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Researc

Combining Adoptive Cellular and Immunocytokine Therapies to
Improve Treatment of B-Lineage Malignancy

Harjeet Singh,” Lisa Marie Serrano, Timothy Pfeiffer, Simon Olivares,” George McNamara,’
David D. Smith,’ Zaid Al-Kadhimi, " Stephen J. Forman," Stephen D. Gillies,” Michael C. Jensen,
David Colcher,” Andrew Raubitschek,” and Laurence J.N. Cooper"*”’

Divisions of 'Molecular Medicine, *Cancer Immunotherapeutics and Tumor Immunology, ‘Biomedical Informatics, ‘Hematology and
Hematopoietic Cell Transplantation, and ‘Pediatric Hematology/Oncology, Beckman Research Institute and City of Hope National
Medical Center; ‘EMD Lexigen Research Center, Billerica, Massachusetts; and "Division of Pediatrics,

The University of Texas M. D. Anderson Cancer Center, Houston, Texas

Abstract

Currently, the lineage-specific cell-surface molecules CD19
and CD20 present on many B-cell malignancies are targets for
both antibody- and cell-based therapies. Coupling these two
treatment modalities is predicted to improve the antitumor
effect, particularly for tumors resistant to single-agent
biotherapies. This can be shown using an immunocytokine,
composed of a CD20-specific monoclonal antibody fused to
biologically active interleukin 2 (IL-2), combined with ex vivo
expanded human umbilical cord blood-derived CD8" T cells,
that have been genetically modified to be CD19 specific, for
adoptive transfer after allogeneic hematopoietic stem-cell
transplantation. We show that a benefit of targeted delivery of
recombinant IL-2 by the immunocytokine to the CD19*CD20"
tumor microenvironment is improved in vivo persistence of
the CD19-specific T cells, and this results in an augmented
cell-mediated antitumor effect. Phase I trials are under
way using anti-CD20-IL-2 immunocytokine and CD19-specific
T cells as monotherapies, and our results warrant clinical
trials using combination of these two immunotherapies.
[Cancer Res 2007;67(6):2872-80]

Introduction

Malignant B cells express a pattern of cell surface molecules that
define their lineage commitment (1-3), and these are the targets of
monoclonal antibody (mAb)-based (4-6) and T-cell-based treat-
ment approaches (7-11). However, these immunotherapies may fail
to eradicate tumor as a result of an inability of tumor-specific mAb
to fully activate the effector functions of the recipient (12-15) and
curtailed T-cell persistence after adoptive immunotherapy (16-18).
Therefore, strategies that augment mAb function and T-cell
survival are predicted to improve the therapeutic effect.

An approach to improve the clinical potential of mAb is to fuse
interleukin 2 (IL-2) to a tumor-specific recombinant mAb (e.g.,
CD20-specific mAb) to deliver this immunostimulatory cytokine to
the tumor microenvironment, which leads to recruitment and
activation of immune cells that express the cytokine receptor
(19-21). Ex vivo propagated genetically modified T cells that have

Note: Supplementary data for this article are available at Cancer Research Online
(http://cancerres.aacrjournals.org/).

Requests for reprints: Laurence J.N. Cooper, Pediatrics-Research, Unit 907, The
University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard,
Houston, TX 77030. Phone: 713-563-3360; Fax: 713-563-0604; E-mail: ljncooper@
mdanderson.org.

©2007 American Association for Cancer Research.

doi:10.1158/0008-5472.CAN-06-2283

been rendered tumor specific are a population of effector cells
whose survival is predicted to benefit from this locoregional
deposition of IL-2.

To obtain large numbers of clinical-grade, tumor-specific T cells
that target B-lineage lymphoma and leukemia, we and others have
enforced expression of a CD19-specific chimeric immunoreceptor
(designated CD19R), which combines antibody recognition with
T-cell effector functions (7, 10, 22). In particular, CD19-specific T
cells can be manufactured from umbilical cord blood to augment
the graft-versus-tumor effect after allogeneic hematopoietic stem-
cell transplantation (23). However, factors that may limit the
successful therapeutic use of these ex vivo expanded CD8" T cells
include a dependence on exogenous IL-2 to achieve and sustain
their proliferative potential after adoptive transfer (24).

With the generation of an anti-CD20-IL-2 immunocytokine (DI-
Leul6-1L-2; ref. 25), we now ask if targeted delivery of IL-2 to sites
of CD20 binding on malignant B cells could improve the survival
and antitumor effect of CD19-specific T cells. In the present study,
we show that the anti-CD20-IL-2 immunocytokine binds specifi-
cally to CD20" tumors as well as IL-2R" (IL-2 receptor positive) T
cells and that infusing a combination of anti-CD20-IL-2 immuno-
cytokine with CD19R"™ T cells improves in vivo T-cell persistence,
which leads to an augmented clearance of CD20°CD19" tumor
beyond that achieved by delivery of the immunocytokine or T cells
alone.

Materials and Methods

Plasmid expression vectors. The plasmid vector CD19R/ffLucHyTK-
PMG, described previously, coexpresses the CDI9R chimeric immunor-
eceptor gene and the tripartite fusion gene ffLucHyTK (22). Truncated
CD19, lacking the cytoplasmic domain (26), was expressed in ffLucHyTK-
PMG to generate the plasmid tCD19/ffLucHyTK-pMG to coexpress the
CDI19 and ffLucHyTK transgenes. The bifunctional hRLucZeo fusion gene
that coexpresses the Renilla koellikeri (sea pansy) luciferase hRLuc and the
zeomycin-resistance gene (Zeo) was cloned from the plasmid pMOD-LucSh
(InvivoGen, San Diego, CA) into pcDNA3.1" (Invitrogen, Carlsbad, CA) to
create the plasmid hRLuc:Zeocin-pcDNA3.1.

Propagation of cell lines and primary human T cells. Daudi, ARH-77,
Raji, SUP-B15, and K562 cells were obtained from American Type Culture
Collection (Manassas, VA). Granta-519 cells were obtained from DSMZ
(Braunschweig, Germany). An EBV-transformed lymphoblastoid cell line
was kindly provided by Drs. Phillip Greenberg and Stanley Riddell (Fred
Hutchinson Cancer Research Center, Seattle, WA). These cells were
maintained in tissue culture as described (23). IL-2RR3" TF-1p cells were
kindly provided by Dr. Paul M Sondel (University of Wisconsin, Madison,
WI; ref. 27). Human T-cell lines were derived from umbilical cord blood
mononuclear cells after informed consent and were cultured as previously
described (22, 28).
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Immunocytokines. The anti-CD20-IL-2 (DI-Leul6-IL-2) immunocyto-
kine was derived from a deimmunized anti-CD20 murine mAb (Leul6).
Anti-GD,-IL-2 (14.18-IL-2), which recognized GD, disialoganglioside, served
as a control immunocytokine with irrelevant specificity for B-lineage tumor
line used in this study (EMD Lexigen Research Center, Billerica, MA; ref. 29).

Nonviral gene transfer of DNA plasmid vectors. OKT3-activated
umbilical cord blood-derived T cells were genetically modified by electro-
poration with CD19R/ffLucHyTK-pMG (23). ARH-77 was electroporated
with hRLuc:Zeocin-pcDNA3.1 using the Multiporator device (250V/40 ps,
Eppendorf, Hamburg, Germany) and propagated in cytocidal concentration
(0.2 mg/mL) of zeocin (InvivoGen).

Flow cytometry. FITC- or phycoerythrin-conjugated reagents were
obtained from BD Biosciences (San Jose, CA): anti-TCRa, anti-CD3, anti-
CD4, anti-CD8, anti-CD25, and anti-CD122. F(ab’), fragment of FITC-
conjugated goat anti-human Fcy (Jackson Immunoresearch, West Grove,
PA) was used at 1/20 dilution to detect cell surface expression of CDI19R
transgene. Leul6 and anti-CD20-IL-2 immunocytokine (100 pg each) were
conjugated to Alexa Fluor 647 (Molecular Probes, Eugene OR). Data
acquisition was on a FACSCalibur (BD Biosciences) using CellQuest version
3.3 (BD Biosciences), and analysis was undertaken using FCS Express
version 3.00.007 (Thornhill, Ontario, Canada).

Chromium release assay. The cytolytic activity of T cells was
determined by 4-h chromium release assay (CRA; ref. 22). CD19-specific
T cells were incubated with 5x10° chromium-labeled target cells in a
V-bottomed 96-well plate (Costar, Cambridge, MA). The percentage of
specific cytolysis was calculated from the release of *'Cr, as described
earlier, using a TopCount NXT (Perkin-Elmer Life and Analytical Sciences,
Inc., Boston, MA). Data are reported as mean *+ SD.

Immunofluorescence microscopy. CDI9R™ T cells (10°) and CD19*
CD20*tumor cells (10°) were centrifuged at 200 X g for 1 min and incubated
at 37°C for 30 min. After gentle resuspension, the cells were sedimented,
the supernatant was removed, and the pellet was fixed for 20 min with 3%
parafomaldehyde in PBS on ice. After washing, the fixed T cell-tumor cell
conjugates were incubated for 30 min at 4°C with anti-CD3-FITC or
Alexa Fluor 647-conjugated anti-CD20-IL-2 immunocytokine. Nuclei were
counterstained with Hoechst 33342 (Molecular Probes; 0.1 pg/mL). Cells
were examined on a Zeiss LSM 510 META NLO Axiovert 200M inverted
microscope. Hoechst 33342 was excited at 750 nm using Coherent
Ti:Sapphire multiphoton laser, Alexa Fluor 647 at 633 nm using helium-
neon laser, and FITC at 488 nm using argon ion laser. Images
were acquired with a Zeiss plan-neofluar 20X /0.5 air lens or plan neofluar
40%/1.3 numerical aperture oil immersion lens, and fields of view were
then examined using Zeiss LSM Image Browser version 3.5.0.223.

