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Purpose of TalkPurpose of Talk

Demonstrate how the modeling (regression analysis) 
of evaporation rate data can be improved by rescaling 
the variables based on knowledge of the process

Describe how running the experimental design trials 
in specific randomized blocks – as compared to 
running the planned trials in a haphazard order –
facilitates: 

A sequential model building process

Identifying when running more trials adds little new information
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SummarySummary

Rescaling the variables using knowledge of the 
physics reduces the complexity of the model 
required to adequately fit the data

Before rescaling, a 10-term quadratic model was needed

After rescaling, a 4-term linear model is all that is needed

Extrapolated predictions for checkpoints within the 
5-cm tunnel data validate “nearby” extrapolation 
with the physics-based linear model
For the physics-based linear model “farther out”
extrapolations are more plausible than those of the 
empirical model.  

Note that these “farther out” conditions are beyond the practical range of the 
wind tunnels and that these predictions have not been validated.
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SummarySummary

Although the same level of reduction of the number 
of required trials seen for HD on glass may not hold 
true for other agents and/or substrates, results point 
to importance of running trials in a sequence of 
blocks that support increasingly complex models.

Combining the data for the 5-cm and 10-cm tunnels 
shows that the “tunnel effect” - although statistically 
significant - is dwarfed by the effects of the 
Temperature, Wind Velocity and Drop Size which are 
5X to 14X as large.  For HD on glass, the behavior of 
the two tunnels appears quite similar.
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Data for HD on Glass 
Came from Two Sources

Data for HD on Glass 
Came from Two Sources

5-cm ECBC tunnel data 
19 unique trials – with one observation for each – i.e. no replicates

10-cm Czech tunnel data 
13 unique trials with 34 observations – eight 2X, four 3X and one 6X

In both cases the original plan called for the 
running of a “validation design” - 27 unique trials 
making up the 3 X 3 X 3 full-factorial design
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3 X 3 X 3 Full-Factorial Design and 
Empirical Model Terms It Can Support

3 X 3 X 3 Full-Factorial Design and 
Empirical Model Terms It Can Support

x1

x 2

x 3

y = a0 + a1x1 + a2x2 + a3x3 

+ a12x1x2 + a13x1x3 + a23x2x3

+ a11x1
2 + a22x2

2 + a33x3
2

+ a123x1x2x3

+ a112x1
2x2 + a122x1x2

2 + a113x1
2x3

+ a133x1x3
2 + a223x2

2x3 + a233x2x3
2

constant + linear

+ 2-way interactions

+ curvature terms

+ 3-way interaction

+ partial cubic terms 

Because this design does not have 4 levels/variable, it cannot 
be used to fit full cubic terms such as a111x1

3, a222x2
3 and a333x3

3.
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Comparing Surfaces for Increasingly Complex 
Polynomials Fit to Data from the Branin Function 

Comparing Surfaces for Increasingly Complex 
Polynomials Fit to Data from the Branin Function 

“Branin Function”

Of these models, the full cubic best approximates the Branin function, 
but still cannot represent the ripples visible on edges of the last plot.
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Data Transformations – Why Do Them?Data Transformations – Why Do Them?

Remedy for lack of fit
Plot predictions will not violate physical limits 

e.g. “# of Counts” not negative; 
YIELD not > 100%

Make model more robust
Make error more uniform across design region 
(also called “stabilizing the variance”)

Transformations change the scale of the response to make it more nearly 
conform to the usual regression assumptions, the most important of which 
are that the data are independent and follow a normal distribution with a 
constant variance. 
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Two Remedies for Lack-of-Fit
Fancier Graph Paper or Fancier Curve

Two Remedies for Lack-of-Fit
Fancier Graph Paper or Fancier Curve

linear

semi-log

Does not require additional trials. Usually requires additional trials.
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Model Predictions are Virtually Same 
within the Range of the Control
Variable Settings (100 to 400)

Model Predictions are Virtually Same 
within the Range of the Control
Variable Settings (100 to 400)

semi-log

At Rate = 500
Predicted Yield is 4

At Rate = 500
Predicted Yield is 22

Which prediction is more suspect?  Why?
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Have a Reason to Use a Transformation-
DO NOT “Brute Force” Eliminate Lack-of-Fit

Have a Reason to Use a Transformation-
DO NOT “Brute Force” Eliminate Lack-of-Fit

Consult a book like  

Check publications in your 
field to see how others 
present the same kind of data. 

