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1 Technical Abstract

In this final technical report for the phase I Air Force STTR contract FA9550-08-C-0044, the technical objec-
tives, work accomplished, results, and technical feasibility are summarized. The first and primary objective
of this research is to systematically study the role of noise in human decision making. We achieve this
objective by showing that stochastic resonance (SR) like behavior arises in the Wald’s sequential probability
ratio test (SPRT) model when the actual input signal is significantly weaker than anticipated by the model.
We derive expressions for calculating the fraction of correct responses, the mean decision time, and the
reward rate for the SPRT/DDD (discrete drift diffusion) model of decision making. We then demonstrate
that both the fraction of correct responses and the reward rate have a peak as a function of noise strength
while the mean decision time is a monotonically increasing function of the noise strength. We also examine
the dependence of our results on the initial condition and the form of the input probability distributions.
Finally, to gain analytical insights, we consider the continuous time limit of the SPRT/DDD model. We
show that the closed-form expressions from the resulting continuous drift diffusion (CDD) model help us
understand the SR-type behavior in the SPRT/DDD model but there are also important differences between
the discrete and continuous time cases. Therefore, appropriate amount of noise can improve the decision
making process when the input signal is weak.

The second objective of the project is to study adaptive SPRT. That is, we study the role of prior
distribution in an adaptive SPRT algorithm. One simple adaptive SPRT algorithm without prior distribution
is first presented. The simple algorithm is based on the estimation of the real distributions. The obtained
result shows that the algorithm makes many quick and wrong decisions and sacrifices accuracy. Then, we
use a wide prior distribution to improve the robustness of the algorithm. The new algorithm combines the
prior distribution and the information from the input data to estimate the real distributions. The simulation
result shows improvement in terms of accuracy while the response time remains moderate. We also plot
accuracy and reward rate against the weight of the prior probability. It is observed that there exists an
optimal non-zero and finite weight to achieve the best accuracy when the real distributions are wider than
the prior distribution. Finally, we examine the evolving performance of this adaptive SPRT algorithm with
prior distribution when feedback is provided.

A third but secondary objective of the project is to exploit the role of dynamic systems and control
theories in decision making. We propose an extension of Busemeyer’s decision field theory (DFT) by means
of the contraction mapping principle. It is believed that such an extended DFT will assist operators in
making better decision in supervisory control situations where manual control and automation coexist.

2 Introduction: Team Members and Phase I Publication Summary

2.1 Project Members

Principal Investigator: Zhong-Ping Jiang, Professor and IEEE Fellow
Department of Electrical and Computer Engineering, Polytechnic Institute of New York University, Brooklyn.

Dr. Jiang is in charge of all aspects of this project. His expertise is in nonlinear control theory, nonlinear
dynamics, optimization and their applications.

Project Manager: Xiaoming Zhuang, President
Applied SR Technologies Inc., Brooklyn, NY

President Zhuang is in charge of the coordination of this project.

Academic Researcher: Xingxing Wu, Ph.D and part-time researcher
Department of Electrical and Computer Engineering, Polytechnic Institute of NYU, Brooklyn, NY

Under the guidance of Professor Jiang, Xingxing plays an active role in the research efforts on the theory
of stochastic resonance and applications in signal and image processing. He also helps graduate students on

3



the SR-related issues.

Visiting Scholar: Jerome Busemeyer, Professor
Psychology Department, Indiana University

Dr. Busemeyer provides general comments on the research related to his DFT and how dynamic system (and
control) theory is useful in developing computational and mathematical models for human decision making.

Consultant: Ning Qian, Associate Professor
Department of Neuroscience, Columbia University, 1051 Riverside Dr., New York.

Dr. Qian plays a role in the research using his expertise in neuroscience and detection theory, in particular
his prior work on the development of models for stochastic-resonance-type behavior in sensory perception.

Research Students: Xiao Han, Feng Ma, Shiyun Xu, Juan Zhang

These graduate students help us with various tasks such as computer simulations using Matlab and C++,
extensive literature review, preparation of technical reports.

2.2 Publications

Our Phase I research has gained significant progress. This has lead to the following publications :

• S. Xu, Z. P. Jiang, L. Huang and Daniel W. Repperger, “Control-oriented approaches in dynamic
decision making,” Proceedings of the 8th WSEAS Int. Conference on Robotics, Control and Manu-
facturing Technology, April 2008, Hangzhou, pp. 138-146.

• X. Han, Z.P. Jiang, D. Repperger and N. Qian, Stochastic-resonance-like behavior in Wald’s sequential
probability ratio test model for decision making, to be submitted to Neural Computation.

• X. Han, Z.P. Jiang and N. Qian, The role of prior distribution in an adaptive SPRT algorithm. Under
preparation.

3 Technical Objectives

The primary phase I research and development objectives are as follows:

1. Investigation of stochastic resonance (SR) behavior in the sequential probability ratio test (SPRT)
model for decision making. Stochastic resonance can enhance signal detection by improving certain
performance measures such as signal-to-noise ratio, reward rate and fraction of correct responses. One
of the project tasks is to demonstrate the stochastic resonance phenomenon in the SPRT model by
taking advantage of noise. As is well-known, the SPRT model and the equivalent discrete drift diffusion
(DDD) model have been widely used to explain human and animal decision making in psychophysical
tasks. These models assume that observers gradually accumulate evidence from noisy inputs and make
a decision when the evidence reaches a threshold. In this report, we show that stochastic-resonance
type behavior arises in the SPRT model when the actual input signal is significantly weaker than
anticipated by the model. Specifically, we derive expressions for calculating the fraction of correct
responses, the mean decision time, and the reward rate for the SPRT model of decision making. We
then demonstrate that both the fraction of correct responses and the reward rate have a peak as a
function of noise strength while the mean decision time is a monotonically increasing function of noise
strength.
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2. Differences between the predictions of the CDD model and the DDD model in dynamic decision
making. Choice of which model for decision making depends on what type of questions we want
to answer. We propose to develop mathematically rigorous analysis to illustrate the key differences
between the predictions of continuous- and discrete-time diffusion models known as CDD and DDD.
We have made some interesting observations which are consistent with MATLAB-based computer
simulations. First, if the SPRT/DDD model selects the thresholds according to the equations from
the CDD model, then CR (the mathematical expectation of accuracy) would be better than desired,
but at the price of longer response time than the anticipation of the CDD model. Second, the response
time always exhibits a peak which is not predicted by the CDD model. As a result, if the actual noise
strength is to the right of the peak, then a moderate amount of extra noise could possibly reduce
the response time without violating the constraints on the Type I and Type II errors, due to the
first difference. Third, the tail of the reward rate curve drops significantly with stronger noise, while
the CDD model predicts constant reward rate. Such a result may be important for psychological
experiments.

