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1. Introduction

The ability to detect and recognize buildings is important to a variety of vision

applications operating in outdoor urban environments. These include landmark

recognition, assisted and autonomous navigation, image-based rendering, and 3D scene

modeling. This report discusses a solution to one part of the building recognition problem,

that of detecting multiple planar surfaces from a single image. Because each building

facade can be described as a region of a scene plane at a specific position and orientation,

the ability to generate a collection of building facades can be viewed as a first step in a

system designed to solve any of the previously mentioned applications.

A number of general methods exist for scene surface recovery. The structure from motion

approach is one of the most general (1). From multiple images acquired from different

viewpoints, the displacements of corresponding pixels from one image to the next are used

to compute the 3D depth of the corresponding scene points. This depth information can

then be segmented into qualitatively different surfaces by fitting parametric surfaces (e.g.,

planes and conics) to the depth values (2). Werner and Zisserman use this approach for

architectural model reconstruction from multiple images (3). Liebowitz et al., discuss the

same application, but use one or two images along with geometric constraints that are

common to architectural scenes (4).

In some cases, 3D properties of a scene must be inferred from a single image. For example,

static surveillance cameras may be placed in urban environments at locations where Global

Positioning System (GPS) signals cannot be received; in this case, accurate position and

orientation of the camera relative to a world coordinate frame must be determined from a

single perspective image of the environment.

Tourism is another application of single image structure recovery. The tourist of the near

future will be able to point their camera-equipped mobile phone at the urban scene in front

of them and ask questions such as (5): Where am I? What building is this? How do I get

to a particular location? These questions can be answered given the camera location and

orientation, and given a 2D or 3D map of the environment. While GPS, which is now

integrated into some mobile phones, could be used to determine location, in some urban

environments tall building block GPS signals, rendering GPS unusable. Even when GPS

can be received, it does not provide orientation, and position is only accurate to about 10

meters. Thus, vision-based location from a single image has the potential to increase the

accuracy of information obtained from these mobile devices. Approaches to determine the

orientation of a camera relative to the three dominant orthogonal directions in an urban

scene include (6,7,8).
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Some approaches to recognizing planar surfaces from a single image assume the availability

of 2D or 3D models that describe the facades of each building. A facade model may consist

of an image of the facade, or of a collection of coplanar points or line segments. It is well

known that images of a planar surface acquired from different viewpoints are related by a

linear transformation known as a homography (9). Given a model of a planar surface

consisting of a set of point or line features, and a set of four or more corresponding features

in an image from a calibrated camera, the position and orientation of the scene plane is

uniquely determined from the homography relating the model and image [p. 213](10,9)

This geometric constraint may be used to find sets of image features lying on a common

plane (11,12).

Most existing single-view approaches that use building facades for navigation, recognition,

etc., require that a single scene plane span the majority of the image. This enables

straightforward matching between an image and a model. For example, Robertson and

Cipolla (12) describe an approach to navigation in urban environments in which a single

image acquired from a mobile phone is used to determine the position and orientation of

the camera; they assume that the image is dominated by a single plane and match the

query image to a database of facade images using correspondences of local color features

centered on Harris corner points. When multiple planar surfaces are visible in an image,

the image must be segmented into regions corresponding to each scene plane.

As any given image can be generated by an infinite number of 3D surfaces, when only a

single image is available some assumptions about the geometric properties of the scene

must be made in order to recover the surface geometry. Most urban building facades have

surface markings due to doors, windows, bricks, and blocks. As such, each building facade

generally consists of two sets of parallel lines, where lines in the first set intersect lines in

the second set at right angles. It is well known that the perspective image of a collection of

parallel scene edges intersect at a single point in the image, known as the vanishing point.

Thus, the image of a building facade may be identified by locating regions in the image

covered by pairs of intersecting edges, where each edge is oriented in the direction of one of

two vanishing points. This is the approach that we take in this report.

