
10 CROSSTALK The Journal of Defense Software Engineering September 2006

In recent years, we have seen small
Unmanned Aerial Vehicles (UAVs)

emerge onto the battlespace. These small
UAVs, which weigh less than 50 pounds,
carry five to 10 pounds of payload, have
mission endurances of about one hour,
and field missions to support tactical sur-
veillance and reconnaissance operations.
As the number of missions for these
small UAVs increases, more reliance will
be placed on the computer systems that
will control these aircraft. It is already
possible for a computer program to cre-
ate a flight plan for a UAV and place the
craft in an orbit to observe an item of
interest. Flight control computer pro-
grams are safety critical because errors in
these programs could result in the loss of
the UAV or cause damage to buildings
and/or people on the ground [1].

Because of the critical nature of this
software, development processes that
result in high-integrity software (software
systems that have a very low probability
of failure) [1] must be used. Verification
and validation (V&V) is often an impor-
tant part of these processes. However,
V&V of a safety-critical computer pro-
gram can consume up to 50 percent of
the development time [2]. One approach
to reuse dedicated V&V schedule time
while still assuring software quality is to
use an annotated programming language.
For example, the SPARK programming
language and its associated tools increase
the quality of software developed while

reducing overall development time [3, 4].
This approach to software development
can easily become a valuable tool when
dealing with safety-critical systems. The
SPARK language, which is a commercial
product available from Praxis High
Integrity Systems1, is ideal for systems
such as UAV flight planning software.
The SPARK language has been used on
many successful software development
projects such as the C-130J [4] and is the
language we have used on our UAV pro-
ject. SPARK is an annotated language
similar to the annotated Ada language [5]
and the Larch annotated language for C
[6]. The annotations in SPARK create
extra work for the development team, but
it has been shown the return on time
investment can be as high as an 80 per-
cent reduction in testing costs [4].

This article briefly discusses the
SPARK programming language and
development process. We examine a safe-
ty critical software example developed
for small UAVs developed in a senior-
level computer science course at the Air
Force Academy. We elucidate the SPARK
process by examining a small section of
the UAV control software dedicated to
orbital control.

Background
SPARK is an annotated subset of the
Ada programming language, and every
SPARK program can be compiled by an
Ada compiler. However, SPARK includes

several restrictions and rules governing
the use of various programming con-
structs. These rules not only serve to
simplify the V&V process, but also have
a secondary benefit of helping assure
good coding practice. For example,
SPARK does not support dynamic alloca-
tion of memory so things such as point-
ers and heap variables are not supported.
The use of GOTO statements is also not
supported and there are restrictions on
EXIT statements in loops. These rules
and restrictions in SPARK allow the
developer to predict the exact outcome
when the code is executed. This predic-
tion ability is a key feature of SPARK.

In order to show that the code devel-
oped has a very low error rate, SPARK
uses formal, mathematical techniques to
prove that the code is correct. The proof
of correctness relies on the mathematical
description of what is true before the
code is executed and what is true after the
code is executed. These are referred to as
preconditions and postconditions, respec-
tively. SPARK includes annotations that
allow the programmer to embed the pre-
condition and postcondition into a segment of
code in the form of comments.

The proof of correctness uses a tech-
nique that begins with the postcondition
and works backward through a segment
of code, hoisting the postcondition up
through the SPARK code [1]. Since the
code is predictable, it is possible to deter-
mine a general effect of each statement
and to reverse that effect, working back-
ward from the postcondition toward the
precondition. The result of this hoisting
is called a verification condition in SPARK. If
it can be shown that the precondition for
the segment of code implies the verifica-
tion condition developed from the hoist-
ing process, the proof of correctness is
complete.

SPARK includes several tools that
help with the proof of correctness. The
Examiner tool performs the hoisting
operation and produces a collection of

When Computers Fly, It Has to Be Right:
Using SPARK for Flight Control of
Small Unmanned Aerial Vehicles

One approach to software assurance is to use an annotated language such as SPARK. For safety critical software programs
such as Unmanned Aerial Vehicle flight control software, the risk of software failure demands high assurance that the soft-
ware will perform its intended function. Using an example from work being done at the U.S. Air Force Academy, this arti-
cle describes SPARK and the formal process of proving correctness of software implementations.