3. Effects of non-zero initial condition and extensions to other forms of distributions. For the purpose of
testing the robustness of the SR-like behavior, we look at the CR behavior when the initial diffusion
position is biased (because of asymmetric prior probability) or asymmetric constraints on Type I and
Type II errors. The simulation results show that the SR-like behavior gets more evident as initial bias
moves toward the upper threshold and weaker if the initial bias is negative. Numerical studies are
also run on other forms of distributions such as Gamma distribution. For the Gamma distribution
with wrongly assumed shape parameter K, it is observed that SR-like behavior also occurs. Unlike
the Gaussian case, the peak gets higher and narrower with larger Z but the position of the peak does
not seem to move much with Z. Like the Gaussian case, the response time also exhibits a peak and
gets longer almost linearly with increasing Z and the reward rate also exhibits a peak and gets smaller
with increasing Z.

4. Adaptive SPRT. We study the role of prior distribution in dynamic decision making via an adaptive
SPRT algorithm. The ultimate goal is to use a wide prior distribution to improve the robustness of
the algorithm. The key strategy is to develop a new algorithm that combines the prior distribution
and the information from the input data to estimate the real distributions. In addition, we examine
the evolving performance of this new adaptive SPRT algorithm with prior distribution when feedback
is provided.

5. Applications of control and dynamic system theories to the development of mathematical and com-
putational models for human dynamic decision making. It is widely recognized that feedback and
control play a crucial role in human decision making. We have obtained some control-theoretic results
on dynamic decision making using the celebrated contraction mapping principle. It is shown that an
extension of Busemeyer’s Decision Field Theory (DFT), named as Generalized DFT, can be proposed
to solve supervisory control problems involving manual control and automation. An application to
the benchmark example of sugar factory task yields promising results. The obtained results have
been presented at the 8th WEAS International Conference ROCOM (April 2008, pp. 138-146, ISBN
978-960-6766-51-0), and an expanded version has been selected for publication in a special issue of a
Springer journal.

4 Technical Approach and Accomplished Work

4.1 Background

Stochastic resonance (SR) occurs when output signal-to-noise ratio in a nonlinear system is maximized by
a moderate level of noise. The term is also used generally to describe any phenomena where noise plays a
positive role. The SR was first observed in the physics literature (Benzi et al. [1]), and then widely studied
in other fields of sciences and engineering. Gammaitoni, et al. have an in-depth review on SR [2]. The
SR-like behavior has also been well documented in psychophysical experiments. For example, Collins and
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his co-workers [11, 12] found that human detection of weak tactile stimulus can be enhanced by adding a
certain amount of noise. Gong et al. [13] have proposed a theory that explains Collins et al.’s data very well.

An integral component of any psychophysical experiment is decision making. In the fixed-time (or
interrogation) paradigm used in many experiments, including those of Collins et al. [11, 12], a stimulus is
presented for a fixed duration in each trial, and an observer has to decide, for example, whether the stimulus is
noise or signal plus noise. However, a different approach, called the reaction-time (or free-response) paradigm,
is often employed when one wants to study the dynamical decision making process more explicitly. In this
paradigm, the stimulus presentation in each trial is terminated by the observer when he or she feels ready to
make a decision. Typically, observers earn points for correct decisions and lose points for wrong ones. Since
longer time is needed to make more accurate decisions, observers have to compromise between speed and
accuracy to maximize the total points per unit time (reward rate).

Wald’s SPRT model and the equivalent DDD model [3, 4] provide a natural framework for understanding
decision making in the reaction-time paradigm. These models assume that observers gradually accumulate
evidence from noisy inputs and make a decision when the evidence reaches a threshold. In most psychophys-
ical experiments, observers have to decide between two alternatives (e.g., presence or absence of a signal,
leftward or rightward motion). This maps naturally to the upper and lower thresholds in the models. The
models choose one or the other alternative depending on whether the accumulated evidence reaches the
upper or the lower threshold. The models have been applied to a wide range of psychophysical experiments;
see [8] for a recent review.

While there are both experimental and theoretical studies of the SR-like behavior in the fixed-time
paradigm [11, 12, 13], to our knowledge no SR studies have been done for the reaction-time paradigm and
the associated models for decision making. The focus of this paper is to demonstrate SR-like behavior in the
SPRT/DDD model, and in its continuous time limit, the CDD model. Previous applications of these models
[7] often assume that the decision-making process has perfect knowledge of the probability distributions
from which inputs are drawn. This is, however, unlikely to be true. Instead, the brain must rely on its prior
experience over a long period of time to estimate the probability distributions of the inputs. Consequently,
the estimated distributions must be different from the actual ones arbitrarily picked by experimenters for a
given psychophysical experiment. In particular, when the input signals are very weak, the decision process
must incorrectly assume that the signals are drawn from distributions containing much stronger signals. One
of our research goals is to show that this is precisely the situation where the SR-like behavior emerges.

