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ABSTRACT 

The Department of Electrical and Computer Engineering at the Naval 

Postgraduate School continuously develops new design applications and searches for new 

ways to provide the students with the tools necessary to gain a greater understanding of 

advanced motor applications.  One such tool is the Student Design Center (SDC).  The 

SDC utilizes Field Programmable Gate Array (FPGA) technology for digital control of 

motor applications. One of the key factors in motor control is having the capability to 

measure the rotor position.  This thesis lays the ground work for motor position control, 

and also focuses on the design and implementation of an electrical interface for an 

Incremental Shaft Encoder with the SDC.  A digital algorithm was created specifically 

for the Incremental Shaft Encoder to interface with an FPGA in order to interpret the 

encoder’s output signals into angular position, total degrees traveled, detection of 

clockwise and counter-clockwise rotation and speed estimation. 
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EXECUTIVE SUMMARY 

The Department of Electrical and Computer Engineering at the Naval 

Postgraduate School continuously develops state of the art design tools so that the 

students can gain a greater understanding of advanced motor applications.  One such tool 

is the Student Design Center (SDC).  The SDC was created to familiarize the student with 

the basic application of solid state power design and control.  Originally, the SDC made it 

possible for a student to make accurate predictions of voltage source converters (VSC) 

behavior via software simulation; these simulated results could also be tested against 

actual hardware components [1].  The design center is shown in Figure 1. 

 

Figure 1.   Student Design Center [From [1]]. 

Before the start of this thesis, the SDC was equipped with the following hardware 

components: a Field Programmable Gate Array (FPGA), a Voltage Source Converter 

(VSC), and several other off-the-shelf components, a circuit board interface between 

FPGA and the power source, and a desktop computer [1].  Now, the SDC has been 



 xiv

upgraded with an MES20 (Type C) Incremental Shaft Encoder (ISE), which accurately 

measures the angular position and speed of rotation of rotating machines. 

The SDC utilizes FPGA technology for digital control of motor applications.  

Having SDC equipped with an FPGA alone was simply not enough hardware to control 

the rotation of a motor.  Additional hardware and software was required that could detect 

and measure rotor speed and angular position.  Accordingly, the ISE was added to the 

SDC’s hardware in hopes of expanding the student’s educational resources in the area of 

motor control.  The ISE can be seen in Figure 2. 

 

Figure 2.   MES20 (Type C) Incremental Shaft Encoder mounted on a Squirrel Cage 
Induction Motor (SCIM). 

The SDC utilizes Mathworks’ Simulink software in the development of hardware 

control.  The XILINX Foundation software produces Verilog Hardware Description 

Language (VHDL) code that will interface the FPGA with a hardware component 

assigned [1]. 
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The main goal of this thesis was the design and implementation of an electrical 

interface for the ISE with the SDC via FPGA.  More specifically, through the use of these 

programming software, a digital algorithm was created specifically for the ISE interface 

with an FPGA in order to interpret the encoder’s output signals into angular position, 

total degrees traveled, detection of clockwise and counter-clockwise rotation as well as 

speed estimation. 

A secondary objective of this thesis was to present the reader with an overview of 

the hardware and software required in the SDC.  Specifically, it highlights current FPGA 

applications as well as the ISE interface with the FPGA via Simulink and XILINX 

Foundation simulation development. 

This research will compare a simulated operation of the encoder with measured 

results which teaches the student that the physical operation of electronic equipment can 

be predicted via simulation prior to testing.  Testing then is just a validation of the design 

that is accomplished using the simulation tools. 
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I. INTRODUCTION 

A. BACKGROUND 

The Student Design Center (SDC) at the Naval Postgraduate School Electrical 

Engineering Department was originally created for the purpose of exposing students to 

the process of transforming performance requirements into basic design [1].  The SDC 

utilizes FPGA technology for digital control of motor applications.  Not only does the 

SDC provide the student with the tools necessary to make accurate system behavior 

predictions, but it also exposes the students to basic power electronics design, so that they 

can test their simulations on actual hardware. 

Undergraduate students are often introduced to micro-controller software design 

in introductory courses, yet typically software and hardware issues have remained 

relatively separated [2].  Because of the growing importance of system-level embedded 

design courses at the graduate level, each laboratory was specifically tailored in such a 

way to give students practical problems in a real-world environment while preparing for 

future study in product design, testing, and control. 

Students use Mathworks Simulink and XILINX Foundation software to generate 

Verilog Hardware Description Language (VHDL) code to program the FPGA. Once the 

FPGA is properly formatted, it processes the inputs from the actual hardware in 

accordance with design parameters. Basic knowledge of digital logic design is required, 

but prior experience with VHDL coding is not. 

B.  RESEARCH OBJECTIVES 

The main goal of this thesis was to design and implement an electrical interface 

for the ISE with the SDC via FPGA.  More specifically, through the use of Mathworks’ 

Simulink and XILINX Foundation software, a digital algorithm was created for the ISE 
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and interfaced with an FPGA in order to interpret the encoder’s output signals into 

angular position, total degrees traveled, detection of clockwise and counter-clockwise 

rotation and speed estimation. 

A secondary objective was to present the reader with an overview of the hardware 

and software required in the SDC.  Specifically, this thesis highlighted current FPGA 

applications as well as ISE technology and its interface with the FPGA via Simulink and 

XILINK Foundation simulation development. 

This research will compare simulated operation of the encoder with measured 

results which shows that the physical operation of electronic equipment can be predicted 

via simulation prior to testing.  Testing then is just a validation of the design that is 

accomplished using the simulation tools. 

C.  APPROACH 

The first step in developing an interface with the ISE was to analyze the ISE’s 

output signal and develop a simulation to reproduce that exact signal through the use of 

Mathworks’ Simulink and XILINX Foundation simulation software.  Once this was 

accomplished, the simulation was then expanded to interpret the encoder’s output signals 

into angular position, total degrees traveled, detection of clockwise and counter-

clockwise rotation as well as speed estimation.  Upon achieving this milestone, the 

Simulink and XILINX Foundation simulation was then utilized as a template in order to 

generate VHDL code that was used to interface an FPGA with the hardware components 

in the SDC.  This enabled the SDC to accurately record and detect rotational parameters, 

including speed estimation, in accordance with the simulated design.  Lastly, the actual 

results obtained were then compared to simulated results in order to validate both the 

hardware and the software. 
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D. THESIS ORGANIZATION 

• Chapter I introduced research goals and presented the organization of the 
thesis. 

• Chapter II presents an overview of the SDC's hardware and software, 
which includes a detailed analysis of the output signal generated by the ISE 
as well as FPGA current technology.  It describes, in detail, how the 
encoder generates its three output wave forms, as well as highlights how 
these wave forms can be utilized for specific rotational data collection. 

• Chapter III discusses the FPGA interface with the SDC, as well as the ISE.  
It then describes how the simulation reproduced the ISE source signal. 

• Chapter IV explores the design, construction, and testing of the Rotor 
Speed Indicator.  This examination includes a comprehensive analysis of 
simulation construction, and also discusses simulation overall results. 

• Chapter V highlights the hardware and software interface used in the 
analysis of the ISE. 

• Chapter VI concludes this thesis with actual hardware and algorithm 
performance results.  Future research opportunities related to total motor 
control are also discussed. 

• Appendix A provides technical specification as well as MATLAB code 
utilized in the algorithm and simulation’s development. 

• Appendix B provides a printout of the entire XILINX Foundation model 
used in the algorithm and simulation’s development. 
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II.  STUDENT DESIGN CENTER OVERVIEW 

A. FIELD PROGRAMMABLE GATE ARRAY OVERVIEW 

A Field-Programmable Gate Array (FPGA) is an integrated circuit that can be 

programmed in the field after manufacture.  An FPGA is similar in principle to, but has 

vastly wider potential application than, programmable read-only memory chips [3].  

More specifically, the FPGA is a semiconductor device that contains programmable logic 

components and programmable interconnects that can be programmed to perform the 

function of basic logic or even more complex systems, such as decoders and other 

mathematical functions [4].  Furthermore, these programmable interconnects allow logic 

blocks to be implemented as needed by either the system designer or the customer, hence 

the name “Field Programmable.”  This means that it gives the user the opportunity to 

reprogram in the “field,” considering the logic is changeable.  FPGA can also used by 

engineers in the design of specialized integrated circuits that can later be produced as 

hard-wired in large quantities for distribution to computer manufacturers and end users.  

A detailed description of the FPGA technology and its integration into the SDC can be 

seen in the thesis entitled, “Field Programmable Gate Array Control of Power Systems in 

Graduate Student Laboratories.” by Joseph E. O’Connor [1]. 

B. MES20 (TYPE C) INCREMENTAL SHAFT ENCODERS (ISC) 
OVERVIEW 

The ISE seen in Figure 3 is a digital optical encoder which is a device that 

converts motion into a sequence of digital pulses.  By counting a single bit or by 

decoding a set of bits, the pulses can be converted to relative or absolute position 

measurements. 
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Figure 3.   MES20 (Type C) Incremental Shaft Encoder physical parameters [After [5]]. 

There are several types of encoders on the market.  These include both linear and 

rotary configurations but the most common type is rotary.  This particular encoder is a 

rotary incremental encoder, which produces digital pulses as the shaft rotates, allowing 

measurement of the relative position of shaft.  Most rotary encoders are composed of a 

glass or plastic code disk with a photographically deposited radial pattern organized in 

tracks.  As radial lines in each track interrupt the beam between a photo-emitter-detector 

pair, digital pulses are produced [6]. 

