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Abstract

Positive definite kernels on probability measures have been recently applied in classification prob-
lems involving text, images, and other types of structured data. Some of these kernels are related
to classic information theoretic quantities, such as (Shannon’s) mutual information and the Jensen-
Shannon (JS) divergence. Meanwhile, there have been recent advances in nonextensive gener-
alizations of Shannon’s information theory. This paper bridges these two trends by introducing
nonextensive information theoretic kernels on probability measures, based on new JS-type diver-
gences. These new divergences result from extending the the two building blocks of the classical
JS divergence: convexity and Shannon’s entropy. The classical notion of convexity is extended
to the wider concept of g-convexity, for which we prove a Jensen g-inequality. Based on this in-
equality, we introduce Jensen-Tsallis (JT) g-differences, a nonextensive generalization of the JS
divergence, and define a k-th order JT ¢-difference between stochastic processes. We then define
a new family of nonextensive mutual information kernels, which allow weights to be assigned
to their arguments, and which includes the Boolean, JS, and linear kernels as particular cases.
Nonextensive string kernels are also defined that subsume the p-spectrum kernel. We illustrate the
performance of these kernels on text categorization tasks, in which documents are modeled both
as bags-of-words and as sequences of characters.






1 Introduction

In kernel-based machine learning [Scholkopf and Smola, 2002, Shawe-Taylor and Cristianini,
2004], there has been recent interest in defining kernels on probability distributions, to tackle
several problems involving structured data [Desobry et al., 2007, Moreno et al., 2004, Jebara et al.,
2004, Hein and Bousquet, 2005, Lafferty and Lebanon, 2005, Cuturi et al., 2005]. By defining a
parametric family S containing the distributions from which the data points (in the input space X)
are assumed to have been generated, and defining a map from X from S (e.g., through maximum
likelihood estimation), a distribution in S may be fitted to each datum. Therefore, a kernel that is
defined on S' x .S automatically induces a kernel on the original input space, through map compo-
sition. In text categorization, this framework appears as an alternative to the Euclidean geometry
inherent to the usual bag-of-words vector representations. In fact, approaches that map data to
statistical manifolds, equipped with well-motivated non-Euclidean metrics [Lafferty and Lebanon,
2005], often outperform support vector machine (SVM) classifiers with linear kernels [Joachims,
2002]. Some of these kernels have a natural information theoretic interpretation, establishing a
bridge between kernel methods and information theory [Cuturi et al., 2005, Hein and Bousquet,
2005].

The main goal of this paper is to widen that bridge; we do that by introducing a new wide
class of kernels rooted in nonextensive information theory, which contains previous information
theoretic kernels as particular elements. The Shannon and Rényi entropies [Shannon, 1948, Rényi,
1961] share the extensivity property: the joint entropy of a pair of independent random variables
equals the sum of the individual entropies. Abandoning this property yields the so-called nonexten-
sive entropies [Havrda and Charvat, 1967, Lindhard, 1974, Lindhard and Nielsen, 1971, Tsallis,
1988], which have raised great interest among physicists in modeling certain phenomena (e.g.,
long-range interactions and multifractals) and in the construction of a nonextensive generalization
of the classical Boltzmann-Gibbs statistical mechanics [Abe, 2006]. Nonextensive entropies have
also been recently used in signal/image processing [Li et al., 2006] and many other areas [Gell-
Mann and Tsallis, 2004]. The so-called Tsallis entropies [Havrda and Charvét, 1967, Tsallis, 1988]
form a parametric family of nonextensive entropies that includes the Shannon-Boltzmann-Gibbs
entropy as a particular case. Some attempts have been made to construct a nonextensive general-
ization of information theory [Furuichi, 2006].

Convexity is a key concept underlying several fundamental results in information theory, e.g.,
the non-negativity of the Kullback-Leibler (KL) divergence (also called relative entropy), namely
via the many implications of Jensen’s inequality [Cover and Thomas, 1991, Jensen, 1906]. Jensen’s
inequality also underlies the concept of Jensen-Shannon (JS) divergence, which is a symmetrized
and smoothed version of the KL divergence [Lin and Wong, 1990, Lin, 1991]. The JS divergence is
widely used in areas such as statistics, machine learning, image and signal processing, and physics.

In this paper, we introduce new extensions of JS-type divergences by generalizing its two pil-
lars: convexity and Shannon’s entropy. These divergences are then used to define new information-
theoretic kernels between probability distributions. More specifically, our main contributions are:

e The concept of q-convexity, as a generalization of convexity, for which we prove a Jensen g-
inequality. The related concept of Jensen g-differences, which generalize Jensen differences,



is also proposed. Based on these concepts, we introduce the Jensen-Tsallis q-difference, a
nonextensive generalization of the JS divergence, which is also a “mutual information” in
the sense of Furuichi [2006].

e Characterization of the Jensen-Tsallis g-difference, with respect to convexity and extrema,
extending the work by Burbea and Rao [1982] and by Lin [1991] for the JS divergence.

e Definition of k-th order joint and conditional Jensen-Tsallis g-differences for families of
stochastic processes, and derivation of a chain rule.

e We propose a broad family of (nonextensive information theoretic) positive definite kernels,
which are interpretable as nonextensive mutual information kernels. This family ranges
from the Boolean to the linear kernels, and also includes the JS kernel proposed by Hein and
Bousquet [2005].

e We define a family of (nonextensive information theoretic) positive definite kernels between
stochastic processes, which subsume well-known string kernels like the p-spectrum kernel
[Leslie et al., 2002].

e We extend results of Hein and Bousquet [2005] by proving positive definiteness of kernels
based on the unbalanced JS divergence. A connection between these new kernels and those
previously studied by Fuglede [2005] and by Hein and Bousquet [2005] is also established.
As a side note, we show that the parametrix approximation of the multinomial diffusion
kernel introduced by Lafferty and Lebanon [2005] is not positive definite in general.

The rest of the paper is organized as follows. Section 2 reviews the concepts of nonextensive
entropies, with emphasis on the Tsallis case. Section 3 introduces denormalization formulae for
several entropies and divergences, to be used in later sections. Section 4 discusses Jensen differ-
ences and divergences. The concepts of ¢-differences and g-convexity are introduced in Section 5,
where they are used to define and characterize some new divergence-type quantities. In Section 6,
we define the Jensen-Tsallis ¢-difference and derive some of its properties; in that section, we also
define k-th order Jensen-Tsallis g-differences for families of stochastic processes. The new family
of entropic kernels is introduced and characterized in Section 7, after a brief review of some key re-
sults concerning positive definite kernels; that section also presents a brief review of string kernels,
and introduces nonextensive kernels between stochastic processes. Section 7 ends by proving that
the parametrix approximation of the multinomial diffusion kernel is not positive definite. Section 8
reports experiments on text categorization using both a bag-of-words and a sequential representa-
tion of documents. Finally, Section 9 contains concluding remarks and discusses directions for
future research.

Earlier and shorter versions of this work have appeared in Martins et al. [2008a] and Martins
et al. [2008b].



2 Nonextensive entropies and Tsallis statistics

We start with a brief overview of nonextensive entropies. In what follows, R, denotes the nonneg-
ative reals, R, , denotes the strictly positive reals, and

i=1

denotes the (n — 1)-dimensional simplex.

Inspired by the Shannon-Khinchin axiomatic formulation of Shannon’s entropy [Khinchin,
1957, Shannon and Weaver, 1949], Suyari [2004] proposed an axiomatic framework for nonex-
tensive entropies and a uniqueness theorem. Let ¢ > 0 be a fixed scalar, called the entropic index,
and let f, be a function defined on A"~!. Consider the following set of axioms:

(A1) Continuity: f, is continuous in A"~ 1;

(A2) Maximality: For any ¢ > 0,n € N, and (py,...,p,) € A",
fq(p17 e 7pn) S fq(l/n, cey 1/71)7
(A3) Generalized additivity: Fori=1,...,n,j =1,...,m; p;j > 0, and p; = 37"} pij,

fq(pllu cee 7anl) = fq(pla cee 7pn> +

= Pi1 DPim,;
Zp;]fq (7 R > )
i=1 Di

Di

(A4) Expandability: f,(p1,...,pn,0) = fo(P1,-- ., Dn)-
The Suyari axioms (A1)-(A4) uniquely determine a function S, 4 : A"~' — R of the form

s (L= pf) ifg#1

2
ryr g ifg=1, )

Sq,d?(ph s 7pn) = {

where £ is a positive constant, and ¢ : R, — R is a continuous function that satisfies the following
three conditions:

(i) ¢(q) has the same sign as g—1;
(ii) ¢(q) vanishes if and only if ¢ = 1;
(iii) ¢ is differentiable in a neighborhood of 1 and ¢'(1) = 1.

Note that S1 4 = limg_.; Sy ¢, thus Sy 4(p1, ..., pn), seen as a function of ¢, is continuous at ¢ =
1. For any ¢ satisfying these conditions, S, , has the pseudoadditivity property: for any two
independent random variables A and B, with probability mass functions py € A" ! and pp €



A"5~1] respectively, consider the new random variable A ® B defined by the joint distibution
pa ® pp € AmA"571 then,

S04 @ B) = SyolA) + 5,0(8) — 20 5, ,(4)5,0(8),

where we denote (as usual) S, 4(A) = S, 4(pa).
For ¢ = 1, Suyari’s axioms recover the Shannon-Boltzmann-Gibbs (SBG) entropy,

S1,¢(P17--~7]9n) :H(p17'°‘7pn) Z—kZPilﬂpi, 3)
i=1
and pseudoadditivity turns into additivity, i.e., H{(A ® B) = H(A) + H(B) holds.
Several proposals for ¢ have appeared in the literature [Havrda and Charvat, 1967, Daré6czy,
1970, Tsallis, 1988]. In the sequel, unless stated otherwise, we set ¢(q) = ¢ — 1, which yields the
Tsallis entropy:

k n
Se(P1s--spn) = —— (1—2]9?). 4
q—1 i=1
To simplify, we let £ = 1 and write the Tsallis entropy as
Sq(X)éSq(pl,...,pn = Zp x)? In, p(x), (5)
zeX

where In,(7) £ (2179 —1)/(1 — q) is the g-logarithm function, which satisfies In,(zy) = In,(z) +
z'7%1n,(y) and In,(1/2) = —27 ' In,(z). This notation was introduced by Tsallis [1988].
Furuichi [2006] derived some information theoretic properties of Tsallis entropies. Tsallis joint
and conditional entropies are defined, respectively, as

Sg(X,Y) £ = plx,y)Ing p(z,y) (6)
T,y
and
Sy(X|Y) 2 =3 plz,y) Ing p(zly) = > p(y)2S,(X]|y), (7)
x,y )

and the chain rule S,(X,Y) = 5,(X) + S,(Y|X) holds.
For two probability mass functions py, py € A", the Tsallis relative entropy, generalizing the
KL divergence, is defined as

Dy(px|py) = — ZPX lnq (x) )

Finally, the Tsallis mutual entropy is defined as
1,(X;Y) £ 5,(X) = 5,(X|Y) = 5,(Y) = S,(Y|X), ©)

generalizing (for ¢ > 1) Shannon’s mutual information [Furuichi, 2006]. In Section 6, we establish
a relationship between Tsallis mutual entropy and a quantity called Jensen-Tsallis q-difference,
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generalizing the one between mutual information and the JS divergence (shown, e.g., by Grosse
et al. [2002], and recalled below, in Subsection 4.2).

