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ABSTRACT

The Department of Electrical and Computer Engineering at the Naval
Postgraduate School continuously develops new design applications and searches for new
ways to provide the students with the tools necessary to gain a greater understanding of
advanced motor applications. One such tool is the Student Design Center (SDC). The
SDC utilizes Field Programmable Gate Array (FPGA) technology for digital control of
motor applications. One of the key factors in motor control is having the capability to
measure the rotor position. This thesis lays the ground work for motor position control,
and also focuses on the design and implementation of an electrical interface for an
Incremental Shaft Encoder with the SDC. A digital algorithm was created specifically
for the Incremental Shaft Encoder to interface with an FPGA in order to interpret the
encoder’s output signals into angular position, total degrees traveled, detection of

clockwise and counter-clockwise rotation and speed estimation.



THIS PAGE INTENTIONALLY LEFT BLANK

Vi



TABLE OF CONTENTS

INTRODUGCTION. ...ttt bbbttt bbbt eneas 1
A BACKGROUND ..ottt sttt sbe e enaeneas 1
B. RESEARCH OBJECTIVES........coiieeeees e 1
C. APPROACH ...ttt ettt sttt aneane s 2
D. THESIS ORGANIZATION ..ottt 3
STUDENT DESIGN CENTER OVERVIEW. .......ccccoiiiiiiieeeeee e 5
A. FIELD PROGRAMMABLE GATE ARRAY OVERVIEW ..........ccccvvnene 5
B. MES20 (TYPE C) INCREMENTAL SHAFT ENCODERS (ISC)
OVERVIEW ...ttt bbb 5
C. CHAPTER SUMMARY ...ttt sttt 8
ISE SIMULATED INPUT SIGNAL RECREATION .....ccooiiiiiiiiie e 9
A SIMULATED SOURCE SIGNAL DEVELOPMENT .....cccooviiiiiiieeeien 9
1. Simulated Clockwise Rotation Development ............cccccceeveivernenee. 10
2. Simulated Counter-Clockwise Rotation Development................... 11
B. SIMULATION SOURCE INPUT DEVELOPMENT ......cccooviiiiiiiiniee 11
C. LOOKUP TABLE DEVELOPMENT ....cocoiiiiiiiesieeeeie e 12
1. Determining the STates .........cccccveveeii e 13
2. Lookup Table Functionality..........cccceveiieniiiinieiene e 15
D. ISE PHYSICAL ORIENTATION. ..ottt 15
E. SIMULATION REPRODUCTION OF THE 16 POSSIBLE STATES....17
F. SIMULATION M-CODE BLOCK INPUT GENERATION ........cccocueee. 18
G. M-CODE BLOCK ARCHITECTURE/FUNCTIONALITY ...ccccovvrrnenn. 19
H. M-CODE BLOCK MATLAB CODE ......ccocoiiiiiiiiiieieeee e 21
1. Pk Bit Operational Flow Chart ...........cccoccoiiiiiiiiiieeece s 21
2. Nk Bit Operational Flow Chart...........cccccceiviiiiiiniiieiecc e 22
3. Ok Bit Operational Flow Chart...........cccccooiiiiiiinenee e 23
l. DETERMINING TOTAL DEGREES TRAVELED.........cccocvvcviiiiniennen. 24
J. SIMULATION OUTPUT RESULTS ..ot 26
K. CHAPTER SUMMARY ...ttt 27
ROTOR SPEED INDICATOR. ..ottt aneas 29
A. TACHOMETER OVERVIEW AND INPUT SIGNAL
DEVELOPMENT ...ttt ettt 29
B. SPEED INDICATOR BLOCK SIMULATION DEVELOPMENT ......... 31
1. Zer0o Revolution DeteCtor ........ccoovvieiieieiieneeie e 33
2. Multiplication OPerationsS..........cccevveieriieresieseese e 34
3. Converting Raw Data to RPM.........ccooiiiiiii e 36
4. Direction Bit OPeration..........cccceiveiieiiesieese e 37
5. CCW/CW Detection BIOCK...........ccooiiriiiiiiiiiiceeee e 39
C. CHAPTER SUMMARY ...ttt 41
HARDWARE AND SOFTWARE INTERFACE ......c.ccooi i, 43

Vil



A. HARDWARE AND SOFTWARE INTERFACE INTRODUCTION.......43
B. GENERATING VHDL CODE USING ISE FOUNDATION........c..cocu..... 43
C. CHIPSCOPE™ INTERFACE. ... 44
D. CHAPTER SUMMARY ...ttt 50
VI.  RESULTS AND CONCLUSION......ciiitiiiiiieieierie e 51
A ISE PHYSICAL PERFORMANCE RESULTS.....ccooiiiiiiee e 51
1 High Velocity Clockwise Rotation Results ...........ccccccovevevviicinennnns 51
2. High Velocity Counter-Clockwise Rotation Results...........c...c....... 54
3. Low Velocity Clockwise Rotation Results ...........ccccccevviveiieiinennenn, 56
4, Low Velocity Counter-Clockwise Rotation Results........................ 58
5. Algorithm Limitations and Overall Results ............cccccovevverinenene, 60
B. SUMMARY ..ttt bbbt sa bbb e re e anes 62
C. CONCLUSION ..ottt bbb 62
D. RECOMMENDATIONS FOR FURTHER STUDY ....c.cccoceiiveieieeiei 64
APPENDIX A: DATA SHEET AND MATLAB CODE ......ccccooeiiiiniieneseee e, 65
A MES20 (TYPE C) INCREMENTAL SHAFT ENCODER DATA
SHEET ..ot b e bbbt 65
B. MATLAB’S INITIAL CONDITIONS FILE........ccccooviiiiiiiinieieeiee e 65
C. M-CODE BLOCK MATLAB CODE ......ccocoiiiiiiiieeieeee e 67
D MATLAB CODE USED IN POST-PROCESSING CHIPSCOPE
DA T A bbb bbb 68
E. SUPPLEMENTAL MATLAB POST-PROCESSING PLOT FILES......71
APPENDIX B: XILINX INCREMENTAL SHAFT ENCODER MODEL ..........c.......... 73
LIST OF REFERENCES ........c.c oottt sttt sttt sne s 97
INITIAL DISTRIBUTION LIST .ot 99

viii



Figure 1.
Figure 2.

Figure 3.

Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.

Figure 15.
Figure 16.

Figure 17.
Figure 18.
Figure 19.

Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.

LIST OF FIGURES

Student Design Center [From [L]]. ooooeooeereeiininiieeee e il
MES20 (Type C) Incremental Shaft Encoder mounted on a Squirrel Cage

INAUCEION MOLOT (SCIM). ..ot Xiv
MES20 (Type C) Incremental Shaft Encoder physical parameters [After

55 1 SO T U PRPRSRPRN 6
Generic Quadrature Output Signal. [From [7]]....cccovveverimrieereiieie e 7
ISE CCW and CW Output [From [5]]. ..cocereeieiieiieie e 7
ISE Simulated Source ArchiteCture. .........cocoveieienininiiieee e 9
Clockwise A, B and Z Phase Simulated ISE Input Signals. ..........ccccovveieenene 10
Counter-Clockwise A, B and Z Phase Simulated ISE Source Signal............... 11
MES20 (Type C) ISE Square-Wave Output [After [5]]. ..cccoovrveriniiiieiinne 14
ISE mounted on a Squirrel Cage Induction Motor. ...........cccoevveveiieieereenene 16
Simulink®/ XILINX® Signal Generation Architecture. ..........cccoccevveieiieennnns 18
Slice Blocks/M-Code Block Interface ArchiteCture. .........ccccocevevvnennnvenne 19
M-Code Block Physical ArchiteCture. .........coccoveiieiiiiineeeseee e 20
CW PR, Bit Operational FIow Chart. ............ccoeiiiiniiiiie e, 22
CCW N, Bit Operational Flow Chart.............cccovviiiiiiiiiiiicsen,s 23
0, Bit Operational FIow Chart............ccccooooiiiiiiiiii 24
Total Degrees Travel ArChiteCture.........coovveiveie i 25
Block Labeled Subsystem?2 in FIQUIe 17. .......ccoccevieiiiiniennene e 25

Top Graphic; Total Simulated Rotation Count. Middle Graphic; Total
Simulated Degrees Traveled. Bottom graph - Total Simulated Degrees

Traveled for eaCh ROTATION. ........cccoiiiiiiiiie s 27
Speed INAICAtOr BIOCK. ......cc.oiviiieiie e 30
ISE A Phase Input Signal. [After [5]]....cccoovvierieeieie e 31
(Partial) Speed Indicator BIOCK Diagram...........cccovveruerieneeniniinseenesee e 32
XOR Number of points/ ¥ Pulse Length/Time; XOR Output/Time............... 32
Speed Indicator Rotation CheckK. ..........ccooviiiiiiiiee e 33
Look Up Table "ReCIiprocal.” ..........ccooviieiiieseece e 34
CMult /LUT Reciprocal BIOCK. ..........ccceiiiiiiiiii e 35
Garbage RPM (top)/Corrected RPM Output (bottom). .......cccevvvieiviiieiienne 36
Speed Indicator Simulated Output Results at 1500 RPM. ........c..cccoocviineennnne 37
Speed Indicator /M-Code Block Interface. ........ccoovevveveieiieieccceece e 38
Direction Bit Input Interface with the CCW/CW Detector Block................... 38
CCW/CW Detector Block Physical Architecture. .........ccccccevvvevviiveiieniesiiennne 39
Mealy State Machine Direction ArchiteCture. ..........cccooeveeieiinnieiesie e 40
Speed Indicator BIOCK OQUIPUL..........ccveiveiiicciee e 41
System Generator Block and MenU. ..........ccoeiiiiiiiiiiienee e 44
ChipScope™ Pro Start up Control SCreen. .........ccccvevveieiiieiieie e 45
ChipScope™ Interface Block/ Input from Simulation. ............cccoceviiiiiiennnns 46
VIO Console Interface SCreen SNOt...........ccooeverieiiiiiisinieee e 47

iX



Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.

Figure 44.
Figure 45.
Figure 46.

Figure 47.
Figure 48.
Figure 49.

Figure 50.
Figure 51.
Figure 52.

Figure 53.
Figure 54.

