
Revising Distributed UNITY Programs is NP-Complete∗

Borzoo Bonakdarpour Sandeep S. Kulkarni

Department of Computer Science and Engineering
Michigan State University

East Lansing, MI 48824, USA
Email: {borzoo,sandeep}@cse.msu.edu

Abstract

We focus on automated revision techniques for

adding Unity properties to distributed programs.

We show that unlike centralized programs where mul-

tiple safety properties and one progress property can

be added in polynomial-time, addition of a safety or

a progress Unity property to distributed programs is

significantly more difficult. Precisely, we show that

such addition is NP-complete in the size of the given

program’s state space. We also propose an efficient

symbolic heuristic for addition of a leads-to property

to distributed programs, which has applications in

automated program synthesis.

Keywords: UNITY, Distributed programs,
Revision, Transformation, Formal methods.

1 Introduction

Program correctness is an important aspect and
application of formal methods. Designing pro-
grams to be correct-by-construction is, therefore,
highly valuable. Taking the paradigm of correct-by-
construction to extreme leads us to synthesizing pro-
grams from their specification. While synthesis from
specification is undoubtedly useful, it suffers from
lack of reuse, limitation of expressibility of specifi-
cation used during synthesis (e.g., in case of unde-
cidable or highly complex languages), and inability
to utilize human knowledge (e.g., domain expertise).
Alternatively, in program revision one can transform
an input program into an output program that meets
additional properties. As a matter of fact, in prac-
tice, such properties are frequently identified during
a system’s life cycle due to reasons such incomplete

∗This work was partially sponsored by NSF CAREER
CCR-0092724 and ONR Grant N00014-01-1-0744.

specification, change of environment, etc. As a con-
crete example, consider the case where a program is
diagnosed with a failed property by a model checker.
In such a case, access to automated methods that re-
vise the program with respect to the failed property
is highly advantageous. Clearly, transformational
approaches that provide reuse allows human exper-
tise to be used in the design of input program, and
permits use of expressive specifications during the
design of the input program. Inevitably, for such
revision to be useful, in addition to satisfaction of
new properties, the output program must preserve
existing properties of the input program as well.

In our previous work in this context [8], we fo-
cused on revising programs with respect to Unity [7]
properties of a high atomicity (centralized) program
where the program could read and write all program
variables in one atomic step. We emphasize that,
our revision method in [8] ensures that during re-
vision, satisfaction of all existing Unity properties
of the input program is preserved. In particular, we
showed that adding a conjunction of Unity safety

properties (i.e., unless, stable, and invariant) and one
progress property (i.e., leads-to and ensures) can be
achieved in polynomial-time. However, we showed
that the problem becomes NP-complete if we con-
sider addition of two progress properties. The rea-
son for our focus on Unity properties is due to the
fact that Unity properties have been found highly
valuable in describing a large class of programs.

In this paper, we shift our focus to distributed
programs where processes can read and write only
a subset of program variables. We expect the con-
cept of program revision to play a more crucial role
in the context of distributed programs due to the
complex structure of distributed programs where
non-determinism and race conditions make it signif-
icantly difficult to assert program correctness. We

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2008 2. REPORT TYPE

3. DATES COVERED
 00-00-2008 to 00-00-2008

4. TITLE AND SUBTITLE
Revising Distributed UNITY Programs is NP-Complete

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Michigan State University,Department of Computer Science and
Engineering,East Lansing,MI,48824

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
We focus on automated revision techniques for adding Unity properties to distributed programs. We show
that unlike centralized programs where multiple safety properties and one progress property can be added
in polynomial-time, addition of a safety or a progress Unity property to distributed programs is
significantly more difficult. Precisely, we show that such addition is NP-complete in the size of the given
program’s state space. We also propose an efficient symbolic heuristic for addition of a leads-to property to
distributed programs, which has applications in automated program synthesis.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

13

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

find somewhat unexpected results about the com-
plexity of adding Unity properties to distributed
programs. In particular, we find that the problem of
adding only one Unity safety property or progress
progress property to distributed programs is NP-
complete in the size of the input program’s state
space, even though the corresponding problem can
be solved in in polynomial-time for centralized pro-
grams.

The knowledge of these complexity bounds is es-
pecially important in building tools for incremental
synthesis. In particular, the NP-completeness re-
sults demonstrate that tools for revising programs
must utilize efficient heuristics to expedite the revi-
sion algorithm at the cost of completeness of that
algorithm. With this motivation, in this paper, we
propose an efficient symbolic (BDD-based) heuris-
tic that adds a leads-to property to a distributed
program. We integrate this heuristic with our
tool Sycraft [6] that is designed for adding fault-
tolerance to existing distributed programs. Leads-

to properties are of special interest in fault-tolerant
computing where recovery within a finite number of
steps is essential. To this end, one can first aug-
ment the program with all possible recovery transi-
tions that it can use. Clearly, this augmented pro-
gram does not guarantee that it would recover to
a set of legitimate states (e.g., an invariant predi-
cate) although there is a potential to reach the legit-
imate states from states reached in the presence of
faults. In particular, it may continue to execute on
a cycle that is entirely outside the legitimate states
although from each state there is a path to reach
the legitimate states. We apply our heuristics for
adding a leads-to property to modify the augmented
program so that from any state reached in the pres-
ence of faults, the program is guaranteed recovery to
its legitimate states within a finite number of steps.
As a side effect of the tool for adding leads-to prop-
erty, we also implement a cycle resolution algorithm.
Our experimental results show that this algorithm
can also be integrated with existing state-of-the-art
model checkers for assisting in developing programs
that are correct-by-construction.

Organization. The rest of the paper is organized
as follows. In Section 2, we present the preliminary
concepts. Then, we formally state the revision prob-
lem in Section 3. Section 4 is dedicated to complex-
ity analysis of addition of Unity safety properties
to distributed programs. In Section 5, we present

our results on the complexity of addition of Unity

progress properties. We also present our symbolic
heuristic and experimental results in Section 5. Re-
lated work is discussed in Section 6. We conclude
in Section 7. Appendix A provides a summary of
notations.

2 Preliminary Concepts

In this section, we formally define the notion of dis-
tributed programs. We also reiterate the concept of
Unity properties introduced by Chandy and Misra
[7].

2.1 Distributed Programs

Intuitively, we define a distributed program in terms
of a set of processes. Each process is in turn specified
by a state-transition system and is constrained by
some read/write restriction over its set of variables.