Additionally, this encoder consists of three output signals or phases.  The first two 

phases consist of two tracks and two sensors whose outputs are called A and B Phase.  By 

counting the number of pulses and knowing the resolution of the disk, in this case 200 

pulses per rotation of A or B Phase, the angular motion can be measured. The A and B 

Phase are used to determine the direction of rotation by assessing which phase "leads" the 

other.  The two phases are 1/4 cycle, or 90 degrees out of phase with each other and are 

known as quadrature signals [7]; a generic example of quadrature signals can be seen in 

Figure 4. 
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Figure 4.   Generic Quadrature Output Signal. [From [7]]. 

Moreover, the third output channel is called the Z Phase; it yields one pulse per 

revolution, which is useful in counting full revolutions.  It is also useful as a reference to 

define a home base or a Zero Crossing Event (ZCE).  As the shaft rotates, pulse trains 

occur on these channels at a frequency proportional to the shaft speed, and the phase 

relationship between the signals yields the direction of rotation [6].  Note that the pulse 

width of the Z Phase (PWZ) can vary in accordance with equation (1).  The 3 Phases CW 

and CCW square-wave orientation can be seen in Figure 5. 

    0.75PWZ P P= ±            (1) 
 
where P is the pulse width. 
 

 

Figure 5.   ISE CCW and CW Output [From [5]]. 
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C. CHAPTER SUMMARY 

This chapter provided a detailed overview of the SDC and its hardware 

components; namely the FPGA and the ISE technology.  It also described, in detail, how 

the encoder generated its 3 output waveforms, and highlighted how these waveforms 

were utilized for specific rotational data collection.  Chapter III will discuss the FPGA 

interface with the SDC as well as the ISE.  It will also underscore the development of the 

simulation that recreates expected performance of the ISE source signal, as well as 

discuss the simulated reproduction of the 16 possible states the encoder generates.  

Lastly, it will conclude with a review of simulated output results. 
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III.  ISE SIMULATED INPUT SIGNAL RECREATION 

A. SIMULATED SOURCE SIGNAL DEVELOPMENT 

The first step in developing an interface with the ISE was to analyze the device’s 

output signal and develop a simulation to reproduce that source signal in its entirety 

through the use of Simulink and Foundation simulation software.  Equipped with the ISE 

square-wave architecture, the 3 square-wave outputs were reproduced by using a 

combination of Pulse Generators, Multiplexers, a Step Function Generator, and a 

Switching Block.  The circuit architecture can be seen in Figure 6. 

In order to construct both the CW and CCW square-wave source signal that 

mirrored the signals produced in the ISE, 6 separate Pulse Generators provided 6 square-

wave inputs that were used to drive the Simulink simulation.  Specifics on how the 

simulation reproduced CW and CCW rotation are explained in detail in the following 

sections. 

 

Figure 6.   ISE Simulated Source Architecture. 
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1. Simulated Clockwise Rotation Development  

In regards to CW rotation, in order to reproduce the A Phase square-wave, a time 

based pulse was utilized with the wave amplitude set to a value of 1, the period of the 

wave set to was a initially set at t_square = 42 10x − seconds, and the pulse width set to 

50%.  For the B Phase reproduction, the same parameters were applied, with one 

exception; this time, the B Phase was given a phase delay set to t_square/4.  Essentially, 

this forced the B Phase to lag the A Phase by 90 degrees.  Lastly, in either the CW or 

CCW rotation, the Z Phase was reproduced by keeping the Z Phase square-wave signal 

high, or a value of 1, for 99.6% of the time.  This enabled the Z Phase to simulate a 

positive high signal that would pulse low once for every 200 pulses of the A Phase or B 

Phase.  The simulated CW rotation source signal can be seen in Figure 7.  Note that in 

Figure 7, the A Phase is leading the B Phase by 90 degrees; the Z Phase displayed a 

constant high until pulsing low at approximately 0.004 seconds.  Also note that the Z 

Phase pulse width is in accordance with equation (1). 

 

 

Figure 7.   Clockwise A, B and Z Phase Simulated ISE Input Signals. 
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2. Simulated Counter-Clockwise Rotation Development 

For reproduction of CCW rotation, the B Phase had to lead the A Phase by 90 

degrees.  This was accomplished simply by applying the phase delay of t_square/4 on the 

A Phase instead of the B Phase; this effectively simulated a CCW rotation.  This source 

signal simulated output results can be seen in Figure 8.  Note that in Figure 8, the A 

Phase is now lagging the B Phase by 90 degrees; the Z Phase again displays a constant 

high signal until pulsing low at approximately 0.004 seconds. 

 

 

Figure 8.   Counter-Clockwise A, B and Z Phase Simulated ISE Source Signal. 

B. SIMULATION SOURCE INPUT DEVELOPMENT 

Next, combining all 6 input signals into a single vector output was accomplished 

via a Multiplexer Block.  These output signals could then be utilized to drive the 

simulation in either the CW or CCW direction.  However, to facilitate proper testing, it 

was essential to provide the simulation with a method to change the inputs from CW to 

the CCW direction all in the same simulation period.  As a result, using a Step Function 
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Block in combination with a Switch Block, the simulation could do just that; it could 

change rotation direction input instantaneously.  For example, the Step Function Block 

provides a step between two definable levels at a specified time.  If the simulation step 

time parameters were set to 0.002 seconds, then once the simulation time reached 0.002 

seconds the initial value assigned would shift to the final value, thus changing the output 

from one definable level to another.  Either definable level can then be used to drive the 

switching block that ultimately changes the source input it reflect CW or CCW 

operations. 

Furthermore, in regards to the Switch Block seen in Figure 6, a user can select the 

conditions under which the first input is passed with the “Criteria for passing” which is 

the first input parameter.  Then a user can make the block check whether the control input 

is greater than or equal to the threshold value, strictly greater than the threshold value, or 

nonzero.  If the control input meets the condition set in the “Criteria for passing”, then the 

first input is passed; otherwise, the third input is passed.  Lastly, the middle port on the 

switch block is called the control port.  This control port is then driven by the step 

function’s output, and in turn, the output of the switch block is the input to the 

simulation. 

C. LOOKUP TABLE DEVELOPMENT 

Once the source signal was recreated in simulation, the computer required the 

capability to interpret these input signals into something more meaningful than just 

square-wave detection.  Recall that the goal of this thesis was to develop a way for the 

computer to discern between CW and CCW rotation, detect angular position change, be 

able to record total degrees traveled, as well as accurately measure the speed of rotation.  

This was accomplished partly through the use of the following Lookup Table (LUT) 

shown in Table 1. 
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After analyzing the 3 square-waves produced by the ISE, it became evident that 

there were 16 possible states that could be generated.  These states can be seen in Table 

1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.   The 16 State Table. 

1. Determining the States 

In reference to Figure 9 and in regards to both CW and CCW rotation, the red 

vertical lines indicate the previously sampled signal ( 1kA − ).  The blue vertical lines 

indicate the current sample of the A, B and Z Phases ( kA , kB , kZ ).  With this in mind, 

State kA  kB  kZ  1kA − kP  kN  0k  

1 0 0 0 0 0 0 0 

2 0 0 0 1 0 1 1 

3 0 0 1 0 0 0 0 

4 0 0 1 1 0 1 0 

5 0 1 0 0 0 0 0 

6 0 1 0 1 1 0 1 

7 0 1 1 0 0 0 0 

8 0 1 1 1 1 0 0 

9 1 0 0 0 1 0 1 

10 1 0 0 1 0 0 0 

11 1 0 1 0 1 0 0 

12 1 0 1 1 0 0 0 

13 1 1 0 0 0 1 1 

14 1 1 0 1 0 0 0 

15 1 1 1 0 0 1 0 

16 1 1 1 1 0 0 0 
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if 1kA −  was previously 0, or low, and the current sample of the A Phase is 1, or high, kB  is 

low, and kZ high, then the device is rotating in the CW direction. 

 

Figure 9.   MES20 (Type C) ISE Square-Wave Output [After [5]]. 

On the other hand, if the 1kA −  signal was low, and the current sample of kA , kB , 

kZ are all high, then the device is rotating in the CCW direction.  The orange vertical 

lines indicate the previously sampled signal ( 1kA − ).  The green lines indicate the current 

sample of the A, B and Z Phases ( kA , kB , kZ ).  In this case, when kA goes from high to 

low, kB  is high, and kZ  is low, it indicates that CW rotation with a ZCE has occurred.  A 

ZCE indicates that 200 pulses of the A or B Phase have occurred, thus indicating that 1 

revolution of 360 degrees has also occurred.  Similarly, if kA goes from low to high, kB  

is high, and kZ is low, then the device is rotating in the CCW direction with a ZCE 

detected. 

Furthermore, once the 16 possible states were determined and arranged as a 

lookup table, each individual state was then given a 3 bit binary word that represented the 

output of that particular state.  The most significant bit in the 3 bit binary word indicates 

whether or not a CW incremental step has occurred and is labeled kP .  For example, if 

the kP  bit is 1, then a CW incremental step has occurred; if the kP  bit is 0, then no step 

 

 



 15

has been detected.  The middle bit of the 3 bit word indicates whether rotation in the 

CCW has occurred, and was labeled kN .  Lastly, the least significant bit was labeled 0k ; 

this bit indicates whether a ZCE has occurred in either CW or CCW direction. 

