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Abstract

Given the non-determinism and race conditions in distributed programs, the ability to pro-
vide assurance about them is crucial. Our work focuses on incremental synthesis where we
modify existing (fault-intolerant) distributed programs to add fault-tolerance. We concentrate
on reducing the complexity of such synthesis using techniques –symmetry and parallelism— from
model checking. We apply these techniques in the context of deadlock resolution. In particular,
incremental synthesis requires removal of certain program actions that could violate safety in
the presence of faults and such removal may eliminate all outgoing transitions from some states
rendering them to be deadlock states. We focus on reducing the complexity of resolving such
deadlock states using symmetry and/or parallelism. We show that these approaches provide a
significant speedup separately as well as together.

Keywords: Program transformation, Program synthesis, Multi-core algorithm, Sym-
metry, Distributed programs.

1 Introduction

In this paper, we target the issues in the automated design of a fault-tolerant distributed program
from its fault-intolerant version. Such automated revision is highly desirable since it enables system
designers to automatically and incrementally add properties to distributed programs. One of the
problems in the tools for providing automated revision is that the time and space complexity of
the revision algorithms is high. In our previous work, we have shown that symbolic synthesis
techniques [4] are very useful in reducing the complexity. In particular, we proposed a set of
symbolic (BDD1-based) techniques for adding fault-tolerance to existing moderate-sized, fault-
intolerant distributed programs. We showed that symbolic techniques improved the performance
by several orders of magnitude. Moreover, experimental results exhibited feasibility of synthesis of
programs with state space of size 1030 and beyond. One way to reduce the complexity further is
to integrate advances from model checking, as incremental synthesis involves several tasks that are
also considered in model checking. We consider two approaches from model checking: (1) the use
of symmetry and (2) the parallelism of the algorithm with multiple processors/cores.

To understand the use of symmetry, we observe that multiple processes in a distributed program
are symmetric in nature, i.e., their actions are similar (except for the renaming of variables).

∗This work was partially sponsored by NSF CAREER CCR-0092724 and ONR Grant N00014-01-1-0744.
1Ordered Binary Decision Diagrams [6] represent Boolean formulae as directed acyclic graphs making testing of

functional properties such as satisfiability and equivalence straightforward and extremely efficient.
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Thus, if we find recovery transitions for a process then we can utilize symmetry to identify other
recovery transitions that should also be included for other processes in the system. Likewise, if
some transitions of a process violate safety in the presence of faults then we can identify similar
transitions of other processes that would also violate safety. If the cost of identifying these similar
transitions with the knowledge of symmetry among processes is less than the cost of identifying
these transitions explicitly then the use of symmetry will reduce the overall time required for
synthesis.

To understand the use of parallelism, we note that several tasks in the synthesis could be
expedited if we utilize a parallel computation where multiple threads cooperate to compute recovery
transitions and/or transitions to be removed for safety violation. One of the problems in automated
revision is the group computation that is caused due to inability of a process in a distributed program
to read all variables. In particular, consider the case where a recovery transition of the form ‘if
(condition) then statement’ is added, it corresponds to several program transitions since ‘condition’
and ‘statement’ cannot include variables that a process cannot read. We use parallelism to speedup
the group computation. In particular, we split the computation of the groups among the available
threads/cores. Each thread performs partial computation and the results are collected to obtain
the required group of transitions.

Contribution of the paper. We present an algorithm for utilizing symmetry and exploiting
parallelism. We show that this algorithm significantly improves performance over previous imple-
mentations. For example, in the case of Byzantine agreement (BA) [16] with 25 processes time for
synthesis with sequential algorithm was 1, 632s. With symmetry alone, synthesis time was reduced
to 188s (8.7 times better). With parallelism (8 threads), synthesis time was reduced to 467s (3.5
times better). When we combined both symmetry and parallelism together, the total synthesis
time was reduced to 107s (more than 15.2 times better).

Organization of the paper. The rest of this paper is organized as follows: In Section 2, we
define the problem statement for fault-tolerance addition. In Section 3, we describe the Byzantine
agreement problem that we use in describing the use of symmetry and parallelism. In Section 4,
we present our approach for expediting the synthesis of fault-tolerant programs with the use of
symmetry and parallelism. Section 5 presents our experimental results in two case studies. In
Section 6, we present the related work. Finally, the conclusion and future work are described in
Section 7.

