #os = %x{uname}
 #if /^cyg/i =~ os
 os = “cygwin....”
 if os=~ /^cyg/i
 #puts “CYGWIN Environment Detected...”
 else
 #puts “Linux Environment Detected...”
 @@linux=true
 end

 end

 #
 #

 def ParseControl.plotScript()
 @@plotScriptName=”#{@@xyOutputFilename}.plt”
 @@plotScriptFile = File.new(“#{@@plotScriptName}”, “w”)

 #@@savePltFilename is “save.plt” which is a generic plot formatter for plot-to-file
 @@savePltFile = File.new(“#{@@savePltFilename}”, “w”)

 if @@linux
 @@savePltFile.puts “set terminal postscript landscape enhanced color dashed “ + \
 “lw 1 \”Helvetica\” 14”
 @@savePltFile.puts “set size 1.0, 0.8”
 @@savePltFile.puts “set output \”#{@@xyOutputFilename}.ps\””
 @@savePltFile.puts “replot”
 #@@savePltFile.puts “set terminal postscript”
 else

 66

 @@savePltFile.puts “set terminal png”
 @@savePltFile.puts “set size 1.0, 0.8”
 @@savePltFile.puts “set output \”#{@@xyOutputFilename}.png\””
 @@savePltFile.puts “replot”
 #@@savePltFile.puts “set terminal windows”
 end

 @@savePltFile.close
 ################### Script file controls WHAT is plotted by simple one liner “plot xFile” ##############
 usingWhat=”1:2”
 #Time VS One
 if (@@argv_num < 3) then
 usingWhat = “1:2”
 end
 #X VS Y default
 if (@@ARGV =~ /entityLocation/i && @@argv_num < 3) then
 usingWhat = “2:3”
 end

 if (@@ARGV =~ /time/i && @@ARGV =~ /xcord/i) then
 usingWhat = “1:2”
 end

 if (@@ARGV =~ /time/i && @@ARGV =~ /ycord/i) then
 usingWhat = “1:3”
 end

 if (@@ARGV =~ /time/i && @@ARGV =~ /slope/i) then
 usingWhat = “1:3”
 end

 if (@@ARGV =~ /currentspeed/i && @@ARGV =~ /slope/i) then
 usingWhat = “2:3”
 end

 ############################# SOMETHING TO CUSTOMIZE PLOTS... ##############
 #@@plotScriptFile.puts(“plot \”#{@@xyOutputFilename}\” using #{usingWhat}”)
 @@plotScriptFile.puts(“plot \”#{@@xyOutputFilename}\” using 2:3”)
 @@plotScriptFile.puts(“load ‘#{@@savePltFilename}’”)

 #if @@linux then
 #@@plotScriptFile.puts(“!mv my-plot.ps #{@@xyOutputFilename}.ps”)
 #else
 #@@plotScriptFile.puts(“!mv my-plot.png #{@@xyOutputFilename}.png”)
 #end

 @@plotScriptFile.close
 end

 #
 # experimental multiplots

 def ParseControl.plotScripts(x,y,z)
 @@plotScriptName=”multiPlot.plt”
 @@plotScriptFile = File.new(“#{@@plotScriptName}”, “w”)
 @@plotScriptFile.puts(“plot \”#{x}\” using 2:3,\”#{y}\” using 2:3,\”#{z}\” using 2:3”)
 @@plotScriptFile.puts(“load “#{@@savePltFilename}’”)
 @@plotScriptFile.puts(“!mv my-plot.ps #{@@plotScriptName}.ps”)
 @@plotScriptFile.close
 plot()
 end

 #
 #

 def ParseControl.plot()
 #exec “pgnuplot #{@@filenameRawDistanceDataScript} #{@@filenameRawSpeedDataScript}”

 67

 #exec “pgnuplot #{@@plotScriptName}”
 if @@linux
 %x{gnuplot #{@@plotScriptName}}
 #%x{rm -f my-plot.ps}
 else
 %x{plot #{@@plotScriptName}}
 #%x{del my-plot.png}
 end
 end
 def ParseControl.openOutputScripts()
 end

 #
 # .scenario() // Processes the data XML file

 def ParseControl.dataFile()
 ### LABEL VARS
 @@entityName = ARGV[1]
 @@speed =0
 @@time=0
 @entityLocked = -1
 @var=””

 @subLockVar=””
 @subLock=false

 #Get any and all co-ords
 File.open(@@inputFile,”r”) do |file|
 file.each do |line|

 # New set of entity tags found, set flag
 if (line =~ /(<#{@@entityName})/) then
 @entityLocked = 0
 end
 # once flagged, then process each line until flag is off
 if ((line =~ /<(\w+)>/) && (@entityLocked == 0)) then
 @var = $1
 # If the line matches one of the search tags entered
 if (@@ARGV =~ /#{@var}/) then

 # IF the tag is alone <xxx>, then a set of other tags are next
 if (line =~ /<#{@var}>\n/) # Only <xxxx> found within an entity tag set
 @subLockVar=@var
 @subLock=true
 #puts @subLockVar #this is correct
 else
 # Count tag as an entity property tag
 @@argv_num +=1
 end

 # If line contains a form of grid coordinate, then grab it
 if ((line =~ /(<#{@var}>GCC:\W\W)(-?\d+.?\d*)(\W\W)(-?\d+.\d*)(\W\W)(-?\d+.\d*)/)\
 && (@entityLocked == 0)) then

 @@CoordInit[:x] = $2
 @@CoordInit[:y] = $4
 @@CoordInit[:z] = $6 # :z not used...
 @@lineOutputToFile = “#{@@lineOutputToFile}#{@@CoordInit[:x]}\t” +

 “#{@@CoordInit[:y]}\t”
 #@@argv_num = @@argv_num + 2
 end

 # Some string to int conversion, like posture
 if ((line =~ /(<#{@var}>)(-?\d*.?\d*E?-?\d?\w*)(<\/#{@var}>)/) && \
 (@entityLocked == 0)) then
 var_num = $2
 if (var_num =~ /false/i || var_num =~ /sitting/i) then

 68

 var_num = 0
 end
 if (var_num =~ /true/i || var_num =~ /standing/i) then
 var_num = 1
 end
 @@lineOutputToFile = “#{@@lineOutputToFile}#{var_num}\t”
 end
 end
 end
 if (@subLock && line =~ /<([xyz])>(-?\d+.\d+)(<\/[xyz]>)/) then
 #if (line =~ /(<)([x-z])(>)(-?\d+.\d+)(<\/[x-z]>\n)/) then
 @@CoordInit2[:”#{$1}”] = $2
 var = $1
 #puts line
 if var ==”x” then
 @subLock=false
 @@lineOutputToFile = “#{@@lineOutputToFile}#{@@CoordInit2[:x]}\t” +

 “#{@@CoordInit2[:y]}\t”
 #puts “#{@@CoordInit2[:x]}\t#{@@CoordInit2[:y]}”
 end

 end
 if ((line =~ /<\/#{@@entityName}>/) && (@entityLocked == 0)) then
 @entityLocked = 1
 end
 if ((line =~ /<TIME>(\d+)<\/TIME>/) && (@entityLocked == 1) && \
 (@entityLocked == 1)) then
 @@lineOutputToFile = “#{$1}\t#{@@lineOutputToFile}”
 @@xyOutputFile.puts “#{@@lineOutputToFile}”
 #puts @@lineOutputToFile

 @@lineOutputToFile=””
 @entityLocked = -1
 @@argv_num=0

 end
 end
 end

 @@xyOutputFile.close
 end

def ParseControl.process()
 #ARGV.each { | x |
 if File.exists?(“#{ARGV[0]}”)
 #puts ARGV[0]
 #@@newFile =true
 @@inputFile = ARGV[0]
 @@xyOutputFilename =”#{@@inputFile}.#{ARGV[2]}.txt”
 @@xyOutputFile = File.new(“#{@@xyOutputFilename}”, “w”)
 #scenario(@@inputFile)
 dataFile()
 plotScript()
 #puts “plotting... #{ARGV[0]}”
 plot()
 #puts
 else
 #puts
 puts “File: #{ARGV[0]} not found!”
 #puts
 end
end

 69

START HERE

 getOS()
 #%x{clear}
 #puts
 #puts
 #puts Time.now
 @@argv_num = ARGV.size - 1
 #puts “#{ARGV.size} {PARAMERTERS} entered...”