Image line segments are first located, and then the vanishing points of these segments are

determined using the RANSAC robust model fitting algorithm (14). Groups of short seg-

ments are combined into longer segments while maintaining alignment with the associated

vanishing points. Next, the intersections of line segments associated with pairs of vanishing

points are used to generate local support for planar facades at different orientations. The

plane support points are then clustered using an algorithm that requires no knowledge of

the number of clusters or of their spatial proximity. Finally, building facades are identified

by fitting vanishing point-aligned quadrilaterals to the clustered support points. The main

contribution of our approach is its improved performance over existing approaches while
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placing no constraints on the facades in terms of their number or orientation, and minimal

constraints on the length of the detected line segments.

2. Related Work

Shape from texture and shading have been used in the past to estimate scene surface

orientation. The shape from shading approach estimates the shape of a scene from a single

image through the analysis of the gradual variation of shading in the image (15). Shape

from shading methods require the scene to consist of uniformly colored, Lambertian

surfaces (these requirements allow the image brightness to be described as a function of

surface shape and light source direction); this is not often the case in outdoor urban

environments. Algorithms for shape from texture use the variation of texture primitives

across an image to estimate the shape of the observed surface (16). Most shape from

texture algorithms are not useful for outdoor urban environments because they require the

scene to consist of smooth surfaces with uniform texture (17).

A variety of approaches to planar surface detection from a single image have been proposed

in the past. Most of these approaches, however, make simplifying assumptions or require

manual image segmentation by a user. A number of authors (4,18,19,20) have developed

systems for 3D scene reconstruction from a single image where the user is required to

manually identify image points and lines corresponding to coplanar or parallel scene points

and lines. Sturm and Maybank (18) perform 3D reconstruction given user-provided

coplanarity, perpendicularity, and parallelism constraints. Schaffalitzky and Zisserman (19)

describe methods to detect image features that are the images of repeated patterns on

world planes. These patterns include equally spaced coplanar parallel lines, elements

repeated by translation in the plane, and elements arranged in a regular planar grid. The

groupings are detected along with their vanishing points and lines, but the problem of

automatically segmenting multiple planes in an image is not addressed. Liebowitz et al.,

(4) present methods to reconstruct piecewise planar objects from one or two views of a

scene, but again, the problem of automatically segmenting multiple planes in an image is

not addressed.

Hoiem et al., (21) propose an approach to computing coarse 3D geometric features of a

scene from a single image. The coarse orientations of large surfaces in a scene are

estimated by learning appearance-based models of surfaces at different orientations. The

features used include color, texture, location, shape, and geometry of line segments. Image

regions are classified as ground, sky, or vertical surface, with vertical surfaces subclassified

into planar left, planar right, planar forward, nonplanar solid, and nonplanar porous.
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The approach does a good job identifying vertical surfaces, but does not reliably identify

the correct orientations of those surfaces.

Kosecka and Zhang (22) describe an approach to detecting building facades that relies on

being able to detect a small number of long line segments along the borders of facades.

This will be unreliable in many cluttered environments. Delage et al., (23) present an

approach to 3D reconstruction of indoor environments from a single image using a

calibrated camera whose height and orientation relative to the ground plane is assumed

known; the floor-to-wall boundary is first identified using a Bayesian network, and then the

3D reconstruction is straightforward.

Our approach is similar to the approach of Micusik et al., (24) in which orthogonal planar

surfaces are detected from a single image of an indoor environment. The orientation of each

patch in an color-segmented image is determined by computing the maximum a posteriori

(MAP) labeling in a Markov random field, where labels correspond to one of the three dom-

inant orthogonal planes. Their approach was not applied to imagery of cluttered, outdoor

environments, where building facades often consist of highly patterned, nonuniformly colored

surfaces.

3. Detection of Vanishing Points

The majority of edges in an urban environment generally align with the three principle

orthogonal directions of a local world coordinate frame. However, due to the presence of

slanted surfaces (such as roofs), numerous edges at other orientations may also be present.