2 Distributed Programs and Specifications

In this section, we define the problem statement for adding fault-tolerance. We begin with a fault-
intolerant program, say p, that is correct in the absence of faults. We let p be specified in terms of
its state space, Sp, and a set of transitions, δp ⊆ Sp×Sp. Whenever it is clear from the context, we
use p and its transitions δp interchangeably. A sequence of states, 〈s0, s1, ...〉 is a computation of p
iff (1) (∀j : j > 0 : (sj−1, sj) ∈ p), i.e., in each step of this sequence, a transition of p is executed,
and (2) if the sequence is finite and terminates in sj then ∀s′ :: (sj , s

′) 6∈ p, i.e., a computation is
finite only if it reaches a state from where the program does not have any outgoing transition. A
special subset of Sp, say S, identifies an invariant of p. By this we mean that if a computation of
p begins in a state where S is true, then (1) S is true at all states in that computation and (2) the
computation is correct. Note that the notion of this correctness has to deal with the fault-intolerant
program that is assumed to be correct.

The goal of an algorithm that adds fault-tolerance is to begin with a program p and its invariant
S to derive the fault-tolerant program, say p′, and its invariant, say S′. Clearly, one additional
input to such an algorithm is f , the class of faults to which tolerance is to be added. Faults are
also specified as a subset of Sp × Sp. Note that this allows modeling of different types of faults,
such as transients, Byzantine (see Section 3), crash faults, etc. Yet another input to the algorithm
for adding fault-tolerance is a safety specification, say specbt, that should not be violated in the
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presence of faults. We let specbt also be specified by a set of transitions, i.e., specbt is a subset
of Sp × Sp

2. Thus, it is required that in the presence of faults, the program should not execute a
computation from specbt.

Now we define the problem of adding fault-tolerance where the input is program p, invariant
S, faults f , and safety specification specbt. Since our goal is to add fault-tolerance only, we require
that no new computations are added in the absence of faults. Thus, if the output after adding
fault-tolerance is program p′ and invariant S′, then S′ should not include any states that are not
in S; without this restriction, p′ can begin in a state from where the correctness of p is unknown.
Likewise, if (s0, s1) is a transition of p′ and s0 ∈ S′ then (s0, s1) must also be a transition of p;
without this restriction, p′ will have new computations in the absence of faults. Also, if p′ has
no outgoing transition from state s0 ∈ S′, then it must be the case that p also has no outgoing
transitions from s0; without this restriction, p′ may stop in a state that had no correspondence
with p.

Additionally, p′ should be fault-tolerant. Thus, during the computation of p′, if faults from f
occur then the program may be perturbed to a state outside S′. Just like the invariant captured the
boundary up to which the program can reach in the absence of faults, we can identify a boundary
upto which the program can reach in the presence of faults. Let this boundary (denoted by fault-
span) be T . Thus, if any transition of p or f begins in a state where T is true, then it must
terminate in a state where T is true. Moreover, if p′ is permitted to execute for a long enough time
without perturbation of a fault, then p′ should reach a state where its invariant S′ is true. Based
on this discussion, we define the problem of adding fault-tolerance as follows:

Problem statement 2.1 Given p, S, f and specbt, identify p′ and S′ such that:

• (C1): Constraints on the invariant
– S′ 6= φ,
– S′ ⇒ S,

• (C2): Constraints on transitions within invariant
– (s0, s1) ∈ p′ ∧ s0 ∈ S′ ⇒ ((s1 ∈ S′) ∧ (s0, s1) ∈ p),
– s0 ∈ S′ ∧ (∀s1 :: (s0, s1) 6∈ p′) ⇒ (∀s1 :: (s0, s1) 6∈ p), and

• (C3) There exists T such that
– S′ ⇒ T ,
– s0 ∈ T ∧ (s0, s1) ∈ (p′ ∪ f) ⇒ s1 ∈ T ∧ (s0, s1) 6∈ specbt
– s0 ∈ T ∧ 〈s0, s1, ...〉 is a computation of p′ ⇒ (∃j : j ≥ 0 : sj ∈ S′)

