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SUMMARY

Simulation of multi-phase, turbulent reacting flow is in itself a very complex task

but when such flows occur in the presence of strong, unsteady shocks additional com-

plexity can arise. Shock interactions with shear turbulence can change turbulent

structures and shock induced heating can trigger ignition, combustion and turbulent

flame propagation. There are many practical applications of interest to US Air Force,

such as scramjets, pulse detonation engines, multi-phase detonation (explosives con-

taining inert or reactive particles), and detonation interaction with reactive mixtures

where multi-phase (gas-liquid, gas-solid) physics couple with shock-turbulence-flame

interactions. Simulation of such flows (either using direct or large-eddy simulation

approach) requires a numerical strategy that can simultaneously capture strong shock

motion and turbulence-flame interactions occurring over a wide range of spatial and

temporal scales. In this research, a new and an efficient large-eddy simulation (LES)

strategy has been developed to investigate turbulent flows in a high-speed, compress-

ible environment. A new numerical algorithm has been developed that permits a

proper capture of the discontinuities that arise at supersonic speeds using a hybrid

Riemann solver that shows reduced sensitivity to classical solver instabilities. Since an

upwind shock-capturing schemes can dissipate turbulent features the current hybrid

approach uses a low dissipation algorithm in regions of high shear without shocks.

In order to simulate high Reynolds number flows, large-eddy simulation (LES) using

a new compressible subgrid closure has been developed and validated. Direct simu-

lations of shock/turbulence interactions for Mach numbers ranging from 1.29 to 3.0

have been used to identify the most important terms in the closure strategy adopted

for shock-containing flows. The models for these terms and the dynamic evaluation

of the closure coefficients as a part of the solution demonstrated in this study lead to

a very general methodology with no ad hoc constants. This closure model has been

validated by performing Large Eddy Simulations of the shock / turbulence flow config-

urations as well of other flow configurations, such as Richtmyer-Meshkov instabilities,

regular and irregular gaseous detonations, and mixing-augmentation configurations

based on shock / turbulent shear interactions.
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CHAPTER I

INTRODUCTION

A class of problems of both great fundamental interest and practical relevance is in
the field of highly compressible turbulent flows of multi-fluids. Typical challenging
problems are in multi-phase detonations (these can involve gaseous detonation wave
interacting with two-phase reactive mixture or detonation products containing re-
active or inert particles), and in strong shock wave propagation in turbulent media
followed by shock induced ignition and combustion. Shock interaction with turbu-
lence and/or flames have many practical applications for US Air Force in applications
such as scramjets, pulse-detonation engines (PDE), stage separation, supersonic cav-
ity oscillations, hypersonic aerodynamics, detonation induced structural destruction,
detonation induced destruction of chemical and biological agents, etc.

In shock-turbulence interactions, post-shock and/or post-detonation turbulence
evolution is of particular interest from a fundamental perspective as well since some
of the turbulent physics may not follow conventional well known scaling laws. For
example, extensive studies of Richtmyer-Meshkov instability (RMI) are currently un-
derway, both experimentally [55, 2, 9] and numerically [11, 28, 49] since RMI is
a fundamental instability that occurs when a passing shock wave interacts with a
perturbed density interface separating gases of different densities [5, 57]. Vorticity
generation occurs around the interface and during subsequent evolution develops into
many scales of turbulent like structures. If this turbulent field is re-shocked, addi-
tional scales of turbulence have been shown to be generated. RMI and reshocked-RMI
[59, 60, 49] are very relevant for core-collapse supernova dynamics, but can also occur
in the detonation scenarios involving reacting flows, including supersonic combustion
ramjets (SCRAMJETS) and pulse detonation engines. Shock induced mixing changes
associated with RMI and re-shocked RMI are therefore, of considerable interest from
practical point of view. There are also other fundamental unresolved issues regard-
ing RMI. For example, recent studies in re-shocked RMI suggest that the scales of
turbulence in the post shock region may not strictly follow the classical Kolmogorov
−5/3 inertial range scaling [59, 44]. If so, then this type of turbulence may require
different scaling arguments, and hence new types of subgrid closure(s).

There is very little experimental data (even when available the data is sparse and
not time-resolved) and these multi-physics problems are also inherently difficult to
solve due to the very large range of temporal and spatial scales involved. Numerical
approach must capture strong moving shocks and fine-scales of turbulence. Con-
ventional shock capturing schemes are too dissipative for this purpose. As a result,
new high-order schemes, such as the ninth-order weighted essentially non-oscillatory
(WENO) shock-capturing schemes have been developed for direct numerical simula-
tions (DNS). Most of the past RMI simulations (primarily using DNS) using such
schemes have been restricted to 2D [23, 49, 33] and only a few studies have reported
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using full 3D DNS or LES approaches [11, 28]. Furthermore, all these studies are
in very simplified (planar) shock-tube type geometries. However, for practical appli-
cation to SCRAMJET or PDE type applications, the geometrical complexities and
test conditions are such that DNS and even very high order schemes are not com-
putationally practical. On the other hand, large-eddy simulation (LES) may be a
viable alternative since it has already shown potential for subsonic problems [31, 41].
However, in order to conduct LES of supersonic and shock-dominated flows new al-
gorithms and subgrid closures for highly compressible flow have to be developed and
validated. LES studies of compressible mixing, shock-shear interactions, detonations
and RMI have just started to appear [28, 22, 25, 24] but there are still many issues to
be addressed. For example, in addition to the scales associated with the shock struc-
ture and fine-scale turbulence, particle (e.g., liquid droplets) motion, fuel-air mixing
and finite-rate reactions have to be included for some applications. Chemical kinetics
are usually very stiff requiring very small time-steps to properly resolve turbulence-
chemistry-shock interactions. Implicit schemes have only limited functionality (since
there is a limit beyond which the time scales of interactions have to be resolved), and
also have problems scaling in massively parallel systems.

Thus, there are still many challenges to study of shock-turbulence-flame (STF)
interaction in both canonical and practical systems. Some of these challenges have
been addressed over the last few years at Georgia Tech, and has resulted in a new
multi-scale, multi-phase solver that can simulate STF interactions with good accuracy.
This capability was developed in part using support from AFOSR and the code has
been delivered to Eglin AFB to support their in-house (classified) applications. In
fact, the applications of this code in Eglin AFB to problems of AF practical interest
demonstrates our ability to transition from fundamental studies conducted in GT to
more complex practical problems of AF interest.

This report summarized the key results obtained in the last fiscal year of this
research effort. Since this is also its final year, some key issues and developments
reported in previous reports have been included for completeness. Further results
and analysis are reported in cited publications.
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CHAPTER II

SUMMARY OF RESULTS

To establish a validated simulation capability for STF interaction studies, we leverage
a code called LESLIE3D (Large-Eddy Simulation using LInear Eddy in 3D), origi-
nally developed to study turbulent two-phase combustion in subsonic flows as in gas
turbine and ramjet combustors. This code is a multi-block, structured grid solver of
the fully compressible Navier-Stokes equations using a finite-volume scheme that is
second-order accurate in time and up to fourth-order accurate in space. In addition
to LES the code can be used to perform DNS and has been extensively validated in
many non-reacting and reacting flow applications(see [41] and other cited references).
To extend this code to handle shock and detonation physics two key challenges have
been continuously addressed and successfully resolved in the current effort. The first
challenge consists in developing a numerical approach that adapts locally to the un-
steady shock motion and/or compressive regions without contaminating or dissipating
the turbulent and/or flame structures. This requires developing and validating a new
hybrid approach within the generalized multi-block approach that can achieve simul-
taneously, very low dissipation in smooth flow regions and proper shock capturing in
the regions of high compressibility. The second challenge is to develop improved LES
sub-grid closure model to include the effects of high compressibility on the turbulence
evolution. A new localized dynamic sub-grid closure that can handle some of the
underlying physics of STF interactions has been developed and validated.

In the following, we briefly summarize the key progress and success of the effort
conducted over the last 3 years. Some of these results and application of the solver
have been reported in publications and more detailed papers are currently being
written. Here, we list the publications past and planned for completeness:

Papers directly related to research under the current AFOSR project:

1. Fryxell, B. and Menon, S., “Hybrid Simulations of Richtmyer-Meshkov Insta-
bility,” AIAA-2005-0314, 43rd AIAA Aerospace Sciences Meeting, Reno, NV,
January, 2005.

2. Génin, F., Fryxell, B., and Menon, S., “Simulation of Detonation Propagation in
Turbulent Gas-Solid Reactive Mixtures,”’ AIAA-2005-3967, 41st AIAA/ASME/ASEE
Joint Propulsion Conference, Tucson, AZ, July 11-14, 2005.

3. Génin F., Fryxell, B. and Menon, S., “Hybrid Large-Eddy Simulation of Det-
onation in Reactive Mixtures,” 20th International Conference on Detonations,
Explosions and Shock Waves, Montreal CA, August 1-4, 2005.

4. Menon, S., “A Multi-Scale Simulation Methodology for Compressible Flows
and Turbulent Combustion” Proceedings of the Third European Combustion
Meeting, ECM2007, Chania, Crete, April 11-13, 2007.
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5. Fryxell, B. and Menon, S., “Simulation of Richtmyer-Meshkov Instability,” to
appear in Physica Scripta, 2008.

6. Génin, F. and Menon, S., “Simulation of Interaction of Shocks with Turbulent
Shear Layers Using Large-Eddy Simulations,” Computer and Fluids, 2008 (to
be submitted).

7. Génin, F. and Menon, S., “Simulation of Turbulent Mixing Behind a Strut Injec-
tor in Supersonic Flow,” invited paper, AIAA-2009-0132, 47th AIAA Aerospace
Sciences Meeting, January 2009.

8. Ukai, S., Génin, F., Srinivasan, S. and Menon, S., “Large-Eddy Simulation
of Re-shocked Richtmyer-Meshkov Instability,” AIAA-2009-0944, 47th AIAA
Aerospace Sciences Conference, January 2009.

9. Gottiparthi, K., Génin, F., Srinivasan, S. and Menon, S., “Simulation of Cellular
Detonation Structures in Ethylene-Air Mixtures,” AIAA-2009-0437, 47th AIAA
Aerospace Sciences Conference, January 2009.

Transition of the numerical and subgrid algorithms developed in this research to
other research is a key demonstration of the validity and the relevance of the new
approaches. In this regard, we have been very successful with many publications (for
research funded by ONR, DTRA, AFOSR and NASA) that employed the algorithms
developed under the current AFOSR project. Papers that uses the hybrid solver
developed under the AFOSR project:

1. Miki, K. and Menon, S., “Local Dynamic Subgrid Closure for Compressible
MHD Turbulence Simulation,” AIAA-2006-2891, 37th AIAA Plasma-dynamics
and Lasers Conference, San Francisco, CA, 5-8 June 2006.

