

75th MORSS CD Cover Page

UNCLASSIFIED DISCLOSURE FORM CD Presentation

12-14 June 2007, at US Naval Academy, Annapolis, MD

Please complete this form 712CD as your cover page to your electronic briefing submission to the MORSS CD. Do not fax to the MORS office.

<u>Author Request</u> (To be completed by applicant) - The following author(s) request authority to disclose the following presentation in the MORSS Final Report, for inclusion on the MORSS CD and/or posting on the MORS web site.

Name of Principal Author and all other author(s): Dr. Charles McLane Ms. Teresa Wilson

Principal Author's Organization and address:

Phone: 817 935 1041

P.O. Box 748 MZ 9369 Fort Worth, TX 76101

Fax: 817 762 9076

Email: charles.b.mclane@lmco.com

Original title on 712 A/B: On Missing Nails and Distant Butterflies – Clausewitzian Friction in Models of Combat

Revised title: On Missing Nails and Distant Butterflies - Clausewitzian Friction in Models of Combat

Presented in (input and Bold one): (WG<u>31</u>, CG___, Special Session ___, Poster, Demo, or Tutorial):

This presentation is believed to be: UNCLASSIFIED AND APPROVED FOR PUBLIC RELEASE

Unclassified On Missing Nails and Distant Butterflies

Lockheed Martin Aeronautics Company

Chart Number 1

Report Documentation Page					Form Approved OMB No. 0704-0188		
Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.							
1. REPORT DATE 01 JUN 2007		2. REPORT TYPE 3. DATES COVERED -					
4. TITLE AND SUBTITLE		5a. CONTRACT	NUMBER				
On Missing Nails and Distant Butterflies: Clausewitzian Friction in Madels of Combat				5b. GRANT NUMBER			
Models of Combat					5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER			
				5e. TASK NUMBER			
					5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Lockheed Martin Aeronautics Company P.O.Box 748 Fort Worth, TX					8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)			
					11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited							
^{13. SUPPLEMENTARY NOTES} See also ADM202526. Military Operations Research Society Symposium (75th) Held in Annapolis, Maryland on June 12-14, 2007, The original document contains color images.							
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF				
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	ABSTRACT UU	OF PAGES 34	RESPONSIBLE PERSON		

Standard	Form	298	(Rev.	8-98)
Pres	cribed b	y AN	SI Std	Z39-18

Create and Deliver Superior Products Through Innovative Minds

On Missing Nails and Distant Butterflies: Clausewitzian Friction in Models of Combat

Dr. Charles McLane, Ms. Teresa Wilson, June 2007

- Constructive simulation using VV&A'd model
 - year 2020 scenario
 - mix of advanced and legacy aircraft
 - supporting expeditionary ground force
- > Objective: quantify operational benefits of
 - Network Centric Operations (NCO)
 - Non-Traditional Intelligence, Surveillance, and Reconnaissance (NTISR)

This OA study lead to a clear anomaly

NCO/NTISR improved a number of MOPs without a single downside.

- Reduced multiple communication latencies
- > Reduced multiple decision latencies
- Increased sensor information

Yet model results showed a worse MOM...

Something Subtle Happened

The attentive child at Mother's knee in the mid 1300s could tell us.

Chaos entered the picture

Expressions of Chaos

"For want of a nail ..." English nursery rhyme, c 1360.

"The fog and friction of war"

Carl von Clausewitz, 1806

"A butterfly in Tokyo ... tornado in Topeka"

chaos cliché, c 1975

"Non-monotonicities"

Andreas Tolk, c 1990

Rand/MORSS Paper: Non-Monotonicity, Chaos, and Combat Models

J. A. Dewar, et al., 1990

Chaos comes under many names.

- System analysis "unstable dynamic system"
- Statistics "non strongly causal"
- Our label "chaotic" (extreme sensitivity to initial conditions)

Problems lurk in our models' woodwork.

One Genius' Take ...

"A critical, if somewhat hidden, assumption is that given only an *approximate* rather than an exact knowledge of a system's initial conditions, one can still calculate at least the system's *approximate* behavior."

Richard Feynman

This applies to military OA – read "initial conditions" as scenario, threat laydown, ...

The more realistic our models, the more possibility that chaotic outcomes will occlude insight.

Chaotic instabilities can occur in both deterministic and stochastic models.

- Replications with identical input helps resolve Monte Carlo noise but doesn't resolve sensitivity to initial conditions
- Sampling the problem (input) space can help resolve chaotic-system noise – for some chaotic systems, the full response ensemble can be depicted

Developing solutions requires a clear understanding of the problem source.

A combat model is a response function, F, mapping system MOPs, CONOPS, and scenarios into outcomes.

Results = F(MOPs, CONOPS, scenario)

Each argument and F() itself holds chaotic risk:

- Feedback, or chance, in F()
- Threshold sensitivities to MOPs or scenario
- > Non-optimal CONOPS by Red or Blue

How can we deal with chaotic systems?

Good Advice

"Think deeply of simple things."

Arnold Ross

We begin our probe with a simple problem.

Unclassified On Missing Nails and Distant Butterflies

Sensitivity of Radar-lock to RCS:

- Spherical signature
- Cookie-cutter & RCS range
- > Sensitivity: 100 nm vs. 1 m² RCS

The sensitivity depends on our scenario

RCS Impact Depends on Threat Offset

We can hedge our bet as to which offset.