Persistence of adoptively transferred T cells. Before the initiation of
the experiment, 6- to 10-week-old female NOD/scid (NOD/LtSz-Prkdcscid/))
mice (The Jackson Laboratory, Bar Harbor, ME) were <y-irradiated to 2.5 Gy
using an external 137Cs source (JL Shepherd Mark I Irradiator, San Fernando,
CA) and maintained under pathogen-free conditions at City of Hope National
Medical Center (COH) Animal Resources Center. On day —7, the mice were
injected in the peritoneum with 2x10° hRLuc* CD19'CD20'ARH-77 cells.
Tumor engraftment was evaluated by biophotonic imaging (see “Biophotonic
imaging”) and mice with progressively growing tumors were segregated into
four treatment groups to receive 10” CD19-specific T cells (day 0) either alone
or in combination with 75,000 units/injection (equivalent to ~25 pg
immunocytokine; ref. 25) of IL-2 (Chiron, Emeryville, CA), 5 png/injection of
anti-CD20-IL-2 immunocytokine (DI-Leul6-IL-2), or 5 pg/injection of anti-
GD,-IL-2 immunocytokine, given by additional separate i.p. injections. Animal
experiments were approved by COH institutional committees.

In vivo efficacy of combination immunotherapies. Six- to 10-week-
old y-irradiated NOD/scid mice were injected with 2x10° hRLuc*
CD19°CD20"ARH-77 cells in the peritoneum. Sustained tumor engraftment
was documented within 7 days of injection by biophotonic imaging. Mice in
the four treatment groups received combinations of CD19-specific T cells
(107 cells in the peritoneum on day 0), anti-CD20-IL-2 immunocytokine, or
anti-GD,-IL-2 immunocytokine (5 pg/injection in the peritoneum).

Biophotonic imaging. Anesthetized mice were imaged using a Xenogen
IVIS 100 series system as previously described (30). Briefly, each animal was

serially imaged in an anterior-posterior orientation at the same relative time
point after 100 uL (0.068 mg/mouse) of freshly diluted Enduren Live Cell
Substrate (Promega, Madison, WI), or 150 pL (4.29 mg/mouse) of freshly
thawed D-luciferin potassium salt (Xenogen, Alameda, CA) solution
injection. Photons were quantified using the software program Living
Image (Xenogen). Statistical analysis of the photon flux at the end of
the experiment was accomplished by comparing area under the curve
using two-sided Wilcoxon rank sum test. Biological T-cell half-life was
calculated as A = I x (1/2)"), where A4 is flux at time £, I is day 0 flux,
and £ is rate of decay.

Results

Redirecting T cells specificity for CD19. The genetic
modification of umbilical cord blood-derived T cells to render
them specific for CD19 was accomplished by nonviral electro-
transfer of a DNA expression plasmid designated CD19R/
ffLucHyTK-pMG, which codes for the CDI9R transgene (22) and
a recombinant multifunction fusion gene that combines firefly
luciferase (ffLuc), hygromycin phosphotransferase, and herpes
virus thymidine kinase (HyTK; ref. 31), permitting in vitro selection
of CD19R" T cells with cytocidal concentration of hygromycin B
and in vivo imaging after infusion of Dp-luciferin. Genetically
modified ex vivo expanded T cells were CDS8", expressed
components of the high-affinity IL-2R and CDI9R transgene, as
detected by using a Fc-specific antibody (Fig. 14). CD19R" T cells
could specifically lyse leukemia and lymphoma targets expressing
CD19 with ~50% to 70% of CD19" tumor cells killed at an effector
to target ratio of 50:1 in a 4 h CRA (Fig. 1B). The variability of lysis
of the various B-cell lines could be attributed to the expression of
various cell surface markers, particularly the adhesion molecules
(22). Specific lysis of CD19" K562 compared with CD19~ K562 cells
showed that the killing of CD19" tumor targets occurred through
the chimeric immunoreceptor.

Binding of anti-CD20-IL-2 immunocytokine. The ability of the
anti-CD20-IL-2 immunocytokine to bind to both B-lineage tumors
and T cells was examined using flow cytometry and confocal
microscopy. This immunocytokine bound to CD20" ARH-77 but
not to CD20~ SUP-B15 (data not shown) and K562 cells, consistent
with recognition of parental Leul6 mAb for CD20 (Fig. 24; ref. 32).
The anti-CD20-IL-2 immunocytokine, but not parental Leul6 mAb,
bound to CD25" genetically modified T cells and TF-1B, a tumor
cell line genetically modified to express CD122 (IL-2Rp; ref. 27),
which is consistent with binding of chimeric IL-2 via the IL-2R
(Fig. 24 and data not shown). The greater median fluorescent
intensity (MFI) on T cells, compared with TF-1p, is consistent with
binding of the immunocytokine to the high-affinity IL-2R.
Immunofluorescence confocal microscopy was done to evaluate
the localization of immunocytokine on conjugates of CD19-specific
T cells and CD20" tumors. The confocal micrographs showed cell
surface labeling of conjugates of tumor and T cells with Alexa Fluor
647-conjugated anti-CD20-IL-2 immunocytokine (red) and T cells
labeled with FITC-conjugated anti-CD3 (green). Areas of over-
lapping binding between deposition of immunocytokine and anti-
CD3 is depicted by a yellow color (Fig. 2B). We hypothesize that
T cells show colocalization of CD3 and immunocytokine on their
surface initially; however, as they form a synapse with the tumor
cell, there seems to be a rearrangement of IL-2R on the T cells
toward the synapse leading to the presence of yellow signal
extending well outside the synapse and leaving a green pocket
opposite the synapse. The Alexa Fluor 647-conjugated parental
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anti-CD20 Leul6 mAb, lacking the chimeric IL-2 domain, binds
CD20" tumors, but not the genetically modified T cells (data not
shown). In aggregate, these data show that anti-CD20-IL-2
immunocytokine can bind to CD20 molecules on B-lineage tumors
and IL-2R on T cells and that this immunocytokine can be
deposited at the interface between tumor and T cells.

In vivo T-cell persistence given in combination with
immunocytokine. Having determined that the anti-CD20-IL-2
immunocytokine could bind to tumor and T cells, we evaluated
whether infusions of anti-CD20-IL-2 immunocytokine could
improve the in vivo persistence of adoptively transferred geneti-
cally modified CD8" T cells. To achieve sustained locoregional
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Figure 1. Phenotype and function of genetically modified T cells. A, multivariable flow cytometry showing that the genetically modified T cells are predominantly
CD3*TCR*CD8"CD25*CD122*CD132". Isotype-matched fluorescent mouse mAb or nonspecific goat control antibody was used to establish the negative gates.
The percentage of gated* cells is shown. B, lysis of tumor targets by 4-h CRA. CD19* B-cell tumor lines are Daudi, ARH-77, SUP-B15, Granta-519, Raji, and
genetically modified K562 (CD19* K562; ref. 30). Background lysis of CD19~ (parental) K562 cells is shown as a control for specificity and endogenous NK-T activity.
Spontaneous release of each target was <9%. Points, mean for triplicate wells at effector to target cell ratios between 50:1 and 1:1; bars,+ 1 SD.
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depositions of the anti-CD20-IL-2 immunocytokine, we chose the
tumor line ARH-77 as a target for immunotherapy because this is
relatively resistant to killing by anti-CD20-specific mAb (33), and
these results were confirmed in vivo in NOD/scid mice using
rituximab (data not shown). Initially, a dose of immunocytokine
was established that could both improve the in vivo survival of
CD8'CD19R"ffLuc” T cells, compared with adoptive immunother-
apy in the absence of immunocytokine, and not statistically alter
tumor growth as monotherapy (Fig. 4). We showed that an
immunocytokine dose of both 5 and 25 pg could improve the
persistence of infused T cells, resulting in a T-cell ffLuc-derived
signal detectable above background luminescence measurements
(<10° p/s/cm?/sr) 14 days after adoptive immunotherapy (Fig. 34).
Biological half-life of the infused T cells was determined by
calculating the rate of T-cell decay (ffLuc activity) at the end of the
experiment and expressed as the number of days required by the
cells to achieve half the initial (day 0) flux. Indeed, the biological
half-life of the infused T cells was twice as long in mice that
received immunocytokine (1.09 days) compared with T cells given
alone (043 days). As a further indication that infusion of the
immunocytokine may enhance the survival of adoptively trans-
ferred T cells, we observed an ~ 300% (3-fold) increase in the ffLuc-
derived signal (day 12) compared with day 11 when the
immunocytokine was injected in both the groups. As the relative
in vivo T-cell persistence was similar for both of the immunocy-

tokine doses (P = 0.86), we used 5 pg per immunocytokine
injection for subsequent experiments, a dose equivalent to
~ 15,000 units of human recombinant IL-2 (25).

To determine if the improved T-cell persistence was due to the
binding of the immunocytokine in the ARH-77 tumor microenvi-
ronment, we used a control immunocytokine (anti-GD,-IL-2
immunocytokine) that does not bind to GD, ARH-77 (data not
shown). Furthermore, we compared the ability of the anti-CD20-IL-
2 immunocytokine to potentiate T-cell survival compared with
administration of exogenous recombinant human IL-2. Longitudi-
nal measurement of ffLuc-derived flux revealed that the infused
T cells persisted longer in mice that received anti-CD20-IL-2
immunocytokine, compared with the untreated (P = 0.01), IL-2-
treated (P = 0.02), and control immunocytokine-treated (P = 0.05)
groups (Fig. 3B and C); the biological half-lives of T cells in the
groups are 1.7, 0.5, 1.0, and 0.7 days, respectively. There was a
difference (P < 0.05) in the in vivo persistence of T cells
accompanied by IL-2, compared with T cells given without this
cytokine, which is consistent with the dependence of these T cells
to receive T-cell help in the form of exogenous IL-2 to survive
in vivo. No apparent difference was observed in the persistence
(P = 0.5) or biological half-life (P = 0.2) of adoptively transferred
T cells between the mice receiving exogenous IL-2 or control
immunocytokine. These data support the hypothesis that the
locoregional deposition of the anti-CD20-IL-2 immunocytokine at
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the CD19'CD20" tumor site significantly augments in vivo
persistence of CD8" CD19-specific T cells.