3 The Byzantine Agreement Problem
We now illustrate the synthesis problem identified in Section 2 and issues involved in solving it in
the context of using the Byzantine agreement (denoted BA) problem [16]. In particular, we identify
the four inputs used in the problem statement above. These inputs would be used in Section 4
to describe the use of symmetry and parallelism. BA consists of a general, say g, and three (or
more) non-general processes, say j, k, and l. The agreement problem requires that a process copy
the decision chosen by the general (0 or 1) and finalize (output) the decision (subject to some
constraints). Thus, each process of BA maintains a decision d; for the general, the decision can be
either 0 or 1, and for the non-general processes, the decision can be 0, 1, or ⊥, where the value ⊥
denotes that the corresponding process has not yet received the decision from the general. Each
non-general process also maintains a Boolean variable f that denotes whether that process has
finalized its decision. For each process, a Boolean variable b shows whether or not the process is
Byzantine; the read/write restrictions, specified later, ensure that a process cannot determine if
other processes are Byzantine. Thus, a state of the program is obtained by assigning each variable,
listed below, a value from its domain. And, the state space of the program is the set of all possible
states.

2As shown in [15], permitting more general specifications can significantly increase the complexity and this repre-
sentation suffices for most practical programs, we model safety specification using a set of transitions
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V = {d.g} ∪ (the general decision variables):{0,1}
{d.j, d.k, d.l} ∪ (the processes decision variables):{ 0, 1, ⊥}
{f.j, f.k, f.l} ∪ (finalized?):{false,true}
{b.g, b.j, b.k, b.l}. (Byzantine?):{false,true}

To concisely describe the transitions of the (fault-intolerant) version of BA, we use guarded
commands of the form g −→ st, where g is a predicate involving the above program variables
and st updates the above program variables. The command g −→ st corresponds to the set of
transitions {(s0, s1) : g is true in s0 and s1 is obtained by executing st in state s0}. Thus, the
transitions of a non-general process, say j, is specified by the following two actions:

BAintolj :: BA1j :: (d.j = ⊥) ∧ (f.j = false) ∧ (b.j = false) −→ d.j := d.g
BA2j :: (d.j 6= ⊥) ∧ (f.j = false) ∧ (b.j = false) −→ f.j := true

Note that the general does not need explicit actions; the action by which the general sends the
decision to j is modeled by BA1j . The variables that a non-general process, say j, is allowed to
read and write are Rj = {b.j, d.j, f.j, d.k, d.l, d.g} and Wj = {d.j, f.j}, respectively. Observe that
this modeling prevents j from knowing whether other processes are Byzantine.

The safety specification of the BA requires validity and agreement. Validity requires that if
the general is non-Byzantine, then the final decision of a non-Byzantine, non-general must be the
same as that of the general. Additionally, agreement requires that the final decision of any two non-
Byzantine, non-generals must be equal. Finally, once a non-Byzantine process finalizes (outputs) its
decision, it cannot change it. Thus, the following transition predicate forms the safety specification,
where p and q range over non-general processes, unprimed variables denote the values in the source
states, and primed variables denote the value of the variable in the target state state:

SPEC btBA
= (∃p :: ¬b′.g ∧ ¬b′.p ∧ (d′.p 6= ⊥) ∧ f ′.p ∧ (d′.p 6= d′.g)) ∨

(∃p, q :: ¬b′.p ∧ ¬b′.q ∧ f ′.p ∧ f ′.q ∧ (d′.p 6= ⊥) ∧ (d′.q 6= ⊥) ∧ (d′.p 6= d′.q)) ∨
(∃p :: ¬b.p ∧ ¬b′.p ∧ f.p ∧ ((d.p 6= d′.p) ∨ (f.p 6= f ′.p)))

The invariant predicate of the Byzantine agreement program is SBA, where

SBA = ¬b.g ∧ (¬b.j ∨ ¬b.k) ∧ (¬b.k ∨ ¬b.l) ∧ (¬b.l ∨ ¬b.j) ∧
(∀p :: ¬b.p ⇒ (d.p = ⊥ ∨ d.p = d.g)) ∧ (∀p :: (¬b.p ∧ f.p) ⇒ (d.p 6= ⊥)) ∨
b.g ∧ ¬b.j ∧ ¬b.k ∧ ¬b.l ∧ (d.j = d.k = d.l ∧ d.j 6= ⊥)

