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AFIT/GE/ENG/08-19 

Abstract 

This research develops and tests a precision navigation algorithm fusing optical 

and inertial measurements of unknown objects at unknown locations.  It provides an 

alternative to the Global Positioning System (GPS) as a precision navigation source, 

enabling passive and low-cost navigation in situations where GPS is denied/unavailable. 

This paper describes two new contributions.  First, a rigorous study of the 

fundamental nature of optical/inertial navigation is accomplished by examining the 

observability grammian of the underlying measurement equations.  This analysis yields a 

set of design principles guiding the development of optical/inertial navigation algorithms.   

The second contribution of this research is the development and flight test of an 

optical-inertial navigation system using low-cost and passive sensors (including an 

inexpensive commercial-grade inertial sensor, which is unsuitable for navigation by 

itself).  This prototype system was built and flight tested at the U.S. Air Force Test Pilot 

School.  The algorithm that was implemented leveraged the design principles described 

above, and used images from a single camera.  It was shown (and explained by the 

observability analysis) that the system gained significant performance by aiding it with a 

barometric altimeter and magnetic compass, and by using a digital terrain database 

(DTED).  The (still) low-cost and passive system demonstrated performance comparable 

to high quality navigation-grade inertial navigation systems, which cost an order of 

magnitude more than this optical-inertial prototype.  The resultant performance of the 

system tested provides a robust and practical navigation solution for Air Force aircraft. 
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1 

DEVELOPMENT AND FLIGHT TEST OF A ROBUST 
OPTICAL-INERTIAL NAVIGATION SYSTEM USING 

LOW-COST SENSORS 
 
 

I.  Introduction 

This thesis details the development and experimental testing of an airborne 

navigation system fusing optical and inertial sensors.  The specific focus is on military 

utility with representative flight environments and equipment.  This work is a follow-on 

to another research effort at the Air Force Institute of Technology (AFIT), employing a 

similar navigation strategy [27].  Optical inertial navigation is part of a concerted effort 

by the Advanced Navigation Technology laboratory to develop precision navigation 

technology in the absence of the Global Positioning System (GPS), since GPS can be 

jammed by a potential adversary, even one without much sophistication. 

1.1 Research Motivation   

This research will attempt to characterize inertial navigation aiding with the use of 

video feature tracking and a low-cost micro-machined electromechanical system 

(MEMS) based inertial navigation system (INS).  This characterization will be used to 

design a practical algorithm that provides robust precision navigation in dynamic 

environments for military application.   

Simulation will be used to draw conclusions and enhance design.  Finally, the 

theory and algorithm will be evaluated with experimental data collected as a flight test 
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program at the United States Air Force (USAF) Test Pilot School (TPS), Edwards Air 

Force Base (AFB), CA.   

The United States military holds a significant advantage on the battlefield, in part 

due to precision navigation technologies.  Precision navigation gives commanders precise 

and accurate information on the battlefield, and allows efficient and effective application 

of force, minimizing collateral damage.  This force multiplying competency has been 

increasingly dependent on a single technology, exposing a potential Achilles heel.  The 

military’s dependence on the Global Positioning System (GPS) for precision navigation 

demands exploration into alternatives.  Specifically, it demands alternatives that will 

marginalize the impact of GPS, and expand the environment in which a precision 

navigation advantage can be maintained. 

1.1.1 Importance of Precision Navigation.  Navigation is a critical war fighting 

competency, and its importance only increases as technology advances.  History provides 

many examples of the importance of navigation and target location; victory favors the 

side that can determine these most accurately.   USAF tactics are becoming more and 

more dependent on GPS quality precision navigation, creating a need to protect this 

capability.  As navigation technology advances, the United States must continually re-

evaluate the weaknesses that dependence on this new technology exposes.  The ability to 

navigate, while denying the enemy the same, is critical to national defense.  In the past, 

inertial navigation dominated in aviation, but has lost favor to GPS in recent years.   

1.1.2 What is Inertial Navigation?  Inertial navigation is the art of determining 

one’s position, and attitude, through the use of inertial sensors.  Inertial Navigation 
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Systems (INSs) use accelerometers and gyroscopes to determine a body’s acceleration 

and angular rotation rate.  These measurements are integrated to determine position, 

velocity, and attitude.  The passive nature of these sensors makes them extremely 

resistant to external denial techniques such as jamming—a very attractive property for 

military applications.   

1.1.3 Where is Inertial Navigation Used?  Inertial Navigation Systems are 

critical components onboard every United States Air Force (USAF) combatant aircraft, 

and many of its weapons systems.  Promise of high precision navigation has led to many 

more uses of INS in recent years.   Weapons that used to be guided by gravity alone are 

now embedded with inertial guidance systems (WCMD, GBU-24, GBU-15, AGM-130 

[35]).  More modern systems blend INS and GPS.  The Joint Direct Attack Munition 

(JDAM), favored by theatre commanders, is a prime example [30].  Unmanned Aerial 

Vehicles (UAVs) require an INS to navigate and control flight path.  Individual soldiers 

are being equipped with navigation systems to help prevent fratricide and increase 

combat effectiveness.  INSs can play a critical role in that area as well. 

1.1.4  Problems with Inertial Navigation Systems.  In order to determine 

position and attitude, accelerations and angular rates must be integrated.  Current inertial 

sensors are very precise, but not perfect.  Unfortunately, the integration of small inertial 

sensor errors causes the navigation precision to decay over time.  This property of an INS 

requires external aiding to resolve.  Additionally, the high quality sensors needed to 

achieve a high level of precision are very expensive.  This poses an economics problem 
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when attempting to outfit a single soldier, inexpensive UAV, or disposable weapon with 

a precise navigation system. 

1.1.5 Aiding a Drifting Inertial Navigation System.  Due to INS integration 

errors, INS systems become more and more unreliable as time goes on.  This requires 

external aiding in order to bound error growth.  The errors cannot be eliminated, but they 

can be kept from diverging completely.  The concept of aiding entails taking a 

measurement of the outside world, and comparing it to what the INS predicts the 

measurement to be.  Through stochastic modeling and estimation, the INS can determine 

a best estimate of the error in its navigation solution, and then remove it.   

1.1.6 Inertial Navigation Aiding.  Typically, active sensors, such as Doppler 

radar, synthetic aperture radar maps and lasers, have been used to accomplish INS aiding 

[25].  These active sensors are subject to denial techniques and can alert the enemy to 

one’s position.  For this reason, active sensors are undesirable for low observable aircraft 

or for those entering environments hostile to such sensors.  A passive sensor is one that 

can measure the outside world without emitting any radiation itself.  Passive external 

updates maintain the stealth characteristics desirable on many platforms, and are much 

more resistant to denial.  Barometric altimeters and optical/infra-red cameras are passive 

sensors.  Beacon-based navigation systems, such as Tactical Air Navigation (TACAN) 

and the Global Positioning System, are also passive, since the transmitted signal does not 

originate from the aircraft, but they are susceptible to denial.  Aiding an INS with video 

imagery provides a passive, jam-resistant solution to INS aiding.  Below is a list of 

current INS aiding devices fielded in the USAF fleet: 
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• Passive 
 Barometric Altimeter 
 Forward Looking Infrared (FLIR) 
 Visual over-fly updates by the aircrew 
 Star Trackers 

• Beacon Based 
 Global Positioning System (GPS) 
 Tactical Air Navigation (TACAN) 
 Long-Range Navigation (LORAN) 

• Active 
 Radar Altimeter 
 Synthetic Aperture Radar  
 Laser/Radar Ranging 
 Doppler Radar  

  

1.1.7  Global Positioning System as an Aiding Source.  The advent of the GPS 

has provided an inexpensive, yet highly beneficial method of aiding existing INS 

platforms [1][7].  It maintains many of the passive aiding benefits because the aircraft 

need not emit any radiation; the GPS satellites transmit all the signals.  Unfortunately, the 

signal is quite susceptible to denial.  In recent years, GPS has become the preferred 

method of aiding INS onboard USAF tactical aircraft and weapon systems.  In an effort 

to standardize aviation navigation technology across the three services, the H-764G 

Embedded GPS/Inertial Navigation System (EGI) was chosen to outfit US military 

aircraft [30].  GPS provides a highly precise position update to the INS at a 1-2 Hz rate.  

This type of position update benefits the position solution of the INS as well as the 

attitude and velocity.  EGI systems provide a very reliable and precise navigation 

solution, but can prove to be a liability if GPS is denied in a particular theatre.  Many 

cornerstone systems that rely on precise relative navigation (JDAM and LINK16 for 

example) would be rendered less effective.  Certain environments deny GPS by their very 
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geometry; buildings and tree cover block the signal.  An aided INS could fill the need 

where GPS falls short.  Reliance on GPS as the sole method of INS update, threatens the 

ability to navigate in hostile environments.   

1.1.8 Using Imagery to Aid Inertial Navigation.  The concept of aiding an INS 

with imagery is quite natural.  Our own brains do it every day.  The inner ear contains 

semicircular canals that act like rate gyros, detecting rotation.  The ‘seat of the pants’ 

sensation allows humans to detect accelerations.  Granted, this INS is very poor.  One 

needs only to close his (or her) eyes for a short period while riding in a car before he or 

she is unsure of where he is or which way hi is facing.  If that person opens his eyes, he 

can blend the images he sees with the sensations he feels to keep track of where he is 

going and which way he is facing.  Why the need for the inertial sensors, though?  

Assume that same person was sitting in a bus, looking out the window at the side of 

another bus parked next to him.   If one bus started to move, the person couldn’t be sure 

if their bus was moving forward or the other bus backward.  The inertial sensors in the 

body resolve that ambiguity.  If the person saw the other bus move relative to himself, but 

felt no acceleration, he knows with some certainty, what is happening.   

The previous example was overly simplified, but the extension into six degree of 

freedom motion is where image aided INS lives.  An aircraft moving along with an INS 

will have some idea of where it is going, and where it is facing.  A camera allows the 

aircraft to track stationary landmarks on the ground.  The aircraft knows the landmarks 

are stationary, and based on its best guess of its own motion, can estimate where it will 

see the landmarks in the next camera frame.  The difference between where the aircraft 
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sees the successive object images and where it expects to see them holds the key to 

determining the error in the INS.  For example, if the aircraft thinks it’s rolling, but the 

horizon doesn’t change, there must be an error in the attitude solution.  If the aircraft 

thinks it is moving very fast, but the objects pass by slowly, there is an error in the 

velocity solution.  This process of Simultaneous Location And Mapping (SLAM) has 

been proposed in the literature [4][5][6][11], and is the basis for the research herein. 

If so much information can be gleaned from the imagery, it’s fair to ask why the 

INS is needed at all.  Firstly, the INS is needed to predict where to look for the objects in 

the next frame.  This reduces the computational burden of search for a match.  Secondly, 

images are not perfect.  They contain errors, the tracking algorithms induce errors, and 

two-dimensional images are limited in what information can be reliably obtained about a 

three-dimensional world.  Kalman filtering allows the input from an error-prone INS to 

complement the input from imperfect image-based estimations.  An INS drifts over time, 

but gives precise rate and rotation information.  Tracked landmarks do not drift over time, 

but still images provide poor rate information, complementing the INS.  The resultant 

navigation solution builds upon the strengths of both components, and diminishes the 

weaknesses.  The result is an aided INS output with bounded error characteristics. 

Image aiding an INS promises to provide GPS quality precision.  It is true that the 

benefit of tracking a single landmark does not compare with the precision of a GPS 

solution.  However, image aiding allows the aircraft to track many landmarks and take 

updates at the frame rate of the camera being used.  This is dependent on the processing 
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rate of the computer, of course, but as computers become faster, this technology becomes 

more beneficial.   

1.1.9 Low Cost Inertial Navigation.  Inexpensive systems like UAVs and the 

JDAM employ inexpensive INS units [30].  Low-cost inertial sensors are pseudonymous 

with low quality.  These systems prove to be very unstable and require much external 

aiding to be of any use.  In recent years, even lower-cost micro-machined 

electromechanical systems (MEMS) have been developed [23].  They perform even more 

poorly without external aiding, but are very appropriately priced for such applications.  

GPS has successfully been used to aid a MEMS INS, delivering acceptable performance 

for a UAV application [3].  Unfortunately, denial of GPS would render MEMS INS 

completely useless.  A typical EGI system has slow enough drift characteristics that it can 

withstand rather long GPS outages.  A MEMS unit could diverge in about a minute or 

less, causing a UAV to crash, or a JDAM to miss.  Image aiding provides a passive, 

robust solution and has proven to provide near-GPS level precision [1].  Applying image 

aiding to a MEMS unit will give precision at a fraction of the cost of a navigation-grade 

INS, and without the vulnerabilities of an EGI.  This research aims to extract equivalent 

benefit from much lower-cost, and therefore, more appropriate INS systems for UAVs 

and disposable weapons.   
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1.2 Problem Statement 

Previous work on optical inertial navigation demonstrated its potential, but leaves 

many questions unanswered.  These questions include: what are the true nature and 

practical limitations of such a system in a full-scale, operationally representative 

environment?  This research will develop a rigorous theoretical observability analysis to 

characterize the nature of optical aiding in order to design a robust algorithm.  Simulation 

will be used to draw conclusions and enhance design.  Flight test of a monocular system 

incorporating a low-cost MEMS INS will be used to evaluate the theory.  The effects of 

using pre-surveyed landmarks, unknown landmarks, and a mixture of both will be 

evaluated as well. 

 

1.3 Scope and Assumptions 

Much research and study has been done in the field of optical-inertial navigation 

(as described in the next Section).  This research focuses on the single-camera monocular 

case.  Additionally, the flight environment tested will be representative of real-world 

aircraft, and not limited to small-scale models.  A rigorous mathematical study of the 

influencing factors affecting performance will be accomplished and validated with test 

data.  The end product goal is a fieldable algorithm that accounts for practical system 

limitations and does not rely on artificial assumptions. 

This research does not explore the use of active sensors, nor purpose-built 

landmarks which have proven to solve many of the image processing challenges [1].  The 
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image processing side of the problem is not the subject of this research, but is 

accomplished with a readily available feature generation algorithm.  The image 

processing is not perfect, but practical techniques to improve it for this application are 

addressed.  The research herein concentrates on the navigation aiding component of the 

problem, specifically as it pertains to contemporary aviation. 

 

1.4 Related Research 

The idea of using imagery to aid navigation is nothing new.  This research will 

follow on a previous master’s thesis [6], and recent PhD work [26] accomplished at 

AFIT.  Much work has also been done in private industry in this particular field [4][23].  

The research herein will explore a specific corner of this vast field of study.  The 

following is a survey of work related to image aided navigation.  This section aims to 

compare and contrast the current state of the art with the original research represented in 

this thesis.  The goal is to establish the validity of the work herein as well as distinguish it 

as original and noteworthy. 

1.4.1 Vision to Generate Relative Navigation Commands.  One successful 

approach to vision-based navigation involves using video to generate relative navigation 

commands.  These commands are fed into a GPS-aided INS for the purposes of landing a 

UAV.  The AVATAR project is a radio controlled helicopter equipped with a Differential 

GPS (DGPS) onboard to provide absolute position of the aircraft [24].  It uses a CCD 

camera to find a helipad and land.  The helipad is of a known shape and size and made to 

have a high contrast to the surrounding environment.  The high contrast nature of the 
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helipad allows the AVATAR to filter out the surroundings and calculate its relative 

position.  This research has proven very successful, but differs from the nature of the 

research herein in many ways.  Firstly, the AVATAR relies on DGPS to solve its own 

position and attitude; the vision algorithms provide nothing in the way of aiding the INS.   

Additionally, the helipad is a single landmark of known dimensions, simplifying the 

problem of determining the relative position to the landing zone.   Lastly, the aircraft 

used was a helicopter.  The research herein will track many unknown landmarks, with 

little to no a priori information.  The landmarks will aid the INS precision and not be used 

directly for relative guidance commands.  Additionally, the aircraft to be used will be 

fixed-wing, exhibiting vastly different flight dynamics from those of a helicopter. 

1.4.2 Image Aiding with A Priori Information.  A group from the Georgia 

Institute of Technology used a small helicopter to implement a vision-aided INS [1].  

This group put an INS on a small GTMax helicopter and aided it with video output from 

a body-mounted camera [8].  Through the use of an extended Kalman filter, the INS 

position and attitude were aided without the need of GPS.  Simulations were very 

promising; however, the experiment lacked a truly robust solution.  The simulation 

tracked a single, vertical rectangle of known dimensions and position.  This a priori 

information simplified the problem of updating the onboard INS, but the algorithms are 

essentially the same as will be discussed herein.   

Members of this same group explored using vision as a means of determining 

position relative to a runway [1].  Beacons were placed on the four corners of a runway of 

known dimension.  The measurements of these beacons (as seen in the video) were used 
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as the sole inputs to a Kalman filter determining position and attitude.  The simulation 

results indicate that vision alone may be an acceptable solution for the UAV landing 

problem.  These results using a single set of known landmarks (four corners of a 

rectangle) are promising.   The research herein will explore tracking many more 

landmarks with and without a priori information (including a landing task), but the 

Georgia Institute of Technology study adds validation to the idea of extracting navigation 

information from imagery. 

1.4.3  Image Aiding with No A Priori Information.  A process called 

Simultaneous Localization And Mapping (SLAM) has been recently researched at the 

University of Sydney, Australia [10][5].  This process uses video streams to “map” 

terrain according to landmarks of interest.  These landmarks are described as “features… 

that can be consistently and reliably observed” by the aircraft.  No a priori information is 

known about the location of the landmarks.  However, the image processing and feature 

tracking problem is aided with knowledge about the feature’s appearance.   By tracking 

the observed landmark position in sequential video frames and comparing with estimated 

positions through an extended Kalman filter, a 3-dimentional map can be made of the 

surrounding terrain.  These tracked landmarks can then be used to update an INS in 

position and attitude.  Simulation showed impressive results; aircraft were able to obtain 

near-GPS quality positions and attitudes while flying a SLAM profile circuit.  In their 

research, the authors also describe another process called Terrain Aided Navigation 

System (TANS), which is very similar.  The difference is that, with TANS, the terrain has 

been previously mapped and stored in a database accessible to the INS.  This reduces 
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uncertainty in the measurements and increases performance, but relies on a priori 

information.  The research herein relies on a similar SLAM-like algorithm to generate 

landmarks.  While the image processing side of the SLAM algorithm is not the focus of 

this thesis, locating and tracking landmarks is a large part.  These tracked landmark 

locations become part of the overall state vector in the Kalman filter in order to aid the 

INS.  In essence, the SLAM algorithm allows the aircraft to develop its own “a priori” 

information for landmarks it finds along the way.  The University of Sydney study gives 

credibility to a pivotal concept on which this thesis depends.  This research will show that 

the environments a military aircraft will encounter pose significant challenges not 

addressed in the work described above, and solutions to these challenges will be posed. 

1.4.4 Image Aiding an EGI during GPS Drop Outs.  The NAVSYS Corporation 

has recently been researching the use of image-based updates to assist EGI systems 

during periods of GPS denial [4][23].  The principles applied are very similar to those 

used herein: two-dimensional landmarks are tracked to update the inertial navigation 

solution.  Three-dimensional object models were generated of suitable landmarks in the 

experimental flight area.  These models were localized through multiple images and a 

target geo-location algorithm while GPS was available to the EGI [23].  The model 

database included a three-dimensional position for each landmark and distinct image 

attributes.  This data bank of landmarks served to update the EGI when GPS was later 

denied during the flight test.  The stored image attributes helped to find and identify the 

landmarks, while the three-dimensional position provided a sort of a priori information.  

Update rates of 1-2 per minute proved sufficient for short periods of GPS denial.  The 
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experimental results showed great promise for image aiding INS in the manner proposed 

herein.   

The NAVSYS work, although very similar, differs quite significantly from this 

thesis.  Firstly, NAVSYS relied heavily on a priori information gathered while GPS was 

available.  This research will attempt to rely on landmarks of opportunity (LOO) that 

have not been previously surveyed (no a priori information).  Additionally, the NAVSYS 

process requires that the surveyed landmarks be revisited during the GPS outages.  The 

aircraft also maintained the same altitude during the entire flight.  These assumptions are 

not robust enough for dynamic profiles that military applications may undergo.  Lastly, 

the periods of GPS denial were relatively short, while this thesis will explore the 

performance of image aiding during the course of an entire flight profile.  Although 

different in many important ways, the NAVSYS study validates to the use of two-

dimensional images to aid INS. 

1.4.5 Stochastic Image Correspondence.  In order to have any benefit, the 

location of landmarks, within successive images, must be a function of the inertial state 

of the aircraft taking the pictures.  Relating landmarks in different images is termed the 

correspondence problem, and can be simplified by using inertial navigation information.  

Combining conventional epipolar correspondence geometry with stochastic projection 

modeling, Veth, Raquet, and Pachter were able to decrease the uncertainty projection of 

landmarks significantly in subsequent image frames [28].  The reduced uncertainty 

decreases the processing cost of feature tracking algorithms that are critical to image-

aided INS.  This research is important because it characterizes, stochastically, the image 
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correspondence problem upon which image aiding rests.  Because the landmark 

projection is modeled stochastically, and the INS is updated via an extended Kalman 

filter, superior performance can be expected over any other method [14][15].  This 

stochastic model of the landmark projection will be incorporated into the research herein. 

1.4.6 Experimental Validation – Peeping Talon.  Giebner and Raquet performed 

an image aided INS flight test at the USAF TPS in 2002, nicknamed “Peeping Talon”  

[6].  A USAF T-38 was equipped with a Honeywell H-764G Embedded GPS/INS (EGI), 

two video cameras, and two Ashtech Z-surveyor semi-codeless receivers to provide truth 

data.  The experiment collected inertial measurements from the H-764G EGI and imagery 

from the two cameras as it orbited over a predetermined target area.  A small number of 

features were chosen to be landmarks, and manually tracked through the video frames 

(feature tracking algorithms were not employed).  The inertial measurements and the 

manual video measurements were fed into a feed-forward extended Kalman filter, and 

compared to the truth data obtained by the Ashtech receivers.   

The experimental results showed that image aiding could deliver close to GPS 

quality performance.  This research validates the effectiveness of image aiding aboard 

USAF aircraft carrying USAF INS, but leaves much to expand upon.  First of all, feature 

tracking was accomplished manually.  This induces some man-made errors and reduces 

some machine-made errors inherent to feature tracking algorithms.   Second, the inertial 

measurements were taken from the relatively high quality H-764G.  Third, the flight path 

varied little, and revisited the same set of landmarks over and over.  Fourth, the camera 

used looked out the side of the aircraft, where this test will look along the longitudinal 
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axis.  Lastly, only a small number of landmarks were used, and the geometry of these 

landmarks varied little over the flight.   

The research herein will expand upon the Peeping Talon work, in order to provide 

a more robust solution to the fore-mentioned military applications.  First, an online 

feature tracker will be implemented and modeled.  Many more features will be 

automatically identified and simultaneously tracked.  The inertial measurements will be 

taken from free-running MEMS and low-quality INS units.  Last, experimental flight 

trajectories will model appropriate UAV and weapons profiles, and not allow for the 

artificial revisiting of landmarks.  The thrust of this thesis will be to take concepts proven 

in research like Peeping Talon, and develop it for practical applications.  

1.4.7 Genesis of this Research.  This research effort is an extension of work 

accomplished as an AFIT PhD dissertation in 2005 [26].  Veth successfully developed an 

end-to-end optical-inertial navigation system that employed binocular vision.  Borrowing 

the Scale Invariant Feature Transform (SIFT© [11]) to accomplish the image processing, 

Veth employed an extended Kalman filter to accomplish the INS aiding.  He solved the 

computational burden of feature matching and correspondence by constraining the search 

with estimates derived by the INS [28].  The system was built around a MEMS-grade 

inertial measurement unit (IMU) and two digital still cameras.  The use of binocular 

vision enabled 3-dimensional resolution from 2-dimensional images.  Veth accomplished 

meter level position precision in indoor environments, and flight test data showed similar 

promise, but lacked a faithful truth source.  The system developed by Veth is very robust 
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and functional, and it truly incorporates zero a priori navigation with no artificialities that 

skew analysis. 

The system used in this research incorporates the same MEMS IMU, feature 

generation algorithm, cameras and underlying algorithmic architecture used by Veth, but 

concentrates on the monocular case.  Additionally, the analysis in this research benefits 

from precision truth data, which was not available to Veth at the time.  Veth’s work 

proved that a practical SLAM-based algorithm can in fact provide precision navigation in 

dynamic environments, validating the research herein.  Building upon his work allows the 

extension to the military aviation environment.  This environment exhibits challenges not 

encountered in the indoor case or at low altitude environments discussed to this point.   

 

1.5 Methodology 

This thesis begins with the mathematical background needed to understand 

inertial navigation, Kalman filtering and basic optics principles.  Inertial navigation 

theory relies on kinematics and the basic laws of physics, which are described in detail in 

Chapter 2.  A precise earth model is developed, as well as the characterization of inertial 

sensors.  The INS model required for aiding, and how it relates to Kalman filtering, are 

described.   

Chapter 3 develops the equations that relate the optical measurements to the INS 

states.  These equations are then linearized for use in the extended Kalman filter.  A 

rigorous study of the observability of these measurement equations is accomplished in an 

effort to design an optimal algorithm.  The nature of surveyed landmarks and landmarks 
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of opportunity is explored.  A set of principles for optical aiding design is developed, 

leading to the final algorithm. 

Chapter 4 describes how simulation was used to validate and generate the flight 

test algorithm and apparatus.  The flight test program is described from a technical design 

and calibration standpoint.  The flight test data points were chosen to isolate and evaluate 

the factors influencing performance (derived in Chapter 3). Characterization of the 

performance is accomplished through statistical rigor.  Characterizations will be made by 

examining the statistical performance over many data events, and not on single best case 

data runs. 

Finally, flight test data will be used to form conclusions about the nature of 

optical-inertial navigation.  The system under test (SUT) will be evaluated and 

recommendations for improvements made.  Future areas of study will be also 

recommended, based on flight test shortcomings or predicted areas of fruitful study.   
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II.  Mathematical Background 

 

This chapter describes the mathematics and physics required to understand inertial 

navigation and the associated aiding process.  It describes the notation and models to be 

used throughout this research, as well as the physical dynamics driving the process.  Error 

analysis tools will also be described.   

This chapter establishes the required notation, frames of reference, basic Earth 

model, inertial sensor models, and Inertial Navigation System (INS) mechanization.  A 

development of linearized systems and extended Kalman filters (EKF) follows, enabling 

INS aiding.  Lastly, the optics model is described.  The bulk of this discussion is derived 

from the work of Tritteron and Weston on inertial navigation [23], Maybeck on Kalman 

filtering [14][15], and Veth on inertial optical fusion [26]. 

 

2.1   Mathematical Notation 

The notation used herein is described below: 

• Scalars:  upper or lower case italic letters, (e.g., a or A). 

• Vectors:  lower case bold letters, (e.g., x).  All vectors are column vectors; xi is 

the ith scalar component of x in the ith row of x.   

• Unit Vectors:  denoted with the check character (e.g., 
�x ).  Unit Vectors have unit 

length defined by the two norm (e.g.,  1=
�x ).                            
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• Matrices:  upper case letters in bold font. (e.g., X)  Xij is the scalar component of 

X in the ith row and jth column. 

• Transpose:  a vector or matrix transpose is indicated by a superscript T (e.g., xT 

or XT). 

• Estimated variables:  variables which are estimates of random variables are 

denoted by the hat character (e.g., x̂ ). 

• Computed Variables:  variables which are computed and therefore corrupted by 

errors are denoted by the tilde character (e.g., x� ). 

• Measured Variables:  variables which are measured and therefore corrupted by 

errors are denoted by the bar character (e.g., x ). 

• Homogeneous Coordinates:  vectors in homogeneous coordinate form are 

denoted by an underline (e.g., x ).  Homogeneous coordinate vectors have a 

value of 1 in the last element. 

• Direction Cosine Matrices (DCM):  a DCM that transforms from frame a to 

frame b is denoted by b
aC . 

• Reference Frame:  a vector expressed in a particular reference frame is denoted 

by a superscript letter referring to said frame (e.g., xa is expressed in the a-

frame) 

• Relative Position or Motion:  positions and motions relative to two different 

frames are denoted by two subscript letters corresponding to the two frames of 

interest.  (e.g., abω  represents the rotation rate vector of b relative to a.) 
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2.2 Reference Frames 

Inertial navigation and aiding requires an understanding of the reference frames 

used to express 3-dimensional vectors and measurements.  The reference frames used 

herein are three-dimensional Cartesian frames with an orthonormal basis in 3ℜ , described 

below: 

2.2.1 True Inertial Frame (I-frame).  Theoretical frame where Newton’s laws 

apply.  It is non-accelerating and non-rotating, but has no defined origin (due to 

relativity).   

2.2.2 Earth-Centered Inertial Frame (i-frame).  This frame has an origin at the 

center of the Earth.  The z-axis points to the North Star.  The x-axis falls on the equatorial 

plane, and points to the first star of Aires.  The y-axis is orthogonal to both and falls on 

the equatorial plane.  This frame is non-rotating, but does move with the Earth as the 

Earth rotates about the sun (and the sun about the galaxy).  For the purposes of navigation 

on the Earth, the i-frame can be approximated as a true inertial frame (due to the slow 

rate of the Earth about the sun, etc). 

2.2.3 Earth-Centered Earth-Fixed Frame (e-frame or ECEF frame).  Like the i-

frame, the e-frame has its origin at the center of the Earth, but it does rotate with the 

Earth; it is fixed to the planet.  The z-axis aligns with the North pole.  The x-axis falls on 

the equatorial plane, and points to the Greenwich meridian.  The y-axis again falls on the 

equatorial plane, and points to 90 degrees east longitude. 

2.2.4 Navigation Frame (n-frame).  This is a local geographic frame, with its 

origin at the location of the navigation system.  The x and y-axis point to North and East, 
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respectively.  The z-axis points down.  Down is described by the direction of the gravity 

vector for a given location on the Earth.  This North-East-Down (NED) convention will 

be used in other frames as well.  See Figure 2.1 for illustrations of the i.e. and n-frame. 

2.2.5 Body Frame (b-frame).  This frame is rigidly attached to the vehicle.  The 

origin of the b-frame is co-located with the n-frame, but the axes rotate with the aircraft.  

The x, y and z-axis point out the nose, right wing, and bottom of the aircraft, respectively.  

See Figure 2.2. 

2.2.6 Camera Frame (c-frame).  This frame is rigidly attached to the camera.  

The origin is at the camera’s optical center.  The x and y-axis point up and right, 

respectively.  The z-axis points out the camera lens, perpendicular to the focal plane.  It is 

useful to say that the x and y-axis align to the camera’s detector array (discussed later).  

See Figure 2.3. 
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Figure 2.1:  Earth-Centered Inertial, Earth-Centered Earth-Fixed, and Navigation 
Frame.  The Earth Fixed and Earth-Centered Earth-Fixed frames originate at the 
Earth’s center of mass, while the navigation frame is fixed to a vehicle [26]. 
 
 

 

Figure 2.2:  Aircraft body frame illustration.  The origin of the b-frame is co-located 
with the n-frame, but the axes rotate with the aircraft [26]. 

n 
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Figure 2.3:  Camera frame illustration.  The camera reference frame originates at 
the center of the focal plane [26]. 
 

 

 An understanding of reference frames is important to express vectors properly.  

The transformation between reference frames can now be addressed. 
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2.3 Transforms Between Reference Frames 

Any vector can be expressed (or resolved) in any of the frames described.  If a 

vector is resolved in one frame, it will have the superscript corresponding to that frame.  

See Figure 2.4 below. 

 

 
 
Figure 2.4:  Expressing vectors in different frames.  The same vector can take on 
different expressions when resolved in different frames.  The magnitude is 
unaffected. 
 
 

To express a vector in one frame, when given a vector resolved in another, a 

Direction Cosine Matrix (DCM) can be used to perform a coordinate transformation.  The 

DCM can be generated from a series of Euler angles to perform an ordered set of single 
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axis rotations on the vector of interest.  Euler angles are elements of a three-parameter 

vector corresponding to a specific sequence of single-axis rotations to transform from one 

reference frame to another.  Commonly, Euler angles express the transformation from the 

navigation to body frame of an aircraft: yaw, pitch and roll.  Performing the rotations in 

this order is known as the 3-2-1 convention [23].  This convention will be used herein. 

Direction Cosine Matrices are four-parameter transformations expressed as a 3×3 

matrix [23]. The matrix consists of the inner product (or Cosines) of each basis unit 

vector in one frame with each basis unit vector in another frame. The DCM is used to 

transform vectors resolved in one frame to another, as seen below: 

 

 b b a
a=v C v  (2.1) 

 

When used to transform right-hand Cartesian coordinates, the DCM has the 

following properties: 
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When a DCM changes over time, due to the frames of interest rotating with respect to 

each other, the DCM satisfies the following differential equation [23]: 

 

 b b a
a a ba= Ω�C C  (2.3) 

 

where a
baΩ  is the skew symmetric form of the rotation vector from frame b to a, resolved 

in a ( a
baω ).  The skew symmetric operator of a vector is defined by ×ω : 
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 Direction Cosine Matrices are essential to apply when dealing with vectors 

resolved in different frames.  Vectors from different frames cannot be used together, until 

they are transformed into the same reference frame. With an understanding of how 

vectors are expressed, the process of modeling physical systems can now be addressed. 