Furuichi [2006] also mentions an alternative generalization of Shannon’s mutual information,
defined as

I,(X;Y) £ Dy(px.y|px® py), (10)

where px y is the true joint probability mass function of (X,Y") and px ® py denotes their joint
probability if they were independent. This alternative definition of a “Tsallis mutual entropy” has
also been used by Lamberti and Majtey [2003]; notice that [,(X;Y) # fq(X ;Y') in general, the
case ¢ = 1 being a notable exception. In Section 6, we show that this alternative definition also
leads to a nonextensive analogue of the JS divergence.

3 Entropies of unnormalized measures

In this section, we consider functionals that extend the domain of the Shannon-Boltzmann-Gibbs
and Tsallis entropies to include unnormalized measures. Although, as shown below, these func-
tionals are completely characterized by their restriction to the normalized probability distributions,
the denormalization expressions will play an important role in Section 7 to derive novel positive
definite kernels inspired by mutual informations.

In order to keep generality, whenever possible we do not restrict to finite or countable sample
spaces. Instead, we consider a measured space (X', .# , ) where X is Hausdorff and v is a o-finite
Radon measure. We denote by M, (X) the set of finite Radon v-absolutely continuous measures
on X, and by M}F(X ) the subset of those which are probability measures. For simplicity, we often
identify each measure in M, (X) or M} (X) with its corresponding nonnegative density; this is
legitimated by the Radon-Nikodym theorem, which guarantees the existence and uniqueness (up
to equivalence within measure zero) of a density function f : X — R,. In the sequel, Lebesgue-
Stieltjes integrals of the form [, f(z)dv(z) are often written as [, f, or simply [f, if A = X.
Unless otherwise stated, v is the Lebesgue-Borel measure, if X C R” and intX # &, or the
counting measure, if X is countable. In the latter case integrals can be seen as finite sums or
infinite series.

3.1 Denormalization of the Shannon-Boltzmann-Gibbs Entropy and the KL
Divergence

Define R £ R U {—o0, +oc}. For some functional G : M, (X) — R, let the set ME(X) £
{f € My (X) : |G(f)| < oo} be its effective domain, and M} (X) £ MG (X) N ML(X) be its
subdomain of probability measures.

The following functional [Cuturi and Vert, 2005], extends the Shannon-Boltzmann-Gibbs en-
tropy from M}rH to the unnormalized measures in M1

H(f) ==k [ finf= [guof. an



where k£ > 0 is a constant, the function ¢ : Ry, — R is defined as

ou(y) = —kyny, (12)

and, as usual, 0In 0 £ 0.

The generalized form of the KL divergence, often called generalized I-divergence [Csiszar,
1975], is a directed divergence between two measures jif, i, € M{(X), such that py is ju,-
absolutely continuous (denoted 1y < 114). Let f and g be the densities associated with 1ty and /14,
respectively. In terms of densities, this generalized KL divergence is

f
D — _ mZ|.
(f.9) /-c/(g f+f ng) (13)

Both functionals H and D are completely determined by their restriction to the normalized
measures, as the next proposition shows.

Proposition 1 The following equalities hold for any c € R and f,g € M (X), with puy < puy:

H(cf) = cH(f)+|flen(c),
D(cf,cg) = ( g )
D(cf,g) = CD(7 9) = [fleulc) + k(1 —c)lgl,

= pp(X). Consider f € MI(X) and g € M (Y), and define f @ g €
® )( y) = f(2)g(y). Then,

H(f®g) =gl H(f) +|f] H(g)

Naturally, if |f| = |g| = 1, we recover the additivity property of the Shannon-Boltzmann-Gibbs
entropy, H(f ® g) = H(f) + H(g).

Proof: Straightforward from (11) and (13). [ |

where |f| = [ f
ME(X x V) as (f

3.2 Denormalization of Nonextensive Entropies

Let us now proceed similarly with the nonextensive entropies. For ¢ > 0, let qu(X ) =A{f €
M (X) : f1 € M{(X)} for ¢ # 1, and M}*(X) = M¥P(X) for ¢ = 1. The nonextensive
counterpart of (11), defined on qu (X),is

Suf) = [eaet. (14)
where ¢, : Ry, — Riis given by
| euy) ifg=1,
Pq(y) = { % (y—y?) ifq#1, (15)

6



and ¢ : R, — R satisfies conditions (7)-(iii) stated following equation (2). The Tsallis entropy is
obtained for ¢(q) = ¢ — 1,

Suh) = =k [ f1m, . (16)
Similarly, a nonextensive generalization of the generalized KL divergence (13) is
k q,1-q
Dy(f.0) = =55 [ (af + (=) = 19), a7

for g # 1, and Dy(f, g) £ limg_1 Dy(f,9) = D(f,9).

For |f| = |g| = 1, several particular cases are recovered: if ¢(¢) = 1 — 279, then D,(f, g)
is the Havrda-Charvat or Dardczi relative entropy [Havrda and Charvat, 1967, Daroczy, 1970];
if 9(¢) = ¢ — 1, then D,(f,g) is the Tsallis relative entropy (8); finally, if ¢(¢) = q(q¢ — 1),
then D,(f, g) is the canonical a-divergence defined by Amari and Nagaoka [2001] in the realm
of information geometry (with the reparameterization & = 2¢ — 1 and assuming ¢ > 0 so that
#(q) = q(q — 1) conforms with the axioms).

The following proposition generalizes Proposition 1 to the nonextensive case.

Proposition 2 The following equalities hold for any c € Ry, and f, g € qu (X), with iy < ug:

Su(ef) = ASF) + | flealc), ()
Dq(cf,cg) = CDq(fag)a (19)
Dylch,g) = Dy(f.9) — qiq(O) ] + qjq)m —1)(1- gl (20)
Forany f € qu(/l’) and g € qu()}),
S.(F @ 9) = a1, (F) + 1£15,(9) — 205,015, a). @1

If | f| = |g| = 1, we recover the pseudo-additivity property of nonextensive entropies:

Se(f @ g) = Sy(f) + Sq(g) — —7S4(f)Sq(9)-
Proof: Straightforward from (14) and (17). [ |

For ¢(q) = ¢ — 1, D, is the Tsallis relative entropy and (20) reduces to

Dy(cf,g) = c"Dy(f, 9) — qoq(c)|f] + k(1 = c)|g]. (22)

Naturally, all the equalities in Proposition 1 are obtained by taking the limit ¢ — 1 in those of
Proposition 2.



4 Jensen Differences and Divergences

4.1 The Jensen Difference

Jensen’s inequality [Jensen, 1906] is at the heart of many important results in information theory.
Let E[.] denote the expectation operator. Jensen’s inequality states that if Z is an integrable random
variable taking values in a set Z, and f is a measurable convex function defined on the convex hull
of Z, then

f(E[Z]) < E[f(2)]. (23)

Burbea and Rao [1982] considered the scenario where Z is finite, and took f £ —H,, where
H, : [a,b]" — R is a concave function, called a p-entropy, defined as

n

Hy(2) & = ¢(z), (24)

=1

where ¢ : [a,b] — R is convex. They studied the Jensen difference

J;r(yla--~7ym) éHgo(Zﬂtyt) _Zﬂ-tHw(yt)v (25)
=1 =1
where 7 £ (my,...,m,) € A™ L, and each yy, . .., ym € [a, b]™

We consider here a more general scenario, involving two measured sets (X, .#,v) and (7, 7, 7),
where the second is used to index the first.

Definition 3 Let i1 = (p1y)ier € [M(X)]|7 be a family of measures in M, (X) indexed by T, and
letw € M (T) be a measure in T. Define:

Jp 2 v ([ w@pdr®) - [ wu) dr) 26)

where:

(i) W is a concave functional such that dlom W C M, (X);

(ii) w(t)p(z) is T-integrable, for all x € X;

(i) [;w(t)pdr(t) € dom W,

(iv) pu; € domV, forallt € T;

(V) w(t)V(u) is T-integrable.
Ifw € Mi(T), we still call (26) a Jensen difference.

In the following subsections, we consider several instances of Definition 3, leading to several
Jensen-type divergences.



4.2 The Jensen-Shannon Divergence

Let p be a random probability distribution taking values in {p,;};c7 according to a distribution
m € Mi(T). (In classification/estimation theory parlance, 7 is called the prior distribution and
p; 2 p(.|t) the likelihood function.) Then, (26) becomes

Jy(p) = Y (Elp]) — E[¥(p)], 27

where the expectations are with respect to 7.

Let now ¥ = H, the Shannon-Boltzmann-Gibbs entropy. Consider the random variables 7" and
X, taking values respectively in 7 and X, with densities 7(¢) and p(z) = [, p(z|t)m(t). Using
standard notation of information theory [Cover and Thomas, 1991],

7 2 T = 8 ([ wp) - [=08@)
- H(X)—/Tw(t)H(X|T:t)

— H(X) - H(X|T)
_ (X7, (28)

where I(X;T) is the mutual information between X and 7. (This relationship between JS di-
vergence and mutual information was pointed out by Grosse et al. [2002].) Since I(X;T) is also
equal to the KL divergence between the joint distribution and the product of the marginals [Cover
and Thomas, 1991], we have

J™(p) = H (E[p]) — E[H(p)] = E[D(p|| E[p])]. (29)

When X and 7 are finite with |7| = m, J5(p1,...,pm) is called the Jensen-Shannon (JS)
divergence of py, ..., pmn, with weights 7, ..., m,, [Burbea and Rao, 1982, Lin, 1991]. Equality
(29) allows two interpretations of the JS divergence:

e the Jensen difference of the Shannon entropy of p;
o the expected KL divergence from p to the expectation of p.