 # build the argument string to use as a RE parser
 for i in 2..@@argv_num
 #puts ARGV[i]
 @@ARGV = “#{@@ARGV}#{ARGV[i]} “
 end
 #puts @@ARGV
 # UNCOMMENT TO OPERATED
 if ARGV.size > 0 then process() end

 #clean up temp files
 if @@linux
 %x{rm -f #{@@savePltFilename}}
 %x{rm -f #{@@plotScriptName}}
 else
 %x{del #{@@savePltFilename}}
 %x{del #{@@plotScriptName}}
 end
end

 70

THIS PAGE INTENTIONALLY LEFT BLANK

 71

APPENDIX D MOVE TACTICALLY (MT) SAMPLE RAW DATA
FILES

entity_CollectionTestTank_2007-08-15-09-49-29-496.xml_Speed_Raw_Data.txt

21 0 0
309 0 0
408 0 0
608 0.42843525442672326 -0.007060990631857278
815 0.42843525442672326 -0.007060990631857278
916 0.42843525442672326 -0.007060990631857278
1008 0.8038322418472359 -0.007060990605229023
1208 1.2672813683295319 -0.007060990661850841
1408 1.730085814759963 -0.007060990617765217
1608 2.1954382146037354 -0.007060990938389411
1808 2.660595066134107 -0.007060990934562694
2012 3.121721578033425 -0.0070609913201220564
2208 3.5500522114181114 -0.0070609913505428334
2408 3.9728599452675497 -0.007060991574751263
2608 4.381451261475838 -0.007060991675884587
2808 4.775808190967702 -0.007060991955380569
3008 5.156388180118532 -0.0070609922137285785
3124 5.156388180118532 -0.0070609922137285785
3208 5.523071010305859 -0.007060992614881911
3408 5.875534826692347 -0.00706099275698957
3608 6.214330955285862 -0.007060993177459451
3808 6.539714983720519 -0.007060993532419957
3964 6.539714983720519 -0.007060993532419957
4008 6.852064820787036 -0.0070609938504293535
4208 7.151902588058618 -0.0070609944193040786
4408 7.442100818498093 -0.007060994819886979
4608 7.725204561797142 -0.007060995343038279
4808 8.001387257148904 -0.007060995605431053
5008 8.270825062925232 -0.007060996107677742
5208 8.535027561832864 -0.0070609966120411816
5292 8.535027561832864 -0.0070609966120411816
5408 8.793408840618643 -0.007060997177282813
5608 9.045145338523852 -0.0070609976404916175
5808 9.239684882820328 -0.00706099821151307
6008 9.392993631345002 -0.007060998797643769
6208 9.52609585465716 -0.007060999202391782
6408 9.50098594017439 -0.007060999867755768
6452 9.50098594017439 -0.007060999867755768
6607 9.444262747065336 -0.0070610004059010745
6807 9.387512289431182 -0.007061000822560226
7007 9.336798002266386 -0.007061001469055528
7207 9.292479261160183 -0.007061001944445033
7407 9.253944107074545 -0.007061002472492417
7607 9.22047644532638 -0.007061003106418662
7808 9.19127229972116 -0.007061003645920216
8007 9.166188237714188 -0.007061004128632975
8133 9.166188237714188 -0.007061004128632975
8187 9.166188237714188 -0.007061004128632975
8207 9.144284182610876 -0.007061004508102542
8407 9.125267125242841 -0.007061005081376637
8607 9.108756565948076 -0.007061005678802745
8807 9.09442214417055 -0.007061006292748306
9007 9.081977039442355 -0.007061006783585233
9207 9.071172234568875 -0.00706100728749659

entity_CollectionTestTank_2007-08-15-09-49-29-496.xml_Distance_To_Target_Raw_Data.txt

21 2871.41395446089 2871.41395446089
309 2871.41395446089 2871.41395446089
408 2871.41395446089 2871.41395446089

 72

608 2871.41395446089 2871.29866380205
815 2871.29866380205 2871.29866380205
916 2871.29866380205 2871.29866380205
1008 2871.29866380205 2871.14355246423
1208 2871.14355246423 2870.8901424028
1408 2870.8901424028 2870.54418833091
1608 2870.54418833091 2870.1051807533
1808 2870.1051807533 2869.57315877546
2012 2869.57315877546 2868.93644373432
2208 2868.93644373432 2868.24076043617
2408 2868.24076043617 2867.44633338114
2608 2867.44633338114 2866.57020298652
2808 2866.57020298652 2865.61521561551
3008 2865.61521561551 2864.58412615892
3124 2864.58412615892 2864.58412615892
3208 2864.58412615892 2863.47971354705
3408 2863.47971354705 2862.30482106947
3608 2862.30482106947 2861.06218177103
3808 2861.06218177103 2859.75447758796
3964 2859.75447758796 2859.75447758796
4008 2859.75447758796 2858.38431488897
4208 2858.38431488897 2856.95419563712
4408 2856.95419563712 2855.46604739414
4608 2855.46604739414 2853.92128880452
4808 2853.92128880452 2852.32130383159
5008 2852.32130383159 2850.66744121307
5208 2850.66744121307 2848.96074782584
5292 2848.96074782584 2848.96074782584
5408 2848.96074782584 2847.20238770779
5608 2847.20238770779 2845.39368957886
5808 2845.39368957886 2843.54609074328
6008 2843.54609074328 2841.66783585627
6208 2841.66783585627 2839.76296548742
6408 2839.76296548742 2837.86311627299
6452 2837.86311627299 2837.86311627299
6607 2837.86311627299 2835.9840522615
6807 2835.9840522615 2834.10689379968
7007 2834.10689379968 2832.23987642541
7207 2832.23987642541 2830.3817212627
7407 2830.3817212627 2828.53127180511
7607 2828.53127180511 2826.6875147393
7808 2826.6875147393 2824.84040791319
8007 2824.84040791319 2823.01667119431
8133 2823.01667119431 2823.01667119431
8187 2823.01667119431 2823.01667119431
8207 2823.01667119431 2821.18815004337
8407 2821.18815004337 2819.36343169125
8607 2819.36343169125 2817.54201493001
8807 2817.54201493001 2815.72346461179
9007 2815.72346461179 2813.90740294245
9207 2813.90740294245 2812.09350192202
9407 2812.09350192202 2810.28147678207
9607 2810.28147678207 2808.47108028727
9655 2808.47108028727 2808.47108028727
9807 2808.47108028727 2806.66209778891
10007 2806.66209778891 2804.85434292932
10207 2804.85434292932 2803.04765391359
10407 2803.04765391359 2801.24189027165
10603 2801.24189027165 2799.4730135787
10807 2799.4730135787 2797.63266574195
11007 2797.63266574195 2795.82900870231
11207 2795.82900870231 2794.02587745867
11403 2794.02587745867 2792.25924734164
11607 2792.25924734164 2790.42092347022
11807 2790.42092347022 2788.61898922216
12007 2788.61898922216 2786.81735374696
12203 2786.81735374696 2785.05200018731
entity_CollectionTestTank_2007-08-15-09-49-29-496.xml_Distance_Deviation_Raw_Data.txt

 73

21 0
309 0
408 0
608 0.00095756711790557
815 0.00095756711790557
916 0.00095756711790557
1008 0.0022458702062105
1208 0.00435060676915896
1408 0.00722397453180222
1608 0.0108701985460707
1808 0.0152889439957207
2012 0.020577195382559
2208 0.0263551689474201
2408 0.0329532038086292
2608 0.0402297510373278
2808 0.0481611468992202
3008 0.0567244878401434
3124 0.0567244878401434
3208 0.0658966659602398
3408 0.0756540392819832
3608 0.085973879607918
3808 0.0968338819072812
3964 0.0968338819072812
4008 0.10821236788214
4208 0.120088525447509
4408 0.132446313721869
4608 0.145273917632107
4808 0.158559808038961
5008 0.172292749159254
5208 0.186464011505775
5292 0.186464011505775
5408 0.201063892574449
5608 0.216081322433598
5808 0.231421303983066
6008 0.24701535655974
6208 0.262829910379761
6408 0.278602300078891
6452 0.278602300078891
6607 0.294201661996188
6807 0.309784739560092
7007 0.325283169202989
7207 0.340707574283677
7407 0.356067561006759
7607 0.371371546992257
7808 0.386702887811379
8007 0.401839807838191
8133 0.401839807838191
8187 0.401839807838191
8207 0.41701599823074
8407 0.432160187132825
8607 0.447276535880607
8807 0.462368658184164
9007 0.47743969064092
9207 0.492492358542043
9407 0.507529025371762
9607 0.522551744093102
9655 0.522551744093102
9807 0.537562296635114
10007 0.552562230881782
10207 0.567552890366388
10407 0.582535440565685
10603 0.597211516245326
10807 0.612480146557917
11007 0.627443929107376
11207 0.642402919994531
11403 0.657058672352201