4.2 Stochastic Resonance Behavior in Wald’s Sequential Probability Ratio Test

(SPRT)

4.2.1 SPRT and Its Drift Diffusion Models

Take as an example the two-alternative forced choice (2AFC) task in the reaction time paradigm. The Wald’s
SPRT model for decision making is based on the probability distributions of the input x under hypotheses
H0 and H1:

p(x|Hn), n = 0, 1

For each new sampled input xk, the model accumulates evidence by updating the running product of likeli-
hood ratios:

L(k0) =
k0∏

k=1

p(xk|H1)
p(xk|H0)

and compares the product with a lower threshold 1−p(H1)
p(H1)

· 1−P
1−α and an upper threshold 1−p(H1)

p(H1)
· P

α , where
p(H1) is the prior probability of H1, P is the power of the test and α is the significance level of the test. The
thresholds [4] are determined so that the probability of Type I error (H1 is correct but the model chooses
H0) is 1 − P and the probability of Type II error (H0 is correct but the model chooses H1) is α. If the
product is smaller than the lower threshold, the model decides that H0 is correct (This decision is called D0).
If the product is larger than the upper threshold, then the model decides that H1 is correct (This decision is
called D1). If neither condition is satisfied, the model continues to sample the input and update the product
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until one of the thresholds is reached. The SPRT model is optimal (Wald [3, 4]) in the sense that for fixed
constraints on type I and type II errors, no other test allows a shorter decision time on average.

By taking logarithm, we can convert the product of likelihood ratios into a sum of log likelihood ratios

Y (k0) = log (L(k0)) =
k0∑

k=1

log
(

p(xk|H1)
p(xk|H0)

)
=

k0∑

k=1

sk (1)

which is referred to as the discrete drift diffusion (DDD) model, with the new diffusion boundaries Z0 and
Z1:

Z0 = log
(

1− p(H1)
p(H1)

· 1− P

1− α

)
, Z1 = log

(
1− p(H1)

p(H1)
· P

α

)
. (2)

Note that sk is the diffusion steps while Y (k0) is the diffusion position after k0 steps.
On the other hand, when the diffusion steps are infinitesimally small, the SPRT/DDD model converges

to the CDD model which is described by the following stochastic equation

dy = Adt + cdW ; y(0) = y0. (3)

where A is the drift per unit time, W is standard Weiner process with expected value 0 and variance 1, c is
the standard deviation of the Weiner process, and y(0) is the initial bias. We will first consider the case of
zero initial bias and then discuss the case of nonzero initial conditions.

The CDD parameters A and c correspond to the mathematical expectation and standard deviation of a
single diffusion step s in the DDD model. To be specific, and use An to denote the drift rate under hypothes
Hn,

An =
(2µn − µ̂0 − µ̂1)(µ̂1 − µ̂0)

2σ̂2
, c =

σ(µ̂1 − µ̂0)
σ̂2

, n = 0, 1 (4)

4.2.2 Some Technical Assumptions

DC signal and signal-independent Gaussian noise: We assume that the signal is DC and the noise is
Gaussian and signal-independent. This is justified when the two hypotheses are symmetric such as leftward
motion vs. rightward motion. It can also be justified for asymmetric hypotheses such as “noise vs. signal
plus noise” as long as the signal is very weak.
To be specific, the actual distributions from which the inputs are drawn under H0 and H1 are given by:

p(x|H0) ∼ N(µ0, σ
2)

p(x|H1) ∼ N(µ1, σ
2)

where N(µ, σ2) denotes Gaussian distribution with mean µ and variance σ2.
SPRT parameters inaccurate and non-adaptive: Since the brain does not have direct access to these
distributions and has to rely on prior experience to estimate these distributions, we assume that the distri-
butions used in the model for calculating the likelihood ratios are different:

p̂(x|H0) ∼ N(µ̂0, σ̂
2)

p̂(x|H1) ∼ N(µ̂1, σ̂
2)

Throughout this paper, we will analyze the non-adaptive SPRT model. The SPRT parameters are assumed
by the SPRT model prior to the decision making process and does not adapt to the input data.
Symmetry: We further assume that the two hypotheses are equally probable, that is,

p(H0) = p(H1) = 0.5

and the constraints on Type I and Type II errors are symmetric, that is,

P + α = 1
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Following these assumptions, the boundaries (2) for the diffusion process are symmetric with respect to zero:

Z0 = log

(
1− P

P

)
, Z1 = log

(
P

1− P

)
(5)

We define the distance from the boundaries to zero to be Z, i.e. Z = Z1 = −Z0. As a result, we have

P =
eZ

1 + eZ
and α =

1
1 + eZ

, where Z > 0. (6)

Under these assumptions, a single diffusion step in the DDD model is:

sk = log
(

p̂(xk|H1)
p̂(xk|H0)

)
= log

(
e−(xk−µ̂1)

2/2σ̂2

√
2πσ̂2

/
e−(xk−µ̂0)

2/2σ̂2

√
2πσ̂2

)

=
2xk(µ̂1 − µ̂0) + µ̂2

0 − µ̂2
1

2σ̂2
.

Since the input xk is Gaussian distributed, and sk is linearly related to xk, sk is also Gaussian distributed.
The probability distributions of sk under H0 and H1 are given by:

p(sk|H0) ∼ N
(

(2µ0−µ̂0−µ̂1)(µ̂1−µ̂0)
2σ̂2 , (σ(µ̂1−µ̂0)

σ̂2 )
2)

,

p(sk|H1) ∼ N
(

(2µ1−µ̂0−µ̂1)(µ̂1−µ̂0)
2σ̂2 , (σ(µ̂1−µ̂0)

σ̂2 )
2)

.
(7)

4.2.3 Expressions for the performance measures of the SPRT/DDD model

To demonstrate the SR-like behavior in the SPRT/DDD model, we need to derive the expressions for the
fraction of correct responses, the mean decicion time, and the reward rate of the SPRT/DDD model:

CR = p(H0) · p(D0|H0) + p(H1) · p(D1|H1) , (8)
〈DT 〉 = p(H0) · 〈DTH0〉+ p(H1) · 〈DTH1〉 , (9)

RR =
CR− q · ER

〈DT 〉+ T0
. (10)

According to equations (8), (9), (10), we only need to derive the expressions for the first passage probability
p(D1|Hn) and the mean decision time 〈DTHn〉.