Let V = {v0, v1 · · · vn} be a finite set of variables
with finite domains D0, D1 · · ·Dn, respectively. A
state, say s, is determined by mapping each variable
vi in V , 0 ≤ i ≤ n, to a value in Di. We denote the
value of a variable v in state s by v(s). The set of all
possible states obtained by variables in V is called
the state space and is denoted by S. A transition is
a pair of states of the form (s0, s1) where s0, s1 ∈ S.

Definition 2.1 (state predicate) Let S be the
state space obtained from variables in V . A state

predicate is a subset of S.

Definition 2.2 (transition predicate) Let S be
the state space obtained from variables in V . A tran-

sition predicate is a subset of S × S.

Definition 2.3 (process) A process p is specified
by the tuple 〈Vp, Tp, Rp, Wp〉 where Vp is a set of
variables, Tp is a transition predicate in the state
space of p (denoted Sp), Rp is a set of variables that
p can read, and Wp is a set of variables that p can
write such that Wp ⊆ Rp ⊆ Vp (i.e., we assume that
p cannot blindly write a variable).

Write restrictions. Let p = 〈Vp, Tp, Rp, Wp〉
be a process. Clearly, Tp must be disjoint from the
following transition predicate due to inability of p to
change the value of variables that p cannot write:

NW p = {(s0, s1) | v(s0) 6= v(s1) where v 6∈ Wp}.

Read restrictions. Let p = 〈Vp, Tp, Rp, Wp〉 be
a process, v be a variable in Vp, and (s0, s1) ∈ Tp

where s0 6= s1. If v is not in Rp, then p must include
a corresponding transition from all states s′0 where

2

s′0 and s0 differ only in the value of v. Let (s′0, s
′
1)

be one such transition. Now, it must be the case
that s1 and s′1 are identical except for the value of v,
and, the value of v must be the same in s′0 and s′1.
For instance, let Vp = {a, b} and Rp = {a}. Thus,
since p cannot read b, the transition ([a = 0, b =
0], [a = 1, b = 0]) and the transition ([a = 0, b =
1], [a = 1, b = 1]) have the same effect as far as p
is concerned. Thus, each transition (s0, s1) in Tp is
associated with the following group predicate:

Group
p
(s0, s1) = {(s′

0
, s′

1
) |

(∀v 6∈ Rp : (v(s0) = v(s1) ∧ v(s′

0
) = v(s′

1
))) ∧

(∀v ∈ Rp : (v(s0) = v(s′

0
) ∧ v(s1) = v(s′

1
)))}.

Definition 2.4 (distributed program) A dis-

tributed program Π is specified by the tuple 〈PΠ, IΠ〉
where PΠ is a set of processes and IΠ is a set of
initial states. Without loss of generality, we assume
that the state space of all processes in PΠ is identical
(i.e., ∀p, q ∈ PΠ :: (Vp = Vq) ∧ (Dp = Dq)). Thus,
the set of variables (denoted VΠ) and state space of
program Π (denoted SΠ) are identical to the set of
variables and state space of processes of Π, respec-
tively. In this sense, the set IΠ of initial states of Π
is a subset of SΠ.

Notation. Let Π = 〈PΠ, IΠ〉 be a distributed pro-
gram (or simply a program). The set TΠ denotes the
collection of transition predicates of all processes of
Π, i.e., TΠ =

⋃
p∈PΠ

Tp.

Definition 2.5 (computation) Let Π =
〈PΠ, IΠ〉 be a program. A sequence of states, s =
〈s0, s1 · · · 〉, is a computation of Π iff the following
three conditions are satisfied: (1) s0 ∈ IΠ, (2)
∀i ≥ 0 : (si, si+1) ∈ TΠ, and (3) if s is finite and
terminates in state sl then there does not exist state
s such that (sl, s) ∈ TΠ.

For a distributed program Π = 〈PΠ, IΠ〉, we say
that a sequence of states, s = 〈s0, s1 · · · sn〉, is a com-

putation prefix of Π iff ∀j | 0 ≤ j < n : (sj , sj+1)∈
TΠ . We distinguish between a terminating com-
putation and a deadlocked computation. Precisely,
when a computation s terminates in state sl, we as-
sume that the transition (sl, sl) appears in transi-
tion predicate of some process in PΠ, i.e., s can be
extended to an infinite computation by stuttering at
sl. On the other hand, if there exists a state sd such
that an outgoing transition (or a self-loop) from sd

appears in transition predicate of no process in PΠ

then sd is a deadlock state and a computation of Π

that reaches sd is a deadlocked computation. Clearly,
such computations cannot be extended to an infinite
computation.

2.2 UNITY Properties

We now present the formal definitions for the Unity

properties introduced by Chandy and Misra [7].
Unity properties are categorized by two classes of
safety and progress properties. These properties are
defined next.

Definition 2.6 (UNITY safety properties)
Let P and Q be arbitrary state predicates.

• (Unless) An infinite sequence of states s =
〈s0, s1 · · · 〉 satisfies ‘P unless Q’ iff ∀i ≥ 0 : (si ∈
(P ∩ ¬Q)) ⇒ (si+1 ∈ (P ∪ Q)). Intuitively, if
P holds in a state of s then either (1) Q never
holds in s and P is continuously true, or (2)
Q becomes true and P holds at least until Q
becomes true.

• (Stable) An infinite sequence of states s =
〈s0, s1 · · · 〉 satisfies ‘stable P ’ iff s satisfies P
unless false. Intuitively, P is stable iff once it
becomes true, it remains true forever.

• (Invariant) An infinite sequence of states s =
〈s0, s1 · · · 〉 satisfies ‘invariant P ’ iff s0 ∈ P and s
satisfies stable P . An invariant property always
holds.

Definition 2.7 (UNITY progress properties)
Let P and Q be arbitrary state predicates.

• (Leads-to) An infinite sequence of states s =
〈s0, s1 · · · 〉 satisfies ‘P leads-to Q’ iff (∀i ≥ 0 :
(si ∈ P) ⇒ (∃j ≥ i : sj ∈ Q)). In other words,
if P holds in a state si, i ≥ 0, of s then there
exists a state sj in s, i ≤ j, such that Q holds.

• (Ensures) An infinite sequence of states s =
〈s0, s1 · · · 〉 satisfies ‘P ensures Q’ iff (1) if P∩¬Q
is true in a state si, i ≥ 0, then (1) si+1 ∈
(P ∪ Q), and (2) ∃j ≥ i : sj ∈ Q. In other
words, there exists a state sj where Q even-
tually becomes true in sj and P remains true
everywhere in between si and sj .

We now define what it means for a program to
refine a Unity property. Note that throughout this
paper, we assume that a program and its properties
have identical state space.

3

Definition 2.8 (refines) Let Π = 〈PΠ, IΠ〉 be a
program and L be a Unity property. We say that
Π refines L iff all computations of Π are infinite and
satisfy L.