2. Lookup Table Functionality 

In reference to Table 1, direct your attention to state number 6.  State 6 or [0101] 

is represented by a binary 5, or [101]; meaning that kP  is 1, kN is 0, and 0k is 1.  A binary 

5 indicates that a CW step has occurred because the kP  bit is 1.  It also indicated that a 

ZCE has also occurred considering that the 0k bit is 1.  Similarly, state 11 is [1010].  The 

output for this state is a binary 4, or [100]; meaning that kP  is 1, kN is 0, and 0k is 0. This 

binary 4 indicates that only a CW step occurred and this time there is no ZCE detected 

considering 0k bit is 0.  This same pattern holds true for both CCW rotation operations as 

well as ZCE detection. 

D. ISE PHYSICAL ORIENTATION  

As seen in Figure 10, the orientation of the encoder became a concern during the 

development of the model.  Specifically the issue was that the encoder faced away from 

the user and toward the motor it is connected to.  This meant that the encoder would 

register CW rotation when the motor is actually rotating CCW and vise versa.  With this 

in mind, it became evident that rotation detection in the simulation needed to be 

completely opposite to that of the actual rotation.  This was accomplished by simply 

switching the kP  and kN output of the lookup table in Table 1 above.  More specifically, 

by swapping out these two binary states, it would correctly represent the rotation of the 

motor and not the encoder.  With the above information in mind, a new state table was 

generated and can be seen in Table 2. 



 16

 

Figure 10.   ISE mounted on a Squirrel Cage Induction Motor. 

 

Table 2.   Modified 16 State Table. 
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E. SIMULATION REPRODUCTION OF THE 16 POSSIBLE STATES 

Next, the simulation needed the capability to reproduce these 16 physical states 

when the situation called for it.  Therefore through the architecture seen in Figure 11, this 

goal was achieved.  The output of the signal source had to be data type “Boolean.”  That 

was accomplished through the use of the Gateway In Blocks.  These blocks convert 

Simulink integer, double and fixed point data types into the System Generator fixed point 

type.  Each block defines a top-level input port in the HDL design generated by System 

Generator. In this case, they also force the output to be of type Boolean as well as provide 

a digital input link to the physical hardware that generates the input signal; namely the 

ISE input signal. 

Recall that the simulation required 4 input signals in order to determine the 

current state, not just the 3 inputs you would expect considering that the encoder only 

produces 3 square-waves.  In particular, the simulation needed the previous sample of the 

A Phase as well as the current sample of the A, B, and Z Phases.  Consequently, a Delay 

Block with a latency of 1 was positioned on the A Phase source input signal in order to 

provide the simulation with the previous state of the A Phase, 1kA − , as well as the current 

state of the A Phase.  Next, all 4 inputs were united through the use of a Concatenation 

Block.  The Concatenation Block has a number of n ports, where n is some value between 

2 and 1024, inclusively, and has 1 output port.  The first and last input ports are labeled 

“hi” and “low,” respectively.  The input to the “hi” port will occupy the most significant 

bits of the output and the input to the “lo” port will occupy the least significant bits of the 

output.  Lastly, the output of the Concatenation Block labeled “Concat” was then 

evaluated against a LUT defined in accordance with Table 2 and via the Read-Only 

Memory (ROM) Block labeled ROM1.  The output of the ROM1 Block is a 3 bit word 

representing the output of the LUT. 
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Figure 11.   Simulink®/ XILINX® Signal Generation Architecture. 

F. SIMULATION M-CODE BLOCK INPUT GENERATION 

Now that the 16 states can be recreated in simulation, and the LUT has been 

defined, the next step in the simulation development was creating the ability to output the 

correct values of kP , kN  and 0k which corresponded to the current state observed.  In the 

previous section, recall that the Concatenation Block provided the input to a ROM1 

Block.  Recall that each word was associated with exactly 1 address in Table 2.  For this 

simulation, the ROM1 Block generated a specific output in the form of a 3 bit binary 

word by referencing the LUT which is defined in the initial conditions file and in 

accordance with Table 2.  This 3 bit binary output was then separated bit-by-bit through 

the use of the Slice Blocks.  These Slice Blocks allowed the simulation to literally slice 

off a sequence of bits from output data and create a new data value; in this case, either a 1 

or a 0 as the output.  The output data type of the Slice Block is an unsigned value with its 

binary point set at zero.  Again, bear in mind, that the simulation output at this stage of 

operations is only a 3 bit word, and consequently, the Slice Block labeled kP  observes 

only the most significant bit, Slice Block kN  looks at the middle bit, and Slice Block 0k  

observes the least significant bit.  It is the 3 separated bits that are now available to drive 

the M-Code Block embedded MATLAB™ software.  Physical configuration can be seen 

in Figure 12. 
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Figure 12.   Slice Blocks/M-Code Block Interface Architecture. 

G. M-CODE BLOCK ARCHITECTURE/FUNCTIONALITY 

By selection of the Boolean output feature in the Slice Block parameter box, the 

output data was forced to be type Boolean.  The individual Boolean output bits were now 

available to drive the M-Code Block which houses MATLAB code.  The M-Code Block 

is essentially a container for executing a user-supplied MATLAB function within 

Simulink.  The M-Code Block executes the embedded code and calculates the block’s 

outputs during a simulation.  The same code is then translated in a straightforward 

manner into equivalent behavioral VHDL code when hardware is generated.  The block's 

simulink interface is derived from the MATLAB function signature, and from block 

mask parameters.  In regards to the M-Code Block physical attributes, there is 1 input 

port for each parameter to the function, and 1 output port for each value the function 
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returns.  Port names and ordering correspond to the names and ordering of parameters 

and return values.  In this instance, there are 5 input ports, labeled kP , kN , 0k , 

OldRotation, and OldValue.  Also note that there are 3 output ports labeled NewRotation, 

NewValue, and the Direction; physical architecture can be seen in Figure 13. 

 

Figure 13.   M-Code Block Physical Architecture. 

In order to make the MATLAB function imbedded in the M-Code Block operate 

properly while using XILINX Foundation software, an important issue had to be resolved 

first.  Namely, the use of “While” loops and “For” loops in Foundation software was not 

an option.  More specifically, XILINX Foundation software is just not developed for that 

particular application, and consequently will not function in that capacity.  Therefore, the 

simulation needed a method to get the old data collected passed on as new data in order 

to produce meaningful end-product.  As a result, two physical feed back loops were 

constructed; both equipped with a Delay Block with a latency of 1 in order to simulate a 

“While” loop” or a “For” loop type of operation in a XILINX Foundation software 
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format.  This allowed the simulation to pass vital data from the previous status to the next 

round of samples taken.  These input loops were labeled NewRotation and NewValue.  

Note that there is an additional output from the M-Code Block, labeled Direction; 

however, this output was not delayed at this point in the simulation, but rather used as the 

input to the Speed Indicator Block.  The Direction Bit functionality will be discussed in 

detail in Chapter IV. 

H. M-CODE BLOCK MATLAB CODE 

Now that the simulation has the ability to pass previous data to the current data, 

and the fact that the output from the LUT has been separated into 3 separate Boolean 

values, namely; kP , kN ,and 0k ,  The simulation is ready to drive the MATLAB 

embedded code in accordance with the 3 operational flow charts shown below.  Note that 

each flow chart is operating simultaneously during the simulation. 

1. Pk Bit Operational Flow Chart 

In reference to Figure 14, once the 3 separate Boolean values kP , kN ,and 0k  are 

inputted to the M-Code Block, the program first looks to see if the kP  bit is either a 1 or 

0.  If the input is a 1, then the ISC must be rotating in the CW direction and therefore the 

half-pulse counter is incremented by 1, as well as the Direction Bit is set to 0.  As a direct 

result, the Direction Bit output is then sent as an input to the Speed Indicator Block.  On 

the other hand, if the kP  input is a 0, then the ISC must either be in a static condition, or 

CCW rotation is occurring; in either case, no action will occur. 
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Figure 14.   CW kP  Bit Operational Flow Chart. 

Next, the simulation will check to see if the half-pulse counter is equal to 399; if 

so, the half-pulse counter will be reset to 0 and passed on for further simulation 

processing, as well as the rotation counter will be incremented by 1.  Conversely, if the 

half-pulse counter is between 0 and 399, then the value is simply passed on for further 

processing without incrementing the rotation counter. 

2. Nk Bit Operational Flow Chart 

In regards to CCW rotation operations, Figure 15 displays the operational flow 

chart for kN bit operations.  The kN bit operations mirror that of kP  operations, however 

with a couple of differences.  Much like the kP  bit operations, the simulation will check 

to see if the input bit, kN  is a 1 or 0.  If the bit is a 1, then the half-pulse counter is 

decremented by 1, and the Direction Bit is set to 1 and this value is sent to the Speed 

Indicator Block.  If the input is a 0, the ISC is either in a static state or the motor is 

rotation in the CW direction, and again no action is taken. 
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Figure 15.   CCW kN Bit Operational Flow Chart. 

Moreover, the half-pulse counter is then compared to 0; if the value of the counter 

is equal to 0, then the counter value is reset to 399.  Essentially, this reset to 0 will ensure 

that the half-pulse counter will never take on a negative value, which is a desired property 

for proper simulation performance.  Lastly, the rotation counter is decremented by 1, and 

half-pulse counter data is passed on for further simulation processing. 