By decomposition, we have

p(D1|Hn) =
∞∑

k0=1

p(D1, DT =k0|Hn), n = 0, 1

〈DTHn〉 =
∞∑

k0=1

k0 · p(DT =k0|Hn), n = 0, 1

and
p(DT =k0|Hn) = p(D1, DT =k0|Hn) + p(D0, DT =k0|Hn)

Thus, to determine all the performance measures, we only need to calculate

p(D1, DT =k0|Hn) and p(D0, DT =k0|Hn), n = 0, 1

i.e. the probability of passing the upper boundary at time k0 and the probability of passing the lower
boundary at time k0.

We will use Figure 1 to illustrate the derivation. We will also use gHn(y) to denote the PDF of a single
diffusion step, where n = 0, 1.
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Figure 1: Functions fk0,Hn(y), with Z = 3.

Apparently, the PDF of Y (1) is simply the PDF of a single diffusion step, gHn(y). We define f1,Hn(y) as
gHn(y). As a result, the probability of passing the upper boundary at time k0 = 1 is the area3 in f1,Hn(y).

If the first step of diffusion reached neither boundaries (−Z and Z), then with this further information,
the conditional PDF of Y (1) (We will denote this condition as DT > 1) is the part2 of f1,Hn(y) multiplied
by a normalization factor.

We will denote the part2 of f1,Hn(y) as T (f1,Hn(y)) where T (·) is a truncation operator which takes out
the part of a function between −Z and Z.

By definition, Y (k0) = Y (k0− 1)+ sk0 , where Y (k0− 1) and sk0 are independent random variables, thus
the PDF of Y (2) is the convolution of T (f1,Hn(y)) and gHn(y) multiplied by a normalization factor.

If we define f2,Hn(y) as T (f1,Hn(y)) ∗ gHn(y) where ∗ denotes convolution, then the PDF of Y (2) is
f2,Hn(y)/

∫ ∞
−∞ f2,Hn(y) dy.

Generally, we will define

fk0+1,Hn(y) = T (fk0,Hn(y)) ∗ gHn(y) k0 ≥ 1 (11)

Proposition 4.1: p(DT ≥ k0|Hn) =
∫ ∞

−∞
fk0,Hn(y).

Proof: Apparently, we have p(DT ≥ 1|Hn) = 1 =
∫ ∞

−∞
f1,Hn(y). Generally, if p(DT ≥ k0|Hn) =
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∫ ∞
−∞ fk0,Hn(y) for a certain k0, then p(DT ≥ k0 + 1|Hn) is simply the area2 of fk0,Hn(y). To be explicit,

p(DT ≥ k0 + 1|Hn) =
∫ Z

−Z

fk0,Hn
(y) =

∫ ∞

−∞
fk0+1,Hn

(y)

Proposition 4.2: The conditonal PDF of Y (k0) (with condition DT ≥ k0) is fk0,Hn
(y)/

∫ ∞
−∞ fk0,Hn

(y) dy.
Proof: The conditional PDF of Y (1) (with condition DT ≥ 1) is apparently

f1,Hn(y)
/∫ ∞

−∞
f1,Hn

(y) dy = gHn
(y)

Generally, if the conditional PDF of Y (k0) is fk0,Hn(y)/
∫ ∞
−∞ fk0,Hn(y) dy, and the k0th step of diffusion did

not reach any boundaries (−Z and Z), neither, thus the condition changes from DT ≥ k0 to DT ≥ k0 + 1,
and the conditional PDF of Y (k0 + 1) is

Ck0 · T
(

fk0,Hn
(y)

/∫ ∞

−∞
fk0,Hn

(y) dy

)
∗ gHn

(y)

=
(

Ck0

/∫ ∞

−∞
fk0,Hn(y) dy

)
· fk0+1,Hn(y) = Nk0+1 · fk0+1,Hn(y) (12)

where Ck0 and Nk0+1 are normalization factors. The normalization factor Nk0+1 is apparently 1/
∫ ∞
−∞ fk0+1,Hn(y) dy

to ensure the total area of a PDF is 1. Thus the conditional PDF of Y (k0+1) is fk0+1,Hn(y)/
∫ ∞
−∞ fk0+1,Hn

(y) dy.

Proposition 4.1.3: The probability of passing the upper boundary at time k0 is
∫ ∞

Z

fk0,Hn(y).

Proof: In other words, this is the probability that the first k0 − 1 steps reached neither boundaries and
the k0th step crosses the upper boundary, to be specific, “DT ≥ k0 and Y (k0) ≥ Z”.

p(D1, DT =k0|Hn) = p(Y (k0) ≥ Z|DT ≥ k0,Hn) · p(DT ≥ k0|Hn)

=

∫∞
Z

fk0,Hn(y)∫ ∞
−∞ fk0,Hn(y)

·
∫ ∞

−∞
fk0,Hn(y) =

∫ ∞

Z

fk0,Hn(y) (13)

4.2.4 Condition for the SR-like behavior in the CDD model

The CDD model predicts that, under the above-mentioned assumptions,

p(D0|H0) = 1− 1
1 + e2A0Z/c2 , p(D1|H1) =

1
1 + e2A1Z/c2 (14)

〈DTH0〉 =
Z

A0
tanh

(
A0Z

c2

)
, 〈DTH1〉 =

Z

A1
tanh

(
A1Z

c2

)

As a result, (according to (8) and (9)),

CR =
1
2
− 1

2

(
1

1 + e2A0Z/c2 −
1

1 + e2A1Z/c2

)
(15)

〈DT 〉 =
Z

2A0
tanh

(
A0Z

c2

)
+

Z

2A1
tanh

(
A1Z

c2

)
(16)

Under the assumptions in Subsection 4.2.2, we propose that the sufficient and necessary condition for the
SR-like behavior is

A0 ·A1 > 0 and A0 < A1 (17)

Specifically, CR, as a function of σ, has a global maximum at a non-zero and finite σ.
The above condition is equivalent to (according to (4)),

µ0 < µ1 <
µ̂0 + µ̂1

2
, or

µ̂0 + µ̂1

2
< µ0 < µ1 (18)

i.e. the signal under H1 is much weaker than anticipated or the signal under H0 is much stronger than
anticipated.
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4.3 Adaptive SPRT

The presence of SR-like behavior in Wald’s SPRT model can be viewed as an indication of the mismatch
between the actual distribution and the assumed input distribution that initiates the adaptive process.
Indeed, it is possible that the decision-making process in the brain gradually adapts its internally assumed
input distributions to match the actual distributions if feedback is provided. There has been a previous
study on adaptive SPRT [19]. However, that study does not assume any prior probability distributions and
attempts to estimate the distributions from the available input data alone. Therefore, the method may not
be robust when the input data are few.