 74

THIS PAGE INTENTIONALLY LEFT BLANK

 75

APPENDIX E MOVE TACTICALLY (MT) SAMPLE REPORTS

Thu, 03 Jul 2008 11:48:05 -0700

 BEHAVIOR VERIFICATION SUMMARY FOR: tankAbramsM1A1
 for simple Move Tactically behavior
Behavior inputs from scenario file:
 /PAIR/compositions/behavior/composite/mr/moveTactically_CB.xml
Properties checked in data collection file:
 entity_CollectionTestTank_2007-08-15-09-49-29-496.xml
The COMMANDED SPEED from scenario, 9.0m/s (32.4 Km/hr).
Initial Coordinates,
 x: -287361.97703322954
 y: -5464905.16566183
 z: 3265213.5159455426

Target Coordinates,
 x: -284493.6358636792
 y: -5465037.970153228
 z: 3265149.889087235

Total distance 2871.41395446089m from Initial to Target.
File: entity_CollectionTestTank_2007-08-15-09-49-29-496.xml_Distance_To_Target_Rpt.txt
TIME ENTITY’S_PREVIOUS_DISTANCE ENTITY’S_CURRENT_DISTANCE
 ZERO DEVIATION ENTRIES FOUND.
Thu, 03 Jul 2008 11:48:05 -0700

 BEHAVIOR VERIFICATION SUMMARY FOR: tankAbramsM1A1
 for simple Move Tactically behavior
Behavior inputs from scenario file:
 /PAIR/compositions/behavior/composite/mr/moveTactically_CB.xml
Properties checked in data collection file:
 entity_CollectionTestTank_2007-08-15-09-49-29-496.xml
The COMMANDED SPEED from scenario, 9.0m/s (32.4 Km/hr).
Initial Coordinates,
 x: -287361.97703322954
 y: -5464905.16566183
 z: 3265213.5159455426

Target Coordinates,
 x: -284493.6358636792
 y: -5465037.970153228
 z: 3265149.889087235

Total distance 2871.41395446089m from Initial to Target.
File: entity_CollectionTestTank_2007-08-15-09-49-29-496.xml_Speed_Test_Rpt.txt
TIME CURRENT_SPEED SLOPE_OF_TERRAIN
608 0.42843525442672326 -0.007060990631857278
815 0.42843525442672326 -0.007060990631857278
1008 0.8038322418472359 -0.007060990605229023
1208 1.2672813683295319 -0.007060990661850841
1408 1.730085814759963 -0.007060990617765217
1608 2.1954382146037354 -0.007060990938389411
1808 2.660595066134107 -0.007060990934562694
2012 3.121721578033425 -0.0070609913201220564
2208 3.5500522114181114 -0.0070609913505428334
2408 3.9728599452675497 -0.007060991574751263
2608 4.381451261475838 -0.007060991675884587
2808 4.775808190967702 -0.007060991955380569
3008 5.156388180118532 -0.0070609922137285785
3208 5.523071010305859 -0.007060992614881911
3408 5.875534826692347 -0.00706099275698957
3608 6.214330955285862 -0.007060993177459451
3808 6.539714983720519 -0.007060993532419957
4008 6.852064820787036 -0.0070609938504293535

 76

4208 7.151902588058618 -0.0070609944193040786
4408 7.442100818498093 -0.007060994819886979
4608 7.725204561797142 -0.007060995343038279
6208 9.52609585465716 -0.007060999202391782
6408 9.50098594017439 -0.007060999867755768
110605 7.819840467467071 0.008851702047446564
110805 7.78076647184685 0.008851699755941578
111005 7.766065484096864 0.008851697590139596
111205 7.751364496688694 0.008851695052097819
111405 7.736663509558387 0.008851692988930182
111605 7.7219625227189335 0.008851690829287717
111805 7.707261536220452 0.008851688297520477
112005 7.692560550052885 0.008851685840425949
112205 7.677859564137374 0.008851683968874147
112405 7.663158578553312 0.008851681507809683
112604 7.6487458111942965 0.008851679194719964
112805 7.634675337598406 0.00885167698302447
113004 7.6212578569386835 0.008851674513260743
113204 7.608334798400123 0.008851672313270331
113404 7.596010530756319 0.008851670305100257
113604 7.58432017057321 0.008851667801070606
113804 7.573296313338535 0.008851665544127973
114004 7.5646705610717735 0.008851663493500306
114208 7.560936291301335 0.008851661314250414
114408 7.5619502223197905 0.008851658666687579
114608 7.567589924344026 0.008851656656259976
114808 7.5777293057908715 0.008851654327844516
115008 7.592199499799755 0.008851651825561024
115208 7.610798679996644 0.008851649808622852
115408 7.634048504657821 0.00885164744528355
115608 7.6628170008158545 0.008851645222611948
115808 7.696765933693851 0.008851642800750792
116008 7.735535480162836 0.008851640645963554
116208 7.778749885077808 0.008851638194158573
116408 7.826021604583755 0.008851635835011473
123807 7.793624346883217 0.008851542846615157
124007 7.777483198162732 0.00885154047569281
124207 7.7627822318869235 0.008851538141037674
124407 7.748081265906763 0.008851535945806344
124607 7.733380300261873 0.008851533456381011
124807 7.718679334936104 0.00885153108685266
125007 7.703978369920438 0.008851528784290519
125207 7.689277405175763 0.008851526772135854
125407 7.67457644078027 0.008851524179406933
125607 7.660003610888861 0.008851522053288763
125807 7.645887574826878 0.00885151964370201
126007 7.632270140136243 0.008851517376009532
126207 7.619191387268283 0.008851515142016764
126407 7.606689399123925 0.008851512916503435
126607 7.594799980790489 0.008851510543620877
126806 7.583607592026687 0.008851508277733622
127006 7.573775363759782 0.008851506320139757
127206 7.568710314886449 0.008851503852386644
127406 7.568367104902753 0.008851501526922823
127606 7.57265882250181 0.008851499375647887
127807 7.581546041496571 0.008851496919237922
128006 7.594616334142856 0.008851494622325706
128206 7.611923431446251 0.008851492505968839
128406 7.633375740967703 0.008851490293273256
128606 7.66041118931869 0.008851488032785015
128806 7.692700398602957 0.008851485780637436
129006 7.72989110171979 0.008851483465677434
129206 7.771614032584505 0.008851481138347106
129406 7.817487108276351 0.008851478717015304
136809 7.790513202503865 0.00897085570131928
137009 7.775573250388492 0.008976772090645069
137209 7.760855483481168 0.008976297888467322
137409 7.746138510789903 0.0089703995603434

 77

137609 7.731422330858784 0.008964512100344546
137810 7.716633365108576 0.008958635745947685
138009 7.701992343232535 0.00895274171542515
138209 7.687278532588095 0.00894691684416804
138409 7.672565508680277 0.00894107433790814
138609 7.658004736633625 0.008935242963571843
138809 7.643904224699935 0.008929422303936008
139009 7.630305876955325 0.008923612400783432
139209 7.617249892206271 0.008917812977624173
139409 7.60477448578443 0.00891202322586393
139609 7.592915365733645 0.008907130253845263
139809 7.5817044184853035 0.008907128027286326
140009 7.572174777470604 0.008907125984650932
140209 7.567403652788363 0.008907123978016074
140409 7.567345521646484 0.0089071218454011
140609 7.571911757748897 0.00890711958410706
140809 7.580975595927996 0.008907117605767345
141009 7.594375306805454 0.008907115044572755
141204 7.611288612442124 0.008907112945595319
141408 7.633592461185847 0.008907111153316771
141604 7.660197856674736 0.008907109067214147
Thu, 03 Jul 2008 11:48:05 -0700

 BEHAVIOR VERIFICATION SUMMARY FOR: tankAbramsM1A1
 for simple Move Tactically behavior

Behavior inputs from scenario file:
 /PAIR/compositions/behavior/composite/mr/moveTactically_CB.xml
Properties checked in data collection file:
 entity_CollectionTestTank_2007-08-15-09-49-29-496.xml
The COMMANDED SPEED from scenario, 9.0m/s (32.4 Km/hr).
Initial Coordinates,
 x: -287361.97703322954
 y: -5464905.16566183
 z: 3265213.5159455426

Target Coordinates,
 x: -284493.6358636792
 y: -5465037.970153228
 z: 3265149.889087235

Total distance 2871.41395446089m from Initial to Target.

 TEST SUMMARY

1. Deviation of Entity’s speed

Output generated when Entity’s speed deviates more than 15.0% down
 or more than 5.0% up from commanded speed 9.0m/s.