Definition 2.9 (specification) A Unity specifi-

cation Σ is the conjunction
∧n

i=1
Li where each Li is

a Unity safety or progress property.

One can easily extend the notion of refinement to
Unity specifications as follows. Given a program
Π and a specification Σ =

∧n
i=1

Li, we say that Π
refines Σ iff for all i, 1 ≤ i ≤ n, Π refines Li.
Concise representation of safety properties.
Notice that the Unity safety properties can be char-
acterized in terms of a set of bad transitions that
should never occur in a program computation. For
example, stable P requires that a transition, say
(s0, s1), where s0 ∈ P and s1 /∈ P , should never
occur in any computation of a program that refines
stable P . Hence, for simplicity, in this paper, when
dealing with safety Unity properties of a program
Π = 〈PΠ, IΠ〉, we assume that they are represented
by a transition predicate B ⊆ SΠ × SΠ whose tran-
sitions should never occur in any computation.

3 Problem Statement

Given are a program Π = 〈PΠ, IΠ〉 and a (new)
Unity specification Σn. Our goal is to devise an au-
tomated method which revises Π so that the revised
program (denoted Π′ = 〈PΠ′ , IΠ′〉) (1) refines Σn,
and (2) continues refining its existing Unity speci-
fication Σe, where Σe is unknown. Thus, during the
revision, we only want to reuse the correctness of Π
with respect to Σe so that the correctness of Π′ with
respect to Σe is derived from ‘Π refines Σe’.

Intuitively, in order to ensure that the revised pro-
gram Π′ continues refining the existing specification
Σe, we constrain the revision problem so that the set
of computations of Π′ is a subset of the set of com-
putations of Π. In this sense, since Unity properties
are not existentially quantified (unlike in Ctl), we
are guaranteed that all computations of Π′ satisfy
the Unity properties that participate in Σe.

Now, we formally identify constraints on SΠ′ , IΠ′ ,
and TΠ′ . Observe that if SΠ′ contains states that
are not in SΠ, there is no guarantee that the cor-
rectness of Π with respect to Σe can be reused to
ensure that Π′ refines Σe. Also, since SΠ denotes
the set of all states (not just reachable states) of Π,
removing states from SΠ is not advantageous. Like-
wise, IΠ′ should not have any states that were not

there in IΠ. Moreover, since IΠ denotes the set of
all initial states of Π, we should preserve them dur-
ing the revision. Finally, we require that TΠ′ should
be a subset of TΠ. Note that not all transitions of
TΠ may be preserved in TΠ′ . Hence, we must ensure
that Π′ does not deadlock. Based on Definition 2.9,
if (i) TΠ′ ⊆ TΠ, (ii) Π′ does not deadlock, and (iii) Π
refines Σe, then Π′ also refines Σe. Thus, the revision

problem is formally defined as follows:

Problem Statement 3.1 Given a program Π =
〈PΠ, IΠ〉 and a Unity specification Σn, identify
Π′ = 〈PΠ′ , IΠ′〉 such that:

(C1) SΠ′ = SΠ,
(C2) IΠ′ = IΠ,
(C3) TΠ′ ⊆ TΠ, and
(C4) Π′ refines Σn.

Note that the requirement of deadlock freedom is not
explicitly specified in the above problem statement,
as it follows from ‘Π′ refines Σn’. Throughout the pa-
per, we use ‘revision of Π with respect to a specifica-
tion Σn (or property L)’ and ‘addition of Σn (respec-
tively, L) to Π’ interchangeably. In Sections 4 and
5, we present our results on developing automated
methods that solve the above revision problem with
respect to different types of Unity properties.

4 Adding UNITY Safety Proper-

ties to Distributed Programs

As mentioned in Section 2, Unity safety properties
can be characterized by a transition predicate, say B,
whose transitions should occur in no computation of
a program. In a centralized setting where programs
have no restrictions on reading and writing variables,
a program Π = 〈PΠ, IΠ〉 can be easily revised with
respect to B by simply (1) removing the transitions
in B from TΠ, and (2) making newly created deadlock
states unreachable [8].

To the contrary, the above approach is not ade-
quate for a distributed setting, as it is sound (i.e., it
constructs a correct program), but not complete (it
may fail to find a solution while there exists one).
This is due to the issue of read restrictions in dis-
tributed programs, which associates each transition
of a process with a group predicate. This notion of
grouping makes the revision complex, since a revi-
sion algorithm has to examine many combinations
to determine which group of transitions must be re-
moved and, hence, what deadlock states need to be

4

handled. Indeed, we show that the issue of read
restrictions changes the class of complexity of the
revision problem entirely.
Instance. A distributed program Π = 〈PΠ, IΠ〉
and Unity safety specification Σn.
Decision problem. Does there exist a program
Π′ = 〈PΠ′ , IΠ′〉 such that Π′ meets the constraints
of Problem Statement 3.1 for the above instance?

We now show that the above decision problem is
NP-complete by a reduction from the well-known
satisfiability problem. The SAT problem is as fol-
lows:

Let x1, x2 · · ·xN be propositional variables.
Given a Boolean formula y = yN+1 ∧
yN+2 · · · yM+N , where each clause yj , N +
1 ≤ j ≤ M + N , is a disjunction of three
or more literals, does there exist an assign-
ment of truth values to x1, x2 · · ·xN such
that y is satisfiable?

We note that the unconventional subscripting of
variables and clauses in the above definition of the
SAT problem is deliberately chosen to make our
proofs simpler.

Theorem 4.1 The problem of adding a Unity

safety property to a distributed program is NP-

complete.

Proof. Since showing membership to NP is
straightforward, we only need to show that the prob-
lem is NP-hard. Towards this end, we present a
polynomial-time mapping from an instance of the
SAT problem to a corresponding instance of our re-
vision problem. Thus, we construct Π = 〈PΠ, IΠ〉 as
follows.
Variables. The set of variables of program Π and,
hence, its processes is V = {v0, v1, v2, v3, v4}. The
domain of these variables are respectively as follows:
{−1, 0, 1}, {−1, 0, 1}, {0, 1}, {0, 1}, {1, 2 · · ·M +
N}∪{ji | (1 ≤ i ≤ N)∧ (N +1 ≤ j ≤ M +N)}. We
note that ji in the last set is not an exponent, but a
denotational symbol.
Reachable states. The set of reachable states in
our mapping are as follows:

• For each propositional variable xi, 1 ≤ i ≤ N ,
in the instance of the SAT problem, we in-
troduce the following states (see Figure 1-a):
ai, bi, b

′
i, ci, c

′
i, di, d

′
i. We require that states a1

and aN+1 are identical.