In vivo efficacy of immunocytokine in combination with
CD19-specific T cell to treat established B-lineage tumor. We
investigated in vivo whether the immunocytokine-mediated
improved persistence of genetically modified CD19-specific T cells
could lead to augmented clearance of established CD19°CD20"
tumor. A dose of T cells (107 cells) was selected because this dose
by itself does not control long-term tumor growth (Fig. 4; data not

shown). CD19-specific CD8" T cells were adoptively transferred into
groups of mice bearing established CD19°CD20"hRLuc” ARH-77
tumor along with anti-CD20-IL-2 immunocytokine or control anti-
GD,-IL-2 immunocytokine. Tumor growth was serially monitored
by in vivo bioluminescence imaging of ARH-77 tumor-derived
hRLuc enzyme activity. Mice that received both CD19-specific
T cells and anti-CD20-IL-2 immunocytokine experienced a
reduction in tumor growth, with 75% of mice obtaining complete
remission, as measured by bioluminescence imaging, at the end of
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Figure 3. Effect of immunocytokine on persistence of adoptively transferred T cells. NOD/scid mice (four mice per group) bearing ARH-77 tumors were treated
with 107 CD19R*ffLuc* umbilical cord blood T-cell clone (day 0, open arrow) along with (A) anti-CD20-IL-2 immunocytokine (5 and 25 pg; solid arrows; on

days 0, 4, 7, and 11) or no immunocytokine, or (B) anti-CD20-IL-2 immunocytokine/GD,-IL-2 immunocytokine (5 pg/injection) or rhlL-2 (75,000 units/injection) on
days 0, 2, 5, 10, 15, 21, and 45 (closed arrows). The persistence of T cells was measured as ffLuc-derived flux from mice and graphed over time (mean flux + SD is
shown in A and B, and flux for individual mice is shown in C). One mouse (red line) was selected from each group for the display of sequential bioluminescence
images of T cells in vivo. Comparison (day 83) between groups receiving combination of T cells and anti-CD20-IL-2 immunocytokine and no treatment (*, P = 0.01);
T cells and control immunocytokine (anti-GD,-IL-2 immunocytokine; **, P = 0.05); or T cells and IL-2 (***, P = 0.02). Background luminescence (gray area) was
defined from mice that were imaged after receiving p-luciferin along with treatment mice, but which did not receive ffLuc* T cells. In vitro ffLuc activity of the genetically
modified T cells was 0.35 + 0.02 cpm/cell (mean + SD) compared with 0 + 0 cpm/cell (mean + SD) for parental unmodified cells. Supplementary Data contain

a movie of the relative in vivo T-cell persistence in the four treatment groups.
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unmodified cells. Supplementary Data
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the experiment (50 days after adoptive immunotherapy; Fig. 4).
We found that the combination therapy of CD19R" T cells and anti-
CD20-IL-2 immunocytokine was effective in reducing tumor
growth compared with no immunotherapy (P = 0.01) and T cells
given with an equivalent dosing of the control immunocytokine
(P = 0.03). Although the tumor burden seems to be increasing in
the treated group, no visible tumor as seen by hRLuc signal was
observed at the end of the experiment, as the flux remained below
background level, consistent with a complete antitumor response.
Mouse groups receiving T cells alone or T cells with control
immunocytokine showed a similar pattern of tumor growth, with
an initial reduction around day 8 followed by relapse. All mice in
the control group, which received no immunotherapy, experienced
sustained tumor growth. We saw similar tumor growth kinetics in
mice that did or did not receive anti-CD20-IL-2 immunocytokine in
the absence of T cells (P > 0.05 through day 50), and this is
presumably a reflection of the dose regimen chosen for the
immunocytokine in this experiment. Increased doses of T cells or

anti-CD20-IL-2 immunocytokine delivered as monotherapies
results in a sustained antitumor effect; however, using these doses
would preclude our ability to measure the ability of the
immunocytokine to potentiate T-cell persistence and improve
tumor killing.

The ability to measure both ffLuc and hRLuc enzyme activities in
the same mice allowed us to determine whether the persistence of
adoptively transferred T cells directly correlated with tumor size for
individual mice. This was accomplished by plotting ffLuc-derived
T-cell flux versus hRLuc-derived tumor-cell flux from Fig. 3. Both
group of mice, which received CD19-specific T cells along with anti-
CD20-IL-2 immunocytokine/anti-GD,-IL-2 immunocytokine,
showed a drop in tumor burden at day 8, which is due to the
T cells infused. However, the highest numbers of T cells (ffLuc
activity; mean flux 4.7x10° versus 1.5X10° p/s/cm?*/sr) and lowest
tumor burden (hRLuc activity; mean flux 1.4X10° versus
4x107 p/s/cm?®/sr) by day 83 (Fig. 5) was observed in the group
receiving anti-CD20-IL-2 immunocytokine when compared with

www.aacrjournals.org

2877

Cancer Res 2007; 67: (6). March 15, 2007



Cancer Research

the control immunocytokine-treated group. This analysis shows that
half of the mice achieved an antitumor response (absence of
detectable hRLuc activity) after combination immunotherapy with
CDI9R" T cells and anti-CD20-1L-2 immunocytokine. We note that
there was continued T-cell persistence (ffLuc activity) in the anti-
CD20-IL-2 immunocytokine-treated group compared with the
control immunocytokine-treated group (P < 0.05) at day 83. Although
tumor burden (hRLuc activity) was reduced in the CD20 immunocy-
tokine- compared with the control immunocytokine—treated group at
day 83, no statistical significance was observed. Thus, we note a trend
toward continued T-cell persistence and desired antitumor effect in
the anti-CD20-IL-2 immunocytokine-treated group.

We believe that this is the first time that bioluminescence
imaging has been used to connect the persistence of genetically
modified T cells to an antitumor effect. These data further reveal
that the mice that received the tumor-specific immunocytokine
control their tumor burden to a greater extent than the mice that
received the control immunocytokine (which does not bind the
tumor). As a treatment for minimal residual disease in patients
undergoing hematopoietic stem-cell transplantation, this combi-
nation therapy shows the ability to keep the disease relapse in
check for almost 3 months in this mouse model.

In aggregate, these data show that the combination of anti-CD20-
IL-2 immunocytokine and CD19R" T cells results in augmented
control of tumor growth, as predicted from the in vivo T-cell
persistence data.

Discussion

We show that anti-CD20-IL-2 immunocytokine specifically binds
to CD20" tumor, that infusions of the anti-CD20-IL-2 immunocy-

tokine can augment persistence of adoptively transferred CD19-
specific T cells in vivo, and that this leads to improved control of an
established CD19°CD20" tumor. We believe that these observations
are due to the deposition of IL-2 at sites of CD20 binding, which
provides a positive survival stimulus to infused CD19R'IL-2R"
effector T cells residing in the tumor microenvironment.

The development of an anti-CD20-IL-2 immunocytokine has
implications for future immunotherapy of B-lineage malignancies.
Although rituximab has been extensively used to treat CD20"
malignancies (34-36), some patients become unresponsive to this
mAD therapy, leading to disease progression (37). The development
of an anti-CD20-IL-2 immunocytokine with its ability to activate
immune effector cells may rescue these patients, and a clinical trial
at COH is under way to determine the safety and feasibility of
infusing this immunocytokine. Modifications other than the
addition of cytokines (38, 39), such as radionucleotides (40) and
cytotoxic agents (41, 42), may also improve the therapeutic
potential of unconjugated clinical-grade mAbs. Indeed, combining
mAb therapy with therapeutic modalities that exhibit nonoverlap-
ping toxicity profiles is an attractive strategy to improve the
antitumor effect without compromising patient safety.

One novel combination therapy for treating B-lineage tumors,
described in this report, is to combine immunocytokine with T-cell
therapy. The two immunotherapies used, anti-CD20-IL-2 immuno-
cytokine and CD19-specific T cells, have the potential to improve
the eradication of tumor because (a) the targeting of different cell
surface molecules reduces the possibility emergence of antigen-
escape variants, (b) the mAb conjugated to IL-2 can recruit and
activate effector cells (such as CD19-specific T cells) expressing the
cytokine receptor in the tumor microenvironment, and (c) T cells

Figure 5. Measurement of both T-cell
persistence and antitumor effect of
immunotherapies in individual mice. Mice
were treated as in Fig. 3B, and T-cell
persistence (ffLuc signal, Y axis) along
with tumor burden (hRLuc signal, X axis)
was measured in the same mouse at
the days mentioned. Improved T-cell
persistence (ffLuc signal) and reduced
tumor burden (antitumor effect,

hRLuc signal) in mice that received a
combination of CD19-specific T cells

and anti-CD20-IL-2 immunocytokine is
observed at day 83. Shaded gray areas,
background fluorescence.
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can kill independent of host factors, which may limit the
effectiveness of mAb-mediated complement dependent cytotox-
icity and antibody-dependent cell cytotoxicity (12-15). These
immunotherapies will target both malignant and normal B cells.
However, as loss of normal B-cell function has not been an
impediment to rituximab therapy and as clinical conditions
associated with hypogammaglobulinemia could be corrected with
infusions of exogenous immunoglobulin, a loss of B-cell function
may be an acceptable side effect in patients with advanced B-cell
leukemias and lymphomas receiving CD19- and/or CD20-directed
therapies.

Another potential advantage of immunocytokine therapy is that
the locoregional delivery of T-cell help in the form of IL-2 may
avoid the systemic toxicities observed with iv. infusion of the IL-2
cytokine (43-45), and this may be particularly beneficial in the
context of allogeneic hematopoietic stem-cell transplantation. We
have recently described that umbilical cord blood-derived CD8" T
cells can be rendered specific for CD19 to augment the graft-
versus-tumor effect after hematopoietic stem-cell transplantation.
Moreover, because the immunocytokine improves the in vivo
immunobiology of umbilical cord blood-derived CD19-specific T
cells, this study provides the groundwork for combining these two
immunotherapies after umbilical cord blood transplantation.

Alternative immunocytokines and T cells with shared specific-
ities for tumor types other than B-lineage malignancies could also

be considered for combination immunotherapy. For example,
immunocytokines might be combined with T cells that have been
rendered specific by the introduction of chimeric immunorecep-
tors for breast (46, 47), ovarian (48), colon (49), and brain (50)
malignancies. Furthermore, immunocytokines bearing other
cytokines might be infused with T cells to deliver IL-7, IL-15, or
IL-21 to further augment T-cell function in the tumor microen-
vironment.