Lt. Col. Ricky E. Sward, Ph.D., Lt. Col. Mark Gerken, Ph.D., and 2nd Lt. Dan Casey
U.S. Air Force Academy

SPARK

Examiner

Annotated

SPARK

Program

Verification

Conditions

Completed

Proof

SPARK

Proof

Tools

Incomplete

Proof

Developer

Interactions

Figure 1: SPARK Tool Set

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
SEP 2006 2. REPORT TYPE

3. DATES COVERED
 00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE
When Computers Fly, It Has to Be Right: Using SPARK for Flight
Control of Small Unmanned Aerial Vehicles

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
U.S. Air Force Academy,Department of Computer Science,2354 Fairchild
DR STE 6G101,USAF Academy,CO,80840

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
CROSSTALK The Journal of Defense Software Engineering September 2006

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

5

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

When Computers Fly, It Has to Be Right: Using SPARK for Flight Control of Small Unmanned Aerial Vehicles

September 2006 www.stsc.hill.af.mil 11

verification conditions. The development
team uses the Simplifier tool to reduce
the verification conditions as much as
possible before attempting to prove that
they are implied by the precondition. The
Proof Checker tool is used to prove that
the verification conditions imply the pre-
condition for a segment of code.

Figure 1 shows the process used by a
software developer. The developer is
responsible for annotating the code with
preconditions and postconditions. The
developer then executes the Examiner
tool on the annotated SPARK code, and
the Examiner returns the verification con-
ditions. The developer then executes the
Simplifier tool on the verification condi-
tions, and the Simplifier returns the sim-
plified verification conditions. The devel-
oper then executes the Proof Checker on
the verification conditions to see if the
tool can build a proof of program cor-
rectness automatically. If such a proof
cannot be built, then the developer
attempts to build a proof manually. In this
situation, either the code is incorrect or
the approach to constructing such a proof
is insufficient. An incomplete proof does
not necessarily mean that the code is
incorrect, but a complete proof does
mean the code is correctly implemented.

The burden placed on the developer
is to build correct preconditions and
postconditions, as well as correct code. If
a proof cannot be built automatically for
the code, then the developer will also
need to examine the code or the verifica-
tion conditions to see if a proof can be
built manually. This may seem like an
undue burden on the developer, but the
return on this investment can be as much
as an 80 percent reduction in costs during
the testing phase [4] due to the fact that
the code being developed is provably cor-
rect while being built.

It should be noted that since the pre-
conditions and postconditions are writ-
ten by the code developer, they are sub-
ject to human error. Therefore, these pre-
conditions and postconditions should be
reviewed and verified by a separate soft-
ware development team. This moves the
review process to a higher level of
abstraction since the development team
is now reviewing general mathematical
preconditions and postconditions instead
of pages of code written in a program-
ming language.

In the following section, we describe
a small example that shows the SPARK
development process in action. This
example also highlights how the SPARK
tools detect errors. At the U.S. Air Force
Academy, we use SPARK to develop

code in the senior-level software engi-
neering course as we develop code to
build flight plans for UAVs.

UAV Situational
Awareness Tool
In order to improve the situational aware-
ness of a commander during a crisis situa-
tion, we have developed the UAV
Situational Awareness Tool (UAVSAT) [7].
This year we have ported UAVSAT to
Google Earth2, which shows the location of
the UAV in three dimensions along with a
near real-time video feed from the UAV.

The UAVSAT tool also provides the com-
mander the ability to select a location on the
map for the UAV to orbit. Figure 2 shows
how the commander selects a location on
Google Earth and indicates where the UAV
should orbit. To position the UAV and gim-
baled camera, the software we developed
automatically calculates the optimal orbit
altitude and radius to position it in the cor-
rect orbit to stare at the location selected by
the commander. The software builds a new
flight plan for the UAV in order to transi-
tion it from its current latitude and longi-
tude to an optimal orbit radius and altitude.

h – Altitude

r - Radius

a - Angle

Figure 3: Calculating the Auto-Orbit

Figure 3: Calculating the Auto Orbit

Figure 2: Auto-Orbit Tool in UAVSAT

12 CROSSTALK The Journal of Defense Software Engineering September 2006

Using SPARK for Flight
Control
Since the orbit flight plan for the UAV is
built automatically by UAVSAT, it is
imperative to calculate the correct altitude
and radius for the UAV’s orbit. If these
values are not calculated correctly, the
UAV will not be able to position the cam-
era properly to observe the area of inter-
est. If these calculations include flight crit-
ical phases, such as terrain avoidance or
aircraft spacing, errors in the calculations
could cause loss of the aircraft or destruc-
tion of objects on the ground. In order to
ensure that the auto-orbit calculations are
coded properly, we are using SPARK to
verify the implementation.