Thus, the invariant specifies the following constraints: At most one process can be Byzantine.
If the general and the non-general j are non-Byzantine then the invariant specifies that d.j can be
either ⊥ or d.g. A process cannot finalize its decision if its decision is equal to ⊥. Finally, for the
case where the general is Byzantine, the above invariant states that the fault-intolerant program is
correct from states where the decision of all non-generals is equal and it is not equal to ⊥.

A fault transition can cause a process to become Byzantine, if no other process is initially
Byzantine. Also, a fault can change the d and f values of a Byzantine process. The fault transitions
that affect a process, say j, of BA are as follows: (We include similar actions for k, l, and g)

F1 :: ¬b.g ∧ ¬b.j ∧ ¬b.k ∧ ¬b.l −→ b.j := true
F2 :: b.j −→ d.j, f.j := 0|1, false|true

where d.j := 0|1 means that d.j could be assigned either 0 or 1. In case of the general process, the
second action does not change the value of any f -variable.
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4 Using Symmetry and Parallelism in Synthesis

In this section, we present our approach for expediting the synthesis of fault-tolerant program with
the use of symmetry and parallelism using the input from Section 3. We utilize this approach in the
task of resolving deadlock states that are encountered during the synthesis process. Hence, using
the example BA from Section 3, we first describe deadlock scenarios that occur during synthesis
and how symmetry and/or parallelism can help in resolving it. Then we discuss our algorithms for
resolving deadlock states. The first algorithm uses symmetry alone. The second uses parallelism
alone. Then, we combine both symmetry and parallelism in the third algorithm.

Note that during synthesis, we analyze the effect of faults on the given fault-intolerant program
and identify a fault-tolerant program that meets the constraints of Problem 2.1. We illustrate issues
involved in the such synthesis next.

• Consider the state where all processes are non-Byzantine, d.g is 0 and the decision of all
non-generals is ⊥. From this state, the program (BAintol) and faults (F1 & F2) can reach
a state, say s1, where d.g = d.j = d.k = 0, b.g = true, d.l = 1, f.l = 0. From such a state,
transitions of the fault-intolerant program violate safety if they allow j (or k) and l to finalize
their decision. If we remove these safety violating transitions, there are no other transitions
from state s1. In other words, during synthesis, we encounter that s1 is a deadlock state.
One can resolve this deadlock state by simply adding a recovery transition that changes the
d.l to 0.

• Again, consider the state where all processes are non-Byzantine, d.g is 0 and the decisions
of all non-generals are ⊥. From this state, the program (BAintol) and faults (F1 & F2)
can reach a state, say s2, where d.g = d.j = d.k = 0, b.g = true, d.l = 1, f.l = 1; state s2

differs from s1 in the previous case in terms of the value of f.l. Unlike s1 in the previous
scenario, since l has finalized its decision, we cannot resolve s2 by adding safe recovery. One
way to resolve this deadlock situation is by eliminating s2 (i.e., making it unreachable by the
program actions). However, since we require that during the elimination of a deadlock state,
no new deadlock states be created, the deadlock elimination algorithm has to deal with many
backtracking steps. In particular, in order to resolve s2, the algorithm needs to explore the
reachability path and remove the transition that allows a process to finalize its decision while
there exist two undecided processes.

To maximize the success of the synthesis algorithm, our approach to handle deadlock states is as
follows: Whenever possible, we add recovery transition(s) from the deadlock states to a legitimate
state. However, if no recovery transition(s) can be added from the deadlock states, we try to
eliminate the deadlock states by preventing the program from reaching the deadlock states. In
other words, we try to eliminate deadlock states only if adding recovery from them fails.

In this paper, we utilize symmetry and parallelism to expedite these two aspects of deadlock
resolution: adding recovery and eliminating deadlock states. We address this problem by three
different approaches.