But, the edges on any planar surface, whether slanted or not, are usually parallel or

orthogonal to each other. Therefore, to detect all large planar surfaces, we locate the

vanishing points of all large groups of parallel scene edges, regardless of their orientation.

Vanishing points have been used in the past to solve a number of calibration problems,

including internal camera parameter estimation, relative orientation, image rectification,

and object recognition. A variety of methods have been developed to detect and estimate

vanishing points. Common approaches include image-space clustering (25), the Hough

transform (26), and expectation maximization (7). We use an approach based on the

RANSAC robust model fitting algorithm (14) that is similar to the approach of

Wildenauer and Vincze (27) .

The first step in our approach to detecting vanishing points is the detection of straight line

segments. The Canny edge detector (28) with hysteresis thresholding is used to generate a

binary image of edge points. Straight line segments are extracted from this edge image by

first linking edges into contours and then splitting the contours into straight segments (29).
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The final line segments are those whose sum of squared distances to the contour points is

minimized. Each line segment Li is identified by its two endpoints:

Li = {(x1

i , y
1

i ) , (x2

i , y
2

i )}. In a 2048 × 1536 image, line segments shorter than 10 pixels are

discarded. Figure 1 shows an image and the line segments detected in that image. This

image will be used throughout sections 3 to 5 of this report to explain our approach.

Figure 1. Original image (left) and detected line segments (right).

For efficiency in computing the image vanishing points, for each line segment Li, we

precompute the normalized homogeneous representations of the coincident infinite line, li,

the endpoints, e1
i and e2

i , and the midpoint, mi. These are calculated according to

e1

i =
(

x1

i , y
1

i , 1
)T

,

e2

i , =
(

x2

i , y
2

i , 1
)T

,

mi =
((

x1

i + x2

i

)

/2,
(

y1

i + y2

i

)

/2, 1
)T

,

l
′

i = e1

i × e2

i ,

li = l
′

i/
√

l
′

i(1)
2 + l

′

i(2)
2.

The RANSAC algorithm is applied several times to the above data; each trial is used to

locate the single vanishing point with the most support. Before each new trial, the data

supporting the vanishing point found in the previous trail is removed. This process is

repeated until Vmax vanishing points are found, or until the size of the largest consensus set

is less than Smin. (The values of these parameters and those that follow are given in section

6.) On each trial of RANSAC, T random samples of line pairs are examined. The line pair

li and lj seed a potential vanishing point vij when the segments Li and Lj are each at least

Hseed pixels long and when their angle, θij = cos−1
(

l1i l
1
j + l2i l

2
j

)

, is no larger than Θseed.

The initial vanishing point of the line pair is vij = li × lj. The normalized line through vij
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and the midpoint of line segment Lk is given by lijk = l′ijk/
√

l′ijk (1)2 + l′ijk (2)2 where

l′ijk = vij × mk. Then, line segment Lk is considered to support vij and is added to the

consensus set Cij when the perpendicular distance, dijk = lijk × e1
k, from one endpoint e1

k of

Lk to lijk is no larger than Dsup and when the angle between these lines,

θijk = cos−1
(

v1
ijl

1
ijk + v2

ijl
2
ijk

)

, is no larger than Θsup. All line segments in the largest

consensus set Cmax are used to estimate the final location of the vanishing point, v∗, for

the current trial. v∗ is required to minimize the weighted sum, for all lines Lt ∈ Cmax, of

the squared distances of line segment end points to the line through v∗ and mt:

v∗ =
arg min

v

∑

Lt∈Cmax

√

(x1
t − x2

t )
2

+ (y1
t − y2

t )
2
(

lvt × e1
t

)2

where lvt = l′vt/
√

l′vt (1)2 + l′vt (2)2 and l′vt = v × mt. v∗ is found using standard methods

for nonlinear optimization. After computing v∗, all line segments Lt ∈ Cmax are corrected

so that they are coincident with v∗. The correction is performed by projecting the

endpoints of each line segment Lt onto the line l∗vt = v∗ ×mt through v∗ and mt. Figure 2

shows the line segments from the example image classified by the vanishing point that each

supports.