In summary, the clinical testing of anti-CD20-IL-2 immunocyto-
kine and CD19R" T cells as monotherapy will provide Phase I safety
and feasibility data. It is anticipated that the data in this report will
be used to justify next-generation clinical trials to evaluate
combinations of the immunocytokine and T cells.
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Abstract

Genetic modification of clinical-grade T cells is undertaken to
augment function, including redirecting specificity for desired
antigen. We and others have introduced a chimeric antigen
receptor (CAR) to enable T cells to recognize lineage-specific
tumor antigen, such as CD19, and early-phase human trials
are currently assessing safety and feasibility. However, a sig-
nificant barrier to next-generation clinical studies is devel-
oping a suitable CAR expression vector capable of genetically
modifying a broad population of T cells. Transduction of
T cells is relatively efficient but it requires specialized
manufacture of expensive clinical grade recombinant virus.
Electrotransfer of naked DNA plasmid offers a cost-effective
alternative approach, but the inefficiency of transgene
integration mandates ex vivo selection under cytocidal
concentrations of drug to enforce expression of selection
genes to achieve clinically meaningful numbers of CAR'
T cells. We report a new approach to efficiently generating
T cells with redirected specificity, introducing DNA plasmids
from the Sleeping Beauty transposon/transposase system
to directly express a CD19-specific CAR in memory and
effector T cells without drug selection. When coupled with
numerical expansion on CD19" artificial antigen-presenting
cells, this gene transfer method results in rapid outgrowth
of CD4" and CD8" T cells expressing CAR to redirect specificity
for CD19" tumor cells. [Cancer Res 2008;68(8):2961-71]

Introduction

The most robust example of successful T-cell therapy occurs
following allogeneic hematopoietic stem-cell transplantation where
the engrafted donor-derived T cells recognize recipient tumor-
associated antigens in the context of MHC. However, the graft-
versus-tumor effect after allogeneic-hematopoietic stem cell
transplantation is incomplete, resulting in relapse as the major
cause of mortality. To augment the graft-versus-tumor effect for
B-lineage neoplasms, we have previously shown that genetically
modified peripheral blood- and umbilical cord blood-derived
T cells can be rendered specific for CD19, a molecule constitutively
expressed on B-cell malignancies (1, 2). The redirected specificity
was achieved by electrotransfer of a linearized DNA plasmid
coding for a first-generation chimeric antigen receptor (CAR),
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designated CD19R, which recognizes CD19 via the scFv of a murine
CD19-specific monoclonal antibody (mAb) fused to a chimeric
CD3-G-derived activation endodomain. A phase I trial (BB-IND1141,
clinicalTrials.gov identifier: NCT00182650; ref. 3) is currently
evaluating the safety and feasibility of infusing autologous T cells
electroporated to coexpress CDI9R CAR and the hygromycin
phosphotransferase (Hy) and herpes simplex virus-1 thymidine
kinase selection/suicide fusion transgene (4).

We anticipated that the therapeutic efficacy of adoptive transfer of
CD19-specific T cells would be improved by developing a CAR with a
fully competent activation signal and introducing the CAR into
central memory (CM) T cells. As a result, a second-generation CAR,
designated CD19RCD28, has been developed that provides CD19-
dependent signaling through chimeric CD3-§ and CD28, resulting in
improved in vivo persistence and antitumor effect, compared with
CD19R" T cells (5). To further optimize the clinical potential of CAR"
T cells, while taking advantage of the cost-efficiency of nonviral gene
transfer, we desired a clinically feasible approach to the efficient
propagation of CAR" T-cell populations, including Tcy;, in the
absence of expression immunogenic drug selection genes, such as
Hy. We reasoned that genetically modified T cells could be selectively
propagated, upon activating T cells for sustained proliferation,
through the introduced second-generation CAR. To maximize
transgene expression, we codon-optimized (CoOp) the CAR as
reports have shown that codon optimization of genes toward human
consensus codon usage increases protein expression (6, 7).

The focus on developing nonviral gene transfer technologies is
justified based on the cost and time savings compared with
developing recombinant clinical-grade viral supernatant, which are
subject to rigorous regulatory oversight and rely on specialized
manufacturing experience of a limited number of production
facilities. Although the transfection efficiency of nonviral gene
transfer is inferior to viral-mediated transduction, naked DNA
plasmids expressing desired transgenes such as CAR can be rapidly
produced at a fraction of the cost compared with clinical grade
vy-retrovirus and lentivirus. A potential drawback to nonviral
gene transfer, compared with viral gene transfer, is the lengthy
ex vivo manufacturing time to selectively propagate electroporated
T cells with stable expression of transgene, during which time the
cells may become susceptible to replicative senescence, lose
expression of desired homing receptors, and furthermore be
cleared in vivo due to recognition of immunogenic drug selection
transgene (8, 9). What is needed is an approach that when coupled
with nonviral gene transfer shortens the culture time to generate
T cells with durably expressed transgene and maintains a desired
T-cell immunophenotype.

To introduce the CAR, we evaluated whether the efficient
transposition and long-lasting transgene expression of the
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Figure 1. Schematic of the expression plasmids and experimental design. A, co,0,CD19RCD28/pT-MNDUS (Transposon). MNDU3 promoter, the constitutive promoter
from the U3 region of the MND retrovirus; co0, CD19RCD28, codon-optimized CD19RCD28 CAR; IR, SB-inverted/direct repeats; bGh pAn, polyadenylation signal
from bovine growth hormone; Amp”, ampicillin resistance gene. B, pCMV-SB11 (Transposase). SB11, SB-transposase SB11; CMV promoter, CMV enhancer/
promoter; SV40pAN, polyadenylation signals from SV40. C, ¢o,0,CD19CD28/Hy-pVitro4. EF 1o promoter, composite promoter comprising the elongation factor-1«
(EF1x) core promoter and the R segment and part of the U5 sequence (R-U5’) of the human T-cell leukemia virus type 1 LTR; pMB1 ori, a minimal E. coli

origin of replication; SpAn, synthetic pause; CAGp, a composite promoter that combines the human CMV immediate-early enhancer and a modified chicken p-actin
promoter and first intron; Hy, hygromycin B resistance gene (hygromycin phosphotransferase); bGh pAn, polyadenylation signal from bovine growth hormone;
EM?7, synthetic prokaryotic promoter. D, an expression cassette in a plasmid (blue) provides only transient expression unless incorporated into an integrating
transposon vector that can be cleaved from the plasmid and integrated into a host genome by a source of transposase (red).

Sleeping Beauty (SB) DNA transposon derived from Tcl/mariner
superfamily of transposons (10, 11) can improve transgene transfer
efficiency. The SB transposable element from a DNA donor plasmid
can be adapted for nonviral gene transfer in T cells, using a SB
transposase supplied in trans to mediate integration of a
transposon CAR expression cassette flanked by terminal inverted
repeats (IR), which each contain two copies of a short direct repeat
(DR) that have binding sites for the transposase enzyme (Fig. 1D).
The SB transposase mediates transposition by binding to IRs,
excising a precise DNA sequence flanked by the IRs, and inserting
the transposon into any of ~ 200 million TA sites in a mammalian
genome (12). Previously, the SB system has been used as a nonviral
gene delivery into multiple murine and human cell lines, including
liver, keratinocytes, endothelial cells, lung, hematopoietic pro-
genitor cells, embryonic stem cells, and tumor cells (11). Of
particular relevance is that SB-mediated integration has been
shown in human T cells (13), signifying the potential application of
this technology.

We report that electrotransfer of a two-component DNA SB
system into primary human T cells from umbilical cord blood and
peripheral blood results in efficient and stable CAR gene transfer,
which can be numerically expanded to clinically meaningful
numbers within 4 weeks on CD19" artificial antigen-presenting
cell (aAPC), without the need for addition of cytocidal concen-
trations of drug for selection, and with the outgrowth of CD8" and
CD4" CM and effector CAR" T-cell subpopulations. This was
achieved through the rationale design of (@) a next-generation

codon-optimized CD19-specific CAR, () CD19" aAPC expressing
desired costimulatory and cytokine molecules, and (c¢) SB DNA
plasmids expressing CAR transposon and an improved transposase.
The relative ease of DNA plasmid production, electroporation, and
outgrowth of stable integrants on a thawed +vy-irradiated bank of
aAPC can be readily transferred to the facilities operating in
compliance with current good manufacturing practice (cGMP) for
phase I/II trials. This is predicted to greatly facilitate trial design
infusing CD4" and CD8" CAR" T cells that have desired
immunophenotype, including Tcy;.

Materials and Methods

Plasmids. The plasmid pT-MNDU3-eGFP containing salmonid fish-
derived SB IR flanking the constitutive promoter, derived from the U3
region of the MND retrovirus (14), to drive an eGFP reporter gene (15), was
derived from the plasmid pT-MCS (16) that was derived from pT/neo (10).
The second-generation CDI9RCD28 CAR (5) was human codon optimized
(CoOp), substituting codons with those optimally used in mammals
(GENEART) without altering anticipated amino acid sequence. The
codon-optimized CD19RCD28 (c,0,CD19RCD28) CAR was subcloned
into pT-MNDU3 DNA plasmid by replacing the eGFP sequence with
the CAR to create (,0,CD19RCD28/pT-MNDU3 (Fig. 14). The DNA
plasmid pCMV-SB11 (Fig. 1B) expresses the SBI1 transposase (17).
Plasmid ¢,0,CD19RCD28/Hy-pVitro4 (Fig. 1C) was generated from
pVitrod-mcs DNA vector (InvivoGen) by subcloning ¢,0,CDI9RCD28 at
Nhel in multiple cloning site two and replacing the internal ribosome entry
site (IRES) for the foot and mouth disease virus with that of the
encephalomyocarditis virus (from pMG vector described; ref. 6). To
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generate cell surface-bound human interleukin 15 (IL-15), the granulocyte
macrophage colony-stimulating factor signal peptide sequence was fused to
the coding sequence of mature human IL-15 at the 5 end of a modified
human IgG4 Fc region (5) fused in frame to human CD4 transmembrane
domain and correct assembly was verified by DNA sequence analysis. The
membrane-bound IL-15-Fc cytokine fusion gene was subcloned into
pIRESpuro3 (Clontech) to obtain IL-15-Fc/pIRESpuro3.

