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Objectives 

The objective of this investigation is to study the potential of utilizing fluidic flexible matrix 
composites (FMC) for autonomous structural tailoring. By taking advantages of the high 
anisotropy of flexible matrix composite (FMC) tubes and the high bulk modulus of the 
pressurizing fluid, significant changes in the effective modulus of elasticity could be achieved by 
controlling the inlet valve to the fluid filled F2MC structure.  The variable modulus F2MC 
structure has the flexibility to easily deform when desired (open valve), possesses the high 
modulus required during loading conditions when deformation is not desired (closed valve – 
locked state), and has the adaptability to vary the modulus between the flexible/stiff states 
through control of the valve.  In this investigation, we develop an accurate analytical modeling 
tool to predict the characteristics of a single F2MC tube.  Furthermore, we want to 
experimentally demonstrate at least an order of magnitude stiffness change in the F2MC structure 
by valve control.  Finally, as a first step to expand the concept of F2MC tube and integrate it into 
complex structures, a test bed composed of a honeycomb-F2MC sandwich structure variable 
transverse stiffness was conceived and built.  We use analytical and experimental results to 
demonstrate the potential of this integrated structure. 
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Status of Effort 

In previous studies carried out by the PIs, a high mechanical advantage actuator system that is 
inspired by the fibrillar networks in plant cell walls was developed [1-3].  One of the basic elements 
in the actuator system is a composite tube consisting of a flexible matrix and multiple layers of 
oriented, high performance fibers such as carbon (See Fig. 1).  By tailoring the properties of the 
fibers and matrix of the flexible matrix composite (FMC) tube, one can create a material that is 
flexible in certain directions yet compliant in others.  For example, the ratio of Young’s moduli in 
the directions parallel and transverse to the fibers can range from 102 to 104.  Strands of such FMC 
material can be wound into a tube at selected angles relative to the winding axis (a process called 
filament winding) such that the tube can contract or elongate axially via internal pressurization.  It 
was previously shown that large strain and large force can be achieved with individual, pressurized 
FMC tubes [1-3] and that parallel arrays of tubular elements can be integrated to form 2-dimensional 
adaptive structures (e.g., skins and plates with multiple tubes) [1].   
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Fig. 1. Flexible matrix composite tube illustrating fiber orientation (left) and F2MC tube with multiple FMC layers and 

filled with fluid (right). 

 

Building upon and expanding from the previous research experience [1-3], the new idea proposed in 
this project is to synthesize an adaptive structure with variable mechanical properties utilizing fluidic 
FMC (F2MC) tube elements, through valve control.  By using high bulk modulus working fluids in 
conjunction with FMC tubes having selective fiber orientations, one can obtain significant changes 
in stiffness by simply opening or closing an inlet valve to the F2MC tubes (Fig. 2).  With an open 
valve, the system can be very flexible.  Due to its high bulk modulus, the fluid is highly resistant to 
volume change when the valve is closed.  Because of the fiber reinforcement, the fluid-filled FMC 
tubes will thus develop very high stiffness. The variable stiffness tube has the flexibility to be easily 
deformed when desired (low stiffness with open valve and circulating fluid) and to sustain 
significant loads when deformation is not desired (high stiffness with closed valve and no 
circulation).  These interesting capabilities of single F2MC tubes can also be carried over to multi-
cellular structures composing many small-diameter F2MC tubes integrated into supporting matrix 
materials.  The wide range of change in stiffness is valuable in many existing and potential 
applications, such as soft robotics, isolation mounts, and morphing aircraft.   



FA9550-07-1-0001 Final Performance Report 

 3

Closed valve – high 
stiffness, small 
deformation  
 

Open valve – low
stiffness, large 
deformation  

Axial 
force 

Valves connected 
to fluid source

 

Fig. 2. Variable stiffness F2MC tube. 

 
In a previous effort by the authors [4], a simple model of the fluid-filled F2MC composite single 
tube was developed using a composite thin shell theory.  The results from the model predicted 
that more than two orders of magnitude change in the stiffness of the F2MC tubes could be 
achieved between the open and closed valve configurations.  However, there are several 
limitations to the model.  First, the model does not consider the effect of a thin inner lining layer 
between the fluid and the FMC laminate.  The inner lining layer may be needed to prevent 
leakage due to the high internal pressure generated by axial loading in the closed valve 
condition.  Second, thin shell theory does not take into account the radial compliance of the FMC 
wall.  Finally, the previous model does not take into account the possibility of air entrainment in 
the working fluid.  Such issues should be accounted for to accurately predict the stiffness of the 
tube—particularly in the closed valve configuration where all sources of compliance are 
important.     
 