Figure 3 (see page 11) shows which
calculations need to be done in order to
determine the proper flight plan for the
UAV. In the figure, h is the altitude of the
orbit, r is the radius of the orbit, and a is
the angle of the gimbaled camera. The lat-
itude and longitude of the orbit location
are provided to UAVSAT as selected
through the auto-orbit tool and positioned
by the commander. To simplify the orbit

problem, we have initially fixed the alti-
tude of the orbit at 500 feet above ground
level and have fixed the gimbal’s angle at
30 degrees. The code for calculating the
auto-orbit flight plan must simply deter-
mine the radius (r), given the altitude and
the gimbal angle.

Figure 4 depicts the problem as two
similar right triangles. The tangent of the
angle (a) is equal to the opposite side of
the triangle over the adjacent side of the
triangle. In the figure, this is represented
by tan (a) = h/r. Solving for r, the result is
r = h/tan (a). That is, to calculate the
radius of the orbit, we simply divide the
altitude by the tangent of a.

In order for UAVSAT to receive the
current latitude and longitude of the UAV
and also to upload new flight plans to the
UAV, our software must interface with
C++ code provided by the autopilot ven-
dor. We could have implemented UAVSAT
in C/C++, but we wanted to preserve our
ability to use the automated verification
provided by SPARK. We therefore used
Ada to build a Dynamically Linked Library
(DLL) called from the C++ code. This

DLL interface utility is well documented in
the Ada Language Reference Manual3.

Figure 5 shows the Ada_Radius func-
tion built in the DLL interface to calculate
the radius r for the auto-orbit utility. Now
the developer annotates preconditions and
postconditions for the Ada_Radius func-
tion.

Figure 6 shows the specification of the
Ada_Radius function. The specification
includes the annotations for the precondi-
tions and the postconditions. For func-
tions in SPARK, the postconditions are
annotated by using the return annotation
[1]. The precondition for Ada_Radius
allows heights greater than or equal to
zero. The input angle is restricted from
zero to avoid a potential division by zero
error. The postcondition for Ada_Radius
expresses the mathematical formula for
the radius calculation. The angle is multi-
plied by Pi over 180 to convert the angle
from degrees into radians as expected by
the tangent function.

Figure 7 shows the body of the
Ada_Radius function. Since the precon-
ditions and postconditions are defined in
the specification, no further annotations
are needed in the body. The code is now
ready to be analyzed by the SPARK
Examiner. The developer executes the
Examiner tool passing in the Ada_Radius
function to be analyzed. The Examiner
returns the verification conditions, and
the developer executes the Simplifier,
which returns the simplified verification
conditions shown in Figure 8.

In the figure, the lines beginning with
H represent hypotheses and the line begin-
ning with C represents a condition. The
symbol ->indicates implication. In this ver-
ification condition, H1 and H2 are
derived directly from the precondition of
Ada_Radius. H3 is determined during the
process of hoisting the postcondition
through the code and states that the
result of the tangent function is restrict-
ed from zero. Since the radius is given as
h/tan(a), H3 is avoiding a potential divi-
sion by zero. C1 indicates the final part of
the verification condition built from the
hoisting process. The code takes the first
line of C1, and the postcondition takes
the second line of C1. In order to prove
the code is correct, we must show that
this implication is true (i.e. that H1-H3
imply C1). So far, the developer has built
the code and the annotations. The
Examiner and Simplifier have built this
simplified verification condition auto-
matically for the developer.