 



 

28 

2.4 Physical System Modeling 

Physical systems and their associated dynamics equations can often be written 

and arranged into convenient matrix form.  This allows the use of linear algebra to 

accomplish much of the modeling needed in INS applications.  The dynamics herein are 

modeled as systems of linear differential equations. 

2.4.1 Linear Systems.  Many physical systems can be modeled such that they fit 

the format of a linear system of equations [14]; shown below.    

  

 ( ) ( ) ( ) ( ) ( )t t t t t= +x F x B u� ;   0 0( )t =x x  (2.5) 

 

In the linear time-varying case, ( )tF  and ( )tB are time-varying matrices.  For a given set 

of initial conditions ( 0x ) and input ( ( )tu ), Equation (2.5) has a unique solution 

trajectory, ( )tx  [14]; given by: 

 
0

0( ) ( ) ( ) ( ) ( )
t

0
t

t t,t t,τ τ τ dτ= Φ + Φ∫x x B u  (2.6) 

 

The state transition matrix ( )0t,tΦ  takes the state ( )tx  from time 0t  to time t  for 

the homogeneous case (Equation (2.6) without the last term on the right hand side), and is 

defined by: 

 [ ( )] ( ) ( )0
0

d t,t t t,t
dt

Φ
= ΦF ;   ( ) I0 0t ,tΦ =  (2.7) 
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Significant properties of ( )0t,tΦ  include: 

 ( ) ( ) ( )3 1 3 2 2 1t ,t t ,t t ,tΦ = Φ Φ  (2.8) 

 ( ) ( ) ( ) I1 2 2 1 1 1t ,t t ,t t ,tΦ Φ = Φ =  (2.9) 

 1( ) ( )1 2 2 1t ,t t ,t−Φ = Φ  (2.10) 

 

In the linear time-invariant case, where ( )t =F F ,  t∈ℜ  

 

 [ ( )] ( )0
0

d t-t t-t
dt

Φ
= ΦF ;   ( ) I0Φ =  (2.11) 

 ( )( ) ( ) 0t-t
0 0t,t t-tΦ = Φ = Fe  (2.12) 

 

2.4.2 Non-Linear Systems.  Most physical systems do not allow for linear 

models.  In the non-linear case, the physical system can often be expressed as the 

nonlinear differential equation [15]; shown below. 

 

 ( ) [ ( ), ( ), ]t t t t=x f x u� ;   0 0( )t =x x  (2.13) 

 

where [ ( ), ( ), ]t t tf x u  is a vector of functions with arguments including the state vector 

( ( )tx ), the input vector ( ( )tu ), and time (t).  The non-trivial solution ( )tx is the result of 

a nonlinear differential equation. 
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 Linear properties may be retained by making linear approximations of the 

nonlinear solution, about nominal trajectory values.  For small changes about a nominal 

trajectory, many systems can be well modeled to first order through the use of the Taylor 

Series expansion [15] shown below.   

 

 
( )

[ , ( ), ][ ( ) ( )] [ ( ) ( )] .t tt t t t H.O.T
=

∂
− = − +

∂
n

n n
x x t

f x ux x x x
x

� �  (2.14) 

 

where ( )tnx  is the nominal trajectory about which the linearization occurs.  Note that 

( )tu  is assumed to be unperturbed ( ( ) ( )t t− = 0nu u ), thus eliminating the partial with 

respect to ( )tu .  If the system is well modeled to first order, the higher order terms 

(H.O.T.) may be neglected [15].  When ( )tx  is redefined to be a perturbation about the 

nominal, 

 ( ) ( ) ( )t t t= + δnx x x  (2.15) 

Equation (2.14) is approximated to first order as: 

 

 
( )

[ , ( ), ]( ) ( )t tt t
=

∂
δ = δ

∂
nx x t

f x ux x
x

�  (2.16) 

or 

 ( ) [ ; ( )] ( )t t t tnx F x xδ = δ�  (2.17) 

 

where [ ; ( )]t tnF x  is the matrix of the partial derivatives of [ , ( ), ]t tf x u  [15]: 



 

31 

 

 
( )

( )

[ , ( ), ][ ; ( ), ( )]

1 1

1 n

t
n n

1 n t

f f
x x

t tt t t
f f
x x

=

=

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎢ ⎥∂

= = ⎢ ⎥
∂ ⎢ ⎥∂ ∂⎢ ⎥

⎢ ⎥∂ ∂⎣ ⎦

n

n

n
x x

x x

f x uF u x
x

"

# % #

"

 (2.18) 

 

In error analysis, the estimated value of the state vector ( ˆ ( )tx ) is equal to the true 

value of the state vector ( ( )tx ) plus some error ( ( )tδx ). 

 

 ˆ ( ) ( ) ( )t t t= + δx x x  (2.19) 

 

If Equation (2.19) is substituted for Equation (2.15), Equation (2.17) becomes a nonlinear 

differential equation for the error ( ( )tδx ) in the state estimate ( ˆ ( )tx ), linearized about the 

true state  ( ( )tx ). 

In the case where ( )tu  is not known (i.e. ( ) ( )t t− ≠ 0nu u ), the error ( ( )tδu ) can 

be modeled as well by linearizing about a nominal input trajectory.  However, this 

compromises the validity of the small perturbation approximation, used in Equation 

(2.16) [15].  If ( )tδu  cannot be approximated to 0 for all time, then it can be modeled as 

an error state according to Equations (2.20)(2.21)(2.22). 

 

 ( ) [ ; ( ), ( )] ( ) [ ; ( ), ( )] ( )t t t t t t t t tδ = δ + δn n n nx F x u x B x u u�  (2.20) 
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1 1
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f f
x x

tt t t
f f
x x

= =

= =
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⎢ ⎥∂ ∂⎢ ⎥∂

= = ⎢ ⎥
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⎢ ⎥∂ ∂⎣ ⎦

n n

n n

n n
x x u u

x x u u

f x uF x u
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 (2.21) 

 
( ), ( ),

( ), ( ),

[ , , ][ ; ( ), ( )]

1 1

1 m

t t t
n n

1 m t t t

f f
u u

tt t t
f f
u u

= =

= =

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎢ ⎥∂

= = ⎢ ⎥
∂ ⎢ ⎥∂ ∂⎢ ⎥

⎢ ⎥∂ ∂⎣ ⎦

n n

n n

n n
x x u u

x x u u

f x uB x u
u

"

# % #

"

 (2.22) 

 

With the higher order derivatives neglected, ( )tδx becomes the solution to the 

time-varying, linear differential Equation (2.20).  Given a piecewise-continuous 

[ ; ( ), ( )]t t tn nF x u  and [ ; ( ), ( )] ( )t t t t∂n nB x u u , ( )tδx has a unique solution [15]: 

 

 
0

0( ) ( ) ( ) ( ) ( )
t

0
t

t t,t t,τ τ τ dτδ = Φ δ + Φ δ∫x x B u  (2.23) 

where ( )τB  is defined by Equation (2.22), and ( )0t,tΦ is defined by Equation (2.7) using 

( )tF  found in Equation (2.21). 

 These non-linear perturbation models will be used when implementing the 

extended Kalman filter, discussed later.  The extended Kalman filter will be used to aid 

the Inertial Navigation System, which will now be discussed. 
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2.5 Inertial Navigation 

Inertial navigation is accomplished by integrating specific force and angular rate 

measurements to produce an estimate of the navigation state: position, velocity and 

attitude.  Only an estimate can be attained due to imperfections in sensors and 

approximations of the true system dynamics.  This section will cover the dynamics, 

mechanization, and error propagation of an INS. 

2.5.1 Shape of the Earth.  In order to navigate on the Earth, one must know its 

shape.  There are many models for the Earth, but the World Geodetic System of 1984 

(WGS84) model will be used for this research [23].  WGS84 models the Earth as an 

ellipsoid, wider along the equator.  The mean radius of the Earth ( 0R ), the meridian 

radius of curvature ( NR ), and the transverse radius of curvature ( ER ) are modeled as:  

 

 0 N ER R R=  (2.24) 

 
2

2 2 3/ 2

(1 )
(1 sin )N

R eR
e L

−
=

−
 (2.25) 

 2 2 1/ 2(1 sin )E
RR

e L
=

−
 (2.26) 

 
These radii are functions of latitude ( L ), eccentricity of the ellipsoid model ( e ), and the 

semi-major axis ( R ); defined by WGS84: 

 
 6378137.0R = meters (2.27) 

 0.0818191908426e =  (2.28) 
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2.5.2 Gravitational Model.  Modeling gravity is critical to successful inertial 

navigation.  The subtle changes in the gravitational field must be taken into account.   

The most obvious factor affecting the strength of the gravitational field is the distance 

from the center of the Earth.  For this research, gravity will be modeled as follows [23]: 

 

 
( )2

(0)( )
1 / o

gg h
h R

=
+

 (2.29) 

 

where h  is the height above the WGS-84 ellipsoid (Earth model), oR  is the Earth’s 

radius defined above, and (0)g  is the magnitude of gravity at the ellipsoid surface: 

 

 3 2 6 2(0) 9.780318(1 5.3024 10 sin 5.9 10 sin 2 )g L L− −= + × − ×  2/m s  (2.30) 

 

Centripetal acceleration due to the rotation of the Earth affects the magnitude and 

direction of the effective gravitational field at every point on the Earth.  Figure 2.5 

illustrates this effect.  Local gravity ( lg ) becomes a function of the actual gravitational 

field vector (g ), the Earth’s rotation vector ( ieω ) and the specific position on the Earth 

(p ), and is defined: 

 

 [ ]l ie ie= − × ×g g pω ω  (2.31) 
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where g  is defined by Equation (2.29).  The n-frame is defined tangent to the ellipsoid.  

The true gravitational field varies slightly, but the difference between down defined by 

the true gravitational field and the n-frame is small.  For the purposes of this discussion 

assume that the gravitational field points down in the n-frame: 

 

[ ]0 0 ( )g h≡ Tg      (2.32) 

 

 

Figure 2.5:  Effects of centripetal force on the local gravitational field. 
 

 

 For terrestrial navigation, the Earth’s rotation (sidereal angular rate) can be 

modeled as constant [23]: 

 [ ]0 0e
ie ieΩ= Tω  (2.33) 

ieω

p

g
lg

[ ]ie ie× ×pω ω

ECEF Frame 
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However, this rotation vector, resolved in the n-frame, is a function of latitude: 

 

 [ ]cos 0 sinn
ie ie ieΩ L -Ω L= Tω  (2.34) 

 

where ieΩ and L  are the scalar Earth sidereal angular rate and latitude respectively.  

WGS84 defines: 

 57.292115 10ieΩ rad/s−= ×  (2.35) 

 

 Combining Equations (2.31),(2.4) and (2.34) yields a final expression for local 

gravity, resolved in the n-frame: 

 
l

2
n n ie 0

sin2L
Ω (R +h) 0

2
1+cos2L

g g
⎡ ⎤
⎢ ⎥= − ⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.36) 

 

2.5.3 Accelerometer Sensor Model.  INS systems typically incorporate a triad of 

accelerometers, arranged at the origin, pointing orthogonally along each of the three b-

frame axes. Despite the name, accelerometers do not measure acceleration directly.  

Accelerometers measure specific force.  Specific force is the sum of the acceleration 

experienced due to gravity, and the inertial acceleration experienced by the body [23]: 

 

 ( )( )
2

l2
i

d tt
dt

= −
pf g  (2.37) 
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where ( )tf  is the three-dimensional vector of specific forces measured by the 

accelerometers.  The position of the b-frame ( )tp  is resolved in inertial space, and lg  is 

the local gravitational vector at the specific location ( )tp .   

 In order to be used by an INS, these accelerometers must be modeled and their 

errors characterized.  The simplified accelerometer model used herein has the specific 

force measurement corrupted by a bias and an additive white Gaussian noise [26]. 

 

 b b b b
a= + +f f a w  (2.38) 

 

where ba  is the accelerometer bias, b
aw  is the additive white Gaussian noise, and bf  is 

the corrupted specific force measurement, resolved in the b-frame. 

 The accelerometer bias will be modeled as a first order Gauss-Markov process, 

defined below: 

 1
bias

b b b
a

a

a a w= − +
τ

�  (2.39) 

 

where aτ  is the time constant and 
bias

b
aw  is the process driving white noise. 

2.5.4 Gyroscope Sensor Model.  INS systems typically incorporate a triad of 

angular rate gyros, aligned with each of the three b-frame axes.  These rate gyros measure 

the angular rotation rate of the body frame relative to inertial space, and are represented 

by ( )ib tω  [23]. 
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When dealing with the b-frame relative to the n-frame, the Euler angles represent 

roll, pitch and yaw respectively.  When put into vector form, and resolved in the n-frame, 

the result is the attitude state vector [23]: 

 

 [ ]n
nb θ ψφΨ = T  (2.40) 

 

 The rate gyros will be modeled in a similar manner to the accelerometers.  The 

simplified rate gyro model used herein has the angular rate measurement corrupted by a 

bias and an additive white Gaussian noise [26]. 

 

 b b b b
ib ib b= + +b wω ω  (2.41) 

 

where bb  is the rate gyro bias, b
bw  is the additive white Gaussian noise, and b

ibω  is the 

corrupted angular rate measurement, resolved in the b-frame. 

 The rate gyro bias will also be modeled as a first order Gauss-Markov process: 

 

 1
bias

b b b
b

b

= − +
τ

b b w�  (2.42) 

 

where bτ  is the time constant and 
bias

b
bw  is the process driving white noise [26]. 

2.5.5 Strapdown INS mechanization.  The system dynamics driving inertial 

navigation will not be covered in depth here.  A full derivation of the system dynamics 
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can be found in [23] and [26].  This section will cover the mechanization equations used 

to estimate the navigation state (based on the inertial measurements), but will not explain 

their derivation. 

2.5.5.1  Attitude Mechanization.  Recall Equation (2.40).  The Euler angles 

describe the relative orientation of two frames.  The Euler angles of concern to an INS 

are those relating the body frame to the navigation frame of choice.  This research will 

focus on the n-frame for navigation, although the use of the i-frame and e-frame are 

perfectly valid choices.  One dimensional rotations about each of the axis are defined by 

[23]: 

Rotation ψ  about the z-axis, 1

cos sin 0
sin cos 0
0 0 1

C
ψ ψ
ψ ψ

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.43) 

 

 

Rotation θ  about the y-axis, 2

cos 0 sin
0 1 0

sin 0 cos
C

θ θ

θ θ

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.44) 

 

 

Rotation φ  about the x-axis, 3

1 0 0
0 cos sin
0 sin cos

C φ φ
φ φ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

 (2.45) 
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 The order in which the individual Euler angle rotations are applied does effect the 

outcome.  Applying the 3-2-1 convention to the n-frame to b-frame DCM yields: 

 

 3 2 1
b
n =C C C C  (2.46) 

 ( ) 1 2 3
n b
b n= =

T T T TC C C C C  (2.47) 

 
cos cos cos sin sin sin cos sin sin cos sin cos
cos sin cos cos sin sin sin sin cos cos sin sin

sin sin cos cos cos

n
b

θ ψ φ ψ φ θ ψ φ ψ φ θ ψ

θ ψ φ ψ φ θ ψ φ ψ φ θ ψ

θ φ θ φ θ

− + +

+ − +

−

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

C (2.48) 

 

 The actual Euler angles are not used in the INS mechanization.  Only the DCM  

n
bC  is needed.  The Euler angles can be extracted from n

bC  in order to display attitude to 

the pilot, but this will be discussed later. 

 In [23], Titterton and Weston apply the differential Equation (2.3) to n
bC  and 

show that 

 n n b
b b nb= Ω�C C  (2.49) 

where 

 

0 -

0 -

- 0

yz

b b xz
nb nb

y x

t t

t t

t t

εε

εε

ε ε

∂⎡ ⎤∂
⎢ ⎥∂ ∂⎢ ⎥

∂∂⎢ ⎥Ω = × = ⎢ ⎥∂ ∂
⎢ ⎥
∂ ∂⎢ ⎥

⎢ ⎥∂ ∂⎣ ⎦

ω  (2.50) 
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where b
nbΩ  is the skew symmetric form of the b-frame’s angular rate relative to the n-

frame, resolved in the b-frame ( b
nbω ), and x,y,zε  are small angles about the 3 axes. For 

very small time steps ( tδ ), the DCM can be propagated as follows: 

 

 ( ) ( )[I ]n n b
b b nbt+ t t tδ δ= +ΩC C  (2.51) 

 

The measured angular rate experienced by the rate gyros ( b
ibω ) is the sum of the 

body-to-nav rate ( b
nbω ) and the nav-to-inertial rate resolved in the b-frame ( b

nC n
inω ), 

yielding: 

 b b b n
nb ib n in= −Cω ω ω  (2.52) 

 

 The angular rate of the n-frame relative to the i-frame ( n
inω ), is the sum of the 

sidereal angular rate ( n
ieω ), and the transport rate ( n

enω ), caused by the n-frame moving 

about the Earth [23]: 

 tann NE E
en

E N N

vv v L
R h R h R h
⎡ ⎤

= − −⎢ ⎥+ + +⎣ ⎦

T

ω  (2.53) 

 

 tancos sinn n n NE E
in ie en ie ie

E N N

vv v LΩ L Ω L
R h R h R h
⎡ ⎤

= + = + − − −⎢ ⎥+ + +⎣ ⎦

T

ω ω ω  (2.54) 
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where Ev  and Nv  are the east and north velocities of the n-frame respectively. ER , NR , 

h  and L  are the previously defined Earth radii of curvature, height above the Earth, and 

latitude of the n-frame respectively. 

The measured b-frame to n-frame angular rate (resolved in the b-frame) becomes 

a function of the rate gyro measurements ( b
ibω ), and the calculated sidereal rotation 

vector, dependant on latitude ( n
inω� , from Equation (2.54)) [23]: 

 

 b b b n
nb ib n in= − ωC �ω ω  (2.55) 

Combining Equations (2.49) and (2.55) yields the differential equation relating 

the DCM of interest ( n
bC ), with the measurements received by the rate gyros 

( b b
ib ib=> Ωω ), and the calculated sidereal rate ( n n

in in=> Ωω �� ): 

  

 n n b n n
b b ib in bC C C= Ω −Ω� �  (2.56) 

 

In order to be a valid DCM, the properties described in Section 2.3 must be 

maintained after each propagation cycle.  Unfortunately, due to computational 

limitations, the computed DCM ( n
bC� ) rarely has an orthonormal basis, nor is it unitary.  

This requires an ortho-normalization after each time step.  Pachter develops an algorithm 

for this task [17].  Given an imperfect DCM resulting from an INS propagation process 

( errC ): 
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11 12 13 1

21 22 23 2

31 32 33 3

err

c c c
c c c
c c c

w
C w

w

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (2.57) 

 

where n
Tw  is the nth row of errC .  An orthogonal DCM can be created ( optC )  
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w w w w w w w w w w

C T C C  (2.58) 

 

For small time steps (δt ), b
nbω  (obtained from Equations (2.54) and (2.55)) can be 

applied to Equation (2.51) in skew symmetric form.  The result is made orthogonal, 

producing the attitude DCM propagation equation (valid to first order).  It is a function of 

the rate gyro measurements and the navigation state estimate.   

 

 ( )ˆ ˆ( ) ( ) ( )n n b b n
b orth b ib n int+ t t tδ ⎡ ⎤= + − ×⎣ ⎦C T C Cω ω� �  (2.59) 

 

2.5.5.2 Position Mechanization.  This research will concentrate on the n-frame 

resolution of the navigation state.  Recall that the n-frame is attached to the body, and the 

axes are aligned to North, East, and Down (NED) respectively.  For this reason, a 
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navigation position inside the n-frame is meaningless, as the body is always located at the 

origin.  Instantaneous navigation velocities, however, can be expressed in the n-frame 

with meaning.  For this reason, the navigation position states (latitude, longitude and 

height above the Earth), are external to the n-frame. They are obtained by integrating the 

n-frame velocities [23]. 
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 (2.60) 

for 

 [ ]n
en N E Dv v v= Tv  (2.61) 

and 

 

1 0 0

sec0 0

0 0 1

N

ne
E

R h
L

R h
-

⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥

= ⎢ ⎥+⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

T  (2.62) 

 

where [ ]TL l hp =  is the position vector (latitude, longitude and height above 

respectively), and n
env  is the velocity of the n-frame relative to the e-frame, resolved in 

the n-frame.  ER  and NR  are the previously defined Earth radii of curvature.  The 

transformation neT  relates the velocity ( n
env ), which is in units of m/s, to the change in the 
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position state (p� ), which is in units of radians of latitude, longitude and meters.  The 

inverse transform is also used, and is defined as follows: 

 

 ( ) 1
en ne

−=T T  (2.63) 
 

2.5.5.3 Velocity Mechanization.  In [23], Titterton and Weston develop the 

navigation equation to solve for the velocity as a function of the accelerometer triad 

measurements ( b
ibf ), the body-to-nav DCM ( n

bC ), the sidereal angular rate ( n
ieω ), the 

transport rate ( n
enω ), and local gravity (

l

ng ), all described in previous sections: 

 

 (2 )
l

n n b n n n n
en b ib ie en en= − + × +�v C f v gω ω  (2.64) 

 

To mechanize this relationship with measurements and calculated values, Equation (2.64) 

becomes: 

 

 (2 )
l

n n b n n n n
en b ib ie en en= − + × +� � �� �� �v C f v gω ω  (2.65) 

 

For small time steps, Euler integration may be used to propagate both the position 

and velocity states as follows: 

 

 ( ) ( ) ( )t+δt t t δt= + �y y y  (2.66) 
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This approximation cannot be used for the attitude state however.  Attitude propagation 

requires Equation (2.51). 

2.5.5.4 Navigation State.  The Navigation State Vector ( x ) is comprised of 

the 9 modeled states of interest, that have been described up to this point: position, 

velocity and attitude [23]. 

  

 [ ]n
eb N E D
n
nb

L l h v v v θ ψφ
⎡ ⎤
⎢ ⎥= =⎢ ⎥
⎢ ⎥Ψ⎣ ⎦

# # T
p

x v  (2.67) 

 

The Euler attitude angles ( n
nbΨ ) are extracted from n

bC  in the following manner [26]: 

 

 ( )

arctan

arcsin

arctan

n
b 23
n
b 33

n n
nb b 13

n
b 12
n
b 11

C
C

θ -C
ψ C

C

φ

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥Ψ = = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎛ ⎞⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (2.68) 

 

where n
b xyC  is the yth element in the xth row of n

bC . 

2.5.6 Error States.  Typical INS applications use the previously described 

mechanization to generate estimates for the navigation state ( ˆ ( )tx ).  Due to errors in 

sensor measurements and algorithmic imperfections, this estimate diverges from the true 
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state.  Generally, a state estimate can be modeled as the sum of the true state ( ( )tx ) and 

the error state ( ( )txδ ) [23]. 

 ˆ ( ) ( ) ( )t t tx x x= + δ  (2.69) 

 

In the case of inertial navigation, the relationship between error states and whole 

states is more complicated.  To begin with, a 15-state error vector ( ( )txδ ) is defined by 

the following relationships: 

 

n
eb

n
nb
b

b

δ
δ

δ

⎡ ⎤
⎢ ⎥
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⎢ ⎥=
⎢ ⎥
⎢ ⎥
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p
v

x e
a
b

 (2.70) 

where δp  and n
ebδv  are the errors in position and velocity, ba  and bb  are the 

accelerometer and gyro biases respectively, and n
nbe  is a vector of angular errors about 

each of the three n-frame axes. 

 

 n
nb x y zε ε ε⎡ ⎤= ⎣ ⎦

T
e  (2.71) 

 

The error state dynamics can be expressed as a linear, stochastic state-space 

model driven by white Gaussian noise [14]. 

 
 ( ) ( ) ( ) ( ) ( )t t t t tx F x G wδ = δ +�  (2.72) 
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where ( )tF  and ( )tG  are time varying functions of the whole navigation state, and ( )tw  

is the dynamics driving noise associated with the inertial sensors and their biases. 

The component dynamics have already been developed: 

From Equation (2.60): 

 n
ne enp T v=�  (2.73) 

From Equation (2.64): 

 (2 )
l

n n b n n n n
en b ib ie en en= − + × +�v C f v gω ω  (2.74) 

From Equation (2.56): 

 n n b n n
b b ib in bC C C= Ω −Ω�  (2.75) 

From Equation (2.39): 

 1
bias

b b b
a

a

a a w= − +
τ

�  (2.76) 

From Equation (2.42): 

 1
bias

b b b
b

b

b b w= − +
τ

�  (2.77) 

 

The errors are assumed to be small.  Therefore, small perturbations about a 

nominal may be used to analyze the error dynamics [17]. 

 

 ˆδp p p≈ −  (2.78) 

 ˆδv v v≈ −  (2.79) 

 ˆ [I ( )]n n
b bC C≈ − ε×  (2.80) 
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Substituting these state error definitions into Equations (2.73)-(2.77), produces the 

desired error dynamics equations. 

 

 n n
ne en ne enδ δ δp T v T v= +�  (2.81) 

Through some manipulation: 

 

2

2

0 0

tan 0
cos cos
0 0 0

N

0

n eE
ne en

0 0

v
R
vv Lδ δ

R L R L
T v p

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥

= −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (2.82) 

Define: 

 

2

2

0 0

tan 0
cos cos
0 0 0

N

0

eE
pp

0 0

v
R
vv L

R L R L
T

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥

= −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

�  (2.83) 

Yielding: 

 n
ne en ppδ δ δp T v T p= + ��  (2.84) 

 

 Titterton and Weston [25] show that: 

 

 [ ] (2 ) (2 )
l

n n b n n b n n n n n n n
en b nb b ie en en ie en enδ δ δ δ δ δ= × + − + × − + × −�v C f C f v v gω ω ω ωe  (2.85) 
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Through some manipulation, they also show: 

 

 1 2[ 2 ] [ ]n n n n n b n n b n b
en ie en en b nb b b aδ δ δ= + − Ω −Ω + × + +�v G p G v C f C a C we  (2.86) 

where 

 ( ) ( )

2

2

1 2

2

2

tan2 cos 0
cos

tan
2 cos sin 0

cos

2 sin 0

E N DE
E ie 2

0 0

E N DN E
ie N D 2

0 0

2
N E

ie E
0

v L-v vvv Ω L+
R L R

v v L+vv vΩ v L v L
R L R

v +vΩ v L
R

-G

⎡ ⎤⎛ ⎞
−⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥
⎢ ⎥
⎢ ⎥= + −
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.87) 

 

 2

tan 0

tan0 0

0

D E

0 N

N D

0

N E

N E

v v L
R +h R +h

v L+v
R +h

v v
R +h R +h

⎡ ⎤
−⎢ ⎥

⎢ ⎥
⎢ ⎥

= −⎢ ⎥
⎢ ⎥
⎢ ⎥
− −⎢ ⎥
⎣ ⎦

G  (2.88) 

 

The matrices 1G  and 2G  account for the errors in the in local gravity (
l

nδg ), due to the 

errors in position and velocity. 

Titterton and Weston [25] develop the final dynamics equation needed to express 

the error in attitude, resolved in the n-frame: 

 

 
bias

n n b n b n
in b b b inε = −Ω ε − − + δ� C b C w ω  (2.89) 
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where 

 

n n n
n in in in
in

δ δ δ
δ = δ + δ + δε

δ δ δε
P v

P v
ω ω ω

ω , 0
n
in

n
in p v

δ
δε ≈

δε

δ = δ + δΕ P Ε v

ω

ω

 (2.90) 

n
inω  is not a function of ε , allowing the term 

n
inδ
δε

δε
ω  to be dropped.  Taking n

inω  from 

Equation (2.54): 

 

( )

( )

( ) ( )

2

2

2

22

sin 0

0 0

tancos 0
cos

E
ie

E

N
p

N

E E
ie

N N

v-Ω L
R h

v
R h

v v L-Ω L-
R h L R h

⎡ ⎤
−⎢ ⎥

+⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥+
⎢ ⎥
⎢ ⎥
⎢ ⎥+ +⎣ ⎦

Ε  (2.91) 

 

 

( )

( )

( )

10 0

1 0 0

tan0 0

E

v

N

N

R h

R h

L
R h

⎡ ⎤
⎢ ⎥

+⎢ ⎥
⎢ ⎥
⎢ ⎥=

+⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎣ ⎦

−

−

Ε  (2.92) 

 

To satisfy the dynamics model from Equation (2.72), the driving noise vector 

( ( )tw ) must include the sensor measurement and bias driving noises.  It is defined as: 

 ( )
bias

bias

b
a
b
b

b
a

b
b

t

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

w
w

w w
w

 (2.93) 
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Combining Equations (2.84), (2.86), (2.91), (2.76) and (2.77), the overall error 

dynamics equation is obtained for the n-frame.   

ˆ( ) [ ; ( )] ( ) ( ) ( )δ t t t δ t t t= ⋅ + ⋅�x F x x G w  

 

3 3 3

1 2 3

3

3 3 3 3 3

3 3 3 3 3

3 3 3 3

3 3 3

3 3 3

3 3 3 3

3 3 3 3

0 0 0
[ 2 ] 0

0
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0 0 0 ( )
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0 0 0 I

pp ne
n n n b n
ie en b b

n n
p v in b
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b 15x15
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b

n
b

15x12

δ t δ t
τ

τ

t

⎡ ⎤
⎢ ⎥− Ω −Ω ×⎢ ⎥
⎢ ⎥−Ω −
⎢ ⎥= ⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥+ −
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

�

�

T T
G G C f C
Ε Ε C

x x

C
C w

 

(2.94) 

 

In many cases, the Earth can be modeled as flat and non-rotating.  This 

approximation is acceptable if the rate gyros cannot pick up the Earth’s rotation and if the 

navigation is constrained to a relatively small area.  This approximation allows many 

terms to be dropped, simplifying Equation (2.94) and reducing the computational load. 
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To model the Earth as flat and non-rotating, 0ieΩ →  and 0 N ER = R =R →∞ .  This 

reduces Equation (2.94) to: 

 

3 3 3 3

3 3 3 33 3 3

3 3 33 3 3 3

3 3 3
3 3 3 3 3

3 3 3 3

3 3 3 3
3 3 3 3 3

0 0 0 0
0 0 0 00 0 0

0 0 00 0 0 0
( ) ( ) 0 0 0 ( )10 0 0 I 0

0 0 I 0
0 0 0 I10 0 0 0 I

ne
n b n
b b

nn
bb

n
b

a

15x12

b 15x15

δ t δ t t
τ

τ

⎡ ⎤
⎢ ⎥× ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎢ ⎥= + −⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥−
⎢ ⎥⎣ ⎦

�

T
C f C

CC
x x C w

  (2.95) 

 

Note: neT  cannot be modeled to have 0 N ER = R =R →∞  because it is needed to convert 

velocity units into degrees of latitude and longitude.  This transform remains in the 

simplified error equation.   

The basis for INS mechanization and the associated error model have been laid.  

The first nine error states are the well understood Pinson error states [27], allowing a 

feedback extended Kalman filter to be used for aiding. The Kalman filter used to aid the 

INS, can now be discussed. 
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2.6 Kalman Filtering 

Kalman filtering is the backbone of INS aiding.  It provides an optimal estimate 

of the desired state vector, based on imperfect measurements that indirectly reflect the 

true state values.  An extended Kalman filter is used herein to aid the INS through 

bearings-only measurements.  A development of the EKF follows to aid understanding of 

the eventual algorithm.  This section presents the stochastic modeling and Kalman 

filtering concepts outlined by Maybeck [14][15].    

2.6.1 Linear Stochastic System Model.  The linear stochastic system model is 

essentially the linear system model (Equation (2.5)) with an additional stochastic term to 

account for the uncertainty of the model dynamics.  The general form of the linear 

stochastic system model can be written in the form of a linear stochastic differential 

equation [14]. 

 x Fx Bu Gw= + +�   (2.96) 

 

where x  is again the state vector, but it is now a vector of random variables.  u  is the 

deterministic input, F  and B  are the system dynamics and input matrices respectively.  

G is the noise transformation matrix, and w  is the vector of white, Gaussian, dynamics 

driving noises.  w  is a zero-mean Gaussian process with a covariance kernal, defined by: 

 

 }{ ( ) ( ) ( ) ( )t t+τ t δ τ=TE w w Q  (2.97) 
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where ( )tQ  is the noise strength matrix, and ( )δ τ  is the Dirac delta function. 

