If you would like your presentation included in the 75th MORSS Final Report CD it must:

1. Be unclassified, approved for public release, distribution unlimited, and is exempt from U.S. export licensing and other export approvals including the International Traffic in Arms Regulations (22CFR120 et seq.);
2. Include MORSS Form 712CD as the first page of the presentation;
3. Have an approved MORSS form 712 A/B and
4. Be turned into the MORS office no later than: DEADLINE: 14 June 2007 (Late submissions will not be included.)

Author Request (To be completed by applicant) - The following author(s) request authority to disclose the following presentation in the MORSS Final Report, for inclusion on the MORSS CD and/or posting on the MORS web site.

Name of Principal Author and all other author(s):
Carol DeZwarte and Tovey Bachman

Principal Author's Organization and address:
LMI
2000 Corporate Ridge
McLean, VA 22102-7805
Phone: 703-917-7230
Fax: 703-917-7519
Email: cdezwarte@lmi.org

Please use the same title listed on the 75th MORSS Disclosure Form 712 A/B. If the title of the presentation has changed please list both.

Original title on 712 A/B: Peak Policy for Reparable Parts
If the title was revised please list the original title above and the revised title here:

PRESENTED IN:

<table>
<thead>
<tr>
<th>WORKING GROUP:</th>
<th>DEMONSTRATION:</th>
</tr>
</thead>
<tbody>
<tr>
<td>19, 21</td>
<td></td>
</tr>
<tr>
<td>COMPOSITE GROUP:</td>
<td>POSTER:</td>
</tr>
<tr>
<td>SPECIAL SESSION 1:</td>
<td>TUTORIAL:</td>
</tr>
<tr>
<td>SPECIAL SESSION 2:</td>
<td>OTHER:</td>
</tr>
<tr>
<td>SPECIAL SESSION 3:</td>
<td></td>
</tr>
</tbody>
</table>

This presentation is believed to be: Unclassified, approved for public release, distribution unlimited, and is exempt from U.S. export licensing and other export approvals including the International Traffic in Arms Regulations (22CFR120 et seq.)
Title: Peak Policy for Reparable Parts

Author(s):

LMI 2000 Corporate Ridge McLean, VA 22102-7805

Editorial Note:
Agenda

• Peak Policy Background
 – What is Peak Policy?
 – Consumable Item Analyses

• Applying Peak Policy to Reparable Items

• Preliminary Results

• Next Steps
What is Peak Policy?

• New rules for managing sporadic demand items that:
 – Set reorder points based on peak (highest in trailing # periods) demands and price-based multipliers
 – Set order quantities based on item price
 – Change the threshold between replenishment and NSO
 – Forecast *how often* future demands occur instead of *how much* demand occurs

• Above activity threshold, keep baseline policy for frequently-demanded items
What is sporadic demand?

Frequent Demand

Sporadic Demand
Peak Policy Background

• Developed by LMI to improved service on sporadic demand items
• Enables tradeoffs between wait time, investment, and procurement actions
 – policies tailored to customer goals
 – service level vs. investment curves aid development
• Successful pilot at DLA on initial item population
• Further implementation activities ongoing
Consumable Item Analyses

- Analyses on over 20 consumable item populations show significant potential
 - 25-50% wait time reduction
 - Up to 15% reduction in inventory investment
 - Up to 35% reduction number of orders placed
- Benefits shown at wholesale AND end-user levels of supply chain
- Pilot program showed benefits quickly
 - Long lead times typically delay improvements
Two Policies’ Projected Performance
Sample Item Population

Same cost, better performance
Better cost, same performance

Baseline data
Unit wait time = 19 days Unit fill rate = 86% # orders = 755/yr
Req. wait time = 15 days Req. fill rate = 86% $ on hand = $4.0M
Trading Off Fill Time vs. $ On Hand