The next step is to attempt to build a
proof that this verification condition is
true. The developer executes the Proof

Software Assurance

-- function to calculate the radius in Ada
 function Ada_Radius (

 Height : in Float;
 Angle : in Float)

 return Float;
--# pre (Height >= 0.0) and (Angle /= 0.0);
--# return (Height/Ada_Tangent((3.14159/180.0) * Angle));

Figure 6: Specification for Ada_Radius

-- function to calculate the radius in Ada

Figure 6: Specification for Ada_Radius

h – Altitude

r - Radius

a - Angle

Figure 3: Calculating the Auto-Orbit

h – Altitude

r - Radius

a - Angle

a

r

h

tan(a) =
h

r

Figure 4: Mathematical Depiction

-- function to calculate the radius in Ada
 function Ada_Radius (

 Height : in Float;
 Angle : in Float)

 return Float is
 begin
 return (Height / Ada_Tangent((3.14159/180.0)) * Angle);

 end Ada_Radius;
Figure 5: Ada_Radius

Figure 5: Ada_Radius

h – Altitude

r - Radius

a - Angle

a

r

h

tan(a) =
h

r

Figure 4: Mathematical Depiction

-- function to calculate the radius in Ada
 function Ada_Radius (

 Height : in Float;
 Angle : in Float)

 return Float is
 begin
 return (Height / Ada_Tangent((3.14159/180.0)) * Angle);

 end Ada_Radius;
Figure 5: Ada_Radius

Figure 4: Mathematical Depiction

When Computers Fly, It Has to Be Right: Using SPARK for Flight Control of Small Unmanned Aerial Vehicles

September 2006 www.stsc.hill.af.mil 13

Checker passing in the simplified verifica-
tion condition. In this example, the Proof
Checker is not able to build a proof and
the developer must consider the possibili-
ty that the code is incorrect. Careful
inspection of C1 shows that the angle vari-
able has been moved to the front of the
expression during the simplification
process. This inadvertently highlights a
discrepancy between the code and the
postcondition.

Figure 9 shows the original Ada_
Radius specification and body. Note the
parenthesis on line 14 of Figure 9 for the
call to Ada_Tangent. The postcondition
formula on line 7 includes parentheses
around the Angle variable, but the code
implementation does not. This is a simple
error in parentheses. This error is discov-
ered during development because the ver-
ification condition for Ada_Radius cannot
be proven to be correct. SPARK has
found an error during the development
phase where it can easily be fixed. Had the
error not been found until the testing or
implementation phase, it would have
proven more costly. This simple example
illustrates how SPARK reduces the cost of
software development by finding errors
during the development phase.

Figure 10 shows the corrected
Ada_Radius code. The parentheses have
been correctly placed around the Angle
variable. Now when the program devel-
opment team executes the SPARK tools
on the code, a proof can be built that
shows the verification condition is true.
SPARK is able to automatically prove this
code is a correct implementation for the
preconditions and postconditions.

This simple example shows the power
of the SPARK correctness by construction
methodology. Even on a simple example
such as this, an error in the code was dis-
covered. Students in a senior-level soft-
ware engineering course developed this
example code. They eventually noticed the
error in their code during testing and cor-
rected it in a later version. Had they been
using the SPARK approach from the start,
they would have found the error while
constructing the code and delivered cor-
rect code the first time.

Conclusion
As we have seen, the SPARK approach to
constructing code is a powerful way to
prove that the code being developed is a
correct implementation given the precon-
ditions and postconditions. This approach
is now being used to develop safety critical
flight control software for UAVs at the U.S.
Air Force Academy as part of a UAVSAT
that is designed to enhance a commander’s

ability to respond to dynamic situations
effectively. The added benefit of using the
SPARK approach to software develop-
ment is that it helps assure the system is
correct by construction.u

References
1. Barnes, John. High Integrity Soft-

ware: The SPARK Approach to
Safety and Security. London, UK:
Addison-Wesley, 2003.

2. Croxford, Martin, and James Sutton.
“Breaking Through the V and V
Bottleneck.” Lecture Notes in
Computer Science. 1031 (1996).

3. Croxford, Martin, and Dr. Roderick
Chapman. “Correctness by Construc-
tion: A Manifesto for High-Integrity
Software.” CrossTalk, Dec. 2005
<www.stsc.hill.af.mil/crosstalk/2005
/12/index.html>.