• For each clause yj , N + 1 ≤ j ≤ M + N , we
introduce state rj .

• For each clause yj , N + 1 ≤ j ≤ M + N , and
variable xi in clause yj , 1 ≤ i ≤ N , we introduce
the following states: rji, sji, s

′
ji, tji, t

′
ji.

Value assignments. Assignment of values to
each variable at each state is shown in Figure 1-a
(denoted by < v0, v1, v2, v3, v4 >). This part of our
mapping is the most crucial factor in forming group
predicates.
Processes. Program Π consists of four processes.
Formally, PΠ = {p1, p2, p3, p4}. Transition predicate
and read/write restrictions of processes in PΠ are as
follows:

• Read/write restrictions. The read/write
restrictions of processes p1, p2, p3, and p4 are as
follows:

– Rp1
= {v0, v2, v3} and Wp1

= {v0, v2, v3}.

– Rp2
= {v1, v2, v3} and Wp2

= {v1, v2, v3}.

– Rp3
= {v0, v1, v2, v3, v4} and Wp3

=
{v0, v1, v2, v4}.

– Rp4
= {v0, v1, v2, v3, v4} and Wp4

=
{v0, v1, v3, v4}.

• Transition predicates. For each proposi-
tional variable xi, 1 ≤ i ≤ N , we include the
following transitions in processes p1, p2, p3, and
p4 (see Figure 1-a):

– Tp1
= {(b′i, d

′
i), (bi, ci) | 1 ≤ i ≤ N}.

– Tp2
= {(b′i, c

′
i), (bi, di) | 1 ≤ i ≤ N}.

– Tp3
= {(c′i, ai+1), (ci, ai+1),

(d′i, ai+1), (di, ai+1) | 1 ≤ i ≤ N}.

– Tp4
= {(ai, bi), (ai, b

′
i) | 1 ≤ i ≤ N}.

Moreover, corresponding to each clause yj , N +
1 ≤ j ≤ M + N , and variable xi, 1 ≤ i ≤ N , in
clause yj , we include transition (rj , rji) in Tp3

and the following:

– If xi is a literal in clause yj then we include
transition (rji, sji) in Tp2

, (sji, tji) in Tp3
,

and (tji, bi) in Tp4
.

– If ¬xi is a literal in clause yj then we in-
clude transition (rji, s

′
ji) in Tp1

, (s′ji, t
′
ji) in

Tp3
, and (t′ji, b

′
i) in Tp4

.

5

�� ����������������

� �� �����������������
�� ��� �����������������

��

��� ������������������
��

� �� �������������������
��

� � ���������������� �� ��������������� ��

�� ��������������� �	� � ����������������

�	� �����������������	��

� �����������������

�� ��������������� �� � ����������������

��� ����������������
�

(a) Mapping SAT to addition of Unity safety properties.

��

��

������

�������

�������

����

������������������

������

��

�������

�������

������

��	
�����

��	
�����

��	
�����

��	
�����

	
��
��
��
��
��

������

��	���

��	���

���
��������	�

��������	��

��������������
����
������

��������	��

������������ ��
����
������

 ����

(b) The structure of the revised program for Boolean
formula (x1 ∨¬x2 ∨x3)∧ (x1 ∨x2 ∨¬x4), where x1 =
true, x2 = false, x3 = false, and x4 = false.

Figure 1: Reduction from the SAT problem.

Note that only for the sake of illustration, Fig-
ure 1-a shows all possible transitions. However,
in order to construct Π, based on the existence
of xi or ¬xi in yj , we only include a subset of
the transitions.

Initial states. The set IΠ represents clauses of the
instance of the SAT problem, i.e., IΠ = {rj | N+1 ≤
j ≤ M + N}.
Safety property. Let P be a state predicate that
contains all reachable states in Figure 1-a except ci

and c′i (i.e., ci, c
′
i ∈ ¬P). Thus, the properties stable

P and invariant P can be characterized by the tran-
sition predicate B = {(bi, ci), (b

′
i, c

′
i) | 1 ≤ i ≤ N}.

Similarly, let P and Q be two state predicates that
contain all reachable states in Figure 1-a except ci

and c′i. Thus, the safety property P unless Q can be
characterized by B as well. In our mapping, we let
B represent the safety specification for which Π has
to be revised.

Before we present our reduction from the SAT
problem using the above mapping, we make the fol-
lowing observations regarding the grouping of tran-
sitions in different processes:

1. Due to inability of process p1 to read variable v4,
for all i, 1 ≤ i ≤ N , transitions (rji, s

′
ji), (b

′
i, d

′
i),

and (bi, ci) are grouped in p1.

2. Due to inability of process p2 to read variable v4,
for all i, 1 ≤ i ≤ N , transitions (rji, sji), (bi, di),
and (b′i, c

′
i) are grouped in p2.

3. Transitions grouped with the rest of the transi-
tions in Figure 1-a are unreachable and, hence,
are irrelevant.

Now, we show that the answer to the SAT problem
is affirmative if and only if there exists a solution
to the revision problem. Thus, we distinguish two
cases:

• (⇒) First, we show that if the given instance of
the SAT formula is satisfiable then there exists
a solution that meets the requirements of the
revision decision problem. Since the SAT for-
mula is satisfiable, there exists an assignment
of truth values to all variables xi, 1 ≤ i ≤ N ,
such that each yj , N + 1 ≤ j ≤ M + N , is true.
Now, we identify a program Π′, that is obtained
by adding the safety property represented by B
to program Π as follows.

– The state space of Π′ consists of all the
states of Π, i.e., SΠ = SΠ′ .

– The initial states of Π′ consists of all the
initial states of Π, i.e., IΠ = IΠ′ .

– For each variable xi, 1 ≤ i ≤ N , if xi is true

then we include the following transitions:
(ai, bi) in Tp4

, (bi, di) in Tp2
, and (di, ai+1)

in Tp3
.

– For each variable xi, 1 ≤ i ≤ N , if
xi is false then we include the following
transitions:(ai, b

′
i) in Tp4

, (b′i, d
′
i) in Tp1

,
and (d′i, ai+1) in Tp3

.

6

– For each clause yj , N + 1 ≤ j ≤ M + N ,
that contains literal xi, if xi is true, we
include the following transitions: (rj , rji)
in Tp4

, (rji, sji) in Tp2
, (sji, tji) in Tp3

, and
(tji, bi) in Tp4

.

– For each clause yj , N + 1 ≤ j ≤ M + N ,
that contains literal ¬xi, if xi is false, we
include the following transitions: (rj , rji)
in Tp4

, (rji, s
′
ji) in Tp1

, (s′ji, t
′
ji) in Tp3

, and
(t′ji, b

′
i) in Tp4

.