A remarkable fact is that J™(p) = min, E[D(pl|r)], i.e., r* = E|[p| is a minimizer of E[D(p||r)]
with respect to r. It has been shown that this property together with equality (29) characterize the
so-called Bregman divergences: they hold not only for W = H, but for any concave ¥ and the
corresponding Bregman divergence, in which case Jg, is the Bregman information [Banerjee et al.,
2005].

When |7| = 2 and 7 = (1/2,1/2), p may be seen as a random distribution whose value on
{p1, p2} is chosen by tossing a fair coin. In this case, J1/2/2)(p) = JS(py, py), where

JS(p1,p2) & H(p1 ;m) B H(Pl)-;H(pz)

1 p1+p 1
= 50757 + 500

(30)

p1+ p2>
2 )



as introduced by Lin [1991]. It has been shown that v/.JS satisfies the triangle inequality (hence be-
ing a metric) and that, moreover, it is an Hilbertian metric! [Endres and Schindelin, 2003, Topsge,
2000], which has motivated its use in kernel-based machine learning [Cuturi et al., 2005, Hein and
Bousquet, 2005] (see Section 7).

4.3 The Jensen-Rényi Divergence

Consider again the scenario above (Subsection 4.2), with the Rényi g-entropy

1
Ry(p) = — . ln/pq 31)

replacing the Shannon-Boltzmann-Gibbs entropy. It is worth noting that the Rényi and Tsallis
g-entropies are monotonically related through

Ry(p) = In([1+ (1 - q)S,(p)] 7)., (32)
or, using the g-logarithm function,
Sq(p) = Ing exp R, (p). (33)

The Rényi g-entropy is concave for ¢ € [0, 1) and has the Shannon-Boltzmann-Gibbs entropy
as the limit when ¢ — 1. Letting ¥ = R,, (27) becomes

Jk,(p) = Ry (E[p]) — E[R,(p)]- (34)

Unlike in the JS divergence case, there is no counterpart of equality (29) based on the Rényi ¢-
divergence

ln/p1 Dy . (35)

When X and 7 are finite, we call J7} R, in (34) the Jensen-Rényi (JR) divergence. Furthermore,
when |7| =2and 7 = (1/2,1/2), we write JE,(p) = JRy(p1, p2), where

DRq (p1llp2) =

P1 +p2) ~ Ry(p) + Rq(]h). (36)

JR‘I(plapQ) = Rq < 2 9

The JR divergence has been used in several signal/image processing applications, such as regis-
tration, segmentation, denoising, and classification [Ben-Hamza and Krim, 2003, He et al., 2003,
Karakos et al., 2007]. In Section 7, we show that the JR divergence is (like the JS divergence) an
Hilbertian metric, which is relevant for its use in kernel-based machine learning.

'A metric d : X x X — R is Hilbertian if there is some Hilbert space  and an isometry f : X — 7 such that
d*(z,y) = (f(x) — f(y), f(x) — f(y))2 holds for any x,y € X [Hein and Bousquet, 2005].
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4.4 The Jensen-Tsallis Divergence

Burbea and Rao [1982] have defined Jensen-type divergences of the form (27) based on the Tsallis
g-entropy S,, defined in (16). Like the Shannon-Boltzmann-Gibbs entropy, but unlike the Rényi
entropies, the Tsallis g-entropy, for finite 7, is an instance of a w-entropy (see (24)). Letting
U = S5,, (27) becomes

J5,(p) = Sy (Elp]) — E[Sy(p)]. 37

Again, like in Subsection 4.3, if we consider the Tsallis g-divergence,

Dy(p1llp2) = 1iq (1 - /plq p21_q> ; (38)

there is no counterpart of the equality (29).

When X and 7 are finite, ng in (37) is called the Jensen-Tsallis (JT) divergence and it has
also been applied in image processing [Ben-Hamza, 2006]. Unlike the JS divergence, the JT
divergence lacks an interpretation as a mutual information. Despite this, for ¢ € [1, 2], it exhibits
joint convexity [Burbea and Rao, 1982]. In the next section, we propose an alternative to the JT
divergence which, amongst other features, is interpretable as a nonextensive mutual information
(in the sense of Furuichi [2006]) and is jointly convex, for ¢ € [0, 1].

5 ¢-Convexity and ¢-Differences

5.1 Introduction

This section introduces a novel class of functions, termed Jensen q-differences, which general-
ize Jensen differences. Later (in Section 6), use will these functions to define the Jensen-Tsallis
q-difference, which we will propose as an alternative nonextensive generalization of the JS diver-
gence, instead of the JT divergence discussed in Subsection 4.4. We begin by recalling the concept
of g-expectation, used by Tsallis [1988] in nonextensive thermodynamics.

Definition 4 The unnormalized g-expectation of a random variable X, with probability density p,
is

B X2 [ap(a) (39)

Of course, ¢ = 1 corresponds to the standard notion of expectation. For ¢ # 1, the g-
expectation does not match the intuitive meaning of average/expectation (e.g., E,[1] # 1, in
general). The g-expectation is a convenient concept in nonextensive information theory; e.g., it
yields a very compact form for the Tsallis entropy: S,(X) = —E,[In, p(X)].

5.2 g-Convexity

We now introduce the novel concept of g-convexity and use it to derive a set of results, namely the
Jensen g-inequality.

11



Definition 5 Let ¢ € R and X be a convex set. A function f : X — R is g-convex if for any
x,y € Xand X € [0,1],

fOz+ (1= Ny) <N f(z)+ (1= N f(y) (40)
If —f is g-convex, f is said to be q-concave.

Of course, 1-convexity is the usual notion of convexity. The next proposition states the Jensen
g-inequality.

Proposition 6 If f : X — R is g-convex, then for any n € N, x1,...,z, € X and 7 =
(7'('1, ce 77TTL) c An_ly
f <Z U %) < ZW;‘] f (). (41)
i=1 i=1
Moreover, if f is continuous, the above still holds for countably many points (x;);en.
Proof: In the finite case, the proof can be carried out trivially, by induction, exactly as in the

proof of the standard Jensen inequality [Cover and Thomas, 1991]. If f is continuous, it commutes
with taking limits, thus

f (Zm ilfz) =f (1}1_{{.102”1 $z> = nh_{{.lof (Zm xz) < nh_{{)lozﬁgf(%) = qu f(l"z)
i=1 i=1 i=1 i=1 i=1
|
Proposition 7 Let f > 0 and g > r > 0; then,
fis g-convex = fisr-convex (42)
fisr-concave = fis q-concave. (43)

Proof: Implication (42) results from

fOr+ (1 =Ny) < Nf(x)+ 1 =Nf(y) < Nf(z)+ 1 =A)"fy),

where the first inequality states the g-convexity of f and the second one is valid because f(z), f(y) >

Oandt" > t9 > 0, forany t € [0, 1] and ¢ > 7. The proof of (43) is similar. [ |

12



5.3 Jensen ¢-Differences

We now generalize Jensen differences, formalized in Definition 3, by introducing the concept of
Jensen g-differences.

Definition 8 Let y1 = (p1y)ier € [M(X)]7 be a family of measures in M, (X) indexed by T, and
letw € M, (T) be a measure inT. For q > 0, define

Teu(e) 2 0 ([ pdr(t)) = [ w(e) wiu) dr(e) (#4)
where:
(i) W is a concave functional such that dom ¥V C M, (X);

(ii) w(t) pe(x) is T-integrable for all x € X;

(iil) [7w(t)pdr(t) € dom U;

(iv) pr € domV, forallt € T;

(V) w(t)? VU (p,) is T-integrable.
If w € M (T), we call the function defined in (44) a Jensen ¢-difference.

Burbea and Rao [1982] established necessary and sufficient conditions on ¢ for the Jensen
difference of a p-entropy (see (24)) to be convex. The following proposition generalizes that
result, extending it to Jensen g-differences.

Proposition 9 Let T and X be finite sets, with |T| = m and |X| = n, and let 7 € M} (T). Let
¢ : [0,1] — R be a function of class C* and consider the (p-entropy [Burbea and Rao, 1982])
function ¥ : [0,1]" — R defined as V(z) = — Y1, ¢©(z;). Then, the q-difference Ty, : [0, 1]"™ —
R is convex if and only if  is convex and —1/¢" is (2 — q)-convex.

The proof is rather long, thus it is relegated to Appendix A.

6 The Jensen-Tsallis ¢-Difference

6.1 Definition

As in Subsection 4.2, let p be a random probability distribution taking values in {p; };c7 according
to a distribution = € M3 (7). Then, we may write

T7y(p) =V (E[p]) — E,[¥(p)], (45)

13



where the expectations are with respect to 7. Hence Jensen g-differences may be seen as defor-
mations of the standard Jensen differences (27), in which the second expectation is replaced by a
g-expectation.

Let now ¥ = S, the nonextensive Tsallis g-entropy. Introducing the random variables 7" and
X, with values respectively in 7 and X, with densities 7(¢) and p(z) = [, p(z|t)7(t), we have
(writing 777 simply as T77)

qu(p) = Sy (Ep]) — Eq[S,y(p)]

= 8,(X) = [ 7(ty8,(x|T =)
= 5,(X) — 5,(X|T)
= 1,(X;T), (46)

where S,(X|T) is the Tsallis conditional entropy (7), and [,(X;T) is the Tsallis mutual infor-
mation (9), as defined by Furuichi [2006]. Observe that (46) is a nonextensive analogue of (28).
Since, in general, I, # I (see (10)), unless ¢ = 1 (in that case, [; = I, = I, there is no counter-
part of (29) in terms of ¢-differences. Nevertheless, Lamberti and Majtey [2003] have proposed a
non-logarithmic version of the JS divergence, which corresponds to using I, o for the Tsallis mutual
g-entropy (although this interpretation is not explicitally mentioned by those authors).

When X and 7 are finite with |7| = m, we call the quantity 77 (p1,...,pm) the Jensen-
Tsallis (JT) q-difference of py, ..., p, with weights 7, ..., m,. Although the JT g-difference is
a generalization of the JS divergence, for ¢ # 1, the term “divergence” would be misleading in
this case, since 7] may take negative values (if ¢ < 1) and does not vanish in general if p is
deterministic.