2. Schulz, J., Miki, K., and Menon, S., “Simulation of MHD Turbulence-Chemistry
Interaction in Supersonic Flow,” AIAA Paper 2006-2894, 36th AIAA Plasma-
dynamics and Lasers Conf., San Francisco, 5-8 June, 2006.

3. Miki, K., Schulz, J. and Menon, S., “Large-Eddy Simulation of Supersonic
Plasma Flow over a Backward Facing Step,” Proceedings of the Fifth Turbulent
Shear Flow Phenomenon (TSFP-5), pp. 985-990, 2007.

4. Balakrishanan, K. and Menon, S., “Simulation of Detonation Propagation Through
Solid Particle Clouds and Subsequent Dispersion of Particles,” AIAA-2008-4689,
44th AIAA Joint Propulsion Conference, Hartford, CT, July 21-23, 2008.

5. Balakrishanan, K., Génin, F., Menon, S., and Nance, D., “Numerical Study
of Shock Overpressure and Propagation Characteristics from Detonations in
Homogeneous Explosives Nitromethane, HMX, and TNT,” 2008 (under prepa-
ration).
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6. Balakrishanan, K., Génin, F., Menon, S., and Nance, D., “Numerical Study
of Shock Overpressure and Particle Motion from Detonations in Heterogeneous
Explosives containing Dense Inert Particles,” 2008 (under preparation).

7. Miki, K., Schulz, J. and Menon, S., “Large-Eddy Simulation of Non-Equilibrium
Plasma-Assisted Combustion in Supersonic Flow,” AIAA-2008-5072, 44th AIAA
Joint Propulsion Conference, Hartford, CT, July 21-23, 2008.

8. Miki, K., Schulz, J. and Menon, S., “Large-Eddy Simulation of Equilibrium
Plasma-Assisted Combustion in Supersonic Flow,” Proceedings of the Combus-
tion Institute, Vol. 32, 2008 (to appear).

9. Miki, K., and Menon, S., “Localized Dynamic Subgrid Closure for Simulation
of Magnetohydrodynamics Turbulence,” Physics of Plasma, Vol. 15, 072306,
2008.

2.1 New Hybrid Framework for Shock-Turbulence-

Flame Interactions

A major problem for DNS and LES using algorithms developed for smooth flows is
that they produce unphysical oscillations in regions containing shocks and contact
discontinuities, and require very refine resolution in the discontinuity region [34].
On the other hand, shock-capturing schemes have not shown potential for resolving
unsteady shear flows in conjunction with shock waves, unless the resolution is high
enough so that the dissipation necessary to stabilize discontinuities in typical shock-
capturing schemes do not produce an unphysical rate of decay of turbulent features.

In order to capture strong unsteady shock motion and also the important scales of
turbulence, two key capabilities were developed and validated. For shock capturing
we initially (2005-2006) implemented Piecewise Parabolized Method (PPM), which
is nominally O(3) away from shocks but is limited to uniform or weakly stretching
Cartesian grids. In order to simulate shocks in more complex flows, we developed an
alternate high-order flux difference splitting method in 2006-2007 within the frame-
work of our multi-block structured flow solver. A Riemann problem is constructed at
the interface separating two cells, using high-order MUSCL type interpolation (with
a Monotonized Central limiter to prevent non-monotonic behavior) and solved us-
ing an adaptive approximate Riemann solver. This adaptive approximate Riemann
solver is based on the Harten-Lax-Leer (HLL) family of Riemann solvers [27]. In
particular, we combine the contact preserving HLLC with a non-contact preserving
HLLE in order to avoid parasitic oscillation in the post shock regions. Detailed vali-
dation of this combined HLLC/E approach has been conducted and demonstrated its
capability to achieve proper shock and discontinuity capturing with minimal insta-
bilities. Switching between HLLC and HLLE is based on local sensors that requires
no ad hoc adjustment from the user. This sensor uses both pressure ratio and ve-
locity divergence. The resulting hybrid Riemann solver differs from earlier hybrid
solvers [45, 46] in the sense that, instead of applying HLLE everywhere in the shock
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thickness, HLLC/E uses HLLE only in the direction transverse to the detected shock.
This limits the instabilities in the shock region and also limits the amount of extra
dissipation introduced by HLLE. As shown in our studies this sensor is very robust,
thanks to the uniqueness of the shock characteristics and has required no ad hoc user
input.

The overall accuracy of the HLLC/E is second order, although viscous terms are
still computed using fourth order accuracy. The HLLC/E model is implemented
within our full 3D generalized multi-block, multi-phase solvers LESLIE3D and there-
fore, it can exploit all the in-built capabilities of the code.

To simulate STF interactions, another type of hybrid approach is developed,
whereby, the O(4) smooth flow solver in LESLIE3D is used in regions with no shocks,
and the HLLC/E approach is used in regions of strong discontinuities. The switch
[22] employs detecting both pressure and density gradients and has been successfully
applied to practical turbulent problems [25, 24]. The regions of strong discontinu-
ities are detected by a measure of the smoothness of the solution locally so that the
switching between the two schemes is natural, and again requires no user input.

Thus, we now have a baseline generalized solver that employs two layers of hybrid,
locally adapting algorithms: (a) a shock capturing scheme switching to O(4) smooth
flow solvers away from regions of strong discontinuities, and (b) within the regions of
strong discontinuities a switch between contact discontinuity preserving (HLLC) and
non-contact preserving (HLLE) so that both shocks and contact discontinuities are
captured in full 3D with minimal instabilities. Application to many canonical and
complex flows have demonstrated the ability of this new solver. Results for some of
the validation studies are presented later.

2.2 New Sub-Grid Closure for Compressible Tur-

bulent Flows

The method described above is used to solve the Navier-Stokes equations in general
but in highly turbulent flows, the grid resolution is insufficient to do direct numer-
ical simulation (DNS) and therefore, we have to resort to large-eddy simulations
(LES). LES capability in LESLIE3D for subsonic reacting flows is well established
and is based on a localized dynamic closure for the sub-grid turbulent kinetic energy
(LDKM). The LDKM approach allows the model coefficients to evolve as a part of the
solution, and thus, there are no model constants to adjust. This provides a generality
critical to study complex flows.

To extend to highly compressible flows, additional sub-grid terms (that are typ-
ically ignored in low-speed flows) have to be re-assessed. For example, the sub-grid
enthalpy flux is typically modeled using the sub-grid eddy viscosity and a constant
turbulent Prandtl number in low speed flows. However, in compressible flow, the con-
stant Prandtl number assumption is not accurate and therefore, a new scale-similarity
dynamic closure for the turbulent Prandtl number has been developed. In addition,
the diffusion of ksgs due to pressure fluctuations, which plays an important role during
the interaction of a turbulent field with a shock, has the same structural form as the
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diffusion of energy due to the subgrid energy fluctuations. In a perfect gas these two
unclosed terms are proportional, and therefore, a model for this term is also achieved
through the dynamic computation of the turbulent Prandtl number.

Finally, the evolution of the turbulent kinetic energy in compressible flows is
dependent on the pressure-dilatation correlation. This physical phenomenon transfers
energy between internal and kinetic energy, and can be either a source or a sink of
kinetic energy. An earlier analytical study [47] showed that the pressure-dilatation
correlation becomes important in non-equilibrium flows, that is, when production and
dissipation of turbulent kinetic energy are significantly unbalanced. A dependence on
the square of the turbulent Mach number is also derived from this work and used in
the current closure.

In summary, the sub-grid closure for compressible flow now employs additional
dynamic closure for the turbulent Prandtl number, the kinetic energy diffusion due
to pressure fluctuations and the pressure-dilatation correlation.

The developments described here have also permitted high-fidelity simulations of
detonation processes. This combustion regime consists in a high-speed shock traveling
in a low-temperature reactive mixture. The gas is compressed and heated through the
compression, and auto-ignition is achieved. The heat released by the reaction feeds
back the main wave. A good capture of the phenomenon requires a proper capture
of the running shock, an accurate treatment of the chemical source terms, and a
low dissipation in the post-shock region, in order to capture the turbulent structures
emanating from the triple points on the detonation front. These capabilities have
been developed and validated in our solver.

In the following chapters we discuss the key results of this study.
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CHAPTER III

FORMULATION AND ALGORITHMS

3.1 Governing equations

3.1.1 Filtered Navier-Stokes Equations

The direct resolution of the Navier-Stokes equations requires an increasingly high
computational expense as the flow Reynolds number is increased. Except for a few
canonical flows, this method cannot be adopted for the simulation of practical flows,
and so LES with appropriate subgrid closure is a viable option. The compressible
LES equations are obtained by spatially filtering the Navier-Stokes equations using
a top-hat filter (see, e.g. [56]), appropriate for finite volume schemes. If we define

f̄ as the spatially filtered variable f , and f̃ as the Favré-filtered variable f , defined
by f̃ = ρf/ρ, where ρ represents the local fluid density, then the LES equations for
mass, momentum, total energy and species conservation can be written as:

∂ρ

∂t
+
∂ρũi
∂xi

= 0 (3.1)

∂ρũi
∂t

+
∂

∂xj

[
ρũiũj + Pδij − τij + τ sgsij

]
= 0 (3.2)

∂ρẼ

∂t
+

∂

∂xi

[(
ρẼ + P

)
ũi + qi − ũjτij +Hsgs

i + σsgsi

]
= 0 (3.3)

∂ρỸk
∂t

+
∂

∂xi

[
ρ
(
Ỹkũi + ỸkṼi,k

)
+ Y sgs

i,k + θsgsi,k

]
= 0 k = 1, ..., Ns (3.4)

Here, ρ is the density, (ui)i=1,2,3 is the velocity vector in Cartesian coordinates, P
is the pressure, T is the temperature, and Yk is the k− th species mass fraction. Also,
Ns is the total number of species. The total energy of the system is the sum of the
internal energy e and the kinetic energy. As a consequence, the filtered total energy
is the sum of the filtered internal energy ẽ, the resolved kinetic energy, (1/2)[ũiũi]
and the resolved subgrid kinetic energy (ksgs), given by ksgs = (1/2)[ũiui − ũiũi]. A
perfect gas equation of state is assumed here and neglecting the correlation between
subgrid species and the subgrid temperature fluctuations, the equation of state reads:

P = ρR̃T̃ (3.5)

The filtered internal energy per unit mass is then:

ẽ =
∑

k=1,...,NS

Ỹk

∫ eT
0

cv,k(T )dT (3.6)
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where the mixture gas constant R̃ is obtained using the specie molecular weights
(MWk)k=1,...,NS and Ru the universal gas constant, as:

R̃ =
∑

k=1,...,NS

Ỹk
Ru

MWk

(3.7)

The filtered static enthalpy per unit mass h̃ is defined as ρ̄h̃ = ρ̄ẽ+P and for perfect
gas can be expressed as:

h̃ =
∑

k=1,...,NS

Ỹk

∫ eT
0

cp,k(T )dT (3.8)

where cp,k = cv,k + Rk. The specific heat at constant pressure k − th species k, cp,k
are all obtained from classical temperature curve-fits [26] as polynomials of order 4:

cp,k(T ) =
∑

i=0,...,4

ak,iT
i (3.9)

hk(T ) =

∫ T

0

cp,k(T )dT =
∑

i=1,...,5

ak,i−1

i
T i (3.10)

The filtered viscous stress tensor, τij, and the filtered heat-flux vector, qi are approx-
imated as:

τij = 2µ(T̃ )

(
S̃ij −

1

3
S̃kkδij

)
(3.11)

qi = −κ(T̃ )
∂T̃

∂xi
+ ρ

∑
k=1,...,NS

h̃kỸkṼi,k (3.12)

In the previous expression, Sij represents the rate of strain, given as:

S̃ij =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
(3.13)

Empirical temperature-dependent laws are used for the evaluation of the viscosity.
Following [35], the viscosity is computed using a power-law temperature relation, with
an exponent of 0.76 for the case of shock / isotropic turbulence interaction, and a
Sutherland law is used for shock / shear interaction problem. In all cases, the thermal
conductivity is obtained by assuming a constant Prandtl number (Pr = cpµ/κ = 0.72).

Finally, Ṽi,k is the filtered diffusion velocity for k − th species and is modeled using
Fick’s law:

Vi,k =
−Dk

Ỹk

∂Ỹk
∂xi

(3.14)

where Dk is the kth-species diffusion coefficient.
All the subgrid-scale terms, denoted with a sgs superscript require specific mod-

eling to close the above system of LES equations. These terms are defined as:

τ sgsij = ρ (ũiuj − ũiũj) (3.15)
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Hsgs
i = ρ

(
Ẽui − Ẽũi

)
+
(
uiP − ũiP̄

)
(3.16)

σsgsi = (ujτij − ũjτij) (3.17)

Y sgs
i,k = ρ

(
ũiYk − ũiỸk

)
(3.18)

The closure strategy to model the terms denoted as subgrid-scale will be presented
next.

3.1.2 Subgrid Closure Model

An eddy-viscosity type closure is adopted in this study. The eddy viscosity, νt, is
evaluated using a characteristic length-scale, provided by the local grid size (∆), and
a characteristic subgrid velocity, which is obtained from the subgrid kinetic energy
ksgs, so that νt = cν∆

√
ksgs. The unclosed terms in the momentum equation, the

subgrid stresses τ sgsij are then closed as:

τ sgsij = −2ρνt

(
S̃ij −

1

3
S̃kkδij

)
+

2

3
ksgsδij (3.19)

The two unclosed terms in the energy equation, Hsgs
i and σsgsi are modeled together

following:

Hsgs
i + σsgsi = (ρνt + µ)

∂ksgs

∂xi
+
ρνtcp
Prt

∂T̃

∂xi
+ ũjτ

sgs
ij (3.20)

The subgrid diffusion of species mass fractions, Y sgs
i,k is also modeled using an eddy-

diffusivity assumption, as:

Y sgs
i,k = −ρνt

Sct

∂Ỹk
∂xi

(3.21)

Thus, to close the filtered equations of mass, momentum and energy conservation
using the above relations the local value of ksgs must be determined. In the present
study, a transport model for the subgrid kinetic energy is used. The exact governing
equation for ksgs reads:

∂

∂t
ρ ksgs +

∂

∂xi
(ρ ũik

sgs) = Dksgs + Pksgs + Pksgs −Dksgs (3.22)

where Dksgs represents the diffusion of ksgs, Pksgs is the pressure dilatation correlation,
and Pksgs and Dksgs are the production and dissipation of ksgs, respectively. Their
exact expressions are given by:

Dksgs = − ∂

∂xi

(
(ρK̃ ui − ρ K̃ũi − ũjτ sgsij ) + (uiP − ũiP )− (ujτij − ũj τij)

)
(3.23)

Pksgs = P
∂ui
∂xi
− P ∂ũi

∂xi
(3.24)

Pksgs = −τ sgsij

∂ũj
∂xi

(3.25)
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Dksgs =

(
τij
∂ui
∂xj
− τij

∂ũi
∂xj

)
(3.26)

The pressure-dilatation correlation and the diffusion and dissipation of ksgs cannot be
already obtained, and require additional modeling. By analogy with the Kolmogorov
concept of energy cascade, the dissipation of subgrid kinetic energy is evaluated based
on the characteristic length- and velocity- scales as Dksgs = ρcε(k

sgs)3/2/∆. The
diffusion due to subgrid fluctuations in kinetic energy, subgrid fluctuations in viscous
stress, and subgrid fluctuations in pressure all contribute to the global diffusion of
ksgs and each require proper modeling each. The first contribution (often referred
to as the triple velocity correlation) and the second are modeled together using a
ksgs gradient diffusion approach. The diffusion due to pressure fluctuations is often
neglected in incompressible, or low-compressibility. It has, however, been found from
direct simulations of shock / turbulence interaction (presented in last year’s report)
that it plays an important role in the ksgs-evolution in shock-containing flows. This
term isnow closed using an eddy-viscosity assumption as:

uiP − ũiP = ρR̃(ũiT − ũiT̃ ) == −ρνtR̃
σP

∂T̃

∂xi
(3.27)

So that the global model for the diffusion of subgrid kinetic energy reads:

Dksgs =
∂

∂xi

[(
ρνt
σk

+ µ(T̃ )

)
∂ksgs

∂xi
+
ρνtR̃

σP

∂T̃

∂xi

]
(3.28)

The pressure-dilatation correlation has been the focus of many studies in the
past, mostly from DNS or fundamental analyses [1, 58, 48, 47]. Many of these models
were unfortunately obtained from DNS results with non stable initializations. The
analytical formulation of Ristorcelli [47] is performed in the acoustic limit, and is
adequate in the limit of small turbulent Mach numbers. From this analysis, it appears
that the pressure-dilatation correlation is found to be an out-of-equilibrium turbulent
phenomenon, i.e., when the turbulent production is not balanced by the turbulent
dissipation. The expression obtained by [47] reads:

Pksgs = αpdM
sgs
t

2

(
S̃ksgs

Dksgs

)2

(Pksgs −Dksgs) (3.29)

where M sgs
t is the turbulent Mach number based on the local value of ksgs and the

local speed of sound. This term becomes important when the flow is both out of
equilibrium and the gradient Mach number (MtS̃k

sgs/Dksgs) is large. We employ this
model in our closure as well.

3.1.3 Localized dynamic closure for subgrid model coefficients

The closure terms in the LES and the equation for ksgs have six closure coefficients:
(cν , cε, σk, P rt, αpd, Sct). Nominal values for these coefficients have been proposed
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in the past (see, e.g. [7, 8]). In the present study, a dynamic evaluation of the
coefficients is performed, based on the framework of the Localized Dynamic ksgs

Model (LDKM) [32, 30]. This model uses the experimentally observed [38] similarity
between subgrid stresses and Leonard stresses to evaluate the closure coefficient from
directly computable quantities. The similarity hypothesis implies that the Leonard
stress is similar in nature to the subgrid stress. In particular, the trace of these
tensors, 〈ρ〉 ktest and ρksgs respectively, are similar.

Noting 〈f〉 the explicit application of a top-hat filter of size ∆̂ (∆̂ > ∆̄) performed
on variable f , the Leonard stress can be expressed as:

Lij = 〈ρ〉
(
〈ρũiũj〉
〈ρ〉

− 〈ρũi〉
〈ρ〉
〈ρũi〉
〈ρ〉

)
(3.30)

In the current closure, the Leonard stress at the test filter level (which is known explic-
itly is related to the subgrid model at the test filer level by the similarity assumption.
Thus, using the test-scale kinetic energy (ktest = 1/2Lii) as:

Lij = −2 〈ρ〉 cν
√
ktest∆̂


〈
ρS̃ij

〉
〈ρ〉

− 1

3

〈
ρS̃kk

〉
〈ρ〉

δij

+
2

3
〈ρ〉 ktestδij (3.31)

so that this relation has cν as the only remaining unknown. Lij being a symmetric
tensor, equation 3.31 leaves us with five independent relations for the determination
of one unknown. The over-determination is circumvented by using a least-square
method([36]) so that cν is computed as:

cν = −
MijL′ij

2MijMij

(3.32)

where:

Mij =
√
ktest 〈ρ〉 ∆̂


〈
ρS̃ij

〉
〈ρ〉

− 1

3

〈
ρS̃kk

〉
〈ρ〉

δij

 (3.33)

L′ij = Lij −
2

3
〈ρ〉 ktestδij (3.34)

The exact governing equation for ktest can be written as:

∂

∂t
ρ ktest +

∂

∂xi

(
〈ρũi〉 ktest

)
= Dktest + Pktest + Pktest −Dktest (3.35)

where the expression for diffusion, pressure correlation, production and dissipation at
the test-scale level are fully expressed as functions of the resolved variables and the
subgrid stresses. In particular, the dissipation is given by:

Dktest =

〈
(τij − τ sgsij )

∂ũj
∂xi

〉
−
〈
(τij − τ sgsij )

〉 1

〈ρ〉

〈
ρ
∂ũj
∂xi

〉
(3.36)
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Using the similarity assumption, the dissipation of ktest can be modeled similar to
the model for the dissipation of ksgs, Dktest = ρ̂cε(k

test)3/2/∆̂, where again, only the
closure coefficient remains unknown. Assuming that the viscosities can be extracted
from the filtering operation, the last coefficient, cε, are expressed as:

cε =
b∆

〈ρ〉(ktest)
3
2

(
(µ+ µt)

[〈
Σ̃ij

∂fuj

∂xi

〉
−
〈

Σ̃ij

〉
∂〈fuj〉
∂xi

]
− 2

3

[〈
ρksgs ∂fuk

∂xk

〉
− 〈ρksgs〉 ∂〈fuk〉

∂xk

] ) (3.37)

where Σij is twice the traceless strain tensor:

Σ̃ij = 2

(
S̃ij −

1

3
S̃kkδij

)
(3.38)

This expression models both the solenoidal and dilatational dissipation together, using
the same closure expression. This approximation remains acceptable as long as the
turbulent Mach number remains small, so that dilatational dissipation remains very
small. It should be noted that in most applications of supersonic to hypersonic flows,
the turbulent Mach number does remain small, i.e., far from unity [17].