4.1 Symmetry

To describe the use of symmetry, consider the first scenario described above. In this scenario, we
resolved the state s1 by adding a recovery transition. Due to the symmetry of the non-generals,
one can observe that we can also add other recovery transitions. For example, if we consider the
state d.g = d.j = d.l = 0, b.g = true, d.k = 1, f.k = 0, we can add the recovery transition by which
d.k changes to 0.

With this observation, if we identify recovery action(s) to be added for one process, we can add
the similar actions that correspond to other processes. Therefore, to add recovery, our algorithm
does the following: whenever, we find recovery transition(s), we identify other recovery transitions
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Pseudocode 1 Add Symmetrical Recovery -

Input: deadlock states ds, invariant S, and unacceptable tran-
sitions (including specbt) mt

Output: recovery transitions predicate rec

1: rec := ds ∧ 〈lyr〉′;
// 〈lyr〉′ the set of states to which recovery can be added
to ensure recovery to invariant

2: rec := Group(rec, read/write restrictions on i);
// Select program transition or process i while ensuring
read/write restrictions

3: rec := rec ∧ ¬Group(rec ∧mt);
// Remove transition that violate safety while ensuring dis-
tribution restrictions

// Find similar transitions for other processes
4: for i := 1 to numberOfProcesses do
5: rec := rec∨SwapVariables( rec, i );

// Generate BDDs for other processes by swapping
variables based on symmetry

6: end for
7: return rec;

Pseudocode 2 Group Symmetry -

Input: a set of transitions trans.
Output: a group of transitions grp.

1: grp := FindGroup(trans, read/write restrictions on i);
// Find the group related to process i transitions while en-
suring the read/write restrictions

// Find similar transitions for other processes
2: for i := 1 to numberOfProcesses do
3: grp := grp∨SwapVariables( grp, i);

// Generate BDDs for other processes by swapping
variables based on symmetry

4: end for

5: return grp;

Figure 1: Pseudocode for Using Symmetry in Resolving Deadlock States

based on symmetry. Then, we add all these recovery transitions to the program being synthesized
(cf. Pseudocode 1).

We also apply symmetry for deadlock states elimination. To eliminate a set of deadlock states,
we find the set of transitions which if removed from one process, will prevent that process from
reaching deadlock states. Then, we use this set of transitions to remove similar transitions from
other processes. Therefore, to eliminate deadlock states by removing program transitions, our
algorithm does the following: whenever we find a set of transition(s) if removed from one process,
will prevent it from reaching a deadlock state. We use symmetry to identify similar transitions for
other processes, and we remove these transitions from program transitions (cf. Pseudocode 2).

4.2 Parallelism

In the previous section, we have seen that to resolve deadlock states, we either need (1) to add
recovery transitions or (2) to remove transitions to eliminate deadlock states. In both operations,
we cannot add/remove the selected transition alone, but we will also need to add/remove the
transition Group. For example, in the above scenario, when we add a recovery transition from
s1, it corresponds to several recovery transitions where the values of variables that l can read
(d.j, d.k, d.l, d.g, b.l, f.l), are fixed but the values of other variables (b.g, b.j, b.k, f.j, f.k) change.
Thus, while adding recovery from s1, we add a group of transitions based on different possible
values of (b.g, b.j, b.k, f.j, f.k).

To compute the Group associated with a set of transitions, the sequential algorithm will go
through many computations for each process, one after another. However, in the parallel algo-
rithm, we split the Group computation over the available number of threads. In particular, rather
than having one thread find the Group for all the processes, we let each thread compute the
Group for a subset of the processes. The tasks assigned to each thread are fine-grained. Hence,
there will be considerable amount of time wasted in the overhead associated with the threads cre-
ation/destruction every time the Group is computed. Therefore, we let the main thread create the
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worker threads at the initialization stage of the synthesis algorithm. The worker threads will stay
idle until they are needed. When the main thread needs to find the Group of a set of transitions, it
will activate the worker threads, through mutexes, to start computing the Group. When all worker
threads are done the main thread, which was on hold, will be activated to collect the results of all
worker threads in one Group.

4.3 Symmetry and Parallelism

We use the symmetry as described in section 4.1, except when we compute the similar transitions
for other processes, we split the operation over the available threads. Hence, after we find the
initial set of transitions (to be added/removed), we split the operation of finding similar transition
for other processes among available threads. Once all threads are done, we join their results in one
set.