 Total speed measurements: 1666
 Number of entries where Entity’s speed was more than 15.0% down than commanded speed: 279
 Number of entries where Entity’s speed was more than 5.0% up than commanded speed: 5

 The data set for SPEED measurments that deviate from the commanded speed is located in file:
 entity_CollectionTestTank_2007-08-15-09-49-29-496.xml_Speed_Test_Rpt.txt

 The column format for data items in that file:
 TIME CURRENT_SPEED SLOPE_OF_TERRAIN
 The RAW data set of Speed measurments is located in file:
 entity_CollectionTestTank_2007-08-15-09-49-29-496.xml_Speed_Raw_Data.txt
 This RAW data file is TAB delimited with NO HEADERS. The file format is similar to the REPORT file:
 TIME CURRENT_SPEED SLOPE_OF_TERRAIN

 78

2. Deviation of Entity’s Distance To Target:
 *Note: Distance calculations use (x, y) coordinates ONLY.
 Total Entity Coordinate entries: 1666
 Total number of Entity entries when distance DOES NOT decrease: 0

 ANY Distance to Target measurements that are not strongly less than previous distance are located in file:
 entity_CollectionTestTank_2007-08-15-09-49-29-496.xml_Distance_To_Target_Rpt.txt
 The column format for data items in that file:
 TIME ENTITY’S_PREVIOUS_DISTANCE ENTITY’S_CURRENT_DISTANCE
 The RAW data set of Distance To Target measurments is located in file:
 entity_CollectionTestTank_2007-08-15-09-49-29-496.xml_Distance_To_Target_Raw_Data.txt
 This RAW data file is TAB delimited with NO HEADERS. The file format is similar to the REPORT file:
 TIME ENTITY’S_PREVIOUS_DISTANCE ENTITY’S_CURRENT_DISTANCE

3. Deviation of Entity’s Location from the route to the target location.

Output generated when Entity deviates more than 10m from the commanded route.
 *Note: Distance calculations use (x, y) coordinates ONLY.
 Total Entity Coordinate entries: 1666
 Number of entries where Entity deviates more than 10m from the route: 931
 MAX deviation detected for this scenario: 23.1664158903602m

 The data set of deviation measurments is located in file:
 entity_CollectionTestTank_2007-08-15-09-49-29-496.xml_Distance_Deviation_Rpt.txt
 The column format for data items in that file:
 TIME ENTITY’S_DEVIATION_FROM_THE_PATH
 The RAW data set of Deviation Distance measurments is located in file:
 entity_CollectionTestTank_2007-08-15-09-49-29-496.xml_Distance_Deviation_Raw_Data.txt
 This RAW data file is TAB delimited with NO HEADERS. The file format is similar to the REPORT file:
 TIME ENTITY’S_DEVIATION_FROM_THE_PATH

APPENDIX F MOVE TACTICALLY (MT) PRESENTATION
REPORT

Phase 1 Prototype Report
28 August 2007

Executive Summary: TRAC-Monterey has successfully created a working prototype of
the OneSAF Behavior Verification Automation tool. In its prototype form, the software
developed for this project auto-generates executable OneSAF scenarios and checks the
output of data files collected from OneSAF during the execution of these auto-generated
scenarios for specified parameter characteristics.
The following is a flow chart representation of the prototype operation.

Prototype Execution: The following portion of the report will describe each portion of
the Prototype software flowchart in detail.

 79

 The first step in the execution of the prototype software is to select a
behavior for verification. In the case of this prototype demonstration, we have selected
the MoveTactically behavior for simplicity. It should be noted again, that the tests
executed in this prototype demonstration are intentionally simple, and are not intended to
constitute a complete verification. We chose move tactically over more robustly

documented behaviors, such as Emplace controlled Minefield in order to facilitate our
early work on OneSAF version 1.1. It is also important to stress that this is a prototype,
intended to demonstrate the feasibility of the Behavior Verification Automation
Concepts. Therefore, it was more important for us to use a behavior that functioned on
our existing OneSAF setups, rather than wait to get the most current version of OneSAF
functioning with new, robust behaviors. Future work will focus on traceable verification
of those robust behaviors using the techniques demonstrated in this prototype.

 The next step was to select the parameters of the behavior which we will
vary based on the selected scenario. For our purposes in this prototype, we selected 6
parameters to vary in the MoveTactically behavior:

• Movement Technique
• Speed
• Formation Spacing
• Hitch / Unhitch
• Halt Duration
• Weapons Control Status

It is important to note that although we input a final destination, we did not vary that
parameter. For the prototype, we consciously limited the number of parameters we
varied in order to facilitate the demonstrative nature of this report.

 We then developed a simple baseline scenario for the behavior. In the
case of this execution, the baseline scenario consisted of an Abrams Tank, located in
open terrain. The tank is given the Composite Behavior MoveTactically, to a destination
point nearby. The destination location is not uniquely significant, though for the
purposes of this prototype demonstration, a location was chosen without any apparent
intervening terrain; approximately 2km away from the tank’s starting location.

 Once manually created, the scenario is saved using OneSAF GUI. This
saved scenario file is used as the baseline for our scenario generation. All parameters that
will be varied must have an input entered into them, so that they will be changed from
their default values. During our initial development, we found that the structure of the
scenario file was different depending on whether or not default values were used.

 80

 In this manual process, the specific parameter values in the Baseline
Scenario are replaced with the metavariables used by the combinatorial testing tool. This
is done by manually editing the scenario XML file.

 Once, the Baseline Scenario has had its parameter values replaced by
metavariables, it is saved as the Test Scenario Template file. This is simply the Scenario
XML file with the parameters of interest replaced by metavariables.
Attached example of this file in the “Combinatorial Scenario Generator\Scenario
Template” folder:
Scenario.xml

 Depending on the given parameter, the value intervals are identified
using a combination of the available options in the OneSAF GUI and the enumerations
specified in the OneSAF source code. This process is a research / information gathering
process.

 Once the parameter enumerations are determined, the desired range of
values is saved in an input specification file to be used by the Combinatorial Generator.
This file will specify either the discrete values to be tested, or a range of possible values,
such as a speed parameter between a maximum and minimum value.
Attached example of this file in the “Combinatorial Scenario Generator\Input Description
File” folder:
inputSpecification.txt

 This is a software process that uses the Input Specification file and the
Test Scenario Template File as inputs. The software generates a set of pair-wise
combinatorial parameter value tuples from the given input values, and outputs as many
test scenarios, based on the Test Scenario Template file, as are required for complete
pair-wise combinatorial testing of the parameters.

 These are the files generated by the Combinatorial Test Generator
Process. The number of auto-generated test scenarios corresponds to the number of pair-

 81

wise combinatorial parameter value tuples. With six varied parameters, the Test
Generator produced 33 distinct tests scenarios. We have included 5 as examples.
Attached examples of these files in the “Combinatorial Scenario Generator\Output
Scenarios” folder. Note that the files are organized as scenario xml files, with
corresponding folders:
gen_driver0.0
gen_driver1.0
gen_driver2.0
gen_driver3.0
gen_driver4.0

 Currently, the resulting auto-generated test scenario files are executed in
OneSAF using the Collect Analysis Data option under the Tools menu. In future, we
intend this process to be executed in a more automated fashion using scripts or the
OneSAF Autopilot mode.

 From the OneSAF executions of our test scenarios, we generated these
data collection files.
Attached examples of these files are in the “Behavior Verification Prototype\OneSAF
Data Collection Files” folder:
entity_CollectionTestTank_2007-08-15-09-49-29-496.xml
entity_CollectionTestTank_2007-08-15-16-52-04-366.xml
entity_CollectionTestTank_2007-08-17-15-47-38-512.xml
entity_CollectionTestTank_2007-08-20-16-20-41-807.xml
entity_CollectionTestTank_2007-08-21-10-33-26-867.xml

 This tool takes the data collection XML files as input, selects necessary
data from Data Collection File, and verifies properties of the behavior. These parameter
value tests are currently manually written in Ruby. For approximately a 20MB XML
data collection file, verification with the scripts took approximately 2-4 seconds per file.
In future iterations, we will develop a user interface to automate the generation of those
Ruby scripts. Additionally, it is important to note again that these tests were developed
for demonstration purposes only. They are not traced back to any documentation.
Developing robust tests and documentation traceability will be addressed in future phases
of this project, not in this prototype. This prototype is intended to demonstrate feasibility
of the methodology.