In order to study the role of prior distribution in adaptive SPRT, we proceed with two cases: adaptive
SPRT without prior distribution and SPRT with prior distribution. First, let us assume that the input
distributions under H0 and H1 are N (µ0, σ

2
0) and N (µ1, σ

2
1). We want the SPRT algorithm to decide

between H0 and H1, with the objective of minimizing the response time while achieving a desired accuracy
described by power P and significant level α.
Adaptive SPRT algorithm without prior distribution: First pass. In this case, the algorithm finds the unbiased
MMSE estimation of the parameters µ0, σ2

0 , µ1, σ2
1 using the following formulas:

µ̂ =
1
N

N∑

i=1

Xi, σ̂2 =
1

N − 1

N∑

i=1

(Xi − X̄)2

It turns out that

µ̂ ∼ N (µ,
σ2

N
), σ̂2 ∼ Γ

(
N − 1

2
,

2σ2

N − 1

)

with E(µ̂) = µ, V ar(µ̂) =
σ2

N
, E(σ̂2) = σ2, V ar(σ̂2) =

2σ4

N − 1
.

For each step of diffusion, the nth step, for example, the model estimates the model parameters based
on all the input samples except the current sample, i.e. x1, x2, . . . , xn−1. The diffusion size is then computed
using the new model parameters µ̂0, σ̂2

0 , µ̂1, σ̂2
1 .

Note that if we only make one decision, then we do not know whether the input samples are drawn from
p(x|H0) or p(x|H1). As a result, we can only adapt the common parameters of p(x|H0) and p(x|H1). For
example, if σ0 = σ1 = σ, then we can estimate σ using the input samples without knowing whether they are
drawn from p(x|H0) or p(x|H1).

Next, we will study a simple case when µ0 = 0 and µ1 = µ is known and we estimate only σ = σ0 = σ1.
In this case, the unbiased MMSE estimation becomes:

σ̂2 =
1
N

N∑

i=1

(Xi − µ)2

where σ̂2 follows Chi-square distribution and the variance is 2
N · σ2.

The performance of this simple case is plotted in Figure 2 and Figure 3. The desired accuracy is 0.95.
This simple adaptive SPRT is more robust to noise variance but achieves only about 0.83 accuracy. As
anticipated, the response time appears quadratically dependent on σ.
Adaptive SPRT algorithm with prior distribution: Second pass Suppose that we want to estimate a random
variable α using observations from sensor 1 and sensor 2. The two observations α1 and α2 have variances σ1

and σ2, respectively. It turns out that the MMSE estimation of α is

α =
C1 · α1 + C2 · α2

C1 + C2

where C1 = 1/σ2
1 and C2 = 1/σ2

2 .
We will use N (µ0p, σ

2
0p) and N (µ1p, σ

2
1p) to denote the prior distributions. The estimation from the

input data are N (µ0d, σ
2
0d) and N (µ1d, σ

2
1d).

To combine N (µp, σ
2
p) and N (µd, σ

2
d) into N (µ, σ2), we model the prior distribution N (µp, σ

2
p) as obser-

vation from sensor 1 and N (µd, σ
2
d) as observation from sensor 2.
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Figure 2: CR versus sigma, No prior distribution, power=0.95, significance=0.05. µ = 6,
σp = 20, σ ∈ {10, 12, · · · , 30}. Averaged over 10000 trials.
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Figure 3: CR versus sigma, No prior distribution, power=0.95, significance=0.05. µ = 6,
σp = 20, σ ∈ {10, 12, · · · , 30}. Averaged over 10000 trials.
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We assume that the prior distribution is estimated from M “virtual inputs”. The virtual inputs are
drawn from N (µ, σ2) but “unfortunately” have mean µp and variance σ2

p.
When µ0 and µ1 are unknown, using the unbiased MMSE estimation, the formulas for combination are

µ =
M · µp + N · µd

M + N
, σ̂2 =

(M − 1)σ2
p + (N − 1)σ2

d

M + N − 2
(19)

where M is the number of “virtual inputs” and N is the number of “real inputs”.
When µ0 and µ1 are known, using the unbiased MMSE estimation, the formula for combination is:

σ̂2 =
(M)σ2

p + (N)σ2
d

M + N
(20)

Intuitively, prior distribution dominates if M > N , estimation from real input data dominates if M < N .
The performance of this adaptive SPRT algorithm (also adapts only σ) with prior distribution is plotted

in Figure 4 and Figure 5. The desired accuracy is 0.95. This adaptive SPRT with prior distribution is less
robust to noise variance but achieves about 0.95 accuracy. The response time remains moderate compared
with the simple adaptive SPRT algorithm without prior distribution.
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Figure 4: CR versus sigma, with prior distribution, M=10, power=0.95, significance=0.05.
µ = 6, σp = 20, σ ∈ {10, 12, · · · , 30}. Averaged over 10000 trials.

4.4 Control-Theoretic Approach to Dynamic Decision Making

Dynamic decision making tasks include important activities such as stock trading, air traffic control, and
managing continuous production processes. In these tasks, decision makers make multiple recurring decisions
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Figure 5: CR versus sigma, with prior distribution, M=10, power=0.95, significance=0.05.
µ = 6, σp = 20, σ ∈ {10, 12, · · · , 30}. Averaged over 10000 trials.
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to reach a target, and they receive feedback on the outcome of their efforts along the way (see [45, 52, 54]
and the references therein).