3. 0k Bit Operational Flow Chart 

In reference to Figure 16, the program will monitor the 0k bit.  Specifically, it will 

check to see if the 0k  is 1 or a 0.  If a 1 is observed, it simply indicates that 200 full 

pulses, or 400 half-pulses, have occurred.  In other words, 360 degrees of rotation has 

occurred.  On the other hand, if a 0 is observed, then the simulation is allowed to continue 

normal CW or CCW rotation operations.  The simulation requires this last bit to function 

properly in its current design parameters; meaning all possible states defined in Table 2 

must be taken into account. Yet, the 0k  bit pulse width variance proved to be too 
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inconsistent during development to provide accurate rotational data.  As a direct result, 

the decision to exclude the 0k bit’s input when determining rotations count, and half-

pulse count was reached.  MATLAB code for these flow charts can be seen in Appendix 

A. 

 

Figure 16.   0k  Bit Operational Flow Chart. 

I. DETERMINING TOTAL DEGREES TRAVELED 

In this section of the simulation, recall that the M-Code Block has two feedback 

loops that provide the rotation count and the half-pulse count.  Also recall that for every 

360 degrees of rotation there are 400 half-pulses produced.  Therefore, by utilizing a 

Multiplication Block with a value of 0.9, and multiplying the half-pulse count value by 

this multiplication block output, the half-pulse count value is converted to degrees 

traveled.  Also note that with a maximum half-pulse count goes from 0 to 399; that means 

all 400 half pulses are taken into consideration and convert up to 359.1 degrees before the 

reset to 0.  Additionally, the total degrees traveled can also be determined by multiplying 

the NewRotation Feedback Loop value by a value of 360.  This converts the rotations 

count to degrees of angular position. 
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Last but not least, the total degrees traveled can be calculated by adding the 

NewRotation feedback output value to the degrees traveled outputs via the Addition 

Block.  The Physical architecture of the simulation can be seen in Figure 17 and 18, as 

well as the output waveforms of both feedback loops are seen in the 3 graphics displayed 

in Figure 19. 

 

Figure 17.   Total Degrees Travel Architecture. 

 

Figure 18.   Block Labeled Subsystem2 in Figure 17. 
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J. SIMULATION OUTPUT RESULTS 

From Figure 19, note that from time 0 to 0.001 seconds this particular simulation 

produced over 6 rotations in the CW direction.  When the input was changed to CCW, the 

simulation produced an additional 12 rotations.  This result was confirmed via the middle 

graphic, which indicated that 2236 total simulated degrees where traveled from 0 to 0.001 

second.  In other words, the simulation produced 6 full 360 degrees of rotations with an 

additional 76 degrees in the CW direction.  Additionally, in the CCW direction, the 

simulation produced 12 full 360 degrees of rotations with an additional 169 degrees 

traveled.  Also note that in the middle graphic shows that at approximately 0.002 

seconds, the simulated degrees traveled became a negative value; this means that the 

simulation returned a negative degree traveled count.  Lastly, in the bottom graphic, the 

simulation produced and displayed up to 359.1 degrees of rotation before being reset to 0 

for each direction of rotation.  In either direct of rotation, the degrees of rotation 

remained a positive value.  This is the exact simulation performance expected and 

desired, and in accordance with the 3 operational flow charts previously discussed. 
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Figure 19.   Top Graphic; Total Simulated Rotation Count.  Middle Graphic; Total 
Simulated Degrees Traveled.  Bottom graph - Total Simulated Degrees Traveled 

for each Rotation. 

K. CHAPTER SUMMARY 

This chapter discussed the FPGA interface with the SDC as well as the ISE in 

great detail.  It went on to emphasize the development of a simulation which mirrored the 

performance of the ISE source signal, and discussed the simulations reproduction of the 

16 possible states.  Next, the simulation had to be setup in such a manner that the 

encoder’s output signal reflected the motor’s revolution data and not the encoder’s data.  

Lastly, it concluded with a review of the simulation output results and confirmed the 

validity of the simulation model.  Chapter IV will explore the development and 

implementation of the Rotor Speed Indicator. 
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IV. ROTOR SPEED INDICATOR 

A. TACHOMETER OVERVIEW AND INPUT SIGNAL DEVELOPMENT 

The most basic type of incremental encoder is a tachometer which has just one 

output and is most often used in unidirectional applications that track only position or 

speed information.  Specifically, a tachometer is described as an instrument that measures 

the rotation speed of a shaft or disk, as in a motor or other machine.  The device usually 

displays the revolutions per minute (RPM) on a calibrated analog dial, but digital displays 

are increasingly common [8]. 

In order to create a tachometer using the ISE, both the kA  and 1kA −  input signals 

were utilized.  Recall that the kA  signal is a square wave with set amplitude of 1 and a 

variable period relative to the speed of rotation.  Also recall that the 1kA −  signal is the 

previous sample of the kA  signal, sampled just one clock cycle earlier.  From Figure 20, 

one can see that there are 3 inputs to the Speed Indicator Block, two of which are taken 

directly from kA  and 1kA − , and one input is supplied by the M-Code Block and labeled 

Direction. 
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Figure 20.   Speed Indicator Block. 

In order to understand how this tachometer functions, we will break down the 

Speed Indicator Block into small describable sections and cover each section in great 

detail.  Figure 21 displays the output wave form produced by the ISE for both the CW 

and CCW rotation.  Note that the solid red line represents the 1kA −  sample; the dotted blue 

line represents the current signal sampling point or kA .  Lastly, for clarification purposes, 

the arrows were added to the figure to indicate the direction of sampling. 

In regards to the CW rotation the encoder will produce a 1 or H, followed by a 0 

or L. In the CCW direction it will produce a 0 followed by a 1.  When either pattern is 

observed, it simply indicates that rotation has occurred. 
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Figure 21.   ISE A Phase Input Signal. [After [5]]. 

B. SPEED INDICATOR BLOCK SIMULATION DEVELOPMENT 

In reference to Figure 22, we next examine the internal working of the Speed 

Indicator Block.  As mentioned earlier, the inputs to this block are Direction, kA  and 1kA − .  

First let’s focus attention on the inputs kA  and 1kA − ; both inputs are fed directly into the 

logical XOR Logic Block with its time delay set to zero.   The output of the XOR Block 

is either a 1 for the input 01 or 10, or a 0 for the input 00 or 11.  In layman’s terms, every 

time the signal goes from H to L or L to H, a 1 will be output downstream of the XOR 

Block, otherwise a 0 will be the output, thus indicating that the motor has rotated one-half 

pulse width.  Note that a total of 400 half-pulses per rotation is produced using the ISE 

and for each full pulse produced there is a rotation of 1.8 degrees. 
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Figure 22.   (Partial) Speed Indicator Block Diagram. 

Next, looking down stream of the XOR block one can see that the output is then 

tallied via a Counter Block.  This block implements a free running or count-limited type 

of an up, down, or up/down counter.  The counter output can be specified as a signed or 

unsigned fixed point number.  The output of the counter, in relation to the XOR output, 

can be seen in Figure 23. 

 

Figure 23.   XOR Number of points/ ½ Pulse Length/Time; XOR Output/Time. 
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In Figure 23, the red double-headed arrow number 3 indicates that the simulation 

changed directions from CW to CCW and record some additional clock cycles before a 

reset to zero.  Also note the position of the two black double headed arrows numbered 1 

and 2; these arrows indicate that the counter counted up to 2499 clock cycles, then resets 

to 0 each time the XOR output became 1.  

1. Zero Revolution Detector 

In Figure 24 the area boxed by the dotted red border is the section of the 

simulation that checks to see if the device has a rotation rate greater then or less then 10 

revolutions per minute.  Why 10 revolutions per minute?  A zero rotation point had to be 

established that was near a zero but not actually zero.  So the value of 10 RPM was 

specifically selected to represent zero rotations.  With this parameter in place, if the 

simulation was less then 10 revolutions per minute, then output of the Multiplexer Block 

(Mux) would be considered zero, and consequently no rotation will be registered.  On the 

other hand, if the rotation is greater then 10 revolutions per minute, then the output of the 

counter will be the output of the Mux Block, and its value will be passed on for further 

processing. 

 

Figure 24.   Speed Indicator Rotation Check. 
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How does the above operation occur?  Through the use of a Relational Block, the 

simulation was able to compare two different values and output one value in accordance 

with the specific rational operator used.  In this case, the simulation compared a constant 

value (channel “a”) against the counter output (channel “b”) using the rational operator 

a>b.  For example, for 10 revolutions to occur in one minute at a t_square value of 

0.0002, the number of clock cycles would exceed 375000.  Therefore, the simulation 

compares the value of 375000 to that of the output of the counter.  If a>b, then the output 

will be a Boolean 1, and trigger the Mux block to output the constant value assigned to 

channel d1; in this case a 0 would be passed.  On the other hand, if a<b, then the answer 

is false, and a Boolean 0 would force the Mux block to output the counter value assigned 

to channel d0; and consequently the counter value would be passed. 

2. Multiplication Operations 

Down stream of the Mux Block is a Multiplication Block, labeled CMult. This 

block was added in order to scale down the input value supplied by the Mux block by 

0.0333.  Scaling down the Mux output was done to ensure that the new Mux output value 

did not exceed the LUT called “Reciprocal” maximum value.  Values of LUT Reciprocal 

can be seen in Figure 25 and the MATLAB code can be found in the Initial Conditions 

File seen in Appendix A. 

 

Figure 25.   Look Up Table "Reciprocal." 
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Furthermore, the Multiplication Block (CMult) implements a gain operator, with 

output equal to the product of its input by a constant value.  In this simulation, the model 

used a Multiplication Block set to a 16 bit word length with the binary point set at the 

14th bit; this provided the precision required for the value 0.03333 to be used.  The circuit 

architecture can be seen in Figure 26. 