The solution to stochastic differential Equation (2.96) is a Gaussian random 

vector itself.  The dynamics driving noise creates uncertainty in the solution to an 

otherwise trivial problem.  The solution is defined by its mean and covariance [6]. 

The mean of the random vector ( )tx , for [ , )0t t∈ ∞  is defined as follows: 

 

 { } }{( ) ( ) ( ) ( ) ( ) ( ) ( )
0

t

0 0
t

t t t,t t t,τ τ τ τ= = Φ + Φ ∂∫xm E x E x B u  (2.98) 

with the initial condition 

 }{ ( )0 0tE x x=  (2.99) 

Note that ( )0t,tΦ  is derived in the same manner as in Section 2.4.1 and Equation (2.7).  

The addition of the driving noise has no effect on ( )0t,tΦ  nor the mean, which is 

equivalent to the deterministic solution from Equation (2.6) [14]. 

The covariance of the solution is defined to be 

 

 }{( ) ( ) ( ) ( ) ( )t t t t t= −T T
xx x xP E x x m m  (2.100) 

and is found by solving 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0

t

0 0 0
t

t t,t t t,t t,τ τ τ τ t,τ τ= Φ Φ + Φ Φ ∂∫T T T
xx xxP P G Q G  (2.101) 

with the initial condition 

 0( )0txxP P=  (2.102) 
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Due to the Gaussian nature of the solution, the computed mean provides the best 

estimate for the true state: 

 ˆ ( ) ( )t txx m=  (2.103) 

 

The computed covariance describes the uncertainty of the estimate.  The subscript will be 

dropped henceforth. 

 ( ) ( )t txxP P=  (2.104) 

 

2.6.2 Linear Measurement Model.  In order for a Kalman filter to be of use, 

measurements of the states must be taken.  Due to their very nature, measurements are 

often discrete.  The continuous measurement case will not be covered.  In the linear 

stochastic case, measurements of the states are corrupted by additive, white Gaussian 

noise [14]. 

 ( ) ( ) ( ) ( )i i i it t t tz H x v= +  (2.105) 

where ( )itz  is a vector of measurements taken at a specific time instance ( )it t= .  ( )itH  

is the observation matrix, relating the states to the measurements produced by the sensor, 

and ( )itv  is the sensor corruption noise vector, with covariance kernel defined as: 

 

 }{ ( ) ( ) ( )i j i ijt t t δ=TE v v R  (2.106) 

where ( )itR is the covariance matrix for the corruption noise, and ijδ  is the Kroeneker 

delta function. 
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2.6.3 Linear Kalman Filter.  The Kalman filter allows the use of imperfect 

measurements, to estimate the solution to the stochastic differential Equation (2.96).  

Without measurements, the covariance of the solution would grow unbounded, rendering 

the state estimate meaningless to a user.  Kalman filtering bounds the covariance, or 

uncertainty in the estimate, but does not provide perfect knowledge.  In the linear case, 

the Gauss-Markov nature of the state model allows the use a simple recursive cycle, 

repeating for every measurement. 

2.6.3.1 Kalman Filter Cycle.  The Kalman filter cycle has two parts: the 

propagation phase, and the update step.  In the propagation phase, the Kalman filter 

estimates the new mean and covariance of the state estimate for some time passage.  

During the update step, the Kalman filter adjusts the propagated mean and covariance 

based on measurements taken in.  This cycle is repeated for every measurement.  Figure 

2.6 illustrates this cycle [6][14].  

 

 

 

 

 

 

 

Figure 2.6:  Kalman filter cycle. 
 

 

Propagation phase moves estimate forward in time, 
based on 1

ˆ ( )i-tx + , 1( )i-tP + ,  and system dynamics 

Measurement taken at it  

Update step generates new 
estimate at it

+  
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Note the convention used to indicate time immediately before and after a 

measurement (illustrated in Figure 2.6, and explained below): 

•  it  refers to an instance in time; typically when a measurement is taken. 

• it
−  refers to the very instant before it .  1

ˆ ( )i-tx −  is the Kalman filter estimate the 

instant the measurement is taken, but just before it is applied.  1ˆ ( )i-tx −  and 

1( )i-tP −  are the output of the propagation phase. 

• it
+  refers to the very instant after a measurement is taken, and the update step is 

applied.  1ˆ ( )i-tx +  and 1( )i-tP +  are the output of the update step. 

 

2.6.3.2 Propagation Equations.  The state estimate and covariance are 

propagated through time using the solution to the stochastic differential Equation (2.96) 

shown in Equations (2.98) and (2.101) [14].  Applying the Kalman filter cycle 

convention, the propagation phase becomes: 

 
1

1 1
ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )

i

i-

t

i i i- i- i
t

t t ,t t t ,τ τ τ τx x B u− += Φ + Φ ∂∫  (2.107) 

 
1

1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
i

i-

t

i i i- i- i i- i i
t

t t ,t t t ,t t ,τ τ τ τ t ,τ τ− += Φ Φ + Φ Φ ∂∫T T TP P G Q G  (2.108) 

In the discrete time case: 

 

 1 1 1 1
ˆ ˆ( ) ( ) ( ) ( ) ( )i i i- i- i- i-t t ,t t t tdx x B u− += Φ +  (2.109) 

 1 1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( )i i i- i- i i- i- i- i-t t ,t t t ,t t t t− += Φ Φ +T T
d d dP P G Q G  (2.110) 
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where ( )tu  is assumed constant over the interval 1[ , )i- it t t∈ , and : 

 
1

1( ) ( ) ( )
i

i-

t

i- i
t

t t ,τ τ τ= Φ ∂∫dB B  (2.111) 

 
1

1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
i

i-

t

i- i- i- i i
t

t t t t ,τ τ τ τ t ,τ τ= Φ Φ ∂∫T T T
d d dG Q G G Q G  (2.112) 

 
2.6.3.3 Update Equations.  During the update step, the state estimate and 

covariance are adjusted to account for the measurement coming in.  The Kalman filter 

gain appropriately weighs the measurement against the estimate, as a function of the 

system model [14]. 

Kalman filter gain: 

 
1

( ) ( ) ( ) ( ) ( ) ( ) ( )i i i i i i it t t t t t t
−− −⎡ ⎤= +⎣ ⎦

T TK P H H P H R  (2.113) 

Update Equations: 

 ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )i i i i i it t t t t tx x K z H x+ − −⎡ ⎤= + −⎣ ⎦  (2.114) 

 ( ) ( ) ( ) ( ) ( )i i i i it t t t tP P K H P+ − −= −  (2.115) 

 

2.6.4 Non-Linear Stochastic System Model.  In many cases, a linear system 

model does not suffice.  The non-linear stochastic system model, used in this research, is 

a variation on the deterministic non-linear system from Equation (2.13).  Like the linear 

model, it has an additional, dynamics driving, white Gaussian noise term [15]. 

 

 ( ) [ ( ), ( ), ] ( ) ( )t t t t t tx f x u G w= +�  (2.116) 
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where ( ) ( )t tG w  is defined as in the linear case; Equations (2.96), (2.97). 

2.6.5 Non-Linear Measurement Model.  The non-linear measurement model 

takes on a similar form [15]. 

 

 ( ) [ ( ), ] ( )i i i it t t t= +z h x v  (2.117) 

 

where [ ( ), ]i it th x  is a non-linear function of ( )itx  and time, and ( )itv  is defined as in the  

linear case; Equation (2.105). 

2.6.6   Linearized Model.  The non-linear stochastic system model massively 

complicates the estimation process.  The solution to the stochastic differential is no 

longer trivial, and in some cases, unsolvable.  Fortunately, many non-linear systems can 

be modeled as linear for small perturbations about a nominal trajectory.  The extended 

Kalman filter takes advantage of this property. 

Because the dynamics driving noise is additive, it does not complicate the 

linearization process.  The non-linear stochastic system may be approximated to be linear 

about a nominal trajectory as described in Section 2.4.2 [15]. 

 

 ˆ ˆ ˆ( ) ( ) [ ( ), ( ), ] [ ; ( ), ( )] ( ) ( ) ( )t t t t t t t t t t tx x f x u F x u x G w+ δ = + δ +� �  (2.118) 

 

 ˆ( ) [ ; ( ), ( )] ( ) ( ) ( )t t t t t t tx F x u x G wδ = δ +�  (2.119) 
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 (2.120) 

 

The resultant system models the small perturbations, or errors about the nominal.  

This fits well with the error states chosen for the INS.  Note that the nominal chosen is 

the state estimate ( ˆ ( )tx ).  The optimal nominal choice would be the true state, but since 

the true state is unobtainable, ˆ ( )tx  provides a reasonable approximation [15].  The result 

is a poorer performing Kalman filter.  Additionally, the input vector is assumed to be 

known ( ( )tδ = 0u ).   

 The same process can be applied to the measurement equation [26][15]. 

 

 1 1 1 1 1 1 1ˆ ˆ( ) [ ( ), ] [ ; ( )] ( ) ( )i+ i+ i+ i+ i+ i+ i+t t t t t t tz h x H x x v− −= + δ +  (2.121) 

 

 1 1 1 1 1
ˆ( ) [ ; ( )] ( ) ( )i+ i+ i+ i+ i+t t t t tδ = δ +z H x x v  (2.122) 
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=

=
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 (2.123) 
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2.6.7 Extended Kalman Filter.  After linearization, the system error model fits 

the linear form needed to create a linear Kalman filter.  Maybeck develops the extended 

Kalman filter (EKF) fully, yielding the propagation and update equations as a function of 

the linearization gradients ( ˆ[ ; ( ), ( )]t t tF x u and ˆ[ ; ( )]i it t −H x ) [15]. 

2.6.7.1 EKF Propagation Equations.  The EKF estimate is propagated 

forward to the next time sample 1i+t  by integrating the following over the interval 

1[ , ]i i+t t t∈ : 

 ˆ ˆ( ) [ ( ), ( ), ]i it/t t/t t tx f x u=�  (2.124) 

 ˆ ˆ( ) [ ; ( ), ( )] ( ) ( ) [ ; ( ), ( )] ( ) ( ) ( )i i i i it/t t t/t t t/t t/t t t/t t t t t= + +� T TP F x u P P F x u G Q G  (2.125) 

with the initial conditions: 

 ˆ ˆ( ) ( )i i it /t tx x +=  (2.126) 

 ( ) ( )i i it /t tP P +=  (2.127) 

The propagation produces: 

 1 1ˆ ˆ( ) ( )i+ i+ it t /tx x− =  (2.128) 

 1 1( ) ( )i+ i+ it t /tP P− =  (2.129) 

 

2.6.7.2 EKF Update Equations.  The EKF update is accomplished by the 

following equations [15]: 

 

 { } 1ˆ ˆ ˆ( ) ( ) [ ; ( )] [ ; ( )] ( ) [ ; ( )] ( )i i i i i i i i i it t t t t t t t t t
−− − − − −= +T TK P H x H x P H x R  (2.130) 
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 { }ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) [ ( ), ] [ ; ( )] ( )i i i i i i i i iδ t δ t t t t t t t δ t+ − − −= + − −x x K z h x H x x  (2.131) 

 

 ˆ( ) ( ) ( ) [ ; ( )] ( )i i i i i it t t t t tP P K H x P+ − − −= −  (2.132) 

where ˆ ( )iδ tx  is the error state vector containing the Pinson errors states. 

2.6.8   Extended Kalman Filter and INS Integration.  Figure 2.7 illustrates how 

the EKF and INS work together to bound the error growth. 

 

Figure 2.7:  Extended Kalman Filter and INS integration.  The EKF receives the 
state estimate from the INS system dynamics, as well as measurements from the 
update sensors.  The EKF produces an error state estimate, and applies it as a 
correction to the INS [26]. 
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2.6.9 Implicit Measurement Equation.  Sometimes, the measurement model 

used does not fit the convenient form in Equation (2.117).  Non-linearities, or singular 

matrices may not allow one to isolate the measurement vector on the left hand side of the 

equation.  In this case, the implicit measurement model may be used [19]. 

 

 ( , )=0 g x y  (2.133) 

 

 z y v= + ,   ( , )N 0∼v R  (2.134) 

 
ˆ

ˆ ˆ( , ) ( , ) ( ) . . .δ
x z

g gg x y g x z x y z HO T
x y
∂ ∂

≈ + + − +
∂ ∂

 (2.135) 

 

where ( , )g x y  is the functional relationship between the true state x  and the perfect 

measurement y .  A new measurement model can be created: 

 

 
ˆ

ˆ( , ) δ
x

gg x z x v
x
∂ ′= +
∂

,   ( ),N′ ′0∼v R  (2.136) 

 
⎛ ⎞ ⎛ ⎞∂ ∂′ = ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

T

z z

g gR R
y y

 (2.137) 
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where ˆ( , )g x z  is substituted for z  in the EKF update Equation (2.131), and R′  is 

substituted for R in the EKF gain Equation (2.130).  Lastly, ˆ[ ; ( )]i it tH x −   is replaced    

with 
x̂

g

x

∂

∂
.  The rest of the EKF remains unchanged. 

The extended Kalman filter will be used to aid the INS using bearings only 

measurements from imagery.  The optics involved with taking images can now be 

discussed. 

 

2.7 Imaging 

In order to aid INS with imagery, the mathematics of optics must be understood.  

This section presents the aspects of this broad field which will be applied to the research 

herein, to include optical projection theory, sensor models, measurement equations, and 

feature tracking. 

2.7.1 Optical Projection Theory.  Optical projection theory relates the real 

world geometry to the geometry of an image passed through a lens.  The thin lens model 

relates the image to the true scene according to Figure 2.8, and the following equation 

[10]: 

 1 1 1
Z z f
+ =  (2.138) 

 

where Z and z are the distances of the object and image to the lens respectively, and f  is 

the focal length of the thin lens.  
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Figure 2.8:  Thin lens camera model.  The thin lens model directs parallel light rays 
toward the focus, resulting in an image.  Figure is not to scale [26]. 
 

 

Decreasing the aperture of the thin lens to a theoretical zero allows the use of a 

pinhole camera model [10].  The pinhole camera model relates the size of an image, as it 

falls onto an image plane, to the size of the true object, as given in Equation (2.138) and 

illustrated in Figure 2.9.  In order for a pinhole model to be applied, the “fish eye” 

distortion created by a wide angle lens must be removed from the image and associated 

features.  A discussion of how this is accomplished is included in [36].  For the purposes 

of this discussion, fish eye distortion will be assumed to be removed from all images and 

the pinhole camera model assumed valid. 
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Figure 2.9:  Pinhole camera model.  The pinhole camera is a theoretical camera 
model in which a thin lens aperture approaches zero.  The projected image is 
inverted on the image plane [26]. 
 

  

Inverting this image has the effect of righting it, and projecting it one focal length 

in front of the aperture; see Figure 2.10.   Consider a point source object.  The projection 

of the object’s image onto the image plane ( projs ) is a function of the object’s position 

vector, resolved in the c-frame ( cs ), and the focal length of the camera lens [10].   

 

 proj c
c
z

f
s

s s
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (2.139) 

where c
zs  is the z-component of cs , or distance of the point source from the aperture, 

projected onto the c-frame’s z-axis. 
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Figure 2.10:  Image projection model.  A point source object ( cs ) is projected onto 
the image plane of the camera ( projs ) [26]. 
 
 

Imaging arrays lie on the image plane in order to capture the focused image.  

They are made up of a ( M N× ) array of rectangular pixels.  The upper left pixel has the 

coordinates (1,1).  The pixel co-ordinate frame increases down and right [26] (see Figure 

2.11).   
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Figure 2.11:  Camera image array. The imaging array of the camera consists of an 
(M x N) array of pixels.  The physical height and width of the array are represented 
by H and W, respectively [26]. 
 

For an array with physical dimensions ( H W× ), the transform to obtain pixel 

coordinates from the projected image vector is [10]: 

 

 

10 0
2

10 0
2

pix proj

M M
H

N N
W

s s

+⎡ ⎤ ⎡ ⎤−⎢ ⎥ ⎢ ⎥
= +⎢ ⎥ ⎢ ⎥

+⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 (2.140) 

 

Note that pixs  is a two-dimensional vector of pixel locations.  It does not have to take on 

integer values, however. 
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Combining Equations (2.139) and (2.140) yields a transform from the camera 

frame to the pixel plane [26]. 
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+⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
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 (2.141) 

 1 pix c
p cc

zs
=z T s  (2.142) 

 

Note that pz is the homogeneous pixel coordinate vector form of pixs .  It is also the 

measurement produced by the camera. 

pix
cT  is the invertible, homogeneous transform matrix between the camera frame 

and the pixel plane.  The inverse is defined: 
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 c c c
z pix pss T z=  (2.144) 
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The object’s camera-frame position vector is thus expressed as the pixel plane 

measurement, transformed into the c-frame, and scaled by the z-component.  Given the 

pixel plane measurement pz , one must estimate the z-component of the object position 

vector in order to estimate the full object position vector.  This can be done many ways, 

and will be discussed in Chapter 3. 

The goal of imaging is to determine the relative position of an object to the 

camera in the n-frame (given the pixel plane vector).  Define n
tgtΔ to be the relative 

difference between the imaged/tracked object and the n-frame origin (resolved in the n-

frame).  Define b
camp to be the relative position of the camera origin (resolved in the b-

frame).  Define b
cC  to be the DCM corresponding to the camera alignment to the aircraft 

body.  Then n
tgtΔ can be related to pz  by the following (see Figure 2.12). 

 

 n n b n b c
tgt b cam b cΔ = +C p C C s  (2.145) 

 

 n n b c n c
tgt b cam z c pix psΔ = +C p C T z  (2.146) 

 

 Note that b c
c pixC T  is a constant matrix expression for a rigidly mounted camera, and 

n n b
c b c=C C C .   
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Figure 2.12:  Relative landmark geometry.  The n-frame and b-frame share an 
origin, but are aligned according to the aircraft Euler Angles ( n

bC ).  The relative 
position of the tracked object to the n-frame ( n

tgtΔ ) is the sum of the c-frame object 

position vector ( cs ) and the camera position inside the aircraft, resolved in the n-
frame ( n b

b camC p ). 
 

Note that n
tgtΔ  is a relative vector position in the n-frame with units of meters.  n

tgtΔ  

expressed as a function of the aircraft and target geodetic position (latitude, longitude, 

and height) is: 

 ( )n
tgt en tgtΔ = −T p p  (2.147) 

 

where p  and tgtp  are the geodetic positions of the aircraft and target respectively.   

Landmark 

n-frame xn 

zn 

yn 

n b
b camC p

n
tgtΔ

cs

 

b
camp
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Substituting Equation (2.147) into (2.146) yields the measurement equation for 

this camera model: 

 ( )( )1 pix c n b
p c n en tgt b camc

zs
= − −z T C T p p C p  (2.148) 

 

2.7.2  Feature Tracking.  Aiding INS with imagery can only be accomplished if 

fixed landmarks on the ground can be tracked from image frame to image frame.  Many 

feature tracking algorithms are described by Veth and others [10][26].  The inner 

workings of these feature trackers will not be discussed here, merely the characterization 

of the measurements they provide. 

For the purpose of this discussion, landmarks fall into two categories: surveyed 

landmarks, and landmarks of opportunity (LOO).   Surveyed landmarks are those with 

geodetic positions that are known via some independent source and can be identified in a 

scene.  Landmarks of opportunity have not been surveyed independently and must be 

located as they are tracked.  For the purpose of this discussion, a feature is defined as the 

projection of a specific landmark onto the image.  Feature uniqueness allows successive 

matches and tracking frame to frame. 

Feature trackers aim to track a landmark from frame to frame.  These landmarks 

appear as a collection of pixels that correlate spatially and geometrically between frames.  

The output of a feature tracker is the homogeneous pixel coordinate vector pz .  Ideally, 

this vector would correspond to the exact same n-frame location with every frame; 
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whether it be the center of mass, or a distinct corner, is moot. Unfortunately, this pixel 

coordinate vector is plagued by errors. 

The first major error is due to the quantization nature of an imaging array [26].  

Pixels are discrete, but feature locations aren’t necessarily.  Some feature generation 

algorithms claim sub-pixel level precision.  This is questionable because such precision is 

beyond the spatial sampling frequency of the camera.  While the feature tracker may 

interpolate between groups of pixels, the pixels between which they interpolate are 

discrete.  This induces a uniformly distributed spatial error, one pixel wide. 

 p p qz z n= +  (2.149) 

 

where qn  is the vector form of the uniform random variable measurement noise, defined 

as follows.  Note that the third element is always zero, as it is a two dimensional error: 

 

 { } [ ]0 0 0q = TE n  (2.150) 
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 Additional noise sources sum together and are modeled as additive, white, and 

Gaussian in nature. 

 p p q Gz z n n= + +  (2.152) 

 

where Gn  is the vector form of the Gaussian random variable measurement noise, 

defined as: 

 { } [ ]0 0 0G = TE n  (2.153) 

 { }
0
0

0 0 0

x xy
T

G G G xy y

R R
R RE n n R
⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.154) 

 

where GR  is the covariance matrix of the white Gaussian noise.  If GR  is much larger 

than qR , then they can be modeled as a single, white Gaussian noise, but this is a 

function of the quality of the tracking algorithm and imaging array used. 

 

2.8 Geometric Dilution of Precision 

Non-linear measurements are often functions of geometry.  This is especially true 

in the case of tracking features in successive images.  Some geometries are more suited to 

deliver better performance than others (e.g., as tangents approach 90 degrees, 

singularities form).  A quantifiable measure of quality (as a function of geometry) is 

called the geometric dilution of precision (GDOP).  This scalar value relates the relative 
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precision or quality of measurement that can be obtained from differing geometric 

scenarios.  The absolute value of GDOP is less insightful than the difference between two 

GDOP values; a high GDOP means much dilution, whereas a low GDOP means very 

little dilution [21]. 

The in the case of the EKF, GDOP is a function of the linearized measurement 

observation matrix ( ˆ[ ; ( )]i it tH x − ) [19].   

 

 { }1ˆ ˆ( [ ; ( )] [ ; ( )])i i i it t t t− − −= TGDOP tr H x H x  (2.155) 

 

High GDOP values indicate that the imprecision of imperfect measurements will 

be magnified by geometric effects.  Fortunately, this knowledge is built into the EKF, and 

the relative weighting of a measurement experiencing high GDOP is lowered.  This effect 

causes the EKF to behave much like it does with a very uncertain measurement (large 

( )itR ) [19].  For this reason, analyzing the GDOP of a system can provide insight into 

the performance of the associated EKF.  High GDOP essentially weakens the aiding 

strength of a measurement. 
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2.9 System Observability 

 A linear system is said to be observable if knowledge of the initial state can be 

learned after a finite amount of time and a finite number of measurements.  This is 

significant to aiding an INS because learning the state through measurements is the entire 

purpose.  For the time invariant case, the observability matrix is a function of the system 

dynamics matrix (F ) and the measurement matrix (H ) [26]; defined: 

 

 

1n-

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

#

H
HF

Q

HF

 (2.156) 

 

where n is the dimension of the associated state vector.  The H F  pair is said to be fully 

observable if Q  has rank n.  This means that the measurement model chosen is sufficient 

to observe the total state.  Because both matrices are functions of the state vector, insight 

about observability can only be obtained for perturbations about the given state 

trajectory.  In the case of INS, one must examine Q  for all the desired flight profiles and 

envelopes; no sweeping generalizations may be made. 

 In the time-varying case, another method of examining the strength of aiding 

action (provided to the INS by update measurements) must be used.  It involves studying 

the observability grammian.  A system is said to be completely observable if the 

observability grammian ( ( )tW ), for a particular measurement equation, has full rank.  
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The observability grammian is a function of the system dynamics matrix (F), the 

observation matrix (H) and the nominal trajectory about with the system is linearized 

( cx ).   

 

 ( )
0

[ ( )] [ ( )]
t

t tt e t t e dt= ⋅∫
TF T F

c cW H x H x  (2.157) 

 

The condition number of ( )tW  also speaks to the observability of the measurements.  A 

high condition number indicates weak aiding along certain trajectories while strong 

aiding along others.   

Another method of expressing GDOP is with the observability grammian.  The 

GDOP is defined as: 

 ( ){ }1t −=GDOP trace W  (2.158) 
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2.10 Summary  

In summary, this chapter laid out the framework to design an INS and develop an 

aiding strategy built around the extended Kalman filter.  The basic optics and camera 

reference frame transforms were explored to allow the development of the measurement 

equation in Chapter 3.  Lastly, the tools by which the performance will be predicted and 

evaluated were presented.  Chapter 3 will speak to the specific design used for the flight 

test.  
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III.  Developing the SLAAMR Algorithm 

 

The concept of simultaneously mapping an environment using imagery and 

navigating using this map is not new.  The Simultaneous Location And Mapping (SLAM) 

process has been proposed and discussed in many studies and research projects 

[1][4][5][8][11][19][23][24][26][28].  This paper adopts the fundamental SLAM process 

to create an algorithm that can simultaneously locate landmarks, map an environment, 

and aid an inertial navigation system, specifically using a recursive process.  This single 

routine will seamlessly locate and map landmarks when accurate navigation state data is 

provided (i.e., GPS), accurately aid the Inertial Navigation System (INS) when surveyed 

landmarks are available, or provide both tasks in the absence of surveyed landmarks or 

GPS.  The theory behind a SLAM-based aiding strategy is well understood, and has 

proven to perform well in simulation.  However, real world conditions, image processing, 

and sensors complicate the matter, requiring further study and design to produce a 

practical SLAM-based navigation system.  This chapter explores the mathematics behind 

the problem and develops the design of a low-cost, monocular optical-inertial navigation 

system.  The Simultaneous Location Aiding And Mapping Recursively (SLAAMR) 

algorithm (proposed herein) provides a robust design to accomplish the aforementioned 

tasks seamlessly in the airborne environment.   

The SLAAMR algorithm is designed to accomplish practical INS aiding, using 

passive and low-cost measures, such as monocular imagery.  It is specifically designed 

for use with a low-cost, poor quality, inertial measurement unit (IMU) aboard an airborne 



 

81 

platform.  The use of a recursive process, specifically the extended Kalman filter (EKF), 

optimizes aiding action without the need of a batch estimator.  This strategy reduces the 

hardware requirements and increases the robustness and applicability of the design 

This chapter develops the error propagation model and bearings-only 

measurement model specific to the SLAAMR algorithm.  The observability and measure 

of aiding action provided by bearings-only measurements are explored through the 

examination of the observability grammian matrix and geometric dilution of precision.  

This observability study identifies and proposes solutions to the weaknesses of a SLAM-

based system.  The proposition that INS drift can be slowed by tracking self-

located/surveyed landmarks is discussed and a practical strategy is developed.  The 

critical problem of using monocular imagery to resolve the 3-dimentions modeled in an 

EKF is discussed, and practical solutions are proposed.  Finally, the principles of the 

SLAAMR algorithm design are developed, and summarized along with the algorithmic 

architecture.  The SLAAMR algorithm differs from traditional SLAM in that it departs 

from theoretical conjecture and is designed to solve practical problems posed by realistic 

implementation limitations.  

Figure 3.1 illustrates the underlying principle that allows SLAAMR to work.  An 

aircraft using an onboard INS estimates its position, velocity, and attitude (collectively 

the navigation state or nav-state) as it flies, but this estimate drifts from truth.  Along the 

way, a camera is used to track stationary landmarks on the ground.  The position of these 

landmarks is either known or estimated. The navigation state and landmark positions are 

used to estimate where the landmark should appear in successive images.  The 
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differences between actual landmark image projections and the estimates are used to 

resolve a 3-dimensional position error, which correlates to error in the aircraft navigation 

state. 

 

 

 

Figure 3.1:  Tracking landmarks yields error vectors correlated with INS drift. 
 
 
 

This chapter discusses the theory behind the SLAAMR algorithm and develops 

the case for its underpinning assumptions and tenet of design.  A rigorous study of the 

underlying measurement equations and navigation state observability follows. 

 

True aircraft position at ti 

INS reported  
position at ti+1 

Correlated 3-D  
position error vectors  

True aircraft position at ti+1 



 

83 

3.1 Basic EKF System Model 

The underlying mechanism for SLAAMR is a low-cost inertial navigation system 

(INS) aided by bearings-only image (and other passive) measurements, via a feedback 

error state modeled by an extended Kalman filter (EKF).  Chapter 2 fully developed the 

EKF model and process, and this chapter will develop the specific propagation equations 

and measurement models. 

3.1.1 Error State Propagation Model.   The goal of SLAAMR is to aid low-cost 

INS implementing a low-quality micro-machined electromechanical systems (MEMS) 

inertial measurement unit (IMU).  This allows the assumption of a flat and non-rotating 

Earth approximation for the error propagation model.  As derived in Chapter 2, the base 

error propagation model for SLAAMR is: 

 

 ( ) ( )δ t δ t= ⋅ + ⋅�x F x G w  (3.1) 

where 
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and 
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where, neT  transforms velocity errors from units of m/s to geodetic equivalents, b ×f  is the 

skew symmetric form of the specific force vector resolved in the b-frame, n
bC  is the b-

frame to n-frame DCM, and a,bτ are the accelerometer and rate gyro bias time constants. 

The 15-state error vector ( ( )txδ ) is also defined in Chapter 2: 

 

 n n b b
eb nbδ δ δ⎡ ⎤= ⎣ ⎦

T
x p v e a b  (3.4) 

 

This basic navigation error state vector will be augmented to include landmark position 

estimates in Section 3.2.4.  The dynamics driving noise associated with the inertial 

sensors and their bias’ ( w ) is defined: 
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where aR  and bR  are the 3x3 noise strength (intensity) matrices for accelerometer and 

rate gyro (triad) measurement noise, and aQ  and bQ  are the 3x3 process driving noise 

strength (intensity) matrices for the accelerometer and rate gyro (triad) bias drift rates 

(modeled as first order Gauss-Markov processes). 

3.1.2 Linearized Measurement Model.  As described in Chapter 2, the 

SLAAMR measurement model takes the form: 

 

 1 1 1 1 1 1 1ˆ ˆ
( ) [ ( ), ] [ ; ( )] ( ) ( )i+ i+ i+ i+ i+ i+ i+t t t t t t t− −= + δ +

x x
z h x H x x v  (3.6) 

 

where 1 1[ ( ), ]i+ i+t t−h x  is the non-linear measurement equation, and 1 1[ ; ( )]i+ i+t t −H x  is the 

matrix partial derivative of h.  1( )i+tz  is the feature position measurement expressed in 

the image frame, and v is the measurement noise driven by system optics, etc.  Again, 

( )itδx  will be augmented to include landmark position estimates (discussed in Section 

3.2.4), but the form of Equation (3.6) remains the same.  The following sections develop 

this measurement model for bearings-only image measurements. 

3.1.3 Initial Landmark Position Estimation.  Before an EKF can begin, it 

requires an initial estimate of the state variables and associated covariances.  In the 

feature tracking case, the state variables are the navigation and tracked object position 

error states.  Additionally, the EKF requires an estimated nominal trajectory in order to 

perform the linearization.  This trajectory includes navigation and tracked landmark 

positions.  Initial estimates of the navigation whole and error states are obtained from 
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traditional, well-established INS alignment/transfer alignment techniques, and will not be 

discussed here [23].  Initial object position estimates must be derived from one of two 

categories of techniques: third party location (surveyed), and auto-location (self-

surveyed).  The initial position estimate provides a nominal trajectory about which the 

EKF error model is linearized.  The initial error in this position is assumed to be a zero-

mean and Gaussian (with an associated covariance matrix).  Subsequent iterations of the 

EKF refine the initial position and error covariance estimates.    

3.1.3.1 Third Party Survey.  When a third party source is used to locate a 

landmark, any errors in the estimated landmark position are independent of the EKF 

navigation state errors.  Thus, the uncertainty of the position estimate is strictly a function 

of the third party system.  Determining an object’s location through satellite imagery or a 

GPS site survey are examples of this method.  Because the aircraft and its sensors play no 

part in this process, the errors associated with third party survey are completely 

independent of the navigation state and measurement equation.  In the case of differential 

GPS position estimates, the uncertainty covariance can be sub-meter and elliptical.  These 

types of landmarks will henceforth be known as surveyed landmarks.   

3.1.3.2 Self-Survey or Auto-location.  Self-survey or auto-location involves 

determining the position of a landmark of opportunity (LOO) through measurements 

taken from onboard sensors, in this case a camera.  The camera measures the relative 

position of the landmark to the aircraft.  This relative position is then added to the aircraft 

position.  This technique has been demonstrated through the use of binocular vision, 

multiple image batch estimation, or active sensors (such as an EO/IR targeting pod) [26].  
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Single image monocular techniques are the primary method explored herein, because 

monocular imagery is a more practical and low-cost option for aircraft.  Whichever 

technique is used, the measurement equation for auto-location estimates take the form: 

 

 ˆ
tgt tgt= Δ + INSp p  (3.7) 

 

where the initial landmark position estimate ( ˆ
tgtp ) is the sum of INS calculated aircraft 

position ( INSp ) and the relative position measurement/estimate ( tgtΔ ).  The relative 

position measurement/estimate is a function of the whole INS-provided navigation state 

( cx ) and the sensor-produced measurement/estimate ( z ).   