Bus Plot of a Squirrel Cage Induction Motor at 1400RPM (CW)................... 48

Bus Plot of a Squirrel Cage Induction Motor at -1400RPM (CCW)............... 49
Counter-Clockwise Squirrel Cage Induction Motor at -1400 RPM. ............... 50
ChipScope™ Pro Bus Plot (CW Rotation at 1400RPM).........cccceevevveieiieennnne 52
Squirrel Cage Induction Motor (CW Rotation at 1400RPM)..........cccccereennnne 53
Degrees Traveled Squirrel Cage Induction Motor (CW Rotation at

TA0ORPIM)......ovoeeeeeee sttt 53
ChipScope™ Pro Bus Plot (CCW Rotation at -1400RPM)..........cccceevveienenn 54
Squirrel Cage Induction Motor (CCW Rotation at -1400RPM)............cc.c...... 55
Degrees Traveled Squirrel Cage Induction Motor (CCW Rotation at -

TAOORPM). ..ttt et ettt e te e aeeree s 95
ChipScope™ Pro Bus Plot (CW Rotation at L00RPM).........ccccceevvevvereiieennnns 56
Squirrel Cage Induction Motor (CW Rotation at 100RPM).........cccccevvvreennene 57
Degrees Traveled Squirrel Cage Induction Motor (CW Rotation at

LOORPM). ...ttt 57
ChipScope™ Pro Bus Plot (CCW Rotation at -100RPM)............ccccevvvveivenenn 58
Squirrel Cage Induction Motor (CCW Rotation at -100RPM)...........cccceeeenene 59
Degrees Traveled Squirrel Cage Induction Motor (CCW Rotation at -

LOORPM). ...ttt 59
Squirrel Cage Induction Motor (CCW Rotation at -60RPM)............cccceevenene 60
Degrees Traveled Squirrel Cage Induction Motor (CCW Rotation at -

G0 1Y TSP 61



LIST OF TABLES

Table 1. The 16 STAte TADIE. ..o 13
Table 2. MOodified 16 STate TabIe. ... 16
Table 3. Truth Table for SR FIP FIOP. ..o 39

Xi



LIST OF SYMBOLS, ACRONYMS, AND ABBREVIATIONS

CCw Counter-Clockwise

Cw Clockwise

FPGA Field Programmable Gate Array
IC Initial Conditions

ICB Information Capture Block

ISE Incremental Shaft Encoder

NPS Naval Postgraduate School

PCB Printed Circuit Board

RPM Revolutions per Minute

SCIM Squirrel Cage Induction Motor
SDC Student Design Center

VHDL Verilog Hardware Description Language
VSC Voltage Source Converters
ZCE Zero Crossing Event

Xii



EXECUTIVE SUMMARY

The Department of Electrical and Computer Engineering at the Naval
Postgraduate School continuously develops state of the art design tools so that the
students can gain a greater understanding of advanced motor applications. One such tool
is the Student Design Center (SDC). The SDC was created to familiarize the student with
the basic application of solid state power design and control. Originally, the SDC made it
possible for a student to make accurate predictions of voltage source converters (VSC)
behavior via software simulation; these simulated results could also be tested against

actual hardware components [1]. The design center is shown in Figure 1.

- VIRTEX-4 FPGA COMPUTER f JTAG
- DC POWER SOURCE INTERFACE
- INTERFACE PCB'S

SEMITEACH

POWER
CONVERTER

BUCK CONVERTER B
LAB EQUIPMENT

Solid State Power Track Student Design Center

Figure 1. Student Design Center [From [1]].

Before the start of this thesis, the SDC was equipped with the following hardware
components: a Field Programmable Gate Array (FPGA), a Voltage Source Converter
(VSC), and several other off-the-shelf components, a circuit board interface between
FPGA and the power source, and a desktop computer [1]. Now, the SDC has been

Xiii



upgraded with an MES20 (Type C) Incremental Shaft Encoder (ISE), which accurately
measures the angular position and speed of rotation of rotating machines.

The SDC utilizes FPGA technology for digital control of motor applications.
Having SDC equipped with an FPGA alone was simply not enough hardware to control
the rotation of a motor. Additional hardware and software was required that could detect
and measure rotor speed and angular position. Accordingly, the ISE was added to the
SDC’s hardware in hopes of expanding the student’s educational resources in the area of

motor control. The ISE can be seen in Figure 2.

Figure 2.  MES20 (Type C) Incremental Shaft Encoder mounted on a Squirrel Cage
Induction Motor (SCIM).

The SDC utilizes Mathworks’ Simulink software in the development of hardware
control. The XILINX Foundation software produces Verilog Hardware Description
Language (VHDL) code that will interface the FPGA with a hardware component
assigned [1].

Xiv



The main goal of this thesis was the design and implementation of an electrical
interface for the ISE with the SDC via FPGA. More specifically, through the use of these
programming software, a digital algorithm was created specifically for the ISE interface
with an FPGA in order to interpret the encoder’s output signals into angular position,
total degrees traveled, detection of clockwise and counter-clockwise rotation as well as

speed estimation.

A secondary objective of this thesis was to present the reader with an overview of
the hardware and software required in the SDC. Specifically, it highlights current FPGA
applications as well as the ISE interface with the FPGA via Simulink and XILINX

Foundation simulation development.

This research will compare a simulated operation of the encoder with measured
results which teaches the student that the physical operation of electronic equipment can
be predicted via simulation prior to testing. Testing then is just a validation of the design

that is accomplished using the simulation tools.
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l. INTRODUCTION

A. BACKGROUND

The Student Design Center (SDC) at the Naval Postgraduate School Electrical
Engineering Department was originally created for the purpose of exposing students to
the process of transforming performance requirements into basic design [1]. The SDC
utilizes FPGA technology for digital control of motor applications. Not only does the
SDC provide the student with the tools necessary to make accurate system behavior
predictions, but it also exposes the students to basic power electronics design, so that they

can test their simulations on actual hardware.

Undergraduate students are often introduced to micro-controller software design
in introductory courses, yet typically software and hardware issues have remained
relatively separated [2]. Because of the growing importance of system-level embedded
design courses at the graduate level, each laboratory was specifically tailored in such a
way to give students practical problems in a real-world environment while preparing for

future study in product design, testing, and control.

Students use Mathworks Simulink and XILINX Foundation software to generate
Verilog Hardware Description Language (VHDL) code to program the FPGA. Once the
FPGA is properly formatted, it processes the inputs from the actual hardware in
accordance with design parameters. Basic knowledge of digital logic design is required,

but prior experience with VHDL coding is not.
B. RESEARCH OBJECTIVES

The main goal of this thesis was to design and implement an electrical interface
for the ISE with the SDC via FPGA. More specifically, through the use of Mathworks’

Simulink and XILINX Foundation software, a digital algorithm was created for the ISE



and interfaced with an FPGA in order to interpret the encoder’s output signals into
angular position, total degrees traveled, detection of clockwise and counter-clockwise

rotation and speed estimation.

A secondary objective was to present the reader with an overview of the hardware
and software required in the SDC. Specifically, this thesis highlighted current FPGA
applications as well as ISE technology and its interface with the FPGA via Simulink and

XILINK Foundation simulation development.

This research will compare simulated operation of the encoder with measured
results which shows that the physical operation of electronic equipment can be predicted
via simulation prior to testing. Testing then is just a validation of the design that is

accomplished using the simulation tools.
C. APPROACH

The first step in developing an interface with the ISE was to analyze the ISE’s
output signal and develop a simulation to reproduce that exact signal through the use of
Mathworks’ Simulink and XILINX Foundation simulation software. Once this was
accomplished, the simulation was then expanded to interpret the encoder’s output signals
into angular position, total degrees traveled, detection of clockwise and counter-
clockwise rotation as well as speed estimation. Upon achieving this milestone, the
Simulink and XILINX Foundation simulation was then utilized as a template in order to
generate VHDL code that was used to interface an FPGA with the hardware components
in the SDC. This enabled the SDC to accurately record and detect rotational parameters,
including speed estimation, in accordance with the simulated design. Lastly, the actual
results obtained were then compared to simulated results in order to validate both the

hardware and the software.



THESIS ORGANIZATION

. Chapter I introduced research goals and presented the organization of the
thesis.

. Chapter Il presents an overview of the SDC's hardware and software,
which includes a detailed analysis of the output signal generated by the ISE
as well as FPGA current technology. It describes, in detail, how the
encoder generates its three output wave forms, as well as highlights how
these wave forms can be utilized for specific rotational data collection.

. Chapter 111 discusses the FPGA interface with the SDC, as well as the ISE.
It then describes how the simulation reproduced the ISE source signal.

. Chapter 1V explores the design, construction, and testing of the Rotor
Speed Indicator. This examination includes a comprehensive analysis of
simulation construction, and also discusses simulation overall results.

. Chapter V highlights the hardware and software interface used in the
analysis of the ISE.

. Chapter VI concludes this thesis with actual hardware and algorithm
performance results. Future research opportunities related to total motor
control are also discussed.

. Appendix A provides technical specification as well as MATLAB code
utilized in the algorithm and simulation’s development.

) Appendix B provides a printout of the entire XILINX Foundation model
used in the algorithm and simulation’s development.
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Il.  STUDENT DESIGN CENTER OVERVIEW

A. FIELD PROGRAMMABLE GATE ARRAY OVERVIEW

A Field-Programmable Gate Array (FPGA) is an integrated circuit that can be
programmed in the field after manufacture. An FPGA is similar in principle to, but has
vastly wider potential application than, programmable read-only memory chips [3].
More specifically, the FPGA is a semiconductor device that contains programmable logic
components and programmable interconnects that can be programmed to perform the
function of basic logic or even more complex systems, such as decoders and other
mathematical functions [4]. Furthermore, these programmable interconnects allow logic
blocks to be implemented as needed by either the system designer or the customer, hence
the name “Field Programmable.” This means that it gives the user the opportunity to
reprogram in the “field,” considering the logic is changeable. FPGA can also used by
engineers in the design of specialized integrated circuits that can later be produced as
hard-wired in large quantities for distribution to computer manufacturers and end users.
A detailed description of the FPGA technology and its integration into the SDC can be
seen in the thesis entitled, “Field Programmable Gate Array Control of Power Systems in

Graduate Student Laboratories.” by Joseph E. O’Connor [1].

B. MES20 (TYPE C) INCREMENTAL SHAFT ENCODERS (ISC)
OVERVIEW

The ISE seen in Figure 3 is a digital optical encoder which is a device that
converts motion into a sequence of digital pulses. By counting a single bit or by
decoding a set of bits, the pulses can be converted to relative or absolute position

measurements.



wil L

E32

Figure 3. MES20 (Type C) Incremental Shaft Encoder physical parameters [After [5]].

There are several types of encoders on the market. These include both linear and
rotary configurations but the most common type is rotary. This particular encoder is a
rotary incremental encoder, which produces digital pulses as the shaft rotates, allowing
measurement of the relative position of shaft. Most rotary encoders are composed of a
glass or plastic code disk with a photographically deposited radial pattern organized in
tracks. As radial lines in each track interrupt the beam between a photo-emitter-detector

pair, digital pulses are produced [6].

Additionally, this encoder consists of three output signals or phases. The first two
phases consist of two tracks and two sensors whose outputs are called A and B Phase. By
counting the number of pulses and knowing the resolution of the disk, in this case 200
pulses per rotation of A or B Phase, the angular motion can be measured. The A and B
Phase are used to determine the direction of rotation by assessing which phase "leads" the
other. The two phases are 1/4 cycle, or 90 degrees out of phase with each other and are
known as quadrature signals [7]; a generic example of quadrature signals can be seen in

Figure 4.



A_ [ LT L
B _| LI L1 L

Phase 10203 102010203 0401021031411

Twwn square waves in quadrature (clockwise rotation). &

Figure 4.  Generic Quadrature Output Signal. [From [7]].

Moreover, the third output channel is called the Z Phase; it yields one pulse per
revolution, which is useful in counting full revolutions. It is also useful as a reference to
define a home base or a Zero Crossing Event (ZCE). As the shaft rotates, pulse trains
occur on these channels at a frequency proportional to the shaft speed, and the phase
relationship between the signals yields the direction of rotation [6]. Note that the pulse
width of the Z Phase (PWZ) can vary in accordance with equation (1). The 3 Phases CW
and CCW square-wave orientation can be seen in Figure 5.

PWZ = P +0.75P (1)

where P is the pulse width.

CW rotation [CW rotation as seen from fit suface)  CCW rotation [CCW rotation as seen from fit surface)
T

- - = -

Ho o H i
A phase ;_=—| I L A phase L— L]
" el
B phase L— B phase .-
- g (805" mfe g (B0"Eas")
H- = I - H- 1 r
Zphase L ! Z phase L = A
—= TETR2 M= o TETE |

#The position of Z phase against A, B phase is not specified.

Figure 5.  ISE CCW and CW Output [From [5]].