 

Figure 26.   CMult /LUT Reciprocal Block. 

In regards to the LUT Reciprocal, this block was specifically implemented due to 

the fact that performing a division operation is just too difficult a process for the 

computer system to perform effectively.  Consequently, by providing the scaled down 

reciprocal version of the Mux output, then multiplying the LUT output values by the 

constant value 625000, the program was able to effectively process the total degrees 

traveled.  Note that the Mux output reduction by 0.0333 is later restored to its actual 

value via the LUT’s base equation.  This result was then scaled from total degrees 

traveled per second to RPM by multiplying the output by 0.1667.  Simulated results can 

be seen in Figure 27. 

In Figure 27 (top graphic) note that 99.9% of the data output by the Multiplication 

Block is inaccurate.  Therefore, a Register Block was implemented in conjunction with 

Delay Block that was finally linked to the XOR output.  This effectively allowed the 

simulation to “activate” the Register Block at precisely the correct moment in time to 

capture the data that was considered correct (bottom graphic); this allowed accurate RPM 

data to be passed downstream for further processing.  The black arrows in Figure 27 

highlight the points where the data is considered accurate.  It is at these points alone that 
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the data is captured and passed.  The remaining data seen in Figure 27 (top graphic) 

appears to be wrapping due to numerical saturation.  Consequently, this data is not 

considered accurate and can not be used.  Specifics on how the program coverts degrees 

traveled to RPM will be discussed in the following section. 

 

Figure 27.   Garbage RPM (top)/Corrected RPM Output (bottom). 

3. Converting Raw Data to RPM 

Now that the total amount of degrees traveled is a known quantity, by inserting an 

additional Multiplication Block with a value of 0.1667 downstream of the Register Block, 

Degrees per Second was scaled to reflect RPM.  Originally this simulation was set up to 

produce an output of 1500 RPM.  However the actual value obtained via simulation was 

1488 RPM.  As a result, there was a 0.8 % simulated speed estimation error produced.  

This error could be due to rounding error in the program, yet the error is small enough to 

be considered a good estimation of the actual simulated speed.  Results can be seen in 

Figure 28.  From Figure 28, note that during time of transition from CW to CCW or vice 

versa, speed estimation is not considered accurate and should not be considered.   
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Figure 28.   Speed Indicator Simulated Output Results at 1500 RPM. 

4. Direction Bit Operation 

At this point in the simulation, the speed of a device can be accurately measured 

with a high degree of precision.  However, the direction of the device still can not be 

determined without additional programming; therefore, a Direction Bit was added to the 

simulation.  Recall that one of the three inputs to the Speed Indicator Block was the 

Direction Bit.  This bit was designed to input a 0 if the device was rotating in the CW 

direction and a 1 if the device was rotating in the CCW direction.  Simulation architecture 

can be seen in Figure 29 and highlighted by the red arrow. 



 38

 

Figure 29.   Speed Indicator /M-Code Block Interface. 

Now, referring to Figure 30, the input labeled Direction is fed directly into the 

CCW/CW Detector Block.  This input utilizes a Delay Block with a latency of 2 in order 

to ensure correct timing of the simulation inputs and also synchronizes its input with that 

of the XOR Output Enable Bit, which also feed into the CCW/CW Detector Block. 

 

Figure 30.   Direction Bit Input Interface with the CCW/CW Detector Block. 
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5. CCW/CW Detection Block 

 

Figure 31.   CCW/CW Detector Block Physical Architecture. 

From Figure 31, one can see that the Direction Bit and the XOR Enable Bit are 

the inputs to the Register Block, labeled Information Capture Block (ICB); again a 

Register Block was utilized to captures the data at precisely the correct moment in time 

when the input is meaningful to the program.  Once this data is collected and allowed to 

pass, the output of the ICB is compared to 0 via the Rational Block with the logic a=b.  

Essentially what this means is that if the output of the ICB is equal to 0, then the constant 

0 is passed; otherwise a 1 is passed; it is simply a true or false output.  The output of the 

Rational Block is then compared in an S/R Flip Flop.  This particular S/R Flip Flop was 

implemented by a Mealy State Machine.  The truth table can be seen in Table 3 below.  

This particular truth table has its current state values on the left side of the table, and the 

values for S and R along the top row as two concatenated bits. 

 

S R 00 01 10 11 

0 0 0 1 0 

1 1 0 1 0 

Table 3.   Truth Table for SR Flip Flop. 
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Since the S/R flip flop is implemented with a Mealy State Machine, the output is a 

function of the current state and the inputs.  The inputs are the values for S and R, and the 

current state is either 0 or 1.  For example, if the current state is 0 and the current value of 

the output is 0, and the input for S is 1 and R is 0, then the output will become 1, as seen 

above, and the next state will be state 1.  As long as the R input bit is not a 1, the output 

will remain a 1, and the current state will remain one.  Simulation architecture can be 

seen in Figure 32. 

 

Figure 32.   Mealy State Machine Direction Architecture. 

As previously mentioned, the output of the Mealy State Machine is either a 1 or 0.  

Therefore, utilizing a Bus Multiplexer (Mux 2), the simulation will either output the user 

defined constant value of 1 or a negative 1 depending on the output of the Mealy State 

Machine.  In turn, the output of Mux2 will be used to calculate and display positive or 

negative rotation of the device by multiplying the Mux2 output by the CMult2 Block 

previously mentioned.  As a direct result, the simulation can now display positive or 

negative RPM.  The Physical architecture can be seen in Figure 33. 
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Figure 33.   Speed Indicator Block Output. 

C. CHAPTER SUMMARY 

This chapter presented an overview of a tachometer and how the A Phase 

produced by the ISE was utilized as an input in the construction of the Rotor Speed 

Indicator.  The next topic discussed was how a tachometer was reproduced in simulation, 

which highlighted specific areas of simulation development, such as Zero Revolution 

Detection, as well as signal pre and post-processing.  Lastly, it explained how the 

simulation was developed in order to detect and register both CW and CCW rotation.  

Chapter V describes the digital interface between the hardware and software utilized in 

signal processing. 



 42

THIS PAGE INTENTIONALLY LEFT BLANK 



 43

V. HARDWARE AND SOFTWARE INTERFACE 

A. HARDWARE AND SOFTWARE INTERFACE INTRODUCTION 

The SDC utilizes Simulink software for modeling power electronics systems as 

well as running simulations to test engineering power designs.  Simulink provides an 

environment for multi-domain simulation and Model-Based Design for dynamic and 

embedded systems.  Moreover, it provides an interactive graphical environment equipped 

with a customizable set of block libraries that let the user design, simulate, implement, 

and test a variety of time-varying systems, including communications, controls, signal 

processing, video processing, and image processing.  Lastly, Simulink enables model 

analysis and provides the diagnostics tools necessary to ensure model consistency and 

identifies modeling errors prior to hardware setup and testing [9]. 

As mentioned earlier, XILINX Foundation software generates VHDL code once 

the simulation or model is perfected.  In turn, the software is then used to generate code 

that can be used to program the FPGA.  Again, being proficient in VHDL programming 

is not a requirement; however understanding the procedures that make it possible to 

interface the hardware with the software are essential for signal processing and will be 

discussed in greater detail in the following section. 

B. GENERATING VHDL CODE USING ISE FOUNDATION 

Once the model is operating as designed it will then be used as a design template 

for VHDL code generation.  The first step in generating VHDL code is to simply click 

the System Generator Block located in our XILINX Foundation software model.  This 

will open up the System Generator User Interface Menu Block.  Screen shot can be seen 

in Figure 34. 
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Figure 34.   System Generator Block and Menu. 

From the System Generator User Interface Menu Block enter the required data 

fields, and then click the “Generate” button.  The Model is then compiled, and made 

available for further processing.  Furthermore, using ISE Foundation software, the newly 

compile file is then utilized to generating the program file associated with the particular 

model developed.  More specifically, once synthesized, a programming file is generated 

using the ISE Program Navigator software by opening the newly compiled file from a 

drop down list, then clicking on Generate Program File.  This automatically starts the 

process that will generate and configure the device.  Once this process is complete, the 

programming file is generated and the FPGA is then programmed. 

C. CHIPSCOPE™ INTERFACE 

Next, the user can control a converter remotely through ChipScope™ Pro 

embedded software.  More specifically, ChipScope Pro is a tool that inserts a logic 

analyzer, bus analyzer, and virtual I/O low-profile software cores directly into your 

design.  It allows the user to view any internal signal or node, including embedded hard 
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or soft processors at or near system operating speed.  Additionally, through the utilization 

of ChipScope Pro Logic Analyzer, the program can take the recorded data and not only 

view its contents but analyze it for further post-processing. 

ChipScope Pro is initially opened from the ISE Foundation Window.  The control 

screen shot is shown in Figure 35. 

 

Figure 35.   ChipScope™ Pro Start up Control Screen. 

Once the ChipScope™ Pro software is up and running, the user must first 

establish communications with the hardware by providing a connection between the 

JTAG Chain and the FPGA.  Figure 36 shows how the simulation interfaces with the 

ChipScope™ software via the ChipScope™ Interface Block. 
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Figure 36.   ChipScope™ Interface Block/ Input from Simulation. 

As shown in Figure 37, under the drop down menu “File,” select the file that you 

wish to view as well as the FPGA programming you wish to utilize.  Next, select 

“Devices” tab then highlight the particular device you are interested in, and then click on 

Configure.  From this window select the newly generated VHDL code you wish to utilize 

then hit the “Ok” button.  The device is now ready to read via ChipScope™ Pro. 