 

 ( )
,

,tgt ΔΔ =
cx z

h x z  (3.8) 

 

where Δh  is a non-linear function used to determine the landmark’s relative position.  

Specific examples of Δh  are discussed in Section 3.5.  The associated uncertainty of the 

object position estimate is derived through perturbation analysis of this equation.  The 

error perturbations are related as: 
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These errors are assumed to be zero mean and Gaussian.  Therefore, the error covariance 

of the object position estimate is equal to the expected value of the outer product of the 

errors. 
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The aircraft position errors are independent of the relative position estimate, but 

in practice, the measurement equation is evaluated about the nominal, errant navigation 

state.   The assumption is made that nominal is close to truth.  Thus, the aircraft position 

errors are approximated to be independent of the relative position estimate.  The 

covariance expression simplifies to: 
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where ppP ,  xxP  and zzP  are the aircraft position, navigation state, and measurement error 

covariances, respectively.  xzP  and zxP  are the cross correlation matrices between the 

navigation state and the measurements.  xH and zH  are the partial derivatives of ( ),Δh x z  

with respect to x and z, evaluated at cx and z .  The camera optical uncertainties are 

independent of the navigation state errors, allowing the simplification: 

 

 tgt = + +T T
x xx x z zz z ppP H P H H P H P  (3.12) 

 

In the case in which a perfect relative measurement can be taken ( tgtδΔ =0), the 

uncertainty in the object’s initial position estimate can be no better that the uncertainty in 

the aircraft’s own position estimate.  Precise optics and continued bearings measurements 

could theoretically refine tgtΔ  to a near perfect estimate, but since this is a relative 

estimate, the uncertainty contribution of the aircraft’s own position will always remain.  

Thus, the lower limit to LOO position estimate certainty is driven by ppP .  A tracked 

LOO position estimate uncertainty can approach, but never exceed that of the host 

aircraft.  When considering surveyed landmarks, the reverse is true; the aircraft’s position 

uncertainty can approach, but never exceed that of the best surveyed landmark. 
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3.2  Feature Tracking Measurement Model 

Tracking features in successive images is the underpinning process that will allow 

the SLAAMR algorithm to operate.  It involves multiple steps from generating features, 

to matching them correctly, and eventually mapping their measurements into the 

navigation state.  For a landmark projected onto an image to be tracked, two things must 

occur: the associated feature must precisely, accurately correspond to the same geodetic 

position in each frame, and it must be correctly and consistently identified.   

3.2.1 Feature Generation.  In his work, Veth implemented a scale-invariant 

feature transform (SIFT©) created by Lowe [26][11].  The SIFT© generates ‘key points’ 

for distinct features in an image.  Each key point contains a camera frame position (in 

pixel coordinates), scale, orientation and a distinct descriptor allowing matching to occur. 

Veth’s work demonstrated that SIFT© is a practical and functional feature generator and 

was used in the research herein.  Figure 3.2 shows an image from flight test with overlaid 

features generated by SIFT©.  Feature scale, orientation and descriptor data are not 

shown. 
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Figure 3.2:  Flight test image with overlaid SIFT© generated features.  The features 
are identified by a dot.   

 

 

3.2.2 Feature Matching.  The descriptor generated by SIFT© is a distinct 128-

element vector.  Figure 3.3 plots the 128-descriptor values versus the element’s location 

(for one specific feature), compares it to a matched feature in another image and a feature 

that does not match.   
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Figure 3.3:  Representative descriptor values versus their element location. 
 

The nature of the descriptor allows accurate matching using an auto-correlation 

routine.  A correlation coefficient ( ρ ) is derived for a frame-to-frame feature comparison 

via the dot product of the two feature descriptor vectors, normalized by the dot product of 

the first feature descriptor with itself.  The correlation routine implemented is 

  

 d d
d d

a b

a a
ρ •=

•

T

T  (3.13) 

 

where da  and db  are the descriptor vectors of the two features being compared.  The 

coefficient ρ  varies from 1 (perfect match) to potentially -1.  Practically, the range is 

0.5-1.0 because of the generally positive descriptor element values.  A match is declared 

if ρ  exceeds a threshold derived for a good match.   

The use of SIFT© allows the SLAAMR algorithm to operate in nearly any 

environment, and travel long distances without the need to revisit old landmarks.  
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Previous work on SLAM algorithms used a set of pre-placed targets in a confined area 

[5].  The targets were found and matched using a template matching algorithm.  This 

approach worked well, but limits environment in which it can operate and relies on a 

priori information about the targets (appearance) despite not knowing their location. 

For any given image, SIFT© produces hundreds to thousands of features.  

Applying the correlation equation to every feature (in order to find a match) is 

computationally impractical and could lead to potential false matches.  The EKF 

naturally predicts the geodetic position of all tracked landmarks and assigns an 

uncertainty volume to that prediction.  Projecting this estimated position and uncertainty 

in subsequent images allows the SLAAMR algorithm to spatially constrain which 

features will be considered for a match.  The 3-dimensional landmark position and 

uncertainty project into the image as a 2-dimensional pixel location and corresponding 

ellipsoid.  Figure 3.4 illustrates this principle. 

The cross and ellipse represent the estimated feature projection and 3-sigma 

uncertainty bound (3 standard deviations of ~99% confidence).  Only features that fall 

within the ellipse are considered for a match.  If none exceed the threshold for a good 

match, the track is considered broken. 
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Figure 3.4:  Constrained feature search volume. 
 

 

The projection of landmark position and uncertainty into the image is 

accomplished via the measurement vector ( [ ( ), ]i it t−h x ) and observation matrix 

( [ ; ( )]i it t −H x ), which are developed in the next section.  The general form of the estimated 

landmark projection is  

 

 ˆ ( ) [ ( )]i it t= INSz h x  (3.14) 
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where 1
ˆ ( )i+tz  is the estimated projection expressed in pixel coordinates, and 1( )i+tINSx is 

the INS derived navigation state.   The uncertainty in the estimated projection is mapped 

into the image by: 

 i i[ (t )] [ (t )]= ⋅ ⋅ +T
zz INS xx INSP H x P H x R  (3.15) 

 

where zzP  is a 2x2 covariance matrix describing the 2-dimentional uncertainty ellipse, 

xxP is error state uncertainty covariance matrix and R is the measurement noise 

covariance matrix. 

3.2.3 Image-Only Measurement Equation.  As described in Chapter 2, the 

position vector of a tracked landmark, resolved in the c-frame ( cs ), is a function of 

aircraft and landmark geodetic position (p  and tgtp ), camera mounting position  and 

alignment (relative to the IMU, b
camp  and b

cC ), and aircraft navigation state derived 

transformations ( enT  and n
bC ), where c c b

n b n=C C C : 

 

 ( )c c n b
n en tgt b cam
⎡ ⎤= − −⎣ ⎦s C T p p C p  (3.16) 

 

where enT  transforms the relative difference between aircraft and the tracked landmark 

position from geodetic units into meters.  The relative position vector between the tracked 

object and the aircraft can be expressed as: 

 

 ( ) n b
en tgt b camΔ = − −T p p C p  (3.17) 
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The c-frame object position vector is transformed into the homogeneous image 

measurement expressed in camera pixel location coordinates: 

 

 ( )

1

1

1

pix c
p cc

z

pix c n b
c n en tgt b camc

z

pix c
c nc

z

s

s

s

=

⎡ ⎤= − −⎣ ⎦

= Δ

z T s

T C T p p C p

T C

 (3.18) 

 

If the magnitude of b
camp  is small (as it was in this study), it can be ignored in order to 

simplify calculations.  This step is not required, nor does the inclusion of a non-trivial 

b
camp  change the problem or analysis.  The scalar c

zs  is the z-component of the object 

position vector.  It can be expressed as: 

 [ ]0 0 1c c
z ns = ΔC  (3.19) 

 

The projection of the object’s image onto the image plane is defined as: 

  

 proj
f fx ,y ,f⎡ ⎤= ⎣ ⎦

T
s  (3.20)  

 

and is related to the c-frame object position vector ( cs ) as follows 

 

 proj c
c
z

f
s

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

s s  (3.21) 
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Substituting into Equation (3.18) yields 

 

 1pix proj
p c f
=z T s  (3.22) 

 

Equation (3.22) is over-determined, allowing a simplification.  Optical 

measurements have the “strength” of two equations only; image projections onto a focal 

plane are two-dimensional.  pz  is a homogeneous vector, and there is no need to 

calculate the third component (which is a constant 1).   projs  also has a known third 

component, the focal length.  These properties simplify the measurement equation 

development. 

The c-frame object position vector ( cs ) and image projection vector ( projs ) form 

similar triangles and are scaled by the ratio of their lengths. 

  

 1 1f
c

fproj c

x
y
f

⎡ ⎤
⎢ ⎥ =⎢ ⎥
⎢ ⎥⎣ ⎦

s
s s

 (3.23)  

 

where the length of the projs   and cs  are defined by the 3-D norm 

 

 2 2 2proj
f fx y f= + +s  (3.24) 

Because c
nC  is unitary 

 2 2 2c
x y z= Δ = Δ + Δ + Δs  (3.25)  
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Combining equations yields: 

 

 
2 2 2f

f f c
f n

x
x y f

y
f

⎡ ⎤ + +⎢ ⎥ = Δ⎢ ⎥ Δ
⎢ ⎥⎣ ⎦

C  (3.26)  

 

The focal length is the third component of the vector on the left hand side of Equation 

(3.26), and can be expressed as 

  

 [ ]
2 2 2

0 0 1f f c
n

x y f
f

+ +
= Δ

Δ
C  (3.27) 

  

Equation (3.27) is used to eliminate the scalar on the right hand side of Equation (3.22).  

Isolating the unknown scalar (which also features the range to the landmark) yields: 

 

 
[ ]

2 2 2

0 0 1
f f

c
n

x y f f+ +
=

Δ ΔC
 (3.28) 

  

Substituting into the original relationship yields the two measurement equations: 

  

 
[ ]

1 0 0
0 1 00 0 1

f c
nc

f n

x f
y
⎡ ⎤ ⎡ ⎤

= Δ⎢ ⎥ ⎢ ⎥Δ ⎣ ⎦⎣ ⎦
C

C
 (3.29) 
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By dropping the homogeneous third component, the two-dimensional measurement 

equation vector ( pz ) becomes 

 

 

1 0 0 1
0 1 0

1 0 0
0 1 0

pix proj
p c

fpix
c

f

f

x
y

f
f

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

⎡ ⎤
⎡ ⎤ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

z T s

T
 (3.30) 

 

3.2.4 Augmented State Vector for Landmark Position Estimation.  Augmenting 

the navigation state vector with the landmark’s position vector allows the measurement 

model to fit the Kalman filter mold described in Chapter 2.  It is also important to do this 

in order to model the errors in the knowledge of the landmark’s position, for although it 

does not move, its true location cannot be known for certain.  Thus, the augmented state 

vector is 

 
n
eb
n N E D tgt tgt tgt
nb

tgt

L l h v v v θ ψ L l hφ

⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎡ ⎤= = ⎣ ⎦⎢ ⎥Ψ
⎢ ⎥
⎢ ⎥⎣ ⎦

# # #
T

p
v

x

p

 (3.31) 

 

Note that the accelerometer and gyro biases are not included in the navigation state vector 

for this discussion.  These bias states are normally included in the state vector, but play 

no part in optical measurements.  For the sake of readability and without loss of 

generality, they are thus excluded from this discussion. 
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The associated augmented error state vector is then: 

 

n
eb

n N E D x y z tgt tgt tgt
nb

tgt

L l h v v v L l h

δ
δ

δ δ δ δ δ δ δ ε ε ε δ δ δ

δ

⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎡ ⎤= =⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

# # #
T

p
v

x e
p

   (3.32) 

 

3.2.5 Linearized Image-Only Measurement Equation.  In order to implement an 

EKF, the measurement equation must be linearized.  Recall the form of the non-linear 

measurement model [15]. 

 ( ) [ ( )] ( )p t t t= +z h x v  (3.33) 

 

Since , c
nΔ C  are derived from the navigation state ( )tx , the deterministic portion of ( )p tz  

( [ ( )]th x ) can be re-written:  

 
1 0 0

[ ( )]
0 1 0

fpix
c

f

x
t y

f
f

⎡ ⎤
⎡ ⎤ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

Th x  (3.34) 

 

pix
cT , and f  are constant, thus a simpler measurement equation may be considered 

 

 [ , ] fc
n

f

x
y
⎡ ⎤

′ Δ = ⎢ ⎥
⎣ ⎦

h C  (3.35) 
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where 

( ) 1 0 0 [ , ]
[ ( )] [ , ]

0 1 0

cpix
c nc
nt

f f
′⎡ ⎤Δ⎡ ⎤′= Δ = ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

h CTh x h h C                 (3.36) 

and 

 ( )( ) [ , ] ( )c
p nt t′= Δ +z h h C v  (3.37) 

  
Because pix

cT  and f  are constant, the partial derivative of [ ( )]th x  with respect to ( )tx  is 

the partial derivative of [ , ]c
n′ Δh C  with respect to ( )tx  (or equivalently,Δ  and c

nC ) 

multiplied by a constant matrix. 

 To develop the linearization of the measurement equation, unit vectors must first 

be introduced: 

 1

1
0
0

e
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

,   2

0
1
0

e
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

,   3

0
0
1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

e  (3.38) 

  

The measurement equation can now be written more compactly:   

  

 

1

3

2

3

[ , ]

T c
n

T c
f nc

n T c
f n

T c
n

x
f

y

⎡ ⎤Δ
⎢ ⎥Δ⎡ ⎤ ⎢ ⎥′ Δ = =⎢ ⎥ ⎢ ⎥Δ⎣ ⎦ ⎢ ⎥

Δ⎢ ⎥⎣ ⎦

e C
e C

h C
e C
e C

 (3.39)  
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To linearize the measurement Equation (3.39), the partials with respect to the state 

variables must be taken.  The partials with respect to Δ  equal the partials with respect to 

the relative camera and landmark positions.  Also, for the relatively small changes in 

geodetic position over time (that a conventional aircraft undergoes in flight), the 

transform between geodetic and n-frame units of measurement ( enT ) is treated as a 

constant matrix.  This simplifies the solution only somewhat.  The following is the 

mathematical derivation for the perturbation model used to linearize the measurement 

model about the INS calculated trajectory.   

Now, the measurement equation elements are 

  

 ( ) ( )
( )

1 1
1

33

c n
nn c

c nc
cn

h , =f f
Δ Δ′ Δ =

ΔΔ

TT T

T TT

e C C eC
C ee C

 (3.40)  

( ) ( )
( )

2 2
2

33

c n
nn c

c nc
cn

h , =f f
Δ Δ′ Δ =

ΔΔ

TT T

T TT

e C C eC
C ee C

 (3.41) 

  

This form of the measurement equation facilitates the calculation of the partial 

derivatives.   Each element ( 1h′  and 2h′ ) of the measurement equation takes the form: 

  

 y =
T

T
x a
x b

 (3.42)  

 

where a and b are constant vectors.   
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The perturbation in y with respect to xδ  is thus: 

 

 
( )

( )2
1yδ δ δ

′∂
= = −
∂

T T T

T

h x x ba ab x
x x b

 (3.43) 

 

In Equations (3.40) and  (3.41), let x = Δ , 1,2
n
c=a C e , and 3

n
cb C e= .  This substitution 

yields:  

( )
( )

( )
3 3

2 2

3

1 n c n c
c i n c i n

i n
c

h =fδ δ δΔ −Δ′ = − Δ
Δ

T T T T
T T T

T T

C e e C C e e Cx ba ab x
x b C e

     (3.44) 

 

The component due to perturbations in attitude requires further development. 

Consider the scalar function 

 ( )y ′=h x ,    : 1 1′ ℜ →ℜh  (3.45) 

 

where the variable of interest can be written as the nonlinear relationship 

 

 n
cx = Ta C b  (3.46)  

  

Here, a = Δ  and 1,2,3=b e .  Both are 3 dimensional column vectors.  The perturbation in 

y caused by a perturbation in the DCM is: 

 

 n
cy=δ δ

′∂
∂

Th a C b
x

 (3.47)  
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Small changes in the DCM are driven by the small changes in the camera attitude angles’ 

error vector n
nce .  The following holds true about the perturbed DCM [23]: 

 

 ( )( ) ( )n n n n n n n n
c nc c c nc c c cδ= − × = − × +I �perturbedC e C C e C C C  (3.48) 

 

Thus it can be declared that: 

 ( )n n n
c nc cδ = − ×C e C  (3.49) 

  

Hence, the perturbation in y caused by n
nce  is: 

  

 ( )n n
nc cy=δ

′∂
− Δ ×
∂

Th e C
x

 (3.50)  

 

Since the camera is rigidly connected to the b-frame, and n
nce  are errors about the n-frame 

axis, n
nce  is equivalent to the aircraft attitude angles’ error vector n

nbe .  Substituting the 

variables yields: 

 

( )( ) ( )( )
( )

3 3

2

3

n n n n n n
c nb c i c i nb c

n
c

y=fδ
Δ −Δ × + Δ Δ ×

Δ

T T T T

T

C e e C e C e e C e

C e
            (3.51) 
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Using the identity ( ) ( )n n
c c

⎡ ⎤× = − ×⎣ ⎦a b b ae C e C e e , n
nbe  is pulled out to the right hand side : 

 

( ) ( )( )
( )

3 3

2

3

n n n
c c i i c n

nbn
c

fδ
Δ Δ ×− Δ ×

=
Δ

T T T

T

C e C e e C e
y e

C e
  (3.52) 

 

where ( )n
c iC e ×  is the skew symmetric form of the transformed vector n

c iC e .  Combining 

all the perturbations for the optical measurement Equations (3.40) and (3.41) yields the 

perturbation model with respect to the navigation state errors: 

  

 
( )

( ) ( )( )
( )

( )
[ ( ) ( ) ( )( )

3 33 3
2 2

3 3

3 3 3 32

3

n n nn c n c
c c i i c nc i n c i n

i nbn n
c c

n c n n n n
c i i n c c i i c nbn

c

h f f

f

δ δ

δ

Δ Δ ×− Δ ×Δ −Δ′= Δ+
Δ Δ

⎤= Δ − Δ+Δ Δ ×− Δ × ⎦
Δ

T T TT T T T

T T

T T T T T T

T

C e C e e C eC e e C C e e C e
C e C e

C e e e e C C e C e e C e e
C e

 (3.53) 

  

To simplify, the unit vectors can be collected as such:  

 
3 1 1 3 2

3 3 1

T T

T T
2 2

− = − ×

− = ×

e e e e e

e e e e e
 (3.54)  

The skew symmetric form of the unit vectors are defined 

  

1 1

0 0 0
0 0 1
0 1 0

E e
⎡ ⎤
⎢ ⎥= × = −⎢ ⎥
⎢ ⎥⎣ ⎦

,   2 2

0 0 1
0 0 0
1 0 0

E e
⎡ ⎤
⎢ ⎥= × = ⎢ ⎥
⎢ ⎥−⎣ ⎦

,   3 3

0 1 0
1 0 0
0 0 0

−⎡ ⎤
⎢ ⎥= × = ⎢ ⎥
⎢ ⎥⎣ ⎦

E e  (3.55) 



 

106 

 Recall, the navigation error state augmented with the uncertainty in the landmark 

position is 

 N E D x y z tgt tgt tgtδL δl δh δv δv δv δL δl δhδ ε ε ε⎡ ⎤= ⎣ ⎦# # #
T

x (3.56) 

 

making  

( )( ) ( )( ) ( ) ( )

[ ]( )

n b n b
en tgt b cam en tgt b cam en tgt

en tgt tgt tgtδL δl δh δL δl δh

δ δ δ δ δ δ

δ

Δ = − − = − − = −

⎡ ⎤Δ = −⎣ ⎦
T T

T p p C p T p p C p T p p

T

(3.57) 

     

Thus the simplified observation matrix is written: 

( )
( ) ( )( )
( ) ( )( )

2 1 3 3 1 1 3 2

2

1 1 3 3 2 2 3 13

[ ( )]
n c n n n n c
c n en c c c c n en

n c n n n n cn
c n en c c c c n enc

f
t

−Δ Δ Δ ×− Δ × Δ
′ =

Δ Δ Δ ×− Δ × −ΔΔ

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

0

0

# # #

# # #

T T T T T
x

c T T T T TT
x

CECT C e Ce e Ce CECT
H x

CECT C e Ce e Ce CECTCe
(3.58) 

 

 

The complete observation matrix is obtained by applying Equation (3.36): 

 

1 0 0 [ ( )]
[ ( )]

0 1 0 0

pix
c t

t
f

′⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

c
c

H xTH x    (3.59) 
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The transform enT  merely changes the units from geodetic (radians of longitude and 

latitude) to meters, and is considered essentially constant.  Without loss of generality, it 

can be pulled out of Equation (3.59), and applied to the error states before the Kalman 

filter update cycle.  Also, a reference frame can be declared such that enT  is identity.  The 

same can be said for the constants in front.  For the sake of readability, enT  and the 

constants in front will be omitted from the observation matrix from this point on. 

3.2.6 Tracking Many Unknown Landmarks.  Tracking of multiple landmarks 

with position that is unknown simply requires augmenting the error state (and associated 

state vector) with additional landmark position states: 

 

 

 

1

n
eb
n
nb

tgt

tgt

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

"

#

N

p
v

x
p

p

Ψ

, 

1

n
eb

n
nb

tgt

tgt

δ
δ

δ
δ

δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

"

#

N

p
v

e
x

p

p

 (3.60) 

 

 

where p , v  and Ψ  are the states associated with the INS, and tgtnp  is the nth landmark 

position vector.   
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 The error propagation equations are augmented to model the stationary objects as 

follows: 

 

MxM Mx3 Mx3 Mx6

3xM 3x3 3x3 3x6

3xM 3x3 3x3 3x6

δ δ δ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

0 0
0 0 0 0

0 0 0 0

"
"�

# # % # #
"

F G

x x w
 (3.61) 

 

where F  and G are the INS (MxM) systems dynamics matrix and the (Mx6) noise 

transformation matrix from Chapter 2.  One column and row of zeros is added for every 

new object position state variable added. 

The measurement Equations (3.40) and (3.41) are augmented as well to reflect the 

added measurements and state variables.  The observation matrix ( [ ( )]tcH x ) is 

augmented with two additional rows for each additional tracked landmark.  The ith pair of 

rows, corresponding to the ith of N tracked landmarks, are defined: 

 

( )
( )

( ) ( )( )
( ) ( )( )

2 1 3 3 1 1 3

2

3 1 1 3 3 2 2 3

1 (3 ( 1)) 2 1 (3 ( ))

1 (3 ( 1)) 1 1 (3 ( ))

( )
T n c T n T n T n

i c n i c i c i c

i T n T n c T n T n T n
i c i c n i c i c i c

T n c
i i c n N i

T n c
i i c n N i

i

ft

− −

− −

⎡−Δ Δ Δ ×− Δ ×
⎢=
⎢Δ +Δ Δ Δ ×− Δ ×⎣

⎤+Δ
⎥

−Δ ⎥⎦

Δ

0

0

0 0

0 0
i i

i i

# #

# #

# # #

# # #

x

c

x

x x

x x

C E C C e C e e C e
H x

C e C E C C e C e e C e

C E C

C E C

( ) , 1, ,n b
en tgt b cam i N= − − = …iT p p C p

  

(3.62)
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3.2.7 Tracking Known Landmarks.  If the landmark position is known perfectly, 

the state variables concerning the object location can be dropped, and substituted for 

constants throughout the model.  True landmark position knowledge is reasonably 

attainable through an a priori survey, but will not be discussed.  In the case in which a 

single object is tracked, the object line-of-sight (LOS) vector can be substituted for the 

position vector.  

 
p

p

p

x x
y y
z z

⎡ ⎤−
⎢ ⎥← Δ = −⎢ ⎥
⎢ ⎥−⎣ ⎦

p  (3.63)     

Thus the new navigation state error vector is now: 

 

 n
nbδ δ δ⎡ ⎤= Δ⎣ ⎦

TT T Tx v e  (3.64)  

 

Because the LOS vector is now the difference between the camera position and a constant 

landmark position, the position and velocity derivatives, and therefore the error 

propagation equations, do not change from before: 

 

 9x9 9x6
n n
nb nb

δ δ
δ δ δ
⎡ ⎤Δ Δ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

�
�
�
v F v G w

e e
 (3.65)  

 

The measurement equation also remains as described before.   
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 The case where many known landmarks are tracked is a simple extension.  Since 

all the landmarks are known and stationary, the position of one can be related to another 

by differencing their positions.   

 

 1 1( ), 2, ,tgt tgt tgt tgt i N= + − = …i ip p p p  (3.66)  

 

Because the landmarks are stationary, the differences in their positions are constant.  

Therefore, no matter how many known landmarks are tracked, the state dimension 

remains the same. The LOS vectors iΔ  used in the additional measurement equations are 

therefore expressed: 

 

 , 1,...,i tgt i i NΔ = − =p p  (3.67) 

 

 The augmented measurement equation ( [ ( )]t′′h x ) simply becomes a vector of N 

functions taking the form of Equation (3.36). 

 

1[ ( )]
[ ( )]

[ ( )]N

t
t

t

⎡ ⎤
⎢ ⎥′′ = ⎢ ⎥
⎢ ⎥⎣ ⎦

h x
h x

h x
#      (3.68) 
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The Observation matrix then contains N pairs of rows, where the ith pair of rows are: 

 

( )
( )

( ) ( )( )
( ) ( )( )

2 1 3 3 1 1 3

2

3 1 1 3 3 2 2 3

( )
n c n n n

i c n i c i c i c

i n n c n n n
i c i c n i c i c i c

ft
⎡ ⎤−Δ Δ Δ ×− Δ ×
⎢ ⎥=
⎢ ⎥Δ Δ Δ Δ ×− Δ ×⎣ ⎦

0

0

# #

# #

T T T T
x

c T T T T T
x

CEC C e Ce e Ce
H x

Ce CEC C e Ce e Ce
 

(3.69)

3.3 Image-Only Measurement Observability 

 The strength of aiding action provided to the INS from optical measurements 

depends on the degree of observability of the INS error states as provided by the 

measurement equation.  The observation matrix ( )( )tcH x  is time-dependent.  Hence, the 

degree of observability provided by bearings-only measurements requires the calculation 

of the observability grammian 

  

 ( ) ( ) ( )
0

( ) ( )
T

t
t T tt e t t e dt= ⋅∫ F F

c cW H x H x  (3.70) 

 

Note that the observability grammian is also trajectory-dependent.  A study of the 

observability of bearings-only measurements for a SLAM based system has been 

accomplished [30], but this section fully develops the problem for an airborne application 

in an attempt to design an aiding strategy more effectively.  It is important to note that 

this study applies to the update cycle of the EKF and speaks nothing to the error growth 
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that occurs between measurements.  Error growth that occurs in the EKF propagation 

cycle is a function of the IMU being used.  This error is constrained most effectively 

when the measurement equation has good observability.  This study also examines the 

continuous-measurement case, but the findings can be extended into the discrete, still-

camera realm in good faith.   

3.3.1  Surveyed Landmark Tracking Observability.  It is useful to begin with the 

simpler condition of tracking landmarks with perfectly known positions (nav-state not 

augmented for landmark position estimation).  Consider wings-level, constant-altitude 

flight.  A downward looking camera is employed from the aircraft flying at a constant 

velocity (v) and constant altitude (h) over flat terrain for time (t).  A landmark directly 

along the flight path is tracked.  The INS aiding action may be thoroughly examined in 

this simple scenario. 

The camera, body, and nav- frames are all nominally aligned. Thus, In
b =C .  In 

the case where one known landmark is tracked, the 9x9 observability grammian for level, 

un-accelerated flight is  
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where  ( ) T

o x y zt = ⎡ ⎤Δ Δ Δ Δ⎣ ⎦    ,   ( )x xt +v tΔ = Δ ⋅    ,   0y (t)Δ =   ,    z hΔ ≡ .  

Additional variables are the camera focal length ( f ) and gravitational constant (g). 

Here, the components of the specific force resolved in the body frame ( xf , yf  

and zf ) are defined: 0x yf f= = , and zf g= − , and thus not readily apparent.  

Additionally, the velocity component is strictly along the b-frame x-axis as aircraft 

generally fly with no sideslip.  Drift due to wind is ignored.  This can be done without 

loss of generality as an arbitrary body frame can always be redefined to align with any 

constant velocity.  To increase the readability of the above matrix, the tracked landmark 

was chosen to be along the flight path ( 0y (t)Δ = ).  Through analysis it was found that 

this restriction did not affect the rank of the observability grammian matrix.  Following 

matrices are less complex and the 0y (t)Δ =  restriction is omitted. 

Landmarks must be tracked over time. Note that, as time goes on, the elements of 

the grammian grow polynomially.  Additionally, the entire matrix is scaled by t (factored 

out, and multiplying the whole matrix).  This implies the great benefit of long observation 

periods.   

There is a suggestion of scalability as well.  It is evident by the 21 h term factored 

out, and multiplying the whole matrix.  This suggests that the absolute altitude plays as 

an important role as the angular geometry, and will be evaluated with simulation in 

Chapter 4. 

To calculate the rank of the observability grammian, its Row Reduced Echelon 

Form (RREF) is obtained: 
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 (3.72) 

 

where the position of the tracked landmark is not confined to the flight path 

( ( )y ytΔ = Δ ).  Notice that in the RREF, all reference to time drops out.   Tracking a 

landmark for long period does not affect rank, but will affect matrix condition number. 

The 9X9 grammian matrix is not of full rank 9, but has a rank of 6 for all time. 

Only a partial state estimate can be obtained. Tracking a single known landmark will not 

enable one to aid all 9 INS states. Additional independent measurements of the 

navigation state are needed for full INS aiding action (full rank).  

 In the RREF of the grammian, the forms /h v , /x vΔ  and /y vΔ  appear quite 

often.  The ratio of velocity to lateral displacement and ratio of velocity to altitude (V 

over h, as it is more commonly known) plays an important role in INS aiding using 
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bearings-only measurements.  V over h is a measure of image apparent angular rate and 

has units of radians per sec (sec-1).  This parameter ultimately drives the measure of 

geometric dilution of precision (GDOP) and observability grammian condition number.  

By controlling V over h, one cannot affect rank per se, but can maximize aiding benefit 

and distribution.      

 In the case in which the object is directly over-flown ( 0yΔ = ), the rank remains 

6 as well.  This implies that the lateral position of the landmark does not affect the overall 

observability of the system.  Geometry does, however, affect how the aiding action is 

distributed.  Better insight to this distribution is attained by examining the condition 

number of the observability grammian and GDOP.   

In the case in which the aircraft’s trajectory is not constrained to the level, un-

accelerated flight regime (where the specific force vector is aligned with the z-axis), the 

grammian rank increases to 7, and the RREF is 
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⎢ ⎥⎣ ⎦  (3.73) 

 

This implies that accelerated flight does benefit INS aiding with a single tracked 

landmark of known position.  This condition requires continuous maneuvering and is, 

therefore, impractical for typical missions.  Accelerated flight is more favorable, but the 

level un-accelerated flight condition is the worst case, and will be considered from hence 

forth.   

Tracking one landmark does not provide full observability.  The question is thus 

posed whether tracking more objects will improve observability, and if so, how many is 

enough.  It turns out, that two tracked landmarks are enough to provide full grammian 

rank, and thus, full observability and INS aiding action.  The following development 

illustrates this. 
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The grammian for level, un-accelerated flight and two tracked landmarks can be 

expressed as the sum of two grammians, each corresponding to a single tracked 

landmark.   

 

 
1 2

2 ( ) ( ) ( )t t t
Δ Δ

= +W W W  (3.74)                              

where, it can be expressed  

 1 1 22Δ = Δ + −P PP P  (3.75) 

 

The grammians 
1

( )t
Δ

W  and 
2

( )t
Δ

W  correspond to the two tracked landmarks, and take 

the form of the single track grammian above, but evaluated at the corresponding relative 

landmark position vectors 1Δ  and 2Δ .   The observability grammian for multiple tracked 

landmarks simply becomes the sum of the single track grammians, evaluated for the LOS 

vector to the additional landmarks: 

 

 
1

( ) ( )
i

i
Δ

=

=∑
N

NW t W t  (3.76) 

 

where N is the number of landmarks being tracked, iΔ  is the LOS vector to the ith 

landmark, ( )tW is the single landmark grammian from Equation (3.71), and ( )tNW is the 

composite observability grammian matrix for N tracked landmarks of known location.  
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This realization greatly simplifies the procedure for evaluating observability grammian 

matrix condition number when tracking many landmarks. 