C. CHAPTER SUMMARY

This chapter provided a detailed overview of the SDC and its hardware
components; namely the FPGA and the ISE technology. It also described, in detail, how
the encoder generated its 3 output waveforms, and highlighted how these waveforms
were utilized for specific rotational data collection. Chapter 1 will discuss the FPGA
interface with the SDC as well as the ISE. It will also underscore the development of the
simulation that recreates expected performance of the ISE source signal, as well as
discuss the simulated reproduction of the 16 possible states the encoder generates.
Lastly, it will conclude with a review of simulated output results.



1. ISE SIMULATED INPUT SIGNAL RECREATION

A SIMULATED SOURCE SIGNAL DEVELOPMENT

The first step in developing an interface with the ISE was to analyze the device’s
output signal and develop a simulation to reproduce that source signal in its entirety
through the use of Simulink and Foundation simulation software. Equipped with the ISE
square-wave architecture, the 3 square-wave outputs were reproduced by using a
combination of Pulse Generators, Multiplexers, a Step Function Generator, and a

Switching Block. The circuit architecture can be seen in Figure 6.

In order to construct both the CW and CCW square-wave source signal that
mirrored the signals produced in the ISE, 6 separate Pulse Generators provided 6 square-
wave inputs that were used to drive the Simulink simulation. Specifics on how the

simulation reproduced CW and CCW rotation are explained in detail in the following

sections.
Pulse Generator Multiplexer
CW Pulse
Al
double
Input to system:
double
- Jdouble sy Ak, Bk, and Zk
CW Pulse
Bl | e
soubl Step Function
CWil Pul /
Z
/ double
P
E double g double (3)
Step 37 owiteh Bl
double
Zx
CCW Pulse
Ak R
double Switch Block
double
CCW Pulse
Bi1
double
CCW Pulse
a4

Figure 6.  ISE Simulated Source Architecture.



1. Simulated Clockwise Rotation Development

In regards to CW rotation, in order to reproduce the A Phase square-wave, a time
based pulse was utilized with the wave amplitude set to a value of 1, the period of the
wave set to was a initially set at t_square = 2x10™* seconds, and the pulse width set to
50%. For the B Phase reproduction, the same parameters were applied, with one
exception; this time, the B Phase was given a phase delay set to t_square/4. Essentially,
this forced the B Phase to lag the A Phase by 90 degrees. Lastly, in either the CW or
CCW rotation, the Z Phase was reproduced by keeping the Z Phase square-wave signal
high, or a value of 1, for 99.6% of the time. This enabled the Z Phase to simulate a
positive high signal that would pulse low once for every 200 pulses of the A Phase or B
Phase. The simulated CW rotation source signal can be seen in Figure 7. Note that in
Figure 7, the A Phase is leading the B Phase by 90 degrees; the Z Phase displayed a
constant high until pulsing low at approximately 0.004 seconds. Also note that the Z

Phase pulse width is in accordance with equation (1).

Wave Amplitude
=} o o o

WO N R m D =
I

o o

Wave Amplitude
=} o o o
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g 39 4 4.1 4.2
Time [Milliseconds] x10°
Clockwise "Z" Phase Simulated Input Signal

Wave Amplitude
2 o= o
] = O D —

_______________________________________ b
&

wo
=T

Time [Milliseconds] 3

Figure 7. Clockwise A, B and Z Phase Simulated ISE Input Signals.
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2. Simulated Counter-Clockwise Rotation Development

For reproduction of CCW rotation, the B Phase had to lead the A Phase by 90
degrees. This was accomplished simply by applying the phase delay of t_square/4 on the

A Phase instead of the B Phase; this effectively simulated a CCW rotation. This source

signal simulated output results can be seen in Figure 8. Note that in Figure 8, the A

Phase is now lagging the B Phase by 90 degrees; the Z Phase again displays a constant

high signal until pulsing low at approximately 0.004 seconds.
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Figure 8.  Counter-Clockwise A, B and Z Phase Simulated ISE Source Signal.

B. SIMULATION SOURCE INPUT DEVELOPMENT

Next, combining all 6 input signals into a single vector output was accomplished

via a Multiplexer Block. These output signals could then be utilized to drive the

simulation in either the CW or CCW direction. However, to facilitate proper testing, it

was essential to provide the simulation with a method to change the inputs from CW to

the CCW direction all in the same simulation period. As a result, using a Step Function
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Block in combination with a Switch Block, the simulation could do just that; it could
change rotation direction input instantaneously. For example, the Step Function Block
provides a step between two definable levels at a specified time. If the simulation step
time parameters were set to 0.002 seconds, then once the simulation time reached 0.002
seconds the initial value assigned would shift to the final value, thus changing the output
from one definable level to another. Either definable level can then be used to drive the
switching block that ultimately changes the source input it reflect CW or CCW

operations.

Furthermore, in regards to the Switch Block seen in Figure 6, a user can select the
conditions under which the first input is passed with the “Criteria for passing” which is
the first input parameter. Then a user can make the block check whether the control input
is greater than or equal to the threshold value, strictly greater than the threshold value, or
nonzero. If the control input meets the condition set in the “Criteria for passing”, then the
first input is passed; otherwise, the third input is passed. Lastly, the middle port on the
switch block is called the control port. This control port is then driven by the step
function’s output, and in turn, the output of the switch block is the input to the

simulation.
C. LOOKUP TABLE DEVELOPMENT

Once the source signal was recreated in simulation, the computer required the
capability to interpret these input signals into something more meaningful than just
square-wave detection. Recall that the goal of this thesis was to develop a way for the
computer to discern between CW and CCW rotation, detect angular position change, be
able to record total degrees traveled, as well as accurately measure the speed of rotation.
This was accomplished partly through the use of the following Lookup Table (LUT)

shown in Table 1.
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After analyzing the 3 square-waves produced by the ISE, it became evident that
there were 16 possible states that could be generated. These states can be seen in Table
1.

State | A, B, Z | A, | B N, | O,
1 0 0 0 0 0 0 0
2 0 0 0 1 0 1 1
3 0 0 1 0 0 0 0
4 0 0 1 1 0 1 0
5 0 1 0 0 0 0 0
6 0 1 0 1 1 0 1
7 0 1 1 0 0 0 0
8 0 1 1 1 1 0 0
9 1 0 0 0 1 0 1

10 1 0 0 1 0 0 0
11 1 0 1 0 1 0 0
12 1 0 1 1 0 0 0
13 1 1 0 0 0 1 1
14 1 1 0 1 0 0 0
15 1 1 1 0 0 1 0
16 1 1 1 1 0 0 0

Table 1. The 16 State Table.

1. Determining the States

In reference to Figure 9 and in regards to both CW and CCW rotation, the red

vertical lines indicate the previously sampled signal (A _,). The blue vertical lines

indicate the current sample of the A, B and Z Phases (A ,B,,Z,). With this in mind,
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if A_, was previously 0, or low, and the current sample of the A Phase is 1, or high, B, is

low, and Z, high, then the device is rotating in the CW direction.

CW rotation (CW rotation as seen from fit suface)  CCW rotation (CCW rotation as seen from fit surface)
T I

H| i Ho|A [
A phase L‘I—r Ly - A phase L—I—r—lf—r—]—
Hoo H
P PR B o
| fg (90245 fo gEg[00't4s)
Ho H o
Zphase L [ Z phase L [ —
- THTR b - TET2|

*The position of Z phase against A, B phase is not specified.

Figure 9. MES20 (Type C) ISE Square-Wave Output [After [5]].

On the other hand, if the A _, signal was low, and the current sample of A , B, ,
Z, are all high, then the device is rotating in the CCW direction. The orange vertical
lines indicate the previously sampled signal (A _,). The green lines indicate the current
sample of the A, B and Z Phases (A ,B,,Z,). In this case, when A goes from high to
low, B, ishigh, and Z, is low, it indicates that CW rotation with a ZCE has occurred. A

ZCE indicates that 200 pulses of the A or B Phase have occurred, thus indicating that 1

revolution of 360 degrees has also occurred. Similarly, if A goes from low to high, B,
is high, and Z,is low, then the device is rotating in the CCW direction with a ZCE

detected.

Furthermore, once the 16 possible states were determined and arranged as a
lookup table, each individual state was then given a 3 bit binary word that represented the
output of that particular state. The most significant bit in the 3 bit binary word indicates

whether or not a CW incremental step has occurred and is labeled P,. For example, if

the B, bit is 1, then a CW incremental step has occurred; if the P, bit is 0, then no step
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has been detected. The middle bit of the 3 bit word indicates whether rotation in the

CCW has occurred, and was labeled N, . Lastly, the least significant bit was labeled0, ;

this bit indicates whether a ZCE has occurred in either CW or CCW direction.
2. Lookup Table Functionality

In reference to Table 1, direct your attention to state number 6. State 6 or [0101]

is represented by a binary 5, or [101]; meaning that B, is 1, N, is 0, and 0, is 1. A binary
5 indicates that a CW step has occurred because the B, bit is 1. It also indicated that a
ZCE has also occurred considering that the 0, bit is 1. Similarly, state 11 is [1010]. The
output for this state is a binary 4, or [100]; meaning that B, is 1, N, is 0, and O, is 0. This

binary 4 indicates that only a CW step occurred and this time there is no ZCE detected

considering 0, bit is 0. This same pattern holds true for both CCW rotation operations as

well as ZCE detection.
D. ISE PHYSICAL ORIENTATION

As seen in Figure 10, the orientation of the encoder became a concern during the
development of the model. Specifically the issue was that the encoder faced away from
the user and toward the motor it is connected to. This meant that the encoder would
register CW rotation when the motor is actually rotating CCW and vise versa. With this
in mind, it became evident that rotation detection in the simulation needed to be
completely opposite to that of the actual rotation. This was accomplished by simply

switching the B, and N, output of the lookup table in Table 1 above. More specifically,

by swapping out these two binary states, it would correctly represent the rotation of the
motor and not the encoder. With the above information in mind, a new state table was

generated and can be seen in Table 2.
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— 4

g CCW Rotation Detection

Figure 10. ISE mounted on a Squirrel Cage Induction Motor.

State| A By, Zo | 4, | & N, 0,
1 0 0 0 0 0| 0 0
2 0 0 0 1 1 0 1
3 0 0 1 0 0| 0 0
4 0 0 1 1 1 0 0
5 0 1 0 0 0] o0 0
6 0 1 0 1 0 1 1
7 0 1 1 0 0| 0 0
8 0 1 1 1 0 1 0
9 1 0 0 0 0 1 1
10| 1 0 0 1 0] 0 0
11| 1 0 1 0 0 1 0
12 | 1 0 1 1 0| 0 0
13 | 1 1 0 0 1 0 1
14 | 1 1 0 1 0| 0 0
15 | 1 1 1 0 1 0 0
16 | 1 1 1 1 0| 0 0

Table 2.  Modified 16 State Table.
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E. SIMULATION REPRODUCTION OF THE 16 POSSIBLE STATES

Next, the simulation needed the capability to reproduce these 16 physical states
when the situation called for it. Therefore through the architecture seen in Figure 11, this
goal was achieved. The output of the signal source had to be data type “Boolean.” That
was accomplished through the use of the Gateway In Blocks. These blocks convert
Simulink integer, double and fixed point data types into the System Generator fixed point
type. Each block defines a top-level input port in the HDL design generated by System
Generator. In this case, they also force the output to be of type Boolean as well as provide
a digital input link to the physical hardware that generates the input signal; namely the
ISE input signal.