In the current study, the extension of the LDKM model to compressible flows
requires computing the local turbulent Prandtl number dynamically using the sim-
ilarity hypothesis. At the test-scale level, the expression for the temperature and
velocity correlation can be expressed exactly and the over-specified system is again
solved using a least-square method, leading to a final expression:

1/Prt = −dini
didi

(3.39)

where

di = cν
√
ktest∆̂

1

〈ρ〉

〈
ρ
∂T̃

∂xi

〉
(3.40)

ni =

〈
ρũiT̃

〉
〈ρ〉

− 〈ρũi〉
〈ρ〉

〈
ρT̃
〉

〈ρ〉
(3.41)

Similarly, the closure coefficient for the pressure-dilatation correlation is evaluated
from the test-scale pressure-dilatation correlation as:

αpd =
Cεc

2〈
S̃
〉2

∆̂2 (Pktest −Dktest)

(〈
P
∂ũi
∂xi

〉
−
〈
P
〉〈∂ũi

∂xi

〉)
(3.42)

where c is the speed of sound.
The other coefficients σk and Sct could also be evaluated dynamically, if needed

using a similar strategy. However, the impact of the σk is small compared to other
terms in the governing equation for ksgs, and is therefore, assumed to be constant
(σk = 1). The turbulent Schmidt number is taken to be equal to 0.9. This latter
approximation is acceptable for the simulation of cases where species play a passive
role.
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3.1.4 Realizability conditions

Vreman et al [56] showed that if a positive semi-definite filter, such as the top-hat
filter, is used within an LES formulation, the subgrid stresses have to be positive semi-
definite. These conditions, referred to as the realizability constraints, were found by
Nelson and Menon [42] to be satisfied by the LDKM formulation for the computation
of well-resolved and fully turbulent simulations. The strong and very localized vari-
ations induced by shocks can makes it difficult to satisfy this property over regions
of the flow. Génin et al [24] showed that enforcing the weak realizability constraints
was beneficial to the LES modeling of shock / isotropic turbulence interaction at low
Mach numbers. The weak realizability constraint consists in enforcing:

|τ sgs1 2 |2 ≤ τ sgs1 1 τ
sgs
2 2

|τ sgs2 3 |2 ≤ τ sgs2 2 τ
sgs
3 3

|τ sgs1 3 |2 ≤ τ sgs1 1 τ
sgs
3 3

(3.43)

With the closure adopted in the present study, these constraints are manipulated to
show that the following relation should always hold:

cν ≤
√
ksgs

√
3 S̃ ∆

(3.44)

where

S̃2 =
1

2

(
S̃ij −

1

3
S̃kkδij

)(
S̃ij −

1

3
S̃kkδij

)
(3.45)

The validity of the current closure approach to these constraints will be closely ex-
amined in the context of shock / turbulence interaction for strong shocks.

3.2 Hybrid Algorithm for Shock-Shear Simulation

An accurate simulation of turbulence in supersonic flows is made difficult by the very
different scheme properties required within the same simulation. The resolution of
turbulent structures requires a smooth-flow solver with limited numerical dissipation,
whereas the discontinuities that can arise from supersonic flows require a significant
amount of dissipation in order to be correctly captured. Shock-capturing method-
ologies have been developed to enable the simulations of supersonic and hypersonic
flows, but even higher-order methods do not perform correctly in turbulent regions.
Lee et al [35] found that the use of a 6th-order ENO scheme was too diffusive to
properly capture turbulent features in a problem of shock / turbulence interaction.

Rather than trying to develop a single scheme that performs well in any region
of a supersonic turbulent flow, a hybrid approach has been developed to enable such
simulations. The base solver is a low-dissipation central scheme, adapted to the
simulation of turbulent, reacting flows, which has extensively and successfully been
used for practical studies of high Reynolds number reacting flows. This scheme is
combined with a flux-difference splitting approach that permits the capture of flow
discontinuities locally.
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3.2.1 Description of the flux-difference splitting scheme

The upwind scheme used in the present formulation is a high-order flux difference
splitting method. The reconstruction of the interface is performed using a MUSCL
type interpolation [54] with a limiting function to ensure monotonicity. The mono-
tonized central limiter is adopted. The reconstruction of a variable U consists in
extrapolating the variable to the interface with a directional bias, so that two states
are obtained, left (UL) and right (UR), following the approach given by:

UL
i+1/2 = Ui +

1− ξi
2

φmc(r
+
i−1/2)∆i−1/2(U)

UR
i+1/2 = Ui+1 −

1− ξi+1

2
φmc(r

−
i+3/2)∆i+3/2(U)

where ∆i+1/2(U) is given by:

∆i+1/2(U) = Ui+1 − Ui

The limiting function, φmc used here is the monotonized central limiter, which satisfies
the symmetry condition as well as the TVD property [27]. It is given as:

φmc(r) = max
[
0,min(2r, 2,

1 + r

2
)
]

where ξi is a coefficient determined by a flattening operation [12] used to prevent steep
and strong gradients from creating unphysical oscillations in the post-shock region.
This flattening is done by reducing the order of reconstruction on all variables when
steep strong shocks are detected. A cell is identified as being part of a shock wave if
the following two conditions are satisfied:

|Pi+1 − Pi−1|
min

(
Pi+1, Pi−1

) > 1

3
(3.46)

ui+1 − ui−1 < 0 (3.47)

The shock thickness is then measured by relating the pressure gradient across two
zones to the gradient across four zones,

Sp,i =
Pi+1 − Pi−1

Pi+2 − Pi−2

(3.48)

ξ̃i = max

[
0,min

(
1, 10(Sp,i − 0.75)

)]
(3.49)

The limiting factor ξi is then defined as:

ξi =

{
max

(
ξ̃i, ξ̃i+1

)
, ifPi+1 − Pi−1 < 0

max
(
ξ̃i, ξ̃i−1

)
, otherwise

(3.50)
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The reconstruction, equations 3.46 and 3.46 is then fully defined, and can be
applied to various sets of variables ([4]). In the present work, the operation is per-
formed on the primitive variables (ρ, ũi, P , ρk). Additional variables if needed are then
computed, and the monotonicity of these derived variables is explicitly checked and
enforced. The monotonicity of the interface temperatures, for instance, are enforced
by reducing the order of extrapolation of pressure and/or density as needed. The
reconstruction of the species specific density is also performed with special attention.
The most limiting factor of all specific densities is applied to all others, in order to
ensure mass conservation at the cell interfaces.

Fluxes at the cells interfaces are then obtained through the resolution of the Rie-
mann problem formed by the reconstructed state. The problem is solved using an
approximate Riemann solver. In this work, a hybrid approximate Riemann solver
has been developed, that permits a proper capture of the discontinuities in super-
sonic flows, while reducing the instabilities of other, classical, Riemann solvers. Its
formulation is based on the combination of two solvers of the HLL- family ([27]).

The HLLC [53] approximate Riemann solver is based on an extension of the 2−
waves HLL-Riemann solvers for hydrodynamics problems, rather than on the formal
3 − waves HLL− solvers. Its formulation results in a computationally inexpensive,
robust and yet accurate solver for the resolution of hydrodynamics problems, and
compares well to other commonly used Riemann solvers (such as the Roe, Osher, Two-
Shock, Two-Rarefaction Riemann solvers, see for e.g. [29], [21]) It is often preferred
to the Roe-solver for its characteristics of positivity and entropy preservation. The
known instability of this solver to odd-even decoupling and carbuncle phenomenon is
cured by employing the HLLE Riemann solver ([18]), a truly 2 − waves HLL-solver
for flux computation in the shock transverse directions (detected from equations
3.46 and 3.47). This hybrid solver has a reduced sensitivity to instabilities, and
is found less dissipative than hybrid solvers, which use HLLE for all directions in
the shock ([45]). In particular, the new solver recovers the accuracy of the HLLC
Riemann solvers for the resolution of one-dimensional problems. Extension of the
computational method to multi-dimensional problems is performed using an unsplit
methodology. The hybrid Riemann solver does not show any instability to the odd-
even decoupling, and accurately resolves the carbuncle test case [10]. More details on
the HLLE and HLLC formulations are given in Appendix A

This method is integrated in the hybrid formulation by sensing strong discontinu-
ity regions using a smoothness sensor. The switch used in this study is similar to that
presented in [22] and applied to practical turbulent problems in [24]. The smooth-
flow central scheme in LESLIE3D performs well for the resolution of turbulent flows,
but cannot correctly simulate strong discontinuities. A smoothness parameter Si is
formulated based on variables curvatures ([39]):

Si =
|Qi+1 − 2Qi +Qi−1|

|Qi+1 −Qi|+ |Qi −Qi−1|
, (3.51)

where Q can be any variable of interest. Both pressure and density can be used
to sense the smoothness of the flow. To prevent switching on numerical noise, a
threshold value for the denominator is defined. The smoothness Si is set to 0 if
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either the numerator or the denominator is less than 0.06Qi. The cell is identified
as non − smooth if the smoothness parameter exceeds a threshold value of 0.5. In
multi-dimensional problems, the transverse fluxes to that cell are also tagged as non-
smooth, and all fluxes are evaluated with the shock-capturing scheme. In all other
cases, the smooth spatial discretization is used.

3.2.2 Validation of the flux-difference splitting scheme

The discontinuity-capturing method has been extensively tested and validated for a
wide variety of flow configurations. Some representative tests are discussed here.

The shock-capturing capability is illustrated by Noh’s problem. This test case
simulates two infinite strength shocks moving outwards from the center of a one-
dimensional domain. The initial conditions are given by a sharp separation at x = 0.5,
the center of the domain, where the left state is given by (ρ, u, P ) = (1, 1, 10−6), while
the right state is (ρ, u, P ) = (1,−1, 10−6). The simulation is run for a total time
T = 1. The problem is solved over a grid with 100 grid cells. Figure 3.1 shows the
density profile at the end of the simulation using the current solver, and compared
to a reference solution. In the course of the simulation, the shocks are captured at
the right propagation speed. Furthermore, the post-shock profiles show very small
oscillations, as a result of the flattening operation, leading to a proper resolution and
proper shock propagation speed with limited dissipation. Only a slight dip is observed
in the density profile, as a result of the transience in the formation of the shocks.