As an illustration, we show the partial structure
of Π′, for the formula (x1∨¬x2∨x3)∧(x1∨x2∨
¬x4), where x1 = true, x2 = false, x3 = false,
and x4 = false, in Figure 1-b. Notice that states
whose all outgoing and incoming transitions are
eliminated are not illustrated. Now, we show
that Π′ meets the requirements of the Problems
Statement 3.1:

1. The first three constraints of the decision
problem are trivially satisfied by construc-
tion.

2. We now show that constraint C4 holds.
First, it is easy to observe that by con-
struction, there exist no reachable dead-
lock states in the revised program. Hence,
if Π refines Unity specification Σe then Π′

refines Σe as well. Moreover, if a compu-
tation of Π′ reaches a state bi for some i,
from an initial state rj (i.e., xi is true in
clause yj) then that computation cannot
violate safety since bad transition (bi, ci)
is removed. This is due to the fact that
(bi, ci) is grouped with transition (rji, s

′
ji)

and this transition is not included in Π′,
as literal xi is true in yj . Likewise, if a
computation of Π′ reaches a state b′i for
some i, from initial state rj (i.e., xi is false

in clause yj) then that computation can-
not violate safety since transition (b′i, c

′
i)

is removed. This is due to the fact that
(b′i, c

′
i) is grouped with transition (rji, sji)

and this transition is not included in Π′, as
xi is false. Thus, Π′ refines Σn.

• (⇐) Next, we show that if there exists a solution
to the revision problem for the instance iden-
tified by our mapping from the SAT problem,
then the given SAT formula is satisfiable. Let

Π′ be the program that is obtained by adding
the safety property Σn to program Π. Now, in
order to obtain a solution for SAT, we proceed
as follows. If there exists a computation of Π′

where state bi is reachable then we assign xi the
truth value true. Otherwise, we assign the truth
value false.

We now show that the above truth assignment
satisfies all clauses. Let yj be a clause for some
j, N + 1 ≤ j ≤ M + N , and let rj be the cor-
responding initial state in Π′. Since rj is an
initial state and Π′ cannot deadlock, the tran-
sition (rj , rji) must be present in Π′, for some
i, 1 ≤ i ≤ N . By the same argument, there
must exist some transition that originates from
rji. This transition terminates in either sji or
s′ji. Observe that Π′ cannot have both tran-
sitions, as grouping of transitions will include
both (bi, ci) and (b′i, c

′
i) which in turn causes vi-

olation of safety by Π′. Now, if the transition
from rji terminates in sji, then clause yj con-
tains literal xi and xi is assigned the truth value
true. Hence, yj evaluates to true. Likewise, if
the transition from rji terminates in s′ji then
clause yj contains literal ¬xi and xi is assigned
the truth value false. Hence, yj evaluates to
true. Therefore, the assignment of values con-
sidered above is a satisfying truth assignment
for the given SAT formula.

5 Adding UNITY Progress Prop-

erties to Distributed Programs

This section is organized as follows. In Subsection
5.1, we show that adding a Unity progress property
to a distributed program is NP-complete. Then, in
Subsection 5.2, we present a symbolic heuristic for
adding a leads-to property to a distributed program.

5.1 Complexity

In a centralized setting, where programs have no
restriction on reading and writing variables, a pro-
gram, say Π = 〈PΠ, IΠ〉, can be easily revised with
respect to a progress property by simply (1) break-
ing non-progress cycles that prevent a program to
eventually reach a desirable state predicate, and (2)
removing deadlock states [8]. To the contrary, in a
distributed setting, due to the issue of grouping, it
matters which transition (and as a result its corre-
sponding group) is removed to break a non-progress
cycle.

7

�� ��������������������

��� �����������������

�� ������������������

��� ����������
�
�������

	�� ����������
�
�������

	��� ����������
�
�������

��� ������������������

�� �����������������

� ������������������

�� �����������������

�� ������������������

��� �����������������

��� ������������������

�� ������������������

(a) Mapping SAT to addition of a leads-to property.

��

���

��

���

��� ����

��

��� ��

�� ��

���

��� ��

�� ��

��� ���

����

���
���

��

���
���

��� ��

���

��

���	
���	�

���	
���	

���	
���	�

������������������

�
�
��

�������

�����������

��
�
����
�����
������	����
���

�����������

��
�
����
���� �
������	����
���

����

���	
���	�

�������

(b) The structure of the revised program for Boolean formula
(x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ x2 ∨ ¬x4), where x1 = true, x2 = false,
x3 = false, and x4 = false.

Figure 2: Reduction from the SAT problem.

Instance. A distributed program Π = 〈PΠ, IΠ〉
and Unity progress property Σn.
Decision problem. Does there exist a program
Π′ = 〈PΠ′ , IΠ′〉 such that Π′ meets the constraints
of Problem Statement 3.1 for the above instance?

Theorem 5.1 The problem of adding a Unity

progress property to a distributed program is NP-

complete.

Proof. Since showing membership to NP is
straightforward, we only show that the problem is
NP-hard by a reduction from the SAT problem.
First, we present a polynomial-time mapping.
Variables. The set of variables of program Π
and, hence, its processes is V = {v0, v1, v2, v3, v4}.
The domain of these variables are respectively as
follows: {0, 1}, {0, 1}, {1, 2 · · ·M + N} ∪ {ji | (1 ≤
i ≤ N) ∧ (N + 1 ≤ j ≤ M + N)}, {−1, 0, 1}, and
{−1, 0, 1}.
Reachable states. The set of reachable states in
our mapping are as follows:

• For each propositional variable xi, 1 ≤ i ≤ N ,
we introduce the following states (see Figure 2-
a): ai, a′i, bi, b′i, ci, c′i, di, d′i, Qi, and Q′

i.

• For each clause yj , N + 1 ≤ j ≤ M + N , we
introduce state rj .

• For each clause yj , N + 1 ≤ j ≤ M + N , and
xi, 1 ≤ i ≤ N , in clause yj , we introduce states
rji, sji, and s′ji.

Value assignments. Assignment of values to
each variable at each state is shown in Figure 2-a
(denoted by < v0, v1, v2, v3, v4 >).

Processes. Program Π consists of four processes.
Formally, PΠ = {p1, p2, p3, p4}. Transition predicate
and read/write restrictions of processes in PΠ are as
follows:

• Read/write restrictions. The read/write
restrictions of processes p1, p2, p3, and p4 are as
follows:

– Rp1
= {v0, v1, v3} and Wp1

= {v0, v1, v3}.