Cell lines and primary human T cells. Daudi (Burkitt lymphoma) and
HLA™" K562 (erythroleukemia) cells were obtained from American Type
Culture Collection. Lymphoblastoid cells (LCL) were a kind gift of Dr. Helen
Heslop (Cell and Gene Therapy, Baylor College of Medicine, Houston TX).
These cell lines were cultured in HyQ RPMI 1640 (Hyclone) supplemen-
ted with 2 mmol/L Glutamax-1 (Life Technologies-Invitrogen) and 10%
heat-inactivated defined FCS (Hyclone), referred to as culture medium (1).
Human T cells were isolated by density gradient centrifugation over Ficoll-
Paque-Plus (GE Healthcare Bio-Sciences AB), from umbilical cord blood or
peripheral blood mononuclear cells (PBMC) after consent, and were
cultured in culture medium.

Generation of aAPC. As previously reported, K562 cells were electro-
porated with DNA plasmids to enforce expression of all of the following:
truncated CD19, 4-1BBL, and MICA fused to GFP (18). These aAPCs were
further modified to express membrane-bound IL-15 to provide a cytokine
stimulus at the site of CAR-binding and T-cell costimulation (19).

Electroporation and T-cell coculture with aAPC. On day 0, PBMCs
and umbilical cord blood mononuclear cells (10°) were suspended in 100 pL
of Amaxa Nucleofector solution (CD34 kit) and mixed with 5 pg of
supercoiled COQPCD19RCD28/pT—MNDU3 and 5 pg pCMV-SB11 DNA
plasmids, transferred to a cuvette, and electroporated (Program U-14).
After a 10-min room temperature incubation, the cells were transferred to a
six-well plate containing 3 to 4 mL incomplete phenol-free RPMI and rested
for 2 to 3 h. The cells were cultured overnight in 6 to 7 mL 10% phenol-free
RPMI and stimulated the next day (day 1) with +y-irradiated (100 Gy) aAPC
at a 1:10 T cell/aAPC ratio. The ~y-irradiated aAPC were re-added every 7 d.
Recombinant human interleukin 2 (rhIL-2; Chiron) was added to the
cultures at 50 units/mL on a Monday-Wednesday-Friday schedule,
beginning day 1 of each 7-d expansion cycle. The supercoiled plasmid
coopCD19RCD28/Hy-pVitro4 (expressing CAR under control of EFla
promoter and Hy under control of CAG promoter) was electroporated
(10 pg) into PBMCs (107) using Nucleofector technology and T cells were
propagated by cross-linking CD3 using an OKT3-mediated 14-d rapid
expansion protocol (REP) as described previously using allogeneic
v-irradiated PBC and LCL feeder cells in the presence of exogenous
(soluble) rhIL-2 (20). T cells were enumerated every 7 d, and viable cells
were counted based on trypan blue exclusion.

Western blot. Expression of the chimeric 66-kD (CD19R) and 79-kD
(CD19RCD28) CD3-§ was accomplished using a primary mouse anti-human
CD3-{ mAb (1 pg/mL; BD Biosciences) and secondary horseradish
peroxidase (HRP)-conjugated goat anti-mouse IgG (1:75,000; Pierce) under
reducing conditions, based on methods previously described (20). Protein
lysates were transferred onto nitrocellulose membrane using iBlot Dry
Blotting System (Invitrogen) and developed with SuperSignal West Femto
Maximum Sensitivity substrate (Pierce) per the manufacturer’s instructions
and chemiluminescence was captured after 1-min exposure using VersaDoc
MP 4000 Imaging System (Bio-Rad).

Generation of monoclonal antibody recognizing a CD19-specific
CAR. Female BALB/c mice were injected six times in the foot at 3-d
intervals with syngeneic NSO cells expressing CD19R CAR. Three days
after the last immunization, mice were sacrificed, popliteal lymph nodes
were removed, and cells were fused with P3-8AG-X653 myeloma cells at
a ratio of 3:5, using 30% polyethylene glycol 1450 (in serum free RPMI
containing 5% DMSO). After 10 d, hybridoma colonies were picked,
cloned by limiting dilution in 96-well plates, and 100 pL of supernatants
were screened by ELISA for differential binding to round-bottomed
96-plates containing adsorbed (10°/well) CD19R* and CDI9R™® Jurkat
cells as detected by 1:500 dilution of HRP-conjugated goat anti-mouse
IgG (Santa Cruz Biotechnology). Detection was achieved by TMB
Microwell peroxidase substrate system (KPL). Protein G column (Roche)

purified mAb was conjugated to Alexa Fluor 488 (Invitrogen-Molecular
Probes) per manufacturer’s instructions.

Flow cytometry. Fluorochrome-conjugated reagents were obtained
from BD Biosciences: anti-CD4, anti-CD8, anti-CD25, anti-CD27, anti-
CD28, anti-CD62L, anti-CD45RA, anti-CD45RO, and anti-CD95. Affinity-
purified F(ab’), fragment of FITC-conjugated goat anti-human Fcy
(Jackson Immunoresearch) was used at 1/20 dilution to detect cell
surface expression of CD19-specific CAR. Purified CAR-specific mAb clone
2D3, conjugated to Alexa Fluor 488, was used at a dilution of 1/30, giving
a concentration of ~ 30 pg/mL. In some experiments, binding of this mAb
to the Fc region of CAR was blocked (30 min at 4°C) using goat human
Fe-specific antiserum (Sigma). Blocking of nonspecific antibody binding
was achieved using FACS wash buffer (2% FCS in PBS). T-cell receptor
(TCR)-Vp expression was determined with a panel of 24 TCR-Vp-specific
mAbs (IO TEST Beta Mark TCR-Vp repertoire kit, Beckman Coulter) used
in association with anti-CD3 and appropriate isotype-matched control
mAbs. Data acquisition was on a FACSCalibur (BD Biosciences) using
CellQuest version 3.3 (BD Biosciences). Analyses and calculation of mean
fluorescence intensity (MFI) was undertaken using FCS Express version
3.00.007 (Thornhill).

Intracellular IL-2 cytokine staining. Intracellular IL-2 was assayed
using the Intracellular Cytokine Staining Starter Kit (BD PharMingen) per
the manufacturer’s instructions. Briefly, 10° T cells were incubated with
0.5 x 10° stimulator cells in 200 pL culture medium along with protein
transport inhibitor (BD Golgi Plug containing Brefeldin A) in a 96-well plate.
Following a 4- to 6-h incubation at 37°C, the cells were stained for CAR
expression using hybridoma mAb clone 2D3 at 4°C for 30 min. After
washing, the cells were fixed and permeabilized (100 pL, Cytofix/Cytoperm
buffer) and phycoerythrin-conjugated mAb specific for IL-2 was added.
Cells were further washed and analyzed by FACSCalibur. T cells
were treated with a leukocyte activation cocktail (phorbol 12-myristate
13-acetate and ionomycin) as a positive control.

Confocal microscopy. Jurkat parental and CD19R™ Jurkat cells were
stained with the hybridoma clone mAb 2D3, at a 1:50 dilution for 15 min at
4°C, washed in FACS wash bulffer, and fixed with 0.1% paraformaldehyde.
After fixing, the cells were washed twice with FACS wash buffer and
transferred onto slides, and coverslips were mounted with Prolong Gold
anti-fade agent (Invitrogen). Cells were examined under a confocal
microscope (Leica TCS SP2-SE) using oil immersion lens (X63 objective).
Single-scan images were obtained with a 4.76X zoom in a 1,024 X 1,024
format with a line averaging of 8.

Chromium release assay. The cytolytic activity of T cells was
determined by 4-h chromium release assay (1). CD19-specific T cells
were incubated with 5 x 10® ®'Cr-labeled target cells in a V-bottomed
96-well plate (Costar). The percentage of specific cytolysis was calculated
from the release of °'Cr, as described earlier, using a TopCount NXT
(Perkin-Elmer Life and Analytical Sciences, Inc.). Data are reported as
mean * SD.

DNA PCR for $B transposon and transposase. DNA was isolated from
PBMC using the QIAmp DNA mini kit (Qiagen). PCR was carried out using
CD19RCD28-specific forward primer 5-AGATGACCCAGACCACCTCCAGC-
3" and reverse primer 5-GGTATCCTTGGTGGCGGTGCT-3' for the transpo-
son. The PCR reaction used 1 png of DNA/sample in a mix containing
10X PCR buffer, 2.5 mmol/L deoxynucleotide triphosphates, 3 pmol/L
MgCl,, and 0.5 units of DNA polymerase (AmpliTaq Gold, Applied
Biosystems) in a final volume of 50 pL amplified in a thermal Cycler
(PTC-200 DNA Engine Cycler, Bio-Rad). After an initial denaturation at 95°C
for 5 min, the samples underwent 34 cycles of 95°C for 30 s, 65°C for 30 s,
72°C for 1 min 15 s, followed by a prolonged extension step at 72°C for
7 min. For the transposase gene, PCR was carried out using SB11-specific
forward primer 5-ATGGGACCACGCAGCCG-3 and reverse primer 5-
CGTTTCGGGTAGCCTTCCACA-3'. After an initial denaturation at 95°C
for 5 min, the samples underwent 34 cycles of 95°C for 15 s, 58°C for 30 s,
74°C for 2 min followed by a prolonged extension step at 74°C for 7 min.
The housekeeping gene GAPDH was also amplified in the same samples
using the forward primer 5-TCTCCAGAACATCATCCCTGCCAC-3’ and
reverse primer 5-TGGGCCATGAGGTCCACCACCCTG-3.
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Figure 2. Specificity of mouse-derived
CAR-specific mAb (clone 2D3). A, Jurkat cells
were genetically modified and sorted to

103 express CD19R. Jurkat parental (gray line)
and CD19R™ (black line) cells were stained
with (/) Alexa 488—conjugated clone 2D3

and (ii) F(ab’),-fragment of goat-derived
polyclonal antibody specific for human Fc;

iii, binding of 2D3 (solid line) was blocked

by polyclonal Fc-specific antisera (dashed
line). B, cell surface staining of Alexa Fluor
488—conjugated clone 2D3 by confocal
microscopy on (i) CD19R™* Jurkat cells and (ii)
Jurkat parental cells. Cells were stained, fixed,
and mounted as described in Materials and
Methods.