Recall that the simulation required 4 input signals in order to determine the
current state, not just the 3 inputs you would expect considering that the encoder only
produces 3 square-waves. In particular, the simulation needed the previous sample of the
A Phase as well as the current sample of the A, B, and Z Phases. Consequently, a Delay
Block with a latency of 1 was positioned on the A Phase source input signal in order to

provide the simulation with the previous state of the A Phase, A ,, as well as the current

state of the A Phase. Next, all 4 inputs were united through the use of a Concatenation
Block. The Concatenation Block has a number of n ports, where n is some value between
2 and 1024, inclusively, and has 1 output port. The first and last input ports are labeled
“hi” and “low,” respectively. The input to the “hi” port will occupy the most significant
bits of the output and the input to the “lo” port will occupy the least significant bits of the
output. Lastly, the output of the Concatenation Block labeled “Concat” was then
evaluated against a LUT defined in accordance with Table 2 and via the Read-Only
Memory (ROM) Block labeled ROM1. The output of the ROM1 Block is a 3 bit word
representing the output of the LUT.
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Figure 11.  Simulink®/ XILINX® Signal Generation Architecture.

F. SIMULATION M-CODE BLOCK INPUT GENERATION

Now that the 16 states can be recreated in simulation, and the LUT has been
defined, the next step in the simulation development was creating the ability to output the

correct values of B, N, and 0, which corresponded to the current state observed. In the

previous section, recall that the Concatenation Block provided the input to a ROM1
Block. Recall that each word was associated with exactly 1 address in Table 2. For this
simulation, the ROM1 Block generated a specific output in the form of a 3 bit binary
word by referencing the LUT which is defined in the initial conditions file and in
accordance with Table 2. This 3 bit binary output was then separated bit-by-bit through
the use of the Slice Blocks. These Slice Blocks allowed the simulation to literally slice
off a sequence of bits from output data and create a new data value; in this case, either a 1
or a 0 as the output. The output data type of the Slice Block is an unsigned value with its
binary point set at zero. Again, bear in mind, that the simulation output at this stage of

operations is only a 3 bit word, and consequently, the Slice Block labeled P, observes
only the most significant bit, Slice Block N, looks at the middle bit, and Slice Block 0,

observes the least significant bit. It is the 3 separated bits that are now available to drive
the M-Code Block embedded MATLAB™ software. Physical configuration can be seen

in Figure 12.
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Figure 12.  Slice Blocks/M-Code Block Interface Architecture.

G. M-CODE BLOCK ARCHITECTURE/FUNCTIONALITY

By selection of the Boolean output feature in the Slice Block parameter box, the
output data was forced to be type Boolean. The individual Boolean output bits were now
available to drive the M-Code Block which houses MATLAB code. The M-Code Block
is essentially a container for executing a user-supplied MATLAB function within
Simulink. The M-Code Block executes the embedded code and calculates the block’s
outputs during a simulation. The same code is then translated in a straightforward
manner into equivalent behavioral VHDL code when hardware is generated. The block's
simulink interface is derived from the MATLAB function signature, and from block
mask parameters. In regards to the M-Code Block physical attributes, there is 1 input

port for each parameter to the function, and 1 output port for each value the function
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returns. Port names and ordering correspond to the names and ordering of parameters
and return values. In this instance, there are 5 input ports, labeledR ,N,,0,,

OldRotation, and OldValue. Also note that there are 3 output ports labeled NewRotation,

NewValue, and the Direction; physical architecture can be seen in Figure 13.
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Figure 13. M-Code Block Physical Architecture.

In order to make the MATLAB function imbedded in the M-Code Block operate
properly while using XILINX Foundation software, an important issue had to be resolved
first. Namely, the use of “While” loops and “For” loops in Foundation software was not
an option. More specifically, XILINX Foundation software is just not developed for that
particular application, and consequently will not function in that capacity. Therefore, the
simulation needed a method to get the old data collected passed on as new data in order
to produce meaningful end-product. As a result, two physical feed back loops were
constructed; both equipped with a Delay Block with a latency of 1 in order to simulate a

“While” loop” or a “For” loop type of operation in a XILINX Foundation software
20



format. This allowed the simulation to pass vital data from the previous status to the next
round of samples taken. These input loops were labeled NewRotation and NewValue.
Note that there is an additional output from the M-Code Block, labeled Direction;
however, this output was not delayed at this point in the simulation, but rather used as the
input to the Speed Indicator Block. The Direction Bit functionality will be discussed in
detail in Chapter IV.

H. M-CODE BLOCK MATLAB CODE

Now that the simulation has the ability to pass previous data to the current data,
and the fact that the output from the LUT has been separated into 3 separate Boolean

values, namely;R, N,,and O,, The simulation is ready to drive the MATLAB

embedded code in accordance with the 3 operational flow charts shown below. Note that

each flow chart is operating simultaneously during the simulation.
1. Pk Bit Operational Flow Chart

In reference to Figure 14, once the 3 separate Boolean valuesk,, N, ,and 0, are
inputted to the M-Code Block, the program first looks to see if the B, bit is either a 1 or

0. If the input is a 1, then the ISC must be rotating in the CW direction and therefore the
half-pulse counter is incremented by 1, as well as the Direction Bit is set to 0. As a direct
result, the Direction Bit output is then sent as an input to the Speed Indicator Block. On

the other hand, if the B, input is a 0, then the ISC must either be in a static condition, or

CCW rotation is occurring; in either case, no action will occur.
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Increment the Rotation Counter by 1

Figure 14. CW PR, Bit Operational Flow Chart.

Next, the simulation will check to see if the half-pulse counter is equal to 399; if
so, the half-pulse counter will be reset to 0 and passed on for further simulation
processing, as well as the rotation counter will be incremented by 1. Conversely, if the
half-pulse counter is between 0 and 399, then the value is simply passed on for further

processing without incrementing the rotation counter.
2. Nk Bit Operational Flow Chart

In regards to CCW rotation operations, Figure 15 displays the operational flow

chart for N, bit operations. The N, bit operations mirror that of B, operations, however
with a couple of differences. Much like the B, bit operations, the simulation will check
to see if the input bit, N, is a 1 or 0. If the bit is a 1, then the half-pulse counter is

decremented by 1, and the Direction Bit is set to 1 and this value is sent to the Speed
Indicator Block. If the input is a 0, the ISC is either in a static state or the motor is

rotation in the CW direction, and again no action is taken.
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Figure 15. CCW N, Bit Operational Flow Chart.

Moreover, the half-pulse counter is then compared to 0; if the value of the counter
is equal to O, then the counter value is reset to 399. Essentially, this reset to 0 will ensure
that the half-pulse counter will never take on a negative value, which is a desired property
for proper simulation performance. Lastly, the rotation counter is decremented by 1, and

half-pulse counter data is passed on for further simulation processing.
3. Ok Bit Operational Flow Chart

In reference to Figure 16, the program will monitor the 0, bit. Specifically, it will
check to see if the 0, is1ora0. Ifalisobserved, it simply indicates that 200 full
pulses, or 400 half-pulses, have occurred. In other words, 360 degrees of rotation has
occurred. On the other hand, if a 0 is observed, then the simulation is allowed to continue
normal CW or CCW rotation operations. The simulation requires this last bit to function
properly in its current design parameters; meaning all possible states defined in Table 2
must be taken into account. Yet, the O, bit pulse width variance proved to be too
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inconsistent during development to provide accurate rotational data. As a direct result,
the decision to exclude the 0, bit’s input when determining rotations count, and half-
pulse count was reached. MATLAB code for these flow charts can be seen in Appendix
A

0k

Does 0Ok Bit equal 1 or 07

I |
1 0
I |
Indicates that 200 full pulses have

occurred in 360 degrees of
operation; Zero Crossing Event

Allows normal CW and CCW
Operations to occur

Figure 16. 0, Bit Operational Flow Chart.

l. DETERMINING TOTAL DEGREES TRAVELED

In this section of the simulation, recall that the M-Code Block has two feedback
loops that provide the rotation count and the half-pulse count. Also recall that for every
360 degrees of rotation there are 400 half-pulses produced. Therefore, by utilizing a
Multiplication Block with a value of 0.9, and multiplying the half-pulse count value by
this multiplication block output, the half-pulse count value is converted to degrees
traveled. Also note that with a maximum half-pulse count goes from 0 to 399; that means
all 400 half pulses are taken into consideration and convert up to 359.1 degrees before the
reset to 0. Additionally, the total degrees traveled can also be determined by multiplying
the NewRotation Feedback Loop value by a value of 360. This converts the rotations

count to degrees of angular position.
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Last but not least, the total degrees traveled can be calculated by adding the
NewRotation feedback output value to the degrees traveled outputs via the Addition
Block. The Physical architecture of the simulation can be seen in Figure 17 and 18, as

well as the output waveforms of both feedback loops are seen in the 3 graphics displayed

in Figure 19.
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J. SIMULATION OUTPUT RESULTS

From Figure 19, note that from time 0 to 0.001 seconds this particular simulation
produced over 6 rotations in the CW direction. When the input was changed to CCW, the
simulation produced an additional 12 rotations. This result was confirmed via the middle
graphic, which indicated that 2236 total simulated degrees where traveled from 0 to 0.001
second. In other words, the simulation produced 6 full 360 degrees of rotations with an
additional 76 degrees in the CW direction. Additionally, in the CCW direction, the
simulation produced 12 full 360 degrees of rotations with an additional 169 degrees
traveled. Also note that in the middle graphic shows that at approximately 0.002
seconds, the simulated degrees traveled became a negative value; this means that the
simulation returned a negative degree traveled count. Lastly, in the bottom graphic, the
simulation produced and displayed up to 359.1 degrees of rotation before being reset to 0
for each direction of rotation. In either direct of rotation, the degrees of rotation
remained a positive value. This is the exact simulation performance expected and

desired, and in accordance with the 3 operational flow charts previously discussed.
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Figure 19. Top Graphic; Total Simulated Rotation Count. Middle Graphic; Total
Simulated Degrees Traveled. Bottom graph - Total Simulated Degrees Traveled
for each Rotation.

K. CHAPTER SUMMARY

This chapter discussed the FPGA interface with the SDC as well as the ISE in
great detail. It went on to emphasize the development of a simulation which mirrored the
performance of the ISE source signal, and discussed the simulations reproduction of the
16 possible states. Next, the simulation had to be setup in such a manner that the
encoder’s output signal reflected the motor’s revolution data and not the encoder’s data.
Lastly, it concluded with a review of the simulation output results and confirmed the
validity of the simulation model. Chapter IV will explore the development and

implementation of the Rotor Speed Indicator.
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IV. ROTOR SPEED INDICATOR

A. TACHOMETER OVERVIEW AND INPUT SIGNAL DEVELOPMENT

The most basic type of incremental encoder is a tachometer which has just one
output and is most often used in unidirectional applications that track only position or
speed information. Specifically, a tachometer is described as an instrument that measures
the rotation speed of a shaft or disk, as in a motor or other machine. The device usually
displays the revolutions per minute (RPM) on a calibrated analog dial, but digital displays
are increasingly common [8].

In order to create a tachometer using the ISE, both the A and A_, input signals
were utilized. Recall that the A signal is a square wave with set amplitude of 1 and a
variable period relative to the speed of rotation. Also recall that the A _, signal is the
previous sample of the A _signal, sampled just one clock cycle earlier. From Figure 20,

one can see that there are 3 inputs to the Speed Indicator Block, two of which are taken

directly from A, and A_,, and one input is supplied by the M-Code Block and labeled

Direction.
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Figure 20.  Speed Indicator Block.