Equally-Weighted Results for an Ensemble of Three Offsets

We could use many randomized offsets...

Equally-Weighted Results for 25 Random Offsets

For this simple problem, we can find the full ensemble.

Chaotic Reality May Not Serve the Design-Trade Process

A "realistic" instantiation might give this result:

Unclassified On Missing Nails and Distant Butterflies

We built BLINK, a proof-of-concept ensemble model sensitive to several aircraft and missile parameters:

- Aspect-sensitive aircraft signature (radar range)
- Terrain masking (Line Of Sight)
- Intercept kinematics (A/C and missile mach, altitude, delays)

The BLINK model examines these sensitivities.

All three factors must "work" for an intercept: P(encr) = P(rdr range)*P(LOS)*P(kinematics)

Each factor in the combination requires a canonical form with the correct shape and asymptotical behavior – polynomials almost never provide suitable canonical forms.

Let's examine each component P().

1. SAM Radar Range

2. Line of Sight (LOS)

3. SAM Kinematic Range

Combined Probability of Encounter

How can we use this ensemble?

Given these areas and widths, a statistical mechanical methodology gives relative or absolute encounter rates

Example Results

Relative SAM Encounters vs. Mach and Signature

To be useful, we must be able to extend this approach

Missile P(kill) by intercept aspect

easy to incorporate as intercept aspect is known

> 3-D signatures

- not difficult given a flyout altitude-profile

> Kinematic-escape maneuvering

- easily feasible (but probably not closed form)

Signature-management maneuvering

- probably only first-order effects

A/C energy management per dogfight - quite difficult

How do ensemble models compare with instantiation?

	Instantiation Model	Ensemble Model
Representation of probabilistic effects and input sensitivities	Models sampled values, that is, instantiations – "tail-number modeling." Objects in the model are typically physical entities: a SAM site, a strike A/C,	Models distributions, <i>not</i> specific realizations. Initial conditions are often distributions – some inputs and all results are ensembles that reflect distributions.
Advantages	Models capture extensive detail - "gets down in the weeds." Easy to visualize and to explain the model. "Presentation friendly."	Models generate an ensemble of outcomes by a distributional calculus such as Bayesian networks or influence diagrams.
Disadvantages	Can be difficult or impossible to ensure representative results.	Models cover only limited detail. Often hard to visualize or explain.
Mitigation of chaotic effects <i>within</i> the given MOPs, scenario and CONOPS	If non-deterministic, replications obtain the mean response for the MOPs, scenario, and CONOPS. Computational demands can be daunting.	Because the model treats the complete ensemble, not single instantiations, chaotic effects are intrinsically treated in the outcome distribution.
Mitigation of chaotic effects <i>resulting from</i> MOPs, scenario or CONOPS.	Chaos in the Scenario and CONOPS quite difficult to treat. Parametric studies are usually computationally constrained.	Chaos in the Scenario and the CONOPS is usually treatable by either an input distribution or by parametric studies.

A clue is supplied by a second MOM – Red losses.

The appearance of S/A losses was never explained

Instantiation models can have excellent resolution and fidelity

But ... hidden among the weeds can lurk undetected chaotic effects

End of presentation – backup slides follow

Time to Intercept, T2i, Provides a Canonical Expression for Intercept Time/Location

$$T_{2i} = \frac{y_0 \cdot v \cdot b + x_0 \cdot v \cdot a + vm^2 \cdot t_0 - vm \cdot h + \sqrt{2 \cdot y_0 \cdot v^2 \cdot b \cdot x_0 \cdot a + 2 \cdot y_0 \cdot v \cdot b \cdot vm^2 \cdot t_0 - 2 \cdot y_0 \cdot v \cdot b \cdot vm \cdot h + 2 \cdot x_0 \cdot v \cdot a \cdot vm^2 \cdot t_0 - 2 \cdot x_0 \cdot v \cdot a \cdot vm \cdot h + vm^2 \cdot h^2 + v^2 \cdot a^2 \cdot vm^2 \cdot t_0^2 - 2 \cdot v^2 \cdot a^2 \cdot vm \cdot t_0 \cdot h - v^2 \cdot a^2 \cdot y_0^2 - v^2 \cdot b^2 \cdot x_0^2 + v^2 \cdot b^2 \cdot vm^2 \cdot t_0^2 - 2 \cdot v^2 \cdot b^2 \cdot vm \cdot t_0 \cdot h - v^2 \cdot a^2 \cdot vm^2 \cdot t_0^2 - 2 \cdot v^2 \cdot a^2 \cdot vm \cdot t_0 \cdot h - v^2 \cdot a^2 \cdot vm^2 \cdot t_0^2 - v^2 \cdot b^2 \cdot x_0^2 + v^2 \cdot b^2 \cdot vm \cdot t_0 \cdot h + vm^2 \cdot x_0^2 + vm^2 \cdot y_0^2 - v^2 \cdot b^2 \cdot vm^2 \cdot t_0^2 - 2 \cdot v^2 \cdot b^2 \cdot vm^2 \cdot t_0^2 - v$$

One can do a similar analysis for an A/C attempting kinematic range evasion

Cautions

Ensemble models must stand on solid physics or statistics.

Otherwise they risk becoming "truthiness" models, yielding what Richard Feynman would call "Cargo-Cult Analysis."