Consult your local statistical 
expert.
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Example of How Rescaling 
Makes the Analysis Easier
Example of How Rescaling 
Makes the Analysis Easier

Specific Heat of Metals for T < 10°K

C vs. T
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What Knowledge Did We Use to 
Choose Variable Scaling?

What Knowledge Did We Use to 
Choose Variable Scaling?

Evaporation rate and temperature have an Arrhenius 
relationship where Evap_Rate is proportional to e(-1/kT) which 
leads to the scaling choices of taking

the log10 of the response, Evaporation Rate, (loge could have been used) and 

the inverse of the control variable Temperature (in °K)

From Prof. J. Danberg via M. Miller - evaporation rate is 
proportional to the cube-root of the Wind Velocity
Believing that evaporation rate was dependent on the area 
of the drop led to assumption that response should be 
proportional to square-root of the Drop Size. 

Recently T. D’Onofrio pointed out that drop size is really a volume and 
therefore the calculated area of the drops is proportional to (Drop Size)2/3.        
It will be shown that reanalysis of the data using this new scaling makes for 
very minor changes in predictions and no altering of original conclusions.
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Comparison of 10-term Quadratic 
and 4-term Linear Models

Comparison of 10-term Quadratic 
and 4-term Linear Models

The quadratic model can support many shapes – including; 
mountain, valley, ridge, saddle and plane.

log10(y) = a0 + a1x1 + a2x2 + a3x3 

+ a12x1x2 + a13x1x3 + a23x2x3

+ a11x1
2 + a22x2

2 + a33x3
2

constant + linear

+ 2-way interactions

+ curvature terms

log10(y) = A0 + A1X1 + A2X2 + A3X3

and X1 = (x1)-1, X2 = (x2)1/2, X3 = (x3)1/3

constant + linear terms

sample exponents used 
to “linearize” model

The linear model can only support a plane.
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Locations of the 19 Unique Trial 
Settings for the 5-cm Tunnel

Locations of the 19 Unique Trial 
Settings for the 5-cm Tunnel
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Comments on 5-cm Tunnel AnalysesComments on 5-cm Tunnel Analyses

Good news: Physics-based linearized model fits 
well - has slightly smaller model error (residual std. 
dev.) and higher Adjusted-R2 than empirical model
Better news: Interpolated model predictions based 
on fitting data at 8 corner design points are 
validated by data at locations of 11 interior design 
trials - which were not used in fitting model
Even better news: Reversing the situation, the 
extrapolated model predictions based on fitting 
data at 11 interior points are validated by data at 8 
corners - which were not used in fitting model
Maybe best news:  As few as 4 corner points + 1 
center point are needed for the 80% solution…
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Interpolation with Empirical Quadratic Model
(Response Transformed to Log10 Scale)

Interpolation with Empirical Quadratic Model
(Response Transformed to Log10 Scale)
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quadratic model

101.38 = 24.0
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The red polyhedral shape 
results from “shrink wrapping”
the 11 non-corner design trials 
for the 5-cm tunnel. 

Predictions at the 8 corners of 
the design region made using a 
model fit to these 11 points are 
extrapolated predictions.

Volume Enclosed by the 11 Unique
Interior Trials for the 5-cm Tunnel
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Interior Trials for the 5-cm Tunnel
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Comparison of Ranked Effect Estimates
for 10-term Quadratic Models Fit to 

Unscaled and Scaled Control Variables

Comparison of Ranked Effect Estimates
for 10-term Quadratic Models Fit to 

Unscaled and Scaled Control Variables

An Effect is the Change in the Response, log10(Evap_Rate), 
Resulting from Changing a Variable Setting from Low to High
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+

6  SQRT_Drop_Size*Cube-root_of_Vel
+

9  Cube-root_of_Vel^2
-

8  SQRT_Drop_Size^2
-

5  Inverse_Temp*Cube-root_of_Vel
+

7  Inverse_Temp^2
+

4  Inverse_Temp*SQRT_Drop_Size
-

These 6 terms 
eliminated

Only #6 close 
to being 
significant
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Comparison of Model Error EstimatesComparison of Model Error Estimates

Results are similar but slightly 
better for the 4-term linear model

Linear Model with 
rescaling of control variables

N trials          = 19
N terms           = 4
Residual DF       = 15
Residual SD    = 0.0700

Cross val RMS = 0.0778

R Squared      = 0.989
Adj R Squared  = 0.986

Quadratic Model without 
rescaling of control variables

N trials          = 19
N terms           = 10
Residual DF       = 9
Residual SD    = 0.0782