In order to understand how this tachometer functions, we will break down the
Speed Indicator Block into small describable sections and cover each section in great
detail. Figure 21 displays the output wave form produced by the ISE for both the CW
and CCW rotation. Note that the solid red line represents the A _, sample; the dotted blue
line represents the current signal sampling point or A . Lastly, for clarification purposes,
the arrows were added to the figure to indicate the direction of sampling.

In regards to the CW rotation the encoder will produce a 1 or H, followed by a 0

or L. In the CCW direction it will produce a 0 followed by a 1. When either pattern is

observed, it simply indicates that rotation has occurred.
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Figure 21. ISE A Phase Input Signal. [After [5]].

B. SPEED INDICATOR BLOCK SIMULATION DEVELOPMENT

In reference to Figure 22, we next examine the internal working of the Speed

Indicator Block. As mentioned earlier, the inputs to this block are Direction, A, and A, ;.
First let’s focus attention on the inputs A and A _,; both inputs are fed directly into the

logical XOR Logic Block with its time delay set to zero. The output of the XOR Block
is either a 1 for the input 01 or 10, or a O for the input 00 or 11. In layman’s terms, every
time the signal goes from H to L or L to H, a 1 will be output downstream of the XOR
Block, otherwise a 0 will be the output, thus indicating that the motor has rotated one-half
pulse width. Note that a total of 400 half-pulses per rotation is produced using the ISE

and for each full pulse produced there is a rotation of 1.8 degrees.
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Figure 22.  (Partial) Speed Indicator Block Diagram.

Next, looking down stream of the XOR block one can see that the output is then

tallied via a Counter Block. This block implements a free running or count-limited type

of an up, down, or up/down counter. The counter output can be specified as a signed or

unsigned fixed point number. The output of the counter, in relation to the XOR output,

can be seen in Figure

23.

Number of Paints per 1/2 Pulse Length

MNumber of Points
§ 8

:

1.8 degrees
I

3

Time in Milliseconds

*OR Output

XOR Output
o
L= o =
T T

4

JH

05
1]

05

1.5 2
Time in Milliseconds

25 3
x10°

Figure 23.  XOR Number of points/ ¥ Pulse Length/Time; XOR Output/Time.

32



In Figure 23, the red double-headed arrow number 3 indicates that the simulation
changed directions from CW to CCW and record some additional clock cycles before a
reset to zero. Also note the position of the two black double headed arrows numbered 1
and 2; these arrows indicate that the counter counted up to 2499 clock cycles, then resets

to 0 each time the XOR output became 1.
1. Zero Revolution Detector

In Figure 24 the area boxed by the dotted red border is the section of the
simulation that checks to see if the device has a rotation rate greater then or less then 10
revolutions per minute. Why 10 revolutions per minute? A zero rotation point had to be
established that was near a zero but not actually zero. So the value of 10 RPM was
specifically selected to represent zero rotations. With this parameter in place, if the
simulation was less then 10 revolutions per minute, then output of the Multiplexer Block
(Mux) would be considered zero, and consequently no rotation will be registered. On the
other hand, if the rotation is greater then 10 revolutions per minute, then the output of the

counter will be the output of the Mux Block, and its value will be passed on for further

processing.
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Figure 24.  Speed Indicator Rotation Check.
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How does the above operation occur? Through the use of a Relational Block, the
simulation was able to compare two different values and output one value in accordance
with the specific rational operator used. In this case, the simulation compared a constant
value (channel “a”) against the counter output (channel “b”) using the rational operator
a>b. For example, for 10 revolutions to occur in one minute at a t_square value of
0.0002, the number of clock cycles would exceed 375000. Therefore, the simulation
compares the value of 375000 to that of the output of the counter. If a>b, then the output
will be a Boolean 1, and trigger the Mux block to output the constant value assigned to
channel d1; in this case a 0 would be passed. On the other hand, if a<b, then the answer
is false, and a Boolean 0 would force the Mux block to output the counter value assigned

to channel dO; and consequently the counter value would be passed.
2. Multiplication Operations

Down stream of the Mux Block is a Multiplication Block, labeled CMult. This
block was added in order to scale down the input value supplied by the Mux block by
0.0333. Scaling down the Mux output was done to ensure that the new Mux output value
did not exceed the LUT called “Reciprocal” maximum value. Values of LUT Reciprocal
can be seen in Figure 25 and the MATLAB code can be found in the Initial Conditions

File seen in Appendix A.

LUT Reciprocal

1/Counter
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i

Counter

Figure 25. Look Up Table "Reciprocal."
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Furthermore, the Multiplication Block (CMult) implements a gain operator, with
output equal to the product of its input by a constant value. In this simulation, the model
used a Multiplication Block set to a 16 bit word length with the binary point set at the
14" bit; this provided the precision required for the value 0.03333 to be used. The circuit
architecture can be seen in Figure 26.
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Figure 26. CMult /LUT Reciprocal Block.

In regards to the LUT Reciprocal, this block was specifically implemented due to
the fact that performing a division operation is just too difficult a process for the
computer system to perform effectively. Consequently, by providing the scaled down
reciprocal version of the Mux output, then multiplying the LUT output values by the
constant value 625000, the program was able to effectively process the total degrees
traveled. Note that the Mux output reduction by 0.0333 is later restored to its actual
value via the LUT’s base equation. This result was then scaled from total degrees
traveled per second to RPM by multiplying the output by 0.1667. Simulated results can

be seen in Figure 27.

In Figure 27 (top graphic) note that 99.9% of the data output by the Multiplication
Block is inaccurate. Therefore, a Register Block was implemented in conjunction with
Delay Block that was finally linked to the XOR output. This effectively allowed the
simulation to “activate” the Register Block at precisely the correct moment in time to
capture the data that was considered correct (bottom graphic); this allowed accurate RPM
data to be passed downstream for further processing. The black arrows in Figure 27

highlight the points where the data is considered accurate. It is at these points alone that

35



the data is captured and passed. The remaining data seen in Figure 27 (top graphic)
appears to be wrapping due to numerical saturation. Consequently, this data is not
considered accurate and can not be used. Specifics on how the program coverts degrees

traveled to RPM will be discussed in the following section.

Garbage Revolutions Per Minute

[RPM]

Time in Milligeconds «10*

Corrected Wlumns Per Minute at 1500 RPM |

RPM]

2 25 3 a5 4 45 5
Time in Milliseconds «1g*

Figure 27. Garbage RPM (top)/Corrected RPM Output (bottom).

3. Converting Raw Data to RPM

Now that the total amount of degrees traveled is a known quantity, by inserting an
additional Multiplication Block with a value of 0.1667 downstream of the Register Block,
Degrees per Second was scaled to reflect RPM. Originally this simulation was set up to
produce an output of 1500 RPM. However the actual value obtained via simulation was
1488 RPM. As a result, there was a 0.8 % simulated speed estimation error produced.
This error could be due to rounding error in the program, yet the error is small enough to
be considered a good estimation of the actual simulated speed. Results can be seen in
Figure 28. From Figure 28, note that during time of transition from CW to CCW or vice

versa, speed estimation is not considered accurate and should not be considered.
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Figure 28.  Speed Indicator Simulated Output Results at 1500 RPM.

4. Direction Bit Operation

At this point in the simulation, the speed of a device can be accurately measured
with a high degree of precision. However, the direction of the device still can not be
determined without additional programming; therefore, a Direction Bit was added to the
simulation. Recall that one of the three inputs to the Speed Indicator Block was the
Direction Bit. This bit was designed to input a 0 if the device was rotating in the CW
direction and a 1 if the device was rotating in the CCW direction. Simulation architecture

can be seen in Figure 29 and highlighted by the red arrow.
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Now, referring to Figure 30, the input labeled Direction is fed directly into the
CCWI/CW Detector Block. This input utilizes a Delay Block with a latency of 2 in order
to ensure correct timing of the simulation inputs and also synchronizes its input with that
of the XOR Output Enable Bit, which also feed into the CCW/CW Detector Block.
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Figure 30. Direction Bit Input Interface with the CCW/CW Detector Block.
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5. CCW!/CW Detection Block
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Figure 31. CCW/CW Detector Block Physical Architecture.

From Figure 31, one can see that the Direction Bit and the XOR Enable Bit are
the inputs to the Register Block, labeled Information Capture Block (ICB); again a
Register Block was utilized to captures the data at precisely the correct moment in time
when the input is meaningful to the program. Once this data is collected and allowed to
pass, the output of the ICB is compared to 0 via the Rational Block with the logic a=b.
Essentially what this means is that if the output of the ICB is equal to 0, then the constant
0 is passed; otherwise a 1 is passed; it is simply a true or false output. The output of the
Rational Block is then compared in an S/R Flip Flop. This particular S/R Flip Flop was
implemented by a Mealy State Machine. The truth table can be seen in Table 3 below.
This particular truth table has its current state values on the left side of the table, and the

values for S and R along the top row as two concatenated bits.

SR |00 |01 |10 11
0 0 0 1 0
1 1 0 1 0

Table 3. Truth Table for SR Flip Flop.
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Since the S/R flip flop is implemented with a Mealy State Machine, the output is a
function of the current state and the inputs. The inputs are the values for S and R, and the
current state is either 0 or 1. For example, if the current state is 0 and the current value of
the output is 0, and the input for S is 1 and R is 0, then the output will become 1, as seen
above, and the next state will be state 1. As long as the R input bit is not a 1, the output
will remain a 1, and the current state will remain one. Simulation architecture can be

seen in Figure 32.
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Figure 32. Mealy State Machine Direction Architecture.

As previously mentioned, the output of the Mealy State Machine is either a 1 or 0.
Therefore, utilizing a Bus Multiplexer (Mux 2), the simulation will either output the user
defined constant value of 1 or a negative 1 depending on the output of the Mealy State
Machine. In turn, the output of Mux2 will be used to calculate and display positive or
negative rotation of the device by multiplying the Mux2 output by the CMult2 Block
previously mentioned. As a direct result, the simulation can now display positive or

negative RPM. The Physical architecture can be seen in Figure 33.
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C. CHAPTER SUMMARY

This chapter presented an overview of a tachometer and how the A Phase
produced by the ISE was utilized as an input in the construction of the Rotor Speed
Indicator. The next topic discussed was how a tachometer was reproduced in simulation,
which highlighted specific areas of simulation development, such as Zero Revolution
Detection, as well as signal pre and post-processing. Lastly, it explained how the
simulation was developed in order to detect and register both CW and CCW rotation.
Chapter V describes the digital interface between the hardware and software utilized in

signal processing.
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V. HARDWARE AND SOFTWARE INTERFACE

A. HARDWARE AND SOFTWARE INTERFACE INTRODUCTION

The SDC utilizes Simulink software for modeling power electronics systems as
well as running simulations to test engineering power designs. Simulink provides an
environment for multi-domain simulation and Model-Based Design for dynamic and
embedded systems. Moreover, it provides an interactive graphical environment equipped
with a customizable set of block libraries that let the user design, simulate, implement,
and test a variety of time-varying systems, including communications, controls, signal
processing, video processing, and image processing. Lastly, Simulink enables model
analysis and provides the diagnostics tools necessary to ensure model consistency and

identifies modeling errors prior to hardware setup and testing [9].

As mentioned earlier, XILINX Foundation software generates VHDL code once
the simulation or model is perfected. In turn, the software is then used to generate code
that can be used to program the FPGA. Again, being proficient in VHDL programming
is not a requirement; however understanding the procedures that make it possible to
interface the hardware with the software are essential for signal processing and will be

discussed in greater detail in the following section.
B. GENERATING VHDL CODE USING ISE FOUNDATION

Once the model is operating as designed it will then be used as a design template
for VHDL code generation. The first step in generating VHDL code is to simply click
the System Generator Block located in our XILINX Foundation software model. This
will open up the System Generator User Interface Menu Block. Screen shot can be seen

in Figure 34.
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Figure 34.  System Generator Block and Menu.