 82

 The Ruby scripts generate text files that contain Test Summary and
several data files for each verified property. These files can be used for visualization
(graphs) of corresponding aspects of behavior.
Attached examples of these files are in the “Behavior Verification Prototype\Verification
Reports and Raw Data output” folder:
entity_CollectionTestTank_2007-08-15-09-49-29-496.xml_Distance_Deviation_Raw_Data.txt
entity_CollectionTestTank_2007-08-15-09-49-29-496.xml_Distance_Deviation_Rpt.txt
entity_CollectionTestTank_2007-08-15-09-49-29-496.xml_Distance_To_Target_Raw_Data.txt
entity_CollectionTestTank_2007-08-15-09-49-29-496.xml_Distance_To_Target_Rpt.txt
entity_CollectionTestTank_2007-08-15-09-49-29-496.xml_Speed_Raw_Data
entity_CollectionTestTank_2007-08-15-09-49-29-496.xml_Speed_Raw_Data.txt
entity_CollectionTestTank_2007-08-15-09-49-29-496.xml_Speed_Test_Rpt.txt
entity_CollectionTestTank_2007-08-15-09-49-29-496.xml_Test_Summary_Rpt.txt
entity_CollectionTestTank_2007-08-15-16-52-04-366_2.xml_Distance_Deviation_Raw_Data.txt
entity_CollectionTestTank_2007-08-15-16-52-04-366_2.xml_Distance_Deviation_Rpt.txt
entity_CollectionTestTank_2007-08-15-16-52-04-366_2.xml_Distance_To_Target_Raw_Data.txt
entity_CollectionTestTank_2007-08-15-16-52-04-366_2.xml_Distance_To_Target_Rpt.txt
entity_CollectionTestTank_2007-08-15-16-52-04-366_2.xml_Speed_Raw_Data.txt
entity_CollectionTestTank_2007-08-15-16-52-04-366_2.xml_Speed_Test_Rpt.txt
entity_CollectionTestTank_2007-08-15-16-52-04-366_2.xml_Test_Summary_Rpt.txt
entity_CollectionTestTank_2007-08-17-15-47-38-512_3.xml_Distance_Deviation_Raw_Data.txt
entity_CollectionTestTank_2007-08-17-15-47-38-512_3.xml_Distance_Deviation_Rpt.txt
entity_CollectionTestTank_2007-08-17-15-47-38-512_3.xml_Distance_To_Target_Raw_Data.txt
entity_CollectionTestTank_2007-08-17-15-47-38-512_3.xml_Distance_To_Target_Rpt.txt
entity_CollectionTestTank_2007-08-17-15-47-38-512_3.xml_Speed_Raw_Data.txt
entity_CollectionTestTank_2007-08-17-15-47-38-512_3.xml_Speed_Test_Rpt.txt
entity_CollectionTestTank_2007-08-17-15-47-38-512_3.xml_Test_Summary_Rpt.txt
entity_CollectionTestTank_2007-08-20-16-20-41-807_5.xml_Distance_Deviation_Raw_Data.txt
entity_CollectionTestTank_2007-08-20-16-20-41-807_5.xml_Distance_Deviation_Rpt.txt
entity_CollectionTestTank_2007-08-20-16-20-41-807_5.xml_Distance_To_Target_Raw_Data.txt
entity_CollectionTestTank_2007-08-20-16-20-41-807_5.xml_Distance_To_Target_Rpt.txt
entity_CollectionTestTank_2007-08-20-16-20-41-807_5.xml_Speed_Raw_Data.txt
entity_CollectionTestTank_2007-08-20-16-20-41-807_5.xml_Speed_Test_Rpt.txt
entity_CollectionTestTank_2007-08-20-16-20-41-807_5.xml_Test_Summary_Rpt.txt
entity_CollectionTestTank_2007-08-21-10-33-26-867_4.xml_Distance_Deviation_Raw_Data.txt
entity_CollectionTestTank_2007-08-21-10-33-26-867_4.xml_Distance_Deviation_Rpt.txt
entity_CollectionTestTank_2007-08-21-10-33-26-867_4.xml_Distance_To_Target_Raw_Data.txt
entity_CollectionTestTank_2007-08-21-10-33-26-867_4.xml_Distance_To_Target_Rpt.txt
entity_CollectionTestTank_2007-08-21-10-33-26-867_4.xml_Speed_Raw_Data.txt
entity_CollectionTestTank_2007-08-21-10-33-26-867_4.xml_Speed_Test_Rpt.txt
entity_CollectionTestTank_2007-08-21-10-33-26-867_4.xml_Test_Summary_Rpt.txt

 83

 84

Output Samples:
The following is an example of the test summary output. This test summary, specifically,
is found in the file:

entity_CollectionTestTank_2007-08-15-09-49-29-496.xml_Speed_Test_Rpt.txt.
Thu, 30 Aug 2007 23:58:00 -0700
 BEHAVIOR VERIFICATION SUMMARY FOR: tankAbramsM1A1
 for simple Move Tactically behavior
Behavior inputs from scenario file:
 /PAIR/compositions/behavior/composite/mr/moveTactically_CB.xml
Properties checked in data collection file:
 entity_CollectionTestTank_2007-08-15-09-49-29-496.xml
The COMMANDED SPEED from scenario, 9.0m/s (32.4 Km/hr).
Initial Coordinates,
 x: -287361.97703322954
 y: -5464905.16566183
 z: 3265213.5159455426

Target Coordinates,
 x: -284493.6358636792
 y: -5465037.970153228
 z: 3265149.889087235

Total distance 2871.41395446089m from Initial to Target.
 TEST SUMMARY
1. Deviation of Entity’s speed

Output generated when Entity’s speed deviates more than 15.0% down
 or more than 5.0% up from commanded speed 9.0m/s.

 Total speed measurements: 1666
 Number of entries where Entity’s speed was more than 15.0% down than commanded
speed: 279
 Number of entries where Entity’s speed was more than 5.0% up than commanded speed:
5

 The data set for SPEED measurments that deviate from the commanded speed is
located in file:
 entity_CollectionTestTank_2007-08-15-09-49-29-496.xml_Speed_Test_Rpt.txt

 The column format for data items in that file:
 TIME CURRENT_SPEED SLOPE_OF_TERRAIN
 The RAW data set of Speed measurments is located in file:
 entity_CollectionTestTank_2007-08-15-09-49-29-496.xml_Speed_Raw_Data.txt
 This RAW data file is TAB delimited with NO HEADERS. The file format is similar
to the REPORT file:
 TIME CURRENT_SPEED SLOPE_OF_TERRAIN
2. Deviation of Entity’s Distance To Target:
 *Note: Distance calculations use (x, y) coordinates ONLY.
 Total Entity Coordinate entries: 1666
 Total number of Entity entries when distance DOES NOT decrease: 0

 ANY Distance to Target measurements that are not strongly less than previous
distance are located in file:
 entity_CollectionTestTank_2007-08-15-09-49-29-496.xml_Distance_To_Target_Rpt.txt
 The column format for data items in that file:
 TIME ENTITY’S_PREVIOUS_DISTANCE ENTITY’S_CURRENT_DISTANCE
 The RAW data set of Distance To Target measurments is located in file:
 entity_CollectionTestTank_2007-08-15-09-49-29-
496.xml_Distance_To_Target_Raw_Data.txt
 This RAW data file is TAB delimited with NO HEADERS. The file format is similar
to the REPORT file:
 TIME ENTITY’S_PREVIOUS_DISTANCE ENTITY’S_CURRENT_DISTANCE
3. Deviation of Entity’s Location from the route to the target location.

Output generated when Entity deviates more than 10m from the commanded route.

 85

 *Note: Distance calculations use (x, y) coordinates ONLY.
 Total Entity Coordinate entries: 1666
 Number of entries where Entity deviates more than 10m from the route: 931
 MAX deviation detected for this scenario: 23.1664158903602m

 The data set of deviation measurments is located in file:
 entity_CollectionTestTank_2007-08-15-09-49-29-496.xml_Distance_Deviation_Rpt.txt
 The column format for data items in that file:
 TIME ENTITY’S_DEVIATION_FROM_THE_PATH
 The RAW data set of Deviation Distance measurments is located in file:
 entity_CollectionTestTank_2007-08-15-09-49-29-
496.xml_Distance_Deviation_Raw_Data.txt
 This RAW data file is TAB delimited with NO HEADERS. The file format is similar
to the REPORT file:
 TIME ENTITY’S_DEVIATION_FROM_THE_PATH

Examples of raw data visualization:
The output text files were imported to Excel to generate the following graphs. For future
iterations, we will examine auto generation of data visualization to assist in the
verification process.