5 Experimental Results

In Subsections 4.1-4.3, we described different approaches to resolve deadlock states in the synthesis
of fault-tolerant programs. In Subsections 5.1-5.3, we describe and analyze the respective exper-
imental results. In particular, we describe the results in the context of two classical examples in
the literature of distributed computing, namely, the Byzantine agreement (described in Section 3)
and the token ring [2]. In both case studies, we find that symmetry and parallelism improve the
execution time substantially.

Throughout this section, all experiments are run on a Sun Fire V40z with 4 dual-core Opteron
processors and 16 GB RAM. The OBDD representation of the Boolean formulae has been done us-
ing the C++ interface to the CUDD package developed at University of Colorado [18]. Throughout
this section, we refer to the original implementation of the synthesis algorithm (without symme-
try or parallelism) as sequential implementation. We refer to the symmetric approach described
in Subsection 4.1 as symmetry and X threads to refer to the parallel algorithm that utilizes X
threads. We would like to note that the synthesis time duration differences between the sequential
implementation in this paper and the one in [4] is due to other unrelated improvements on the se-
quential implementation itself. However, the sequential, symmetric, and parallel implementations
differ only in terms of the modification described in Section 4.

5.1 Symmetry

Figure 2 shows (a) the time spent in deadlock resolution, and (b) the total synthesis time for different
numbers of processes in the Byzantine agreement problem. From this figure, we observe that the use
of symmetry provides a remarkable improvement in the performance. More importantly, one can
notice that the speedup ratio (gained using a symmetrical approach) grows with the increase in the
number of processes. In particular, as shown in Figure 2 (b), the speedup ratio in the case of 10 non-
general processes is 4.5 . However, in the case of 45 non-general processes the speedup ratio is 19.
This behavior is both expected and highly valuable. Since symmetry uses transitions of one process
to identify transitions of another process, it is expected that as the number of symmetric processes
increases, so would the effectiveness of symmetry. Moreover, since the speedup is proportional to
the number of (symmetric) processes, we argue that symmetry would be highly valuable in handling
the state space explosion with an increased number of processes.

In Figure 3, we present the results of our experiments on the token ring problem. We observe
that symmetry substantially reduces the time for deadlock resolution. In fact, symmetry was able
to keep this time almost a constant, i.e., independent of the problem size. One can notice a spike
in the required synthesis time of the sequential algorithm for token ring after we hit the threshold
of 90 processes. This behavior was also observed in [4] and is caused by the fact that, at this state
space, we are utilizing all the available memory, causing performance to degrade due to page faults.
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Figure 2: The time required to (a) resolve deadlock states and (b) to synthesis tolerant program
for several numbers of BA non-general processes in sequential and symmetrical algorithms. The
BA has a state space ≈ 4 ∗ 101.08x and reachable state space ≥ 2 ∗ 100.78x where x is the number of
process.

3.0 
7.5 

13.0 
19.1 

25.7 

41.6  44.9 

55.8 

94.5 

119.5 

40.8 

51.6 

0.0 

20.0 

40.0 

60.0 

80.0 

100.0 

120.0 

140.0 

0 

50 

100 

150 

200 

250 

300 

350 

400 

450 

500 

10  20  30  40  50  60  70  80  90  100  120  150 Ti
m
s(
s)
 

Processes  Sequential   Symmetry  Speedup Ratio 

(a) Deadlock Resolution Time

0.9 

0.6 

1.2  1.3  1.3  1.3  1.4 
1.2 

3.4 

3.7 

1.6 
1.4 

0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

3.5 

4.0 

0 

100 

200 

300 

400 

500 

600 

700 

10  20  30  40  50  60  70  80  90  100  120  150 Ti
m
s(
s)
 

Processes  Sequential   Symmetry  Speedup Ratio 

(b) Total Synthesis Time

Figure 3: The time required to (a) resolve deadlock states and (b) to synthesis tolerant program for
several numbers of token ring processes in sequential and symmetrical algorithms. Token ring has
a state space ≈ 4 ∗ 100.48x and reachable state space ≥ 2 ∗ 100.3x where x is the number of process.