Chromosome banding analysis. Exponentially growing SB-transfected
T-cell cultures (freshly fed 24 h earlier) were incubated for 2 h at
37°C with colcemid (20 pL of 0.04 pg/mL) per 10 mL medium followed by
0.075 mol/L KCI at room temperature for 15 min, fixed with acetic acid/
methanol (1:3), and washed thrice on a glass slide. For Giemsa (G)
banding, 5- to 6-d-old slides treated with trypsin were stained with
Giemsa stain following standard techniques described previously (21).
A total of 15 G-banded metaphases were photographed and 5 complete
karyotypes were prepared using a karyotyping system from Applied
Imaging Corporation.

Results

We describe a new approach to using nonviral gene transfer of
DNA plasmids to efficiently obtain populations of memory and
effector T cells with desired specificity (Fig. 1D). The system we
have devised provides for robust antigen-driven expansion of CD4"
and CD8" CAR" T cells to clinically meaningful numbers.

Monoclonal antibody with specificity for CD19-specific CAR.
The cell surface expression of the introduced CAR was predicted
to increase with outgrowth of T-cell populations that have
undergone CAR-mediated numerical expansion on CD19" aAPC.
Currently, the only-commercially available flow cytometry
reagents that recognize our CARs are polyclonal anti-Fc anti-
bodies raised in goat, but we desired a homogeneous monoclonal
product for use in the release of CAR™ T cells for clinical trials. To
longitudinally follow the transgene expression, we developed a
CAR-specific mAb by immunizing mice with syngeneic NSO cells
expressing CDI9R. A hybridoma mAb clone 2D3 (IgGl) was
selected by flow cytometry that selectively bound to CD19R"
Jurkat cells, but not parental Jurkat cells. The binding of 2D3 can

be blocked using a Fc-specific antibody (Fig. 24). The 2D3 clone
bound a CD20-specific CAR that shares the IgG4 Fc region with
CDI9R and CD19RCD28 (data not shown). The pattern of staining
by confocal microscopy showed 2D3 binding to CAR on the cell
surface (Fig. 2B). These data are consistent with a mAb binding
specifically to the CDI19-specific CAR and recognizing the
modified human IgG Fc region. Of note, the production of this
mAb avoided the need to purity recombinant CAR protein as the
immunogen was genetically modified NSO cells and the ELISA
screening used genetically modified Jurkat cells.

Electrotransfer of SB two-plasmid DNA system. We have used
a nonviral gene transfer approach to introduce codon optimized
DNA expression plasmids because these expression vectors can be
readily and cheaply manufactured to clinical grade. Although
codon modification of TCR genes has been shown to enhance
expression of transgenic TCR in primary human T cells (22), we
now show the usage of a codon optimized second-generation CAR.
Previously, our electroporation approach based on the Multi-
porator (Eppendorf; refs. 23, 24) used T cells that had been
stimulated to proliferate by cross-linking CD3 with OKT3 to allow
access of the introduced naked DNA to the nucleus after
dissolution of the nuclear envelope during prometaphase. However,
T cells nonspecially activated to proliferate, such as by cross-linking
CD3 as occurs in the REP (25), would preclude subsequent
immediate antigen-mediated propagation and thus directed
outgrowth of CAR™ T cells. Nucleofector technology has been used
to electroporate nonreplicating cells by direct transfer of DNA to
the nucleus (26). Thus, we investigated whether this electrotransfer
system could be used to genetically modify circulating T cells from
peripheral blood and umbilical cord blood, which are in a
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Table 1. Percent CAR expression in T cells after electroporation of CAR transposon with or without SB11 transposase plasmid

DNA plasmid(s) Day 1 Day 28
CD4*CAR* CD8*CAR* Total CAR* CD4*CAR* CD8*CAR* Total CAR*
PBMC UCB PBMC ucB PBMC ucB PBMC ucB PBMC ucB PBMC ucB
No DNA 0.6 1.0 0.2 0.1 1.6 13
SB11 09 1.1 0.8 0.2 12 14
Txpn* 159 10.7 9.5 1.0 27.0 11.8 0.07 0.8 0.5 0.3 0.8 35
Txpn* and SB11 13.3 4.9 79 0.8 22,0 54 275 24.8 13.5 1.9 389 ! 29.7 :

Abbreviation: UCB, umbilical cord blood.
*Txpn (transposon) = ¢,0p,CD19RCD28/pT-MNDUS.

T When SB transposase is electroporated with transposon, there is 49-fold improved CAR expression.
$+ When SB transposase is electroporated with transposon, there is 8.4-fold improved CAR expression.

quiescent state. To assist with subsequent translation to clinical
practice, the Nucleofector solution is available for use in cGMP.
Both the SB transposase and IR have been independently
manipulated to improve efficiency of transposition, but changes to
both do not generally seem to be additive. In preliminary
experiments, we too compared the relative transposition efficiency
of the SB10 (10, 16) and SB11 transposases (the latter exhibiting
improved enzymatic activity; ref. 17) in a two-by-two matrix using
the Amaxa 96-well Shuttle system to introduce these transposases
and pT (15, 16) and pT2 transposons (the latter exhibiting
improved transposition; ref. 27) into Jurkat T cells. As observed
with other cell lines, we found a similar increase in transposition
using SB11 with pT and using SB10 with pT2 (27) although, as
reported, overproduction of transposase inhibited transposition
(13, 17). When the pT2-improved transposon was combined with
SB11, no further increase in transgene expression was observed
over that achieved when these components were used with SB10 or
pT, respectively. In the present study, a combination of pT
transposon (for integration) and SB11 transposase (for transient
expression) was used for experiments with primary T cells.
Generation of CD19" aAPC. We determined whether peripheral
blood and umbilical cord blood-derived T cells could be selectively
propagated by stimulating through an introduced immunorecep-
tor. This experiment would evaluate our underlying hypothesis of
whether the presence of the SB transposase would improve
efficiency of CAR transposon integration in T cells. Our initial
attempts at CAR-dependent T-cell propagation after electrotransfer
of the SB system used allogeneic LCL because these are widely
available as master cell banks (including at M. D. Anderson Cancer
Center) manufactured in compliance with ¢cGMP for phase I/II
trials. However, these LCL resulted in nonspecific outgrowth of
CAR™" T cells that had undergone electrotransfer of SB plasmids,
independent of CAR expression (data not shown), presumably due
to outgrowth of alloreactive T cells. Because our SB transposon by
design does not include a drug resistance gene, we avoided
nonspecific propagation of T cells using K562 as aAPC because
these do not express classical HLA molecules. K562 cells are widely
recognized as a platform suitable for the numerical expansion of
lymphocytes because they (a) can be cultured in compliance with
c¢GMP, (b) express desired endogenous T-cell costimulatory
molecules, (¢) secrete pro-inflammatory cytokines, and (d) can be

readily modified to enforce the expression of antigen and desired
endogenous T-cell costimulatory molecules (28, 29). To provide an
IL-15-mediated growth stimulus coordinated with recognition of
CD19 antigen, the aAPC expressing tCD19, 4-1BBL, and MICA were
further modified to express the IL-15 cytokine on the cell surface
(IL-15-Fc; Fig. 24). Membrane-bound IL-15 has been used before to
propagate natural killer (NK) cells on K562 (19). The ability of these
K562 aAPCs to propagate CAR" T cells after electrotransfer of SB
transposon and transposase plasmids is described in the next
section.

S$B-mediated gene transfer of CAR transposon in primary
T cells. After using the Nucleofector to import plasmid DNA into
quiescent T cells, we observed that peripheral blood- and
umbilical cord blood-derived electroporated CD4" and CD8"
T cells readily expressed the CAR transposon (Table 1; Fig. 34).
Not surprisingly, the presence of the plasmid expressing the SB11
transposase did not increase transposon expression when
measured 24 hours after electroporation (22% and 27% CAR
expression with and without transposase, respectively), as this
early time point for assessing transgene expression records
transient nonintegrated CAR expression (Fig. 34). The genotoxicity
reported with excess expression of SB transposase (17) was
apparently controlled in our two-plasmid system using a 1:1 ratio
of transposon and transposase. To obtain peripheral blood- and
umbilical cord blood-derived T cells with integrated transposon,
the genetically modified cells were cocultured with +y-radiated
aAPC (K562 genetically modified to express tCD19, 4-1BBL, MICA,
IL-15-Fc) at a ratio of 1:10 (T cell to aAPC). After 5 weeks of
continuous coculture (y-radiated aAPC re-added every 7 days), the
percentage of peripheral blood-derived T cells expressing CAR
increased in the transposase-containing group (43%), whereas the
CAR expression was lost (0.7%) when transposon was electro-
transferred in the absence of transposase (Fig. 34). Thus, after 28
to 35 days, the efficiency of two DNA plasmid SB-mediated gene
transfer improved CAR expression by ~49 to 60-fold, compared
with a single plasmid transposon control (Table 1). The expression
of the CAR was confirmed by Western blot of whole-cell lysates of
propagated T cells probed using a mAb specific for CD3-{ chain
revealed the 79-kDa chimeric ¢ chain in addition to the 21-kDa
endogenous { chain (Fig. 3C). To monitor for the presence or
absence of the integrated CD19RCD28 transgene, DNA from the
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Figure 3. Characterization of CAR expression on peripheral blood—derived T cells after electrotransfer of SB plasmid system. A, expression of CAR on CD8" and
CD4* T cells after electrotransfer of SB transposon with or without SB11 transposase at 24 h, and 4 and 5 wk of coculture on y-irradiated K562-derived aAPC
expressing tCD19, IL-15-Fc, MICA, and 4-1BBL. B, i, immunophenotype of memory cell markers (CD27, CD28, CD62L) on genetically modified T cells generated after
5 wk of coculture on aAPC. The gray-filled histograms reveal the percentage of T cells expressing CD27, CD28, and CD62L in the lymphocyte-gated population. Those
expressing the memory cell markers were analyzed for coexpression of CAR (detected by mAb clone 2D3) and CD8 or CD4. ii, expression of CD45RO, CD45RA, and
CD62L on T cells generated after coculture. CAR* CD4 or CD8 cells were analyzed for the expression of CD45RA and CD45R0O. The MFI of the unmanipulated