Once this interface is complete, the user can utilize special feature to process 

input and output data.  For example, the VIO Console Interface Screen is an application 

that allows the user to manually control the hardware. The screen shot of the VIO 

Console Interface page can be seen in Figure 37. 
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Figure 37.   VIO Console Interface Screen Shot. 

In Figure 37, note that, in this case, the buck converter can be either toggled on or 

off with a simple click of the mouse.  With this feature in place, the user can control the 

FPGA as well as the VSC digital control process via ChipScope Pro software.  

Additionally, this interface allows for a detailed digital analysis of input and output 

signals without instruments.  Last but not least, it provides the user with a tool to conduct 

bit-by-bit evaluation when a more detailed analysis is required. 

Yes, the VIO interface page in ChipScope Pro software is a powerful tool, but the 

use of the VIO Console Interface will not be necessary for analysis of the input signals in 

this particular case.  Instead, the Bus Plot feature was utilized for all signal post-

processing.  From Figure 38, notice that ChipScope Pro was able to display all 3 of the 

output signals generate from the ISE.  In this particular instance, a Squirrel Cage 

Induction Motor (SCIM) was used to produce a CW rotation at 1400RPM.  The green 
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waveform represents the actual RPM the encoder is rotating during this finite window of 

time.  The red waveform represents the Degrees Traveled per Rotation, and, lastly, the 

blue waveform represents Total Degree Traveled.  Note that the blue waveform is a 12 bit 

binary word; therefore it can only reach a maximum value of 4096 before it rolls over to 

0 due to numerical saturation.  Moreover, these three waveforms will then be passed on 

for further processing and display. 

 

Figure 38.   Bus Plot of a Squirrel Cage Induction Motor at 1400RPM (CW). 

When ChipScope Pro was used to record and analyze data from a CW rotating 

motor, ChipScope output display worked excellent.  Yet, when the motor rotated in a 

CCW direction, erroneous data was observed.  The problem did not stem from the design 

of the simulink software; if that were the case, one would expect similar results in the 

simulated runs.  Instead, every simulation performed as expected and consequently the 

fault had to be in ChipScope Pro software.  As it turned out, ChipScope Pro does not 

possess the capability to accurately process 2’s compliment binary numbers.  With this in 
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mind, additional processing of the output signal was required.  For example, Figure 37 

displays the screen shot of the output of a Squirrel Cage Induction Motor (SCIM) 

traveling in the CCW direction at approximately -1400RPM.  If ChipScope Pro possessed 

the capability to process 2’s compliment binary numbers, then we would expect the green 

waveform to represent -1400RPM; yet again, this was clearly not the case and a rotation 

rate of approximately 2700RPM was recorded. 

 

Figure 39.   Bus Plot of a Squirrel Cage Induction Motor at -1400RPM (CCW). 

To correct this error when taking CCW measurements, the data collected via 

ChipScope Pro software was exported to an external program for supplementary signal 

processing.  More specifically, the data was exported into a MATLAB m-file that was 

specifically created to evaluate each and every data point collected, then converted the 

2’s compliment data into a correct rotation values in either CW or CCW direction.  The 
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MATLA code for this application can be seen in Appendix A.  The results can be seen in 

figure 40.  Note in Figure 40 that the post-processed value of 2700RPM is now correctly 

reflecting the actual CCW rotation observed at -1400RPM. 

 

Figure 40.   Counter-Clockwise Squirrel Cage Induction Motor at -1400 RPM. 

D. CHAPTER SUMMARY 

This chapter gave a brief overview of the Mathworks’ Simulink® simulation 

software and highlighted its involvement in the computer algorithm development.  Next, 

it revisited XILINX Foundation software application, and explained how this software 

generates VHDL code using ISE Foundation Software.  It then went on to explain how 

ChipScope™ Pro Software was utilized in analysis of the ISE’s data, as well as its 

interface with an FPGA.  Lastly, this chapter was concluded by pointing out some of 

ChipScope Pro’s limitations in regards to recording, analyzing, and displaying rotational 

data, as well as how these limitations were overcome.  Chapter VI will discuss the ISE 

output results as well conclude this thesis. 
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VI. RESULTS AND CONCLUSION 

A. ISE PHYSICAL PERFORMANCE RESULTS 

In order to measure the quality of the algorithm developed for the ISE, a series of 

high and low speed operational tests were conducted in both the CW and CCW rotation 

directions in order to assess the overall validity of the encoder’s algorithm as well as its 

implementation in regards to interface between hardware and software.  A Squirrel Cage 

Induction Motor (SCIM) was utilized in the rotation of ISE after considering its excellent 

flexibility in terms of variable speed and direction control. 

1. High Velocity Clockwise Rotation Results 

The first test was analyzed using ChipScope Pro Software.  The SCIM was 

calibrated to rotate at rate of 1400 RPM in the CW direction using the Biddle Hand 

Tachometer.  After the speed of rotation was verified, the Bus Plot feature in ChipScope 

Pro produced the following results which are seen in Figure 41.  The blue waveform 

represents the total degrees traveled had a positive slope, which indicated a CW rotation 

with an increasing value.  Also, total degrees traveled reset to 0 upon reaching its 12 bit 

limitation of 4096 degrees traveled.  Next, the green waveform representing the speed of 

rotation, clearly displayed a CW rotation rate of approximately 1400 RPM.  Lastly, the 

red waveform representing degrees traveled per rotation also had a positive slope, thus 

verifying a CW rotation. 
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Figure 41.   ChipScope™ Pro Bus Plot (CW Rotation at 1400RPM). 

Next, these results where verified via a MATLAB plot.   Figure 42 displays a CW 

rotation of the SCIM at approximately 1400 RPM. Figure 43 displays the degrees 

traveled per rotation.  Note that the slope of the waveform is again positive and also reset 

to 0 when the value reached a maximum of 359.1 degrees traveled.  Lastly, the time for 1 

rotation was approximately 0.042 seconds.  Therefore, using equation (2) the speed was 

then verified to be approximately 1428 RPM. 

 

   1 revolution 60 seconds 1428.6 RPM
0.042 seconds 1 minute

⎛ ⎞⎛ ⎞ =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

         (2) 
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Figure 42.   Squirrel Cage Induction Motor (CW Rotation at 1400RPM). 

 

Figure 43.   Degrees Traveled Squirrel Cage Induction Motor (CW Rotation at 1400RPM). 
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2. High Velocity Counter-Clockwise Rotation Results 

In this test, a CCW rotation of the SCIM was setup again with a rotation rate of  

-1400RPM.  The speed of rotation was verified via Biddle Hand Tachometer as well as 

all rotation data collected via ChipScope Pro software.  As seen in Figure 44, this time 

both the total degrees traveled (blue waveform) and degrees traveled per rotation (red 

waveform) had a negative slope; this indicated a decreasing value in terms of total 

degrees traveled as well as degrees traveled per rotation.  Moreover, similar to the CW 

rotation test, the total degrees traveled reset, but this time it reset at 0 to its maximum 

value of 4096.  This reset was due to the rollover of its 12 bit binary word.  Finally, the 

speed of rotation (green waveform), as expected, gave faulty data; therefore additional 

post-processing was utilized in order to display the actual rotation values achieved.  

Results of speed of rotation can be seen in Figure 45. 

 

Figure 44.   ChipScope™ Pro Bus Plot (CCW Rotation at -1400RPM). 
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Figure 45.   Squirrel Cage Induction Motor (CCW Rotation at -1400RPM). 

Figure 45 displays the post-processed speed of rotation data.  Note the rotation 

rate was approximately -1400RPM; the negative value indicated that a CCW rotation 

occurred.  Furthermore, Figure 46 displays the degrees traveled per rotation in the CCW 

direction.  Again, there is a reset to 359.1 degrees once the degrees archived a value of 0 

degrees. 

 

Figure 46.   Degrees Traveled Squirrel Cage Induction Motor (CCW Rotation at -
1400RPM). 
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As a point of interest, each waveform observed appears to have some noise 

associated with each of the output waveform displayed.  Yet, this noise does not seem to 

affect the overall quality of the output signal generated.  On the other hand, this noise 

should not be ignored; therefore a digital filter may help to minimize this output noise 

and should be considered for follow-on algorithm upgrades. 

3. Low Velocity Clockwise Rotation Results 

 

Figure 47.   ChipScope™ Pro Bus Plot (CW Rotation at 100RPM). 

Next, the encoder was run at a decreased speed of 100 RPM in the CW direction.  

ChipScope Pro software was again utilized to detect and record the results.  As seen in 

Figure 47 above, the total degrees traveled (blue waveform) displayed a positive slope 

and thus increased in value.  Additionally, the degrees traveled per rotation (red 

waveform) also increased in value and again verified that CW rotation occurred.  Lastly, 

the speed of rotation (green waveform) correctly reflected 100RPM.  Again, these results 

were post-processed using MATLAB for verification purposes and then displayed in 

Figure 48 and 49.  As seen in Figure 48 and 49, similar results were obtained. 
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Figure 48.   Squirrel Cage Induction Motor (CW Rotation at 100RPM). 