When |T| =2and 7 = (1/2,1/2), define T, £ T}/>1/2,

D1 +p2) _ Sq(p1) + Sq(p2)
2 24 ’

Ty(p1,p2) = Sq<

Notable cases arise for particular values of g:

(47)

e Forq =0, So(p) = —1+ v(supp(p)), where v(supp(p)) denotes the measure of the support
of p (recall that p is defined on the measured space (X, .#,v)). For example, if X is finite
and v is the counting measure, v(supp(p)) = ||p|o is the so-called 0-norm (although it is not
a norm) of vector p, i.e., its number of nonzero components. The Jensen-Tsallis 0-difference

is thus
To(p1sp2) = —1+v <SUPP (pl ;m)) + 1 — v (supp(p1)) + 1 — v (supp(p2))
= 14w (supp(p1) Usupp(ps)) — v (supp(p1)) — v (supp(p2))
= 1 —w(supp(p1) Nsupp(ps)); (48)
if X 1s finite and v is the counting measure, this becomes
To(p1,p2) = 1 = |Ip1 © p2lo, (49)
where ® denotes the Hadamard-Schur (i.e., elementwise) product. We call Ty the Boolean

difference.
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e For ¢ = 1, since S;(p) = H(p), 17 is the JS divergence,
T1(p1,p2) = JS(p1, p2)- (50)

e For ¢ = 2, S3(p) = 1 — (p,p), where (a,b) = [y a(x)b(z)dv(zx) is the inner product
between a and b (which reduces to (a,b) = Y, a;b; if X is finite and v is the counting
measure). Consequently, the Tsallis 2-difference is

1 1

Ts(p1,p2) = 575 (P1,p2), (51)

which we call the linear difference.

6.2 Properties of the JT ¢-difference

This subsection presents results regarding convexity and extrema of the JT g-difference, for several
values of ¢, extending known properties of the JS divergence (¢ = 1). Some properties of the JS
divergence are lost in the transition to nonextensivity; e.g., while the former is nonnegative and
vanishes if and only if all the distributions are identical, this is not true in general with the JT
g-difference. Nonnegativity of the JT ¢-difference is only guaranteed if ¢ > 1, which explains why
some authors (e.g., Furuichi [2006]) only consider values of ¢ > 1, when looking for nonextensive
analogues of Shannon’s information theory. Moreover, unless ¢ = 1, it is not generally true that
T7(p,...,p) =0oreventhat T (p,...,p,p') > T (p, ..., p,p). For example, the solution of the
optimization problem

Jnin, T, (p1,p2), (52)

is, in general, different from po, unless ¢ = 1. Instead, this minimizer is closer to the uniform
distribution if ¢ € [0, 1), and closer to a degenerate distribution, for ¢ € (1, 2] (see Fig. 1). This
is not so surprising: recall that T5(py, p2) = % — %(pl,p2>; in this case, (52) becomes a linear
program, and the solution is not py, but pj = ¢;, where j = arg max; po;.

We start by recalling a basic result, which essentially confirms that Tsallis entropies satisfy one
of the Suyari axioms (see Axiom A2 in Section 1), which states that entropies should be maximized

by uniform distributions.
Proposition 10 Let X be a finite set. The uniform distribution maximizes the Tsallis entropy for
any q > 0.
Proof: Consider the problem
max Sq(p), subjectto >, p; = 1and p; > 0.
Equating the gradient of the Lagrangian to zero yields
- (Sy(p) + AM(Zipi — 1) = —qlg = D)7'pI + A =0,

for all 7. Since all these equations are identical, the solution is the uniform distribution, which is a
maximum, due to the concavity of S,. [ ]
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Figure 1: Jensen-Tsallis g-difference between two Bernoulli distributions, p; = (0.3,0.7) and

pe = (p,1 — p), for several values of the entropic index g. Observe that, for ¢ € [0,1), the
minimizer of the JT ¢-difference approaches the uniform distribution (0.5, 0.5) as ¢ approaches 0;
for ¢ € (1, 2], this minimizer approaches the degenerate distribution, as ¢ — 2.

The next corollary of Proposition 9 establishes the joint convexity of the JT ¢-difference, for
q € [0,1]. (Interestingly, this “complements” the joint convexity of the JT divergence (37), for
q € [1,2], which was proved by Burbea and Rao [1982].)

Corollary 11 Let T and X be finite sets with cardinalities m and n, respectively. For q € [0, 1], the
JT g-difference is a jointly convex function on M}F’Sq (X). Formally, let {p§’)}tg, andi=1,....1,
be a collection of | sets of probability distributions on X; then, for any (\y,..., \) € A7,

I , ! , l ; .
=1 =1 =1

Proof: Observe that the Tsallis entropy (5) of a probability distribution p; = {py1, ..., Din }

can be written as N q
r—
S(I<pt) == Zgo<ptz)7 where @q(‘r) = 1 — q )
i=1

thus, from Proposition 9, T is convex if and only if ¢, is convex and —1/¢} is (2 — ¢)-convex.
Since ¢} (x) = qa®?, @, is convex for x > 0 and ¢ > 0. To show the (2 — ¢)-convexity
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of —1/¢}(x) = —(1/q)x*, for z; > 0, and ¢ € [0, 1], we use a version of the power mean
inequality [Steele, 2006],

! 2—q !
— (Z Ai xz) < -
i=1 -

(2

[
Niz) 7= =3 N a1
=1

1

thus concluding that —1/¢! is in fact (2 — ¢)-convex. n

The next corollary, which results from the previous one, provides an upper bound for the JT
g-difference, for ¢ € [0, 1]. (Notice that this result is weaker than that of Proposition 13 below.)

Corollary 12 Let X, T and q be as in Corollary 11. Then, T (p1, ... ,pm) < Sq().

Proof: From Corollary 11, for ¢ € [0,1], T (p1, ..., pm) is convex. Since its domain is a
convex polytope (the cartesian product of m simplices), its maximum occurs on a vertex, i.e., when
each argument p; is a degenerate distribution at z;, denoted ¢,,. In particular, if |X'| > |7|, this
maximum occurs at the vertex corresponding to disjoint degenerate distributions, i.e., such that
x; # x; if © # j. At this maximum,

T7 (0215 502,) = Sq (Z 7rt(5£t> — Z 7S¢ (0z,)
t=1 t=1
== Sq <Z 7Tt5xt> (53)
t=1

= 5q(m) (54)

where the equality in (53) results from S, (d,,) = 0. Notice that this maximum may not be achieved
if |X| < |7T]. |

The next proposition (proved in Appendix B) establishes (upper and lower) bounds for the JT
g-difference, extending Corollary 12 to any non-negative ¢ and to countable X and 7.

Proposition 13 Let T and X be countable sets. For q > 0,

T;r(ph s 7pm) S Sq<7T), (55)

and, if |X| > |T|, the maximum is reached for a set of disjoint degenerate distributions. As in
Corollary 12, this maximum may not be attained if |X| < |T|.
Forq > 1,

and the minimum is attained in the purely deterministic case, i.e., when all distributions are equal
to same degenerate distribution.
For q € [0,1] and X a finite set with |X| = n,

T7(p1y- -5 pm) = Se(m)[1 —n'7). (57)

This lower bound (which is zero or negative) is attained when all distributions are uniform.
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Finally, the next proposition characterizes the convexity/concavity of the JT g-difference.

Proposition 14 Let 7 and X be countable sets. The JT q-difference is convex in each argument,
for q € [0, 2], and concave in each argument, for q > 2.

Proof: Notice that the JT g-difference can be written as T7" (p1, . . ., pm) = 25 V(P15 - - -, Pmj)»
with
1 q
VY1, Ym) = =1 [Z(% —7})Yi +Z7T§1yf - (Zﬂ%) ] :

It suffices to consider the second derivative of ¢/ with respect to y;. Introducing z = >~ , ; y;,
0% 2 -
g = almlT —m (my )

= qmi [(m y1)7 = (my 4 2)7? } : (58)

Since m y; < (m y1 + 2) < 1, the quantity in (58) is nonnegative for ¢ € [0, 2] and non-positive
for ¢ > 2. [ ]

-

6.3 Joint and conditional JT ¢-differences and a chain rule

This subsection introduces joint and conditional JT g-differences, which will later be used as a
contrast measure between stochastic processes. A chain rule is derived that relates conditional and
joint JT g-differences.

Definition 15 Let X, Y and T be measured sets. Let (p;)ier € [ML(X x V|7 be a family of
measures in M1(X x )) indexed by T, and let p be a random probability distribution taking
values in {p; }+e1 according to a distribution m € M} (T). Consider also:

e foreacht € T, the marginals p,(Y) € M1 (Y),

e foreacht € T andy € Y, the conditionals p,(X|Y =y) € M} (X),
o the mixture r(X,Y) = [rn(t) p(X,Y) € ML(X x V),

o the marginal r(Y') € M}(Y),

e foreachy € Y, the conditionals r(X|Y =y) € Mi(X).

For notational convenience, we also append a subscript to p to emphasize its joint or conditional
dependency of the random variables X and Y, i.e., pxy £ 9, and p x|y denotes a random condi-
tional probability distribution taking values in {p;(.|Y") }ier according to the distribution .

For g > 0, we call joint JT g-difference of pxy to

T;(FXY) £ qu(p> = Sy(r) — Eqren(r) [Sq(pe)] (59)
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and conditional JT g-difference of pxy to
T (0x1y) 2 Egyrarr) [So(r (1Y = )] = Eqrmnry | Egyopn) [Salme (1Y = 9))] . (60)
where we appended the random variables being used in each q-expectation, for the sake of clarity.

Note that the joint JT g-difference is just the usual JT g-difference of the joint random variable
X x Y, which equals (cf. (46))

T7 (pxy) = Sg(X,Y) = S(X,Y|T) = L[,(X xY;T), (61)

and the conditional JT g-difference is nothing but the usual JT g-difference with all entropies
replaced by conditional entropies (conditioned on Y'). Indeed, expression (60) can be rewritten as:

17 (pxpy) = Sg(X|Y) = Sy (X[T,Y) = I[,(X;T|Y), (62)

i.e., the conditional JT g¢-difference may also interpreted as a Tsallis mutual information, as in (46),
but now conditioned on the random variable Y.

Note also that, for ¢ = 1 (the extensive case), (60) may also be rewritten in terms of the
conditional KL divergences,

T oxy) 2 TT(pxy) = Eyerir) HI (Y = 9)] = Erenay [Evapur) [H(po([Y = 9))]

= By [Byror) [P0V = 9)r([Y = )] (63)
Proposition 16 The following chain rule holds:
17 (pxy) = T3 (pxyy) + T (py) (64)

Proof: Writing the joint/conditional JT g-differences as joint/conditional mutual informations
(61)-(62) and invoking the chain rule provided by (7), we have that

I(X;T\Y)+1(Y;T) = HX|T,)Y)-HX|Y)+ HY|T)—- H(Y)
which is the joint JT g¢-difference associated with the random variable X x Y. [ ]

Let us now turn our attention to the case where Y = X* for some k € N. In the following, the
notation (A, ),cn denotes a stationary ergodic process with values on some finite alphabet .A.