A transfer of insights from other related domains makes it possible to develop a formulation of learning
building on the application of control theory to the study of human performance in dynamic decision making
[53]. Brehmer uses control theory [37, 38] as a framework to analyze the goal-directed behavior in dynamic
decision-making environments. People who use less sophisticated environment models are able to learn to
improve their performance only when feedback is timely and continuous [37, 38]. Jordan and Rumelhart
[54, 56] address similar issues in the area of motor learning. A key idea of their approach to dynamic
decision making is to divide the learning problem into two interdependent subproblems. A broad set of
topics including feedback control, feedforward control, delay and learning algorithms are then introduced
into this area [55]. Gibson [51] inherits Jordan’s connectionist network and applies online learning in parallel
distributed processing, or a neural network control model to illustrate the Sugar Factory (SF) Task [50].

The SF model is a simple dynamic decision-making task in which decision makers are expected to learn
from experience [35, 50, 44]. It is of interest to computational organization theorists, and there have been
various kinds of tests conducted on it. A typical phenomenon arising from these experiments is that while
participants progressively improve their capacity to control the system, they remain unable to describe how
the system works or how does it reach the target value, leading to large amounts of repetitive work and low
efficiency. Upon such backgrounds, an automatic design is required and presented as a reference.

Automation can improve the efficiency and safety of complex and dangerous operating environments
by reducing the physical or mental burden on human operators [64]. Despite this fact, it is always a
critical distinction whether or not automation is engaged, and the operator’s role has to be changed from
controllers directly involved with the system to supervisory controllers [58]. In such supervisory control
systems, operators monitor the performance of automation during normal operations, and intervene to take
manual control when necessary.

Studies have shown that operator’s use of automation reflects automation reliability, and inappropriate
reliance associated with misuse and disuse partly depends on how well trust matches the true capabilities
of the automation [68]. In order to guide design, evaluation and training to enhance human-automation
partnerships as well as high specificity of trust are required, and through which misuse and disuse of au-
tomation can be mitigated [59]. Consequently, a better operator knowledge of how automation works and
the automation design philosophy are both required for more appropriate use of automation [63].

The operator’s choice plays such an important role in the automated system performance that the
allocation of functions is becoming a critical decision making process, and to optimize this process will be of
great importance [60]. A dynamic approach capitalized on the power of the DFT (Decision Field Theory)
has been developed to characterize operators’ reliance on automation in a supervisory control system by
describing a quantitative model of trust in automation, and an EDFT (Extended DFT) model is proposed
[49]. As trust and self-confidence are closely associated with the capacity of automation and manual control
separately [57, 69], it behooves us to improve the existed model in order to help the operator gain a better
understanding of capacities.

Our research is targeted at developing a framework to modify the EDFT method based on the celebrated
contraction mapping principle. The result is supported via computation simulations on the benchmark
example of Sugar Factory supervisory control scenario.

Due to the complexity and variability of automation performance, the operator’s choice between au-
tomatic and manual control in supervisory control situations can be considered both a preferential choice
problem and a decision-making process described by Decision Field Theory (DFT) [41, 42]. The standard
elementary DFT model used to investigate decision making under risk or uncertainty could be described
through a straightforward example in supervisory control. Suppose one is facing the problem of choosing
whether to rely on automation (A) or to intervene with manual control (M), as shown in the following chart.
In Figure 5, S1 and S2 are two interdependent uncertain events, one of which may occur at a certain time
point. S1 denotes the occurrence of an automation fault and S2 represents the incidence of a fault that
compromises manual control. During the course of decision making, the valence of an action Vi (i = A or
M) is defined as the subjective expected payoff for each action also fluctuates from sample to sample, which
is relevant to the subjective probability weight W (Sj) and the utility of the payoff [40]. The preference state
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Figure 6: DFT choosing model in a supervisory control situation [49]

at sample n is derived based on the accumulated valence difference:

P (n) = (1− s)× P (n− 1) + [VA(n)− VM (n)]
= (1− s)× P (n− 1) + [d + ε(n)].

(21)

Let C represent the true capability of the automation (CA) or manual control (CM ). The former symbol
describes the reliability of the automation in terms of fault occurrence and general ability to accomplish the
task under normal conditions, while the latter one describes how well the operator can manually control the
system in various situations. BC denotes the belief or estimation of the capability of automation (BCA) or
the operator’s manual capability (BCM ). In the EDFT model, sequential decision processes are linked by
dynamically updating beliefs regarding the capability of automation or manual control based on previous
decisions in order to guide the next decision as follows [49]:

BC(n) = BC(n− 1) +
1
b1

(C(n− 1)−BC(n− 1)). (22)

The value b1 (b1 ≥ 1) represents the level of transparency of the system interface, describing how well infor-
mation is conveyed to the operator when capability information is available. b1 = 1 means the information
is perfectly conveyed to the operator. The larger b1 is, the more poorly information is conveyed to operator.

There is a formulation depicted in [48] that beliefs represent the information base that determines
attitudes and then attitudes determine intentions and consequently behaviors. Under the circumstance of
supervisory control, trust and self-confidence are both attitudes that depend on beliefs, while at the same
time, they determine preference and reliance. Take T and SC as the denotation of trust and self-confidence,
which are updated by BCA and BCM as the new input respectively. Preference of A over M is defined as
the difference between trust and self-confidence at time step n in the EDFT model, denoted by P (n) [49]:

P (n) = T (n)− SC(n) = [(1− s)× T (n− 1)
+ s×BCA(n) + ε(n)]− [(1− s)× SC(n− 1)
+ s×BCM (n) + ε(n)] = (1− s)× P (n− 1)
+ s× [BCA(n)−BCM (n)] + εP (n).

(23)

Here the difference between CA and CM corresponds to d, and P (n) combined with other factors such as
time constraints will determine whether to actually rely on automation or not.