– Rp2
= {v0, v1, v4} and Wp2

= {v0, v1, v4}.

– Rp3
= {v0, v1, v2, v3, v4} and Wp3

=
{v0, v2, v3, v4}.

– Rp4
= {v0, v1, v2, v3, v4} and Wp4

=
{v1, v2, v3, v4}.

• Transition predicates. For each proposi-
tional variable xi, 1 ≤ i ≤ N , we include the
following transitions in processes p1, p2, p3, and
p4 (see Figure 2-a):

– Tp1
= {(b′i, c

′
i), (bi, Qi) | 1 ≤ i ≤ N}.

– Tp2
= {(bi, ci), (b

′
i, Q

′
i) | 1 ≤ i ≤ N}.

– Tp3
= {(ai, bi), (a

′
i, b

′
i), (ci, di), (c

′
i, d

′
i),

(Qi, Qi), (Q
′
i, Q

′
i) | 1 ≤ i ≤ N}.

– Tp4
= {(d′i, bi), (di, b

′
i) | 1 ≤ i ≤ N}.

8

Moreover, corresponding to each clause yj , N +
1 ≤ j ≤ M + N , and variable xi, 1 ≤ i ≤ N , in
clause yj , we include transition (rj , rji) in Tp3

and the following:

– If xi is a literal in clause yj then we include
transition (rji, sji) in Tp2

, and (sji, ai) in
Tp4

.

– If ¬xi is a literal in clause yj then we in-
clude transition (rji, s

′
ji) in Tp1

and (s′ji, a
′
i)

in Tp4
.

Note that for the sake of illustration Figure 2-a
shows all possible transitions. However, in order
to construct Π, based on the existence of xi or
¬xi in yj , we only include a subset of transitions.

Initial states. The set IΠ of Π is the set of states
that represent clauses of the boolean formula in the
instance of SAT, i.e., IΠ = {rj | N+1 ≤ j ≤ M+N}.
Progress property. In our mapping, the de-
sirable progress property is of the form Σn ≡ (true

leads-to Q), where Q = {Qi, Q
′
i | 1 ≤ i ≤ N} (see

Figure 2-a). Observe that Σn is a leads-to as well as
an ensures property. This property in Linear Tem-
poral Logic (Ltl) is denoted by ¤♦Q (called always

eventually Q).
Before we present our reduction from the SAT

problem using the above mapping, we make the fol-
lowing observations regarding the grouping of tran-
sitions in different processes:

1. Due to inability of process p1 to read variable
v2, for all i, 1 ≤ i ≤ N , transitions (rji, s

′
ji),

(b′i, c
′
i), and (bi, Qi) are grouped in process p1.

2. Due to inability of process p2 to read variable
v2, for all i, 1 ≤ i ≤ N , transitions (rji, sji),
(bi, ci), and (b′i, Q

′
i) are grouped in process p2.

3. Transitions grouped with the rest of the transi-
tions in Figure 2-a are unreachable and, hence,
are irrelevant.

We distinguish the following two cases for reducing
the SAT problem to our revision problem :

• (⇒) First, we show that if the given instance of
the SAT formula is satisfiable then there exists
a solution that meets the requirements of the re-
vision decision problem. Since the SAT formula
is satisfiable, there exists an assignment of truth

values to all variables xi, 1 ≤ i ≤ N , such that
each yj , N + 1 ≤ j ≤ M + N , is true. Now,
we identify a program Π′, that is obtained by
adding the progress property ¤♦Q to program
Π as follows.

– The state space of Π′ consists of all the
states of Π, i.e., SΠ = SΠ′ .

– The initial states of Π′ consists of all the
initial states of Π, i.e., IΠ = IΠ′ .

– For each variable xi, 1 ≤ i ≤ N , if xi is true

then we include the following transitions:
(ai, bi), (ci, di), and (Q′

i, Q
′
i) in Tp3

, (bi, ci)
and (b′i, Q

′
i) in Tp2

, and, (di, b
′
i) in Tp4

.

– For each variable xi, 1 ≤ i ≤ N , if xi is
false then we include the following transi-
tions: (a′i, b

′
i), (c′i, d

′
i), and (Qi, Qi) in Tp3

,
(b′i, c

′
i) and (bi, Qi) in Tp1

, and, (d′i, bi) in
Tp4

.

– For each clause yj , N + 1 ≤ j ≤ M + N ,
that contains literal xi, if xi is true, we
include transition (rj , rji) in Tp4

, (rji, sji)
in Tp2

, and, (sji, ai) in Tp4
.

– For each clause yj , N + 1 ≤ j ≤ M + N ,
that contains literal ¬xi, if xi is false, we
include transition (rj , rji) in Tp4

, (rji, s
′
ji)

in Tp1
, and, (s′ji, a

′
i) in Tp4

.

As an illustration, we show the partial structure
of Π′, for the formula (x1∨¬x2∨x3)∧(x1∨x2∨
¬x4), where x1 = true, x2 = false, x3 = false,
and x4 = false in Figure 2-b. Notice that states
whose all outgoing and incoming transitions are
eliminated are not illustrated. Now, we show
that Π′ meets the requirements of the Problems
Statement 3.1:

1. The first three constraints of the decision
problem are trivially satisfied by construc-
tion.

2. We now show that constraint C4 holds.
First, it is easy to observe that by con-
struction, there exist no reachable dead-
lock states in the revised program. Hence,
if Π refines Unity specification Σe then
Π′ refines Σe as well. Moreover, by con-
struction, all computations of Π′ eventu-
ally reach either Qi or Q′

i and will stutter
there. This is due to the fact that if lit-
eral xi is true in clause yj then transition
(rji, s

′
ji) is not included in Π′ and, hence,

9

its group-mates (b′i, c
′
i) and (bi, Qi) are not

in TΠ′ as well. Consequently, a computa-
tion that starts from rj eventually reaches
Q′

i. Likewise, if literal ¬xi is false in clause
yj then transition (rji, sji) is not included
in Π′ and, hence, its group-mates (bi, ci)
and (b′i, Q

′
i) are not in TΠ′ as well. Con-

sequently, a computation that starts from
rj eventually reaches Qi. Hence, Π′ refines
Σn ≡ ¤♦Q.

• (⇐) Next, we show that if there exists a solution
to the revision problem for the instance iden-
tified by our mapping from the SAT problem,
then the given SAT formula is satisfiable. Let
Π′ be the program that is obtained by adding
the progress property in Σn ≡ ¤♦Q to program
Π. Now, in order to obtain a solution for SAT,
we proceed as follows. If there exists a compu-
tation of Π′ where state ai is reachable then we
assign xi the truth value true. Otherwise, we
assign the truth value false.