 

Figure 49.   Degrees Traveled Squirrel Cage Induction Motor (CW Rotation at 100RPM). 
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4. Low Velocity Counter-Clockwise Rotation Results 

Similar to low velocity CW rotation test, the encoder was run at the speed of -100 

RPM, but this time in the CCW direction.  Like all previous tests, ChipScope Pro 

software was utilized to detect and record the results.  As seen in Figure 50, the total 

degrees traveled (blue waveform) as well as the degrees traveled per rotation (red 

waveform) both displayed a negative slope.  Lastly, the speed of rotation (green 

waveform) required additional post-processing to correctly reflect actual results. These 

results can be seen in Figure 51 and 52. 

 

 

Figure 50.   ChipScope™ Pro Bus Plot (CCW Rotation at -100RPM). 
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Figure 51.   Squirrel Cage Induction Motor (CCW Rotation at -100RPM). 

 

Figure 52.   Degrees Traveled Squirrel Cage Induction Motor (CCW Rotation at -
100RPM). 
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5. Algorithm Limitations and Overall Results 

The threshold for accurate results in term of speed estimation appeared to be 

approximately 60 RPM.  This value was obtained by running numerous speed tests at 

sequentially decreasing rate of speed. As it turns out, any speed of rotation that was 

below 60 RPM produced distorted and conflicting results.  For example, in Figure 53, the 

speed of the device was set at approximately -60 RPM in the CCW direction.  Again the 

Biddle Hand Tachometer was used to calibrate and verify the speed setting.  The results 

however, do not reflect the actual speed of the device.  Instead the values observed were 

recorded in a range of negative -250 to -400RPM.  Similar outcomes were observed in 

the CW direction. 

 

Figure 53.   Squirrel Cage Induction Motor (CCW Rotation at -60RPM). 

The above results place an operational limitation on the encoder’s algorithm.  On 

the other hand, the algorithm did function properly in regards to degrees traveled in the 

CCW and CW direction as seen in Figure 54. 
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Figure 54.   Degrees Traveled Squirrel Cage Induction Motor (CCW Rotation at -60RPM). 

Note that the slope is decreasing; meaning the algorithm appears to be operating 

as designed in the CCW direction.  However, to confirm this conclusion, equation (3) 

was utilized. 

 1 revolution degrees per rotation 60 seconds RPM
360 degrees sample period[seconds] 1 minute

⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞ =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

        (3) 

If the algorithm was functioning correctly, one would expect a speed of rotation to 

be approximately -60RPM.  Therefore, taking the total degrees traveled from time 0.01 to 

0.05 seconds, which was approximately 15 degrees; then plugging this value into 

equation (3), it appears that the device was traveling at -62.5 RPM.  As a direct result of 

these findings, the algorithm appears to be functioning correctly in regards to detecting 

and registering degrees traveled per rotation.  The same equation was used in the high 

velocity test and similar results were recorded; which also confirmed algorithm validity at 

higher rotational speeds. 

As an additional point to consider, the Biddle Hand Tachometer used to calibrate 

the speed of rotation also appeared to have great difficulty in measuring rotational speeds 
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accurately at low velocities levels.  With this in mind, as well as the results obtained from 

both the high and low velocity tests, it appears that the algorithm specifically designed 

for the ISE is functioning correctly and in accordance with the simulated computer 

model.  This functionality includes the algorithms ability to detect and register both total 

degrees traveled and degrees traveled per rotation in both the CW and CCW directs.  

Lastly, the algorithm provides an accurate estimation of speed of rotation at speeds above 

60 RPM. 

B. SUMMARY 

This thesis began with an overview of the SDC objective and description of the 

hardware and software used therein.  The functionality and implementation of specific 

components of the SDC was highlighted in order to develop a comprehensive working 

knowledge of the SDC operational capabilities.  Next, it provided a detailed analysis of 

the output signal generated by the ISE.  It specifically then went on to explain how the 

encoder generated its three output waveforms, as well as underscored how these 

waveforms were utilized in rotational data collection.  It then provided a detailed 

overview of the FPGA interface with the SDC, as well as the ISE.  Furthermore, it 

described, in great detail, how the simulation that reproduced the ISE source signal, as 

well as the Rotor Speed Indicator simulated feature, was developed, implemented, and 

tested.  Lastly, this thesis concluded by presenting the reader with operational tests 

results. 

C. CONCLUSION 

The SDC continues to be an excellent training tool in regards to digital control of 

power electronics design and testing.  Through its use, the students gains a greater 

understanding of FPGA digital control of various power systems as well as gain a 

comprehensive working knowledge of analysis tools such as ChipScope™ Pro software 

in regards to signal analysis and processing. 

Furthermore, with the addition of the ISE, the SDC enables the students to not 

only experiment with rotating magnetic field orientation problems, but it also provides 
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the student with the hardware and software necessary to detect angular rotor position in 

both the CW and CCW rotation directions, total degrees traveled, as well as speed of 

rotation detection; which all could used as inputs for open and closed loop speed and 

torque control.  This research also compared simulated operation of the encoder with 

measured results which taught the students that the physical operation of electronic 

equipment can be predicted via simulation prior to testing and eventually aid in the 

validation of the model used and developed. This greatly enhances the Department of 

Electrical and Computer Engineering’s Power laboratory at the Naval Postgraduate 

School. 

Moreover, as a point of interest, during development of the simulation, it became 

evident that the encoder’s orientation relative to the shaft to which it was attached proved 

problematic.  Therefore, the simulation was set up essentially in reverse of expected 

performance.  Recall that CW rotation of a motor produced CCW results, and vice versa.  

Consequently, a small change in the state table was implemented that made the output 

appear to be opposite of actual rotation, hence the motor rotational data was reflected and 

not the encoder data.  This change in the state table appeared to correct the encoder 

orientation problem and produced desired results. 

Lastly, from the operational tests conducted, one can conclude that the algorithm 

was operating in accordance with original design specifications.  Specifically, this 

algorithm functioned correctly for each and every test conducted; this included total 

degrees traveled and degrees traveled per rotation in both the CW and CCW direction.  

Speed of rotation was accurately predicted at all speeds over 60RPM.  However, each test 

conducted also pointed out that there was at least some noise associated with each 

waveform produced.  Although this noise did not appear to adversely affect the 

algorithms overall performance, the addition of a digital filter may help clear up this 

noise observed.  All in all, a very functional algorithm was created and is now available 

for student use. 
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D. RECOMMENDATIONS FOR FURTHER STUDY 

There are several opportunities for research in the area of total motor control in 

regards to power electronics.  Below are several ideas that serve as platforms for further 

research: 

• Development of a motor control laboratory for use in the electrical 
engineering curriculum tracks. 

• Design and implement an algorithm to incorporate SDC current technology 
for closed and open loop speed control. 

• Design and implement an algorithm to incorporate SDC current technology 
for closed and open loop torque control. 

The reprogrammable nature of FPGA hardware enables great flexibility in term of 

design capabilities.  With the addition of the MES20 (Type C) Shaft Encoder the student 

essentially has the tool necessary that will lead to motor control.  Hence, electrical 

engineering design, especially at the graduate level, can benefit from the SDC use. 
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APPENDIX A: DATA SHEET AND MATLAB CODE 

A. MES20 (TYPE C) INCREMENTAL SHAFT ENCODER DATA SHEET 

 

B.  MATLAB’S INITIAL CONDITIONS FILE 

The Initial Conditions (IC) File defined several key conditions that are required 

for proper simulation operations.  Specifically, the IC file defines the LUT “Reciprocal” 

output formula, as well as it defines the Modified 16 State Table via the output vector 

labeled “output_vec.”  Lastly it defines the vector used in the S/R Flip-Flop in regards to 

CW and CCW rotation detection. 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%   File Name: Initial Conditions File for Incremental Shaft Encoder % 
%   Author:    LT Andrew M. LaValley                                 % 
%   Last Modified: 20 Aug 08                                         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
t_square=2e-4;%2e-4 produces 1500RPM...4e-4 produces 750RPM 
%8e-4 = 374RPM...10e-4=300RPM 
%there is 400 1/2 pulses per rotation therefore: 
%60sec/(400* 1/2*t_square)= correct RPM 
RPM=60/(200*t_square); 
Hz=RPM/60; 
open_loop=0 ; %Set to one for open loop operation else set to zero for 
%              closed loop voltage regulation 
Kp_i=.06*2;   %current PI gain is amplified to account for the SV  
%              modulation scaling 
Ki_i=1*3;     %Current control loop gain 
Kp_v=.2;  
Ki_v=5;  
f_clock=25e6; 
sw_freq=15000; 
sw_counter=round(f_clock/sw_freq-mod(f_clock/sw_freq,10));   
%Counter for sawtooth for switching modulo 10 used so step_ct can be 10 
Vdc=48; 
Total_Rotations=6; 
%step_ct=10; 
step_ct=1; 
tstep = step_ct/f_clock; 
F_mat = [0 0 0 1;1 1 2 0;2 2 3 0;3 3 0 0]; 
  
Ctr=[1:2^11]; 
reciprocal=360/30/1./Ctr;%this defines the LUT "Reciprocal." 
  