Definition 17 Let X and T be measured sets, with X finite, and let F = [(X,,)nen|” be a family
of stochastic processes (taking values on the alphabet X) indexed by 7. The k-th order JT g¢-
difference of .% is defined, fork =1,...,n, as

Ty (F) £ T; (pxr) (66)
and the k-th order conditional JT g-difference of .% is defined, for k =1, ... ,n, as
TR (F) 2 T] (). (67)

and, for k = 0, as T;ff)"d’”(ﬁ) & T F) = T7(px)-

q,1
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Proposition 18 The joint and conditional k-th order JT q-differences are related through:

k—1
T (F) = > Te ™ (F) (68)

i=0
Proof: Use Proposition 16 and induction. [ ]

6.4 Asymptotic Analysis in the Extensive Case

We now focus on the extensive case (¢ = 1) for a brief asymptotic analysis of the k-th order
joint and conditional JT 1-differences (or conditional Jensen-Shannon divergences) when k goes
to infinity.

The conditional Jensen-Shannon divergence was introduced by El-Yaniv et al. [1998] to address
the two-sample problem for strings emitted by Markovian sources. Given two strings s and ¢, the
goal is to decide whether they were emitted by the same source or by different sources. Under
some fair assumptions, the most likely k-th order Markovian joint source of s and ¢ is governed by
a distribution 7 given by

# = argmin AD(p[|r) + (1 — D (pi]|r). (69)

where D(.||.) are conditional KL divergences, p, and p; are the empirical (k — 1)-th order condi-
tionals associated with s and ¢, respectively, and A = |s|/(|s| 4 |¢|) is the length ratio. The solution
of the optimization problem is

e A (1= X)pi(e)
N0 10— N5 T R T A - N ale

where a € A is a symbol and ¢ € A*~! is a context; this can be rewritten as 7(a, c) = \p,(a, c) +
(1 — AN)pe(a, c); i.e., the optimum in (69) is a mixture of p, and p; weighted by the string lengths.
Notice that, at the minimum, we have

D(ps]|7) + (1 = N)D(p||7) = JS; NV (b, py). (71)

P(ale) =

) pi(ale), (70)

It is tempting to investigate the asymptotic behavior of the conditional and joint JS divergences,
when k£ — o0o; however, unlike other asymptotic information theoretic quantities, like the entropy
rate or the cross entropy rate, this behavior fails to characterize the sources s and ¢. Intuitively, this
is justified by the fact that observing more and more symbols drawn from the mixture of the two
sources rapidly decreases the uncertainty about which source generated the sample. Indeed, from
the asymptotic equipartition property of stationary ergodic sources [Cover and Thomas, 1991], we
have that limy,_. %H(pxk) = limj .o H (px|x, ), Wwhich implies

Jim JSE™T = Jim JISE™T < i pH() = O <72>
where we used the fact that the JS divergence is upper-bounded by the entropy of the mixture
H () (see Proposition 13). Since the conditional JS divergence must be non-negative, we therefore

conclude that limy_, . J S,zond’ﬂ = 0, pointwise.
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7 Nonextensive mutual information kernels

7.1 Introduction

In this section we consider the application of extensive and nonextensive entropies to define ker-
nels on measures; since kernels involve pairs of measures, throughout this section |7| = 2. Based
on the denormalization formulae presented in Section 3, we devise novel kernels related to the JS
divergence and the JT ¢-difference; these kernels allow setting a weight for each argument, thus
will be called weighted Jensen-Tsallis kernels. We also introduce kernels related to the JR diver-
gence (Subsection 4.3) and the JT divergence (Subsection 4.4), and establish a connection between
the Tsallis kernels and a family of kernels investigated by Hein et al. [2004] and Fuglede [2005],
placing those kernels under a new information-theoretic light. After that, we give a brief overview
of string kernels, and using the results of Subsection 6.3, we devise k-th order Jensen-Tsallis ker-
nels between stochastic processes that subsume the well-known p-spectrum kernel of Leslie et al.
[2002]. Finally, we show that the parametrix approximation of the multinomial diffusion kernel,
proposed by Lafferty and Lebanon [2005], is not positive definite in general.

7.2 Positive and negative definite kernels

We start by recalling basic concepts from kernel theory [Scholkopf and Smola, 2002]; in the fol-
lowing, X denotes a nonempty set.

Definition 19 Ler ¢ : X x X — R be a symmetric function, i.e., a function satisfying p(y,z) =
o(x,y), forall x,y € X. ¢ is called a positive definite (pd) kernel if and only if

n n

ZZCZ‘ Cj QO(IZ',LUJ‘> > 0 (73)
i=1j=1

foralln e N, x;,...,x, € Xandc;,...,c, € R

Definition 20 Let ) : X x X — R be symmetric. 1 is called a negative definite (nd) kernel if and

only if
ZZCZ‘ Cj w(ﬂfi,fﬂj) S 0 (74)
i=1j=1

foralln € N, x;,...,x, € X and ¢;,...,c, € R, satisfying the additional constraint c; +

...+ ¢, = 0. In this case, —1) is called conditionally pd; obviously, positive definiteness implies
conditional positive definiteness.

The sets of pd and nd kernels are both closed under pointwise sums/integrations, the former
being also closed under pointwise products; moreover, both sets are closed under pointwise con-
vergence. While pd kernels “correspond” to inner products via embedding in a Hilbert space, nd
kernels that vanish on the diagonal and are positive anywhere else, “correspond” to squared Hilber-
tian distances. These facts, and the following propositions and lemmas, are shown in Berg et al.
[1984].
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Proposition 21 Let ) : X x X — R be a symmetric function, and xqg € X. Let ¢ : X x X — R
be given by
p(z,y) = P(x,20) + P (y, v0) — P (2, y) — ¥(x0, o). (75)

Then, ¢ is pd if and only if 1) is nd.

Proposition 22 The function 1) : X x X — R is a nd kernel if and only if exp(—tv) is pd for all
t>0.

Proposition 23 The function ) : X x X — R, is a nd kernel if and only if (t + )" is pd for all
t>0.

Lemma 24 [f ) is nd and nonnegative on the diagonal, i.e., Y)(x,z) > 0 for all x € X, then so
are Y, for a € [0, 1], and In(1 + 7).

Lemma 25 If f : X — R satisfies f > 0, then, for a € [1,2], the function 1, (x,y) = —(f(z) +
f(y))* is a nd kernel.

The following definition [Berg et al., 1984] has been used in a machine learning context by
Cuturi and Vert [2005].

Definition 26 Let (X, +) be a semigroup.? A function ¢ : X — R is called pd (in the semigroup
sense) if k - X x X — R, defined as k(z,y) = p(x + y), is a pd kernel. Likewise, p is called nd
if k is a nd kernel. Accordingly, these are called semigroup kernels.

7.3 Jensen-Shannon and Tsallis kernels

The basic result that allows deriving pd kernels based on the JS divergence and, more generally,
on the JT g-difference, is the fact that the denormalized Tsallis g-entropies (14) are nd functions
on qu (X), for ¢ € [0,2]. Of course, this includes the denormalized Shannon-Boltzmann-Gibbs
entropy (11) as a particular case, corresponding to ¢ = 1. Although part of the proof was given
by Berg et al. [1984] (and by Topsge [2000] and Cuturi and Vert [2005] for the Shannon entropy
case), we present a complete proof here.

Proposition 27 For g € [0, 2], the denormalized Tsallis q-entropy S, is a nd function on M (X).

Proof: Since nd kernels are closed under pointwise integration, it suffices to prove that ¢,
(see (15))isndon R. For g # 1, ¢,(y) = (¢—1)"'(y — y?). Let’s consider two cases separately:
if ¢ € [0,1), p,(y) equals a positive constant times —¢ + ¢4, where ¢+(y) = y is the identity map
defined on R . Since the set of nd functions is closed under sums, we only need to show that both
—¢ and (7 are nd. Both ¢+ and — are nd, as can easily be seen from the definition; besides, since ¢ is
nd and nonnegative, Lemma 24 guarantees that 7 is also nd. For the second case, where ¢ € (1, 2],

ZRecall that (X, +) is a semigroup if + is a binary operation in X’ that is associative and has an identity element.
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©,(y) equals a positive constant times ¢ — ¢9. It only remains to show that —:? is nd for ¢ € (1, 2J:
Lemma 25 guarantees that the kernel k(z,y) = —(x + y)? is nd; therefore —:9 is a nd function.
For ¢ = 1, we use the fact that,

xr — x4

pi(a) = pu(2) = —rlne = lim P lim (@),

where the limit is obtained by L’Hopital’s rule; since the set of nd functions is closed under limits,
¢1(x) is nd. [

The following lemma [Berg et al., 1984] will also be needed below.

Lemma 28 The function (, : R, — R, defined as (,(y) =y~ is pd, for q € [0, 1].

Proof: We need to show that k,(z,y) : Ry x Ry y — R, defined as k,(z,y) = (,(z + ),
is pd, for ¢ € [0, 1]. The proof results from observing that

by(,y) = (z +9) 7" = lim [t+ (2 + )7 (76)

which is always well defined because x + y > 0, combined with the following facts: from
Lemma 24, since (x,y) — « + y is nd and nonnegative, (x,y) — (z + y)? is nd; from Proposi-
tion 23, (z,y) — [t + (z +y)9) " is pd for any ¢ > 0; the set of pd kernels is closed under limits.

]

We are now in a position to present the main contribution of this section, which is a family of
weighted Jensen-Tsallis kernels, generalizing the JS-based (and other) kernels in two ways:

e they allow using unnormalized measures; equivalently, they allow using different weights
for each of the two arguments;

o they extend the mutual information feature of the JS kernel to the nonextensive scenario.

Definition 29 (weighted Jensen-Tsallis kernels) The kernel k, - qu(X ) x MY(X) — Ris
defined as

kq(ﬂhﬂz) = kq(W1p1,w2p2)
= (Sq(ﬂ) - T(;r(plap2)> (w1 +wa)?,

where py = py/wy and py = po/ws are the normalized counterparts of i and i, with corre-
sponding masses wy,ws € Ry, and m = (wy /(w1 + wa), wa/ (w1 + wa)).
2
The kernel k, (qu()() \ {0}) — R is defined as
kq(ﬂl,ﬁbz) £ kq(wlpl,wzm) = Sq(ﬂ—) - T;(pbPQ)-
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Recalling (46), notice that S, (7) — T7 (p1,p2) = S¢(T) — 1,(X;T) = S,(T|X) can be inter-
preted as the Tsallis posterior conditional entropy. Hence, k, can be seen (in Bayesian classifica-
tion terms) as a nonextensive expected measure of uncertainty in correctly identifying the class,
given the prior m = (7, m3), and a random sample from the mixture distribution 71p; + mops. The
more similar the two distributions are, the greater this uncertainty.