For flight in the vertical plane, and without the level flight assumption, the RREF 

of the grammian associated with the ith tracked landmark is 
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(3.77) 

 

When two or more landmarks are tracked, the RREF of the observability 

grammian is an identity matrix. The question must be answered as to whether or not two 

tracked landmarks will always give an observability grammian with full rank.  The 

answer is affirmative, but there are two exceptions.  The grammian has full rank as long 
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as the LOS vectors for both landmarks are not co-linear, and the aircraft is not in a state 

of free-fall ( 0x y zf f f= = = ). 

The LOS vectors for both landmarks are co-linear if the following is true 

 

 12 aΔ = Δ   (3.78) 

 

where a is a scalar multiplication factor.  If the camera and the two landmarks, all lie on a 

straight line, the observability grammian’s rank drops to 6.  This is intuitive, as both 

landmarks provide the same measurement information to a two-dimensional camera; the 

only difference between the landmarks (in the camera frame) is in depth, a dimension the 

camera cannot discern.   

The camera and two landmarks are on the same straight line in two degenerate 

cases: 1) the aircraft crosses the axis defined by the two landmarks, and, 2) the aircraft is 

flying along this same axis.  In the first case, the observability drop is transitory.  As the 

aircraft crosses this axis, the grammian rank drops momentarily, but then returns.  The 

condition of the observability grammian matrix will remain poor until the aircraft is far 

enough away to ensure good geometry.  If the aircraft travels along the axis, it will lose 

aiding benefit in the unobservable dimensions; position and velocity along the axis, and 

in rotation about it.  This is illustrated in Figure 3.5. 
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Figure 3.5:  Unobservable dimensions for two landmark tracks. 
 
 

 An INS on board an aircraft traveling along the axis formed by the two tracked 

objects will receive no aiding benefit in position, velocity and rotation along and about 

that axis.  As the aircraft approaches and crosses such an axis, observability drops and 

aiding suffers. 

The second exception to the rule, weightlessness ( 0x,y,zf = ), reduces the 

observability grammian matrix rank to 8 (when 2 or more landmarks are being tracked).  

For typical aircraft applications, weightlessness, or zero-g, conditions tend to be 

transitory, and should not cause significant aiding degradation.  Free fall weaponry using 

this method of aiding would be affected, however.  Notably, GPS aiding (of an INS) 

suffers much greater than landmark tracking; loosely coupled GPS aiding rank drops to 6 

at zero-g conditions. 

3.3.1.1 Non-Dimensional Study of Aiding Strength.  Full observability speaks 

to the existence of a complete aiding solution, but says very little of the quality of that 
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solution.  For this, GDOP and observability grammian matrix condition number must be 

studied.  The GDOP is defined as 

 

 ( ){ }1t −=GDOP trace W  (3.79) 

 

where ( )tW  is the observability grammian when two landmarks are being tracked.  A 

high condition number of the grammian matrix indicates poor geometry and consequently 

a high GDOP.  The result of a full rank grammian with high condition number is that all 

states are being aided, but the aiding action is poor and unevenly distributed.  GDOP 

provides a scalar measure for the dilution of precision attained by a particular geometry 

presented to the measurement device.  A low GDOP value indicates little dilution of 

navigation aiding precision.   

It is important to non-dimensionalize the variables and problem parameters when 

studying the nature of the observability grammian matrix.   This ensures scaling issues 

don’t obscure the insight into observability gained from the condition number or GDOP 

calculation, and, hence, INS aiding action.  The following development explores the 

effects of geometry in a simple scenario.   

      The scenario considered entails an aircraft at an altitude h and velocity v, traveling 

towards, and over-flying, two landmarks arranged in a line.  The positions of the 

landmarks are expressed as a multiple of the aircraft’s altitude, as shown in Figure 3.6. 
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Figure 3.6:  Flight in the vertical plane.  
 

 

 The aircraft at an altitude h and velocity v travels towards two landmarks arranged 

in a line; their positions are expressed as multiples of the aircraft’s altitude.  In this 

scenario, all motion is confined to the z-x plane; y≡0, though 3-dimensions are still 

maintained in the state vector.  

To non-dimensionalize, all positional variables are scaled by h.  Time is non-

dimensionalized as follows: 

 gt t
h

′ →  (3.80) 

and 

 T Tg
h

′ →  (3.81) 

where T is the duration of flight and g is the Earth’s gravitational acceleration.   
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Aircraft velocity is non-dimensionalized by setting  

 

 1v v
gh

′ →  (3.82) 

 

Aircraft and ground object positions are thus expressed:   

 

            [ ]t 0 1v= T
acp               [ ]0 0= α T

1p                [ ]0 0= β T
2p (3.83) 

 

Finally, the specific force vector is also normalized by dividing through by g: 

 

 [ ]0 0 1= T
f  (3.84) 

Without loss of generality, we constrain β  to be greater than α . 

 

 
−∞ < α < ∞
α < β < ∞

 (3.85) 

 

The parameters α  and β  determine the geometry of the measurement arrangement 

The time variable is constrained to those instances when both ground objects are 

in view.  For the sake of generality, assume an ideal camera with a 180 degree field-of-

view (FOV) and infinite pixel resolution.  The camera’s tracking ability is not limited by 

the geometry of the objects. 
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Thus the four non-dimensional problem parameters are α , β , v′  and T′ .   The 

9x9 non-dimensionalized dynamics matrix for this scenario is 

 

 
3 3 3

3 3 3 3

3 3 3

I 0 1 0
-1 0 0
0 0 0

,
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= × × =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

0 0
0 0
0 0 0

F e e  (3.86) 

 

and the relative ground object position vectors needed for the measurement equation are 

 

 [ ]1 - 0 1v t′Δ = α T  (3.87) 

and  

 [ ]2 - 0 1v t′Δ = β T  (3.88) 

 

The focal length (f) must also be divided by h so that the non-dimensional focal 

length is small. The nominal body-to-nav frame DCM is the identity matrix, and the 

altitude (h) is unity. Hence, the observation matrix is 

 

  

 ( )
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2

2

1 0 0 0 0 0 1 0
0 1 0 0 0 0 1 0
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0 1 0 0 0 0 1 0

v t v t
v t
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⎡ ⎤′ ′α − −α +
⎢ ⎥
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Choosing the geometry 

 50, 1, 1 , 10mv =   v h g f
sec

−⎛ ⎞⎡ ⎤′ ′ ′α = β = = =⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
 (3.90) 

 

allows the GDOP and condition number (κ (T)) for this scenario to be calculated as a 

function of tracking time (T). 

Figures 3.7 and 3.8 illustrate the behavior of non-dimensional GDOP in this 

simple scenario as time progresses.  The amount of time a landmark is tracked is defined 

to be dwell time.   
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Figure 3.7:  GDOP vs dwell time in the non-dimensional case study. 
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Figure 3.8:  Observability grammian matrix condition number vs dwell time in the 
non-dimensional case study. 

 
 

Figures 3.7 and 3.8 illustrate the benefit of tracking features for long periods of 

time.  A long dwell time allows the aircraft to traverse through space, and develop larger 

observation or tracking angles on tracked landmarks.  The nature of these plots show the 

great benefit of the first 45 degrees of tracking angle (occurring at time = 1 for this non-

dimensionalized case), and that relatively little added benefit is gained past this point.  

The condition number begins to rise again after approximately 2.3, but this is attributed to 

Non-dimensional dwell time
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the tracked landmarks approaching the co-linear condition as they move to the horizon.  

In this case, the geometry effects overcome the benefit of dwell, and the matrix 

approaches a singular condition. 

In their work, George and Sukkarieh achieved reasonable navigation performance 

using a SLAM algorithm [5].  They leveraged dwell time and a fast camera rate to 

converge on a solution.  The test did, however, revisit the same environment, spiraling 

around a set of features with a side looking camera.  Looking into the turn naturally 

increased dwell time.  If this type of flight profile meets mission needs, then performance 

can be greatly increased.  However, the dwell time on landmarks tracked when traveling 

long distances is driven by camera look angle and optical resolution.  Performance is then 

affected by GDOP as landmarks move to the horizon.  A balance must be made to 

optimize all variables.  In either case, it is evident that tracking a landmark over time is 

beneficial, but there are other factors to consider. 

3.3.1.2 V over h Influence on Aiding Strength.  V over h stands out as the key 

aircraft controlled parameter (in the observability grammian matrix) affecting aiding 

quality.  Landmark relative lateral displacement will change as a matter of course as 

landmarks traverse the camera field-of-view.  The velocity-to-height ratio, however, is 

directly established by the flight path.  The observability grammian matrix is a nine-

dimensional function making a concise analysis very difficult.  One dimensional 

measures of GDOP and matrix condition number give some insight, but sweeping 

generalizations cannot be made.  The V over h investigation is even more complex as 

varying velocity, height or dwell time, ultimately affects the geometry.  No true single 
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variable isolation can be made.  In any case, this section will examine the non-

dimensional scenario in an attempt to gain some insight. 

Consider the non-dimensional case describe above, but allow velocity to vary, 

adjusting the V over h ratio.  Because dwell time and tracking angle are related by 

velocity, two conditions are considered.  In the first, the dwell time is held constant as 

velocity (V over h) is varied.  This leads to a tracking angle that increases with velocity 

(V over h).   In the second, the total tracking angle is made constant by varying the dwell 

time to achieve the same distance traveled.  In this case, one landmark starts 45 degrees 

in front and finishes directly below, while the other starts directly below and finishes 45 

degrees behind.  The constant dwell time case is important because time between images 

(measurements) is constant.  Since the Kalman filter aims to limit INS error growth that 

accumulates between measurements, it is important to examine the ability of the system 

to control this growth effectively over constant time intervals.  These intervals will of 

course vary with application.  The constant tracking angle case is important to examine as 

it eliminates the geometry from the equation, leaving the effect of dynamics.   

The effect of scalability cannot be ignored.  It is also illustrated for each of the 

conditions describe above.  The height is varied about the nominal height (ho) for three 

different cases, but angular geometry is held constant.  Figure 3.9 illustrates the effect 

varying V over h has on observability grammian matrix condition number.  
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Figure 3.9:  Observability grammian matrix condition number as a function of V 
over h.  For a non-dimensionalized case, as altitude (h) varies about a nominal 
height (ho). 
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For the constant dwell time case, lower V over h ratios yield lower condition 

numbers, and thus more evenly distributed aiding (among all estimated states).  A ratio of 

approximately 1 appears to be a knee in the curve before the matrix condition number 

grows very large.  This is due to the fact that, for the non-dimensionalized dwell time of 

1, both landmarks remain within 45 degrees of the nadir when the V over h ratio is less 

than 1.  The dwell time study above showed that tracking angles up to 45 degrees provide 

the best aiding.   For V over h ratios greater than 1, the landmarks have passed underneath 

and proceeded towards the horizon.   In this case, the geometry has drastically changed 

and the landmarks approach a co-linear condition.  This is the reason condition number 

grows, not V over h ratio itself.  When the landmarks remain inside 45 degrees of nadir, V 

over h has little to no effect on grammian matrix condition number or the distribution of 

aiding among the navigation state variables.  

Notably, a lower altitude (h=ho/2) provides better aiding than a higher one 

(h=ho*2), despite the same V over h ratio and geometry (absolute altitude drives the 

magnitude of the condition number, while V over h drives the shape of the graph).  This 

speaks to the scalability problem faced by bearings-only measurements.  The angular 

resolution of a camera drives its ability to discern small displacements from far away, and 

thus positional estimation suffers.  This study implies that flying slow and low (flying 

lower for a given V over h ratio) provides the strongest and most even aiding.  This is 

supported by Veth’s work on indoor navigation [26]. 

In the constant track angle case, the landmarks all remain inside 45 degrees of 

nadir, and each experience a 45 degree tracking angle.  The dwell time however varies 
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with V over h.  Figure 3.9 implies a sweet spot somewhere in the middle.  The V over h 

ratio factors into the observability grammian in many places.  Too large or small a value 

will naturally increase the condition number of the matrix.  This finding merely indicates 

that the aiding will not be evenly distributed.  It is proposed that landmarks which have 

low angular rates (or effective V over h) provide good attitude aiding, but poor positional 

aiding.  It is also proposed that landmarks which have the highest angular rates (or 

effective V over h) provide the best positional aiding and poorest attitude aiding.  This 

proposition is supported by the fact that a star tracker (stars are effectively all on the 

horizon because none exhibit angular rates due to aircraft translation) provides excellent 

attitude aiding, but no positional aiding.  The fact that Figure 3.9 illustrates a non-

dimensional case and the sweet spot varies with absolute height means that predicting the 

sweet spot is very difficult.  An aiding strategy that maximizes V over h span will 

increase the likelihood that the sweet spot is captured.  Also, if in fact the two ends of the 

spectrum represent good attitude aiding and good positional aiding respectively, then 

capturing both ends will complement each other.  Chapter 4 will experimentally evaluate 

the effect of V over h and attempt to validate these propositions. 

A low V over h ratio at low altitude appears to be the most favorable condition to 

provide evenly distributed aiding to the whole navigation state.  The added benefit of 

increased attitude aiding is felt throughout the system, as a good attitude estimate is 

critical to resolve the rest of the navigation state.  This proposal is supported by the work 

of George and Sukkarieh who flew a small UAV at approximately 125 meters altitude 

and at slow speeds, looking sideways (into the turn) while orbiting a target area.  Altitude 
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and V over h were inherently low, and they achieved reasonable performance [5].  

However, this condition may not be attainable for many applications which travel in a 

straight line.   

The full aiding picture cannot be seen until GDOP is examined.  Consider the 

non-dimensional scenario from a GDOP perspective; see Figure 3.10.   Again, the 

constant dwell time and tracking angle are examined as well as scalability.   

In the constant dwell time case, there appears to be a slight advantage to a V over 

h ratio between 1 and 10, despite the absolute altitude.  In this region, the landmarks have 

exited the 45 degree cone about nadir.  The condition number has increased, but the 

GDOP has decreased.  This finding is not intuitive, but suggests that perhaps the higher 

tracking angle (for the given dwell time) provides an overall benefit that overcomes the 

effects that penalize condition number.   Thus, there is yet another sweet spot, but this 

one at a higher V over h than the associated sweet spot described above.   This suggests 

that an aiding strategy that captures higher V over h ratios could take advantage of an 

improved GDOP. 

Once again, the scalability principle shows that absolute altitude significantly 

affects GDOP across the board.  Lower absolute altitudes reduce precision dilution, and 

thus improve aiding action. 

 

 



 

134 

 

Figure 3.10:  Geometric Dilution of Precision as a function of V over h.  For a non-
dimensionalized case, as altitude (h) varies about a nominal height (ho). 
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In the constant track angle case, a lower V over h definitively improves GDOP.  

Since the aircraft-to-landmark geometry dependence is removed, it isn’t readily apparent 

why this is the case.  If the discrete case is considered, a lower V over h allows more 

measurements in the same tracking angle.  More measurements allow the corrupting 

errors to be averaged out more precisely.  If the limit is taken such that a continuous set 

of measurements is available, then the benefit of a lower V over h is understandable.  The 

dynamics of the inertial system cannot be ignored either.  In any case, this finding 

suggests that an aiding strategy that captures lower V over h ratios could take advantage 

of an improved GDOP.   

So far there has been evidence that capturing both high and low V over h ratios 

provide benefit.  This cannot be accomplished with a single landmark, but can be done by 

tracking many different landmarks simultaneously.  V over h ultimately drives aiding 

strength and distribution, and will be evaluated experimentally in Chapter 4.  

3.3.1.3 Look Angle Influence on Aiding Strength.  The question then arises, 

what V over h and what altitude should be flown for a given application (aircraft and 

mission).  This decision, of course, will be influenced by the performance of the aircraft 

and its mission requirements, but V over h can be affected another way.  Given an aircraft 

flying over flat terrain, the V over h ratio described only applies at nadir.  In actuality, V 

over h should be considered a measure of apparent angular rate, which varies throughout 

the scene.  Objects on the horizon show zero angular rate (for straight and level flight), 

while V over h is highest at nadir.  The benefit of a lower V over h is shown in Figures 

3.9 and 3.10.  The portion of the scene near the horizon naturally exhibits low V over h.  
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The portion of the scene near nadir naturally exhibits higher V over h, but doesn’t 

necessarily approach the critical and unknown sweet spots.   V over h can be, to an extent, 

varied by observing different portions of a scene.   

Suppose that the entire scene exhibits a V over h less than 1 sec-1.  This is optimal 

for even distribution of aiding (for constant time intervals), but can’t be generally 

guaranteed.  However, there exists a portion of every scene, between nadir and the 

horizon, where V over h is less than this threshold.  It must be stressed that condition 

number suffers if the lowest V over h is caused by tracking landmarks on the horizon.  

These landmarks will never generate large tracking angles.  With a wide enough lens, the 

camera FOV should strive to capture portions near the horizon for even aiding strength to 

all navigation states (over constant time intervals) in order to ensure that all navigation 

state errors are constrained.  However, due to the naturally low tracking angles of these 

landmarks, a complementary approach that tracks landmarks over large angles must be 

accomplished. 

  If a landmark position requires triangulation, a lower GDOP is more favorable.  

This was shown to happen between a V over h of 1 and 10 sec-1 (for the non-dimensional 

case).  This condition cannot be guaranteed in any scene, but there is no penalty for 

trying.  Given conventional aircraft performance, this condition would rarely exist 

anywhere other than at nadir.  Also, it would be rare for a conventional aircraft to exceed 

a V over h of 3-5 sec-1 at nadir.  Thus, to ensure the maximum benefit of a low GDOP, a 

camera FOV should strive to capture nadir.  Since a low V over h can always be 

guaranteed, and a high V over h cannot, capturing nadir should outweigh capturing the 
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horizon if camera field-of-view is limited, especially since landmarks tracked on the 

horizon require another to be orthogonally tracked at high V over h.  

The purposed sweet spots in the V over h spectrum cannot be practically predicted 

or controlled.  Despite this nature, it has already been shown that capturing both high and 

low V over h potions of the scene is beneficial.  Fortunately the sweet spots reside 

between the high and low limits demonstrated in the non-dimensional case.  An aiding 

strategy that captures the horizon and nadir will maximize the potential to capture the V 

over h sweet spots described here. 

Since landmarks generally exist below the horizon, a 180 degree field-of-view 

camera lens could reasonably view the entire scene presented to an aircraft.  This, 

however, creates a complex calibration problem.  A 90 degree field of view is a practical 

compromise between pin-hole camera model calibration, and capturing enough of the 

scene.  This would also ensure capturing nadir and one horizon, but which horizon is 

optimal?  Humans look forward, capturing the forward horizon, but this is because 

humans use their eyes for navigation and guidance.  From an aviation navigation 

standpoint, guidance can be accomplished by steering to inertial coordinates, freeing the 

camera to look anywhere (if dedicated to the navigation task).   

An EKF is an iterative process, and the element of time ordering plays an 

important role.  The method by which a landmark enters and exits the scene affects the 

resultant aiding.  If a landmark’s position is well surveyed, then, arguably, order doesn’t 

matter.  One would want simply to track it for as long as possible, or dwell on it, with the 

lowest possible observability grammian condition number and GDOP to ensure the most 
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optimal aiding.  Suppose, however, that the landmark position is not known.  It would 

have to be located by triangulation before dwelling on it would provide any benefit.  This 

suggests that the camera should be positioned to observe landmarks in the higher V over 

h portion of the scene before dwelling in the lower V over h portion of the scene.  For a 

90 degree field-of-view, this means pointing the camera backwards at a 45 degree angle.  

Figure 3.11 illustrates this principle.   

 

 

 

 

 

 

 

 

Figure 3.11:  Rear facing camera geometric advantage. 
 

 A rearward looking camera allows landmarks to be triangulated before they are 

tracked, thus maximizing useful dwell time.  This assertion is counter-intuitive, but 

insightful and unique to this research.   

If time were not a factor, i.e., an offline optimal smoother or batch estimator was 

used, order of flow would not matter.  However, it was shown in Figure 3.7 that dwell 

time affects condition number.  Looking backwards maximizes useful dwell time on 

features that have been first triangulated.  Looking forward, the system dwells on 
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landmarks before they have been triangulated well (the best GDOP occurs just before 

landmarks leave the scene).  This is of course a simplification of a continuous process, 

but the principles remain.  An experimental evaluation of camera look angle is 

accomplished in Chapter 4, supporting this assertion. 

3.3.1.4 Scene Geometry Influence on Aiding Strength.  From a strict 

observability standpoint, one needs only to track two surveyed landmarks.  Matrix 

condition and GDOP, however, depend on geometry.  Tracking many randomly placed 

landmarks increase the probability of attaining good geometry (a low condition number 

and good GDOP) at all times.  The observability grammian, condition number, and 

GDOP calculations are highly non-linear, complex, time-variant, and thus difficult to 

predict.  A single study of the effects of scene geometry provides little predictive value 

for deciding which geometry would best suit the myriad of scenarios an aircraft could 

face.  In practice, one would benefit from an over-determined system, by tracking as 

many landmarks as possible, providing a varied set of geometry at all times.  Using 

statistical brute force, randomly selected landmarks spanning the scene give the most 

robust strategy to ensure a low GDOP and condition number at all times. 

3.3.2 Alternative Measurements to Augment Observability.  Reconsider the 

single landmark tracking case.  It is an under-determined problem, resulting in a less-

than-full-rank observability grammian matrix.  The question is posed, what, if any, other 

passive measurements may be made to achieve full rank?  This investigation is pivotal in 

the development of an aiding strategy for tracking landmarks of opportunity. 
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An inspection of the observability grammian’s RREF in Equation (3.72) reveals 

that measuring h eliminates ambiguities between height and velocity (allowing the h / v  

dimension to be resolved).  Both position and velocity would benefit since this term 

appears in row 3 and 6, suggesting a potential rank increase of 2.  Additionally, the 

specific force vector components ( x,y,zf ) are factored with x,yΔ  and v , requiring a 

measurement to resolve.  In level flight x,yf are essentially 0, leaving only v  and the 

horizontal LOS components ( x,yΔ ) in the last column.  The most immediately evident 

solution is to measure heading (ψ ) in order to resolve directional ambiguities.   This 

suggests that, in lieu of tracking additional landmarks, full observability may be 

achievable with passive measurements that are readily available on most aircraft: altitude 

via an altimeter, and heading via a compass. 

 Taking an altitude measurement results in augmenting the observation matrix as 

such: 

 ( ) ( )
[ ]

' ( )
( )

0 0 1 0 0 0 0 0 0
t

t
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

c
c

H x
H x  (3.91) 

 

where ( )( )tcH x is defined in Equation (3.59).  Recalculating ( )tW  reveals that the 

simple addition of an altitude measurement increases the rank of ( )tW  from 6 to 8.  The 

RREF becomes: 
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 (3.92) 

 

Notably, when the un-accelerated flight restriction is removed, full rank is achieved.  

Maneuvering has consistently been shown to help aiding. 

Likewise, taking a heading measurement results in augmenting the observation 

matrix as such: 

 ( ) ( )
[ ]

' ( )
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t

t
⎡ ⎤
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c
c

H x
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Recalculating ( )tW  reveals that the simple addition of a heading measurement increases 

the rank of ( )tW  from 6 to 7.  The RREF becomes:  
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 (3.94) 

 

Notably, when the un-accelerated flight restriction is removed, a rank of 8 is achieved.  

Maneuvering has consistently been shown to help aiding. 

Lastly, taking both a heading and altitude measurement results in augmenting the 

observation matrix as such: 
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and produces a full rank observability grammian matrix. 
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Notably, measuring either xΔ  or yΔ  (aircraft position states) yield the same result 

as measuring h , but are not measurements that can be made passively like altitude.  

Single channel inertial velocity measurements increase rank by 1, but cannot be measured 

by typical (independent) passive sensors.  Additionally, they have no effect on rank when 

altitude is simultaneously being measured.  Roll or pitch measurements have the same 

effect as heading, but are again not available through (independent) passive sensors.  

Lastly, only heading or roll measurements solve the observability problem caused by the 

zero-g condition, restoring full rank. 

In summary, independent measurements of the heading (ψ ), the altitude ( h ), and 

bearings measurements of a single known landmark make it possible to update the 

complete nav-state.  Atmospheric pressure bias and magnetic variation would need to be 

considered, but change slowly and should provide little challenge.  This is an important 

finding as the additional measurements of ψ , h will be further discussed in the case when 

landmark position is not known independently, and full observability cannot be achieved 

through landmark bearing measurements alone. 

3.3.3 Estimated Landmark Position Tracking Observability.  Tracking surveyed 

landmarks (without augmenting the navigation state vector to estimate their position) is a 

relatively trivial task and has been demonstrated before [8].  When landmark positions 

must be estimated (as proposed in SLAM and SLAAMR), the navigation state dimension 

grows and the observability grammian changes.  As described in Section 3.2.6, when 

tracking N landmarks of unknown position or landmarks of opportunity (LOO), the 
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navigation and error states are augmented, and the observation matrix ( )( )tcH x  is 

augmented with two additional rows for each of the N tracked LOO: 
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When the observability grammian matrix is calculated with the new observation 

matrix and state vectors, it takes a similar form as in the known tracking case.  The inner 

9x9 matrix is identical  

  

 '
9 9( ) ( )t t=N x NW W  (3.97) 

 

where ' ( )tNW  is the observability grammian matrix for N estimated landmark tracks and 

( )tNW is the observability grammian matrix from the N known landmark tracking case as 

defined in Equation (3.76).  
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Additionally, the summation property from Equation (3.76) remains true. 

 ' '
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and ' ( )i iΔ
W t  is defined 
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where m n0 x  is a m-by-n matrix of zeros, iW  is short hand for ( )i iΔ
W t  and ( )i j:k,m:nW  is a 

subset of iW  defined by the j through kth row and m through nth column.  It stands to 

reason that a similar extension is made for the RREF of ' ( )tNW . 

Two questions arise and must be addressed.  First, can full observability 

grammian matrix rank be obtained when no survey is provided?  Second, does the 

increased navigation state dimension affect observability when landmark positions are 

surveyed independently, but inserted as “good” estimates?  The answer to the first 

question is no, and the second is yes, but for all practical purposes, no.  The development 

follows. 

3.3.3.1  Landmark of Opportunity Tracking.  Again, consider the case of un-

accelerated flight with two tracked landmarks, with positions that are now estimated.  

Call these landmarks of opportunity (LOO).  '
1 ( )tW  becomes a 15x15 matrix with rank 
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10.  Understandably, full rank cannot be achieved by measuring angular differences 

between two positions, both of which are unknown.   In fact, for the specific case of 

level, un-accelerated flight over flat terrain, rank trails state dimension by a constant 

value, 5, as the number of tracked landmarks increases.  State dimension N x  grows 

linearly with number of tracked landmarks NL  as follows 

 
0x xN N 3 NL= + ⋅ ,    

 ( )'Rank ( ) N 5xt = −NW  (3.100) 

where 
0xN  is the length of the basic navigation state (9 or 15, depending on inclusion of 

sensor bias states).  This constant offset suggests that tracking many landmarks may 

eventually dilute the effect of the underdetermined set of measurement equations.  The 

dimensions along which observability is not obtained are not apparent, but their number 

does not grow with added landmark tracks.  It cannot be said that tracking more LOO 

will alter the nature of the unobserved dimensions, but there is no observability penalty 

for tracking many.  It is proposed that tracking many LOO may dilute the effect of 

deficient rank with no penalty.   

This proposition is key to the design of the SLAAMR algorithm, as it incorporates 

many simultaneous tracks.  The effects of tracking varying numbers of LOO will be 

evaluated experimentally in Chapter 4.  Tracking more landmarks increases state 

dimension linearly, but computation speed geometrically.  For the SLAAMR algorithm, 

implemented in Matlab©, using ten tracks was a practical compromise between speed and 

performance.  Ten tracks were sufficiently many, yet allowed real-time computation. 
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 Another important finding is that, if both tracked landmarks fall along the flight 

path, rank drops from 10 to 9.  This is an important distinction from the known landmark 

tracking case in which lateral offset ( 0y (t)Δ ≠ ) did not affect rank.  This speaks to the 

importance of varied landmark geometry.  Along with tracking many landmarks, 

SLAAMR ensures to maximize lateral separation between chosen landmarks.  To ensure 

a robust solution allowing for rolls and turns, new landmarks are chosen to track such that 

the entire population of tracked features spans the camera frame.  This allows rolls and 

turns in any direction without dropping a significant portion out of the field of view.  

SLAAMR accomplishes this by weighting new feature selection based on distance from 

each other, frame edges, open space in the image, etc.  This is an ad hoc technique and 

designed with engineering judgment. 

 When the additional independent measurements of altitude and heading are 

applied as described in Section 3.3.2 to the case in which two unknown landmarks are 

tracked, rank increases from 10 to 12 (full rank being 15); each measurement contributing 

one order of rank.  In fact, rank now trails state dimension by only 3 as the number of 

tracked landmarks increases.  This holds true when the level flight restriction is removed.  

In the known landmark position tracking case, heading and altitude measurements 

enabled full observability when tracking a single landmark.  In the unknown case, full 

rank can never be achieved.  Nonetheless, observability increases, and the effects of these 

measurements is evaluated experimentally in Chapter 4. 

3.3.3.2 Using DTED to Constrain Errors Further.  Digital Terrain Elevation 

Data (DTED) is a satellite-based survey of the Earth’s surface.  It can be used to resolve 
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uncertainty in a LOO’s vertical position.  A direct measurement cannot be taken, but 

intersecting the 3-dimentional DTED map with the LOO’s image projection provides a 

good estimate of elevation.  With perfect knowledge of aircraft position and attitude, the 

errors in a DTED-based LOO elevation estimate are dependent on the fidelity of the 

DTED map itself.  However, if the aircraft position and attitude estimate used to intersect 

the map are errant, the wrong portion of the map will be intersected, and the estimate will 

be in error.  Areas of flat terrain are naturally less prone to this source of error, while 

mountainous regions are more prone.  In either case, without perfect knowledge of 

aircraft navigation state, DTED intersection errors are not independent of the navigation 

state errors, nor are they zero-mean or Gaussian.   

Consider, however, that perfect navigation state knowledge was obtainable, and 

two LOO were being tracked and their positions estimated.  The observability 

contribution of incorporating DTED intersections should be studied.  The DTED 

intersection produces a 3-dimensional position estimate, but only the vertical element is 

independent of the navigation state estimates.  If DTED intersections could be considered 

independent and direct measurements of landmark vertical position, the observation 

matrix would be augmented as such: 
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where the third (vertical) position state of both LOO are directly measured.  The resultant 

observability grammian matrix rank increases by an order of 1, no matter how many 

LOO are being tracked.  This holds true whether one LOO vertical position is estimated 

with DTED or all are.   

This behavior also extends to the case in which heading and aircraft altitude are 

measured, causing rank to trail state dimension by only 2 as the number of tracked 

landmarks increases.  This study is ideal, and not truly realizable, but the practical effect 

of DTED intersection is experimentally evaluated in Chapter 4. 

3.3.3.3 Surveyed Landmarks with Augmented State Vector.  Consider that the 

tracked landmarks were independently surveyed, but done so imperfectly.  In essence, the 

landmark positions are estimated, but the uncertainty is small, and the source is 

independent of the system being aided.  The independent position measurement/survey is 

applied directly to the landmark position states, and the uncertainty applied to the error 

state covariance matrix.  The state vector is the collection of estimated states augmented 

with the landmark’s surveyed position ( surveyp ): 

 

 ( ) 1
ˆˆ ˆ ˆˆ n n
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survey Nx p v p p p  (3.102) 

 

and the associated 3-dimensional uncertainty ( surveyP ) is inserted into the whole state 

covariance matrix ( ( )itP ), with zeros filling the cross covariance elements: 
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where ( ) : , :i j k j k
tP  is a subset of the whole covariance matrix ( )itP , and xj k0 is a jxk matrix 

of zeros. 

Because the landmarks are assumed to be stationary, their positional uncertainty 

volume does not grow with time (effective portion of state transition matrix ( )0t,tΦ  is 

identity).  In fact, measurements on these injected landmarks only serve to better the 

initial surveyed position estimate.  If the initial positional uncertainty of the surveyed 

landmark is small enough (relative to other error states), the Kalman filter will treat it as 

if it is near truth.  Most of the correction derived from measuring bearings to the 

landmark will be distributed to the navigation states.  In fact, as the uncertainty of the 

surveyed position approaches zero ( 3 3survey x→ 0P ), the landmark position states become 

completely independent, and may be eliminated from the EKF.  This proposition is 

supported by examining the Kalman filter gain in two non-dimensionalized cases.   