In a supervisory control system, operators are sensitive to the ability of predicting the capacity of
automation or manual control, and previous findings suggest that operator’s trust is closely linked with
the capacity of automation [61]. More specifically, people’s trust on automation may vary according to the
change of discrepancy between the operators’ expectation and the true behavior (the capacity) of automation.
Consequently, though it is useful to get to know the influence of capacity C on trust, it is necessary to examine
whether the expectation of capacity is close to the practical situation if we are to develop a predictive model
of trust in automation and intervention behavior. Improving the accuracy of operators’ perception to the
system capacities will also greatly enhance the appropriateness of their trust in automation. Based on this,
it is necessary to develop a modified model that can better reflect appropriate trust.
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One of the effective ways to modify the EDFT model is to consider the discrepancy between the capacity
of two sequential time steps. Accordingly, belief is expressed as:

BC(n) = BC(n− 1) +
1
b1

(C(n− 1)−BC(n− 1))

+ (1− 1
b1

)(C(n− 1)− C(n− 2)).
(24)

By transposing (24), we will get:

X(n− 1) = (1− 1
b1

)X(n− 2), (25)

where X(n − 1) = BC(n − 1) − C(n − 2). Equation (25) constitutes a contraction mapping, from whose
definition we know that X(n−1) converges to 0 for a enough large n. Consequently, BC(n−1) will eventually
converge to C(n− 2) as time step n increases.

Modifying the generation of belief in pattern of (24) enables operators to generate their belief much
closer to the true capacity, and it provides a better understanding of how automation works. As a result, the
operators’ trust in automation will grow, and thus lead to more appropriate reliance on automation. The
effectiveness is supported by simulation results.

5 Results

5.1 Analytical Expression and Conditions for the SR-like Behavior in the SPRT

Model

Based on the suggestion of Dr. Jun Zhang, the AFOSR Program Manager, we launched and completed
a rather exhaustive review of the past literature on SPRT and SR-related work. Particularly, we focused
our attention on the papers published in the mainstream journal ”Annals of Mathematical Statistics” from
1945 to 2007, where the pioneering work of Wald and his co-workers (1945, 1948) was published. We also
reviewed past literature on SR-like behaviors in psychological experiments, as well as some textbooks or
edited books on SPRT, such as those entitled Detection Theory, Handbook of Sequential Analysis, Response
Time, and Optimum Stopping Rules. Finally, we also searched for previous work on first passage probability
and recursive alternating truncation and convolution. After all these serious efforts, it is our conclusion
that the expression we derived for the SPRT/DDD model, as reported in Subsection 4.2.3, is new and the
calculations involve alternating multiplication of functions in time domain and frequency domain and in our
view cannot be further simplified.

On the other hand, we have used the continuous-time drift diffusion (for short, CDD) model to find the
necessary and sufficient condition for the SR-like behavior in CR. It is shown that the following condition is
”necessary and sufficient” for the SR-behavior in terms of metric CR:

(2µ0 − µ̂0 − µ̂1)(µ̂1 − µ̂0)
2σ̂2

× (2µ1 − µ̂0 − µ̂1)(µ̂1 − µ̂0)
2σ̂2

> 0 (26)

It is easy to see that this condition (26) reduces to the following simplified form when µ0 = µ̂0 = 0, µ̂1 > 0:

µ1 <
1
2
µ̂1

In addition, simulation results have confirmed our theoretical findings. In the following MATLAB simulation,
Figure 7, the SR-like behavior clearly occurs in the fraction of correct response when the actual signal strength
is much weaker than anticipated. The vertical axis is the fraction of correct response for various threshold
Z while the horizontal axis is σ, the standard deviation of the noise.

From the CDD model, it is also proven that the height of the peak is independent of Z, and the position
of the peak (i.e. the optimal noise strength) scales with

√
Z and σ̂. As a result, for large Z or σ̂, the position

of the peak corresponds to a strong noise, and expectedly extra noise is helpful under the proposed condition.
We have also shown that to guarantee a fixed CR, the response time must increase linearly with the variance
of the noise.
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Figure 7: Fraction of Correct Responses vs. Noise. (SR case)

5.2 Differences Between the Predictions of the CDD and DDD Models

Through a comparative study supported by mathematical analysis and computer simulations (see Figures
8–10), three major differences between the predictions of the CDD model and the DDD model are observed
as follows.

• First, if the SPRT/DDD model selects the thresholds according to the equations from the CDD model,
then CR (the mathematical expectation of accuracy) would be better than desired, but at the price
of longer response time than the anticipation of the CDD model.

• Second, the response time always exhibits a peak which is not predicted by the CDD model. As a
result, if the actual noise strength is to the right of the peak, then a moderate amount of extra noise
could possibly reduce the response time without violating the constraints on the Type I and Type II
errors, due to the first difference.

• Third, the tail of the reward rate curve drops significantly with stronger noise, while the CDD model
predicts constant reward rate. Such a result may be important for psychological experiments.

5.3 Nonzero Initial Conditions and Extensions to Other Forms of Distributions

For the purpose of testing the robustness of the SR-like behavior, we have plotted the CR when the initial
diffusion position is biased (because of asymmetric prior probability) or asymmetric constraints on Type
I and Type II errors. The simulation results (see Figure 11 for example) show that the SR-like behavior
gets more evident as initial bias moves toward the upper threshold and weaker if the initial bias is negative.
Numerical studies are also run on other forms of distributions such as Gamma distribution. See Figure 12.
For the Gamma distribution with wrongly assumed shape parameter K, it is observed that SR-like behavior
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Figure 8: Response Time vs. Noise. (Optimal case)
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also occurs. Unlike the Gaussian case, the peak gets higher and narrower with larger Z but the position
of the peak does not seem to move much with Z. Like the Gaussian case, the response time also exhibits
a peak and gets longer almost linearly with increasing Z and the reward rate also exhibits a peak and gets
smaller with increasing Z.
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Figure 11: Fraction of Correct Responses vs. Noise with Non-zero Initial Condition. (SR
case)

5.4 Role of Prior Distribution in Adaptive SPRT

Our research demonstrates performance improvement in terms of accuracy (while the response time remains
moderate) when using the adaptive SPRT algorithm with prior distribution. See Figures 13 and 14.

For these simulations, we assume that the distributions of the input data remain constant during the
trials. As a result, we will use all the input sequences that were drawn from H0 to adapt p(x|H0). We also
apply equal weights to all the input sequences. This assumption can be readily relaxed. For example, if we
assume a changing environment, we can apply exponentially decreasing weight for the sequences.