Proposition 30 The kernel k, is pd, for q € [0,2]. The kernel k, is pd, for q € [0, 1].

Proof: With py = wyp; and s = wopo and using the denormalization formula of Proposi-
tion 2, we obtain kq(p1, pt2) = —S, (11 + p12) + Sy (1) + S,(112). Now invoke Proposition 21 with
1 = S, (which is nd by Proposition 27), x = 1, y = p2, and 2o = 0 (the null measure). Observe
now that k,(p1, ft2) = kq(fi1, p12) (w1 + wy)~%. Since the product of two pd kernels is a pd kernel
and (Proposition 28) (w; + w2)~? is a pd kernel, for ¢ € [0, 1], we conclude that &, is pd. [ |

As we can see, the weighted Jensen-Tsallis kernels have two inherent properties: they are
parameterized by the entropic index ¢ and they allow their arguments to be unbalanced, i.e., to
have different weights w;. We now mention some instances of kernels where each of these degrees
of freedom is suppressed. We start by the following subfamily of kernels, obtained by setting
qg=1.

Definition 31 (weighted Jensen-Shannon kernels) The kernel kyys : (MP (X)) — R is de-
fined as kyjs = ki, ie.,

%WJSWLMZ) = %WJS(Wlplaw2p2)
= (H(m) = J"(p1,p2)) (w1 + w2),

where p1 = 1 /wy and py = po/wy are the normalized counterpart of iy and i, and ™ =
(wi/(w1 + wa), wa /(w1 + wa)).
H 2 . . A .
Analogously, the kernel kyyjg (M+ (X)\ {O}) — Ris simply kwys = ki, i.e.,

kwys(pa, p2) = kwys(wipr, wape) = H(m) — J™(p1, pa).

Corollary 32 The weighted Jensen-Shannon kernels %WJS and ks are pd.
Proof: Invoke Proposition 30 with ¢ = 1. [ |
The following family of weighted exponentiated JS kernels, generalize the so-called exponen-

tiated JS kernel, that has been used, and shown to be pd, by Cuturi and Vert [2005].

Definition 33 (Exponentiated JS kernel) The kernel kg : M1 (X) x Mi(X) — R is defined,
fort >0, as

kEjs(p1,p2) = exp [t JS (p1, p2)] - (77)
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Definition 34 (Weighted exponentiated JS kernels) The kernel kygys : M (X) x M7 (x) —
R is defined, fort > 0, as

kwegs(py, p2) = explt kwys(pa, p2)]
= exp(t H(m))exp [—tJ"(p1,p2)] - (78)

Corollary 35 The kernels kwgjs are pd. In particular, k gy is pd.

Proof: Results from Proposition 22 and Corollary 32. Notice that although kwgjs is pd,
none of its two exponential factors in (78) is pd. [ ]

We now keep ¢ € [0, 2] but consider the weighted JT kernel family restricted to normalized
measures, k:q|( M1 (X))2 This corresponds to setting uniform weights (w; = wy = 1/2); note that in

this case %q and k, collapse into the same kernel,

kq(plaPQ) = qu(Pl,pz) = lﬂq(2) - Tq(plap2>- (79)

Proposition 30 guarantees that these kernels are pd for ¢ € [0,2]. Remarkably, we recover three
well-known particular cases for ¢ € {0, 1,2}. We start by the Jensen-Shannon kernel, introduced
and shown to be pd by Hein et al. [2004]; it is a particular case of a weighted Jensen-Shannon
kernel in Definition 31.

Definition 36 (Jensen-Shannon kernel) The kernel kjg : M} (X) x M} (X) — R is defined as

kJS(p17p2) =In2 - Js(plup2)

Corollary 37 The kernel kg is pd.
Proof:  kyg is the restriction of kyyg to M} (X) x M} (X). u

Finally, we study two other particular cases of the family of Tsallis kernels: the Boolean and
linear kernels.

Definition 38 (Boolean kernel) Let the kernel kp,o; : M (X) x M2 (X) — R be defined as
kBool = k‘o, i.e.,
kBool(P1,p2) = v (supp(p1) N supp(pz)) , (80)

i.e., kpooi(P1, p2) equals the measure of the intersection of the supports (cf. the result (48)). In
particular, if X is finite and v is the counting measure, the above may be written as

kBoo1(P1,p2) = ||p1 © p2lfo- (81)
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Definition 39 (Linear kernel) Let the kernel kyj, : M2 (X) x M3>'(X) — R be defined as

1

klin(p17p2) = 5 <p1,p2>. (82)

Corollary 40 The kernels kp,,; and ky;, are pd.

Proof: Invoke Proposition 30 with ¢ = 0 and ¢ = 2. Notice that, for ¢ = 2, we just recover
the well-known property of the inner product kernel [Scholkopf and Smola, 2002], which is equal
to kj;, up to a scalar. [ |

In conclusion, the Boolean kernel, the Jensen-Shannon kernel, and the linear kernel, are simply
particular elements of the much wider family of Jensen-Tsallis kernels, continuously parameterized
by ¢ € [0, 2]. Furthermore, the Jensen-Tsallis kernels are a particular subfamily of the even wider
set of weighted Jensen-Tsallis kernels.

One of the key features of our generalization is that the kernels are defined on unnormalized
measures, with arbitrary mass. This is relevant, for example, in applications of kernels on empirical
measures (e.g., word counts, pixel intensity histograms); instead of the usual step of normalization
[Hein et al., 2004], we may leave these empirical measures unnormalized, thus allowing objects
of different size (e.g., total number of words in a document, total number of image pixels) to be
weighted differently. Another possibility opened by our generalization is the explicit inclusion of
weights: given two normalized measures, they can be multiplied by arbitrary (positive) weights
before being fed to the kernel function.

7.4 Other kernels based on Jensen differences and ¢-differences

It is worth noting that the Jensen-Rényi and the Jensen-Tsallis divergences also yield positive
definite kernels, albeit there are not any obvious “weighted generalizations” like the ones presented
above for the Tsallis kernels.

Proposition 41 (Jensen-Rényi and Jensen-Tsallis kernels) For any q € [0, 2|, the kernel

D1 +p2)
2

(p1,p2) = Sq (

and the (unweighted) Jensen-Tsallis divergence Jg, (37) are nd kernels on M (X) x ML (X).
Also, for any q € [0, 1], the kernel

P1 +p2>

<p17p2) — Rq < 2

and the (unweighted) Jensen-Rényi divergence Jg, (34) are nd kernels on M (X) x M} (X).
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Proof: ~ The fact that (py,p2) — Sy(#322) is nd results from the embedding = — /2

and Proposition 27. Since (py, py) - S22t 8ulr2)

is trivially nd, we have that Jg, is a sum of nd
functions, which turns it nd. To prove the negative definiteness of the kernel (py, p3) — R, (%),
notice first that the kernel (z,y) — (z + y)/2 is clearly nd. From Lemma 24 and integrating,
we have that (p1,p2) — [ (%)q is nd for ¢ € [0,1]. From the same lemma we have that
(p1,p2) — In (t+ ) (%)q) is nd for any ¢ > 0. Since [ (%)q > 0, the nonnegativity of

(p1,p2) — Ry (%) follows by taking the limit ¢ — (. By the same argument as above, we
conclude that Jr_ is nd. |
As a consequence, we have from Lemma 22 that the following kernels are pd for any ¢ > 0:

ot = (- (P52 < ()T

and its “normalized” counterpart,

J ()) o
kEJR (D1, p2) = exp(—tJr,(p1,p2)) = ( : (84)
VPl P

Although we could have derived its positive definiteness without ever referring the Rényi entropy,
the latter has in fact a suggestive interpretation: it corresponds to an exponentiation of the Jensen-
Rényi divergence; it generalizes the case ¢ = 1 which corresponds to the exponentiated Jensen-
Shannon kernel.

Finally, we point out a relationship between the Jensen-Tsallis divergences (Subsection 4.4)
and a family of difference kernels introduced by Fuglede [2005],

1/B
& +ya 1/a xﬁ _'_yﬁ

(85)

Fuglede [2005] derived the negative definiteness of the above family of kernels provided 1 < a <
oo and 1/2 < (8 < «; he went further by providing representations for these kernels. Hein et al.
[2004] used the fact that the integration [ ¢, g(x(t), y(t))d7(t) is also nd to derive a family of pd
kernels for probability measures that included the Jensen-Shannon kernel.

We start by noting the following property of the extended Tsallis entropy, that is very easy to
establish:

Sq(p) = ¢ 1 S1/q(1?) (86)
As a consequence, we have that

Y1+ Y2

s, (1, 2) = sq( ! ) (sq(yn—;sq(yz)) .
_ ol + e\ Y\ S (@) + S, (a2)
= Tjsr(ﬁl,l’g) (89)



1

where we made the substitutions r» £ ¢!, z; £ y{ and 2, £ y, and introduced

j&(«fl;xz) = 9 9

— 1)_1/ [(z{—g@g)l/r o er:vgl | 90)

Since Jg, is nd for ¢ € [0,2], we have that Jg, is nd for r € [1/2, o).

Notice that while Js, may be interpreted as “the difference between the Tsallis g-entropy of the
mean and the mean of the Tsallis g-entropies”, qu may be interpreted as “the difference between
the Tsallis g-entropy of the g-power mean and the mean of the Tsallis g-entropies”.

From (90) we have that

&(@Hwaw>_&wn+&@g

[ asla,y) = (0= 1o, (0,9) = (8= Vs, (,9), O

so the family of probabilistic kernels studied in Hein et al. [2004] can be written in terms of Jensen-
Tsallis divergences.

7.5 k-th order Jensen-Tsallis string kernels

This subsection introduces a new class of string kernels inspired by the k-th order JT ¢-difference
introduced in Subsection 6.3. Although we refer to them as “string kernels,” they are more gener-
ally kernels between stochastic processes.