Accomplishments/New Findings 

In the new reporting period, we have developed a more comprehensive model that can better 
capture the open/closed valve characteristics of the F2MC single tube system. The F2MC single 
tube is modeled as a structure composed of two concentric cylinders filled with a compressible 
fluid: an inner liner layer and an outer FMC laminate as shown in Fig. 3. 
 
As can be seen from Fig. 3, an elastomeric inner liner is subjected to a pressure p1 at the inner 
surface and a pressure of p2 at the outer surface.  Therefore, we have the following equations for 
the inner liner [5] 
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where F1 is the resultant of the axial stress, ( )i
z , over the cross-sectional area of the inner liner. 
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Fig. 3. Illustration of an F2MC tube structure. 

 
The outer FMC laminate is subjected to a pressure of p2 at the inner surface as shown in Fig. 3.  
Therefore, Lekhnitskii’s elasticity solution for a homogenous orthotropic cylinder under an axial 
load and an internal pressure is used to model the FMC laminate [6].  According to Lekhnitskii, 
the stress/strain components in a homogeneous orthotropic FMC tube can be determined from 
the following equations 
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where 1
2

2

a
c

a
 , 

2

r

a
  , aij are the effective 3-dimensional elastic compliance constants of the FMC 

laminate in the cylindrical coordinate system, and k and h are determined from the following 
equations [6]  
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   .  As can be seen from Eqs. 10-12, Lekhnitskii’s model 

requires the 3-dimensional elastic properties of the laminate.  The thick laminate analysis by Sun 
and Li [7] is used to generate the effective 3-dimensional elastic constants of the laminate from 
lamina properties.  The overall inputs to the F2MC model are the inner liner material properties 
(E, ), the FMC laminate fiber angles (), and FMC lamina properties.  Since the FMC lamina 
is assumed to be transversely isotropic, only E1, E2, G12, 12, and 23 are needed for the inputs. 

For representing the closed valve scenario, it is assumed that the tube is filled and sealed at zero 
pressure with a volume V0 of compressible fluid of bulk modulus B.  With the application of Fext, 
the enclosed volume of the tube is changed by the amount V.  Corresponding to this volume 
change, the pressure of the fluid changes from zero to p1 and can be expressed using the 
following relationship 
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Expressing the volume change in terms of tube strains and neglecting the higher order terms, Eq. 
15 can be simplified to 
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Equations 1-16 can be solved with the following equilibrium and compatibility equations.  It is 
assumed that the entire F2MC tube is stretched uniformly with an axial strain of 0

z , therefore 

 ( ) ( ) 0i o
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At the inner liner/FMC interface, the radial displacement has to be continuous,  
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which can also be expressed in terms of hoop strain as 
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At each end of the F2MC tube, we have the following equilibrium equation 
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where F2 is the is the resultant of the axial stress distributed over the cross-sectional area of the 
FMC laminate, ( )o

z ,  and can be determined as 

 2
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2

a o
za
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rdr


  . (21) 

The effective closed valve modulus of the F2MC tube is defined as 
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2
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For the open valve case, p1=0.  Therefore, one can simply assign B=0 in the above solving 
process to calculate Eopen.  The closed/open modulus ratio, R, is defined as 

 closed

open

E
R

E
 . (23) 

We conducted a number of experiments to validate the new model. The F2MC tubes were wet 
filament wound using a McClean-Anderson filament winding machine. Tensile tests of F2MC 
tubes were performed on a 13 kN (3 kip) axial servo-hydraulic load frame (MTS 810) as shown 
in Fig. 4  For all tests, a load rate of 0.2 mm/s (0.008 in/s) in tension was used.  An Ashcroft 
pressure transducer (Model # K17M0215F22000) with a 13.8 MPa (2000 psi) pressure capability 
provided high resolution measurements during loading.  Manual ball valves with a 13.8 MPa 
(2000 psi) pressure rating were used for the open- and closed-valve scenarios.   

 

 

Fig. 4. Tensile test setup for a single F2MC tube. 

 

A parametric study was performed using the proposed model. The parameters shown in Table 1 
are used as the baseline parameters. For easy comparison, during the analysis, only one 
parameter is varied at a time, and all other parameters are kept the same as the baseline.  
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Table 1. Baseline parameters used in the model analysis. 