Consider an aircraft traveling at unit velocity, at unit height, tracking a single 

landmark displaced a unit distance laterally and longitudinally.  All navigation states 

have identical, unit valued, uncertainties (P=Identity).  The Kalman filter gain (K) is 
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Note that both aircraft position (first three columns) and landmark position (last three 

columns) Kalman filter gain values are equivalent in magnitude.  (Ignore the zero-valued 

velocity state gains as off-diagonal cross-correlations were not present in this case, 

P=Identity).  Contrast this case with one in which the landmark position is 10 times more 

certain: 

0 .12 0 0 0 0 -.12 0 .25 0 -.0012 0
.031 0 -.062 0 0 0 0 .16 0 -.0003 0 .0006
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

K
T

 

 

In this case, the landmark position gains are 1/100th that of aircraft position.  Nearly all of 

the aiding is distributed to the navigation states, and very little to the landmark position 

states.  In the known landmark position tracking case, all aiding is distributed to the 

navigation states and none to the landmark position.  As proposed above,  

as 3 3survey x→ 0P , the effective state dimension decreases as the landmark position states 

essentially fall out.  This examination of the Kalman filter gain indicates that no aiding 

action is lost in this pursuit (only the aiding action to the landmark position states is 

affected).  This suggests that there exists a threshold below which, a well surveyed 

landmark will cause the EKF to behave (practically) like it would be for a landmark 

position that is known.  This is true despite the fact that the state vector (having been 

augmented to estimate landmark positions) dimension exceeds the rank of the 

observability grammian.  Due to the stationary nature of landmark positions, once below 

this threshold, this behavior persists as long as it is tracked.  This behavior is exhibited 

for all valid realizations of P. 
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 It is thus proposed that, once a well surveyed landmark is injected, the algorithm 

performs as if the position is known as long as it’s tracked.  From an observability 

standpoint, this aiding benefit must be examined.  Consider the case in which two 

unknown landmarks are being tracked.  The augmented measurement equation when 

injecting the surveyed position for both landmarks is 
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where 6x90  is a matrix of zeros, and 6x 6I  is an identity matrix allowing the direct 

measurement of the last 6 states, the landmark position estimates.  In this case, full rank 

is achieved.  In fact, if the number of estimated landmarks is greater than 2, full rank is 

still achieved by measuring the position of just two.  This implies that, despite many 

estimated landmarks, one need only know the location of two, to have complete 

observability.  Section 3.3.1 showed this to be true in the known landmark case, but the 

extension to the estimated landmark position case is notable, and will prove fruitful in the 

next section.  Granted, this measurement equation only applies at the epoch that the 

landmark position data is injected, but because the uncertainty is small (below an 

appropriate threshold), and the survey source is independent, the benefit is felt with every 

measurement afterwards.   

A direct landmark position measurement is not taken at every epoch, but the 

effective state dimension is reduced, and the system becomes, for all practical purposes, 
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fully observable.  It can thus be proposed that no direct measurement need be taken at the 

epoch of insertion either.  One need only insert the landmark’s independently well 

surveyed position and associated uncertainty covariance into the EKF as described above.  

This allows the seamless inclusion of surveyed landmarks into an algorithm designed to 

track and estimate LOO.  No modification to the algorithm is necessary.  The only 

difference between a LOO and surveyed landmark is the source and confidence of its 

position estimate.  The SLAAMR algorithm leverages this finding to allow a single 

process to include both types of landmarks seamlessly without special handling functions. 

It is purposed that, when using an EKF, injecting independently surveyed 

landmarks into a state vector comprised of estimated landmark position states will exhibit 

comparable performance to an algorithm that assumes perfect knowledge of landmark 

position (and does not augment the state vector for estimation).  This is not to say that the 

assumption of perfect knowledge implies that landmark positions are actually perfectly 

known.  No survey is perfect, and uncertainty is inherent.  This proposed SLAAMR 

strategy accounts for imperfect surveys, and may actually perform better.  A perfectly 

known landmark position also does not grant immunity to poor GDOP, as real cameras 

have finite resolution.  This proposal will be evaluated experimentally in Chapter 4.   

 

3.4 Self-Surveying Landmarks of Opportunity  

 In order to track a LOO, it must be inserted into the EKF.  This is done in the 

same manner as the surveyed landmarks, as discussed above.  The only difference is the 

source of the position estimate and the associated uncertainty.  Through the course of 
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tracking a LOO, the uncertainty in its position estimate shrinks, but will never be less 

than that of the host aircraft.  The SLAM concept asserts that, through bearings-only 

measurements, a 3-dimensional map of the surroundings can be created.  Many 

techniques have been purposed, such as batch estimators and binocular vision.  The 

SLAAMR algorithm uses the behavior described here.  By simply inserting LOO into the 

EKF, the process of continual observation, or tracking, will allow the landmark estimates 

to shrink in uncertainty, and build a map.  

3.4.1 Building a Map.  A landmark map is essentially a collection of landmark 

position estimates, feature descriptors to allow tracking, and associated position 

uncertainties.  Suppose aircraft position and attitude are known precisely.  In this case, 

the resultant map created by flying around a space (and tracking landmarks) would also 

be precise.  This can be accomplished through additional GPS aiding of the INS (either 

tightly coupled or loosely coupled) [21].  One need only augment the measurement 

equation with direct measurements of the aircraft position states (loosely coupled 

example). 
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where M is the length of the whole error state.  Tightly coupled GPS updates (requiring 

estimation and measurement of satellite vehicle pseudo-ranges) are well established, 

though slightly more complex.  In either case, this type of procedure is well understood 
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and will not be discussed further.  If the navigation state is constrained tightly enough, 

the landmarks in the map can approach the threshold where they would be considered 

well surveyed.  The takeaway is that the simple augmentation of the measurement 

equation (to allow a constrained navigation state), enables the basic SLAAMR algorithm 

to build a precise map of surveyed landmarks.  This seamless process can be turned on 

and off with no additional modification to the underlying algorithm.  The SLAAMR 

algorithm can transition from building precise maps, to using them for aiding with the 

‘flip of a switch’. 

3.4.2 Constraining Drift with Brute Force.  Consider now, that some off-board 

aiding (like GPS) is not available.  Previously it was shown that tracking two known 

landmarks gives full observability.  It was also suggested that tracking two well surveyed 

landmarks gives the same practical benefit, despite the number of LOO otherwise being 

tracked and estimated.  Suppose two surveyed landmarks are inserted into the EKF at the 

beginning of a flight (a valid alignment is assumed).  It is not unreasonable to have a 

small set of surveyed landmarks at the base of operations.  As the initial two landmarks 

are tracked over time, it was shown that the aircraft’s position uncertainty will approach 

that of the surveyed landmarks.  It was also shown that the position estimates of the 

remaining LOO will approach that of the aircraft, and thereby the initial surveyed 

landmarks (assuming favorable geometry).  Eventually, the initial landmarks will leave 

the camera field of view and no longer be able to be tracked.  However, the remaining 

LOO, with positional uncertainties that have approached that of the original surveyed 

landmarks, take over; only two are required.  The cycle repeats for the LOO that take the 
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place of the surveyed landmarks that were lost.  As it goes, the well surveyed landmarks 

constrain the navigation state, which is then used to self-survey new landmarks to take 

their place.  Figure 3.12 illustrates this process. 

 

 

 

Figure 3.12: Iterative map building and aiding.  New landmarks are tracked, 
refining their estimates and eventually used for primary aiding. 
 
 

In essence, if the optics and inertial data were perfect, and the geometry just right, 

the system could continue indefinitely without drifting.  The fact of the matter is, optics 

are flawed, an INS drifts, tracking is imperfect, and geometry is at the mercy of the flight 

path and geography.   

 The brute force approach (to constraining navigation drift) is to maximize 

likelihood of having good geometry and well surveyed landmarks by simultaneously 

tracking as many LOO, spread throughout the image, as computational power will allow.  

This approach statistically hedges the bet that there will always be at least two ‘well 

surveyed features’ available to limit drift.  Realistically, errors in optics and tracking 
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guarantee a dilution of precision through this cycle, allowing drift to occur.  The amount 

of drift is then a product of these factors.  Chapter 4 will experimentally demonstrate that 

precise optics and this brute force approach can significantly reduce drift, without the aid 

of GPS or pre-surveyed maps.  This is the key difference between the SLAAMR 

algorithm and previous work.  SLAAMR is a single algorithm/process that can 

seamlessly transition from building precise maps with the aid of GPS, to using these 

maps to provide drift-free navigation, to navigating completely free of external help.   

 

3.5 Establishing Initial Conditions  

The equations from Section 3.2 provide the linearized EKF model for aiding an 

INS using the angular measurements obtained by tracking a single, stationary landmark.  

The extended Kalman filter assumes small perturbations about a true trajectory of the 

navigation-state variables.  The true navigation state cannot be known for certain, so a 

calculated nominal (denoted by the c subscript), close to the truth, must be chosen.  The 

calculated nominal, provided by the INS, is the truth plus the INS navigation error: 

 

 δ= +c truex x x  (3.106) 

 

The question of how to choose the nominal trajectory is not trivial.  The INS-

derived nav-state provides a sufficient statistic for the first 9 states of the EKF nominal 

[15].  The initial estimate of the tracked landmark position requires some discussion.  

Large errors in the initial estimate invalidate the EKF linearization.  Small errors are well 
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modeled by the linear approximation, and provide acceptable performance.  Initial 

estimate errors must also exhibit a zero-mean, Gaussian nature in order for the EKF to 

perform as expected.  The non-linear nature of optical measurements, and inability to 

deduce three-dimensional information from a single, two-dimensional image, make for a 

challenging problem.  Binocular vision and multiple image batch estimation techniques 

have been developed and explored to provide initial object position estimates [5].  

Hardware and other such constraints can make these approaches impractical.  A number 

of monocular initial estimate strategies will be discussed and explored in Section 3.5.1.  

The position estimates are derived very differently, but take the form 

 

 ( )
,

,tgt ΔΔ =
cx z

h x z  (3.107) 

 

where Δh  is a non-linear function used to determine the landmark’s relative position.  

The associated uncertainties take the form 

 

 tgt = + +T T
x xx x z zz z ppP H P H H P H P  (3.108) 

 

As described in Section 3.1.3.2, xH and zH  are the partial derivatives of ( ),Δh x z  with 

respect to x and z, and ppP  is the aircraft position error co-variance.  In this case, zzP is 

defined in Section 3.2.2 
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 i i[ (t )] [ (t )]= ⋅ ⋅ +� � T
zz INS xx INSP H x P H x R  (3.109) 

 

where xxP is error state uncertainty covariance matrix, R is the measurement noise 

covariance matrix, and i[ (t )]� INSH x  is the observation matrix evaluated at the INS-derived 

nav-state. 

3.5.1 Far Guess Landmark Initial Position Estimation.  The first strategy to 

derive an initial position estimate involves very little a priori information about the 

environment.  The position is estimated to be sufficiently far away and along the line-of-

sight of the feature projection.  The associated uncertainty ellipsoid maintains the tight 

angular uncertainty in the image, but assigns a large uncertainty along the LOS axis.  

Figure 3.13 illustrates this concept. 

 

 

 

 

 

 

 

Figure 3.13:  Far Guess initial landmark position estimation. The landmark position 
estimate is guessed long of the actual target, and uncertainty along the line of sight is 
assumed to be large 
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The relative position estimate is arrived at by multiplying the 3-dimentional unit 

vector feature projection (
�z ) by a large distance (α ): 
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pz  is the homogeneous feature pixel location vector, c
pixT  and neT  are transforms 

described in Chapter 2, and n
cC  is the camera-to-nav frame DCM. 

The partial derivative of ( ),Δh x z  is then: 
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Since the uncertainty along the LOS vector is ad hoc, α  is chosen as the standard 

deviation for a camera frame z-axis uncertainty.  This yields 
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Ideally, if zero knowledge was in fact the case, α  would be equal to infinity, but 

machine precision, and matrix condition drive a real, but large number to be substituted. 

 An inherent problem with this method is that it does, by design, invoke a large 

error in the estimated landmark position, complicating the EKF linearization.  The large 

error covariance assigned to the estimate aims to minimize the effect of this bad estimate.  

The large uncertainty opens the search for a match.  When a match is found, the aiding 

derived from the measurement residuals is directed towards the dimensions with the 

highest uncertainty.  This differs from a batch estimator in many ways.  A batch estimator 

requires translation in order to triangulate the position of the landmark.  Until enough 

apparent translation occurs, the batch estimator can provide no aiding.  By injecting the 

LOO immediately and assigning a large uncertainty along the LOS, the EKF can reap the 

benefit of aiding along the dimensions that are certain.  For example, a landmark on the 

distant horizon exhibits no angular rate and could therefore not be used by a batch 

estimator.  The EKF would gain no positional aiding from such a landmark, but would 

gather attitude aiding in all dimensions accept rotation about the LOS vector.  If slow 

translation is occurring, the EKF will gradually shrink the uncertainty in the dimensions 

that were un-observable, reaping ever more reward along the way.  The batch estimator 

waits until translation has occurred before using the landmark.  This technique is 

experimentally evaluated in Chapter 4. 
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3.5.2 Average Height Landmark Initial Position Estimation.  The second 

strategy to derive an initial position estimate involves some a priori information about the 

environment.  The Average Height method borrows from the Far Guess method.  Instead 

of guessing that the landmark is far away, the guess is made that it is roughly co-planar 

with the others being tracked.  Figure 3.14 illustrates this concept. 

 

 

 

 

 

 

 

Figure 3.14:  Average Height landmark position estimation.  The landmark position 
estimate intersects the plane defined by the average height of other tracked 
landmarks. 
 
 

 

The assumption is that landmarks close together have spatially correlated 

elevations.  The implementation is identical to the Far Guess, except that the distance α  

is chosen such that the line defined by the unit pointing vector �z , intersects the x-y plane 

defined by the average height of all other tracks.  The strength of the uncertainty along 

the LOS must be chosen based on knowledge of the environment, and is scaled by the 

inverse sin of the angle between the x-y plane and the LOS vector.  The uncertainty can 

still be large, however.  This is an engineering judgment call, not pure science by any 
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means.  This technique does allow closer estimates over flat terrain, but is problematic in 

rising or rough terrain. 

3.5.3 DTED Intersection Initial Landmark Position Estimation.  The last 

strategy is again similar to the Average Height, except a DTED map is used for 

determining the height of the landmark, not the others being tracked.  The unit pointing 

vector �z , is projected from the aircraft to the DTED map.   An altitude and geodetic 

position are resolved recursively.  This becomes the position estimate.  Figure 3.15 

illustrates this concept.   

 

 

 

 

 

 

 

 

Figure 3.15:  DTED intersection initial landmark position estimation.  The 
landmark position estimate intersects DTED map. 

 

 

The uncertainty in height becomes a function of the resolution of the DTED map 

itself, and the variance of terrain elevations in the immediate area ( 2σ surroundings ).  This 

variation comes from searching 1 standard deviation around the intersection point and 

 

Position estimate 

Uncertainty 
volume assigned   

Landmark 
DTED map elevation 

uncertainty 

1 sigma search   

Direction of travel 



 

164 

examining the terrain (according to the DTED map).  Uncertainty in the position 

measurement is now a sum of the camera frame pointing errors, projected on the Earth, 

and the height uncertainty as described.   

The relative position estimate is arrived at by intersecting the DTED map.  The 

procedure to do so is trivial and not discussed.  However,  tgtΔ  is no longer a tractable 

function that can be differentiated, making the uncertainty derivation more ad hoc.  The 

contribution to uncertainty due to the DTED map and aircraft navigation state can be 

modeled as the sum of DTED uncertainty and the variation of the immediate 

surroundings. 

 

 [ ] ( )[ ]2 20 0 1 0 0 1σ σ= +TT
x xx x DTED surroundingsH P H  (3.114) 

 

The remainder is still due to camera frame pointing errors.  zzP  is still tractable, therefore 
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where, αDTED  is the length of the relative position vector to the DTED intersection 

 

 ( )tgt enα = Δ = ⋅ −DTED ac landmarkT p p  (3.116) 
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where ,ac landmarkp are the geodetic positions of the aircraft and landmark. 

This technique gives excellent position estimates as long as the navigation state is 

close to truth.  If the position or attitude errors are too large, the intersection will become 

invalid.  This is by no means an independent measurement source. 

3.5.4 Replacing Landmark Tracks.  The SLAAMR routine establishes a 

navigation state augmented with a constant number of estimated landmark tracks.  This is 

as opposed to dynamically building the state vector based on the number of features 

available in each image.  This method was chosen for two reasons.  SIFT© consistently 

generates hundreds of features or more, so it is impractical to track all.  It was also shown 

that only 2 are ever needed, but many should be tracked to ensure good aiding action.  

Ten to twenty tracks (constant for a given scenario) is the chosen compromise.  When 

SLAAMR initializes or a landmark falls out of view, a new landmark must be inserted in 

its place.  A new landmark is chosen and its position estimated by one of the methods 

described above.  Its position estimate ( newp ) is simply added in the vacant spot in the 

whole nave state: 
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and the associated error state components are set to zero: 
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The associated 3-dimensional uncertainty ( newP ) is inserted into the error state covariance 

matrix ( ( )itP ), with zeros filling the cross covariance elements. 
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as described in Section 3.1.  The zeros filling the cross-covariance elements ensure that 

the new track is independent of the other states until it is tracked for the first time.  This 

allows a seamless, online method of inserting new tracks without disrupting the others. 
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3.6 Principles of Design 

This chapter developed the theory behind the design of the SLAAMR algorithm.  

A number of principles ultimately drive trade-offs and strategies in an effort to maximize 

aiding in a robust environment.  They are: 

• Only two known landmark tracks are required for full observability. 

• Aiding action increases with dwell time. 

• Surveyed landmarks (though estimated in the EKF) provide nearly equivalent 

aiding to known landmark tracking. 

• Through continuous tracking, the uncertainty of landmark and aircraft position 

estimates approaches that of the lower one. 

• Track many landmarks simultaneously to dilute unobservability. 

• Choose new landmarks to track, such that the population evenly spans the image. 

• Include landmarks into the EKF immediately (after a single image) to maximize 

aiding (don’t wait until triangulation is possible, i.e., as in batch processing). 

• Use a wide field-of-view lens to maximize dwell time. 

• Point the camera down or backwards to maximize good geometry and dwell.   

• Do not point the camera forward as it provides poor temporal feature flow. 

• Passive altitude and heading measurements improve overall observability. 

• Low V over h generally improves the observability grammian matrix condition 

number and GDOP, but too low has penalties. 

• There exist sweet spots at higher V over h that improve both the observability 

grammian matrix condition number and GDOP, but cannot be predicted. 

• High and low values of V over h are relative and cannot be generalized.  Without 

knowledge of these unknown thresholds, the V over h span should be maximized 

to capture the sweet spots and complementary ends of the spectrum.  

• Capturing the horizon provides attitude observability. 

• Capturing nadir improves possibility for good GDOP. 
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3.7 SLAAMR Algorithm Design 

The SLAAMR algorithm was based on the study done in this chapter.  It is 

designed to maximize aiding strength at all times in the worst case navigation scenarios.  

The addition of passive measurements, such as heading and altitude, complement the 

SLAM based design to make up for its observability lackings.  Additional design 

elements that account for realistic image processing are implemented as well.  Figure 

3.16 illustrates the SLAAMR algorithm process with a block diagram.   

The INS and EKF act as a conventional feedback system, where error state values 

are applied to the INS nav-state with every measurement.  The same process applies to 

the landmark position estimates.  The compass and altimeter measurements are added to 

the system by simply augmenting the EKF measurement equation.   

The camera is pointed to optimize feature flow (down or aft).  SIFT© algorithm 

creates features from images.  These features are compared to tracked landmarks to find a 

match.  Estimated landmark positions are used to narrow the search.  If a new landmark 

track is desired, a feature is selected from the image based on its location in the frame and 

relation to the other tracks.  Then an initial position estimate is made by one of the 

various techniques discussed, and the landmark inserted into the system.  If surveyed 

landmarks are available, the features are searched for a match.  If a match is made, the 

surveyed landmark is inserted, overriding a landmark of opportunity track. 

The estimated measurements (feature projections, heading and altitude) are 

generated by the navigation state and landmark position estimates, and the differences 

with measured values are fed into the EKF as residual errors.   
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Figure 3.16:  SLAAMR System Diagram. 
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3.8 Design Summary 

This chapter aimed to explore the mathematical nature of bearings-only 

measurements and how they apply to a SLAM-based navigation strategy.  The findings 

illustrated several influencing factors and challenges that hinder that performance of an 

EKF aiding strategy.  A mathematically optimal design was augmented with practical 

measures to overcome realistic problems faced when designing a robust system capable 

of operating in all environments. 

The importance of camera look angle and a few critical additional passive 

measurements make the design of the SLAAMR algorithm stand apart from most SLAM-

based systems, and allow it to perform well in realistic environments with no 

artificialities.  The SLAAMR design does not rely on perfect and non-existent image 

processing, orbiting a set of favorable landmarks, or the benefits of small scale. 

The next chapter will experimentally evaluate the mathematical assertions made 

in this chapter.  Experimental data will also support the design decisions made by 

illustrating their benefit and the penalties paid for not being implemented.   
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IV Flight Test and Experimental Results 

 

 Chapter 3 established the mathematics behind the SLAAMR routine and 

established the basic architecture.  During the mathematical development, some 

propositions were made about the performance of the SLAAMR algorithm and factors 

influencing aiding action.  This chapter will experimentally evaluate both the SLAAMR 

algorithm, and underlying principles behind image aiding of an INS.   

The flight test equipment and methods are described, as well as limiting factors.  

A precision truth source is used to validate the results, providing clear data and 

conclusions.  Navigation state errors and the statistics of these errors are used as 

appropriate measures of performance for the navigation system. 

The experimental portion of this thesis was flown as a Test Management Project  

at the United State Air Force Test Pilot School (USAF TPS) in conjunction with the Air 

Force Institute of Technology (AFIT).  The GPS Out-Or-Denied Low-Cost Kalman 

Iterated Navigation (GOOD LOOKIN) test team that executed the flight test was 

comprised of two test pilots, and three flight test engineers.  Raw data were collected to 

evaluate the SLAAMR algorithm as a navigation strategy.  A total of 13.1 hours on 6 

flight test sorties were flown on a modified C-12C aircraft in the R-2508 complex and 

Palmdale/Lancaster, CA airspace between 6-18 September 2007.  All experimental 

analysis in this chapter is derived from this test. 
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4.1   Simulation 

Before any flight test was scheduled or flown, a simulation was performed to 

characterize performance.  The SLAAMR algorithm was designed such that it could be 

fed simulated images and inertial measurements in the same manner as it would with real 

data.  This allowed the algorithm to go through many simulated iterations and changes 

before flight, with a high confidence that the flight test algorithm would function in a 

manner similar to simulation.  Performance may vary with real data inputs, but the 

functionality of the algorithm should be the same.   

Each profile or mode of data collection was simulated before flight.  Simulated 

results validated the overall design of the SLAAMR algorithm.  The only difference 

between flight test performance and simulated performance would reside in the nature of 

the measurement data fed into the algorithm.  The algorithm attempts to model the nature 

and noise associated with the inertial and image measurements, and thus, degraded 

performance in flight test is likely due to these models being insufficient.  Simulated 

results will accompany flight test results, presented later in this chapter. 

4.1.1 Simulated Images.  The simulated images came in the form of feature sets 

(or key files), identical in format to those produced by the SIFT© algorithm.  A set of 

features was generated in 3-dimensional space, and assigned geodetic coordinates.  Each 

feature was assigned a scale, orientation and 128-element descriptor using a random 

number generator.  A true aircraft trajectory was created, simulating the aircraft’s 

position, velocity and attitude in space.  Key files were generated at appropriate time 

intervals (t= it ), using the true aircraft trajectory, and true landmark positions ( ( )ittruex ).  
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The true pixel coordinates in each key file ( truez ) were generated using the non-linear 

measurement equation from Chapter 2: 

 

 ( ) [ ( )]i it t=true truez h x  (4.1) 

 

The true pixel coordinates were generated according to a pinhole camera model.  Wide 

angle, fish eye distortion was applied to these coordinates using a distortion function 

( ( )D • ), derived in Section 4.3.2.   

 ( )( ) ( )SIM it D t= +true mz z v  (4.2) 

 

White Gaussian pixel coordinate measurement noise ( mv ) was added according to the 

model in Chapter 2.  The simulated pixel coordinates ( )SIM tz  differ from true 

measurements in that the noise is assumed to be zero-mean and normally distributed.  

The test data are generated by, and thus corrupted by, the feature generation program and 

non-linear optics.  Additionally, white noise was added to the descriptors to simulate 

change frame to frame.  This is by no means the true nature of feature descriptor change, 

which proved problematic, as will be shown. 
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4.1.2 Simulated Inertial Measurements.  The true trajectory (generated for the 

simulated flight path) was used to generate simulated inertial measurements.  The 

equation derived in Chapter 2 is solved for the specific force vector b
ibf : 

 

 ( )(2 )
l

b b n n n n n b b
ib n en ie en en a= + + × − + +�f C v v g a wω ω  (4.3) 

and is a function of aircraft nav-to-Earth velocity and acceleration ( n
env , n

en
�v ) in the e-

frame, the accelerometer bias ( ba  modeled as a first-order Gauss-Markov process), and a 

number of Earth effects.  The same was accomplished for the rate gyro measurements 

b
ibω : 

 

 ( )b b b n n b
ib nb n ie en b= + + +C wω ω ω ω  (4.4) 

 

which is a function of the attitude, body-to-nav rotation in the b-frame ( b
nC , b

nbω ) and 

Earth effects. 

 The simulated inertial measurements were corrupted with white, Gaussian noise 

( b
aw , b

bw ) according to the model in Chapter 2.  They differ very little from the flight test 

data because these kinematics and models are very well developed and understood [23].  

True sensors, however, are subject to aircraft vibrations.  This was not simulated. 
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4.2   Test Item Description 

The system under test (SUT) consisted of two high-resolution digital still 

cameras, a micro-electro-mechanical system (MEMS) inertial measurement unit (IMU), 

and a laptop computer for data collection and processing.  The components were selected 

to provide a low-cost, precision navigation system for use in GPS-denied environments.  

The SUT was carried aboard a C-12C aircraft, allowing an unobstructed view of the 

Earth below.  Precision Time Space Position Information (TSPI) was provided by the 

412th Range Squadron, and correlated to the test data. 

4.2.1 High Resolution Digital Camera.  The Pixelink PL-A741 is a high-

performance, 1.3 mega-pixel monochrome camera designed specifically for machine 

vision applications. The camera is connected to the computer by a FireWire interface 

[33].  It provided the images needed for aiding, and an external trigger option enabled 

GPS time stamping of the images, which is critical for effective aiding using the 

SLAAMR algorithm.   

The PL-A741 had a selectable resolution, but 1024x768 was used for test.  The 

shutter, gain, and contrast were selectable prior to data runs and were set for 

environmental conditions.   The cameras generated Portable Gray Map (.pgm) images, 

which are free from compression distortions.  The camera was triggered to take images at 

a rate of 4 per second.  A higher rate was desired, but as it stood, each image was 784 

kilo-bytes, and approximately 50-60 giga-bytes of data were collected per hour (two 

cameras collecting simultaneously).   
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The lens used provided a field-of-view of 63.2 degrees vertically and 84.7 degrees 

horizontally.  The cameras were arranged such that the wider dimension ran parallel to 

flight path, maximizing longitudinal field of view.  The focal length of the lens was 

4.9268 mm, and the lens set to focus on infinity.  A summary of camera specifications 

follows.  The focal length ( f ), focal plane pixel dimension (MxN) and physical height 

(H) and width (W) (all used in Equation (3.30)) were: 

 

 4.9268( )f mm=  (4.5) 
 

 768, 1024M N= =  (4.6) 
 

 5.4979( ) 7.4044( )H mm W mm= =  (4.7) 
 

Figure 4.1 illustrates the compact camera package.  Further specs can be found in 

reference [33]. 

 

 

Figure 4.1:  High resolution digital camera – PL-A471. 
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4.2.2 Inertial Measurement Unit.  The Microbotics INC., MIDG II INS/GPS 

Inertial Navigation System (INS) was chosen as the Inertial Measurement Unit (IMU) for 

this test.  Though, marketed as a GPS/INS, it was in fact used simply as an IMU for this 

test.  The raw inertial measurement data (from the internal accelerometer and rate gyro 

triads) was collected at 50 samples per second, via a serial cable.  The internal inertial 

sensors were Micro-Electro-Mechanical Systems (MEMS) level components.  The 

onboard GPS receiver (connected to an external antenna) allowed GPS time stamping of 

the inertial data as well as the images.  The GPS data (collected separately from the 

inertial measurements) also served as a redundant truth source in the event that the TSPI 

failed.  The MIDG II was chosen because it was representative of a MEMS grade sensor, 

while providing a convenient interface and GPS time stamp capability.   

The values for accelerometer measurement noise ( b
aw ), bias process driving noise 

(
bias

b
aw ), and time constant ( aτ ) were derived from ground test data and estimated to be 

Gaussian with strengths defined by: 

 

 ( )2
0.050b 2

a a m s s→ = ⋅w Q  (4.8) 

 ( )2
0.20

bias bias

b 3
a a m s s→ = ⋅w Q  (4.9) 

 ( )1 sec3600aτ =  (4.10) 
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The values for rate gyro measurement noise ( b
bw ), bias process driving noise 

(
bias

b
bw ) and time constant ( bτ ) were estimated to be: 

 

 ( )20.060b
b b rad s s→ = ⋅w Q  (4.11) 

 ( )220.0087
bias bias

b
b b rad s s→ = ⋅w Q  (4.12) 

 ( )1 sec3600bτ =  (4.13) 

 

The MIDG II was small (1.50” x 1.58” x 0.88”, weight under 55 grams), and 

illustrated in Figure 4.2.  More information can be found in [34]. 

 

 

Figure 4.2:  Inertial Measurement Unit – MIDG II INS/GPS. 
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4.2.3 Truth Reference Source.  A combined GPS/inertial reference system and 

external GPS antennas provided truth data for post flight performance assessment.  The 

truth reference system used (GLite Configuration 2-B, C2B) integrates the Novatel OEM-

V GPS receiver, the Honeywell Ring-Laser-Gyro HG1700AG58 IMU, and various other 

Commercial Off-The-Shelf products to record GPS/IMU data, produce a GPS/IMU 

blended solution in real-time, and interface with various monitors and controls devices. 

The data was recorded via removable media and post-processed by the 412th Range 

Squadron at Edwards AFB.  The resultant truth data provided precise (differential GPS 

quality) geodetic position, velocity and attitude data.  These data correspond to the nine 

basic nav-states output by the INS under test.  The GLite was positioned close to the 

MIDG II (2 meters behind).  A simple three axis rotation was required to align the MIDG 

II frame of reference and the GLite.  A precise survey of the GLite frame of reference, 

aircraft frame, and MIDG II frame was performed by Air Force Flight Test Center 

(AFFTC) personnel in order to resolve this alignment.  Note that the aircraft frame was a 

relatively arbitrary intermediate frame between the GLite and MIDGII, and is thus 

discarded.  The MIDG II frame will be considered to be the aircraft frame for the purpose 

of this discussion.  The precision and accuracy of this system is orders of magnitude 

better than the system under test will achieve, and is therefore considered a practical 

truth.   

4.2.4 Sensor Integration.  The SUT consisted of two basic sensors: the cameras 

and the IMU.  It also used two sources of truth data, the TSPI and GPS data from the 

MIDG II.  All the data was collected into a laptop computer (XPS M1710 Special Edition 
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Formula Red) carried onboard the aircraft.  A data collection program (created at AFIT 

by Veth for his work on the subject [26]) performed the job of collecting, sorting, and 

controlling the sensors.  All measurements and images were stamped with GPS time to 

allow proper time synchronization during post processing.  The TSPI data and inertial 

data were taken at a rate of 50 samples per second and simultaneously on the 1/50th of a 

GPS week second (i.e., data taken at 0.00, 0.02, 0.04…).  Though not required, this 

reduced the effort required to correlate the truth with estimates.   

Two cameras were used at a time, each pointing at a different angle.  One was 

declared master and one slave.  An internal trigger in the master camera fired (at a rate of 

4 per second), commanding the slave also to fire.  The trigger notified the data collection 

program that images were being taken, and the GPS time gathered from the MIDG II was 

them ‘stamped’ on the images in the form of the image’s filename.  Figure 4.3 illustrates 

a top-level block diagram of the SUT. 
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Figure 4.3:  System under test block diagram. 
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4.2.5 Test Aircraft.  A C-12C Huron aircraft (shown in Figure 4.4) was chosen 

for the test.  The Huron is a twin engine turbo-prop, utility class aircraft.  Its performance 

and operating envelope is comparable to many transport aircraft or the predator UAV.   

 

 

Figure 4.4:  Test aircraft, C-12C Huron. 
 

The Huron allowed the entire test team to be onboard during test.  The team 

comprised of 2 test pilots, 1 mission director, and 1-2 systems operators.  Figure 4.5 

shows the crew positions and equipment racks.  