 86

 87

 88

Included files:
The following is the file structure and location of the attached files for this prototype.
Instructions for implementing the software is located in the Source Code and
Documentation folders of each major component of this prototype.
Combinatorial Scenario Generator

• Source Code and Documentation
• Scenario Template
• Input Description File
• Output Scenarios

Behavior Verification Prototype

• OneSAF Data Collection Files
• Verification Reports and Raw Data Output

Limitations of Prototype:
As a prototype, this milestone demonstrates the fundamental concepts which make the
Automation of Behavior Verification possible. However, it is a prototype, and at this
stage, only a demonstration of concepts. It is not a completed product, and does not
execute from start to finish without manual intervention. Similarly, the parameter
characteristic tests are not fully mature. Future work will focus on creating “linking
software” which binds the significant pieces of software in this prototype together in a
user friendly manner. Future work will also focus on developing a means of producing
more significant parameter characteristic tests based on expectations extracted from the
development documentation.
Issues:
In the Scenario.xml there are four sets of GCC coordinates. We assume the first set
contains the Initial (mission start point) followed by the Target (destination, mission end
point) coordinates. We would like to know precisely which of the four sets are the actual
Initial and Target coordinates.
Additionally, when we create our own data collection specification, we could never
collect more than the first data point. Consequently, our work-around was to only use the
“Collect Analysis Data” function in the Tools menu in the MCT. This provided us with a
very basic, but useable, set of information.
Lastly, we encountered a consistent behavior failure when executing our scenarios, both
in OneSAF version 1.5 (Engineering Drop) and version 1.1. We verified the fault by
reproducing it with manually created scenarios in the MCT. Below are the screen shots
from the execution of both the manual and automatically generated scenarios.

The scenario was recreated in OneSAF Version 1.1, and we still received the same
exception:

 89

 90

Due to the exception being thrown by the Primitive Behavior
net.onesaf.models.beh.primitive. mr.DetermineRoutesToCircularHalt, we believe that the
source of this fault is setting a haltDuration value. ‘haltDuration’ was randomly selected
for the purposes of this Prototype demonstration as a parameter to be varied. The
scenarios that successfully completed were those with haltDuration set to 0.

Conclusion:
In this prototype, we have successfully demonstrated the feasibility of auto-generating the
OneSAF scenario files outside of OneSAF, using our combinatorial test methodology.
We also have successfully demonstrated the feasibility of using automated scripts to mine
data from the OneSAF generated Data Collection output files to evaluate behavior
characteristics of entities.
Future work will focus on three specific areas:

- increasing the level of automation of these processes
- improving traceability of the behavior tests
- creating tools to automate the creating of Ruby test scripts

APPENDIX G AUTOMATED BEHAVIOR PROPERTY TEST
(ABPT) DESIGN DIAGRAM

CHANGE #1

1. -----> is new, GUI can call "Open Graphic"
2. PostScript can call now call GNUPlot to create plot, then display it!

 91

 92

Automated Behavior Property Testing (ABPT) Tool

Design Specification

Automated Behavior Property Testing (ABPT) and Verification Tool is a small

set of programs written in Java and Ruby Scripting Language that can parse, analyze, and

process specialized XML data collection files generated from OneSAF’s Data Collection

subcomponent. ABPT is designed with efficiency (minimizing resource usages while

maximizing processing speed), portability, and adaptability from concept to deliverable

product. The following document provides technical design specifications.

The heart of ABPT is three Ruby scripts, Prescript, Postscript, and Comparator

script. These scripts components are designed to communicate with each other and with

other applications via standard input/output commonly known as pipe and filter

implementation. A graphical user interface (GUI) written in Java with standard Java

Swing Class components provides usability to a broader audience for these tools.

Between the GUI and the scripts is a Java interface that provides command interpreter

services for the GUI, allowing the GUI to run command line applications and passing

messages from those applications back to the GUI.

The inputs for Prescript are XML data collection files generated from OneSAF.

Prescript parses the data files and returns a set of XML tags that describe characteristics

of a particular entity per file parsed. Currently, the GUI allows single data file to be

selected, however, the Prescript does allow for multiple files when used directly. Future

implementations may remove this limitation if required. The format for Prescript input is

the name of a data file for single file usage, or space separated list of files for multiple

file. The output of Prescript is sent to standard out (default to the output screen) if used

directly, or displayed in the GUI in multi-selectable listing. The format of the output is as

follows: FILENAME ENTITYNAME TAG-1(data type) TAG-2(data type) … TAG-

n(data type) :. A colon (“:”) separates each set of tags. There may be some tags that

have “child” tags associated with them. The “parent” of those tags will be noted as

“(TAG-x)*”, notice the parenthesis, an asterisk and no data type. The “child” tag(s) are

 93

noted as “TAG-x(data type)*”. Lastly, there may be some tags that look like a “parent”

tag but do not have any “child” tags.

The format for the input for Postscript is as follows: FILENAME

ENTITYNAME TAG-1 TAG-2 …TAG-n. Each field is space delimited as well. While

it may be highly unlikely two have more than two tags as input, the Postscript does not

limit the number of tags. However, graphing the parsed data may be limited to two tags

as x and y coordinates. Postscript parses the XML data file using the tags specified. The

parsed data are written to a data file named as follows: FILENAME.TAG-1.txt. Allow

with the parsed data file, there are two intermediate files that are also generated. These

two files are scripts that allow plotting of the parsed data file and allow the plot to be

saved in a file with similar naming convention but in either a Portable Network Graphics

(png) or Postscript (ps) depending on the operating system (Windows for former, Linux

for latter). When Postscript completes, it returns the name of the plot or an error as to

why a plot was not generated. By default, if a plot successfully generates, it will

automatically be displayed.

 94

THIS PAGE INTENTIONALLY LEFT BLANK

 95

APPENDIX H SAMPLE ONESAF ENTITY IN A SCENARIO FILE

 <actor>
 <net.onesaf.core.services.data.dm.rdm.phys.RDMGroundVehicle refID=”31” >
 <relativeRank>1</relativeRank>
 <towedEntity>
 <encodableReference refID=”0” />
 </towedEntity>
 <currentBehaviorName>null</currentBehaviorName>
 <brakeLightsOn>false</brakeLightsOn>
 <attachment>
 <encodableReference refID=”0” />
 </attachment>
 <sectorOfFire>
 <net.onesaf.core.services.data.dm.rdm.phys.SectorOfFire refID=”32” >
 <angleFromHeading>0.0</angleFromHeading>
 <angleOfSector>1.0474</angleOfSector>
 </net.onesaf.core.services.data.dm.rdm.phys.SectorOfFire>
 </sectorOfFire>
 <weaponMaxRange>0.0</weaponMaxRange>
 <wcs>Hold</wcs>
 <towingEntity>
 <encodableReference refID=”0” />
 </towingEntity>
 <crewState>CREW_HEALTHY</crewState>
 <lowContrast>false</lowContrast>
 <rank>NONE</rank>
 <radarCrossSectionSignatureIndex>0</radarCrossSectionSignatureIndex>
 <unitRole>null</unitRole>
 <engineOn>false</engineOn>
 <priorRouteID>
 <encodableReference refID=”0” />
 </priorRouteID>
 <currentBehaviorState>NOT_READY</currentBehaviorState>
 <mass>61326.0</mass>
 <radarEnabled>false</radarEnabled>
 <formationRank>0</formationRank>
 <activity>Undefined</activity>
 <currentRouteID>
 <encodableReference refID=”0” />
 </currentRouteID>
 <entityType>tankAbramsM1A1</entityType>
 <movementMedium>NONE</movementMedium>
 <trailingEffectsCode>NoTrail</trailingEffectsCode>
 <smokePlumePresent>false</smokePlumePresent>
 <routeIndex>0</routeIndex>
 <fightingPositionType>none</fightingPositionType>
 <load>0.0</load>
 <oldSpatial>
 <encodableReference refID=”0” />
 </oldSpatial>
 <overlay>
 <encodableReference refID=”0” />
 </overlay>
 <distanceThreshold>FINE</distanceThreshold>
 <rigStatus>derig</rigStatus>
 <ID>
 <uniqueid refID=”33” >
 <stringId>0c42db11-77b3-475c-a778-91c2765db299</stringId>
 </uniqueid>
 </ID>
 <routeOffset>
 <encodableReference refID=”0” />
 </routeOffset>
 <followByOffset>