 Property Value 

FMC Lamina 

E1 115 GPa 
E2 1.8 MPa 
G12 1.4 MPa  
12 0.33 
23 0.93 

Inner Liner 
E 0.1 GPa 
 0.497 

Geometry 
a0 5 mm 
a1 6 mm 
a2 6.5 mm 

Fluid 
B 2.0 GPa 

0
A 0 

 

The effect of fluid bulk modulus on the modulus ratio of F2MC tubes is shown in Fig. 5.  The 
working fluid inside the F2MC tube performs a vital role.  The constraining action of the fibers 
and the high bulk modulus of the working fluid provide the increased modulus of the closed 
valve condition over the open valve condition.  One would expect a fluid of larger bulk modulus 
to lead to a larger modulus ratio.  However, it is seen in Fig. 5 that a change in fluid bulk 
modulus from B=0.1 to 10 GPa introduces only very little change in modulus ratio.  This can be 
explained by examining the difference in bulk modulus between the working fluid and the inner 
liner material.  For example, water has a bulk modulus of about 2 GPa, whereas, the bulk 
modulus of the inner liner calculated using parameters given in Table 1 has a value of only 5.6 
MPa ( 3(1 2 )K E   )—i.e., more than 2 orders of magnitude less than that of water.  Thus, under 
a closed valve condition, the compliant inner liner is compressed much more than the water, 
preventing the full utilization of the working fluid. 
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Fig. 5. Effect of fluid bulk modulus, B¸ on the modulus ratio of F2MC tubes of fiber angle . 

To better illustrate the effects of the inner liner characteristics on the overall modulus ratio, the 
liner modulus and thickness are varied from the baseline in Figs. 6 and 7, respectively.  As can 
be seen from Fig. 6, the maximum achievable modulus ratio changes from 70 at E=0.1 MPa, to 
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~120 at E=1 MPa, and then decreases to ~65 at E=10 MPa.  To a certain limit, increasing the 
inner liner modulus will make the inner liner more difficult to compress under closed valve 
conditions, thus generating high internal pressure.  As a consequence, a high closed/open valve 
modulus ratio can be achieved.  However, an excessive increase in inner liner modulus results in 
a higher open valve modulus, causing the closed/open modulus ratio to decrease.  Figure 7 
shows that the inner liner modulus of elasticity and the fiber angle can be tailored so that a 
maximum modulus ratio can be achieved.  As can be seen from Fig. 7, the effect of the inner 
liner thickness on the modulus ratio is quite simple: thinner liners result in higher modulus 
ratios.  As mentioned previously, compared to the working fluid, the inner liner material is much 
more compressible.  Therefore, reducing the inner liner thickness results in less liner volume 
reduction under high internal pressure.  As a result, the overall closed valve modulus and 
modulus ratio of the F2MC tube are increased.  From Fig. 7, it can be seen that the best modulus 
ratio is achieved without an inner liner.  However, in practical situations, it may be difficult to 
withstand a large internal pressure without at least a thin inner liner.    
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Fig. 6. Effect of inner liner modulus, E, on the modulus ratio of F2MC tubes of fiber angle . 

 Fiber Angle,  (deg.)

0 15 30 45 60 75 90

M
od

ul
us

 R
at

io
, R

0

50

100

150

200

250

300
t=2mm 
t=1mm 
t=0.1mm 
t=0mm 

Decreasing 
thickness

 

Fig. 7. Effect of inner liner thickness, t (=a1-a0), on the modulus ratio of F2MC tubes of fiber angle .   
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For the purpose of model validation, F2MC tubes with inner liners of two different moduli are 
fabricated.  The lower modulus inner liner material of the two is made of Dragon Skin® silicone 
(Smooth-On Inc., Easton, PA) (E=0.09 MPa, =0.497), and the higher modulus inner is made of 
QSil® 270 (Quantum Silicones Inc., Richmond, VA) (E=8.2 MPa, =0.495).  The baseline 
F2MC tube geometries and FMC lamina properties are the same as in Table 1.  Experimentally 
measured open-valve and closed-valve moduli and modulus ratios for various tube 
configurations are summarized in Table 2.  Typical measured open- and closed-valve stress-
strain curves of an F2MC tube are shown in Fig. 8.  As can be seen from the figure, the stress-
strain curve for the closed-valve condition shows a two-staged behavior: a nonlinear initial 
portion, followed by a linear portion.  The initial nonlinear behavior is due to the air entrapment 
in the system. The closed-valve modulus is determined by calculating the slope of the linear 
portion of the closed-valve stress-strain curve.  For the case shown in Fig. 8, a modulus ratio of 
56 is achieved.  It can also be noticed from Fig. 8 that the internal pressure increases linearly 
with the applied external load.  A maximum internal pressure of 10 MPa (~1500 psi) is recorded 
with an applied axial stress of 35 MPa.  