T cells was 867/50 (CD45RA/CD45R0) compared with 28/38 for the SB-transfected T cells. CD45RO and CD62L double-positive cells were also analyzed for
coexpression of CAR. jii, Tcy, defined as double-positive for CD28 and CD95 (Tgy, CD28"°9CD95P°%), were analyzed for coexpression of CD62L and CAR. C,
Western blot analysis of CAR expression detected by mAb specific for CD3-¢. Whole-cell protein (20 pg) lysates from primary T cells genetically modified with
coopCD19RCD28 (lane 1, ~ 79 kDa chimeric protein) or no plasmid control (lane 2); CD19R™ Jurkat cells (lane 3, ~ 66 kDa chimeric protein) or parental Jurkat (lane 4)
were resolved by SDS-PAGE under reducing conditions. D, integration of c,0,CD19RCD28 by PCR. DNA was isolated from T cells after mock electroporation

(no DNA, Janes 1 and 4), from T cells 28 d after electroporation with SB transposon in the absence of transposase (lanes 2 and 5), and from T cells 28 d after
electroporation with transposon in the presence of SB11 transposase (lanes 3 and 6). PCR was accomplished using transposon-specific primers (lanes 1-3) or
GAPDH-specific primers (lanes 4-6). The data showing SB system in peripheral blood/cord blood are from a representative experiment.

numerically expanded T cells, electroporated with and without no similar band was observed in cells electroporated with SB
SB11, were PCR amplified using CAR-specific primers. A 1,900-bp transposon in the absence of transposase, which is consistent with
band corresponding to the CD19RCD28 transgene was observed in improved SB11l-mediated transposition in T cells expressing CAR
T cells electroporated using the SB two-plasmid system, whereas protein (Fig. 3D).
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Propagation of CAR" T cells. The K562-derived aAPC was
calculated to give a 20-fold growth of genetically modified T cells
at the end of 4 weeks with continued and accelerated expansion
thereafter (Fig. 44). A subset analysis revealed that populations
of both CD4"CAR" and CD8CAR" T cells could be propagated
(Table 1). Initially, the rates of CD4" and CD8" T-cell growth on
aAPC were similar, but after ~ 8 weeks there was an outgrowth of
CD4"CAR" T cells (Fig. 4B). Thus, continued time in tissue culture
could be used to derive CAR" T cells with an increased CD4 to CD8
ratio. We also followed the percentage expression and density of
the CAR on the T-cell surface by flow cytometry. With coculture,
there was outgrowth of percentage of T cells expressing the CD19-
specific CAR (22% on day 1 and peaking at 99% on day 70).
However, as the percentage of CAR" T cells increased, there was a
decrease in the density of CAR expression, as the MFI dropped
from a peak of 109 arbitrary units at 21 days, early in the
coculturing process, and then declined over culture time. The
amount of CAR for the population peaked at ~70 days after

electroporation (percentage expression multiplied by MFI). Thus,
adding a fixed ratio of aAPC (with a fixed density of CD19 antigen)
to T cells seems to have supported the growth for populations of
T cells that either expressed high density of CAR or high percentage
of CAR.

Immunophenotype of CAR* memory T cells. Previously, T cells
from healthy donors electroporated to express a CD19-specific CAR
and nonspecifically activated for proliferation by cross-linking CD3
with OKT3 using REP have shown a predominant phenotype
consistent with differentiated effector CD8" T cells (20). In contrast,
after electrotransfer of SB plasmids and numerical expansion on
aAPC, T cells exhibited a heterogeneous immunophenotype and
apparently included populations of CAR" T¢y. We showed that the
CAR" T cells expressed memory cell markers (CD27, CD28, CD62L;
refs. 30-32) as well as determinants of an effector-cell phenotype
(Fig. 3Bi). For example, over half of CD27", CD28", and CD62L"
T cells expressed CAR. Indeed, as a marker for Tcy;, 88% of the
CD62L*"CD45RO" cells expressed the CAR (Fig. 3Bii; ref. 33). Upon
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gating CD45RO" cells, we observed a preferential expansion of
T cells with this memory-cell marker in the cultured SB-transfected
T cells (90%; MFI, 38) compared with unmanipulated T cells
obtained directly from PBMC (36%; MFI, 50). Tgy and Tcy have
also been distinguished based on relative expression of CD28 and
Fas (34). Using these markers, we were able to identify that
genetically modified and propagated Ty, constituted ~40% of the
total cell population and CD28"°8CD95" Tgy represented the
remainder of the propagated T cells. Multiparameter flow cytometry
further revealed that 39% of CAR'CD28'CD95" Tcy expressed
CD62L. In comparison, only 7% of the CAR" Tgy expressed CD62L
(Fig. 3Biii). These data reveal that CAR" T cells are present in T cells
that express markers consistent with T¢y;. Preferential expansion of
T cells in tissue culture with an apparent memory phenotype can
also be inferred by from the ratio of CD45RA/CD45R0, which
decreased from 2.75 in unmanipulated freshly derived PBMC to
0.9 for SB-transfected and ex vivo propagated T cells (Fig. 3Bii).
The relative percentage increase of observed CD45RO" cells, or
the decrease in CD45RA/CD45RO ratio, is presumably due to the
repetitive antigenic stimulation of cultured T cells resulting in
down-regulation of the high molecular weight CD45RA isoform and
reciprocal up-regulation of the low molecular weight isoform
CD45RO0 during time in culture. Coexpression of both CD45RA and
CD45RO0 has been associated with the phenotype of effector T cells
(35) but as in circulating peripheral blood-derived T cells express
both CD45RA and CD45RO, the markers are presumably also
present on memory cells. These data have implications for
improved in vivo efficacy as Tcy are associated with long-term
persistence after adoptive transfer.

TCR V(3 repertoire. We tracked the expression of TCR V3 usage
by flow cytometry over time with the hypothesis that an
improvement in DNA-plasmid integration would be reflected by

maintenance of a broad pre-electroporation TCR V repertoire. The
pattern of TCR V3 usage observed after electrotransfer of the two
DNA SB plasmids and propagation on aAPC was much broader than
when T cells were electroporated using the single ¢,0,CD19RCD28/
Hy-pVitro4 plasmid and expanded by REP by cross-linking CD3 with
OKT3 in cytocidal concentrations of hygromycin B. We observed
that ~80% of the T cells electroporated with ¢,0,CD19RCD28/Hy-
pVitro4 plasmid expressed a single TCR VP family (VR5.3). In
contrast, ~80% of the T cells electroporated with the complete SB
system expressed 30% of the TCR VP families (Fig. 4C). This is
consistent with less efficient integration of the ¢,0,CD19RCD28/Hy-
pVitro4 plasmid compared with the SB system. These data have
implications for design of adoptive immunotherapy trials as
maintaining a broad TCR diversity is desired to restore immune
reconstitution after myeloablative preparative regimens.
Redirected function of CAR" T cells after electrotransfer of
SB plasmids. The numerically expanded T cells were evaluated for
redirected killing. The genetically modified T cells were able to lyse
CD19" targets, and specificity of killing was shown by the
background lysis of CD19"°® K562 cells (Fig. 54). We showed a
25-fold increase in specific lysis of CD19" K562 at effector-to-target
ration of 50:1. The lack of killing of CD19"°® K562 is consistent with
absence of resident NK cell function in the culture, as these target
cells are sensitive to NK cell-mediated lysis. Because the CAR
contains a CD28 endodomain, we investigated whether T cell-
derived IL-2 could be produced when CAR contacted CD19 antigen
in the absence of binding CD80 or CD86. An intracellular cytokine
assay showed that IL-2 could be detected in the CAR" T cells only
when cultured with CD19" stimulator cells and not with CD19"°®
cells (Fig. 5B). There was an ~ 4-fold increase in IL-2 expression
when CAR" T cells were stimulated by CD19"CD80"*CD86"¢ K562
cells compared with CD19"°® K562 parental controls. No significant
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IL-2 production was observed when T cells were cultured in absence
of stimulator cells. These data are consistent with activation of
T cells for killing and IL-2 cytokine production through the CAR.

Lack of integration of SB1l transposase in propagated
T cells. Continued presence of the SB11 transposase in genetically
modified T cells may cause genotoxicity. We evaluated for the
presence of integrated transposase plasmid by genomic PCR. No
band corresponding to the SB11 transposase gene (size ~ 830 bp)
was detected in T cells that were electroporated with the SB
transposon and transposase and had undergone 4 weeks of
coculture with aAPC (Fig. 64), which is consistent with the rapid
loss of transposase expression activity over the first few days
postdelivery in mice (36). These results indicate that the SB11
transposase was not integrated into the genome of cells stably
expressing the CD19RCD28 CAR.

Karyotype of genetically modified T cells. As a measure of
global genotoxicity associated with undesired and continued
transposition, we evaluated the integrity of the chromosome
structure. G-banding analysis of the SB-transfected T cells showed
a normal female karyotype, 46, XX with no apparent numerical or
structural chromosome alterations (Fig. 6B). Although this does not
exclude chromosomal damage below the limit of detection of this
technique, it supports the premise that SB transposition in T cells is
not associated with translocations and chromosomal aberrations.