Cross val RMS = 0.1061

R Squared      = 0.992
Adj R Squared  = 0.983

Smaller

Higher

Smaller
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Comparing Residual SD, Checkpoint RMS 
and Raw SD for a Single Control Variable
(NOTE: Real Data NOT Used in this Comparison)

Comparing Residual SD, Checkpoint RMS 
and Raw SD for a Single Control Variable
(NOTE: Real Data NOT Used in this Comparison)

N trials       = 11
N terms        = 2
Residual DF    = 9
Residual SD    = 0.0655
(Model error)

N checkpoints  = 12
Checkpoint RMS = 0.0808
(Prediction error)

Raw SD         = 0.2245
(Error about mean of data
for 11 trials used to fit)

2 4 6 8 10
Wind Velocity (m/s)

40

80

120

160

E
va

po
ra

tio
n 

R
at

e 
(μ

g/
m

in
) Points used to fit line

Checkpoints NOT used
to fit line

66.2

Graph paper used has log10 vertical scale and cube-root horizontal scale.
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Comparing Residual SD, 
Checkpoint RMS and Raw SD

Comparing Residual SD, 
Checkpoint RMS and Raw SD

When Residual SD ~ Checkpoint RMS then 
model error is comparable to prediction error

Residual SD calculated from the differences between the observed and fitted 
(predicted) values

Checkpoint RMS calculated from the differences between the observed and 
predicted values - BUT the observed values were NOT used to fit the model 
used to make the predictions

Ideally both Residual SD and Checkpoint RMS should 
be “far” from Raw SD (SD about the Mean of the data)

There is no statistical test for how far apart they should be, but for the closer 
case – the fitting of the 11 internal points - the Raw SD (0.4923) is 6 times 
larger than both the Checkpoint RMS (0.0765) and the Residual SD (0.0785)
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Comparison of Model Error 
and Checkpoint Error for 8 Corners 

and 11 Internal Points

Comparison of Model Error 
and Checkpoint Error for 8 Corners 

and 11 Internal Points

Residual SD and Checkpoint RMS Values Agree Well

Fit of 11 Internal Points and
Use 8 Corners as Checkpoints

N trials       = 11
N terms        = 4
Residual DF    = 7
Residual SD    = 0.0785
Raw SD         = 0.4923

N checkpoints  = 8
Checkpoint RMS = 0.0765
Cross val RMS = 0.1067

R Squared      = 0.982 
Adj R Squared  = 0.975

Fit of 8 Corner Points and
Use 11 Internal as Checkpoints

N trials       = 8
N terms        = 4
Residual DF    = 4
Residual SD    = 0.0633
Raw SD         = 0.7332

N checkpoints  = 11
Checkpoint RMS = 0.0816
Cross val RMS = 0.0895

R Squared      = 0.996
Adj R Squared  = 0.993



29

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

Comparison of Checkpoint RMS for 
V1/3 term (left) vs. V2/3 term (right)

Fitting 8 Corners w/11 Internal Checkpoints

Comparison of Checkpoint RMS for 
V1/3 term (left) vs. V2/3 term (right)

Fitting 8 Corners w/11 Internal Checkpoints

Checkpoint RMS Better with V1/3 than with V2/3

Fit of 8 Corner Points and
Use 11 Internal as Checkpoints

N trials       = 8
N terms        = 4
Residual DF    = 4
Residual SD    = 0.0633
Raw SD         = 0.7332

N checkpoints  = 11
Checkpoint RMS = 0.1117
Cross val RMS = 0.0895

R Squared      = 0.996
Adj R Squared  = 0.993

Fit of 8 Corner Points and
Use 11 Internal as Checkpoints

N trials       = 8
N terms        = 4
Residual DF    = 4
Residual SD    = 0.0633
Raw SD         = 0.7332

N checkpoints  = 11
Checkpoint RMS = 0.0816
Cross val RMS = 0.0895

R Squared      = 0.996
Adj R Squared  = 0.993
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Comparison of Checkpoint RMS for 
DS1/2 term (left) vs. DS2/3 term (right)

Fitting 11 Internal w/8 Corner Checkpoints

Comparison of Checkpoint RMS for 
DS1/2 term (left) vs. DS2/3 term (right)