Several string kernels (i.e., kernels operating on the space of strings) have been proposed in
the literature [Haussler, 1999, Lodhi et al., 2002, Leslie et al., 2002, Vishwanathan and Smola,
2003, Shawe-Taylor and Cristianini, 2004]. These are kernels defined on A* x A*, where A* is
the Kleene closure of a finite alphabet A (i.e., the set of all finite strings formed by characters in .A
together with the empty string €.) The p-spectrum kernel [Leslie et al., 2002] is associated with a
feature space indexed by AP (the set of length-p strings). The feature representation of a string s,

PP(5) = (P (5))uecar, counts the number of times each u € AP occurs as a substring of s,

Ph(s) = {(v,v2) : 5 = viuvs}]. (92)

The p-spectrum kernel is then defined as the standard inner product in RH/”
ksk(s,t) = (®7(s), ®7(1)) - (93)
A more general kernel is the weighted all-substrings kernel [Vishwanathan and Smola, 2003],

which takes into account the contribution of all the substrings weighted by their length. This
kernel can be viewed as a conic combination of p-spectrum kernels and can be written as

kWASK(S7t) = ZO{p ICZS)K(S,t), (94)
p=1
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where «, is often chosen to decay exponentially with p and truncated; for example, o, = AP, if
Pmin < P < Pmax, and oy, = 0, otherwise, where 0 < A < 1 is the decaying factor.

Both k§y and kwask are trivially positive definite, the former by construction and the latter
because it is a conic combination of positive definite kernels. A remarkable fact is that both kernels
may be computed in O(|s| + |¢|) time (i.e., with cost that is linear in the length of the strings), as
shown by Vishwanathan and Smola [2003], by using data structures such as suffix trees or suffix
arrays [Gusfield, 1997]. Moreover, with s fixed, any kernel k(s, ) may be computed in time O(|¢|),
which is particularly useful for classification applications.

We will now see how Jensen-Tsallis kernels may be used as string kernels. In Subsection 6.3,
we have introduced the concept of joint and conditional JT g-differences. We have seen that joint
JT g-differences are just JT g-differences in a product space of the form X = X} x A; for k-th
order joint JT g-differences this product space is of the form A* = A x A*~!. Therefore, they
still yield positive definite kernels as those introduced in Definition 29, where X = A*. The next
definition and proposition summarize these statements.

Definition 42 (k-th order weighted JT kernels) Ler . (A) be the set of stationary and ergodic
stochastic processes that take values on the alphabet A. For k € N and q € [0,2], let the kernel
kor o (Ry x L(A))? — R be defined as

%q,k«wh 51), (W2, 52)) = %q(Wlpsl,k, WPy k) 95)
= (Sy(m) = T (51, 52)) (w1 + wa)",
where p;, , and ps, , are the k-th order joint probability functions associated with the stochastic
sources sy and sg, and ™ = (w1 /(w1 + wa),ws/ (w1 + w2)).
Let the kernel k. : (R, x #(A))* — R be defined as
g r((wi,81), (w2, 52)) = kq(wiDs) ks WDy k) (96)
= (Sy(m) =TI (51, 59) ),

Proposition 43 The kernel %q,k is pd, for q € [0,2]. The kernel k. is pd, for q € [0, 1].

Proof: Definethe map g : R, x ¥ (A) — R, X Mi’Sq(Ak) as (w, s) — g(w,s) = (w, ps k)
From Proposition 30, the kernel k,(g(w1, $1), g(w2, S2)) is pd and therefore so is ki (w1, 51), (w2, $2));
proceed analogously for &, j. [ ]

At this point, one might wonder whether the “k-th order conditional JT kernel” %;f’,f}d that would
be obtained by replacing 7 f}intm with chf;;d’” in (95)-(96) is also pd. Formula (68) shows that such
“conditional JT kernel” is a difference between two joint JT kernels, which is inconclusive. The
following proposition shows that %;?]?d and kg?,‘;d are not pd in general. The proof, which is in
Appendix C, proceeds by building a counterexample.

Proposition 44 Let kX be defined as k<7(sy, s2) £ (Sq(ﬂ') — TSP (s, 52)) (w1 + w2)4; and

ko be defined as kS79(s1, s2) = (Sq(ﬂ') — TS0 (s, 52)>. It holds that k<% and k% are not
pd in general.
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Despite the negative result in Proposition 44, the chain rule in Proposition 18 still allows us to
define pd kernels by combining conditional JT g-differences.

Proposition 45 Let (0 )ren be a non-increasing infinitesimal sequence, i.e. satisfying

Bo=b=...206,—0 97)
Any kernel of the form
> B kg (98)
k=0

is pd for q € [0, 2]; and any kernel of the form
> B kg (99)
k=0

is pd for q € [0, 1], provided both series above converge pointwise.

_ Proof: From the chain rule, we have that (defining the 0-th order joint JT ¢-difference as
kg0 = 0)

> B %;?éld = > b (kgpr1 — kox) = Jim. > ay Kok + B kgni1 = > ay kor  (100)
k=0 k=0 P

k=1

with oy, = fr_1 — O (the term lim ﬁn‘/%q,nﬂ was dropped because 3, — 0 and ‘EWH is bounded).
Since (k) ren is non-increasing, we have that (ay)zen oy is non-negative, which makes (100) the
pointwise limit of a conic combination of pd kernels, and therefore a pd kernel. The proof for
St Brkpd is analogous. |

Notice that if we set 5y = ... = B4_1 = 1 and 3; = 0, Vj > k, in the above proposition, we
recover the k-th order joint JT g-difference.

Finally, notice that, in the same way that the linear kernel is a special case of a JT kernel when
q = 2 (see Cor. 40), the p-spectrum kernel (93) is a particular case of a p-th order joint JT kernel,
and the weighted all substrings kernel (94) is a particular case of a combination of joint JT kernels
in the form (98), both obtained when we set ¢ = 2 and the weights w; and w- equal to the length of
the strings. Therefore, we conclude that the JT string kernels introduced in this section subsume
these two well-known string kernels.

7.6 The heat kernel approximation

The diffusion kernel for statistical manifolds, recently proposed by Lafferty and Lebanon [2005],
is grounded in information geometry [Amari and Nagaoka, 2001]. It models the diffusion of “in-
formation” over a statistical manifold according to the heat equation. Since in the case of the
multinomial manifold (the relative interior of A™), the diffusion kernel has no closed form, the
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authors adopt the so-called “first-order parametrix expansion,” which resembles the Gaussian ker-
nel replacing the Euclidean distance by the geodesic distance that is induced when the manifold
is endowed with a Riemannian structure given by the Fisher information (we refer to Lafferty and
Lebanon [2005] for further details). The resulting heat kernel approximation is

n 1
Fnea (P, p2) = (4) "% exp (—4t dz(pl,m)) , (101)

wheret > 0 and d, (p1,p2) = 2arccos (Zi \/M) Whether £, is pd has been an open problem
[Hein et al., 2004, Zhang et al., 2005]. Let S”! be the positive orthant of the n-dimensional sphere,
Le.,

n+1

St = {(a:l,...,mnﬂ) € R™ | fo =1, Viax; > 0}.

i=1
The problem can be restated as follows: is there an isometric embedding from S} to some Hilbert
space? In this section we answer that question in the negative.

Proposition 46 Let n > 2. For sufficiently large t, the kernel kjq; is not pd.

Proof: From Proposition 22, kp.,; is pd, for all ¢ > 0, if and only if dg is nd. We provide a
counterexample, using the following four points in A% p; = (1,0,0), po = (0,1,0), p3 = (0,0,1)
and py = (1/2,1/2,0). The squared distance matrix [D;;] = [d2(pi, p;)] is

(102)

3
— o R O
— o O
B O
O =

Taking ¢ = (—4,—4,1,7) we have ¢ Dc = 272 > 0, showing that D is not nd. Although
P1, P2, P3, P4 lie on the boundary of A2, continuity of dz implies that it is not nd on the relative
interior of A2, The case n > 2 follows easily, by appending zeros to the four vectors above. [ ]

8 Experiments

We illustrate the performance of the proposed nonextensive information theoretic kernels, in com-
parison with common kernels, for SVM-based text classification. We performed experiments
with two standard datasets: Reuters-21578° and WebKB.* Since our objective was to evaluate
the kernels, we considered a simple binary classification task that tries to discriminate among the
two largest categories of each dataset; this led us to the earn-vs-acq classification task for the
first dataset, and stud-vs-fac (students’ vs. faculty webpages) in the second dataset. Two differ-
ent frameworks were considered: modeling documents as bags-of-words, and modeling them as
strings of characters. Therefore, both bags-of-words kernels and string kernels were employed for
each task.

3 Available at www.daviddlewis.com/resources/testcollections.
4Available at www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data.
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8.1 Documents as bags-of-words

For the bags-of-words framework, after the usual preprocessing steps of stemming and stop-word
removal, we mapped text documents into probability distributions over words using the bag-of-
words model and maximum likelihood estimation; this corresponds to normalizing the term fre-
quencies (tf) using the ¢;-norm, and is referred to as #f [Joachims, 2002, Manning and Schiitze,
1999]. We also used the #f-idf (term frequency'fg,%—inverse document frequency) representation,
which penalizes terms that occur in many documents [Joachims, 2002, Manning and Schiitze,
1999]. To weight the documents for the Tsallis kernels, we tried four strategies: uniform weight-
ing, word counts, square root of the word counts, and one plus the logarithm of the word counts;
however, for both tasks, uniform weighting revealed the best strategy, which may be due to the fact
that documents in both collections are usually short and do not differ much in size.

As baselines, we used the linear kernel with ¢ normalization, commonly used for this task
[Joachims, 2002], and the heat kernel approximation (101) [Lafferty and Lebanon, 2005], which
is known to outperform the former, albeit not being guaranteed to be pd for an arbitrary choice of
t (see (101)), as shown above. This parameter and the SVM C' parameter were tuned by cross-
validation over the training set. The SVM-Light package (available at http://svmlight.
joachims.org/) was used to solve the SVM quadratic optimization problem.

Figs. 2-3 summarize the results. We report the performance of the Tsallis kernels as a function
of the entropic index q. For comparison, we also plot the performance of an instance of a Tsallis
kernel with ¢ tuned by cross-validation. For the first task, this kernel and the two baselines exhibit
similar performance for both the # and the #f-idf representations; differences are not statistically
significant. In the second task, the Tsallis kernel outperformed the ¢>-normalized linear kernel
for both representations, and the heat kernel for #f-idf; the differences are statistically significant
(using the unpaired ¢ test at the 0.05 level). Regarding the influence of the entropic index, we
observe that in both tasks, the optimum value of ¢ is usually higher for #f-idf than for ¢f.