From the System Generator User Interface Menu Block enter the required data
fields, and then click the “Generate” button. The Model is then compiled, and made
available for further processing. Furthermore, using ISE Foundation software, the newly
compile file is then utilized to generating the program file associated with the particular
model developed. More specifically, once synthesized, a programming file is generated
using the ISE Program Navigator software by opening the newly compiled file from a
drop down list, then clicking on Generate Program File. This automatically starts the
process that will generate and configure the device. Once this process is complete, the

programming file is generated and the FPGA is then programmed.
C. CHIPSCOPE™ INTERFACE

Next, the user can control a converter remotely through ChipScope™ Pro
embedded software. More specifically, ChipScope Pro is a tool that inserts a logic
analyzer, bus analyzer, and virtual 1/0 low-profile software cores directly into your
design. It allows the user to view any internal signal or node, including embedded hard
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or soft processors at or near system operating speed. Additionally, through the utilization

of ChipScope Pro Logic Analyzer, the program can take the recorded data and not only
view its contents but analyze it for further post-processing.

ChipScope Pro is initially opened from the ISE Foundation Window. The control
screen shot is shown in Figure 35.

% ChipSeope Pra Arabzer [ new projact]

AN
=/

ChipScope Pro

ux

Figure 35. ChipScope™ Pro Start up Control Screen.

Once the ChipScope™ Pro software is up and running, the user must first
establish communications with the hardware by providing a connection between the

JTAG Chain and the FPGA. Figure 36 shows how the simulation interfaces with the
ChipScope™ software via the ChipScope™ Interface Block.
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As shown in Figure 37, under the drop down menu “File,” select the file that you

wish to view as well as the FPGA programming you wish to utilize.

“Devices” tab then highlight the particular device you are interested in, and then click on
Configure. From this window select the newly generated VHDL code you wish to utilize

then hit the “Ok” button. The device is now ready to read via ChipScope™ Pro.

Once this interface is complete, the user can utilize special feature to process
input and output data. For example, the VIO Console Interface Screen is an application
that allows the user to manually control the hardware. The screen shot of the VIO

Console Interface page can be seen in Figure 37.
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Figure 37. VIO Console Interface Screen Shot.

In Figure 37, note that, in this case, the buck converter can be either toggled on or
off with a simple click of the mouse. With this feature in place, the user can control the
FPGA as well as the VSC digital control process via ChipScope Pro software.
Additionally, this interface allows for a detailed digital analysis of input and output
signals without instruments. Last but not least, it provides the user with a tool to conduct

bit-by-bit evaluation when a more detailed analysis is required.

Yes, the VIO interface page in ChipScope Pro software is a powerful tool, but the
use of the VIO Console Interface will not be necessary for analysis of the input signals in
this particular case. Instead, the Bus Plot feature was utilized for all signal post-
processing. From Figure 38, notice that ChipScope Pro was able to display all 3 of the
output signals generate from the ISE. In this particular instance, a Squirrel Cage
Induction Motor (SCIM) was used to produce a CW rotation at 1400RPM. The green
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waveform represents the actual RPM the encoder is rotating during this finite window of
time. The red waveform represents the Degrees Traveled per Rotation, and, lastly, the
blue waveform represents Total Degree Traveled. Note that the blue waveform is a 12 bit
binary word; therefore it can only reach a maximum value of 4096 before it rolls over to
0 due to numerical saturation. Moreover, these three waveforms will then be passed on

for further processing and display.
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Figure 38. Bus Plot of a Squirrel Cage Induction Motor at 1400RPM (CW).

When ChipScope Pro was used to record and analyze data from a CW rotating
motor, ChipScope output display worked excellent. Yet, when the motor rotated in a
CCW direction, erroneous data was observed. The problem did not stem from the design
of the simulink software; if that were the case, one would expect similar results in the
simulated runs. Instead, every simulation performed as expected and consequently the
fault had to be in ChipScope Pro software. As it turned out, ChipScope Pro does not

possess the capability to accurately process 2’s compliment binary numbers. With this in
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mind, additional processing of the output signal was required. For example, Figure 37
displays the screen shot of the output of a Squirrel Cage Induction Motor (SCIM)
traveling in the CCW direction at approximately -1400RPM. If ChipScope Pro possessed
the capability to process 2’s compliment binary numbers, then we would expect the green
waveform to represent -1400RPM; yet again, this was clearly not the case and a rotation
rate of approximately 2700RPM was recorded.
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Figure 39. Bus Plot of a Squirrel Cage Induction Motor at -1400RPM (CCW).

To correct this error when taking CCW measurements, the data collected via
ChipScope Pro software was exported to an external program for supplementary signal
processing. More specifically, the data was exported into a MATLAB m-file that was
specifically created to evaluate each and every data point collected, then converted the

2’s compliment data into a correct rotation values in either CW or CCW direction. The
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MATLA code for this application can be seen in Appendix A. The results can be seen in
figure 40. Note in Figure 40 that the post-processed value of 2700RPM is now correctly
reflecting the actual CCW rotation observed at -1400RPM.
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Figure 40. Counter-Clockwise Squirrel Cage Induction Motor at -1400 RPM.

D. CHAPTER SUMMARY

This chapter gave a brief overview of the Mathworks’ Simulink® simulation
software and highlighted its involvement in the computer algorithm development. Next,
it revisited XILINX Foundation software application, and explained how this software
generates VHDL code using ISE Foundation Software. It then went on to explain how
ChipScope™ Pro Software was utilized in analysis of the ISE’s data, as well as its
interface with an FPGA. Lastly, this chapter was concluded by pointing out some of
ChipScope Pro’s limitations in regards to recording, analyzing, and displaying rotational
data, as well as how these limitations were overcome. Chapter VI will discuss the ISE

output results as well conclude this thesis.
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V1. RESULTS AND CONCLUSION

A. ISE PHYSICAL PERFORMANCE RESULTS

In order to measure the quality of the algorithm developed for the ISE, a series of
high and low speed operational tests were conducted in both the CW and CCW rotation
directions in order to assess the overall validity of the encoder’s algorithm as well as its
implementation in regards to interface between hardware and software. A Squirrel Cage
Induction Motor (SCIM) was utilized in the rotation of ISE after considering its excellent

flexibility in terms of variable speed and direction control.
1. High Velocity Clockwise Rotation Results

The first test was analyzed using ChipScope Pro Software. The SCIM was
calibrated to rotate at rate of 1400 RPM in the CW direction using the Biddle Hand
Tachometer. After the speed of rotation was verified, the Bus Plot feature in ChipScope
Pro produced the following results which are seen in Figure 41. The blue waveform
represents the total degrees traveled had a positive slope, which indicated a CW rotation
with an increasing value. Also, total degrees traveled reset to 0 upon reaching its 12 bit
limitation of 4096 degrees traveled. Next, the green waveform representing the speed of
rotation, clearly displayed a CW rotation rate of approximately 1400 RPM. Lastly, the
red waveform representing degrees traveled per rotation also had a positive slope, thus

verifying a CW rotation.
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Figure 41. ChipScope™ Pro Bus Plot (CW Rotation at 1400RPM).

Next, these results where verified via a MATLAB plot. Figure 42 displays a CW
rotation of the SCIM at approximately 1400 RPM. Figure 43 displays the degrees
traveled per rotation. Note that the slope of the waveform is again positive and also reset
to 0 when the value reached a maximum of 359.1 degrees traveled. Lastly, the time for 1
rotation was approximately 0.042 seconds. Therefore, using equation (2) the speed was
then verified to be approximately 1428 RPM.

1 revolution 60 seconds
0.042 seconds 1 minute

j:1428.6 RPM 2)
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Clockwise Squirrel Cage Induction Motor at 1400 RFiM
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Figure 42.  Squirrel Cage Induction Motor (CW Rotation at 1400RPM).
Clockwise Degrees Traveled; Squirrel Cage Induction haotor at 1400 RPM
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Figure 43. Degrees Traveled Squirrel Cage Induction Motor (CW Rotation at 1400RPM).
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2. High Velocity Counter-Clockwise Rotation Results

In this test, a CCW rotation of the SCIM was setup again with a rotation rate of
-1400RPM. The speed of rotation was verified via Biddle Hand Tachometer as well as
all rotation data collected via ChipScope Pro software. As seen in Figure 44, this time
both the total degrees traveled (blue waveform) and degrees traveled per rotation (red
waveform) had a negative slope; this indicated a decreasing value in terms of total
degrees traveled as well as degrees traveled per rotation. Moreover, similar to the CW
rotation test, the total degrees traveled reset, but this time it reset at O to its maximum
value of 4096. This reset was due to the rollover of its 12 bit binary word. Finally, the
speed of rotation (green waveform), as expected, gave faulty data; therefore additional
post-processing was utilized in order to display the actual rotation values achieved.

Results of speed of rotation can be seen in Figure 45.
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Figure 44. ChipScope™ Pro Bus Plot (CCW Rotation at -1400RPM).
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Counter-Clockwise Squirrel Cage Induction Motar at 1400 RPN
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Figure 45.  Squirrel Cage Induction Motor (CCW Rotation at -1400RPM).

Figure 45 displays the post-processed speed of rotation data. Note the rotation
rate was approximately -1400RPM; the negative value indicated that a CCW rotation
occurred. Furthermore, Figure 46 displays the degrees traveled per rotation in the CCW
direction. Again, there is a reset to 359.1 degrees once the degrees archived a value of 0

degrees.
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Figure 46. Degrees Traveled Squirrel Cage Induction Motor (CCW Rotation at -
1400RPM).
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As a point of interest, each waveform observed appears to have some noise
associated with each of the output waveform displayed. Yet, this noise does not seem to
affect the overall quality of the output signal generated. On the other hand, this noise
should not be ignored; therefore a digital filter may help to minimize this output noise

and should be considered for follow-on algorithm upgrades.

3. Low Velocity Clockwise Rotation Results
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Figure 47.  ChipScope™ Pro Bus Plot (CW Rotation at 100RPM).

Next, the encoder was run at a decreased speed of 100 RPM in the CW direction.
ChipScope Pro software was again utilized to detect and record the results. As seen in
Figure 47 above, the total degrees traveled (blue waveform) displayed a positive slope
and thus increased in value. Additionally, the degrees traveled per rotation (red
waveform) also increased in value and again verified that CW rotation occurred. Lastly,
the speed of rotation (green waveform) correctly reflected 100RPM. Again, these results
were post-processed using MATLAB for verification purposes and then displayed in

Figure 48 and 49. As seen in Figure 48 and 49, similar results were obtained.
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Figure 48.  Squirrel Cage Induction Motor (CW Rotation at 100RPM).

Figure 49. Degrees Traveled Squirrel Cage Induction Motor (CW Rotation at 100RPM).
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4.

Low Velocity Counter-Clockwise Rotation Results

Similar to low velocity CW rotation test, the encoder was run at the speed of -100

RPM, but this time in the CCW direction.

Like all previous tests, ChipScope Pro

software was utilized to detect and record the results. As seen in Figure 50, the total

degrees traveled (blue waveform) as well as the degrees traveled per rotation (red

waveform) both displayed a negative slope.