Fitting 11 Internal w/8 Corner Checkpoints

Checkpoint RMS Better with DS1/2 than with DS2/3

Fit of 11 Internal Points and
Use 8 Corners as Checkpoints

N trials       = 11
N terms        = 4
Residual DF    = 7
Residual SD    = 0.0776
Raw SD         = 0.4923

N checkpoints  = 8
Checkpoint RMS = 0.0857
Cross val RMS = 0.1062

R Squared      = 0.983 
Adj R Squared  = 0.975

Fit of 11 Internal Points and
Use 8 Corners as Checkpoints

N trials       = 11
N terms        = 4
Residual DF    = 7
Residual SD    = 0.0785
Raw SD         = 0.4923

N checkpoints  = 8
Checkpoint RMS = 0.0765
Cross val RMS = 0.1067

R Squared      = 0.982 
Adj R Squared  = 0.975
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Compare Predictions for Models Using 
AREA_Drop vs. SQRT_Drop_Size

Compare Predictions for Models Using 
AREA_Drop vs. SQRT_Drop_Size
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AREA_Drop

T(Evap_Rate_(copy))
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114 Inverse_Temp =  0.0032

Value Plot SD Predicted SD
           1.83            0.05            0.09

AREA_Dro=12.67 Cube-roo=1.53
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106 Inverse_Temp =  0.0032

Value Plot SD Predicted SD
           1.84            0.05            0.09

SQRT_Dro=2.45 Cube-roo=1.53
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Evap_Rate_(copy)
Inverse_Temp =  0.00324
Cube-root_of_Vel =  1.54
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Interpolation w/Physics-Based Linear Model
(Response Transformed Back to Original Scale)

Interpolation w/Physics-Based Linear Model
(Response Transformed Back to Original Scale)
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Value Low Limit High Limit
          25.25           16.97           37.58
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Limits
Cube-root_of_Vel

Inverse_Temp =  0.0032470
SQRT_Drop_Size =  1.000

25.3 (17.0, 37.6)

11 interior trials fit using a 
4-term linear model that is 
physics based

1-D, 2-D & 3-D plots of Evap_Rate vs. 
Cube-root_of_Vel & SQRT_Drop_Size
with Log10 transformation “undone”
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Inverse_Temp =  0.003247

Value Low Limit High Limit
          55.11           36.66           82.85

Cube-roo=2.00 SQRT_Dro=1.00

Extrapolation with Physics-Based Model
(Response Transformed Back to Original Scale)
Extrapolation with Physics-Based Model
(Response Transformed Back to Original Scale)
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Predicted Evap_Rate 
At 8 m/s = 55.1 (36.7, 82.9)

All 19 trials fit using a 
physics based 4-term 
linear model
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Compare Extrapolations for Empirical 
(Quadratic) & Physics-Based (Linear) Models

(Response Transformed Back to Original Scale)

Compare Extrapolations for Empirical 
(Quadratic) & Physics-Based (Linear) Models

(Response Transformed Back to Original Scale)
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Evap_Rate on
Log10 Scale

Evap_Rate on
Original Scale



35

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

Sequentially Run Trials in BlocksSequentially Run Trials in Blocks
Block 3Block 1 Block 2

0             x1 72 0     x
2

72

90 

x3

42

90 

x3

42

90 

x3

42
0             x1 720             x1 72 0     x

2
72

0     x
2

72

y = a0 + a1x1 + a2x2 + a3x3 

+ a12x1x2 + a13x1x3 + a23x2x3

+ a11x1
2 + a22x2

2 + a33x3
2

Quadratic model requires all 
three Blocks to be supported

y = a0 + a1x1 + a2x2 + a3x3

Linear model is supported by 
any of the three Blocks

y = a0 + a1x1 + a2x2 + a3x3 

+ a12x1x2 + a13x1x3 + a23x2x3

Interaction model is supported 
by combining first two Blocks

Blocking is used to prevent correlations between design variables and sources of 
variation such as unknown variables (e.g. blocks run weeks apart) or differences 
among groups of trials (e.g. each block associated with a unique “lot” of raw material)
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Sequentially Run Trials in BlocksSequentially Run Trials in Blocks
Block 3Block 1 Block 2

0             x1 72 0     x
2

72

90 

x3

42

90 

x3

42

90 

x3

42
0             x1 720             x1 72 0     x

2
72

0     x
2

72

y = a0 + a1x1 + a2x2 + a3x3 

+ a12x1x2 + a13x1x3 + a23x2x3

+ a11x1
2 + a22x2

2 + a33x3
2

Run this block 3rd to 

(i) repeat main effects estimate, 
(ii) check if process has shifted 
(iii) add curvature effects to 
model if needed.