 The GLite is just out of sight in Figure 4.5, on the floor next to the orange 

equipment rack.  The cameras and IMU are below the co-pilot’s seat (not in view) and 

external to the aircraft.  There existed a hatch below the co-pilot’s seat from a previous 

test, allowing the seamless installation of the cameras and IMU.   The cameras and IMU 

were rigidly mounted to an existing apparatus that fits into this hatch (described in the 

next section), and wires run under the floor boards to the computer.  The cameras were 

individually configurable to allow them to be positioned within 45 degrees of vertical, 

Camera location 
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along the pitch axis.  Unnecessary antennas were removed from the bottom of the aircraft 

to allow an unobstructed view from horizon to horizon.  Figure 4.6 shows the cameras as 

installed in the aircraft. 

 

 

Figure 4.5:  Crew positions and test equipment.  
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Figure 4.6:  Installed Sensors. 

 

The left propeller is seen in the background of Figure 4.6.  The front of the 

aircraft is to the right of the image.  In this figure, one camera is looking forward, and one 

down, but they could be repositioned to meet the needs of the test mission. 

 The C-12C provided a stable platform for flight test.  The turbo props provided a 

relatively low vibration environment.  The test parameters were well within the 

operational limits of the aircraft, and the designed structural limits of the camera harness 

were well beyond those of the aircraft.  The C-12C aircraft was not a limiting factor for 

test, nor was there any danger of damaging the equipment if in the C-12C flight envelope.  

4.2.6 Sensor Harness.  As mentioned above, the cameras and IMU were rigidly 

mounted to a sensor harness that mated to the pre-existing hatch below the co-pilot’s seat.  

The harness slid down rails and latched, mating with the lower fuselage, and forming a 



 

185 

pressure seal.  The harness was further modified to mount the MIDG II IMU and cameras 

rigidly and close together.  The distance was small enough to be neglected in 

computation (<1-2 inches).  Figure 4.7 show the harness in more detail.   

The IMU was roughly aligned with the natural aircraft body axis, and thus the 

body frame was defined to be equal to the IMU frame.  The cameras were mounted 

coplanar with the IMU, and set in pivoting grooves to allow a +-45 degree look angle 

change.  Once set at the desired look angle, the cameras could be securely fastened.  One 

camera was aligned with the IMU, looking straight down, and locked into place.  This 

camera’s frame of reference and the IMU frame were precisely surveyed and never 

changed.  The remaining camera was set to different look angles according to test 

requirements (roughly + or – 45 degrees), and its rotation angle was measured relative to 

the fixed, downward camera.  Since the cameras were coplanar, only the pivot angle 

needed to be measured. 

The harness was designed to withstand the dynamic air pressure created by flying 

at 250 knots indicated airspeed with a margin of safety of 1.6.  It was flight tested to 220 

knots without deformation or vibration.   
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Figure 4.7:  Sensor harness. 
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4.3   Test Item Calibration and Validation 

The underlying theory behind aiding a low-cost INS with bearings measurements, 

assumes that certain parameters are known or well modeled.  Bearings measurements 

from cameras require high image photo resolution for precision and a true angular survey 

for accuracy (called a boresight).  The image resolution not only applies to the resolution 

of the image itself, but accounts for the feature generation process, and in part, the 

pinhole camera model calibration used.  The angular survey requires precise knowledge 

of camera alignment to the IMU frame (boresight), field of view and pinhole camera 

model calibration.   

The Kalman filter also assumes certain properties of the feature generation 

system.  The EKF model performs best when features are tracked until no longer in view 

(to maximize dwell time).  The ability of the feature generator to place a feature 

consistently on a landmark drives performance and process efficiency.  The nature of the 

feature generator must be well understood and the algorithm optimized for accuracy, 

precision, and persistence. 

This section discusses the process used and results from the calibration of the test 

equipment and feature generation software.  Ground-based techniques as well as precise 

truth data from flight test are used to derive and validate the test equipment calibration 

and characterization. 

4.3.1 Camera Field-of-View.  The field-of-view of the camera is required to 

deduce the effective size of the imaging array.  This measurement is required for the 
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pinhole camera model.  Width (W) and Height (H) are defined by function of the 

horizontal and vertical fields of view ( hFOV , vFOV ) . 

 

 2 tan , 2 tan
2 2

h vFOV FOVW f H f⎛ ⎞ ⎛ ⎞= ⋅ ⋅ = ⋅ ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (4.14) 

 

 The ultimate goal of calibration was to reduce errors to less than 1 pixel.  A point 

source object (corner of a checkerboard panel) was placed far from the camera and such 

that it was projected near the edge of the camera field of view.  The distance and angles 

from the camera focal point and the object were precisely measured, and field of view 

determined with trivial geometry.  This was repeated on both sides, and in both axes to 

find asymmetry.  The center of the field of view must also be known, and expressed as a 

pixel location to define the z-axis of the c-frame.  Since physical surveys were made 

relative to the physical camera shell, so must the camera frame projection in the image.  

Lasers were aligned to the shell on both sides, and swept.  The intersection of the laser 

traces on a far away board (as seen in the image), defined the center pixel.  This was 

compared with the results of the pinhole camera calibration process defined in [36].   

4.3.2  Pinhole Camera Model Calibration and Results.  The first objective of 

this test was to determine pinhole camera calibration error model for the wide angle 

digital cameras.  The lens of the camera distorted the image in a non-linear fashion.  The 

wide field of view (FOV) caused a “fish eye” effect, producing an image that compresses 

features near the edge.  This distortion was inconsistent with the pinhole camera 
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approximation used in the measurement equation.  The fish-eye effect had to be removed 

to approximate a pinhole camera.  The distortion was modeled as a sixth-order 

polynomial function of radial distance (from the center of the image).  An un-distort 

transform ( ( )U • ) and its inverse (the distort transform ( )D • ) were created to convert 

image coordinates between real, measured and distorted coordinates ( dz ) and pinhole 

camera image space containing undistorted, calculated coordinates ( u
�z ). 

 

 

( )

( ) ( )

( )
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1

1 i
u d i d
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The function ( )D •  relies on iteration, thus a small error can be induced by repeating the 

distort/un-distort process back and forth ( d d≠�z z ).  For the purpose of this evaluation, 

the error is negligible for single transformations. 

A discussion of the process to derive this model and transform is contained in 

[36].  It is a well understood process, and not original work in this thesis.  Thus this 

process will not be discussed in detail.  However, Figure 4.8 shows the result of the 

distortion removal calibration. 
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Figure 4.8:  The effects of the pinhole camera calibration and transform. 
 

 

To speed up the SLAAMR algorithm, the pinhole camera calibration model was 

not applied to the actual images, but simply applied to all feature image locations 

generated by the SIFT© algorithm. The resultant feature locations were then expressed in 

the focal plane of a pinhole camera.  This method also prevents feature distortion and 

aliasing that may be a result of transforming the whole image, and then running SIFT©. 

In order to determine the camera calibration error model, truth camera position, 

attitude data (derived from TSPI), and surveyed landmark positions were used to 

correlate predicted and measured landmark image projections.  The difference between 

estimated and measured image projection was considered error.  Errors were measured 

across the image plane and a calibration error model was generated.  The errors were 

characterized by mean and standard deviation, as well as spatial dependence across the 

image.   
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Precise surveyed landmark data were obtained by over-flying precisely surveyed 

landmarks on the Edwards Air Force Base Photo Resolution Road (PRR).  The PRR is 

populated with targets of varying sizes and shapes that are correlated to precise geodetic 

coordinates.  The non-linear measurement equation, evaluated for the truth data 

 

 [ ]u = TSPIz h x�  (4.15) 

 

generates the predicted image projection in the pinhole camera image space. 

 The actual landmark was manually tracked frame-to-frame, generating 

measurements in distorted, real image space ( dz ).  The predicted image projections were 

transformed into real image space and differenced with the predictions.  The result was a 

set of error vectors associated with portions of the image.   

 

 

 
( )
( )

( )

[ ]
err x y u d

d

z ,z D

D

δ = −

= −TSPI

z z z
h x z

�
 (4.16) 

 

Figure 4.9 illustrates the process of generating error vectors through a sequence of 

images. 
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Figure 4.9:  Tracking surveyed landmark to generate calibration error. 
 

 

Several landmarks in the Simulated Combat Airfield and Tactical Target 

(SCATT) Range of the PRR were used.  Sets of error vectors were formed, spanning all 

four quadrants of the camera frame and radial distances.  Because tracking is 

accomplished manually, these errors are independent of the feature generation program.  

The resultant error vectors were fit to a vector field to produce a model of the errors 

induced by the optics, alignment (discussed later), and the pinhole camera model 

calibration (the latter being the largest contributor after calibration is complete).  Figure 

4.9 contains the results from the calibration of one of the PL-A741 cameras.  Both 

cameras demonstrated statistically similar errors, and were modeled the same. 

For use with a Kalman filter, the errors should be well-modeled by independent, 

Gaussian random variables, or have a small magnitude.  The error vectors are definitely 

not independent or normally distributed.  However, the errors are small, with a maximum 

Predicted projection 

Actual projection 

Error Vector 

Sequential images of a precisely surveyed landmark 
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of 2.0 pixels and standard deviation of 1.1 pixels.  Figure 4.11 illustrates the absolute 

magnitude of the errors (from the same camera).  Due to the low magnitudes and 

quantization effects of digital images, it was determined that, for the purposes of the 

Kalman filter, the errors could be well modeled by a zero-mean Gaussian random 

variable with a standard deviation of approximately 2 pixels.  Considering the 

computational cost and many other, much more significant sources of error (such as 

feature generation), storing this error map to subtract these errors was not judged 

worthwhile. 
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Figure 4.10:  Errors induced by optics and pinhole camera calibration.   
 

 

The dots in Figure 4.10 represent the base of the error vectors.  The small square 

(bottom left) represents 1x1 pixel error magnitude.  Note this is a different scale than is 

1x1 pixel 



 

194 

used for pixel location.  The error vector magnitudes are exaggerated for viewing.  The X 

and Y axis represent pixel location in the image. 

 

 

  

 

Figure 4.11:  Errors induced by optics and pinhole camera calibration (magnitude). 
 

 

4.3.3 Sensor Boresight.  The term boresight refers to measuring the angles 

between the camera, IMU, and TSPI frames.  These angles are then used to create the 

DCMs required to transform vectors (between frames).   

The resolution of the cameras called for a boresight accurate to 0.1 degree in 

order for errors to be on the order of 1 pixel.  The boresight was accomplished before 
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flight using precision survey equipment and personnel furnished by the AFFTC, meeting 

this requirement.  The boresight was validated through flight test by over-flying surveyed 

landmarks, as described in the previous section.  The boresight was used in the 

determination of the pinhole camera calibration error model.  Errors in the boresight may 

have contributed to the error attributed to the pinhole calibration, but since the 

magnitudes were so small (1 pixel standard deviation) the boresight was considered very 

accurate.   

The same process was repeated for the camera looking forward/aft.  Iteration was 

used to resolve the camera pivot angle (look angle), as it was the only angle not surveyed.  

Again, cumulative errors were on the order of 1 pixel (standard deviation), and the look 

angle boresight was considered very accurate.  By virtue of small cumulative errors 

expressed in the image projections, all boresight angles and values provided by the 

ground test were considered very accurate. 

4.3.4 Feature Generation.  The SIFT© transform was used as the primary 

feature generation, and ultimately matching, algorithm.  It has proven quite robust in 

similar work by Veth [26].  The environment experienced during the test proved to be 

challenging however.  All flight test data were collected while flying over California high 

desert and urban settings.  The combination of the scenery’s makeup, lighting, and 

contrast led to an order of magnitude more features per image than Veth encountered 

when testing over Ohio towns and farmland (4,000-9,000 features per image).  This 

number of features was too much to process, so they were filtered by scale (a measure of 

size provided by SIFT©).  The lowest scale features were thrown out to yield 400-600 
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features per image.  SIFT© proved very capable of producing ample features in even the 

most sparse sections of the Mojave Desert.  A lack of features was never a limiting factor 

on performance.  This wasn’t the case over water or dry lakebeds, where contrast was so 

low, that no features were produced.   

4.3.5 Feature Persistence.  The SLAAMR algorithm provides a navigation 

solution, but requires landmarks to be tracked within a sequence of consecutive images.  

The SLAAMR algorithm itself does not do any image processing, but relies on the SIFT© 

algorithm do feature generation and ultimately, matching.  As discussed in Chapter 3, a 

feature exists in an image and corresponds to a ground stabilized point.  The SIFT© 

algorithm generates features in images, each with a unique descriptor that correlates 

strongly to the same feature in a successive image.   

Initial analysis of frame-to-frame feature correlation (for the flight test data) 

showed poor feature persistence between frames.  Figure 4.12 shows two sequential 

frames from a test flight over urban terrain.   

The lightly colored dots represent features generated by SIFT©.  The crosses 

represent features selected for matching (reduced set for readability), and the lines 

between the crosses represent the best match in the subsequent frame, according to 

Equation (3.13).  In the ideal case, the lines would all be parallel and of near equal length.  

As can be seen in the figure, there are some false positive matches, and these are 

associated with low correlation coefficients.  Through careful feature-by-feature 

examination, it was determined that the vast majority of false positive matches had 
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correlation coefficients less than 0.9.  This is not an absolute rule by any means, but 

provides a sound decision model. 

 

 

Figure 4.12:  Sequential, side-by-side urban images marked with features and 
correlated matches. 

 
 

Figure 4.13 illustrates the consecutive frame-to-frame feature correlation 

coefficients for 15-second samples of images, plotted as histograms over time.  The 

correlation coefficients for all features identified in the image are plotted in 20 adjacent 

bins on the horizontal axes against the frame number.  The correlation coefficients 

represent the values of the ‘best’ matches in the subsequent frame.  The vertical axis 

indicates the frequency of occurrence of an individual correlation bin.  The frequency 

axis is the normalized fraction of all feature correlations that fell into the respective bin.  
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The frame number axis is meant to show trends as a function of time (frame-to-frame 

behavior). 

 

 

 

Figure 4.13:  Frame-to-frame Correlation Coefficients. 

 

A correlation value of 0.90 or greater appears to be a good choice for the 

“Positive Match” threshold.  Repeating the process shown in Figure 4.11, and eliminating 

correlations below 0.9, supports the choice of 0.9 as the threshold.  This choice 

minimizes (experimentally) both alpha and beta errors (false negative and positive 

matches).  The SLAAMR algorithm does not simply search for the best match in the next 

frame.  It employs a spatially constrained search using the stochastic projection of the 

feature’s estimated position (as described in Section 3.2.2).  The resultant search volume 
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yields a small subset of features for match consideration immediately surrounding the 

estimated projection.  If a true match is available, it will be included in this subset of 

features.  The nature of the correlations was such that true positive matches have 

coefficients ranging from 0.9-1.0 and false positive matches ranged between 0.7-0.9.  The 

spatial search constraint did nothing to increase true positive matches, but minimized 

false positive matches when the next best match had a coefficient near the threshold of 

0.9 (next best matches statistically did not fall inside the search volume).   

 The problem introduced by these test results is that, as a best case, only 80-90 

percent of the features have matches in the subsequent frame.  This suggests a possible 

10-20 percent loss in features tracks for every frame.  Some of the lost matches are due to 

a small number of features falling out of the field of view, but as seen in Figure 4.12, this 

is not the driving factor (this is a slow speed, therefore, small translation condition).  If 

this loss is random and cumulative, the tracker would expect to drop all tracks in short 

order.  The behavior over many frames must be evaluated. 

 Figure 4.14 compares histograms of the correlation coefficients with increasing 

frame spacing.  To provide navigation aiding, a feature must be tracked consistently over 

many frames of video.  The histograms show that the number of positive matches 

(correlation coefficient >0.90) decreases and the number of rejected matches or lost 

tracks (correlation coefficient <0.90) increases as the frame spacing increases.   
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Figure 4.14:  Correlation coefficients with increasing frame interval spacing.   
 

 

 As frame spacing increases, the mass shifts from right of the decision threshold, 

to left.  The effective loss is not cumulative, but this does illustrate that feature 

persistence is a problem.  By the tenth frame, most of the features do not have a match, 

by the stated criteria.  In either case, either the feature generation software and/or the 

technique used to match features demonstrate poor performance with regard to frame-to-

frame persistence.  Two mitigating techniques are used to isolate the SLAAMR 

algorithm’s performance from the questionable feature generation (and/or matching) 

persistence. 
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4.3.5.1 Descriptor Handoff.  The single frame interval persistence, though not 

perfect, greatly outperforms the 2 and 3 frame intervals.  For this reason it is beneficial to 

exploit the single frame persistence with every match.  This is done by ‘handing off’ the 

feature descriptor every time a match is made.  The algorithm does not compare features 

to the original descriptor found when the track started, but to the descriptor from the most 

recent frame.  The descriptor to match is handed off to system memory along with the 

measured projection and estimated position.  This technique could lead to descriptor 

wander (and therefore track wander), but the spatially constrained search volume 

(provided by the predicted landmark projection) minimizes this effect.    

4.3.5.2 Non-Causal Look-Ahead.  The frame-to-frame persistence problem is 

not driven by a random frame-to-frame attrition.  Thus it can be asserted that some 

features naturally persist better than others.  No online method was determined (despite 

plenty of efforts) to determine which features fell into this favorable category.  The non-

causal look-ahead method involves taking a feature in one frame, and searching future 

frames to ensure that it does, in fact, persist.  In the absence of a time machine, this 

technique can be accomplished off-line (post-processing) or with a fixed interval 

smoother [14][15][16].  Essentially, this involves running the aided algorithm at a fixed 

interval (that required for look-ahead), and inertially propagating (from the most recent 

aided solution) into real time.  Experimentally, looking ahead 2 frames and applying the 

same match decision threshold of 0.9 (correlation coefficient value), proved to mitigate 

most of the persistence problems encountered.  Two frames at 4 frames a second, yields a 
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½ second delay due to the fixed interval smoother; an acceptable interval for a real-time 

navigation routine in this application.   

A fixed interval smoother is not used in the experimental results herein.  The 

look-ahead is merely used as a technique to isolate the SLAAMR algorithm from poorly 

performing image processing techniques, which are not the focus of this study.  

4.4   Flight Plan 

The flying portion of the test had one goal: to collect data.  The data collected was 

then used to evaluate the SLAAMR algorithm (and the factors influencing performance) 

experimentally.  The flight plan was simple: fly a constant velocity and altitude over a 

desired area.  The majority of the data evaluated herein was collected by over-flying the 

cities of Palmdale and Lancaster, CA, at 3,000-4,000 ft above ground level (AGL).  The 

airspeed was modulated to achieve 190 knots of ground speed, and monitored with a 

portable GPS unit.  This nominally gave a V over h ratio of 0.08-0.12 (sec-1).  The terrain 

was generally flat and populated with urban features.  Figure 4.14 illustrates the general 

flight path, which lasted approximately 40-50 minutes. 

For every flight, two cameras were carried, set to two different angles (1 directly 

down, and 1 either 45 degrees forward or aft).  This allowed a side-by-side comparison of 

the effects of camera look angle on aiding strength.  In order to evaluate the effects of 

tracking differing numbers of landmarks, either surveyed or landmarks of opportunity, 

the data from each flight was merely processed differently.  No additional flights were 

required.  In order to evaluate the effects of V over h, different altitudes were flown.  The 

airspace did not allow this to be accomplished over the city, and was therefore 
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accomplished over the uninhabited desert.  This did not allow a simple, single variable 

study of V over h (urban features and desert features are different in nature), but a general 

trend was evident. The flight test data were partitioned into 10 independent 5-minute 

segments.  Theses 10 segments were used to build Monte Carlo plots and capture the 

statistical nature of the navigation errors. 

 

Figure 4.15:  Flight path flown over Palmdale and Lancaster, CA. 
 
 

  The collective, 2 sigma error (2 standard deviations) for each measure are 

plotted against time in the following sections.  In other cases, 30-minute continuous data 
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runs are examined.  This provides a long term evaluation of the algorithm’s performance, 

but is a single instance, and no statistical significance can be gathered. 

Other profiles were flown to collect data during operationally representative 

maneuvers.  These profiles do not contribute as much to the pure characterization of the 

algorithm, but speak to the operational viability of the system.  These profiles include 

flying lower over the desert to achieve a higher V over h, and straight-in landings.  

4.5   Results 

This section presents and evaluates the results gathered from flight test.  When 

appropriate, simulated results will accompany flight test results, and comparisons will be 

made.  Flight test results will address the propositions and design decisions made in 

Chapter 3.  Test data will be used to: 

• Validate the assertion that inserting surveyed landmarks into an extended Kalman 

filter (that augments the navigation state vector to estimate landmark position) is 

the practical equivalent to assuming position is known.     

• Prove that only two tracks (of known or surveyed landmarks) are required for full 

observability and strong aiding action.  

• Validate the assertion that the EKF will naturally self-survey landmarks. 

• Evaluate zero a priori knowledge landmark tracking for navigation. 

• Demonstrate the benefit and necessity of augmenting image-derived bearings 

measurements with additional information (altitude and heading as well as digital 

terrain data to estimate initial landmark position). 
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• Demonstrate the benefit of tracking many landmarks when positions are 

unknown. 

• Demonstrate the effect of look angle on aiding strength, and validate the assertion 

that looking forward provides the poorest performance (down or backwards is 

optimal). 

• Demonstrate the effect of V over h on aiding action. 

This chapter will also demonstrate the fluid nature of the SLAAMR algorithmic 

design, allowing seamless transition between tracking modes (LOO and surveyed tracks).  

This will be shown through demonstrating navigation with a partial set of surveyed 

landmarks.  The results from an operationally representative landing profile will be 

discussed.  Lastly, the viability of a passive, optical-inertial navigation system will be 

demonstrated with a long duration flight that performs comparably to a conventional 

navigation grade INS. 

The primary measure of performance considered is the overall drift of the 

navigation solution.  The drift will be quantified by examining the circular and spherical 

position and velocity errors over time, as well as individual attitude state errors.  There 

are many measures to evaluate these errors, but the mean and standard deviations will 

emphasized herein.  Specifically, the absolute mean summed with two times the standard 

deviation (mean plus 2 sigma) is used as an approximate 95% confidence bound for the 

errors.  The errors, specifically the circular/spherical position and velocity error, were 

non-zero mean and plagued with many systematic characteristics (created by image 

processing and tracking performance).  They did not conform to any conventional 
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random variable.  The mean plus 2 sigma measure provides a consistent confidence 

interval for the data collected, where other measures (such as root-mean-square) did not 

perform as well (in this experiment).  When applicable, single influencing factors will be 

varied to show the impact on performance.   

The overall goal of this report is to characterize the true aiding potential that 

tracking landmarks can give to an airborne INS.  Additionally, it aims to expose the 

challenges of such a problem. 

4.5.1 Effect of Surveyed Landmarks.  The assertion was made that tracking well-

surveyed landmarks yields performance near that of tracking perfectly known landmarks.  

This will be shown to be true despite not having a full-rank observability grammian 

matrix.  In the perfectly known case, the attitude angular errors are on the order of the 

camera/feature generator angular resolution.  The position and velocity errors are 

bounded and small.  Figures 4.16 through 4.18 display the results of three sets of Monte 

Carlo runs, where 2, 3, and 10 surveyed landmarks are tracked at any given time.  The 

three runs span each look angle (forward, downward and rearward).    

Each Monte Carlo run consisted of 8-10, 5-minute data segments.  The aircraft 

was flown at approximately 1000-1300 meters, at approximately 100 m/s, over flat urban 

terrain as described in Section 4.4.  The mean plus 2 sigma (2 standard deviations) 

spherical position, velocity, and attitude errors are displayed for each condition.   
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Figure 4.16:  Tracking surveyed landmarks with REARWARD looking camera. 

Data Basis: Flight Test 
  8-10 5-minute segments  
Altitude: 1000-1300 m  
Airspeed: 100 m/s 
Camera Angle: Rearward
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Figure 4.17:  Tracking surveyed landmarks with DOWNWARD looking camera. 

Data Basis: Flight Test 
  8-10 5-minute segments  
Altitude: 1000-1300 m  
Airspeed: 100 m/s 
Camera Angle: Downward
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Figure 4.18:  Tracking surveyed landmarks with FORWARD looking camera. 

Data Basis: Flight Test 
  8-10 5-minute segments  
Altitude: 1000-1300 m  
Airspeed: 100 m/s 
Camera Angle: Forward 
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In all cases, the errors were bounded and relatively small, but there was a distinct 

performance difference.  The rearward looking camera outperformed the downward and 

forward in all cases by a significant margin.   The rearward looking camera errors are 

approximately half of those for the downward and forward cameras by all measures. As 

described in Chapter 3, the rearward camera provided more favorable feature flow, 

guaranteeing better GDOP and condition number.  When 3 or more surveyed landmarks 

are tracked, performance is greatly improved.  All conditions showed stable errors (with 

respect to time).  The errors fluctuated, but did not tend to drift and grow.  Tracking 

surveyed landmarks provide a stable navigation solution, implying virtually full 

observability, matching drift behavior predictions for tracking known landmarks.  

The rearward looking camera condition performed the best overall.  As can be 

seen in Figures 4.16 through 4.18, there is a slight performance advantage to tracking 3 

versus 2 surveyed landmarks.  There is only a marginal advantage to tracking 10 versus 

3.  The downward and forward camera angle conditions showed worse performance than 

the aft, but that is due to greater GDOP.  Tracking 2-3 surveyed landmarks also 

demonstrated poorer overall performance than tracking 10.  Due to so few landmark 

tracks, the GDOP fluctuated as the tracking geometry changed.  This caused momentary 

error excursions, which recovered as the GDOP later decreased.  Tracking 10 landmarks 

provided better average GDOP over time, and thus fewer excursions.  These GDOP 

artifacts would be present if tracking perfectly known landmarks (assuming a real camera 

is used). 
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As predicted in the perfectly known landmark position case, flight test attitude 

errors are generally on the order of the optical/feature generation resolution.  The 

collective optic and feature generation noise (corrupting bearings measurements) was 

modeled to be 2 pixels standard deviation, which is equivalent to approximately 0.2 

degrees.  When tracking 10 landmarks looking aft, the 2 sigma attitude errors are on 

average 0.4-0.5 degrees (Figure 4.16), making the standard deviation 0.2-0.25 degrees.  

Tracking fewer landmarks caused excursions away from this lower limit of 0.2 degrees, 

but generally returned.  Attitude error magnitude depends on the dimension examined.  

The heading errors are on the order of the camera resolution (0.2 degrees standard 

deviation or sigma).  Pitch errors are complicated by the fact that the aircraft is traveling 

forward; feature translation due to forward velocity is ambiguous with pitch rate.  For the 

test conditions, the feature angular translation at nadir due to forward velocity (frame-to-

frame) is approximately 1.5 degrees.  For the poorly performing downward looking 

camera case, 1.5 degrees is approximately the magnitude of the pitch standard error.  The 

forward and rearward looking cameras benefit from tracking landmarks near the horizon.  

On the horizon, all feature translation is due to rotation, and helps to resolve the pitch rate 

and velocity ambiguities.  Roll errors are naturally higher, since none of the conditions 

capture a lateral horizon and the tracked landmark geometry trended along the 

longitudinal axis.  GDOP is naturally poorer about the roll axis.  These GDOP effects 

would be present in the perfectly known landmark case, thus the flight test data agrees 

with prediction.  More precise optics and feature generation would naturally yield better 

attitude performance. 
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The magnitude of the navigation error is a function of GDOP and optics.  For the 

best GDOP condition (the rearward looking case tracking 10 surveyed landmarks), the 

standard error (1 sigma) was approximately 12-13 meters.  It was shown that an aircraft 

positional uncertainty (when using perfect optics) will approach that of the tracked 

landmark.  If the landmark position is perfectly known, the lower limit is zero.  Since the 

camera used was not perfect, the lower limit is driven by the optical resolution, as 

projected on the landmark. For this flight test example, the 0.2 degree standard error 

camera, projects a 3.5-4.5 meter standard error on the ground, 1000-1200 meters away.  

The camera resolution error is on the order of the position errors, but there is more to 

consider.  The attitude uncertainty also contributes to the lower limit bound for perfectly 

known landmark tracks.   In the known landmark position case, the attitude errors are 

limited by the camera angular resolution.  In the best case, this adds another 0.2 degree, 

and 3.5-4.5 meters of standard error on the ground.  Considering this case, the flight test 

data agrees reasonably well with the perfectly known case.  Notably, flying higher with 

the same camera will result in larger position errors, and vice versa.   

Velocity errors require a more complex examination.  The velocity states are not 

included in the measurement equation.  Velocity state aiding comes via their correlation 

with position errors; position is the integral of velocity.  For velocity to be aided, the 

velocity errors must influence the measurement residuals (must be observable and have 

reasonable grammian matrix condition with respect to the velocity states).  The residual 

errors are expressed in the camera frame as pixel or angular errors.  Residual errors are 

caused by estimated landmark projection errors; a function of attitude errors, optical 
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resolution, aircraft and landmark position errors.  If the landmark position is known, and 

the attitude estimate is precise, it leaves optics and aircraft position error.  The position 

error in the residual comes from drift of the position estimate from one frame to the next.  

By definition, this is velocity error.  A single measurement cannot discern velocity 

contributions below the optical measurement noise.  Thus, the optical error standard 

deviation, projected onto the ground, sets the threshold for resolvable velocity error 

standard deviation multiplied by the time between frames.  In the test data, the 0.2 degree 

standard error camera projects a 3.5-4.5 meter standard error on the ground.  At four 

frames a second, the threshold for velocity error standard deviation is 14-18 m/s.  This 

discussion refers to the resolution of the measurement equation only.  The Kalman filter 

accounts for all measurements taken over time, the system dynamics, and balances it 

against the process driving noise.  When all are considered (using the propagation and 

update equations from Chapter 2), and the actual flight test conditions are applied, the 

predicted steady state spherical velocity error is 11-12 m/s (or 22-24 m/s when best case 

attitude errors are considered).  These predictions agree with the test data.  Thus, the 

relatively large velocity errors seen in Figures 4.16 through 4.18 can be attributed to the 

camera resolution, and would be present even if landmark position was perfectly known.  

Needless to say, the velocity errors gathered from flight test data agree with predictions 

for tracking known landmarks.  Notably, flying higher with the same camera will result in 

larger velocity errors, and vice versa.  This discussion does not speak to observability, but 

to the resolution of the measurement equipment and the effect of aiding performance. 
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The goal of this section was to validate the assertion that tracking surveyed 

landmarks yields the practical equivalent to assuming position is known.  Flight test data 

clearly show that this is true if the conditions are right (camera look angle and/or number 

of tracks being good).  Since GDOP is the culprit behind the poor performance, perfect 

knowledge of landmark position will do no better (assuming that a real camera is used, 

without infinitely fine resolution and with non-zero error).   

The landmarks were surveyed using truth data and DTED.  The surveyed 

landmark position spherical errors were on the order of 3-5 meters (standard deviation).  

This is a relatively poor survey, but still yields quality aiding nonetheless.  Flight test 

results imply that, though a highly precise survey could benefit, it isn’t required.  The 

spatial sample size, driven by a single pixel (roughly 0.1 degree wide, 2-4 meters 

projected on the ground) cannot resolve much more.  Add to that, corruption in the 

feature generation process.  This of course is dependent on altitude during flight (distance 

from the landmark).  A 5-8 meter spherical uncertainty would be useless for an aircraft 

flying 5 meters off of the ground, but a 20 meter uncertainty would be overkill for the 

space shuttle in orbit.  Additionally, it was suggested in Chapter 3 that the aircraft 

position uncertainty would approach that of the surveyed landmarks being tracked.  The 2 

sigma spherical position errors in Figure 4.16 are not surprisingly close to those of the 

surveyed landmarks.  The 2 sigma spherical position errors are on average 20-25 meters, 

making the standard deviation 10-12.5 meters.  In fact, when the same landmarks were 

surveyed with less precision, the magnitude of the nav-state errors grew accordingly, but 
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did not drift over time.  The quality of the survey merely drives the magnitude of the 

navigation state errors, but any independent survey bounds the drift. 

The descriptors associated with the surveyed landmarks were taken from the 

flight test data, and not generated by a third party.  This meant that feature recognition 

was not complicated by viewing the landmarks from different poses as the descriptors 

associated with the surveyed landmarks matched at least one image perfectly.  Therefore 

the surveyed landmarks would always be found.  This isolated the algorithmic 

performance from imperfect feature generation, but a truly robust system would be 

required to find and recognize landmarks surveyed by a third party.  Though a critical 

function of a robust system, it is independent of the mathematical theory discussed 

herein.  Once again, for the purpose of this discussion, a perfect feature generation 

algorithm is assumed to exist to allow the specific study of the SLAAMR algorithm. 

4.5.2 Full Observability with Only Two Tracks.  Figures 4.16 through 4.18 

demonstrate that virtually full observability can, in fact, be achieved with only two 

landmark tracks.  This is implied by the fact that in all cases (where only 2 surveyed 

landmarks are tracked), the position errors are bounded.  If full observability were not 

achieved, the position errors would be expected to drift.  Granted, these data do not 

represent the perfectly known landmark position case, but that makes the assertion even 

stronger.  If full or virtually full observability can be achieved by tracking 2 surveyed 

landmarks (using an augmented state vector), then the extension to the perfectly known 

case can be confidently made.  Having full observability does not guarantee good aiding, 
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however.  This is evident in the effect that camera look angle has on performance; GDOP 

must still be considered. 