4. Amey, Peter. “Correctness by
Construction: Better Can Also Be
Cheaper.” CrossTalk, May 2002

<www.stsc.hill.af.mil/crosstalk/2002
/05/index.html>.

5. Shaw, M. “Abstraction Techniques in
Modern Programming Languages.”
IEEE Software Oct. (1984): 10-26.

6. Guttag, John V., and James J.
Horning. Larch: Languages and Tools
for Formal Specification. New York,
NY: Springer-Verlag, 1993.

7. Sward, Ricky, Tim Beerman, and Clint
Sparkman. “Unmanned Eyes in the
Sky.” Military Geospatial Technolo-
gies 3.3 (2005).

Notes
1. Retrieved from Praxis High-Integrity

Systems <www.praxishis.com> on
Apr. 24, 2006.

2. Retrieved from Google Earth, a 3-D
Interface to the Planet <http://
earth.google.com> Apr. 24, 2006.

3. Retrieved from Ada Language
Reference Manual <www.adahome.
com/rm95/>.

return (Height/Ada_Tangent((3.14159/180.0) * Angle));
Figure 6: Specification for Ada_Radius

-- function to calculate the radius in Ada
 function Ada_Radius (

 Height : in Float;
 Angle : in Float)

 return Float is
 begin
 return (Height / Ada_Tangent((3.14159/180.0)) * Angle);

 end Ada_Radius;
Figure 7: Body of Ada_Radius

function_ada_radius_3.
H1: height >= 0 .
H2: angle <> 0 .
H3: ada_tangent(314159 / 100000 / 180) <> 0 .

->
C1: angle * (height / ada_tangent(314159 / 18000000)) =

 height / ada_tangent(angle * (314159 / 18000000)) .
Figure 8: Results of Simplification for Ada_Radius

1 -- function to calculate the radius in Ada
2 function Ada_Radius (
3 Height : in Float;
4 Angle : in Float)
5 return Float;
6 --# pre (Height >= 0.0) and (Angle /= 0.0);
7 --# return (Height/Ada_Tangent((3.14159/180.0) * Angle));

8 -- function to calculate the radius in Ada
9 function Ada_Radius (
10 Height : in Float;
11 Angle : in Float)
12 return Float is
13 begin
14 return (Height / Ada_Tangent((3.14159/180.0)) * Angle);
15 end Ada_Radius;

Figure 9: Original Ada_Radius Specification and Body

-- function to calculate the radius in Ada
 function Ada_Radius (

 Height : in Float;
 Angle : in Float)

 return Float is
 begin

return (Height / Ada_Tangent((3.14159/180.0) * Angle));
 end Ada_Radius;

Figure 10: Corrected Ada_Radius Code

Figure 7: Body of Ada_Radius

--# return (Height/Ada_Tangent((3.14159/180.0) * Angle));
Figure 6: Specification for Ada_Radius

-- function to calculate the radius in Ada
 function Ada_Radius (

 Height : in Float;
 Angle : in Float)

 return Float is
 begin
 return (Height / Ada_Tangent((3.14159/180.0)) * Angle);

 end Ada_Radius;
Figure 7: Body of Ada_Radius

function_ada_radius_3.
H1: height >= 0 .
H2: angle <> 0 .
H3: ada_tangent(314159 / 100000 / 180) <> 0 .

->
C1: angle * (height / ada_tangent(314159 / 18000000)) =

 height / ada_tangent(angle * (314159 / 18000000)) .
Figure 8: Results of Simplification for Ada_Radius

1 -- function to calculate the radius in Ada
2 function Ada_Radius (
3 Height : in Float;
4 Angle : in Float)
5 return Float;
6 --# pre (Height >= 0.0) and (Angle /= 0.0);
7 --# return (Height/Ada_Tangent((3.14159/180.0) * Angle));

8 -- function to calculate the radius in Ada
9 function Ada_Radius (
10 Height : in Float;
11 Angle : in Float)
12 return Float is
13 begin
14 return (Height / Ada_Tangent((3.14159/180.0)) * Angle);
15 end Ada_Radius;

Figure 9: Original Ada_Radius Specification and Body

-- function to calculate the radius in Ada
 function Ada_Radius (

 Height : in Float;
 Angle : in Float)

 return Float is
 begin

return (Height / Ada_Tangent((3.14159/180.0) * Angle));
 end Ada_Radius;