 

Table 2. F2MC tubes fabricated for tension testing. 

Sample 
# 

Liner Layer Material FMC Laminate Material Eopen Eclosed R 

A Silicone: QSil 270 35-deg. carbon fiber with 
silicone matrix (Dragon Skin) 

27 MPa 1.5 GPa 56 

B Silicone: QSil 270 45-deg. carbon fiber with 
silicone matrix (Dragon Skin) 

12 MPa 0.35 GPa 29 

C Silicone: QSil 270 55-deg. carbon fiber with 
silicone matrix (Dragon Skin) 

3.2 MPa 4.8 MPa 1.5 

D 
Silicone: Dragon 

Skin 

35-deg. carbon fiber with 
matrix silicone matrix 
(Dragon Skin) 

4.6 MPa 0.11 GPa 24 
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Fig. 8. Experimental results of a 35-deg. F2MC tube with stiff inner liner: (left) applied stress vs. strain curve; (right) 
internal pressure vs. applied stress curve. 
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A comparison between predicted and experimentally measured modulus ratios and closed valve 
moduli for F2MC tubes with soft and stiff inner liners are shown in Fig. 9.  The model shows 
reasonable agreement with experimental data.  Also, the experimental results confirm the 
prediction that using a higher elastic modulus inner liner results in a higher closed-valve 
modulus.   
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Fig. 9. Comparison between model prediction and experimental data for  F2MC tubes with soft and stiff inner liners: 

(left) modulus ratios; (right) closed-valve modulus. 

 

Based on the preliminary validation of the new model shown above, it is possible to perform a 
study of the design space for F2MC structures.  One advantage of the F2MC technology is that 
one can tailor the material properties for different applications.  For example, we can vary some 
of the FMC lamina properties (E1, E2, G12, ) and inner liner material properties (E) as well as 
the F2MC tube geometry (a0, a1, a2) for illustrative purposes.  Table 3 lists the controlling 
parameters in the design space study and their feasible ranges, whereas all other parameters are 
kept the same as in Table 1.  In order to populate the possible design space, each parameter is 
randomly selected from within the ranges shown in Table 3.  These randomly picked parameters 
are then used as inputs to the model to calculate the open- and closed-valve moduli and the 
modulus ratio of the F2MC tube.  In the current study, a total of 20,000 randomly picked 
configurations were calculated to obtain a clear picture of the design space.  The resulting open 
valve moduli (indicated on the plot as “lower modulus”) versus modulus ratios are plotted as 
individual points in Fig. 10.  As can be seen, the data points from this limited study occupy 
almost the entire lower-left triangular area on the plot, indicating an extraordinarily wide range 
of possible properties attainable with F2MC technology.  Several existing variable modulus 
materials, such as shape memory alloy (SMA) [8,9], shape memory polymer (SMP) [10,11], 
piezoelectric ceramic (PZT) [12], piezoelectric single crystal (PZN-PT) [13], magnetostrictive 
material using Terfenol-D [14], electrochemo-mechanical conducting polymer [15], ionic gel 
[12], magneto-rheological (MR) elastomer [16,17], dielectric polymers using polyvinylidene 
fluoride (PVDF) [12], etc. are also plotted in Fig. 10 for comparison.  Compared to the other 
materials, the F2MC concept has many advantages: a much wider range of tailorablity; a passive 
characteristic not requiring significant external power (electricity, magnetic field, temperature, 
etc.) to switch or maintain different states of modulus; and a very fast response time (only 
limited by the switching speed of the valve being used). 
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Table 3. F2MC parameter ranges for the design space study. 