The results on these two problems are representative of the typical relative performance of the
kernels considered: in almost all tested cases, both the heat kernel and the Tsallis kernels (for a
suitable value of ¢) outperform the /5-normalized linear kernel; the Tsallis kernels are competitive
with the heat kernel.

8.2 Documents as strings

In the second set of experiments, each document is mapped into a probability distribution over
character p-grams, using maximum likelihood estimation; we did experiments for p = 3,4, 5. To
weight the documents for the p-th order joint Jensen-Tsallis kernels, four strategies were attempted:
uniform weighting, document lengths (in characters), square root of the document lengths, and
one plus the logarithm of the document lengths. For the earn-vs-acq task, all strategies performed
similarly, with a slight advantage for the square root and logarithm of the document lengths; for
the stud-vs-fac task, uniform weighting revealed the best strategy. For simplicity, all experiments
reported here use uniform weighting.

As baselines, we used the p-spectrum kernel (PSK, see (93)) for the values of p referred above,
and the weighted all substrings kernel (WASK, see (94)) with decaying factor tuned to A = 0.75
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Figure 2: Results for earn-vs-acq using tf and tf-idf representations. The error bars represent +1
standard deviation on 30 runs. Training (resp. testing) with 200 (resp. 250) samples per class.

(which yielded the best results), with p.,;, = p set to the values above, and py,x = co. The SVM
C parameter was tuned by cross-validation over the training set.

Figs. 4-5 summarize the results. For the first task, the JT string kernel and the WASK outper-
formed the PSK (with statistical significance for p = 3), all kernels performed similarly for p = 4,
and the JT string kernel outperformed the WASK for p = 5; all other differences are not statiscally
significant. In the second task, the JT string kernel outperformed both the WASK and the PSK
(and the WASK outperformed the PSK), with statistical significance for p = 3,4, 5. Furthermore,
by comparing Fig. 3 and Fig. 5, we also observe that the 5-th order JT string kernel remarkably
outperforms all bags-of-words kernels for the stud-vs-fac task, even though it does not use or build
any sort of language model at the word level.

9 Conclusions

In this paper we have introduced a new family of positive definite kernels between measures, which
contain previous information-theoretic kernels on probability measures as particular cases. One of
the key features of the new kernels is that they are defined on unnormalized measures (not neces-
sarily normalized probabilities). This is relevant, e.g., for kernels on empirical measures (such as
word counts, pixel intensity histograms); instead of the usual step of normalization [Hein et al.,
2004], we may leave these empirical measures unnormalized, thus allowing objects of different
size (e.g., documents of different lengths, images with different sizes) to be weighted differently.
Another possibility is the explicit inclusion of weights: given two normalized measures, they can
be multiplied by arbitrary (positive) weights before being fed to the kernel function. In addition,
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Figure 3: Results for stud-vs-fac.

we define positive definite kernels between stochastic processes that subsume well-known string
kernels.

The new kernels, and the proofs of positive definiteness, rely on other main contributions of
this paper: the new concept of g-convexity, for which we proved a Jensen g-inequality; the concept
of Jensen-Tsallis q-difference, a nonextensive generalization of the Jensen-Shannon divergence;
denormalization formulae for several entropies and divergences.

We have reported experiments in which these new kernels were used in support vector ma-
chines for text classification tasks. Although the reported experiments do not allow drawing strong
conclusions, they show that the new kernels are competitive with the state-of-the-art, in some cases
yielding a significant performance improvement.

A Proof of Proposition 9
Proof: The case ¢ = 1 corresponds to the Jensen difference and was proved by Burbea

and Rao [1982] (Theorem 1). Our proof extends that to ¢ # 1. Let y = (y1,...,Ym), Where
Y = (Y11, - - Yen)- Thus

qﬂ—\IJ(y) = Vv (i 7Tt?Jt> - iﬂg ‘P(yt)
= 7_1 [m T oY) — ¢ <§:7Ttyti>] )

% =1
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showing that it suffices to consider n = 1, where each y; € [0, 1], i.e

Ty, ym) = D m o(ye) — ¢ <Z 7Ttyt> ; (103)
t=1 t=1
this function is convex on [0, 1] if and only if, for every fixed a1, ..., a,, € [0,1],and by, ... b, €
R, the function
flx) =T7y(a1 +biz,. .., e + byr) (104)
is convexin {x € R : a; + byxr € [0,1], t = 1,...,m}. Since f is C?, it is convex if and only if

fi(t) =0
We first show that convexity of f (equivalently of T7y) implies convexity of . Letting ¢; =
a; + bz,

= Zﬂ' b " (cr) (Z " bt> ! <Z T ct> . (105)
t=1 t=1

By choosing x = 0, a; = a € [0,1], fort = 1,...,m, and by, ..., b, satisfying >, m;0; = 0 in
(105), we get
£7(0) = ¢"(a) >_ mit},
t=1
hence, if f is convex, ¢”(a) > 0 thus ¢ is convex.
Next, we show that convexity of f also implies (2 — ¢)-convexity of —1/¢"”. By choosing
z =0 (thus ¢, = a;) and by = 7, ~ q(gp (ag))™1, we get

ro = £ (Eda) (B

P iltol

- l " Zt 1 Tt ) ;%0 "( t)] (;@ "(a t)) ¢ <t§::17rtat>7

where the expression inside the square brackets is the Jensen (2 — ¢)-difference of 1/¢" (see
Definition 8). Since ¢”(x) > 0, the factor outside the square brackets is non-negative, thus the
Jensen (2 — ¢)-difference of 1/¢” is also nonnegative and —1/¢” is (2 — ¢q)-convex.

Finally, we show that if ¢ is convex and —1/¢" is (2 — g)-convex, then f” > 0, thus 777 is

convex. Let 7, = (qm; 9 /¢"(¢;))"/? and s, = by(7{¢" (¢;)/q)"/?; then, non-negativity of f” results
from the following chain of inequalities/equalities:

m m m 2
0< (Z r§> (Z s§> - (Z Ty st> (106)
t=1 t=1 =
- Wf_q . 2 q H ?
=2 iy 2 (Z bm) (107)

t=1 =1
1 2
< — N 2l () b, 108
< e tzl 757 (cy) (z t ) (108)
1 1!
- (1), (109)
ol (Zt:1 7Tt0t) / ( )
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where: (106) is the Cauchy-Schwarz inequality; equality (107) results from the definitions of r;
and s; and from the fact that r,s, = b,;m;; inequality (108) states the (2 — ¢)-convexity of —1/¢";
equality (109) results from (105). [ |
B Proof of Proposition 13

Proof: The proof of (55), for ¢ > 0, results from

- 1
Tq (P1,-- s Pm) = (]—71

t=1 j=1

= S(m+— > [i (meprs)* — (i TPt ﬂ

1
77— 1= b=

< Sy(m), (110)

where the inequality holds since, for y; > 0: if ¢ > 1, then >, v < (3, ;)% if ¢ € [0, 1], then
Syl > (X yz‘)q-

The proof that Tq’r > 0 for ¢ > 1, uses the notion of g-convexity. Since X is countable, the
Tsallis entropy is as in (4), thus .S, > 0. Since —S,, is 1-convex, then, by Proposition 7, it is also
g-convex for ¢ > 1. Consequently, from the g-Jensen inequality (Proposition 6), for finite 7, with
7| =m,

T(;r (P1,- - Pm) = Sy (Z WtPt) - Zﬂ-gsq(pt) > 0.
t=1 t=1

Since S, is continuous, so is T; , thus the inequality is valid in the limit as m — oo, which
proves the assertion for 7 countable. Finally, 77 (1, ..., 01, ...) = 0, where 0, is some degenerate
distribution.

Finally, to prove (57), for g € [0, 1] and X finite,

T (p1s- - spm) = 5 (Zmpt> — > 7 Sy(pe)

t=1 t=1
> > mSy(pe) = DSy (pe) (111)
t=1 t=1
= D (m —7])S,(pr)
t=1
> S(U) Y (m —7f) (112)
t=1
= Sy(m)[1 —n'9). (113)

where the inequality (111) results from S, being concave, and the inequality 112 holds since 7, —
mf <0, for g € [0, 1], and the uniform distribution U maximizes S, (Proposition 10), with S,(U) =

(1 =n"9)/(qg—1). ]
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C Proof of Proposition 44

Proof: 'We show a counterexample with ¢ = 1 (the extensive case), 7 = (1/2,1/2) and

k = 1, that discards both cases. It suffices to show that \/ JSgond £ \/ Tfﬁnd’(l/ 21/2) Violates the
triangle inequality for some choice of stochastic processes s1, s2, s3 and therefore is a not a squared

distance; this in turn implies that 1/.JS°™ is not nd and, from Proposition 21, that the above two
kernels are not pd. We define sy, o, 53 to be stationary first order Markov processes in a binary
alphabet A = {0, 1} defined by the following transition matrices, respectively:

[1—€ € 1 0 ]
51_113%_ 1/4 3/4 | | 1/4 3/4 | (114)
o [3/4 1741 [3/4 1/4]
52—113%_ e l—e| | 0 1 | a15)
and ) . i .
. e 1—e¢ 0 1
55 = liy 14 3/4 | | 1/4 3/4 ) (116)
whose stationary distributions are
: 1 1 1
womite[L]-[1]
. 1 4e 0
“2_1%1%6[11_[11’ (118)
and
L 1 1 | 1/5
03_15%5—46[4—461_[4/5]' 19

The matrix of first order conditional JT 1-differences (or first order conditional Jensen-Shannon
divergences) is

00 SH(3) 0 0 0.390

oy gy | &
« 0 SH(5)—Z2H(3) |~ | * 0 0128 |, (120)
kK 0 x % 0

which fails to be negative definite, since

VIS5 (51, 55) + /TS5 (55, 55) < 1/ TS5 (1, 53), (121)

which violates the triangle inequality required for 1/.J.S{°" to be a metric.
Interestingly, the O-th order conditional Jensen-Shannon divergence matrix (this one ensured to
be negative definite because it equals a standard Jensen-Shannon divergence matrix) is

0 1 H(%)—%H(é) 0 1 0610
x* 0 H(55)—3H(GE) |~ | = 0 0108 |. (122)
* % 0 * ok 0

From the chain rule (68), we have that the sum of the matrices (120) and (122) is the second order
joint Jensen-Shannon divergence, and therefore is also guaranteed to be negative definite. [ ]
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Figure 4: Results for earn-vs-acq using string kernels and p = 3,4, 5. The error bars represent 1
standard deviation on 15 runs. Training (resp. testing) with 200 (resp. 250) samples per class.
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Figure 5: Results for stud-vs-fac using string kernels.
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