 96

 <encodableReference refID=”0” />
 </followByOffset>
 <address>
 <EPAddress refID=”34” >
 <multicast>false</multicast>
 <ID>
 <uniqueid refID=”35” >
 <stringId>d9b5dc38-13be-49fa-b71d-d9e54cf7519e</stringId>
 </uniqueid>
 </ID>
 </EPAddress>
 </address>
 <formationPosition>0</formationPosition>
 <entityRole>UNDEFINED</entityRole>
 <repairLevelEnum>Field</repairLevelEnum>
 <contaminationData>
 <encodableReference refID=”0” />
 </contaminationData>
 <stuck>false</stuck>
 <sensorMaxRange>0.0</sensorMaxRange>
 <URN>0</URN>
 <tentDeployed>false</tentDeployed>
 <formationRole>null</formationRole>
 <role>NONE</role>
 <spatial>
 <net.onesaf.core.services.data.dm.rdm.phys.SpatialStruct refID=”36” >
 <angularVelocity>
 <net.onesaf.core.services.data.dm.rdm.phys.Vector3dStruct refID=”37” >
 <z>0.0</z>
 <y>0.0</y>
 <x>0.0</x>
 </net.onesaf.core.services.data.dm.rdm.phys.Vector3dStruct>
 </angularVelocity>
 <linearAcceleration>
 <net.onesaf.core.services.data.dm.rdm.phys.Vector3dStruct refID=”38” >
 <z>0.0</z>
 <y>0.0</y>
 <x>0.0</x>
 </net.onesaf.core.services.data.dm.rdm.phys.Vector3dStruct>
 </linearAcceleration>
 <predictionEnum>STATIC</predictionEnum>
 <velocity>
 <net.onesaf.core.services.data.dm.rdm.phys.Vector3dStruct refID=”39” >
 <z>0.0</z>
 <y>0.0</y>
 <x>0.0</x>
 </net.onesaf.core.services.data.dm.rdm.phys.Vector3dStruct>
 </velocity>
 <maxExtentVector>
 <net.onesaf.core.services.data.dm.rdm.phys.Vector3dStruct refID=”40” >
 <z>0.0</z>
 <y>1.78</y>
 <x>3.67</x>
 </net.onesaf.core.services.data.dm.rdm.phys.Vector3dStruct>
 </maxExtentVector>
 <position>
 <GCC refID=”41” >
 <z>3265213.5159455426</z>
 <ellipsoid>WGS_84</ellipsoid>
 <y>-5464905.16566183</y>
 <x>-287361.97703322954</x>
 </GCC>
 </position>
 <orientation>
 <net.onesaf.core.services.geometry.DISEulerAngles refID=”42” >
 <psi>-0.04652540040089834</psi>
 <phi>-2.105512361461992</phi>
 <theta>0.0036097009098530826</theta>

 97

 </net.onesaf.core.services.geometry.DISEulerAngles>
 </orientation>
 <minExtentVector>
 <net.onesaf.core.services.data.dm.rdm.phys.Vector3dStruct refID=”43” >
 <z>-1.54</z>
 <y>-1.78</y>
 <x>-3.67</x>
 </net.onesaf.core.services.data.dm.rdm.phys.Vector3dStruct>
 </minExtentVector>
 </net.onesaf.core.services.data.dm.rdm.phys.SpatialStruct>
 </spatial>
 <mountedOn>
 <encodableReference refID=”0” />
 </mountedOn>
 <currentFuelLevel>0.0</currentFuelLevel>
 <name>CollectionTestTank</name>
 <moppLevel>Mopp0</moppLevel>
 <cfs>Non_CFS</cfs>
 <orientationThreshold>FINE</orientationThreshold>
 <driverMoving>false</driverMoving>
 <configurationName>null</configurationName>
 <powerPlantOn>false</powerPlantOn>
 <specificRoute>
 <encodableReference refID=”0” />
 </specificRoute>
 <towStatus>false</towStatus>
 <damage>NO_KILL</damage>
 <compositionName>entity/mr/COMBAT/ARMOR/Tank_M1A1_Abrams_Armor</compositionName>
 <affiliation>
 <encodableReference refID=”10” />
 </affiliation>
 <parent>
 <encodableReference refID=”0” />
 </parent>
 <bumperNum>null</bumperNum>
 </net.onesaf.core.services.data.dm.rdm.phys.RDMGroundVehicle>
 </actor>
 </net.onesaf.core.services.data.dm.rdm.org.RDMActorCapabilities>

 98

THIS PAGE INTENTIONALLY LEFT BLANK

 99

APPENDIX I SAMPLE ONESAF DATA COLLECTION FILE

<?xml version=”1.0” encoding=”UTF-8” ?>
<?version version=”1.0.0” date=”8-15-2007” ?>
<?copyright statement=”This work was generated under U.S. Government contract and the government has unlimited data rights
therein.” classification=”Unclassified” projectName=”OneSAF Objective System Architecture & Integration”
contractNumber=”#N61339-00-D-0710” taskOrder=”0008” copyrights=”Copyrights 2001-2003. Science Applications International
Corporation, Lockheed Martin Information Systems, Dynamics Research Corporation. All rights reserved.”
distributionStatementD=”DISTRIBUTION AUTHORIZED TO THE DEPARTMENT OF DEFENSE AND U.S. DOD
CONTRACTORS ONLY DUE TO CRITICAL TECHNOLOGY, EFFECTIVE 20 JUNE 1994.OTHER REQUESTS SHALL BE
REFERRED TO THE PCO.” ?>
<SOD xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:noNamespaceSchemaLocation=”entity_CollectionTestTank_2007-08-15-09-49-29-496.xsd” >
 <HEADER>
 <HEADER_DATA refID=”1” >
 <DCS>/PAIR/dataCollection/DCS_Entity_CollectionTestTank.xml</DCS>
 <RUNID>1</RUNID>
 <SCENARIONAME>/PAIR/scenario/toolTest/gen_driver0.0/Scenario.xml</SCENARIONAME>
 <START>1186702320703</START>
 </HEADER_DATA>
 </HEADER>
 <ENTRIES>
 <ENTRY refID=”2” >
 <VALUES>
 <net.onesaf.core.models.beh.primitive.mr.PlanMount refID=”3” >
 <mountMappings>
 </mountMappings>
 <distances></distances>
 <overloadFlag>false</overloadFlag>
 <taskAction>hitchToEntity</taskAction>
 <towMappings>
 </towMappings>
 </net.onesaf.core.models.beh.primitive.mr.PlanMount>
 </VALUES>
 <TYPE>PlanMount</TYPE>
 <TIME>21</TIME>
 <COMPONENT>BEHAVIOR</COMPONENT>
 <ID>
 <uniqueid refID=”4” >
 <stringId>0c42db11-77b3-475c-a778-91c2765db299</stringId>
 </uniqueid>
 </ID>
 </ENTRY>
 <ENTRY refID=”5” >
 <VALUES>
 <net.onesaf.core.models.beh.primitive.com.AssertFactOrState refID=”6” >
 <collActivatedEntityName></collActivatedEntityName>
 <inPrimaryPosition>false</inPrimaryPosition>
 <overwatchLocation>
 <double>0.0</double>
 <double>0.0</double>
 <double>0.0</double>
 </overwatchLocation>
 <ENTRY refID=”7” >
 <VALUES>
 <net.onesaf.core.models.beh.primitive.com.AssertFactOrState refID=”8” >
 <collActivatedEntityName></collActivatedEntityName>
 <inPrimaryPosition>false</inPrimaryPosition>
 <overwatchLocation>
 <double>0.0</double>
 <double>0.0</double>
 <double>0.0</double>
 </overwatchLocation>
 <ENTRY refID=”9” >
 <VALUES>

http://www.w3.org/2001/XMLSchema-instance

 100

 <net.onesaf.core.models.beh.primitive.lr.SetSectorOfFire refID=”10” >
 <sensorOrientation>0.0</sensorOrientation>
 <sensingArc>60.01159946200243</sensingArc>
 </net.onesaf.core.models.beh.primitive.lr.SetSectorOfFire>
 </VALUES>
 <TYPE>SetSectorOfFire</TYPE>
 <TIME>21</TIME>
 <COMPONENT>BEHAVIOR</COMPONENT>
 <ID>
 <uniqueid refID=”11” >
 <stringId>0c42db11-77b3-475c-a778-91c2765db299</stringId>
 </uniqueid>
 </ID>
 </ENTRY>
 <ENTRY refID=”12” >
 <VALUES>
 <net.onesaf.core.models.beh.primitive.mr.MoveAlongRoute refID=”13” >
 <nextActionLocation>0</nextActionLocation>
 <startAtFirstPoint>false</startAtFirstPoint>
 <anchorState>false</anchorState>
 <routeType>CROSS_COUNTRY</routeType>
 <routeCompleted>false</routeCompleted>
 <linearVelocity>9.0</linearVelocity>
 <gear>Forward</gear>
 </net.onesaf.core.models.beh.primitive.mr.MoveAlongRoute>
 </VALUES>
 <TYPE>MoveAlongRoute</TYPE>
 <TIME>21</TIME>
 <COMPONENT>MoveAlongRoute</COMPONENT>
 <ID>
 <uniqueid refID=”14” >
 <stringId>0c42db11-77b3-475c-a778-91c2765db299</stringId>
 </uniqueid>
 </ID>
 </ENTRY>
 <ENTRY refID=”15” >
 <VALUES>
 <DriverFSM refID=”16” >
 <currentState>MOVING_ON_ROUTE</currentState>
 </DriverFSM>
 </VALUES>
 <TYPE>BasicData</TYPE>
 <TIME>21</TIME>
 <COMPONENT>BasicData</COMPONENT>
 <ID>
 <uniqueid refID=”17” >
 <stringId>0c42db11-77b3-475c-a778-91c2765db299</stringId>
 </uniqueid>
 </ID>
 </ENTRY>
 <ENTRY refID=”18” >
 <VALUES>
 <DirectiveDataCollection refID=”19” >
 <RouteName>-</RouteName>
 <NumberOfEntityObstacles>0</NumberOfEntityObstacles>
 <CurrentPath>
 <GCC refID=”20” >
 <z>3265213.5159455426</z>
 <ellipsoid>WGS_84</ellipsoid>
 <y>-5464905.16566183</y>
 <x>-287361.97703322954</x>
 </GCC>
 <GCC refID=”21” >
 <z>3265199.934094777</z>
 <ellipsoid>WGS_84</ellipsoid>
 <y>-5464965.762319956</y>
 <x>-286363.90710664436</x>
 </GCC>