Variabl
e 

Range Description 

E1 20 ~ 200 GPa FMC lamina fiber direction modulus 
E2 1 ~ 1000 MPa FMC lamina transverse direction modulus 
E 0.1 ~ 1000 MPa Inner liner modulus 
 0 ~ 90 deg. FMC laminate fiber angle 
r1 0 ~ (1-r2) Inner liner thickness ratio: r1=(a1-a0)/a2 
r2 0.00005 ~ 0.5 FMC laminate thickness ratio: r2=(a2-a1)/a2 

     *Lamina property G12 is assumed to be 0.75E22. 
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Fig. 10. Design space of F2MC tubes and other variable modulus materials (open circles indicate feasible designs).   

 

To further expand the concept of F2MC tube, a variable transverse stiffness honeycomb panel is 
proposed in this study, where the traditional aluminum or laminated composite face sheets are 
replaced by layers of F2MC tubes embedded in a soft matrix material (Fig. 11).  A honeycomb 
core is effective in transferring the transverse load on the sandwich panel into axial loads on 
F2MC tubes, so that the variable F2MC stiffness in its axial direction is transformed into variable 
panel stiffness in its transverse direction.  The concept of tube segmentation is introduced to 
further increase the variable stiffness ratio; it can be realized by an embedded valve network. 
 

 
 
 

Honeycomb Core 

F2MC tube layer  
(embedded in soft matrix) 

Valve network 
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Figure 11. A sandwich panel using segmented F2MC for variable bending stiffness. 
 

Figure 12 shows a schematic of a sandwich beam subject to a transverse end load F, and end 
moment M.  Only one F2MC tube is applied at the top to simplify the analysis and test.  A thin 
center sheet made of spring steel (much stiffer than the F2MC tube) constitutes the neutral axis in 
both the open and closed valve scenarios. 

 
 
 
 

Figure 12. Schematic diagram of the sandwich beam and the assumed displacement field. 

 
The Lekhnitskii’s solution used in previous study is combined with Timoshenko shear-
deformable beam theory to study the elastic behavior of the sandwich structure.  With these two 
theories, we derived the total elastic energy of the beam in an explicit form and therefore 
obtained a closed-form solution for the beam deformation by applying variational calculus. 
 
Based on the Timoshenko beam theory, the displacement-strain relationships of the honeycomb 
core and F2MC tube can be described in Eqs. (24, 25) [18], 
 

dx

xd
zxx
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where w(x) is the vertical deflection of the neutral axis, and ψ(x) is the angular rotation of the 
vertical cross section plane (See Fig. 12), εx and εxz are the longitudinal normal strain and tensor 
shear strain of the beam, respectively. 
 
The Lekhnitskii’s solution is applied to analyze the stress and strain distribution of the laminated 
F2MC tube.  The stress and strain of inner liner can be described based on equations 1, 2, and 4-
6, and those of fiber matrix tube wall can be described based on equations 7-14. 
 
Three compatibility conditions are necessary to guarantee and consistency between Timoshenko 
beam theory and Lekhnitskii’s solution.  The first compatibility condition is that the average 
axial strains in the inner and outer tube layers from Lekhnitskii’s solution (Eq. 6, 12) agree with 
the strain field of the Timoshenko beam model (Eqs. 24) at the center of the tube, 
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d
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where ho is the distance between the center axis of the F2MC tube and the center sheet of the 
beam.  The second compatibility condition is the strain continuity at the interface of F2MC inner 
liner and fiber composite tube wall (Eqs. 19). 
 

The first two compatibility conditions apply for both open and closed valve scenarios.  While the 
valves are closed, in particular, a third compatibility conditions is necessary to correlate the tube 
deformation to working fluid pressure. 
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where L is the beam length, B is the fluid bulk modulus, this is a more general formulation 
compared to Eqs. 16. 
 

We obtained the elastic energy of the F2MC tube from its normal stress and strain for the 
assumed deformation field by integrating the inner product of the stress and strain vectors over 
the defined volume, 
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where Hp and Hb are constants derived from the material properties appearing in appearing in the 
formulation of Lekhnitskii’s solution 
 
The honeycomb core is modeled as a homogeneous material with anisotropic shear and bending 
modulus.  When the control valves are closed, the total potential energy of the honeycomb-F2MC 
sandwich beam for the assumed deformation field is obtained by 
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where the subscripts n and m denote the different beam components with 1 referring to 
honeycomb, 2 to center sheet, 3 to inner liner and 4 to fiber composite wall.  EI is the bending 
stiffness of the corresponding component, G is the axial shear modulus including the F2MC tube, 
A is the corresponding cross-section area, and k is the shear coefficient.  Vo is the initial working 
fluid volume and B is the fluid bulk modulus.  F and M denote the external load and moment 
applied at the free end of the cantilever beam (Fig. 12). 
 