0 0.5 1
x

0

1

2

3

4

5

ρ

Reference solution
HLLC/E

Figure 3.1: Density profile for two outwards-going infinite strength shocks.

The extension to multidimensional flow is demonstrated through the simulation
of a point explosion problem of Sedov on a two-dimensional grid. 256× 256 grid cells
are used to discretize a 1m×1m domain with a uniform Cartesian grid. A cylindrical
region of overpressure is initialized at the origin (bottom left corner) of the domain,
over a radius of 3.33cm. The pressure ratio across the initial discontinuity is 3.5 106.
The strong blast wave generated by this energy deposition soon reaches a state of
self-similar evolution. A high-resolution one-dimensional simulation of this problem
in cylindrical coordinates is also performed for reference. Figure 3.2 represents the
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one-dimensional projection of the (normalized) pressure of each grid cell versus the
radius of the cell from the origin. The small scattering observed in this plot shows
that the blast wave front is captured at its right speed, even when its propagation is
not aligned with the cells. Furthermore, the capture of the shock front is relatively
crisp, extending over two to three cells.
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Figure 3.2: Sedov’s point explosion pressure profiles.

The HLLC/E solver described earlier has been designed to reduce the sensitive-
ness of the HLLC to a weakness shared by most classical Riemann solvers. The
odd-even decoupling and carbuncle effect are solver’s instabilities, that can lead to
strong amplitude (unphysical) oscillations in the post-shock regions, which strongly
perturb the flow, and can wrongly interact with turbulent structures. The Odd-Even
decoupling test described by Liska and Wendroff [37] is repeated, using the HLLC/E
solver. Strictly no instability is detected in that case, whereas similar simulations
using the HLLC, the Two-Shock Riemann Solver and the Roe Riemann solver with
Harten-Hyman entropy corrections showed very strong sensitiveness to the instability.

The classical test that highlights the carbuncle phenomenon has been conducted:
the simulation of a M = 10 flow over a circular blunt body is performed. A grid with
80x160 cells is used to resolve this problem. Figure 3.3 shows the temperature iso-lines
from the computations using the HLLE, the HLLC, the Roe, the Two-Shock Riemann
Solver (TSRS) [52], and the HLLC/E solvers. The result obtained with the HLLE
solver can be used as reference, while the other computations show an instability along
the main shock front, leading to the formation of spurious oscillations in the post-
shock region. The solver of Roe is particularly sensitive to this instability, whereas
the HLLC/E does show a small kink within the shock front, but its instability appears
as very small when compared to the other solvers. This study validates the HLLC/E
hybrid solver and its reduced instability.

3.2.3 Validation of the LES methodology

The algorithms developed in the current effort and described earlier have been used to
study high-speed compressible turbulence using both DNS and LES, as well as some
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(a) HLLE (b) HLLC (c) HLLC/E (d) Roe (e) TSRS

Figure 3.3: Carbuncle test case using contact-preserving and mixed Riemann Solvers

canonical test problems. The hybrid scheme designed to capture strong discontinu-
ities and to resolve the smooth variations is used to study the Shu−Osher [51] test
problem. This test-case consists in a one-dimensional shock front propagating into a
sinusoidal density distribution. The interaction forms a region of rapid oscillations in
the post-shock region which steepen into shocks, forming an N-wave pattern. A cor-
rect resolution of this problem requires an accurate computation of shock propagation
at the right speed, and a proper capture of the short-wavelength smooth variations
that form in the post-shock region.

The initial conditions for this problem are given by the following density profile:

ρ(x) =

{
3.857142 x < 2
1− 0.2 sin(5x) x ≥ 2

. (3.52)

The traveling shock is initialized at x = 2, and the pre-shock pressure and velocity
are set 1 and 0, respectively. The post-shock values for pressure and velocity are
constant and equal to 10.333333 and 2.629369, respectively. A calorically perfect gas
is simulated with an adiabatic index γ of 1.4. The simulation is run for a total time
of 1.872.

The purely upwind approach cannot capture short wavelength oscillations when
200 grid cells are employed (Fig. 3.4), and in this region the dominant wavenumber
of the N-wave pattern appears as the smallest resolved wavenumber. Employing the
hybrid method permits for the same resolution to crisply capture the shock with the
upwind scheme, while the smooth flow solver is used to resolve the post-shock medium.
As a result, despite the fact that the full amplitude of the oscillations is not totally
recovered, the short wavelengths are apparent in the post-shock region. Increasing
the resolution to 400 grid cells confirms the low-resolution observation. The upwind
approach captures all the wavelengths of the problem, but the inherent dissipation
of the scheme prevents this approach from capturing the oscillations amplitude. The
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hybrid approach combines the advantages of both schemes, leading to a proper capture
of the main shock and a very good resolution of the post-shock oscillations.
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Figure 3.4: Evolution of the density for the Shu-Osher problem. —, Hybrid
(N=200)- - -, pure upwind (N=200) · · ·, Hybrid (N=400) �, pure upwind (N=400) ◦

The study of multi-mode Richtmyer-Meshkov Instabilities is shown next. A do-
main of 0.04cm×0.01cm is discretized using 1024×256 grid cells. An initial interface
between hydrogen at an initial temperature of 300K and helium at 4500K is shaped by
superposing a primary perturbation (of wavelength 0.01cm and amplitude 0.001cm)
and a secondary perturbation (with a wavelength of 0.002cm and 1/7th of the primary
amplitude). A shock with an overpressure ratio of 300 propagates in the region con-
taining helium, towards the shaped interface. The interaction leads to a 180o phase
inversion. The initially smooth interface forms large and small scale vortices under
the effect of baroclinic torque, which transition to turbulence and eventually decay.
The shock is partially transmitted in the hydrogen region, and is regularly distorted
by a series of transverse waves that form local triple points. The slip lines so formed
form a diamond − shaped pattern, which creates vortical structures due to Kelvin-
Helmholtz instabilities. This problem has been solved using the hybrid methodology
with both the Piecewise Parabolic Method (PPM) and with the current HLLC/E up-
wind scheme. The PPM implementation is identical to that of the PROMETHEUS
code and the FLASH code developed in the university of Chicago [23], and its in-
tegration in the hybrid methodology has been performed and described earlier [22].
Fig. 3.5 shows the temperature fields for all computations, and the regions where up-
winding is used in the fluxes computation. The large structures formed through the
interaction are found identical with both methods. The small scale vortices are found
to be slightly different for the two cases, but comparable. The regions of upwinding
are significantly more important in the case when PPM is used for discontinuity cap-
turing purposes, as illustrated in Fig. 3.5. The directional splitting used in the PPM
method requires an updated of all the neighboring cells, hence broadening the stencil
of PPM usage in the hybrid formulation. The unsplit HLLC/E method, on the other
hand, used the same integration method as the smooth flows solver, and can then be
locally activated. It leads then to a smaller region of activation around the density
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interfaces, hence, a reduced use of the dissipative scheme.

(a) (b)

Figure 3.5: Simulations of multi-mode Richtmyer-Meshkov instabilities using hybrid
PPM/4th (top) and hybrid HLLCE/4th (bottom): Temperature fields (left) and switch
fields (right).

The Richtmyer-Meshkov Instability (RMI) problem, used here to highlight the
switching process and for comparison of the hybrid methods, is a fundamental insta-
bility in shock containing flows. The mixing induced through the interaction and the
turbulence generated by the long-time decay, and/or by a re-shock make this case a
computational challenge. This configuration will be re-examined later using LES as
well.

The hybrid scheme can reliably capture shocks and still apply a limited amount
of dissipation on the turbulent structures. The closure model is evaluated by doing
LES and comparing with DNS using the current code and also with reference DNS
results [40], [35]. The DNS studies have been used in a priori studies to highlight
the driving terms of the ksgs governing equation within this configuration. The LES
grid used to discretize the configuration shown in Fig. 3.6 is coarser by a factor of 13
compared to the DNS grids. The resolution in the direction across the shock region
is the same spacing as in the DNS in order to capture the shock but the resolution
in the other two directions were reduced drastically. The initializations of the LES
simulation is obtained from the filtered DNS field.

The time-averaged axial Reynolds stress profiles obtained from the calculations of
the M = 1.29 and M = 3.0 cases are shown in Fig. 3.7 along with their corresponding
filtered DNS fields. In these plots, k0 denotes the most energetic wavenumber in the
initial turbulent field used at the inflow, and is used to normalize the distance from
the inflow. The results of the LES using the LDKM approach are shown along with
the results of an under-resolved simulation without the closure model. The turbulent
decay that occurs before the interaction is well captured at the right rate, when the
explicit subgrid model is used. Without model, the turbulent decay is off for the low
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Mach number case. No real trend can be isolated from the highest Mach number case,
as the timescale for convection of the turbulent structures is significantly smaller than
the timescales for production and/or dissipation. The post-shock level of stresses is
correctly predicted by the numerical method. The peak values reached downstream
the shock, from the acoustic / kinetic energy transfer, are slightly under-estimated in
both cases. Even though the minimum spacing matches that of the DNS simulation,
the grid around the shock is coarser, and leads to a slight under-prediction. The
dynamic model is, however seen to reproduce the gain in turbulence in the post-
shock region correctly. The turbulent decay that follows is captured at the right
rate when the LDKM is used. The absence of model, on the other hand, fails to
capture the turbulent behavior. The molecular viscosity in this under-resolved does
not provide enough dissipation to reproduce the filtered DNS profiles.

Figure 3.6: Computational set-up for the simulation of shock / isotropic turbulence
interaction. A box of isotropic turbulence is used at the inflow of a spatial, shock-fixed
domain.
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Figure 3.7: Longitudinal Re-stress profiles for a M = 1.29 Shock (left) and a
M = 3.0 shock (right) interacting with an isotropic turbulent field.
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The results presented in this section highlight the different aspects of the algo-
rithms developed in this research. The upwind scheme permits a proper capture of
the shock waves over 2/3 cells, and with the proper propagation speed. The hy-
brid scheme combines this upwind method to a smooth central scheme adapted to
turbulent flows simulation. This hybrid scheme successfully captures the problem
of Shu-Osher, shock / turbulence interaction. Furthermore, the development of the
LDKM closure approach have permitted a good capture of the turbulent behaviors for
this interaction without requiring any ad hoc model adjustment. In fact, the entire
algorithm (both numerical and subgrid) developed in this effort requires no model
adjustments in any of the reported flows (see next section). The application of this
method to different flows of practical interest is presented next.
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CHAPTER IV

RESULTS AND DISCUSSION

4.1 Richtmyer-Meshkov Instability

A Richtmyer-Meshkov Instability (RMI) is the result of an impulsive acceleration of
an interface between two media of different densities. The initial density discontinuity
leads to the formation of a momentum interface and of a mixing region which grows
linearly in the early time of the experiment. When non-linearities start playing a
major role, the large-scale structures start breaking down, and a region of turbulence
is formed from the initial interface.