Figure 2. Line segments from the example image classified by vanishing point.
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4. Detection of Consistent Clusters of Plane Support

Image line segments that have been labeled according to vanishing point provide an initial

cue to segmenting planar regions in the image. Under the assumption that intersecting

edges in the scene are coplanar and orthogonal, every pair of nearby, nonparallel, vanishing

point-aligned image line segments defines the local surface orientation of the scene point

that projects to the segment intersection point in the image. For two local image regions to

be images of the same plane, the pairs of intersecting line segments in each of the two

regions should be labeled with the same two vanishing points. We therefore seek to cluster

pairs of intersecting line segments that have identical vanishing point label pairs.

Not all pairs of vanishing points define the orientation of a plane that can be easily

detected in an image. Vanishing directions that are close to parallel correspond to planes

that are highly forshortened: their normals are nearly perpendicular to the camera line of

sight, and their image consists of line pairs that are nearly parallel and very dense. These

line segments will be very difficult to accurately detect. Although building facades may

occur at these orientations, what is more common is that two nearly parallel vanishing

directions correspond to edges on two different, nonparallel planes. Hence, to label the

intersections of lines aligned with a pair of vanishing points, we require that the mean

angle between their pairs of intersecting line segments be sufficiently large. In all

experiments reported here, these angles were required to be in the range 45◦ − 135◦.

For each pair of vanishing points, (vi, vj), we find all points of intersection between pairs

of line segments where one segment is aligned with vi and the other segmentis aligned with

vj. Only line segments that are spatially close in the image, and with no other segments in

between, are allowed to generate intersection points. One cannot simply examine the

segments whose endpoints are close, as an intersection point of two segments may be near

the center of one of the segments. Like most line segment detection algorithms, ours

produces non-intersecting segments. To detect intersections of segments that approach but

do not meet (at a corners or at a T-junctions), we first extend the ends of all segments by

Dext pixels. Then, a straightforward approach to locating intersection points is to consider

all pairs of line segments. However, for high-resolution images such as ours (2048 × 1536),

there are often 5000 or more line segments in an image. Checking on the order of 50002

pairs of line segments for intersections is a computationally expensive procedure. Instead,

we create a line segment index image by rasterizing the line segments. The index k of each

extended line segment Lk is recorded at each pixel in the index image over which segment

Lk passes; multiple indices may be recorded at any pixel. Then, the index image is

searched for pixels at which two or more indices have been recorded. If indices k and m are

recorded at the same pixel in the index image, and one of Lk or Lm aligns with vi and the

other with vj, then p = lk × lm (the exact intersection of segments Lk and Lm) is recorded
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as a plane support point with label (i, j). This process allows all line segment intersections

to be found in time linear in the number of segments. Figure 3 shows the set of plane

support points for the image shown in figure 1.

The labeled plane support points define local regions in the image that support planes of

various orientations. We seek maximal clusters of similarly labeled support points. These

clusters define the largest spatial regions in the image that may correspond to a single

plane (a building facade) in the scene.

Note that multiple scene planes with the same orientation, corresponding to parallel but

distinct building facades, will be assigned the same labels. Separating these identically

labeled support points into regions corresponding to separate scene planes is one goal of

the clustering process described next. The other goal of clustering is to remove spurious

support points. In general, the support points for one plane should not lie inside a cluster

of support points for a different plane. However, in most real images, intersecting line

segments occur that do not correspond to orthogonal edges in the scene. These are due to

spurious and non-orthogonal line segments detected on planar surfaces, as well as line

segments detected on non-planar objects such as trees, vehicles, clouds, etc. The spurious

plane support points generated by these segments can occur anywhere in an image,

including in the interior region of a cluster of support points for a true plane.