Applying variational calculus, the deformation of the beam is written explicitly as  
 

2(2 ) ( )

2( )
EI P EI P

EI P EI
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 ,     (30) 
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For simplicity, we denote G (= ∑kGA)m) as the net shear modulus from the sandwich beam 
components; DEI (= ∑(EI)n + Hb) as the net bending stiffness from material elasticity.  DP (= 
(Hp+VoHp

2/2B)L ) is the extra load resistance from closing the valve, denoted the pressure-
induced stiffness. 
 
The equivalent transverse stiffness of the beam is obtained by dividing the magnitude of external 
load by the transverse beam deflection at the point of the applied load. When the valve is closed, 
this stiffness (ẾC) is obtained as follows 
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When the valves are open, the beam transverse stiffness (ẾO) is obtained from equation 31 by 
setting the pressure-induced stiffness to zero.  Finally, the transverse stiffness ratio between 
closed and open valve scenarios is defined as follows, 
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Load-deflection test was performed on a beam prototype with one single-segment F2MC tube to 
verify the analytical results (Fig. 13).  The honeycomb layer was fabricated by attaching two 
aluminum honeycomb strips onto a spring steel strip using all-purpose epoxy.  To avoid any 
interlayer slip between the F2MC tube and aluminum honeycomb, a cylindrical shaped groove 
was machined on the honeycomb to cradle the F2MC tube. The tube was bonded to this groove 
with epoxy.  Custom fittings were made to connect the tube, the miniature ball valves and the 
pressure gauge (PX309-050A5V, Omegadyne Inc. Sunbury, OH).  The test specimen was cast in 
urethane rubber (Reo-flex 20, Smooth-On Inc.  A rectangular grid pattern was applied to the 
rubber surface to assist in measuring the beam deformation (Fig. 13, right). 
 
The honeycomb sandwich beam provides good versatility as a wide range of design parameter 
combinations can be selected.  Tables 4 and 5 summarize the selection of design parameters used 
for the baseline study.  As implied by equations 30-31, these design parameters can be 
formulated into three factors: net shear modulus (G), net bending stiffness (DEI), and pressure-
induced stiffness (DP).  The magnitude and characteristics of the beam transverse deflection are 
dominated by these three factors.  
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Figure 13. Honeycomb sandwich specimen before being cast in rubber (left); and experiment setup, showing grid pattern (right). 

 

Table 4. Material properties and design factors used for baseline study and prototype fabrication. 

 Property Value  Property Value 

F2MC 
(±35o) 

Fiber composite shear modulus (G)6 0.84 MPa 

Geometr
y 

Design 
 

Fiber composite outer radius (a2) 7.5 mm 

Fiber composite shear coef. (k) 0.629 Fiber composite inner radius (a1) 6.5 mm 

Inner liner modulus (E) 8.2 MPa Inner liner inner radius (a0) 5.5 mm 

Inner liner Poisson's ratio (v) 0.495 Honeycomb cross-section (A) 5.1 cm2 

Inner liner shear modulus (G) 2.74 MPa Center sheet cross-section (A) 3.2 mm2 

Inner liner shear coef. (k) 0.629 Fiber composite cross-section (A) 43.96 mm2 

Honey-
comb 

Shear modulus (G) 640 MPa Inner liner cross-section (A) 37.68 mm2 

Shear coef. (k) 0.4310, 11 Beam length (L) 25 cm 

Bending stiffness (EI) 0.40 Nm2 
Center 
Sheet 

Shear modulus (G) 27 GPa 

Fluid Bulk modulus (B) 2 GPa Shear coef. (k) 0.869 

Pressure 
factors 

K1 (Eq. 12) -35.7 MPa/rad Bending stiffness (EI) 9.5x10-4 Nm2 

K2 (Eq. 13)  -35.4 MPa/rad Net 
Stiffness 

Net bending stiffness (DEI) 2.0 Nm2 

K3 (Eq. 13) -61.4 kPa*m/rad Pressure-induced stiffness (DP) 274 Nm2 

 
Table 5. Components of the compliance matrix of the fiber composite used for baseline study (Eqs. 9 – 12.) 

a11 0.145 MPa-1 a12 -0.148 MPa-1 a13 0.072 MPa-1 
a22 0.311 MPa-1 a23 -0.153 MPa-1 a33 0.075 MPa-1 