Lastly, the speed of rotation (green

waveform) required additional post-processing to correctly reflect actual results. These

results can be seen in Figure 51 and 52.
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Figure 50. ChipScope™ Pro Bus Plot (CCW Rotation at -100RPM).
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Figure 51.  Squirrel Cage Induction Motor (CCW Rotation at -100RPM).

Figure 52.  Degrees Traveled Squirrel Cage Induction Motor (CCW Rotation at -
100RPM).
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5. Algorithm Limitations and Overall Results

The threshold for accurate results in term of speed estimation appeared to be
approximately 60 RPM. This value was obtained by running numerous speed tests at
sequentially decreasing rate of speed. As it turns out, any speed of rotation that was
below 60 RPM produced distorted and conflicting results. For example, in Figure 53, the
speed of the device was set at approximately -60 RPM in the CCW direction. Again the
Biddle Hand Tachometer was used to calibrate and verify the speed setting. The results
however, do not reflect the actual speed of the device. Instead the values observed were
recorded in a range of negative -250 to -400RPM. Similar outcomes were observed in
the CW direction.

Counter-Clockwise Squirrel Cage Induction Motor at 60 RPM
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Figure 53.  Squirrel Cage Induction Motor (CCW Rotation at -60RPM).

The above results place an operational limitation on the encoder’s algorithm. On
the other hand, the algorithm did function properly in regards to degrees traveled in the
CCW and CW direction as seen in Figure 54.
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Counter-Clockwize Degrees Travelad, Squirrel Cage Induction Motor at 60 RPM
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Figure 54. Degrees Traveled Squirrel Cage Induction Motor (CCW Rotation at -60RPM).

Note that the slope is decreasing; meaning the algorithm appears to be operating
as designed in the CCW direction. However, to confirm this conclusion, equation (3)

was utilized.

1 revolution degrees per rotation (60 seconds
360 degrees )\ sample period[seconds] )\ 1 minute

ji =RPM (3

If the algorithm was functioning correctly, one would expect a speed of rotation to
be approximately -60RPM. Therefore, taking the total degrees traveled from time 0.01 to
0.05 seconds, which was approximately 15 degrees; then plugging this value into
equation (3), it appears that the device was traveling at -62.5 RPM. As a direct result of
these findings, the algorithm appears to be functioning correctly in regards to detecting
and registering degrees traveled per rotation. The same equation was used in the high
velocity test and similar results were recorded; which also confirmed algorithm validity at

higher rotational speeds.

As an additional point to consider, the Biddle Hand Tachometer used to calibrate

the speed of rotation also appeared to have great difficulty in measuring rotational speeds
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accurately at low velocities levels. With this in mind, as well as the results obtained from
both the high and low velocity tests, it appears that the algorithm specifically designed
for the ISE is functioning correctly and in accordance with the simulated computer
model. This functionality includes the algorithms ability to detect and register both total
degrees traveled and degrees traveled per rotation in both the CW and CCW directs.
Lastly, the algorithm provides an accurate estimation of speed of rotation at speeds above
60 RPM.

B. SUMMARY

This thesis began with an overview of the SDC objective and description of the
hardware and software used therein. The functionality and implementation of specific
components of the SDC was highlighted in order to develop a comprehensive working
knowledge of the SDC operational capabilities. Next, it provided a detailed analysis of
the output signal generated by the ISE. It specifically then went on to explain how the
encoder generated its three output waveforms, as well as underscored how these
waveforms were utilized in rotational data collection. It then provided a detailed
overview of the FPGA interface with the SDC, as well as the ISE. Furthermore, it
described, in great detail, how the simulation that reproduced the ISE source signal, as
well as the Rotor Speed Indicator simulated feature, was developed, implemented, and
tested. Lastly, this thesis concluded by presenting the reader with operational tests

results.
C. CONCLUSION

The SDC continues to be an excellent training tool in regards to digital control of
power electronics design and testing. Through its use, the students gains a greater
understanding of FPGA digital control of various power systems as well as gain a
comprehensive working knowledge of analysis tools such as ChipScope™ Pro software

in regards to signal analysis and processing.
Furthermore, with the addition of the ISE, the SDC enables the students to not
only experiment with rotating magnetic field orientation problems, but it also provides
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the student with the hardware and software necessary to detect angular rotor position in
both the CW and CCW rotation directions, total degrees traveled, as well as speed of
rotation detection; which all could used as inputs for open and closed loop speed and
torque control. This research also compared simulated operation of the encoder with
measured results which taught the students that the physical operation of electronic
equipment can be predicted via simulation prior to testing and eventually aid in the
validation of the model used and developed. This greatly enhances the Department of
Electrical and Computer Engineering’s Power laboratory at the Naval Postgraduate
School.

Moreover, as a point of interest, during development of the simulation, it became
evident that the encoder’s orientation relative to the shaft to which it was attached proved
problematic. Therefore, the simulation was set up essentially in reverse of expected
performance. Recall that CW rotation of a motor produced CCW results, and vice versa.
Consequently, a small change in the state table was implemented that made the output
appear to be opposite of actual rotation, hence the motor rotational data was reflected and
not the encoder data. This change in the state table appeared to correct the encoder

orientation problem and produced desired results.

Lastly, from the operational tests conducted, one can conclude that the algorithm
was operating in accordance with original design specifications. Specifically, this
algorithm functioned correctly for each and every test conducted; this included total
degrees traveled and degrees traveled per rotation in both the CW and CCW direction.
Speed of rotation was accurately predicted at all speeds over 60RPM. However, each test
conducted also pointed out that there was at least some noise associated with each
waveform produced. Although this noise did not appear to adversely affect the
algorithms overall performance, the addition of a digital filter may help clear up this
noise observed. All in all, a very functional algorithm was created and is now available

for student use.
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D. RECOMMENDATIONS FOR FURTHER STUDY

There are several opportunities for research in the area of total motor control in
regards to power electronics. Below are several ideas that serve as platforms for further
research:

o Development of a motor control laboratory for use in the electrical
engineering curriculum tracks.

. Design and implement an algorithm to incorporate SDC current technology
for closed and open loop speed control.

. Design and implement an algorithm to incorporate SDC current technology
for closed and open loop torque control.

The reprogrammable nature of FPGA hardware enables great flexibility in term of
design capabilities. With the addition of the MES20 (Type C) Shaft Encoder the student
essentially has the tool necessary that will lead to motor control. Hence, electrical

engineering design, especially at the graduate level, can benefit from the SDC use.
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APPENDIX A: DATA SHEET AND MATLAB CODE

MES20 (TYPE C) INCREMENTAL SHAFT ENCODER DATA SHEET

@€ U I Inc.. 2004

55
26

24

u
Ea

SPECIFICATIONS QUTPUT WAVEFORM e e v v STANDARD RESOLUTIONS —
——_TYPE|] -~ C £ TYPE"', C TYPEE MES20-XXXX
P : e e
Supply Voltage |77 =) oo 2| svocasw - J i U
> PPYt g 110:0 AA /DC +10% 150‘ A Signal A _T}‘__\_r AT 188 188 gxg ggg ggg Exg
urren M max <150m alo|c]d - i ; Y y
. — A_:m_\_ 200 200P/R 1000 1000 P/R
Qutput H vee- 1V =242V Signal B _,_\_,_l_ B—i_'i—l_‘— 250 200P/R 1024 1024 PIR
256 256 PR 1200 1200 P/R
Voltage L <05y <05V l*'_"_‘“ Ol 1L oL 300 300P/R 1300 1800 P/R
: Signal Z 360 360 /R 2000 2000 PR
Sink Current 20mA max. <20 mA g i e N 400 400P/R 2048 2048 PIR
N - - s ma = 450 450 PR 2500 2500 P/IR
Signal Risetime <2pS F’; ';1 PPS‘A o T T [ Lisvereazy 3500 3600 PIR
abecd= + ixed input only.
Freq. Response 50 - 100kHz N
q P h=P2075P Wave Duty Ratio: 50% + 25% ORDERING INSTRUCTIONS
MECHANICAL MES20- p-
1. Max Shatt Load, radial: 2.0 kgf OUTPUT CIRCUITS
@l 1.0 kgf TYPE ' (Voltage) TYPE C (Open Call) Resosion—1 T—\
2 Moment of Inertia: 3 g-cm . = = Output Format:
3. Angular Acceleration: 1x10% rad/s? e fee o Blank = TTL votage 3
4. Max Slewing Speed. 6000 RFM —o signal ———oSignal T ]
5. Starting Torque: 20 gf-cm max. 4%__ - ES s Diivey
6. Rotational Life: 1 x 107 rpmehrs = . ]_ w C U Ilinc.
ENVIRONMENTAL came s .uo—_;_V camsamn O @ cul INC 9615 SWAllen Blvd #103
1. Operating Temp: -10° to +60° C TYPE E (Line Driver) v ?i?‘;%t%igggéu 1219(05-03_543 6120
2. Storage Temp: -20° to +80° C = - ol
3. Humidity: 90% RH, no condensation vee DRANN B, Sae LEEEeT Sy Lol
4. Vibration: 10~55 Hz, 1.5 mm, 2 hrs [x—" Signal JAS 07/09/04 07/09/04 MM
5. Shock: 50G, 11ms, 3 axes, 3 reps o sibug| FART NO. REV.
—ow MES20-XXXXP-XXXX ‘ A

B.

The Initial Conditions (IC) File defined several key conditions that are required
for proper simulation operations. Specifically, the IC file defines the LUT “Reciprocal”
output formula, as well as it defines the Modified 16 State Table via the output vector
labeled “output_vec.” Lastly it defines the vector used in the S/R Flip-Flop in regards to

CW and CCW rotation detection.
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9%6%%0%%%%%%%%%%%%%%%%%%%%%%% %% % %% % %% % %% % %% % %% % %% % %% % %% % %% % %% % %% % %% % %% % %%
% File Name: Initial Conditions File for Incremental Shaft Encoder %
%  Author: LT Andrew M. LaVvalley %
% Last Modified: 20 Aug 08 %
96%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% % %% % %% % %% % %% % %% % %% % %% % %% % %% % %% % %% % %%

t_square=2e-4;%2e-4 produces 1500RPM...4e-4 produces 750RPM
%8e-4 = 374RPM. . .10e-4=300RPM

%there is 400 1/2 pulses per rotation therefore:

%60sec/ (400* 1/2*t_square)= correct RPM
RPM=60/(200*t_square);

Hz=RPM/60;

open_loop=0 ; %Set to one for open loop operation else set to zero for
% closed loop voltage regulation

Kp_1=.06%*2; %current Pl gain is amplified to account for the SV

% modulation scaling

Ki_i=1*3; %Current control loop gain

Kp_v=.2;

Ki_v=5;

T _clock=25e6;

sw_Ffreq=15000;
sw_counter=round(f_clock/sw_freq-mod(f_clock/sw_freq,10));

%Counter for sawtooth for switching modulo 10 used so step _ct can be 10
Vdc=48;

Total Rotations=6;

%step_ct=10;

step_ct=1;

tstep = step_ct/f _clock;

Fmat =[0001;1120;2230;3300];

Ctr=[1:2"11];
reciprocal=360/30/1./Ctr;%this defines the LUT "Reciprocal."