To be more specific, the first time of decision making is based solely on the prior distributions because
we do not know which distribution should be adapted. After we receive the feedback, we know that the
input sequence in the first trial was drawn from H0, then we adapt the parameters of p(x|H0) using that
input sequence (also combines with the prior distribution) and apply the new parameters in the next trial.
Then suppose we received feedback of the second decision and knew it was drawn from H1, then we will
use this input sequence to adapt the parameters of p(x|H1). Suppose after 5 decisions, we knew trials 1, 3, 5
were drawn from H0, then we estimate p(x|H0) using input sequences 1, 3, 5 (also combines with the prior
distribution) and estimate p(x|H1) using input sequences 2, 4 (also combines with the prior distribution).

For comparison, we still assume that σ0 = σ1 = σ and let the adaptive process update σ, i.e. update
p(x|H0) and p(x|H1) simultaneously. The formula for the adapting process is equation (20). The parameters
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parameters: θ̂ = 3, K̂0 = 2, K̂1 = 6, K0 = 2, K1 = 3. (SR case)

24



10 12 14 16 18 20 22 24 26 28 30
0.75

0.8

0.85

0.9

0.95

1

 

 
1st
2nd
3rd
4th
5th

Figure 13: CR of the first 5 steps versus sigma, M=10, power=0.95, significance=0.05. µ = 6,
σp = 20, σ ∈ {10, 12, · · · , 30}. Averaged over 2000 trials.
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Figure 14: DT of the first 5 steps versus sigma, M=10, power=0.95, significance=0.05. µ = 6,
σp = 20, σ ∈ {10, 12, · · · , 30}. Averaged over 2000 trials.
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are also chosen to be the same as in the previous section.
In Figures 13 and 14, we plot the CR and DT under each trials to see how fast the algorithm converges

to the real distributions and reaches the desired optimality. The results are also plotted with respect to the
mismatched paramters such as µ1 and σ to check its robustness. The result shows that CR converges to the
desired accuracy while DT remains reasonable and converges to the performance of the optimal SPRT. The
first trial does not adapt at all. It only benefits the following trials. As a result, its performance is the same
as the original non-adaptive SPRT. The performance of the adaptive SPRT boosts from the second trial,
because the first step of SPRT collects a lot of information about the real distributions.

5.5 Extended Decision Field Theory for Dynamic Decision Making

Our research introduces a control-theoretic approach to learning in dynamic decision making tasks to the
study of Sugar Factory task. By constructing a control model, it presents a fairly good estimation of
automation control capability to participants. Also, the model provides an accurate approximation and a
reliable reference to participants through the demonstration of simulation. Aiming at enhancing appropriate
trust in automation in a supervisory control system, a modified approach to the previous EDFT model is
proposed to provide a more accurate approximation of trust. Feasibility is demonstrated by both theoretic
analysis and simulation through a Sugar Factory supervisory control system. The model becomes robust
to disturbance irrespective of the fluctuations after modification, and the effectiveness is demonstrated. See
Figures 15–17 on the implementation of our generalized DFT on the benchmark example of SF model.
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Figure 15: Comparison of BCA1 and BCA2 when no disturbance exists (b = 2)

6 Estimates of Technical Feasibility

Our phase I research reveals theoretically that stochastic resonance like behavior arises in the SPRT model
when the actual input signal is significantly weaker than anticipated by the model. Theoretical analysis and
computational results demonstrate that both the fraction of correct responses and the reward rate have a
peak as a function of noise strength under the SR condition while the mean decision time is a generally
decreasing function of the noise strength with the exception of an insignificant peak. That appropriate
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Figure 16: Comparison of BCA1 and BCA2 when no disturbance exists (b = 100)
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amount of noise can improve the decision making process (when the input signal is significantly weaker than
anticipated) is a useful conclusion which may explain human and animal decision making in psychophysical
tasks. The novel expressions and conditions for the SR-like behavior in the SPRT model lay a solid foundation
for experimental validation of our prediction.

We have proposed an extension of Busemeyer’s Decision Field Theory to handle the supervisory control
situations where manual control and automation coexist. By means of the celebrated contraction map-
ping principle, we have developed an improved model describing reliance on automation (trust versus self-
confidence) and hopefully will help the operator make appropriate use of automation and manual control.

7 Summary and Future Work

We studied the SPRT/DDD model for decision making under the condition that the input signal is much
weaker than anticipated by the model. We derived expressions for calculating the fraction of correct re-
sponses, the mean decision time, and the reward rate for the model. Under the assumption that the noise
and signal-plus-noise inputs follow Gaussian distributions of equal variance, we found that the fraction of
correct responses and the reward rate show SR-like behavior when the actual mean signal level is less than
the average of the noise mean and signal-plus-noise mean used in the calculation of the likelihood ratio. Such
discrepancy between the actual input distributions and those used by the decision-making process is likely
to occur because the brain does not have direct access to the actual input distributions in a psychophysical
experiment or in a real-world situation but have to rely on prior experience over a long period of time to
estimate the distributions. The SR condition can be understood analytically by using the closed-form ex-
pressions from the CDD model. There are also important differences between the SPRT/DDD model and
its continuous counterpart, CDD model. For example, if the thresholds are chosen according to the CDD
equations, then the accuracy is always better than expected while the response time is always longer. The
response time also has a peak which can be useful to reduce the response time without violating the con-
straints on Type I and Type II errors. The reward rate also appears lower than expected and gets even lower
with stronger noise. Finally, to establish the robustness of our findings, we showed that a similar pattern
of results is obtained when the initial position of the diffusion process is varied and when the inputs are
drawn from gamma, instead of Gaussian, probability distributions. Based on the study, we conclude that a
moderate amount of noise can improve decision making when the input signal is weak. This prediction can
be tested psychophysically with the reaction-time paradigm. We also studied the role of prior distribution
in adaptive SPRT, and analyzed its effects in accuracy and reward rate.

Topics for future research include the systematic study of the signal-dependent noise case and generalizing
our preliminary results on adaptive SPRT to other forms of distributions.
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