Classically, the impulse needed in experimental studies of Richtmyer-Meshkov
instabilities is provided by a traveling shock. As the shocks travel down the shock
tubes, they reflect from the back wall of the experimental facility, and re− shock the
mixing region. This was observed to accelerate the transition to turbulence for this
instability. One of the experiments presented by Vetter and Sturtevant [55] has been
studied numerically with the current LES methodology. A M = 1.98 shock interacts
with an Air/SF6 interface, leading to an initial RMI, which forms large coherent
structures. The shock reflection from the back-wall re-shocks the mixing zone, and
transition to turbulence is enhanced. Experimental measurements of the mixing zone
are used for comparison. The domain employed for the current simulation is a 0.59m
long with a 0.27m2 cross section shock tube, and is schematically shown in Fig. 4.1.
Periodic conditions are enforced in y and z direction. The right boundary was set as
a no-flux wall, whereas the left boundary is treated as an outflow.

Figure 4.1: Geometry of the Simulation

In the numerical simulation, the interface between air and SF6 is initialized as:
xI(y, z) = a0 |sin(πy/λ) sin(πz/λ)| + a1h(y, z), where h(y,z) is a random function,
which perturbs the initial interface profile to break the symmetry and enhance per-
turbation and transition. Here, a0 = 0.25cm, a1 = 0.025cm and λ = 0.27/14cm are
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Case 1 2 3 4
Physical Size (m) 0.59×0.272 0.59×0.272 0.59×0.272 0.59×0.1352

Grid Size 281×1292 420×1932 560×2572 560×1292

Grid Resolution (cm) 0.21 0.14 0.105 0.105
Simulation Time (ms) 8.0 6.0 6.0 6.0
CPU hours 780 1680 7360 2040

Table 4.1: Grid resolution and domain size for various test cases
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Figure 4.3: Overall mixing length growth

assumed [28]. Resolution and domain size studies have been performed. Four test
cases (Table4.1) are discussed here.

Vetter and Sturtevant [55] estimated the instantaneous mixing lengths from visual
estimates of Schlieren images. The numerical mixing length is defined as h(t) =
4
∫
tube

(1− < ψ >) < ψ > dx, where <> represents the planar average. The growth
rate before reshock can be often represented as hi(t) = aτ θ ,where h represents the
mixing length, a is a constant, and τ is linear function of the time [59]. Zhou [60]
found that θb varies between 0.2 and 2/3. The present simulation falls in the range of
predicted values, with θ = 0.59 (Fig. 4.2). Figure 4.3 clearly shows that the mixing
width is over-predicted by the coarse grid but Cases 3 & 4 show that the mixing
length do not depend on the largest scale of physical domain, and that a reduced
physical length can be used. There is good agreement with the experimental data
[55].

A time sequence of iso-vorticity contours is shown in Fig. 4.4. Figs. 4.4(a) and
4.4(b) show the structural evolution from the first shock / interface interaction. The
formation of large finger−like shapes is initiated from the instability. These struc-
ture grow in the linear regime, and very high levels of vorticity are obtained. These
structures would eventually transition to turbulence and decay. The re-shock, how-
ever, enhances this instability, and Figs. 4.4(c) and 4.4(d) show the vortical structures
after the second passage of the shock. It is observed that the large, organized struc-
tures have broken down as a result of the interaction, forming a wide mixing region
with numerous vortical structures of different scales. 2D spectra of the axial velocity
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(a) 1.5ms, 4000(1/s) (b) 2.25ms, 8000(1/s)

(c) 4.0ms, 8000(1/s) (d) 5.0ms, 8000(1/s)

Figure 4.4: Iso-surface of total vorticity magnitude, colored by mass ratio of air
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Figure 4.5: 2D Spectra of the x-component of velocity

within the mixing zone (defined as the region where ψ ≥ 0.1) are presented in Fig.
4.5. The dominant wavenumber imposed at the initialization and its harmonics are
persistent in the spectra shown in Figs. 4.5(a). This is in accordance with the large-
scale structures observed from the iso-vorticity contours. Again, the late development
would dissipate the dominant waves and allow the formation of turbulent structures.
However, re-shocking is achieved before this transition stage is reached. Figure 4.5(b)
shows the spectrum obtained after re-shock. The second interaction enhances the
mixing, and a wider spectrum is obtained without dominant frequency. Zhou [59] an-
alytically derived that the energy spectrum of the RMI shows a k−3/2 scaling, rather
than the classical k−5/3, due to inhomogeneity and anisotropy induced by the shock
motion. In the spectra, an inertial range is obtained, although the dominant slope
does not match exactly the theoretical values k−3/2 or k−5/3, but is closer to k−6/5.
This latter scaling was also obtained in another LES study [11] but is currently still
being investigated.

The RMI is a challenging problem in numerical studies, as it evolves from a sharp
density interface. As such, the scheme is required to capture strong discontinuities
with limited dispersion, and still show small dissipation in order to capture the most
unstable modes of the configuration. The late-stage developments of instability lead
to the formation of high strain and high vorticity regions, which eventually form
turbulence. As noted before, re-shocking the interface only accelerates this process.
This second stage requires a high resolution scheme with low dissipation, and a correct
subgrid modeling that will mimic turbulence generation and the subsequent turbulent
decay.

4.2 Regular and Irregular Cellular Detonations

In a detonation wave, a high-speed shock travels in a low-temperature reactive mix-
ture, compressing and heating the gases. In the post-shock region, the conditions to
achieve auto-ignition are reached. The heat released by the reaction and the gas ex-
pansion feed back into the main wave. A good capture of the phenomenon requires a
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proper resolution of the running shock, an accurate treatment of the chemical source
terms, and a low dissipation resolution in the post-shock region in order to capture
the turbulent structures emanating from the triple points on the detonation front.

Simulation of regular and irregular cellular detonations is challenging as it involves
large range of length and time scales, nonlinear coupling between chemistry and fluid
dynamics and instability in flow. Different detonations have been simulated, and two
cases are presented hereafter, one of regular and one of irregular nature (see Table 4.2).
The initial profiles of pressure, temperature and species mass fractions are obtained
using a one-dimensional steady-state (ZND) detonation solver. These profiles are
projected on a two-dimensional grid, and the perturbation that transitions to the
cellular structure formation is initiated by placing a pocket of unreacted mixture
behind the front ([43]).

Case Type Resolution Cell resolution CPU hours used
(∆x = ∆y) µm.

I Regular 4800X1200 7.25 1665
II Irregular 4000X2000 18.75 2850

Table 4.2: Resolution for regular and irregular detonation simulations.

First, a detonation with regular cellular structures is presented: Case I considers
the regular detonation obtained far a stoichiometric mixture where γ is 1.2, the initial
temperature (T0) 293K, the initial pressure 0.2atm., the activation energy (Ea/RT0)
is 50 and the heat released by the reaction is given by Q/RT0 = 50. Here, R is
universal gas constant. The Chapman-Jouguet (CJ) detonation speed (DCJ) is the
most likely detonation speed, and is, for this case, 1.8km/s. The overdrive parameter
(f = (D/DCJ)2) is 1.6, where D is actual detonation speed. Recording the spatial
evolution of the triple points tracks leads to a numerical sootfoil track. Figure 4.6
shows the regular cells formed for Case I. This track is compared to the numerical
results of Deiterding [14] for the same conditions.

(a) (b)

Figure 4.6: Numerical soot foil recording maximum pressure showing regular cellular
structures from the current simulation (left) and from Deiterding [14] (right).

Case II is for an irregular detonation. The physical parameters for this case
are: γ = 1.228, Ea/RT0 = 38.2 and Q/RT0 = 34, and the overdrive factor is f =
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1.4. Figure 4.7 shows the sootfoil for this configuration along with an instantaneous
capture of the detonation front, represented through a snapshot of the field of density
gradient. The sootfoil shows the irregularity of the cells formed by the triple points.
Some triple points fade out as a consequence of the weak transverse waves induced in
this case. The instantaneous field also shows some of the vortical structures induced
by the triple point from baroclinic effects and Kelvin-Helmholtz instabilities. The
complex nature of the irregular detonation comes from the interaction between the
transverse waves, the vorticity and the heat released from the reaction.

(a) (b)

Figure 4.7: Numerical soot foil (left) and instantaneous field of density gradient
(right) for an irregular detonation (case II)

Full 3D LES of detonation has also been studied. A case of detonation is simulated
in a mixture of 2H2/1O2/3Ar initially at a pressure of 26kPa and a temperature of
300K, similar to the experiments of [6]. A 7-steps H2/O2 reaction mechanism is
employed to treat the combustion [20], and 500 × 180 × 180 grid cells are used to
discretize a physical domain of dimensions 8cm× 1.25cm× 1.25cm. Figure 4.8 shows
a snapshot of the detonation structure. The transverse waves in two dimensions
are clearly identified from the pressure gradient field. Their regular structure in three
dimensions is illustrated by the regular pattern of instabilities that corrugate the main
front of iso-pressure. Also, the unsteady triple points create vortical structures in the
post-detonation region that lead, through Kelvin-Helmholtz instabilities, to turbulent
structures further downstream. The cell width obtained from this simulations is
predicted in close agreement to the experimental observations.

The evolution of the detonation front in three-dimensional simulations requires the
use of an upwind, shock-capturing scheme. Clearly, the downstream evolution which
depends on the regularity of the detonation is showing unstable vortical structures,
and as the detonation becomes more unstable, the level of post-detonation turbulence
can significantly increase. The hybris method appears well adapted to capture of such
complex detonative processes.

4.3 Shock-Shear Interactions in a Scramjet

Facing the problem of reduced mixing in high-speed shear layers, and motivated by the
experimental and analytical prediction of turbulence enhancement through shocks,
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Figure 4.8: Three-dimensional LES results of the pressure iso-surface of 700kPa,
colored by the temperature field. The temperature field is shown in the last plane,
and the pressure gradient magnitude is on the bottom plane.

many researchers have studied the development of shocked turbulent shear layers.
The physical processes occurring during a shock / turbulent shear layer interaction
are, however, numerous and not limited to shock / turbulence. The vorticity of the
large coherent structures is amplified through the strong compression. Also, density
gradients across the shear layer can lead the formation of local Richtmyer-Meshkov
instabilities if misaligned with the shock’s pressure gradients. Finally, the mean
vorticity within a shear layer does not necessarily increase through the interaction.