We now show that the above truth assignment
satisfies all clauses. Let yj be a clause for some
j, N + 1 ≤ j ≤ M + N , and let rj be the corre-
sponding initial state in Π′. Since rj is an ini-
tial state and Π′ cannot deadlock, the transition
(rj , rji) must be present in Π′, for some i, 1 ≤
i ≤ N . By the same argument, there must exist
some transition that originates from rji. This
transition terminates in either sji or s′ji. Ob-
serve that Π′ cannot have both transitions, as
grouping of transitions will include transitions
(bi, ci) and (b′i, c

′
i). If this is the case, Π′ does not

refine the property ¤♦Q due to the existence of
cycle bi → ci → di → b′i → c′i → d′i → bi. Thus,
there can be one and only one outgoing transi-
tion from rji in Π′. Now, if the transition from
rji terminates in sji, then clause yj contains lit-
eral xi and xi is assigned the truth value true.
Hence, yj evaluates to true. Likewise, if the
transition from rji terminates in s′ji then clause
yj contains literal ¬xi and xi is assigned the
truth value false. Hence, yj evaluates to true.
Therefore, the assignment of values considered
above is a satisfying truth assignment for the
given SAT formula.

5.2 A Symbolic Heuristic for Adding
Leads-To Properties

We now present a BDD-based heuristic for adding
leads-to properties to distributed programs due to
its interesting applications in automated addition of
recovery for synthesizing fault-tolerant distributed
programs.

The NP-hardness reduction presented in the proof
of Theorem 5.1 precisely shows where the complex-
ity of the problem lies in. Indeed, Figure 2-a shows
that transition (bi, ci) (respectively, (b′i, c

′
i)), which

can potentially be removed to break the non-progress
cycle bi → ci → di → b′i → c′i → d′i → bi is
grouped with the critical transition (rji, sji) (respec-
tively, (rji, s

′
ji)) which ensures state rji and conse-

quently initial state rj are not deadlock states. Thus,
a heuristic that adds a leads-to property to a dis-
tributed program needs to address this issue.

Our heuristic works as follows (cf. Figure 3-a).
The Algorithm Add LeadsTo takes a distributed pro-
gram Π = 〈PΠ, IΠ〉 and a property P leads-to Q as
input, where P and Q are two arbitrary state predi-
cates in the state space of Π. The algorithm (if suc-
cessful) returns transition predicate of the derived
program Π′ = 〈PΠ′ , IΠ′〉 that refines P leads-to Q
as output. In order to transform Π to Π′, first, the
algorithm ranks states that can be reached from P
based on the length of their shortest path to Q (Line
2). Then, it attempts to break non-progress cycles
(Lines 3-13). To this end, it first computes the set of
cycles that are reachable from P (Line 4). This com-
putation can be accomplished using any BDD-based
cycle detection algorithm. We apply the Emerson-
Lie method [10]. Then, the algorithm removes tran-
sitions that participate in a cycle and whose rank
of source state is less than or equal to the rank of
destination state (Lines 6-10). However, since re-
moval of a transition must take place with its entire
group predicate, we do not remove a transition that
causes creation of deadlock states in Q. Instead,
we make the corresponding cycle unreachable (Line
8). This can be done by simply removing transitions
that terminate in a state on the cycle. Thus, if re-
moval of a group of transitions does not create new
deadlock states in Q, the algorithm removes them
(Line 10). Finally, since removal of transitions may
create deadlock states outside Q but reachable from
P , we need to eliminate those deadlock states (Line
15). Such elimination can be accomplished using the
BDD-based method proposed in [5].

10

Algorithm 1 Add LeadsTo

Input: A distributed program Π = 〈PΠ,IΠ〉 and property P leads-to Q.
Output: If successful, transition predicate TΠ′ of the new program.

1: repeat

2: Let Rank [i] contain the state predicate whose length of shortest path
to Q is i, where Rank [0] = Q and Rank [∞] = the state predicate that
is reachable from P , but cannot reach Q;

3: for all i and j do

4: C := ComputeCycles(TΠ , P);
5: if (i ≤ j) ∧ (i 6= 0) ∧ (i 6= ∞) then

6: tmp := Group(〈C ∧ Rank [i]〉 ∧ 〈C ∧ Rank [j]〉′);
7: if removal of tmp from TΠ eliminates a state from Q then

8: Make 〈C ∧ tmp〉 unreachable
9: else

10: TΠ := TΠ − tmp;
11: end if

12: end if

13: end for

14: until Rank [∞] = {}
15: TΠ′ := EliminateDeadlockStates(P , Q, 〈PΠ,IΠ〉);
16: return TΠ′ ;

(a) Symbolic heuristic

Space Time(s)
reachable memory cycle pruning total

states (KB) detection transitions

BA5
10

4
12 0.5 2.5 3

BA10
10

8
18 5 18 23

BA15
10

12
26 47 76 125

BA20
10

16
29 522 372 894

BA25
10

20
30 3722 1131 4853

TR5
10

2
6 0.2 0.3 0.5

TR10
10

5
7 13 2 15

TR15
10

7
10 470 10 480

TR20
10

9
33 2743 173 2916

TR25
10

11
53 22107 2275 24382

(b) Experimental results

Figure 3: Adding leads-to property to distributed programs.

Given O(n2) complexity of the cycle detection al-
gorithm [10], it is straightforward to observe that
the complexity of our heuristic is O(n4), where n is
the size of state space of Π. In order to evaluate the
performance of our heuristic, we have implemented
the Algorithm Add LeadsTo in our tool Sycraft [6].
This heuristic can be used for adding recovery in or-
der to synthesize fault-tolerant distributed programs
by performing the following two steps. First, we
add all possible transitions that start from fault-span

predicate T (i.e., set of all reachable states in the
presence of faults) and end in T . Then, we apply the
Algorithm Add LeadsTo for property (T − S) leads-

to S, where S is a set of legitimate states (i.e., an
invariant predicate).

Figure 3-b illustrates experimental results of our
heuristic for adding such recovery. All experiments
are run on a PC with a 2.8GHz Intel Xeon pro-
cessor and 1.2GB RAM. The BDD representation
of the Boolean formulae has been done using the
Glu/CUDD package [18]. Our experiments tar-
get addition of recovery two well-known problems
in fault-tolerant distributed computing, namely, the
Byzantine agreement problem [14] (denote BAi) and
the token ring problem [2] (denoted TRi), where i is
the number of processes. Figure 3-b shows the size
of reachable states in the presence of faults, memory
usage, total time spent to add the desirable leads-to

property, time spent for cycle detection (i.e., Line
4 in Figure 3-a), and time spent for pruning transi-
tions that participate in a cycle. Given the huge size

of state space and complexity of structure of pro-
grams in our experiments, we find the experimental
results quite encouraging. We note that the reason
that TR and BA behave differently as their number
of processes grow is due to their different structures,
existing cycles, and number of reachable states. In
particular, the state space of TR is highly reachable
and its original program has a cycle that includes
all of its legitimate states, which is not the case for
BA. We also note that in case of TR, the sym-
bolic heuristic presented in this subsection tend to
be slower than the constructive layered approach in-
troduced in [5]. However, the approach in this paper
is more general and has a better potential of success
than the approach in [5].