%this Plots the LUT Reciprocal for display%%%%%%%%%%%%%%%%%%%%%%% 
figure(1); 
plot(Ctr,reciprocal,'linewidth',2); 
xlabel('Counter'); 
ylabel('1/Counter'); 
grid; 
title('LUT Reciprocal') 
MakeAxisWide 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
O_mat = F_mat; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                                                               % 
%   This Defines the Modified 16 State Table [Pk, Nk, 0k]       % 
%                                                               % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                                         
output_vec=[0;...%Nothing is occuring with [0,0,0] 
            5;...%CCW direction and ZCE [1,0,1] 
            0;...%Nothing is occuring with [0,0,0] 
            4;...%CCW direction with [1,0,0] 



 67

            0;...%Nothing is occurring with [0,0,0] 
            3;...%CW rotation and ZCE [0,1,1] 
            0;...%Nothing is occurring with [0,0,0] 
            2;...%CW direction with [0,1,0] 
            3;...%CW rotation and ZCE [0,1,1]  
            0;...%Nothing is occurring with [0,0,0] 
            2;...%CW direction with [0,1,0] 
            0;...%Nothing is occurring with [0,0,0] 
            5;...%CCW direction and ZCE [1,0,1] 
            0;...%Nothing is occurring with [0,0,0] 
            4;...%CCW direction with [0,1,0] 
            0];%Nothing is occurring with [0,0,0] 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                                                               % 
%   This Defines the R/S FlipFlop [Pk, Nk, 0k]                  % 
%                                                               % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
        next = [0,0,1,0;1,0,1,0]; 
output=next; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%filter values and coefficients 
A_D =1; 
A_N =0.002898194633721; 
B_D =-2.374094743709352; 
B_N =0.008694583901164; 
C_D =1.929355669091215; 
C_N =0.008694583901164; 
D_D =-0.532075368312092; 
D_N =0.002898194633721;       
 

C. M-CODE BLOCK MATLAB CODE 

function [NewRotation, NewValue, Direction] = mcode5A(Pk, Nk, Zk, 
OldRotation, OldValue) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%   File Name: mcode5A                                               % 
%   Author:    LT Andrew M. LaValley                                 % 
%   Last Modified: 14 APR 08                                         % 
%                                                                    % 
%   Description:    This function records CW and CCW rotations via    % 
%                   matlab MCODE simulation block. It also records   % 
%                   360 degrees of rotation and total degrees        % 
%                   traveled.                                        % 
%                                                                    % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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if Pk && ~Zk && ~Nk %Increments the # of pulses produced in the CW 
rotation 
     
        Direction=0;%indicates positive direction 
     
    if OldValue==399 %this keeps the value positive if the value is 
zero. 
         
        NewValue=xfix({xlSigned,15,0},0); 
        NewRotation=xfix({xlSigned,15,0},OldRotation+1); 
         
    else  
        NewValue=xfix({xlSigned,15,0},OldValue+1);  
        NewRotation=xfix({xlSigned,15,0},OldRotation); 
         
    end 
elseif Nk && ~Zk && ~Pk %Decrements the # of pulses produced in the CCW 
rotation if not zero 
     
        Direction=1;%Indicates negitive direction 
           
    if OldValue==0 %this keeps the value positive if the value is zero. 
         
        NewValue=xfix({xlSigned,15,0},399); 
        NewRotation=xfix({xlSigned,15,0},OldRotation-1); 
        %Direction=1; 
    else  
        NewValue=xfix({xlSigned,15,0},OldValue-1);  
        NewRotation=xfix({xlSigned,15,0},OldRotation); 
         
    end 
     
     
else %OldValue will equal NewValue and OldRotation will equal NewRotion 
if  
     %the above if/else statements do not apply. 
        Direction=0;%default direction 
        NewValue=xfix({xlSigned,15,0},OldValue); 
        NewRotation=xfix({xlSigned,15,0},OldRotation); 
  
end 

D. MATLAB CODE USED IN POST-PROCESSING CHIPSCOPE DATA 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%   File Name: Post Processed Matlab File                            % 
%   Author:    Dr. Alexander Julian                                  % 
%   Last Modified: 23 Aug 08                                         % 
%   Description:    This file post-processes all data coming from    % 
%                   ChipScope. Essentially this file converts        % 
%                   2s complement values in pos and neg output       % 
%                   values.                                          % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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datain=importdata('data.prn'); 
vecsize=length(datain.data); 
alpha=2*pi*25000; 
deltat=180/25e6; 
datasize=round(vecsize-1); 
adc1raw=zeros(1,datasize); 
adc2raw=zeros(1,datasize); 
adc3raw=zeros(1,datasize); 
adc4raw=zeros(1,datasize); 
for ii=1:datasize 
    index=ii+vecsize-datasize-1; 
    if datain.data(index,12+2)==0 
        
adc1raw(ii)=datain.data(index,1+2)+2*datain.data(index,2+2)+2^2*datain.
data(index,3+2)+... 
        2^3*datain.data(index,4+2)+2^4*datain.data(index,5+2)+... 
        2^5*datain.data(index,6+2)+2^6*datain.data(index,7+2)+... 
        2^7*datain.data(index,8+2)+2^8*datain.data(index,9+2)+... 
        2^9*datain.data(index,10+2)+2^10*datain.data(index,11+2); 
    else 
        
adc1raw(ii)=datain.data(index,1+2)+2*datain.data(index,2+2)+2^2*datain.
data(index,3+2)+... 
        2^3*datain.data(index,4+2)+2^4*datain.data(index,5+2)+... 
        2^5*datain.data(index,6+2)+2^6*datain.data(index,7+2)+... 
        2^7*datain.data(index,8+2)+2^8*datain.data(index,9+2)+... 
        2^9*datain.data(index,10+2)+2^10*datain.data(index,11+2)-2^11; 
    end 
        
adc2raw(ii)=datain.data(index,1+14)+2*datain.data(index,2+14)+2^2*datai
n.data(index,3+14)+... 
        2^3*datain.data(index,4+14)+2^4*datain.data(index,5+14)+... 
        2^5*datain.data(index,6+14)+2^6*datain.data(index,7+14)+... 
        2^7*datain.data(index,8+14)+2^8*datain.data(index,9+14)+... 
        
2^9*datain.data(index,10+14)+2^10*datain.data(index,11+14)+2^11*datain.
data(index,12+14); 
    if datain.data(index,12+26)==0 
        
adc3raw(ii)=datain.data(index,1+26)+2*datain.data(index,2+26)+2^2*datai
n.data(index,3+26)+... 
        2^3*datain.data(index,4+26)+2^4*datain.data(index,5+26)+... 
        2^5*datain.data(index,6+26)+2^6*datain.data(index,7+26)+... 
        2^7*datain.data(index,8+26)+2^8*datain.data(index,9+26)+... 
        2^9*datain.data(index,10+26)+2^10*datain.data(index,11+26); 
    else 
        
adc3raw(ii)=datain.data(index,1+26)+2*datain.data(index,2+26)+2^2*datai
n.data(index,3+26)+... 
        2^3*datain.data(index,4+26)+2^4*datain.data(index,5+26)+... 
        2^5*datain.data(index,6+26)+2^6*datain.data(index,7+26)+... 
        2^7*datain.data(index,8+26)+2^8*datain.data(index,9+26)+... 
        2^9*datain.data(index,10+26)+2^10*datain.data(index,11+26); 
    end 
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adc4raw(ii)=datain.data(index,1+38)+2*datain.data(index,2+38)+2^2*datai
n.data(index,3+38)+... 
        2^3*datain.data(index,4+38)+2^4*datain.data(index,5+38)+... 
        2^5*datain.data(index,6+38)+2^6*datain.data(index,7+38)+... 
        2^7*datain.data(index,8+38)+2^8*datain.data(index,9+38)+... 
        
2^9*datain.data(index,10+38)+2^10*datain.data(index,11+38)+2^11*datain.
data(index,12+38); 
end 
  
  
adc1=(adc1raw); 
adc2=(adc2raw);       
adc3=(adc3raw/2); 
adc4=(adc4raw/2^3-100); 
  
%Difference equation approximating a lowpass filter, alpha/(s+alpha) 
adc2_fil=zeros(1,datasize); 
adc4_fil=zeros(1,datasize); 
for ii=1:datasize 
if ii==1 
    adc2_fil(ii)=0; 
    adc4_fil(ii)=0; 
else 
    adc2_fil(ii)=adc2_fil(ii-1)+alpha*(adc2(ii-1)-adc2_fil(ii-
1))*deltat; 
    adc4_fil(ii)=adc4_fil(ii-1)+alpha*(adc4(ii-1)-adc4_fil(ii-
1))*deltat; 
end 
end 
  
time=[0:datasize-1]*deltat; 
  
figure(1); 
plot(time,adc1,'g','linewidth',2); 
xlabel('Time [Seconds]') 
ylabel('[RPM]') 
title('Counter-Clockwise Squirrel Cage Induction Motor at 100 RPM') 
% axis([0 0.06 -200 0]) 
MakeAxisWide 
grid 
  
figure(2); 
plot(time,adc3,'r','linewidth',2); 
xlabel('Time [Seconds]') 
ylabel('[Degrees]') 
title('Counter-Clockwise Degrees Traveled; Squirrel Cage Induction 
Motor at 100 RPM') 
%axis([0 0.06 0 400]) 
MakeAxisWide 
grid 
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E. SUPPLEMENTAL MATLAB POST-PROCESSING PLOT FILES 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%   File Name: MakeAxisWide.m                                        %  
%   Author:    LT Brian Decker                                       % 
%   Last Modified: 19 APR 2006                                       % 
%   Description:  takes your current axis and maximizes its width    % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
h_Temp = get(gca,'Position'); 
h_Temp(1)=0.07; 
h_Temp(3)=0.9; 
set(gca,'Position',h_Temp) 
clear h_Temp 
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APPENDIX B: XILINX INCREMENTAL SHAFT ENCODER 
MODEL 

Appendix B is a printout of the XILINK Foundation software model utilized in 

the algorithm and simulation development. 
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