The configuration studied numerically is that of a two-streams binary mixing
layer ([15]). The upper stream (hereafter, denoted with a subscript u) is a mixture
of N2/H2, with 10% hydrogen in mass, with a static temperature of 2000K and
a static pressure of 1atm, flowing at Mach 2.0 (which corresponds to a velocity of
2672m/s with the thermally perfect gas Equation Of State (EOS) employed here).
The lower stream (hereafter, denoted with a subscript l) is that of air where the
static temperature and pressure are set to match that of the upper stream. The
Mach number is set to 2.0, which corresponds to a velocity of 1729m/s. Again,
a thermally perfect gas EOS is used for this stream species. A schematic of the
configuration studied here is shown in Fig. 4.9 The convective velocity for this flow
is about Uc = 2100m/s. The convective Mach number is Mc = 0.43, which makes
it moderately compressible, with turbulent structures that still resemble those of the
incompressible mixing layer. In order to trigger the transition of this initially laminar
profile, a random phase velocity perturbation is added to the mean profile with a
fixed energy spectrum.

The problem was discretized using 250 × 80 × 40 grid cells to resolve a domain
of extent 0.17m × 0.10m × 0.03m. Fig. 4.10 shows a top view of the iso-surfaces
of the Q−criterion for the base mixing layer and the shocked counter-part. This
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Figure 4.9: Sketch of the shocked mixing layer configuration.

variable, defined as the second invariant of the velocity gradient tensor, is well-suited
for vortical field identification ([16]). These snapshots are taken at the same physical

Figure 4.10: Iso-surface of the Q-criterion (Q = 109s−2) for the un-shocked (top)
and the shocked (bottom) mixing layer, colored by the local Mach number (flow is
from left to right)

time, after 10 flow-through-times. A fast transition to turbulence is initiated by the
forcing at the inflow of the simulation, leading to a fully developed turbulent mixing
layer. Strongly three-dimensional coherent structures are observed in the mixing
layer. These coherent structures, initiated by natural instabilities of the flow, trigger
and maintain the turbulence within the mixing layer thickness.

The shock impact is found to amplify all the turbulent levels within the mixing
zone. In particular, the turbulent fluctuations in the cross-wise direction and the
principal Reynolds stress Rxy are significantly enhanced through the interaction. As
a consequence, the vortical structures in the shocked mixing layer are compressed, and
show more two-dimensionality than in the un-shocked case, as is visible in Fig. 4.10.
Later downstream, these structures recover a strong three-dimensionality. Further-
more, these increases in turbulent levels lead to an important increase in the mixing
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efficiency in the region that follows the shocks. The thickness based on the 90%-H2

mass fraction is shown in Fig. 4.11(a) for the base mixing layer and for the shocked
shear layer. A reduction of the thickness is observed first as the shock interacts with
the mixing region. This is due to the spatial compression of the mixing region by the
two shocks, and should not be interpreted as a reduction in mixing efficiency. On the
contrary, the shocked layer evolves with an increased growth rate in the region that
follows the interaction. The growth rate is found to be double the growth rate of the
un-perturbed layer. This observation is confirmed by the profile of mass entrained by
the mixing layer, showed in 4.11(b). The mixing achieved through the shock impact
is significantly greater than in the case of the base mixing layer.
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Figure 4.11: Mixing Layers growth rate based on a 90% H2 mass fraction, and mass
entrainment within the mixing layer thickness

Within 6cm from the location of the interaction, the mixing layer growth rate
steadies out at a value that is about 6% higher than its unshocked counter-part, and
the turbulent fluctuations relax to their un-disturbed levels. The reduction in the
mean levels of vorticity in this configuration leads to a lower amount of turbulent
production across the layer.

The effects of the shocks on the turbulent evolution and on the mixing efficiency
are found to be strong, but quite localized in space. These results are in agreement
with some experimental observations [50] where an increase in the growth rate was ob-
served following the interaction with the shocks, with a relaxation to the un-disturbed
levels observed within some short distance from the point of impact. It should also
be noted, as pointed out by Drummond et at [15], that the shocks interaction also
impact the static temperature within the layer, hence enhancing the reactions rates
in the mixing zone. Considering that shock waves cannot be avoided in practical
Scramjet engines, this method can be considered an interesting mixing-augmenting
technique.
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CHAPTER V

CONCLUSIONS AND FUTURE PLANS

A LES methodology has been presented that permits the resolution of compressible
turbulent flows in supersonic environments. Two key developments were required
to achieve this goal: a new hybrid numerical algorithm that captures strong shocks
and shear turbulence, and a localized dynamic subgrid closure for compressible flows.
The hybrid numerical algorithm combined a shock capturing approach with a shock-
free algorithm using an automatic shock detection technique and has been validated
for various canonical flows containing strong shocks as wells in flows with shock-
turbulence interactions. It is shown that this algorithm has the requisite accuracy to
do DNS of such flows. Subsequently, an advanced closure model for the subgrid kinetic
energy equation has been developed and validated. The LDKM approach allows
localized evaluation of all model coefficients during the simulation and therefore,
there are no adjustable parameters in the proposed simulation strategy.

This new LES approach has been used for the study of various applications. A
case of re-shocked Richtmyer-Meshkov Instability is discussed that highlights the
importance of capturing the pressure and the density discontinuities until a high
level of vorticity is achieved and transition to turbulence occurs. Also, fundamental
studies of regular and irregular detonations are conducted showing how the post-
detonation region is subject to the formation of vortical structures, which in 3D lead
to the formation of a turbulent medium. Finally, the evolution of a turbulent shear
layer after its interaction with two symmetric shocks is studied. An increased level
of turbulence was captured behind the interaction point, leading to an enhanced
growth rate. This phenomenon, associated to the increase in static temperature
make this mixing augmentation technique apparently well suited for flame intiation
and stabilization in supersonic flows. The amplified turbulence is, however, found to
decay within a short distance from the interaction.

The LES approach developed here appears well adapted to the simulations of
high-speed turbulent flows. Its applicability to practical configurations has been
demonstrated. The resolution requirements can, however, increase signifcantly as
the domains become more and more complex. A next step in the developments of
this LES strategy will consist in implementing an Adaptive Mesh Refinement (AMR)
technique. This method, which permits the grid to automatically adjust its levels of
refinement is ideally suited within the hybrid framework developed in this effort.
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APPENDIX A

HLLE AND HLLC RIEMANN SOLVERS

A brief description of the HLL Riemann solver family is given hereafter. The HLL
approximate Riemann solvers have first been developed by Harten, Lax and van Leer
([27]), by expressing a hyperbolic system of conservation laws in integrand form. From
an initial interface separating two constant states, it is assumed that N waves can be
formed from the characteristics evolution of the system, separating N + 1 constant-
properties regions. The knowledge of the jump relation through the waves and the
wave-speeds can be used to obtain a closed form expression for the intermediate states,
and the associated fluxes. Harten [27] carried out a full derivation for a 2 − waves
problem, leaving the wavespeeds as sole unknowns to the solver, and have given a
mathematical description for the 3-waves problem.

The 2-waves formulation for the resolution of the Euler equations (with wavespeeds
expressions given by [18, 19], thus calledHLLE) has been proven robust and adequate
for shocks and rarefactions, but appears to be very dissipative for contact discontinu-
ities. In another study, a correction to the derivation of this solver was proposed ([53]),
in order to add the missing contact wave (thus, called HLLC), whose wavespeed was
estimated by an approximation of the particle velocity in the intermediate region.
The formulation is closed by expressing the jump conditions across all wave obtained
from the exact Riemann solver for the Euler equations. This formulation was further
studied by Batten et al [3], where the averaged intermediate state was related to the
HLLE evaluation, thus leading to an easy, but yet robust, 3-waves Riemann solver. It
should be noted that this 3-waves solver does not follow the original work of Harten
et al, but rather modifies the 2-wave system by introducing the intermediate wave’s
speed from the 2-wave solver as a correction. The solver does not reduce to a single-
wave problem in the physical limit of an isolated discontinuity. It is, however, found
robust and yet accurate for the resolution of hydrodynamics problem, and remains
very inexpensive compared to other approximate Riemann solvers.

The Riemann solver developed for this study uses a combination of both solvers
in order to reduce the instabilities associated to contact-resolving solvers. The simple
2-waves HLL will be described hereafter. The wave-speeds estimates for the HLLE
approach, and the modifications that lead to the HLLC solver are also described.

A.1 The 2-waves HLL Riemann Solver

This approximate Riemann solver starts with the assumption that an initial dis-
continuity gives rise to 2 waves, a left-moving wave (of Eulerian speed Sl), and a
right-moving counterpart (of Eulerian speed Sr). A typical (x,t) diagram for a sub-
sonic case is given in Fig. A.1. The integral form of the Euler equations (see, eg,
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Figure A.1: Two characteristic waves, and their characteristic wavespeeds.

[52]), reads: ∮
[Udx− F (U)dt] = 0 (A.1)

where, noting q = ~V · ~n = unx + vny + wnz the interface normal velocity amplitude,
U and F (U) are given by:

U =



ρ
ρu
ρv
ρw
ρE
ρksgs

ρYk


, F =



ρq
ρuq + Pnx
ρvq + Pny
ρwq + Pnz
(ρE + P )q
ρksgsq
ρYkq


(A.2)

Let T be the local time step, T = tn+1 − tn > 0. Note that, in all cases, Sl < Sr. Let
us first treat the case where Sl > 0, which corresponds to a supersonic flow from left
to right. The Sl wave would lie on the right of the interface, and the flux at x = 0,
F ?, is then obviously given by F (Ul). Similarly, if Sr < 0, the flow is supersonic, from
right to left, and F ? is given by F (Ur).

Now, let us examine the case where Sl ≤ 0 ≤ Sr. The lengths Xl, Xr can then be
expressed as Xl = −TSl and Xr = TSr. Expressing the integral form of the Euler

40



equations on the system in Fig. A.1 gives:∫ −Xl

0
U(x, 0)dx−

∫ T
0
F
(
U(Xl, t)

)
dt+

∫ Xr

−Xl
U(x, T )dx

−
∫ 0

T
F
(
U(Xr, t)

)
dt+

∫ 0

Xr
U(x, 0)dx = 0

(A.3)

Assuming piecewise constant variables, and hence, piecewise constant fluxes, the pre-
vious relation can be re-written as:

Ul.
(
SlT
)
− Fl.