If two parallel scene planes are to be detected as separate planes, the support points for the

two planes must group into spatially separate clusters in the image. However, as shown in

figure 4, spatial separation is not a sufficient condition. The two clusters of identically

Figure 3. Plane support points for all pairs of vanishing points with sufficiently large
mean angle between segments.
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Figure 4. (a) Spatial separation of two clusters of plane support points with the same
label is insufficient to infer two separate building facades. (b) The two clusters
must also be divided by support points of a plane at some other orientation.

labeled support points must also be divided by the support points of a plane at some other

orientation. To carry out this clustering, a nonsymmetric N × N binary adjacency matrix

A is created where N is the total number of plane support points (for all labels). We set

Ai,j = 1 to indicate that support point pi is allowed to be grouped with the cluster that

includes support point pj; otherwise, Ai,j = 0. Given A, a symmetric adjacency matrix A′

of the same size is created: if points pi and pj each agree to be joined to the others cluster,

i.e., Ai,j = 1 and Aj,i = 1, then A′

i,j = A′

j,i = 1. Finally, the connected components of A′ are

found from the Dulmage-Mendelsohn matrix decomposition (30) of A′. These connected

components are the clusters of plane support points that define the building facades.

It remains to define when a support point pi is allowed to be grouped with the cluster that

includes support point pj. The values in row i of matrix A are assigned in order of

increasing distance from pi: first column j1, then column j2, ..., and finally column jN ,

where ‖pi − pj1‖ ≤ ‖pi − pj2‖ ≤ · · · ≤ ‖pi − pjN‖. Note that for all i, j1 = i and Ai,i = 1.

For the remaining columns, Aijk
is assigned a value of 1 only if the orientation of the vector

−−−→pipjk is in the range of angles from pi that does not include any previous support points

(pj1 , pj2 , . . . , pjk−1
) whose labels are different from that of pi. More specifically, let

label (pj) denote the label assigned to support point pj and let ϑ (v) denote the orientation

of vector v. Define

θk
min (pi) =

min
θ

θ ≥ ϑ
(−−−→pipjt

)

for all pjt
where label (pjt

) 6= label (pi) , 1 ≤ t ≤ k − 1, (1)

θk
max (pi) =

max
θ

θ ≥ ϑ
(−−−→pipjt

)

for all pjt
where label (pjt

) 6= label (pi) , 1 ≤ t ≤ k − 1. (2)

Then,

Ai,jk
= 1 iff ϑ

(−−−→pipjk

)

∈
[

θk
min (pi) , θk

max (pi)
]

. (3)

Figure 5 illustrates this process.
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Figure 5. Calculation of support point adjacency. Support point pj is adjacent to pi

(i.e., Ai,j = 1) because pj is inside the largest arc centered at pi (indicated by
the cross hatching) which includes only red support points. However, support
point pi is not adjacent to pj (i.e., Aj,i = 0) because pi is outside the largest
arc centered at pj (indicated by the gray shading) which includes only red
support points.

A number of optimizations to speed up this process are possible. One is to check the

adjacency of a support point only if the direction to that point differs from all previous

points by more than some threshold (i.e., 5 − 10◦). Also, a limit on the number of points

checked or on the distance to points may be used to end the process early. Figure 6 shows

the connected components of the adjacency matrix A′ generated for the example image.

5. Fitting Quadrilaterals to Plane Support Clusters

As building facades are almost always rectangular, and because the image of a rectangle is

a quadrilateral, we next fit quadrilaterals to the clusters of plane support points. The

clusters of plane support points, defined by the connected components, usually provide a

good estimate of the regions in an image corresponding to different scene planes. However,

occasional clustering errors do occur. The clustering errors that have the largest impact on

the accuracy of detected facades are those that occur near the cluster boundaries. Many of

these clustering errors can be corrected by smoothing the boundaries of the clusters. This

is most easily accomplished by first rasterizing each connected component graph, that is,

by creating an image of the arcs connecting the nodes in the graph, and then applying the
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Figure 6. Initial connected components of plane support points for the example image.