%this Plots the LUT Reciprocal for display%%%%%%%%%%%%%%%%%%%%%%%
figure(1);

plot(Ctr,reciprocal, "linewidth",2);

xlabel ("Counter”);

ylabel ("1/Counter”);

grid;

title("LUT Reciprocal®)

MakeAxisWide
%%9%6%6%%%6%6%%%6%6%%%6%6%%%6%6%%%6%6%% %6 %6%% %6 %6%% % %6%% % %% %% %% % % %% %% %% %% %% % % %% %% %%
O_mat = F_mat;

%%%%%6%%%0%%%%%6%%%%%6%%%6%%6%%%6%%%6%%6%% 6% % %% %% % %% % %% 6% % %% %% % 6% % %% %% % %% %

% %
%  This Defines the Modified 16 State Table [Pk, Nk, OK] %
% %

%%%%%6%%%0%%6%%%6%%%%%6%%%6%%6%%%6%%%0%%6%% 6% % %% %% % %% %% % 6% % %% %% % 6% % %% %% % %% %

output_vec=[0;...%Nothing is occuring with [0,0,0]
5;...%CCW direction and ZCE [1,0,1]
0;...-%Nothing is occuring with [0,0,0]
4; .. .%CCW direction with [1,0,0]
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0;...%Nothing is occurring with [0,0,0]
3;...%CW rotation and ZCE [0,1,1]
0;...%Nothing is occurring with [0,0,0]
2;...%CW direction with [0,1,0]
3;...%CW rotation and ZCE [0,1,1]
0;...%Nothing is occurring with [0,0,0]
2;...%CW direction with [0,1,0]
0;...%Nothing is occurring with [0,0,0]
5;...%CCW direction and ZCE [1,0,1]
0;...%Nothing is occurring with [0,0,0]
4; .. .%CCW direction with [0,1,0]
0];%Nothing is occurring with [0,0,0]

%%%%%6%%%6%%%%%6%%%%%6%% 6% %%%%6%% %% %% % 6% % %% %6%% %% % %% 6% % %% %% % %% % %% %% % %%
%%%%%6%%%0%%%%%6%%%%%6%%%6%%6%%Y6%%%6%%6%% 6% % %% %% % %% % %% 6% % %% %% % 6% % %% %% % %% %

% %
%  This Defines the R/S FlipFlop [Pk, Nk, OkK] %
% %

%%%%%6%%%6%%%%%6%%%%%6%%%6%%%%%6%% %% %% % 6% % %% %% % %% % %% 6% % %% % %% 6% % %% %% % %% %

next = [0,0,1,0;1,0,1,0];
output=next;

%%%%%6%%%6%%%%%6%%%%%6%%%6%%%%%6%% 0% %% % %6% % %% %% % %% % %% 6% % %% % %% 6% % %% %% % %% %
%%%%%6%%%0%%6%%%6%%%%%6%%%6%%%%%6%%%6%%6%% 6% % %% %% % %% % %% 6% % %% %% % 6% % %% %% % %% %

%Ffilter values and coefficients
A D =1;
A N =0.002898194633721;

B_D =-2.374094743709352;
B_N =0.008694583901164;
C_D =1.929355669091215;
C_N =0.008694583901164 ;
D_D =-0.532075368312092;
D_N =0.002898194633721;

C. M-CODE BLOCK MATLAB CODE

function [NewRotation, NewValue, Direction] = mcode5A(Pk, Nk, Zk,
OldRotation, OldvValue)

%%%%%6%%%0%%%%%6%%%%%6%%%6%%%%%6%% %% %% % %% % %% Y6%% %% %% % %% % %% %6% % %% % %% 6% % %% %% % %% %

% File Name: mcodeb5A

%  Author: LT Andrew M. LaValley

% Last Modified: 14 APR 08

%

% Description: This function records CW and CCW rotations via
% matlab MCODE simulation block. It also records
% 360 degrees of rotation and total degrees

% traveled.

%

%
%
%
%
%
%
%
%
%

%%%%%6%%%0%%%%%6%%%%%6%%%0%%%%%6%% %% %% % %% % %% Y6%% %% %% % 6% % %% %% % %% % %% 6% % %% %% % %% %
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if Pk && ~Zk && ~Nk %lIncrements the # of pulses produced in the CW
rotation

Direction=0;%indicates positive direction

if Oldvalue==399 %this keeps the value positive if the value is
zero.

NewValue=xFix({xISigned,15,0},0);
NewRotation=xFix({x1Signed,15,0},0ldRotation+1);

else
NewValue=xfix({x1Signed,15,0},01ldvalue+l);
NewRotation=xFix({xI1Signed,15,0},0ldRotation);

end
elseif Nk && ~Zk && ~Pk %Decrements the # of pulses produced in the CCW
rotation if not zero

Direction=1;%Indicates negitive direction
if Oldvalue==0 %this keeps the value positive if the value is zero.

NewValue=xFix({x1Signed,15,0},399);
NewRotation=xFix({xISigned,15,0},0ldRotation-1);
%Direction=1;

else
NewValue=xFix({xISigned,15,0},01dValue-1);
NewRotation=xFix({xISigned,15,0},0ldRotation);

end

else %0ldvalue will equal NewValue and OldRotation will equal NewRotion
if
%the above if/else statements do not apply.
Direction=0;%default direction
NewValue=xFix({x1Signed,15,0},01ldvalue);
NewRotation=xFix({x1Signed,15,0},01dRotation);

end

D. MATLAB CODE USED IN POST-PROCESSING CHIPSCOPE DATA

%%%%%6%%%0%%6%%%6%%%%%6%%%6%%6%%%6%% %% %% % %% %6 %% Y6%% %% %% % %% % %% 6% % %% % %% 6% % %% %% % %% %

% File Name: Post Processed Matlab File %
%  Author: Dr. Alexander Julian %
% Last Modified: 23 Aug 08 %
% Description: This file post-processes all data coming from %
% ChipScope. Essentially this file converts %
% 2s complement values in pos and neg output %
% values. %

%%%%%6%%%0%%%%%6%%%%%6%%%6%%%%%6%% %% %% % %% % %% Y6%% %% %% % %% % %% %% % %% % %% 6% % %% %% % %% %
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datain=importdata(“data.prn®);
vecsize=length(datain.data);
alpha=2*pi*25000;
deltat=180/25€6;
datasize=round(vecsize-1);
adclraw=zeros(l,datasize);
adc2raw=zeros(l,datasize);
adc3raw=zeros(l,datasize);
adcd4raw=zeros(1l,datasize);
for ii=1:datasize
index=ii+vecsize-datasize-1;
ifT datain.data(index,12+2)==

adclraw(ii)=datain.data(index,l1l+2)+2*datain.data(index,2+2)+272*datain.
data(index,3+2)+. ..
27"3*datain.data(index,4+2)+2"M*datain.data(index,5+2)+. ..
27"5*datain.data(index,6+2)+2”6*datain.data(index,7+2)+. ..
2"7*datain.data(index,8+2)+2"8*datain.data(index,9+2)+. ..
27"9*datain.data(index,10+2)+2710*datain.data(index,11+2);
else

adclraw(ii)=datain.data(index,1l+2)+2*datain.data(index,2+2)+2”2*datain.
data(index,3+2)+. ..
2"3*datain.data(index,4+2)+2"M*datain.data(index,5+2)+. ..
2"5*datain.data(index,6+2)+2"6*datain.data(index,7+2)+. ..
2n7*datain.data(index,8+2)+2”8*datain.data(index,9+2)+. ..
27"9*datain.data(index,10+2)+2~10*datain.data(index,11+2)-2"11;
end

adc2raw(ii)=datain.data(index,1+14)+2*datain.data(index,2+14)+2"2*datai

n.data(index,3+14)+. ..
2"3*datain.data(index,4+14)+2"*datain.data(index,5+14)+._ ..
2"5*datain.data(index,6+14)+276*datain.data(index,7+14)+. ..
2"7*datain.data(index,8+14)+2"8*datain.data(index,9+14)+. ..

27"9*datain.data(index,10+14)+2”"10*datain.data(index,11+14)+2~11*datain.
data(index,12+14);
if datain.data(index,12+26)==

adc3raw(ii)=datain.data(index,1+26)+2*datain.data(index,2+26)+2"2*datai
n.data(index,3+26)+. ..
2"3*datain.data(index,4+26)+2"*datain.data(index,5+26)+. ..
2"5*datain.data(index,6+26)+2"6*datain.data(index,7+26)+. ..
2"7*datain.data(index,8+26)+2"8*datain.data(index,9+26)+. ..
2"9*datain.data(index,10+26)+2”"10*datain.data(index,11+26);
else

adc3raw(ii)=datain.data(index,1+26)+2*datain.data(index,2+26)+2"2*datai
n.data(index,3+26)+. ..
2"3*datain.data(index,4+26)+2"*datain.data(index,5+26)+. ..
2"5*datain.data(index,6+26)+2"6*datain.data(index,7+26)+. ..
2"7*datain.data(index,8+26)+2"8*datain.data(index,9+26)+. ..
2"9*datain.data(index,10+26)+2”"10*datain.data(index,11+26);
end
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adcd4raw(ii)=datain.data(index,1+38)+2*datain.data(index,2+38)+2"2*datai

n.data(index,3+38)+. ..
2"3*datain.data(index,4+38)+2"*datain.data(index,5+38)+. ..
2"5*datain.data(index,6+38)+2"6*datain.data(index,7+38)+. ..
2"7*datain.data(index,8+38)+2"8*datain.data(index,9+38)+. ..

2"9*datain.data(index,10+38)+2"10*datain.data(index,11+38)+2"11*datain.
data(index,12+38);
end

adcl=(adclraw);
adc2=(adc2raw);
adc3=(adc3raw/2);
adc4=(adc4raw/27~3-100);

%Difference equation approximating a lowpass filter, alpha/(s+alpha)
adc2_fil=zeros(l,datasize);
adc4_fil=zeros(1l,datasize);
for 1i=l:datasize
if ii==1
adc2_fil(11)=0;
adc4_Til(ii)=0;
else
adc2_fil(ii)=adc2_fil(ii-1)+alpha*(adc2(ii-1)-adc2_fil(ii-
1))*deltat;
adc4_fil(ii)=adc4 Fil(ii-1)+alpha*(adc4(ii-1)-adc4 Fil(ii-
1))*deltat;
end
end

time=[0:datasize-1]*deltat;

figure(1);

plot(time,adcl,"g", "linewidth",2);

xlabel ("Time [Seconds]"®)

ylabel (" [RPM] ")

title("Counter-Clockwise Squirrel Cage Induction Motor at 100 RPM™)
% axis([0 0.06 -200 0])

MakeAxisWide

grid

figure(2);

plot(time,adc3,"r", " linewidth",2);

xlabel("Time [Seconds]")

ylabel (" [Degrees] ™)

title("Counter-Clockwise Degrees Traveled; Squirrel Cage Induction
Motor at 100 RPM®)

%axis([O 0.06 0 400])

MakeAxisWide

grid
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E. SUPPLEMENTAL MATLAB POST-PROCESSING PLOT FILES

%%%%%6%%%0%%6%%%6%%%%%6%%%6%%6%%%6%% %% %% % 6% % %% Y6%% 6% %% % Y% % %% %% % %% % %% 6% % %% %% % %% %

% File Name: MakeAxisWide.m %
% Author: LT Brian Decker %
% Last Modified: 19 APR 2006 %
% Description: takes your current axis and maximizes its width %

%%%%%6%%%0%%6%%%6%%%%%6%%%6%%6%%%6%% %% %% % 6% % %% Y6%% 0% %% % 6% % %% %% % %% %% % 6% % %% %% % %% %

h_Temp = get(gca, "Position®);
h_Temp(1)=0.07;
h_Temp(3)=0.9;

set(gca, "Position”,h_Temp)
clear h_Temp
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APPENDIX B: XILINX INCREMENTAL SHAFT ENCODER
MODEL

Appendix B is a printout of the XILINK Foundation software model utilized in

the algorithm and simulation development.
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