 101

 </CurrentPath>
 <NumberOfTerrainObstacles>2</NumberOfTerrainObstacles>
 </DirectiveDataCollection>
 </VALUES>
 <TYPE>BasicData</TYPE>
 <TIME>21</TIME>
 <COMPONENT>BasicData</COMPONENT>
 <ID>
 <uniqueid refID=”22” >
 <stringId>0c42db11-77b3-475c-a778-91c2765db299</stringId>
 </uniqueid>
 </ID>
 </ENTRY>
 <ENTRY refID=”23” >
 <VALUES>
 <WeaponControlModel refID=”24” >
 <targetSpeed>0.0</targetSpeed>
 <wcs>Free</wcs>
 <targetLocation>null</targetLocation>
 <weaponType>null</weaponType>
 <targetRange>0.0</targetRange>
 <munitionType>null</munitionType>
 <currentTargetType>null</currentTargetType>
 <targetActivity>false</targetActivity>
 <acquisitionLevelAchieved>null</acquisitionLevelAchieved>
 <perceptionTime>0</perceptionTime>
 <suppression>false</suppression>
 <targetDirection>null</targetDirection>
 </WeaponControlModel>
 </VALUES>
 <TYPE>tankAbramsM1A1</TYPE>
 <TIME>309</TIME>
 <COMPONENT>WEAPON_CONTROLLER</COMPONENT>
 <ID>
 <uniqueid refID=”25” >
 <stringId>0c42db11-77b3-475c-a778-91c2765db299</stringId>
 </uniqueid>
 </ID>
 </ENTRY>
 <ENTRY refID=”26” >
 <VALUES>
 <SuppressionSpeedLimit refID=”27” >
 <beingSuppressed>false</beingSuppressed>
 <dayNight>Day</dayNight>
 <entityType>tankAbramsM1A1</entityType>
 <maxSpeed>18.61</maxSpeed>
 </SuppressionSpeedLimit>
 </VALUES>
 <TYPE>tankAbramsM1A1</TYPE>
 <TIME>408</TIME>
 <COMPONENT>MOBILITY_CONTROLLER</COMPONENT>
 <ID>
 <uniqueid refID=”28” >
 <stringId>0c42db11-77b3-475c-a778-91c2765db299</stringId>
 </uniqueid>
 </ID>
 </ENTRY>
 <ENTRY refID=”29” >
 <VALUES>
 <SpeedDataCollection refID=”30” >
 <modelWithTheLowestSpeed>FORMATION_SPEED_LIMITER</modelWithTheLowestSpeed>
 <CommandedSpeed>9.0</CommandedSpeed>
 </SpeedDataCollection>
 </VALUES>
 <TYPE>BasicData</TYPE>
 <TIME>408</TIME>
 <COMPONENT>BasicData</COMPONENT>
 <ID>

 102

 <uniqueid refID=”31” >
 <stringId>0c42db11-77b3-475c-a778-91c2765db299</stringId>
 </uniqueid>
 </ID>
 </ENTRY>
 <ENTRY refID=”32” >
 <VALUES>
 <CCTTGroundVehicleMobilityModel refID=”33” >
 <vehBin>highMobilityTracked</vehBin>
 <requestedLinearAcceleration>2.451675</requestedLinearAcceleration>
 <slope>-0.007060990631857278</slope>
 <brakeForce>0.0</brakeForce>
 <longWeight>0.0</longWeight>
 <currentSpeed>0.42843525442672326</currentSpeed>
 <linearAcceleration>0.0</linearAcceleration>
 <entityLocation>GCC: (-287361.86191023444, -5464905.17195063, 3265213.5139627373)</entityLocation>
 <maxSpeed>18.610000610351562</maxSpeed>
 <stgjCode>619</stgjCode>
 <longSumOfForces>87488.0034785146</longSumOfForces>
 <longFrictionForce>0.0</longFrictionForce>
 <requestedLinearVelocity>9.0</requestedLinearVelocity>
 <vertWeight>0.0</vertWeight>
 <brakeLinearFactor>8.382</brakeLinearFactor>
 <effectiveMu>0.1011556</effectiveMu>
 <brakeDecel>0.0</brakeDecel>
 <forceDriving>87488.0034785146</forceDriving>
 <mass>61326.0</mass>
 </CCTTGroundVehicleMobilityModel>
 </VALUES>
 <TYPE>tankAbramsM1A1</TYPE>
 <TIME>608</TIME>
 <COMPONENT>GROUND_MOBILITY</COMPONENT>
 <ID>
 <uniqueid refID=”34” >
 <stringId>0c42db11-77b3-475c-a778-91c2765db299</stringId>
 </uniqueid>
 </ID>
 </ENTRY>

APPENDIX J TRAC-MONTEREY VERIFICATION PROCESS METHODOLOGY

 103

 104

 105

 106

 107

 108

 109

 110

 111

 112

 113

 114

 115

 116

 117

 118

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX K ONESAF USERS CONFERENCE ORLANDO FLORIDA PRESENTATION30

30

http://www.onesaf.net/community/systemdocuments/UserConference2008/Presentations/Grand%20Ballroom/9Apr08%20Wednesday/1330%20Testing
%20Automation%20Tools.pdf, last accessed 21 July 2008.

 119

 120

 121

 122

 123

 124

 125

 126

 127

 128

 129

 130

 131

 132

 133

 134

 135

 136

 137

 138

 139

 140

 141

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Dr. Mikhail Auguston
Naval Postgraduate School
Monterey, California

4. Dr. Man-Tak Shing
Naval Postgraduate School
Monterey, California

5. John K. Leo
Naval Postgraduate School
Monterey, California

	I. INTRODUCTION
	A. COMPUTER SIMULATION BASICS
	B. BEHAVIOR VERIFICATION
	C. ONESAF OBJECTIVE SYSTEM (OOS)
	D. THESIS ENVIRONMENT AND CONDITIONS
	E. THE PROBLEM SPACE
	F. PURPOSE OF STUDY

	II. MOVE TACTICALLY (MT) SCENARIO
	A. SCENARIO OVERVIEW
	B. PHASE I
	C. PHASE II
	D. PHASE III

	III. EMPLACE CONTROLLED MINEFIELD (ECM) SCENARIO
	A. SCENARIO OVERVIEW
	B. PHASE I
	C. PHASE II
	D. PHASE III

	IV. CONCLUSION
	A. SOFTWARE TESTING
	B. POSITIVES
	C. NEGATIVES
	D. FUTURE WORK

	LIST OF REFERENCES
	APPENDIX A MOVE TACTICALLY (MT) SCENARIO RUBY SCRIPT
	APPENDIX B PRESCRIPT
	APPENDIX C POSTSCRIPT
	APPENDIX D MOVE TACTICALLY (MT) SAMPLE RAW DATA FILES
	APPENDIX E MOVE TACTICALLY (MT) SAMPLE REPORTS
	APPENDIX F MOVE TACTICALLY (MT) PRESENTATION REPORT
	APPENDIX G AUTOMATED BEHAVIOR PROPERTY TEST (ABPT) DESIGN DIAGRAM
	APPENDIX H SAMPLE ONESAF ENTITY IN A SCENARIO FILE
	APPENDIX I SAMPLE ONESAF DATA COLLECTION FILE
	APPENDIX J TRAC-MONTEREY VERIFICATION PROCESS METHODOLOGY
	APPENDIX K ONESAF USERS CONFERENCE ORLANDO FLORIDA PRESENTATION
	INITIAL DISTRIBUTION LIST