mathematical morphology operations of erosion and dilation to this image. To reduce the

occurrence of holes in the rasterized graph in dense regions of the graph, the image of the

graphs are created at a resolution that is a multiple of Rdec of the original image’s

resolution. Then, the morphological operations can be applied to this image. First the

rasterized graph is eroded using a circular structuring element of radius Rerode pixels, then

the blob with the largest area is dilated with a circular structuring element of size

Rerode + 1. Given the smoothed rasterized image of a cluster, the final cluster is the set of

support points in the original cluster which lie inside the smoothed image of that cluster.

Figure 7 illustrates the process of smoothing a cluster of support points and figure 8 shows

all of the smoothed clusters for the example image.

The final step in locating building facades is to fit a quadrilateral to the convex hull of each

cluster of plane support points. We assume that all building facades are rectangular, and

[] [] []

Figure 7. Smoothing a cluster of plane support points. (a) Rasterized adjacency graph
for one cluster of support points. (b) Eroded image of adjacency graph. (c)
Smoothed region of plane support.
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Figure 8. The final smoothed clusters of plane support points for the example image.

assume that the boundaries of each facade are parallel to one of the two dominant

orientations of edges on the surface of the facade. Therefore, opposite edges of a facade

quadrilateral are required to align with one of the two vanishing points associated with the

point cluster. We determine the smallest quadrilateral that encloses the point cluster’s

convex hull such that each edge of the quadrilateral passes through one vanishing point

and one point on the convex hull of the cluster. When a vanishing point is finite, the two

tangent lines making up the opposite edges of the bounding quadrilateral are easily found

by scanning through all points on the cluster’s convex hull, and locating those lines

through the vanishing point and the hull point that make the smallest and largest angles

with respect to the line from the vanishing point to the cluster centroid. When a vanishing

point is at infinity, the distance of hull points from the line through the centroid is used to

determine the tangent lines. Figure 9 shows the quadrilaterals corresponding to the

building facades.
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Figure 9. Building facades are determined by the vanishing point-aligned quadrilaterals
that bound each smoothed cluster of support points.

6. Experiments

Figure 10 shows additional examples of using our algorithm to detect building facades in

urban environments. As shown in these and the previous experiments, we obtain good

results on images of a number of complex buildings. As seen in figure 10, not all of the

final clusters of plane support points correspond to true building facades. Some clusters

correspond to building roofs, some to reflections of building facades in windows, and some

clusters correspond to walls inside of buildings. These false facades can easily be filtered

out based on their small size when compared to the larger facades that are detected.

The values of the parameters used in our experiments are Vmax = 5, Smin = 20, T = 50,

Hseed = 15, Θseed = 40◦, Dsup = 3 pixels, Θsup = 3◦, Dext = 4 pixels, Rdec = 0.125, and

Rerode = 4. Although there are a significant number of parameters, we have found it easy to

set them so as to obtain good performance. Furthermore, the performance of our algorithm

is not highly sensitive to their values as small changes do not significantly affect the results.
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Figure 10. Building facades (and their support points) detected in other urban scenes.
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7. Conclusions

We have demonstrated how a small amount of knowledge about the structure of an urban

environment can be used to effectively locate multiple planar building facades from a single

image. The main advantages of our approach over existing approaches are its improved

performance in complex environments, the lack of a requirement for a single facade to be

dominant in the image, and the ability to detect facades even when clutter makes it difficult

to detect the line segments that form the facade boundaries. Our initial experiments show

that the algorithm has good performance on a number of difficult scenes. In the future, we

will investigate alternate clustering algorithms, which may require fewer parameters, and

will investigate the use of other sources of information such as color and texture.

Additional experiments will be conducted to test the algorithm’s performance in a larger

variety of urban environments. We also plan to integrate this facade detection algorithm

into a system for building recognition and autonomous navigation in urban environments.
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