Figure 10: Corrected Ada_Radius Code

Figure 8: Results of Simplification for Ada_Radius

-- function to calculate the radius in Ada
 function Ada_Radius (

 Height : in Float;
 Angle : in Float)

 return Float;
--# pre (Height >= 0.0) and (Angle /= 0.0);
--# return (Height/Ada_Tangent((3.14159/180.0) * Angle));

Figure 6: Specification for Ada_Radius

-- function to calculate the radius in Ada
 function Ada_Radius (

 Height : in Float;
 Angle : in Float)

 return Float is
 begin
 return (Height / Ada_Tangent((3.14159/180.0)) * Angle);

 end Ada_Radius;
Figure 7: Body of Ada_Radius

function_ada_radius_3.
H1: height >= 0 .
H2: angle <> 0 .
H3: ada_tangent(314159 / 100000 / 180) <> 0 .

->
C1: angle * (height / ada_tangent(314159 / 18000000)) =

 height / ada_tangent(angle * (314159 / 18000000)) .
Figure 8: Results of Simplification for Ada_Radius

1 -- function to calculate the radius in Ada
2 function Ada_Radius (
3 Height : in Float;
4 Angle : in Float)
5 return Float;
6 --# pre (Height >= 0.0) and (Angle /= 0.0);
7 --# return (Height/Ada_Tangent((3.14159/180.0) * Angle));

8 -- function to calculate the radius in Ada
9 function Ada_Radius (
10 Height : in Float;
11 Angle : in Float)
12 return Float is
13 begin
14 return (Height / Ada_Tangent((3.14159/180.0)) * Angle);
15 end Ada_Radius;

Figure 9: Original Ada_Radius Specification and Body

-- function to calculate the radius in Ada
 function Ada_Radius (

 Height : in Float;
 Angle : in Float)

 return Float is
 begin

return (Height / Ada_Tangent((3.14159/180.0) * Angle));
 end Ada_Radius;

Figure 10: Corrected Ada_Radius Code

Figure 9: Original Ada_Radius Specification and Body

-- function to calculate the radius in Ada
 function Ada_Radius (

 Height : in Float;
 Angle : in Float)

 return Float;
--# pre (Height >= 0.0) and (Angle /= 0.0);
--# return (Height/Ada_Tangent((3.14159/180.0) * Angle));

Figure 6: Specification for Ada_Radius

-- function to calculate the radius in Ada
 function Ada_Radius (

 Height : in Float;
 Angle : in Float)

 return Float is
 begin
 return (Height / Ada_Tangent((3.14159/180.0)) * Angle);

 end Ada_Radius;
Figure 7: Body of Ada_Radius

function_ada_radius_3.
H1: height >= 0 .
H2: angle <> 0 .
H3: ada_tangent(314159 / 100000 / 180) <> 0 .

->
C1: angle * (height / ada_tangent(314159 / 18000000)) =

 height / ada_tangent(angle * (314159 / 18000000)) .
Figure 8: Results of Simplification for Ada_Radius

1 -- function to calculate the radius in Ada
2 function Ada_Radius (
3 Height : in Float;
4 Angle : in Float)
5 return Float;
6 --# pre (Height >= 0.0) and (Angle /= 0.0);
7 --# return (Height/Ada_Tangent((3.14159/180.0) * Angle));

8 -- function to calculate the radius in Ada
9 function Ada_Radius (
10 Height : in Float;
11 Angle : in Float)
12 return Float is
13 begin
14 return (Height / Ada_Tangent((3.14159/180.0)) * Angle);
15 end Ada_Radius;

Figure 9: Original Ada_Radius Specification and Body

-- function to calculate the radius in Ada
 function Ada_Radius (

 Height : in Float;
 Angle : in Float)

 return Float is
 begin

return (Height / Ada_Tangent((3.14159/180.0) * Angle));
 end Ada_Radius;