 
Figure 14 demonstrates the deformation of a cantilever sandwich beam under an end point 
transverse load.  When the valves are open, the transverse beam deflection equals that of a 
classical Timoshenko beam.  When the valves are closed, the extra pressure-induced stiffness 
causes the beam to deform into an “S” shape, where both transverse deflection w and cross-
section angular rotation ψ at the free end are reduced (See the solid line in Fig. 14).  One can 
obtain the smallest possible beam transverse deflection in the closed valve scenario by setting the 
shear modulus (G) and pressure-induced modulus (DP) to infinity (Fig. 14, dashed line).  Then 
the beam behaves as if its free end angular rotation is restricted.  The highest possible transverse 
stiffness ratio for a sandwich beam with single-segment F2MC tube is obtained similarly by 
setting G and DP to infinity in equation 33.  This maximum ratio is 4 regardless of the magnitude 
of bending stiffness (DEI). 
 

F2MC tube 

Honeycomb
Center sheet 

Ball valve 

End plate 

Pressure gauge 

End transverse load

Grid pattern 
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Figure 14. Transverse beam deflection in closed valve scenario of baseline study and its best possible performance.  

Beam made of 35o F2MC tube, 2 cm honeycomb core. 

 
A parametric study is carried out to derive guidelines for the design of F2MC tubes for a high 
degree of influence on beam bending stiffness.  The three studied design parameters of F2MC 
tube are its carbon fiber orientation, inner liner stiffness, and inner liner thickness.  While the 
honeycomb specifications are kept constant as in Table 4, Fig. 15 summarizes the study results.  
The F2MC tubes give better transverse stiffness ratio at different fiber angles, depending on the 
properties of inner liner.  The inner liner, although necessary for sealing the tube, has a negative 
effect on providing variable stiffness ratio.  For a given inner liner modulus, the thicker the liner, 
the smaller the beam transverse stiffness ratio becomes.  The modulus of the inner liner, on the 
other hand, can limit the fiber angle range where the stiffness ratio is maximized.  For the study 
presented in Fig. 15, 1 to 10 MPa is the optimal range of inner liner modulus to achieve a high 
stiffness ratio. 
 

 
 
 
 
 
 

Figure 15. Parametric study of liner properties and fiber angle in F2MC tubes. 

 

Experimental studies were performed on a sandwich beam specimen with a 35o F2MC tube and 
1 mm thick rubber inner liner (QSil 270, Quantum Silicones Inc., 8.2 MPa Young’s modulus).  
The test specimen was mounted as a cantilever beam on which a transverse end point load is 
applied.  Figure 16 (left) shows that the measured internal pressure values match the analytical 
model predictions well.  The load-deflection plots obtained through the experiments are quite 
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linear and also match the analytical predictions well (Fig. 16, right).  The measured equivalent 
transverse beam stiffness ratio is 3.1, as compared to 3.7 from the analytical prediction. 
 

 

Figure 16. The internal fluid pressure with closed valve (left) and beam deflection (right) with respect to end load. 
 
A sandwich beam with one single-segment F2MC tube on a honeycomb core provides a 
transverse stiffness ratio of no more than 4, so the concept of tube segmentation is introduced to 
further improve the beam performance.  The working fluid in each individual segment is 
independent with respect to others when the valve network is closed.  Each segment can 
therefore be treated as an individual F2MC tube upon which the single-segment analytical model 
can be applied.  A similar parametric study is carried out to investigate the effects of different 
F2MC designs on the beam stiffness ratio.  The range of fiber angles for which the stiffness ratio 
is maximized is smaller compared to the single-segment tube sandwich beam (Fig. 17).  The 
variable transverse stiffness accumulates from each segment so that the more segments in the 
tube, the higher the stiffness ratio.  The effects of the inner liner thickness become more 
significant as compared to the beam with single-segment tube (Fig. 15 left and Fig. 17 right).  
With the same honeycomb specifications as in Table 4, a cantilever sandwich beam structure 
made of a 10-segment, 25o fiber angle F2MC tube without an inner liner is capable of providing 
a variable transverse stiffness ratio of nearly 60.  A similar sandwich beam made of a tube with a 
1 mm thick inner liner (10 MPa Young’s modulus) can provide a ratio of about 30. 
 

 
 
 
 
 
 

Figure 17. Parametric study results for multi-segment tubes.  

Open valve 

Closed valve 
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