Sample Item Population

Current policy

Curve shows Peak policy options

Improves both metrics
Near Term Impacts
Sample Item Population

Peak policy:
Same cost, better performance

Baseline Yr 1 orders = 2608
Baseline Yr 1 $ on hand = $17.6M
Agenda

✓ Peak Policy Background
 ✓ What is Peak Policy?
 ✓ Consumable Item Analyses

• Applying Peak Policy to Reparable Items
• Preliminary Results
• Next Steps
Peak Policy for Reparable Items

- Two areas where policy may be applied
 - Setting procurement levels
 - Setting repair levels
- Activity threshold for reparables may be different from consumables
- Several echelons of supply chain can be analyzed
 - Wholesale procurement only
 - Depot-level repairs
 - Local repairs
Pilot Study with Army

- Use depot-level reparables only: 12,152 parts
 - Data collection for field-level reparables too involved for initial studies
- Initial simulations ignore effect of migration, so limited to the 1,372 NSO-2 items
 - Prevent movement across activity threshold between NSO-2 and demand-supported items
- Apply several computational simplifications to make policy emulation easier at early stages
- “Peak” demand considers condemnations only
Simulated Reparable Results

- Unit fill rates improved up to 8% (30% reduction in non-fills)
- More difficult keeping dollars in inventory under control compared to consumable items
 - Item prices much larger than for consumables
- Procurement actions reduced by up to 30%
- Unable to reduce wait times
 - Long lead time items driving high average WTs
- Next: can we address reduce wait times by treating long lead time items differently?
Preliminary Peak Policy
NSO Reparable Item Population

Baseline data
Unit wait time = 24 days
Req. wait time = 17 days
$ on hand = $97.5M
Unit fill rate = 79%
Req. fill rate = 85%
orders = 642/yr
Addressing Long Lead Times

- Tried several variations of scaling factor * ROP for lead time > x
 - ROP = 1.4 * PeakROP for LT > 12 months,
 - ROP = 2.0 * PeakROP for LT > 24 months,
 - Otherwise keep PeakROP

- Reduced unit and requisition lead times, but very expensive compared to equivalent Peak policy with no LT adjustments

- Create new peak policy settings to lower cost
LT-Adjusted Peak Policy
Reparable Item Population

-40% -30% -20% -10% 0% 10% 20%

% Difference from Baseline

Baseline data
Unit wait time = 24 days
Req. wait time = 17 days
$ on hand = $97.5M
Unit fill rate = 79%
Req. fill rate = 85%
orders = 642/yr
Trade-Off for LT-Adjusted Peak Policy Reparable Item Population

- $ on hand (millions)
- Requisition wait time (days)

The graph shows the relationship between the amount of money on hand and the requisition wait time for reparable items.
Challenges

• All services have condemnation vs. rotatable demand data available, BUT
 – Some data not recorded in national databases
 – Condemnation data not always collected at NSN level

• Army computations complex with many exceptions
 – Needed to simplify some rules; figure out where duplication was necessary to retain integrity of emulation

• Interaction of repair pipelines and levels with procurement pipelines and levels complex
Next Steps

• Further explore handling of lead times
• Implement migration for Army policy across NSO/demand-supported threshold
• Discuss what policy simplifications should be removed (i.e. make simulation more accurate)
• Expand exploration to other organizations
 – Air Force
 – Navy
 – FAA
• Expand exploration to repair policies
Credits

• AMSAA team
 – Mike Johnson, Eric Wehde, Meyer Kotkin, Tom Hagadorn
Backup – Population Data

- 1372 NSO-2 items
- $69.3M annual demand
 - total demand qty * unit price for each item
 - NSO items treated as if repair is not an option so all demands are modeled as condemnations
 - Treating all demands as repairs instead, annual demand @ 15% repair prices = $10.4M
- Item price percentiles
 - 25% = $713.62
 - 75% = $6963.18
 - 50% = $2079.00
 - 90% = $26399.38
Backup: Computation Simplifications

- Wilson EOQ calculation used for order quantities
- War reserves and below-depot assets excluded
 - Below-depot activity not modeled
- Repair safety level calculation uses same shadow price as procurement safety level
- Shadow prices static