Figure 10: Corrected Ada_Radius Code

Figure 10: Corrected Ada_Radius Code

Software Assurance

14 CROSSTALK The Journal of Defense Software Engineering September 2006

BuildSecurityIn
http://BuildSecurityIn.us-cert.gov
As part of the Software Assurance program, BuildSecurityIn
(BSI) is a project of the Strategic Initiatives Branch of the
National Cyber Security Division (NCSD) of the Department
of Homeland Security. The Software Engineering Institute was
engaged by the NCSD to provide support in the Process and
Technology focus areas of this initiative. The Software
Engineering Institute team and other contributors develop and
collect software assurance and software security information
that helps software developers, architects, and security practi-
tioners to create secure systems. BSI content is based on the
principle that software security is fundamentally a software
engineering problem and must be addressed in a systematic way
throughout the software development life cycle. BSI contains
and links to a broad range of information about best practices,
tools, guidelines, rules, principles, and other knowledge to help
organizations build secure and reliable software.

Software Assurance Technology Center
http://satc.gsfc.nasa.gov/
The Software Assurance Technology Center (SATC) was estab-
lished in 1992 as part of the Systems Reliability and Safety Office
at NASA’s Goddard Space Flight Center (GSFC). The SATC was
founded with the intent to become a center of excellence in soft-
ware assurance, dedicated to making measurable improvement in
both the quality and reliability of software developed for NASA
at GSFC. SATC is self-supported with internal funding coming
from research and application of current software engineering
techniques and tools. Research funding primarily originates at
NASA headquarters and is administered by its Software
Independent Verification and Validation Facility in Fairmont,

WV. Other support comes directly from development projects for
direct collaboration and technical support.

National Institute of Standards and
Technology (NIST) Computer Security
Division (CSD)
http://csrc.nist.gov/
The CSD-(893) is one of eight divisions within Information
Technology Laboratory. The mission of NIST’s Computer
Security Division is to improve information systems security by
raising awareness of information technology (IT) risks, vulner-
abilities, and protection requirements, particularly for new and
emerging technologies. NIST researches, studies, and advises
agencies of IT vulnerabilities and devising techniques for the
cost-effective security and privacy of sensitive federal systems;
developing standards, metrics, tests and validation programs to
promote, measure, and validate security in systems and services,
to educate consumers, and to establish minimum security
requirements for federal systems; and developing guidance to
increase secure IT planning, implementation, management and
operation.

CERIAS
www.cerias.purdue.edu
CERIAS is currently viewed as one of the world’s leading cen-
ters for research and education in areas of information security
that are crucial to the protection of critical computing and com-
munication infrastructure. CERIAS provides multidisciplinary
approaches to problems, ranging from technical issues (e.g.,
intrusion detection, network security, etc) to ethical, legal, edu-
cational, communicational, linguistical, and economical issues,
and the subtle interactions and dependencies among them.

WEB SITES

About the Authors

2nd Lt. Dan Casey, USAF,
graduated from the U.S.
Air Force Academy in
May 2006 where he
majored in computer sci-
ence with an emphasis in

information assurance. Casey is current-
ly stationed at Ramstein AFB, Germany
where he works as a communications
and information officer.

435th Communications Squadron
Ramstein AB, Germany
E-mail: daniel.casey@

ramstein.af.mil

Lt. Col. Mark J. Gerken,
Ph.D., USAF, is an As-
sistant Professor and the
Deputy Department
Head for Technology in
the Department of

Mathematical Sciences at the U.S. Air
Force Academy. He currently teaches
probability and statistics and has taught
calculus, differential equations, and engi-
neering mathematics. Gerken received
his doctorate in Computer Engineering
at the Air Force Institute of Technology
in 1995 where he studied software archi-
tecture and formal program develop-
ment.

Department of
Mathematical Sciences
2354 Fairchild DR STE 6D112
USAF Academy, CO 80840
E-mail: mark.gerken@usafa.af.mil

Lt. Col. Ricky E. Sward,
Ph.D., USAF, retired
from the Air Force as an
Associate Professor of
Computer Science at the
U.S. Air Force Academy.

He retired as the Deputy Head for the
Department of Computer Science and
the Course Director for the senior-level
two-semester Software Engineering cap-
stone course. Sward received his doctor-
ate in Computer Engineering at the Air
Force Institute of Technology in 1997
where he studied program slicing and re-
engineering of legacy code.

Department of
Computer Science
2354 Fairchild DR STE 6G101
USAF Academy, CO 80840
E-mail: ricky.sward@wavmax.com