y = a0 + a1x1 + a2x2 + a3x3

Run this block 1st to 

(i) estimate the main effects                                   
(ii) use center point to check 
for curvature.

y = a0 + a1x1 + a2x2 + a3x3 

+ a12x1x2 + a13x1x3 + a23x2x3

Run this block 2nd to 

(i) repeat main effects estimate,                               
(ii) check if process has shifted 
(iii) add interaction effects to 
model if needed.
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Less than 20% of Originally Planned Trials 
are Needed to Fit a 5-term Linear Model

Less than 20% of Originally Planned Trials 
are Needed to Fit a 5-term Linear Model

Low Humidity

Temperature
W

in
d 

V
el

oc
it

y
Dro

p S
ize

High Humidity

Temperature

W
in

d 
V

el
oc

it
y

Dro
p S

ize

Original plan called for running all 3 X 3 X 3 X 2 = 54 combinations of settings of Wind 
Velocity (3 levels), Temperature (3 levels), Drop Size (3 levels) and Humidity (2 levels). 
The 10 blue locations are all that are needed to estimate the main effects which physics-
based scaling of the axes showed well-fit the Evaporation Rate data for HD on glass. 
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Agents & Substrates other than HD on Glass 
Will Likely Require More Complex Models

Agents & Substrates other than HD on Glass 
Will Likely Require More Complex Models

It still makes sense to acquire data for fitting these 
models as efficiently as possible.

Running the trials in randomized blocks of trials will 
help to facilitate this goal.

Shown below is a second block that when added to the 
one on the preceding slide will support the 4 variable 
11-term interaction model.
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2 internal points on low T (hi 1/T) back face

1 internal point on hi T (low 1/T) front face

6 internal points on intermediate T slice

4 extreme (corner) points
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Red lines indicate the 
area on each slice of 1/T 
enclosed by all points

Locations of the 13 Unique Trial 
Settings for the 10-cm Tunnel

Locations of the 13 Unique Trial 
Settings for the 10-cm Tunnel
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Locations of the 19 
unique trial settings 
for the 5-cm tunnel

Locations of the 13 
unique trial settings 
for the 10-cm tunnel
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Pareto Effects for 
Log10(Evap_Rate)
10-cm tunnel

E
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H
IP

Te
rm

0.0 0.5 1.0 1.5

Effect

Lack Of Fit

1 Inverse_Temp
-1.26 (-1.16, -1.36)

-

3 Cube-root-Velocity
+0.53 (0.43, 0.63)

+

2 SQRT_Drop_Size
+0.47 (0.39, 0.55)

+

Pareto Effects for 
Log10(Evap_Rate)
5-cm tunnel

E
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rm

0.0 0.5 1.0

Effect

1 Inverse_Temp
-1.11 (-1.03, -1.19)

-

3 Cube-root_of_Vel
+0.61 (0.53, 0.70)

+

2 SQRT_Drop_Size
+0.53 (0.45, 0.62)

+

1.5

An Effect is the Change in the Response 
Resulting from Changing a Variable Setting 

from Low to High
Results for the 2 tunnels are very similar
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Pareto Effects for 
Log10(Evap_Rate) 
including tunnel size 
(5-cm vs. 10-cm)
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Effect

1 Inverse_Temp
-1.26 (-1.18, -1.33)
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SummarySummary

Rescaling the variables using knowledge of the 
physics reduces the complexity of the model 
required to adequately fit the data

Before rescaling, a 10-term quadratic model was needed

After rescaling, a 4-term linear model is all that is needed

Extrapolated predictions for checkpoints within the 
5-cm tunnel data validate “nearby” extrapolation 
with the physics-based linear model
For the physics-based linear model “farther out”
extrapolations are more plausible than those of the 
empirical model.  

Note that these conditions are beyond the practical range of the wind 
tunnels and that these predictions have not been validated.
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UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

SummarySummary

Although the same level of reduction of the number 
of required trials seen for HD on glass may not hold 
true for other agents and/or substrates, results point 
to importance of running trials in a sequence of 
blocks that support increasingly complex models.

Combining the data for the 5-cm and 10-cm tunnels 
shows that the “tunnel effect” - although statistically 
significant - is dwarfed by the effects of the 
Temperature, Wind Velocity and Drop Size which are 
5X to 14X as large.  For HD on glass, the behavior of 
the two tunnels appears quite similar.