5.2 Parallelism

In Figure 4, we show the results of using the sequential approach versus the parallel approach (with
multiple threads) to perform the synthesis. All the tests have shown that we gain a significant
speedup. For example, in the case of 45 non-general processes and 8 threads we gain a speedup
of 6.1 . We can clearly see that the parallel 16-thread version is faster than the the corresponding
8-thread version. This was surprising given that there are only 8 processors available. However,
upon closer observation, we find that the group computation that is parallelized using threads
is fine-grained. Hence, when the master thread uses multiple slave threads for performing the
Group computation, the slave threads complete quickly and therefore cannot utilize the available
resources to the full extent. Hence, creating more threads (than available processors) does improve
the performance further.

In Figure 5, we present the results of our experiments in parallelizing the deadlock resolution
of token ring problem. As described earlier in this section, after the number of processes exceeds a
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Figure 4: The time required to (a) resolve deadlock states and (b) to synthesis tolerant program
for several numbers of non-general processes of BA in sequential and parallel algorithms. The BA
has a state space ≈ 4 ∗ 101.08x and reachable state space ≥ 2 ∗ 100.78x where x is the number of
process.
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Figure 5: The time required to (a) resolve deadlock states and (b) to synthesis tolerant program
for several numbers of token ring processes in Sequential and parallel algorithms. Token ring has a
state space ≈ 4 ∗ 100.48x and reachable state space ≥ 2 ∗ 100.3x where x is the number of process.

threshold, the execution time increases substantially. This phenomenon also occurs in the case of
parallelized implementation, although it appears for larger programs. However, this effect is not as
strong. Note that the spike in speedup at 80 processes is caused by the page fault behavior where
the performance of the sequential algorithm is affected although the performance of the parallel
algorithm is still not affected.

Based on these results, we observe that symmetry outperforms parallelism in both of these
examples. Recall that in parallelism we only divide the tasks assigned to one core among available
cores. However, in the case of symmetry, we remove some computations from being performed
where we generate transitions of several processes without performing an analysis of corresponding
deadlock states.
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Figure 6: The time required to (a) resolve deadlock states and (b) to synthesis tolerant program
for several numbers of non-general processes of BA in Symmetrical and parallel Symmetrical algo-
rithms. The BA has a state space ≈ 4 ∗ 101.08x and reachable state space ≥ 2 ∗ 100.78x where x is
the number of process.

5.3 Symmetry and Parallelism

In this subsection, we present our experimental results of using parallelism in computing the sym-
metry. The results of parallelizing the symmetry computation with various implementations in the
automated symbolic synthesis are presented in Figure 6. We have achieved the shortest synthesis
time when we used parallelism to compute the symmetry. For example, in the case of the Byzantine
agreement with 45 non-general processes using 16 threads, we achieve a speedup ratio of 1.8 times
that of the symmetry alone. Since in case of the token ring, symmetry alone reduces the time of
computing recovery transitions to a negligible amount, the results for this case are omitted.

5.4 Memory Usage

Both of our approaches, symmetry and parallelism, require the use of more memory. For instance,
the synthesis of the BA with 2 threads requires almost twice the amount of memory need by
the sequential algorithm for the same number of non-general processes. However, unlike model
checking, in synthesis, since we always run out of time before we run out of memory, we argue
that the extra usage of memory is acceptable given the remarkable reductions we achieve in total
synthesis time.

6 Related Work
Automated program synthesis and revision has been studied from various perspectives. Inspired by
the seminal work by Emerson and Clarke [8], Arora, Attie, and Emerson [1] propose an algorithm
for synthesizing fault-tolerant programs from CTL specifications. Their method, however, does not
address the issue of the addition of fault-tolerance to existing programs. Kulkarni and Arora [14]
introduce enumerative synthesis algorithms for automated addition of fault-tolerance to centralized
and distributed programs. In particular, they show that the problem of adding fault-tolerance
to distributed programs is NP-complete. In order to remedy the NP-hardness of the synthesis of
fault-tolerant distributed programs and overcome the state explosion problem, we proposed a set
of symbolic heuristics [4], which allowed us to synthesize programs with a state space size of 1030

and beyond.
Ebnenasir [7] presents a divide-and-conquer method for synthesizing failsafe fault-tolerant dis-

tributed programs. A failsafe program is one that does not need to satisfy its liveness specification
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in the presence of faults. Thus, a respective synthesis algorithm does not need to resolve deadlock
states outside the invariant predicate. Moreover, Ebnenasir’s synthesis method resolves deadlock
states inside the invariant predicate in a sequential manner.