(
T
)

+U?.
(
(Sr − Sl)T

)
− Fr.

(
− T

)
+ Ur.

(
− SrT

)
= 0

(A.4)

relation that, after re-arrangement, leads to:

U? =
Fl − SlUl − (Fr − SrUr)

Sr − Sl
(A.5)

This shows that once (Ul, Ur) is known from the reconstruction procedure, and once
the wavespeeds (Sl, Sr) are estimated, the variables in the ?-region are fully defined.

The integral relation applied across a given k−wave, k = (l, r), results in the
Rankine-Hugoniot relations that read:

F ? = Fl + Sl (U
? − Ul)

F ? = Fr + Sr (U? − Ur)
(A.6)

From these 2 relations, one can eliminate U? in order to determine F ? as:

F ? =
SrFl − SlFr + SlSr(Ur − Ul)

Sr − Sl
(A.7)

Thus, the flux evaluated at the i + 1/2 interface from the 2-waves HLL Riemann
solver reads:

FHLLE
i+1/2 =


Fl if 0 ≤ Sl
F ? if Sl ≤ 0 ≤ Sr
Fr if Sr ≤ 0

(A.8)

Once an evaluation of the wavespeeds (Sl, Sr) is provided, the HLL Riemann
solver is fully defined. A few wavespeeds estimates can be found in the literature
([13, 18, 19, 52]), leading to schemes of different robustness and dissipation. In the
present development, the wavespeeds are estimated following the work of Einfeldt
(the HLL solver with Einfeldt wave-speeds is referred to as HLLE), as:

Sl = min [ql − cl, q̃ − c̃] Sr = max [qr + cr, q̃ + c̃] (A.9)

where Ũ here refers to the Roe-averaged variable U , and c is the local speed of sound.
This solver has proven to be robust and accurate for hypersonic calculations and

shock capturing purposes. Its assumption of double waves is however limiting, and the
consequent numerical smearing of contact discontinuities, shear waves, etc... makes it
unsuitable for viscous, turbulent calculations. An extension of this scheme has been
developed and presented by [53], where the middle wave in the Riemann problem is
taken into account in the derivation of the fluxes. This extended Riemann solver is
named HLLC (C standing for Contact), and its derivation is given in the next section.
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A.2 Restoration of the middle wave - the HLLC

Riemann Solver

This approximate Riemann solver starts with the assumption that, at a given interface
separating two states in a shock − tube-like configuration, the time evolution of a
system governed by the Euler equations gives rise to three waves, of speed Sl for the
left moving wave, Sr for the right moving wave, and S? for the contact wave. It is
then assumed that these waves can be represented as infinitely thin discontinuities,
separating constant states of the fluid. Sl separates Ul from U?

l , S? is the interface
between U?

l and U?
r , while Sr separates U?

r from Ur. This assumption of thin interfaces
is justified for both shocks and contact discontinuities, and is an approximation in
the case of rarefactions. A typical representation of a subsonic system is shown in
Fig. A.2.

Let T be the local time step, T = tn+1 − tn > 0. Note that, in all cases, Sl <
S? < Sr. Similarly to the HLL solver, the case of a supersonic flow from left to right,
where Sl > 0, leads to a flux at x = 0 given by F (Ul). Again, if Sr < 0, the flux is
given by F (Ur). Now, let us examine the case when Sl ≤ 0 ≤ Sr. The lengths Xl and
Xr can then be expressed as Xl = −TSl and Xr = TSr respectively, and similarly,
X?
l = T (S?−Sl), X?

r = T (Sr−S?). The Euler equations in integral form, Eqn. A.1,
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can be applied to the system represented in Fig. A.2, leading to the relation:∫ −Xl

0
U(x, 0)dx−

∫ T
0
F
(
U(Xl, t)

)
dt+

∫ X?

−Xl
U(x, T )dx

+
∫ Xr

X? U(x, T )dx−
∫ 0

T
F
(
U(Xr, t)

)
dt+

∫ 0

Xr
U(x, 0)dx = 0

(A.10)

With the same assumptions of piecewise constant variables and piecewise constant
fluxes as in the derivation of the HLL solver, the previous relation can be re-written
as:

Ul.
(
SlT
)
− Fl.

(
T
)

+ U?
l .
(
(S? − Sl)T

)
+ U?

r .
(
(Sr − S?)T

)
− Fr.

(
− T

)
+ Ur.

(
− SrT

)
= 0

(A.11)

relation that, after re-arrangement, leads to:

(S? − Sl)U?
l + (Sr − S?)U?

r = Fl − SlUl − (Fr − SrUr) (A.12)

This relation relates the left and right ?-variables together, and is often called the
consistency condition. Note that assuming a unique ?−state, so that U?

l = U?
r recovers

the Consistency Condition of the HLL solver, Eqn. A.5.
The integral applied around a control volume surrounding a given k−wave leads

to:
Uk.
(
SkT

)
− Fk.

(
T
)
− U?

k .
(
− SkT

)
+ F ?

k .
(
T
)

= 0 (A.13)

so that the corresponding Rankine-Hugoniot relations across the k−wave, k = (l, r),
are recovered, and reads:

F ?
l = Fl + Sl (U

?
l − Ul)

F ?
r = Fr + Sr (U?

r − Ur)
(A.14)

Identically, the Rankine-Hugoniot relation across the ?-wave reads:

F ?
l = F ?

r + S? (U?
l − U?

r ) (A.15)

The relations A.12, A.14 and A.15 give 4 relations for 4 unknowns (F ?
l , F

?
r , U

?
l , and

U?
r ). It is however straightforward to show that they are not linearly independent. An

assumption has to be made on the intermediate states in order to solve this system
of equations.

Toro et al [53] closed the relation by assuming that the intermediate wave had
the same properties as a contact discontinuity. Its propagation speed is then assumed
identical to the convective velocity in the ?−region, and this wave retains the ini-
tial discontinuity in the passive scalar field. This also implies that both convective
velocities and pressures have to match across the interface. Mathematically, those
assumption are expressed by:

(~V ?
l · ~n = q?l ) = (~V ?

r · ~n = q?r) = S?

P ?
l = P ?

r

φ?l = φl , φ
?
r = φr

(A.16)

where φ is any passive scalar advected by the fluid (φ = ksgs, Yk, ...). Note that one
special case of passive scalar in the present approach is the component of the velocity
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transverse to the interface, φk = ~Vk−
(
~Vk · ~n

)
~n = ~Vk−S?~n, k = (l, r). As mentioned

in Toro [52], all of these conditions are exactly satisfied by a contact discontinuity
computed from an exact Riemann solver.

With these assumptions, one can re-write the four first elements of the vectorial
equation expressed in Eqn. A.12, as:

(S? − Sl)

U?
l︷ ︸︸ ︷
ρ?l
ρ?l u

?
l

ρ?l v
?
l

ρ?lw
?
l

+(Sr − S?)

U?
r︷ ︸︸ ︷
ρ?r
ρ?ru

?
r

ρ?rv
?
r

ρ?rw
?
r

 = Sr

Ur︷ ︸︸ ︷
ρr
ρrur
ρrvr
ρrwr

−Sl
Ul︷ ︸︸ ︷
ρl
ρlul
ρlvl
ρlwl

+


ρlql

ρlqlul + Plnx
ρlqlvl + Plny
ρlqlwl + Plnz


︸ ︷︷ ︸

Fl

−


ρrqr

ρrqrur + Prnx
ρrqrvr + Prny
ρrqrwr + Prnz


︸ ︷︷ ︸

Fr

(A.17)

By assumption, q?k = S? for both k = l/r. Projecting the vectorial momentum
equation on the directional unit vector gives, along with the first relation, the following
set of two equations:

ρ?l (S
? − Sl) + ρ?r(Sr − S?) = ρr(Sr − qr)− ρl(Sl − ql)[

ρ?l (S
? − Sl) + ρ?r(Sr − S?)

]
︸ ︷︷ ︸S? = Pl − Pr + ρrqr(Sr − qr)− ρlql(Sl − ql) (A.18)

Replacing the under-braced term in the last equation by the right-hand side of the
first equation above leads to:

S? =
Pr − Pl + ρlql(Sl − ql)− ρrqr(Sr − qr)

ρl(Sl − ql)− ρr(Sr − qr)
(A.19)

It is then possible to manipulate Eqn. A.14 and get the expressions for all ?-variables.
One can write the first four relations, for continuity and momentum:


ρ?kS

?

ρ?kS
?u?k + P ?

knx
ρ?kS

?v?k + P ?
kny

ρ?kS
?w?k + P ?

knz


︸ ︷︷ ︸

F ?
k

=


ρkqk

ρkqkuk + Pknx
ρkqkvk + Pkny
ρkqkwk + Pknz


︸ ︷︷ ︸

Fk

+Sk




ρ?k
ρ?ku

?
k

ρ?kv
?
k

ρ?kw
?
k


︸ ︷︷ ︸

U?
k

−


ρk
ρkuk
ρkvk
ρkwk


︸ ︷︷ ︸

Uk


(A.20)

the first relation leads directly to an expression for the density in the star region:

ρ?k = ρk
Sk − qk
Sk − S?

(A.21)
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Again, multiplying the second relation by nx, the third by ny and the last by nz,
adding those three relations, and using the expression for ρ?k given in Eqn. A.21 leads
directly to:

P ?
k = Pk + ρk(qk − Sk)(qk − S?) (A.22)

Note that the relation expressed in Eqn. A.22 is valid for both k = (l, r), and satisfies
P ?
l = P ?

r . Let us define βk, αk and ωk as:

βk = S?−qk
Sk−S?

αk = βk + 1
ωk = −βk(qk − Sk)

(A.23)

The state vectors U?
k can then be expressed as:

U?
k = αUk +



0
ρkωknx
ρkωkny
ρkωknz
P ?S?−Pkqk

(Sk−S?)

0
0


(A.24)

With these relations, the evaluation of the wavespeeds provides the description of all
states in the Riemann problem under consideration. It is then possible to describe
the fluxes at i+ 1/2 interface. The general expression for these fluxes is given by:

FHLLC
i+1/2 =


Fl if 0 ≤ Sl
F ?
l = Fl + Sl(U

?
l − Ul) if Sl ≤ 0 ≤ S?

F ?
r = Fr + Sr(U

?
r − Ur) if S? ≤ 0 ≤ Sr

Fr if Sr ≤ 0

(A.25)

The HLLC Riemann solver is then fully defined, and only the wavespeeds are
needed to close its expression. The estimates used in the HLLE solver are used for
the evaluation of Sl and Sr, whereas S? is defined through relation A.19.
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