6 Related Work

The most relevant work to this paper proposes auto-
mated transformation techniques for adding Unity

properties to centralized programs [8]. We showed
that addition of multiple Unity safety properties
along with a single progress property to a centralized
program can be accomplished in polynomial-time.
We also showed that the problem of simultaneous
addition of two leads-to properties to a centralized
program is NP-complete.

Existing synthesis methods in the literature
mostly focus on deriving the synchronization skele-
ton of a program from its specification (expressed
in terms of temporal logic expressions or finite-state
automata) [1, 3, 4, 9, 15–17]. Although such synthe-

11

sis methods may have differences with respect to the
input specification language and the program model
that they synthesize, the general approach is based
on the satisfiability proof of the specification. This
makes it difficult to provide reuse in the synthesis
of programs; i.e., any changes in the specification
require the synthesis to be restarted from scratch.

Algorithms for automatic addition of fault-
tolerance to distributed programs are studied from
different perspectives [5,11–13]. These (enumerative
and symbolic) algorithms add fault-tolerance con-
cerns to existing programs in the presence of faults,
and guarantee not to add new behaviors to that pro-
gram in the absence of faults. Most problems in ad-
dition of fault-tolerance to distributed programs are
known to NP-complete. Thus, in this paper, we find
it somewhat unexpected that corresponding prob-
lems in the absence of faults remain NP-complete.

7 Conclusion and Future Work

In this paper, we concentrated on automated tech-
niques for revising distributed programs with re-
spect to Unity properties. We showed that unlike
centralized programs where multiple Unity safety
properties along with one progress property can be
added in polynomial-time [8], the problem is NP-
complete for distributed programs. We also intro-
duced and implemented a BDD-based heuristic for
adding a leads-to property to distributed programs
in our tool Sycraft [6]. Our experiments show en-
couraging results paving the path for applying au-
tomated techniques for deriving programs that are
correct-by-construction in practice.

For future work, we plan to identify sub-problems
where one can devise sound and complete algorithms
that add Unity properties to distributed programs
in polynomial-time. We also plan to devise heuris-
tics for adding other types of Unity properties to
distributed programs.

References

[1] A. Arora, P. C. Attie, and E. A. Emerson. Synthesis
of fault-tolerant concurrent programs. In Principles of
Distributed Computing (PODC), pages 173–182, 1998.

[2] A. Arora and S. S. Kulkarni. Component based design of
multitolerant systems. IEEE Transactions on Software
Engineering, 24(1):63–78, 1998.

[3] P. C. Attie. Synthesis of large concurrent programs via
pairwise composition. In International Conference on

Concurrency Theory (CONCUR), pages 130–145, Lon-
don, UK, 1999. Springer-Verlag.

[4] P.C. Attie and E. A. Emerson. Synthesis of concurrent
programs for an atomic read/write model of computa-
tion. ACM Transactions on Programming Languages and
Systems (TOPLAS), 23(2):187 – 242, 2001.

[5] B. Bonakdarpour and S. S. Kulkarni. Exploiting sym-
bolic techniques in automated synthesis of distributed
programs with large state space. In IEEE International
Conference on Distributed Computing Systems (ICDCS),
pages 3–10, 2007.

[6] B. Bonakdarpour and S. S. Kulkarni. SYCRAFT: A tool
for synthesizing fault-tolerant distributed programs. In
Concurrency Theory (CONCUR), pages 167–171, 2008.

[7] K. M. Chandy and J. Misra. Parallel program design:
a foundation. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1988.

[8] A. Ebnenasir, S. S. Kulkarni, and B. Bonakdarpour. Re-
vising UNITY programs: Possibilities and limitations.
In International Conference on Principles of Distributed
Systems (OPODIS), LNCS 3974, pages 275–290, 2005.

[9] E. A. Emerson and E. M. Clarke. Using branching time
temporal logic to synthesize synchronization skeletons.
Science of Computer Programming, 2(3):241–266, 1982.

[10] E. A. Emerson and C. L. Lei. Efficient model checking
in fragments of the propositional model mu-calculus. In
Logic in Computer Science (LICS), pages 267–278, 1986.

[11] S. S. Kulkarni and A. Arora. Automating the addition of
fault-tolerance. In Formal Techniques in Real-Time and
Fault-Tolerant Systems (FTRTFT), pages 82–93, 2000.

[12] S. S. Kulkarni, A. Arora, and A. Chippada. Polynomial
time synthesis of Byzantine agreement. In Symposium
on Reliable Distributed Systems (SRDS), pages 130–140,
2001.

[13] S. S. Kulkarni and A. Ebnenasir. The complexity of
adding failsafe fault-tolerance. International Conference
on Distributed Computing Systems, 2002.

[14] L. Lamport, R. Shostak, and M. Pease. The Byzantine
generals problem. ACM Transactions on Programming
Languages and Systems (TOPLAS), 4(3):382–401, 1982.

[15] Z. Manna and P. Wolper. Synthesis of communicat-
ing processes from temporal logic specifications. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 6(1):68–93, 1984.

[16] A. Pnueli and R. Rosner. On the synthesis of a reac-
tive module. In Principles of Programming Languages
(POPL), pages 179–190, 1989.

[17] A. Pnueli and R. Rosner. On the synthesis of an asyn-
chronous reactive module. In International Colloqium
on Automata, Languages, and Programming, number 372
in Lecture Notes in Computer Science, pages 652–671.
Springer-Verlag, 1989.

[18] F. Somenzi. CUDD: Colorado University Decision Di-
agram Package. http://vlsi.colorado.edu/~fabio/

CUDD/cuddIntro.html.

12

Appendix

A Summary of Notations

V set of variables
D domain of variables
s state
S state space

Tp transition predicate of process p
Wp set of variables that process p can write
Rp set of variables that process p can read
Π distributed program

PΠ processes of program Π
IΠ initial states of program Π
TΠ transition predicate of program Π

P, Q state predicates
s computation
L Unity property

Σe existing specification
Σn new specification
B transition predicate that characterizes a safety Unity property

¤♦Q always eventually Q

13