Discussion

We have previously showed that peripheral blood- and umbilical
cord blood-derived T cells can be rendered specific for CD19, based
on using a CAR capable of providing a fully competent activation
signal, development of aAPC-expressing antigen, and desired
costimulatory signals. In this report, we describe the use of SB
transposon/transposase plasmids to introduce CD19-specific CAR
leading to efficient outgrowth of CAR" T cells on aAPC with
preservation of CD4", CDS8", central memory, and effector-cell
immunophenotypes. This is expected to be of widespread interest
as many institutions are evaluating the clinical potential of
genetically modified T cells with redirected specificity. The majority
of these programs use recombinant viral vectors, which, although
efficient at gene transfer, are generally cost-prohibitive to
manufacture to clinical grade and still permit incremental changes
to clinical trial design. Yet, at this early stage of gene therapy
planning with clinical grade T cells, what is needed, and is provided
here, is a cost-effective gene transfer system that encourages
reiterative changes to expression vector and/or CAR design to be
used in proof-of-concept clinical trials that support hypothesis
testing from the bench to the bedside and back again. The
approximate cost for manufacture and release of a clinical grade
plasmid DNA is between $20,000 and $40,000 depending on
supplier and degree of release testing needed. This release testing
typically requires restriction enzyme analyses, sequencing, and
measures of (a) homogeneity/purity/contamination (protein, RNA,
and other DNA) and (b) sterility including endotoxin. For early-
phase proof-of-concept trials, this pricing compares favorably with
the relatively high cost of recombinant retrovirus, including
lentivirus as manufacture and release of clinical grade viruses
may exceed 10 times the cost of DNA-plasmid production.
Furthermore, there is downward pressure on the unit cost for
DNA because there are many vendors worldwide with the
capability to produce clinical grade plasmids. The manufacture/
release of recombinant retrovirus is highly specialized, requiring

1,000 bp

Transposase — 750 bp

+— GAPDH

Figure 6. Safety issues regarding SB transposase and chromosomal
aberrations. A, lack of integration of SB11 transposase by genomic PCR from
genetically modified and propagated peripheral blood—derived T cells. DNA was
isolated from T cells after mock electroporation (no DNA, /anes 1 and 4),

from T cells 28 d after electroporation with the two-plasmid SB system

(lanes 2 and 5), or from T cells 1 d after electroporation with the two-plasmid SB
system (lanes 3 and 6). PCR was accomplished using transposase-specific
primers (lanes 1-3) or GAPDH-specific primers (lanes 4-6). B, idiogram of a
G-banded karyotype of the SB-transfected peripheral blood—derived T cells
showing no apparent numerical or structural chromosome alterations.

the expertise of a small number of GMP facilities that contributes
to high cost and can introduce delays to production and thus
availability for clinical use.

Previously, the relatively low levels of nonviral gene transfer
efficiency to introduce naked DNA plasmid coding CAR transgene,
compared with viral-mediated transduction, has been compensat-
ed by lengthy periods of ex vivo tissue culture to select-out T cells
expressing drug-metabolizing enzymes. Thus, an attractive feature
of the SB gene transfer system to introduce CAR into T cells is
avoidance of the need to express immunogenic section genes, such
as bacteria-derived Hy transgene. Some human-derived drug-
resistant transgenes are available for use in hematopoietic cells
(37, 38), but they typically incorporate amino acid changes from the
native protein sequence that may compromise their inability to
remain nonimmunogenic and the continued presence of chemo-
selective drugs may slow kinetics of ex vivo numerical expansion
and alter T-cell function.

Coupling electrotransfer of SB system with selective propagation
of CAR" T cells was made possible using K562 cells that had been

www.aacrjournals.org

2969

Cancer Res 2008; 68: (8). April 15, 2008



Cancer Research

genetically modified to express costimulatory molecules to
function as aAPC. We have previously shown that the presence of
4-1BBL and MICA on CD19" K562 could propagate CD19R"™ T cells
(18). However, sustained antigen-driven numerical expansion of
genetically modified T cells on aAPC has required the presence of
rhIL-15 (18). In our current experiments, we found that the
exogenous addition of this soluble cytokine led to nonspecific
stimulation of T cells after electrotransfer, especially because there
was no concomitant drug selection, resulting in the outgrowth of
T cells that did not maintain CAR expression (data not shown).
This could be corrected by expression of IL-15 at the interface
between aAPC and T cells, using membrane-bound IL-15, as has
been shown for the survival/propagation of NK cells (19, 39). This
approach of expressing IL-15 on the cell surface has the further
advantage of avoiding rhIL-15 protein that is not yet readily/widely
available for use in clinical trials. Allogeneic LCL are another
source of CD19" aAPC to propagate CD19-specific T cells and are
available to many centers operating facilities in compliance with
cGMP as a master cell bank. However, the presence of HLA led to
stimulation of T cells through activation of allospecific TCR and
subsequent outgrowth of T cells that lacked CAR expression. This
alloimmune response could be avoided using the K562 as aAPC, as
these cells lack endogenous class I and II MHC (29).

Next-generation clinical trials using genetically modified T cells
are expected to infuse predefined populations of T cells with defined
characteristics such as the inclusion of both CD4" and CD8" T cells
and Tcy. There is convincing clinical data that the presence of CD4"
T-helper cells improves the persistence of CD8" antigen-specific T
cells (40). Furthermore, clinical trials using melanoma-specific
T cells have shown in vivo long-term persistence of subpopulations
of infused CD28" memory T cells (41) and human experience
has shown a preference for the selective survival of autologous
HIV-specific CD27" versus CD27"°® adoptively transferred T cells
(31). These data are supported by nonhuman experiments
in which adoptive transfer of ex vivo propagated macaque
CD28"CD95'CD62L" Tcy resulted in longer in vivo persistence
compared with infusion of numerically expanded effector T cells
(34). We note that the electrotransfer of SB plasmids and subsequent
CAR-mediated propagation on aAPC supports the outgrowth of
T cells with these desired phenotypes as our CAR" T cells maintain
expression of CD27, CD28, CD45R0, CD95, and CD62L. Clinical trials
will be needed to determine whether adoptive transfer of these CAR*
T cells with an apparent central memory immunophenotype
(CD28"CD95"CD62L") results in long-term in vivo persistence of
genetically modified T cells or whether these cells, despite being
maintained for weeks in culture, will differentiate after infusion into
effector T cells with limited in vivo survival. Clinical experience will
also be needed to assess whether the presence of CD62L (L-selectin)
on genetically modified T cells enables CAR™ T cells to traffic to sites
of minimal residual disease for B-lineage malignancies, such as
secondary lymphoid organs (42, 43).

Although there are a variety of transposase/transposon expres-
sion vectors available, we elected to combine the improved
enzymatic activity of the SB11 transposase with pT IR sequences,
rather than less efficient SB10 transposase with pT2 plasmid
containing IR with improved IR activity. This was based on (a) the
observation that integrated SB11 transposase could not be detected
after T-cell culture on aAPC and (b) the assumption that because the
CAR transposon with flanking IR is to be integrated, we wished to
reduce the potential for introducing an element with increased
potential for retransposition and potential deleterious chromosomal

rearrangement. We note that the majority of viral vectors currently
used in human gene therapy trials also contain elements flanking
transgene to be integrated, such as the long terminal repeat (LTR)
termini of recombinant retrovirus, with binding sites for enzymes
with integrase activity. The transfer of retroviral-derived LTR has not
been associated with deleterious host genome chromosome
rearrangements, especially in T cells (44), and the low risk of
genotoxicity due to the integrated presence of SB IR should be on par
with retrovirally mediated transduction.

A gene transfer event with stable integration could result in
deleterious insertional mutagenesis, but for SB transposition this
seems to be less than retrovirally mediated transduction given
the observed preference for random chromosomal integration at
TA-dinucleotide base pairs areas. Although the safety of SB
transposition can only be adequately addressed in clinical trials,
we have not seen major chromosomal aberrations after electro-
transfer of SB plasmids. Furthermore, to safeguard against the
emergence of genetically modified T cells with autonomous growth,
we routinely culture T cells after electroporation without aAPC and
we are yet to observe evidence of antigen-independent prolifera-
tion. The risks for first-in-human trials using SB system would
seem to be ameliorated when using T cells, rather than
hematopoietic progenitor cells and in the setting of high-risk
malignancies in which patients are expected to succumb to
underlying relapsed malignancies. The risks of genotoxicity may be
reduced in the future using a transposase with directed integration
(45, 46), coupling persistent transposase activity with a transgene
mediating conditional suicide, or introducing mRNA (47) rather
than DNA coding for the transposase.

The future for clinical therapy infusing genetically modified
T cells with redirected specificity looks promising. There are
published reports on the therapeutic effect of T cells genetically
modified to express full-length aBTCR (48) and clinical studies
using T cells expressing chimeric receptors to redirect specificity
have been reported or are under way (35, 49, 50). With the
results of the first in-human trial infusing CD19-specific T cells
being reported (3), the next step (the so-called second
translational hurdle) will be expanding these single-institution
experiences to multi-institution trials powered for efficacy. The
platform we describe for producing CAR™ T cells should be
appealing to investigators undertaking single-site as well as
multisite trials using gene transfer of immunoreceptor(s) to
redirect the specificity of T cells, including Tcy. The system we
have developed uses technology that is readily accessible and
practiced in compliance with cGMP for phase I/II trials because
we use (a) DNA plasmids, (b) electroporation using a
commercial device, (¢) weekly addition of irradiated immortal-
ized aAPC feeder cells derived from K562 (which are available
for use in ¢GMP), and (d) addition of exogenous rhIL-2
purchased through pharmacy stores.

In conclusion, we report a new gene transfer approach for the
clinical application of T cells with redirected specificity for
desired antigens. It is anticipated that this approach will be of
interest not just for generating clinical grade T cells with
specificity for CD19, but for genetically modifying T cells to
express CAR with alternative specificities as well as for
introducing TCR transgenes. Most adoptive immunotherapy
trials that have shown therapeutic efficacy, e.g., to melanoma,
CMV, EBV, and adenoviral antigens, have all used an in vitro
antigen-driven proliferation step to propagate antigen-specific
T cells before infusion. We have now incorporated ex vivo
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CAR-dependent proliferation to derive genetically modified
T cells and will evaluate the CD19-specific T cells, using SB
transposition and aAPC, in a next-generation clinical trial.
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