Parallelization of symbolic reachability analysis has been studied in the model checking com-
munity from different perspectives. In [9–11], the authors propose solutions and analyze different
approaches to parallelization of the saturation-based generation of state space in model checking.
In particular, in [10], the authors show that in order to gain speedups in saturation-based paral-
lel symbolic verification, one has to pay a penalty for memory usage of up to 10 times, that of
the sequential algorithm. Other efforts range from simple approaches that essentially implement
BDDs as two-tiered hash tables [17, 19], to sophisticated approaches relying on slicing BDDs [13]
and techniques for workstealing [12]. However, the resulting implementations show only limited
speedups.

In [3], we have identified an approach to parallelize deadlock resolution where the set of available
deadlock states are partitioned and multiple threads are used to resolve them. However, in this
approach, the tasks performed by different threads may conflict with each other, e.g., one thread
may choose to remove a transition while another may require that it be included. Hence, the results
from the parallel threads need to be merged to remove such inconsistencies. Thus, the parallelism is
coarse-grained. By contrast, in this work, the parallelism is fine-grained when a given task of Group
computation is achieved by cooperation of multiple threads. These two approaches are orthogonal
and there is a potential to combine them.

7 Conclusion and Future Work

In this paper, we focused on improving the synthesis of fault-tolerant programs from their fault-
intolerant version. We focused on two aspects from automated program verification: (1) use of
symmetry and (2) use of parallelism. We showed that symmetry provides a substantial benefit
in reducing the time involved in synthesis. Moreover, the speedup increases as the number of
symmetric processes increases.

We also showed that the use of multiple threads to parallelize the synthesis algorithm reduces
the time substantially. Since the configuration used to evaluate performance was on an 8-core (4
dual-cores) machine, we considered the case where up to 16 threads are used. We find that as
the number of threads increases, the synthesis time decreases. In fact, because the parallelism is
fine-grained, using more threads than available cores has the potential to improve the performance
slightly. This demonstrates that we have not yet reached the bottleneck involved in parallelization;
one future work in this area is to evaluate these algorithms on a machine with larger number of
processors to identify these bottlenecks.

We believe that the results from this work are especially important to the distributed system
community where the difficulty of designing distributed programs with all its non-determinism and
race conditions is well understood. Hence, the ability to automate (to the extent possible) fault-
tolerant distributed programs is very important. This work demonstrates that using techniques
from the automated verification community and parallel processing community has the potential to
reduce the cost of automating the design of distributed programs. Also the approaches used in this
paper, the use of symmetry between different processes and the parallelism of group computation
that is caused by partial knowledge of the process, are designed for the main characteristics of
distributed programs. One future work in this context is to combine other advances from program
verification. We expect that by combining these advances along with characteristics of distributed
systems, e.g., hierarchical behavior, types of expected faults, etc., it would become feasible for the
automated revision of practical distributed programs to add new properties.

Based on the results in this paper, there is potential for further reduction in synthesis time if the
level of parallelism is increased (e.g., if there are more processors). Although the level of parallelism
is fine-grained, we showed that the overhead of parallel computation is small. Hence, another future
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work is to evaluate the limits of parallel computation in improving performance of the synthesis
algorithm and include this in the tools (e.g., SYCRAFT [5]) for synthesizing fault-tolerance.

Another future work is to combine the parallelism in this work with that in [3]. In particular,
as discussed in Section 6, the parallelism in [3] is coarse-grained. However, it can permit threads to
perform inconsistent behavior that needs to be resolved later. Thus, it provides a tradeoff between
overhead of synchrony among threads and potential error resolutions. Thus, one of the future
work is to combine the use of symmetry and fine-grain parallelism in this work with coarse-grained
parallelism from [3].
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