4.5.3 Self-Survey.  It was proposed that the EKF-based SLAAMR routine 

naturally performs a survey of its environment as it tracks landmarks.  This behavior is a 

key factor in the ability to aid INS.  It was also proposed that the uncertainty of landmark 

position estimates shrink, approaching that of the aircraft’s own positional uncertainty.  

The SLAAMR algorithm’s ability to self-survey is demonstrated by allowing it to track 

landmarks of opportunity, while being aided with TSPI.  Using truth data isolates the 

mapping performance from an errant navigation state and poor linearization.  The Far 

Guess landmark initial position estimation routine is used to locate the LOO; no a priori 

information about the landmarks is assumed.  Figure 4.19 illustrates how the initial 

landmark position estimate and uncertainty volume changes as a LOO is tracked.   

 

 

    

 

Figure 4.19:  Self-survey process using the Far Guess technique.  Three instances in 
time are displayed as the aircraft travels from right to left. 

 

Direction of travel

2it + 1it + it

Uncertainty Volume Position Estimate 
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The triangle represents field-of-view of the camera, the dashed line points to the 

landmark position estimate, and the ellipsoid centered on the estimate represents the 

uncertainty volume of the estimate. 

Figure 4.20 depicts the result of a 30-second run in which 20 LOO were tracked at 

any given time.  A total of 60 landmarks are generated for the map. 

 

   

Figure 4.20:  Self-survey of landmarks.  The x’s represent the mapped landmarks. 

 

The 3-dimensional position of the landmark estimates are plotted against a DTED 

terrain map (DTED Level 1, approximately 90 meter horizontal resolution).  The DTED 

was not used to locate the LOO, but provides a visual truth comparison for the self-

survey.  If the DTED and survey were both perfect, they would overlap.  The DTED is 

not perfect, but is accurate enough to illustrate the point.  To gain more insight, the 

difference between the estimated landmark elevations and DTED elevations are displayed 

in Figure 4.21.  The errors have been sorted in order of magnitude to capture the general 

distribution (akin to a probability distribution function). 
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Figure 4.21:  Elevation error for a self-survey of landmarks.  Landmark elevation 
errors are sorted in order of magnitude for illustration purposes. 

 

Because the terrain was flat and the camera used was looking down, the elevation 

errors are a natural measure of performance.  The aircraft was flying between 1000-1300 

meters above the ground.  The majority of the errors (87%) fall below the 100 meter line 

(10% of the aircraft height).  At first look, the flight test data implies that the mapping 

performance is very poor; the error standard deviation is approximately 50 meters.  

During the test, the aircraft was flown roughly 1000 m above the ground, at 

approximately 100 m/s.  Images were taken looking down at a frame rate of 4 images-

Data Basis: Flight Test 
30 second segments 
Altitude: ~1000 m  
Airspeed: ~100 m/s 
Camera Angle: Downward
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per-second, and the combined camera/feature generator resolution was assessed to be 2 

pixels standard deviation (each pixel being 0.1 degrees across).  Due to the nature of the 

Kalman filter, the progression of landmark vertical uncertainty over time is also a 

function of frame rate and translation.  Time is factored out, and it becomes a function of 

landmark apparent translation per frame and the resolution of the camera.  The time 

dimension is replaced by total angular translation (or tracking angle).  This is intuitive 

because as the tracking angle increases, the unobservable dimension (along the camera z-

axis at the first image), becomes more resolvable.  Figure 4.22 illustrates the dependence 

on camera resolution and tracking angle for the flight test condition under which 

landmarks nominally translated 1.5 degrees per measurement.  The feature translation 

rate is assumed constant and the cumulative tracking angle builds as more images are 

taken.  For example, a cumulative tracking angle of 15 degrees is achieved after 10 

images are taken. 
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Figure 4.22:  Effect of camera resolution and tracking angle on self-survey 
performance. 

 

For a landmark to be included in the map (shown in Figures 4.20 and 4.21), it had 

to have been tracked for at least 10 consecutive frames.  Any fewer and it was considered 

a poor track and thrown out.  This meant that every landmark had been tracked for a 

minimum of 15 degrees (cumulative tracking angle).  Some landmarks were tracked 

much longer, but due to the previously discussed feature persistence problems, landmarks 

averaged 10-15 tracks.  Given that the feature was tracked from nadir on (as was 

generally the case for the flight test data), this would translate into a 10 meter standard 

Cumulative Tracking Angle (degrees)

1 pixel ~ 0.1 degrees 

Flight Test Results 

Data Basis: Simulation 
Altitude: 1000 m  
Airspeed: 100 m/s 
Camera Angle: Downward 
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deviation; see Figure 4.22.  The flight test data revealed much worse performance than 

expected (~5 times).  This was attributed to the imperfect feature generation which 

noticeably misplaced features (in consecutive frames) by more than 2 pixels.  The flight 

test data failed to support theory, but performance is limited by image processing and 

optics.  Given a perfect feature tracker that allows a landmark to be tracked for 45 

degrees without contributing to measurement error, the same optics used in flight test (~2 

pixel standard deviation error) would yield a 2 meter vertical error (standard deviation).  

However, given the same feature tracker used in test, a 1 pixel error camera (standard 

deviation) would yield a 4-6 meter error in 15-20 degrees. Lastly, a 0.1 pixel error camera 

would yield a 2-3 meter error.  The resolution of the camera, as discussed herein, refers to 

the angular pointing precision.  This would allow for an articulated system, like a 

targeting pod, which would allow for fine resolution. 

Frame rate effects performance as much as resolution and tracking angle.  A faster 

frame rate allows more images in the same time or tracking angle.  This translates into a 

smaller apparent angular translation from frame to frame.  Because the measure is 

images-per-degree-of-tracking-angle, this can also be achieved with a lower V over h 

ratio.  Figure 4.23 illustrates the effect of an increasing frame rate (per degree of 

cumulative tracking angle) for the flight test condition, but using a 1 pixel error camera 

(0.1 degree standard deviation). 

A frame rate of 10 images-per-second yields a nominal translation of 0.5 degrees-

per-frame (at the flight test condition).  According to Figure 4.23, this would yield 0.7 

meter error in 45 degrees, or 2.5-3.5 meter error in 15-20 degrees.  The same effect could 
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be achieved via the V over h ratio, by increasing altitude 2.5-3 times, decreasing airspeed 

2.5-3 times or any combination thereof. 

 

 

Figure 4.23:  Effect of frame rate per degree of tracking angle on self-survey 
performance. 

 

Figures 4.22 and 4.23 were generated through simulation, by propagating the 

Kalman filter according to the particular scenario.  Only the error state covariance 

matrices were propagated (assuming perfect navigation state knowledge), yielding the 

Cumulative Tracking Angle (degrees)

Data Basis: Simulation 
Altitude: 1000 m  
Airspeed: 100 m/s 
Camera Angle: Downward 
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theoretical uncertainty in landmark elevation estimation.  These figures represent the 

ideal case which can never be achieved, but test results agree. 

Figures 4.22 and 4.23 clearly show the advantages of more precise optics, more 

consistent feature tracking (thus longer track angles), and faster frame rates or lower V 

over h ratios.  Flight test data agrees with these figures, validating the model, but data 

were not taken at lower V over h conditions or with different optics.  The recursive 

process used in the SLAAMR algorithm can, in fact, be used to build a 3-dimensional 

map of the surroundings.  However, optics, frame rate, geometry, and feature tracking 

must be considered and taken into account.  A deficiency in one area may be corrected by 

another. 

When using the self-surveyed map to aid navigation, the precision of the map, and 

speed at which precision is achieved, greatly dictate how strong the aiding action will be.  

The relative magnitude of the errors in the map to those in the navigation state relate to a 

dilution of precision.  This isn’t the same as GDOP per se, but a system that cannot 

quickly build a precise map (before tracks are lost) cannot aid itself.  The system under 

test, combined with the profiles flown, did not accomplish this task well; thus the data 

runs using the Far Guess estimation routine did not perform well.  This will be discussed 

in Section 4.5.4. 

4.5.4 Navigation with Zero A Priori Information.  It has been proposed here and 

in the literature [5] that a SLAM can be used to aid an INS without the benefit of a priori 

information about the environment.  Veth showed that this can be accomplished to some 

precision using binocular vision to acquire initial landmark position estimates [26].  
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Binocular vision requires two cameras, spaced far enough apart to resolve distance 

precisely in the z-axis of the c-frame.  For airborne applications, the distance between the 

cameras becomes quite large as the distances requiring resolution are also large.  In the 

case of the SLAAMR algorithm, zero a priori information (ZAPI) navigation is 

accomplished monocularly using the Far Guess initial landmark position estimation 

routine, and no other aiding.   

For SLAAMR to achieve precision ZAPI navigation, a precise map must be built 

and tracked before the inertial solution diverges too far from truth.  Specifically, a 

minimum of two landmarks must be self-surveyed to a precision near that of the aircraft’s 

own position.  As it was shown in the previous section, the flight test data did not achieve 

a precision map for many reasons.  Figure 4.24 illustrates the Monte Carlo results of 

using only LOO tracks and the Far Guess initial position estimate routine.  The mean 

plus 2 sigma errors are compared to the free inertial (Free Run) performance for both the 

downward and rearward looking camera angles.  Again the aircraft was flown 1000-1300 

m above the ground, at approximately 100 m/s, and each Monte Carlo run consisted of 10 

segments of test data. 

The data are clear; ZAPI navigation with the system under test is extremely poor.  

By all measures, the performance is worse than the free inertial case.  The navigation 

errors go unstable very quickly, making landmark tracking impossible, terminating the 

algorithm after about a minute.  There is a slight advantage to looking downward over 

rearward in this case, but the free inertial is always better.   
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Figure 4.24:  Zero A Priori Knowledge Aiding Performance. 

Data Basis: Flight Test 
8-10 5-minute segments 
Altitude: ~1000 m  
Airspeed: ~100 m/s 
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Because the free inertial is always better, no insight could or should be gathered about 

why one condition outperformed the other.  The estimates have diverged so far from truth 

that the EKF is not operating under the designed assumptions.  This result, however, was 

expected due to the findings above.  The self-surveyed maps are very poor.  The 

landmarks are not tracked long enough.  Thus their positions are not resolved finely 

enough to be of use.  It is clear that (for the specific system under test) additional aiding 

is required for a viable navigation solution.  Possible methods to increase the fidelity of 

the landmark maps were discussed in the previous section, but are not part of this test. 

 The flight test data showed very poor performance, but simulation suggested there 

was some benefit to ZAPI navigation.  Figure 4.25 illustrates the simulated performance 

of the Far Guess initial position estimation routine (compared to the other routines 

described in Chapter 3) when evaluated for a similar, simulated flight profile.  The 

difference in performance is likely due to the un-modeled, non-linear effects discussed 

throughout this chapter.  A previous study achieved strong aiding action using self-

surveyed maps [5].  This study employed much faster camera frame rates, lower V over h 

ratios, and was not plagued by poor feature tracking (and thus low tracking angles) due to 

a more reliable, but less robust feature tracker.  The full-scale, representative flight 

environment used in this test proved too much for the flight test apparatus to overcome.  

ZAPI navigation cannot be proven beneficial here, but also cannot be invalidated due to 

success in other studies.  It may be that the quality of the inertial (and other) systems used 

were insufficient for the geometry of the problem presented. 
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Figure 4.25:  Simulated Zero A Priori Knowledge Tracking Performance. 
 

Data Basis: Simulation 
25 5-minute segments 
Altitude: 1000 m  
Airspeed: 100 m/s 
Camera Angle: Downward
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4.5.5 Effect of Additional, Non-Image Measurements.  It was shown in Chapter 

3 that full observability cannot be achieved when tracking landmarks of opportunity.  It 

was also shown in the previous section, that this form of ZAPI navigation poses a very 

challenging problem, producing very poor performance.  However, it was also shown that 

measuring altitude, heading and using DTED (to estimate landmark position) 

significantly improves observability.  Figure 4.26 illustrates the influence these 

measurements have on aiding.  The mean plus 2 sigma errors for 4 Monte Carlo runs are 

displayed, each with an incremental aiding strategy.  Each Monte Carlo run consists of 10 

5-minute segments, using the downward looking camera, and tracking 10 landmarks of 

opportunity.  Horizontal circular errors and attitude state errors are displayed as they 

provide the most insight.  

The first aiding strategy considered is to use no aiding at all.  The free inertial run 

(free run), allows the INS to propagate without the benefit of any aiding, (i.e., no 

landmark tracks).  The following aiding strategies build up in a natural progression.  The 

second strategy tracks 10 LOO, using DTED to estimate their initial positions.  DTED 

could be implemented in the onboard computer without additional sensors.  The third 

strategy builds upon the second, adding altimeter measurements.  The fourth builds upon 

the third, adding a compass or heading measurement.  The third and fourth require 

separate sensor hardware. 
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Figure 4.26:  Effect of additional, non-image measurements. 
 
 

For these flight test results, altitude data was taken from the Data Acquisition 

System (DAS) on board the test aircraft.  The atmospheric bias (difference between 

barometric and geodetic altitude) was removed and assumed to be constant for the short 

Data Basis: Flight Test 
10 5-minute segments 
Altitude: ~1000 m  
Airspeed: ~100 m/s 
Camera Angle: Downward
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duration of flight.  A longer duration flight would require a modeling and estimation of 

this bias.  The heading measurements were not available on the DAS and were thus 

simulated.  The heading measurements were modeled and simulated by adding white 

Gaussian noise to the TSPI values (1 degree standard deviation).  Real data would require 

the modeling of the Earth’s magnetic variation and installation errors, but no bias 

estimation.   

The benefit of progressively augmenting the measurement equation is very 

evident.  Tracking 10 LOO alone provides a marginal advantage over free inertial 

performance.  In fact, the position errors grow exponentially, as did the free inertial 

errors.  The marginal advantage is likely due to the ambiguity between pitch and velocity 

being resolved by DTED constraining landmark elevations (pitch errors are significantly 

improved).  Adding altitude measurements to the equation makes a significant 

improvement, as the positional errors now grow linearly.  The additional elevation 

constraint on the aircraft further resolves ambiguities in velocity, height and pitch as 

predicted.  Notably, nothing done to this point has improved the heading error (yaw) over 

the free inertial condition.  This demonstrates the need for an independent measurement 

of this state.  Once heading is constrained with compass measurements, all navigation 

state errors are significantly reduced (almost leveling off).   

If available, DTED, altimeter, and compass data should be incorporated into the 

measurement equation.  They are all passive in nature and typically available on 

conventional aircraft.  These Monte Carlo results indicate that all are needed to provide a 

viable navigation solution.   
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It is important to note that conventional INS also have difficulties resolving 

altitude and heading, and often require similar aiding strategies.  The nature of gravity 

(decreases with altitude) causes an unstable altitude channel in INS mechanization.  This 

is due to a positive gradient with respect to altitude errors when gravity, a function of 

altitude, is removed to resolve vertical acceleration.  Many INS systems use a barometric 

altimeter or GPS to constrain the altitude.  Heading estimation suffers from a different, 

but equally challenging nature.  The yaw axis (z-axis in the n-frame) is essentially 

parallel to the local gravity vector, making the body frame gravity vector independent of 

heading.  This requires a lengthy gyro compassing event during alignment on the ground, 

and often times, slaving the heading to a magnetic compass.  This discussion is meant to 

demonstrate that the need for altitude and heading measurements is not unique to the 

system under test, or to SLAM-aided INS in general. 

4.5.6 Effect of Number of Landmark Tracks.  It was proposed in Chapter 3 that 

tracking many landmarks of opportunity can dilute the effects of having less than full 

observability.  It has already been shown that tracking many surveyed landmarks 

improves performance by virtue of improving overall GDOP.  Figure 4.27 illustrates the 

benefit of tracking many LOO by displaying the results of 4 Monte Carlo runs.  Each run 

treats the same set of 10 5-minute segments with a different number of landmark tracks.  

All use DTED, altimeter measurements and the downward looking camera, but the 

behavior in Figure 4.27 is consistent for all conditions and combinations.  The mean plus 

2 sigma spherical position and velocity errors are displayed as well as each attitude state. 
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Figure 4.27:   Effect of tracking many landmarks. 

Data Basis: Flight Test 
10 5-minute segments 
Altitude: ~1000 m  
Airspeed: ~100 m/s 
Camera Angle: Downward 
Using: DTED & Altimeter 
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The benefit of many tracks is immediately evident.  As the number increases from 

3 to 10, all navigation states benefit.  Tracking 3 landmarks gives very poor performance, 

but merely increasing to 5 gives orders of magnitude benefit.  Pitch errors immediately 

drop to 1-2 degrees, and see little improvement when more tracks are added.  Roll errors 

follow this behavior, but level out near 10-12 degrees.  Position, velocity, and heading 

(yaw) incrementally improve as the number tracks grow to 10.  Notably, performance 

starts to suffer as the number of tracks reaches 15.  This was not predicted or expected, 

but could be due to many un-modeled effects.  In either case, the number of tracks 

definitely affects navigation performance, and must be considered.  It did turn out though, 

that 10 tracks was a very practical compromise between computational load and 

performance.   

4.5.7 Effect of Camera Look Angle.  It was proposed in Chapter 3 that the order 

and flow of landmarks through the scene effects the aiding action.  The flow is ultimately 

driven by the look angle of the camera.  Figures 4.16-4.18 showed that this is the case 

when surveyed landmarks are being tracked.  However, because the position of the 

landmarks is already known, that case is a question of GDOP only.  When landmarks of 

opportunity are being tracked, they must be located before they can provide aiding 

benefit.  Thus, the rearward looking camera condition is expected to perform better than 

the forward. 

Figure 4.28 illustrates the results of 5 Monte Carlo runs.  Three of the runs treat a 

similar set of 10 5-minute segments with a different camera look angle, all using DTED, 

altimeter and heading measurements.  Two additional runs show the effects of not using 
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heading measurements when looking down and aft.  This case is not included for the 

forward looking camera, as it proved completely unstable.  The 2 sigma spherical (2 

standard deviation) position and velocity errors are displayed as well as each attitude 

state. 

The predicted behavior is evident immediately.  The forward looking condition 

proves completely unviable as all navigation states diverge quickly.  The rearward and 

downward looking conditions both demonstrate relatively small and stable errors, each 

with its own advantage.  The downward looking condition shows a 25-50% better 

position error, but suffers in velocity and attitude.  The opposite is true for the rearward 

looking condition.  This is likely due to the rearward looking camera capturing the 

feature near the horizon, giving better observability in the attitude states.  The downward 

looking camera has more evenly distributed geometry and V over h throughout the scene.  

This gives better triangulation of landmark positions, and ultimately aircraft position, but 

lacks the dwell time near the horizon. 

The runs without the use of a compass for heading measurements are included to 

illustrate the importance of this measurement and its independence from camera look 

angle.  In both cases, the yaw angle errors grow roughly linearly and at nearly the same 

rate. Despite being able to track features on the horizon, the rearward looking camera 

condition requires a heading measurement just as much as any other.  This is likely due to 

the small errors induced every time a landmark is lost and replaced.  This Brownian-like 

motion occurs despite good attitude observability (while the landmark is tracked).  A 

small error step is incurred with every new landmark track. 
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Figure 4.28:   Effect of camera look angle. 

Data Basis: Flight Test 
8-10 5-minute segments 
Altitude: ~1000 m  
Airspeed: ~100 m/s 
Camera Angle: Downward 
Using: DTED & Altimeter
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4.5.8 Effect of V over h.  It was shown in Chapter 3 that the apparent angular 

rate of a tracked landmark, driven by the V over h ratio, affects the aiding strength 

provided to the INS.  This was supported in Section 4.5.3, as V over h affects the quality 

of the landmark map generated by a self-survey. 

Another, more practical way that V over h affects INS aiding performance lies in 

the feature generation process.  Any moving scene is ultimately blurred and distorted by a 

still camera.  The blur is a function of shutter speed, detector sensitivity and ambient light 

(among other things).  The feature generator must give consistent descriptors to the 

features, allowing them to be correctly and consistently identified frame to frame.  

Blurring an image changes the features, thus complicating the issue.  If the image is 

blurred enough, the landmarks will not be consistently tracked, and dwell time reduced.  

Additionally, blurring a feature can elongate it.  This calls into question the accuracy of 

the placement of a feature onto a landmark in the image.   

For a downward looking camera, these blurring effects are generally a function of 

the V over h ratio at nadir.  The scene is flat and blurring effects, though still a problem, 

are consistent throughout the scene (though a feature is blurred, the blur is doesn’t change 

across the scene and the feature descriptors are consistent).  If the camera is angled 

toward a horizon, the blurring effects are no longer consistent, but a function of position 

in the image.  More blurring occurs where the angular rates are higher, further 

complicating the feature tracking problem.   

During flight test, the camera shutter speed and gain were controllable to a point.  

For a given altitude, sun angle, and camera look angle, the camera could be set to 
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eliminate blur, at least to the naked eye.  This held true until V over h exceeded 1-2 sec-1 

and was significantly worse for the forward and aft looking cameras.  At these conditions, 

the image was visibly blurry, and feature matches were very frequently dropped; aiding 

the INS was not possible.  This became the major limitation of the system under test.  

Based on theory and simulation, a faster frame rate, shutter speed, and more reliable 

feature generator are predicted to improve performance at conditions with a V over h 

greater than 1. 

For V over h conditions less than, but near 1 sec-1, the image was not visibly 

blurry, but feature match performance was significantly degraded.  It is unclear whether 

the feature generator was affected by unperceivable blur.  Thus, it is difficult to separate 

the practical effects of the feature generator from the dynamic effects of the apparent 

angular rate.  In either case, performance of the SLAAMR algorithm suffered as V over h 

increased from 0.1-1.0 sec-1.  Figure 4.29 illustrates 3 Monte Carlo runs at different V 

over h conditions.  Each run consisted of 8-10 5-minute segments, and the significant 

mean plus 2 sigma errors (2 standard deviations) are reported.  To eliminate the added 

blurring effects of the tilted camera, the downward looking camera was used for all three 

runs.  The aircraft was flown at a constant ground speed of 100 m/s, and V over h varied 

by flying at different altitudes above the ground (1000-1300 m, 400-500 m, and 100-130 

m). 
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Figure 4.29:  Effects of V over h on navigation performance. 

Data Basis: Flight Test 
8-10 5-minute segments 
Altitude: 100-1000 m  
Airspeed: ~100 m/s 
Camera Angle: Downward 
Using: DTED, Compass & Altimeter 
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As discussed before, the lower altitude runs could not be performed over the 

urban environment, but were flown over the Mojave Desert.  The features were different 

in nature, but plenty (400-500) were available in every image.  The influence of the 

different types of features is unclear, but a definite V over h dependence is evident.  Also, 

the contribution of the specific system under test cannot be divorced from the results.  For 

all the reasons previously mentioned, the apparent angular rate, or V over h, is a 

considerable factor affecting the performance of a SLAM-based INS aiding strategy. 

The dependence on the V over h ratio is evident.  Navigation performance 

increases as the V over h ratio decreases.  The potential GDOP benefit above 1 sec-1 

suggested in Section 3.3.2 was not evaluated, as even the 1 sec-1 case was overcome by 

image processing weaknesses.  In fact, as is clear by the flight test data, the 1 sec-1  

condition performed worse than the free inertial condition.  This is likely due to the 

destabilizing effects of the false positive feature matches that tended to occur.  The 

performance increase from 0.2 sec-1 to 0.07 sec-1 also supports the theory proposed in 

Section 3.3.2, but heading and position states benefit the most.  At these low V over h 

ratios, most all of the feature matching problems experiences at 1 sec-1 were not evident, 

allowing the test data to follow theory. 

4.5.8.1  Scalability.  In Chapter 3, it was suggested that there is a scalability 

factor when considering aiding action.  The observability grammian was scaled by the 

inverse of height squared.  This implied that, as the absolute value of height decreased, 

the aiding action would increase.  This is true despite the ratio of V over h.  It was 

supposed that an aircraft flying low to the ground and very slow would achieve much 
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better aiding action.  This case was not tested experimentally, but a simulation was.  The 

aircraft was replaced by a soldier with a camera on his helmet.  Instead of flying, the 

soldier was simulated to be walking with at V over h ratio of 1 (sec-1); a 2 m tall soldier 

walking 2 m/s.  The camera was pointed backward and a simulated sway in the soldiers 

step was simulated; see Figure 4.30. 

 

 

 

 

 

 

 

Figure 4.30:  Soldier based SLAAMR system. 
 

A Monte Carlo run of 30 5-minute segments was accomplished using simulated 

images as described before.  No aiding was used other than tracking landmarks of 

opportunity.  The results are displayed in Figure 4.31, and validate, at least in simulation, 

that the scalability principle is true.  Position errors are on the order of the height of the 

camera, but attitude errors are on the order of the camera resolution.  This is to be 

expected.  Bringing landmarks closer to the camera does nothing for angular resolution, 

but, the projection of angular uncertainty onto a plane becomes much smaller.  Thus, 

position and velocity errors are reduced. 
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Figure 4.31:   Simulated soldier based SLAAMR performance. 

Data Basis: Simulation 
30 5-minute segments 
Altitude: 2 m  
Speed: 2 m/s 
Camera Angle: 
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This simulation represents the best case scenario, as none of the complicating 

factors discussed up until now were simulated.  This discussion was included merely to 

illustrate that both the V over h ratio and height itself matter.  Also, this study supports 

Veth’s work [26], and it suggests an area for future research using monocular vision. 

4.5.9 Partial Survey Tracking.  Suppose that a small set of surveyed landmarks 

were all that was available to, or could be practically carried by, a system.  This partial 

survey or reduced catalog scenario accounts for practical limitations on third party survey 

capabilities and onboard computational resources.  It was shown that precise navigation 

can be achieved by tracking 2-3 surveyed landmarks, and that reasonable navigation 

performance can be achieved (for short periods of time) by tracking landmarks of 

opportunity.  If pairs or triplets of surveyed landmarks were placed along the intended 

flight path, the aircraft could navigate using LOO until the surveyed landmarks come into 

view.  Tracking the precise, independently surveyed landmarks would eliminate the drift 

incurred to this point, and the process could repeat.  Many conventional aircraft 

employing navigation grade INS use this strategy.  Though the drift rates are slower and 

the spacing between surveyed landmarks (or position update points) is much greater than 

what would be required by the SLAAMR algorithm, the concept is sound and proven.   

Two challenges are posed with a partial survey: recognizing the landmark when it 

is in view, and knowing where to look after the aircraft has drifted.  The first challenge 

must be overcome by perfecting the third party feature generation issue.  A third party 

must be able to survey a landmark and assign it a descriptor that is recognizable by the 
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aircraft from the expected viewing perspective.  This problem is assumed to be solved for 

this study by using the images taken by the ownship cameras to generate the descriptors.   

The second challenge is solved by the SLAAMR algorithm by its very design.  

Features being tracked are done so by estimating their projected position in the image 

(and associated uncertainty ellipse) using landmark and aircraft positions, and the 

measurement equation.  A match is only considered if a candidate feature falls inside the 

uncertainty ellipse.  The same is done for surveyed landmark searches.  The uncertainty 

in the landmark’s absolute position is determined by the third party, but the relative 

uncertainty is the sum of both the landmarks survey and the aircraft’s positional 

uncertainty.  This allows a wider search area as the aircraft drifts.  If a match to a 

cataloged surveyed landmark is made, it is inserted into a track, overriding a LOO.  The 

rest of the mechanization is identical to LOO tracking.   

Figure 4.32 illustrates two Monte Carlo runs in which 2 surveyed landmarks are 

available every minute for 10 5-minute segments.  This equated to a pair of surveyed 

landmarks every 6 km.  The aircraft was flying between 1000-1300 m at approximately 

100 m/s, and the camera used is looking downward, tracking 10 LOO at a time.  DTED 

and altitude measurements are used as well.  The performance is compared to the case in 

which all landmarks are surveyed and the case in which none are surveyed.  
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Figure 4.32:  Partial survey navigation performance. 

Data Basis: Flight Test 
10 5-minute segments 
Altitude: ~1000 m  
Airspeed: ~100 m/s 
Camera Angle: Downward 
Using: DTED & Altimeter 
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Using this hybrid method of tracking both surveyed landmarks and landmarks of 

opportunity proves to be a valuable compromise between navigation performance and a 

priori survey work.  An aircraft can navigate a predetermined path with a small catalog of 

surveyed landmarks, lowering the computational burden of searching the catalog for 

matches, and reducing the need for an extensive survey by a third party.  

Landmarks of opportunity near the surveyed landmarks will naturally receive a 

better self-survey by the aircraft.  If the route is flown often enough, this effect will be 

felt further out, eventually creating a precise, self-surveyed map.  Thus is the nature of a 

Kalman filter; all measurements taken are used, refining the estimate. 

The ability to get by on a small number of occasional surveyed landmarks allows 

for imperfect feature recognition.  If a large catalog of surveyed landmarks is carried, the 

algorithm need only recognize a few, occasionally.  Care would need to be taken to avoid 

false positive matches, as they would destabilize the navigation solution.   

4.5.10 Landing Profile Performance.  The landing profile was flown as a 

demonstration of concept.  The goal was to explore the military utility of using the 

SLAAMR algorithm for an autonomous landing system or precision approach guidance 

system.  The camera that was used in the test photographed in the visible light spectrum, 

but without loss of generality, an infrared or similar type of camera could be used at night 

or in the weather.  Figure 4.33 displays three Monte Carlo runs; flight test results using 

surveyed landmarks, flight test results with feature matching errors eliminated, and 

simulated data.  Each run consisted of 10 straight-in approaches to landing that followed 

a 3 degree glide path and lasted 73 seconds.  The flare (defined by 50 feet above the 
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runway) occurred at approximately 70 seconds.  Up to 10 surveyed landmarks were 

tracked at any given time, and the forward-looking camera was used.  Surveyed 

landmarks were chosen over landmarks of opportunity for two reasons.  The navigation 

estimate had to be precise for a landing task and feedback control.  Also, it is reasonable 

to expect that the runway environment could be well surveyed with many landmarks.  

The descriptors could also be generated (by a third party) from the same perspective as 

they would be viewed by the test aircraft.   The Monte Carlo plot contains the individual 

event spherical errors in position, velocity and attitude, and the mean plus 2 sigma errors 

are displayed (2 standard deviations). 

In general, the performance of the SLAAMR algorithm was not precise enough to 

be used as a landing guidance and navigation system.  Positional and velocity errors were 

acceptable for most of the profile.  A 20-30 meter spherical position error and a 5-10 m/s 

spherical velocity error are adequate for navigating down the glide slope.  However, after 

approximately 60 seconds (13 seconds from touchdown, and 60 meters above the 

ground), the errors began to grow geometrically, reaching 160 meters in position and 30 

m/s in velocity by touchdown.  At this point in the profile, the combination of high V 

over h, the low angle scenery and image blur overcame the benefit of the surveyed 

landmarks.  Landmarks currently being tracked were dropped after a single frame, and 

potential surveyed landmarks not tracked were not recognized.  Essentially, the system 

was running free inertial, gaining no aiding action from landmark tracks.  This was 

exacerbated by destabilizing false positive matches.   
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Figure 4.33:  Landing profile performance using surveyed landmarks. 
 

Data Basis: Flight Test 
10, 73 second segments 
Airspeed: ~65 m/s 
Camera Angle: Forward 
Using: Surveyed Landmarks 
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Not finding the surveyed landmarks caused great instability at a critical time in 

the profile.  To examine the impact, TSPI and DTED were used to eliminate some of the 

feature matching errors by allowing the SLAAMR algorithm to find the surveyed 

landmarks in the first place.  However, this did not aid frame-to-frame tracking.  Because 

the surveyed landmark position is essentially known, aiding can be achieved with a single 

frame/measurement.  Figure 4.33 shows that correcting the feature matching errors 

eliminates the free inertial drift that occurs after 60 seconds (described above).  The 

position and velocity errors at touchdown became acceptable for a landing task on a 

conventional runway (15 meters and 5 m/s respectively).  The vertical channel (altitude 

and vertical velocity) is the most critical when the aircraft is close to the ground.  A sink 

rate greater than 1-2 m/s is considered a hard landing, so the vertical velocity uncertainty 

must be at least that precise below the 2-3 sigma altitude error.  The flight test results do 

not guarantee this constraint, but it could be accomplished with altimeter aiding or a laser 

height finder that is common on many UAVs. 

Landmark tracking frame to frame was greatly impeded by the nature of the 

scene.   The scene was at a very low angle (3 degrees) and moving very quickly near the 

bottom.  Blur and scale greatly complicated the matching problem, and feature 

persistence dropped considerably.  The features grew significantly in scale as they 

translated the scene.  The descriptors changed, reducing match probability, and the 

associated coordinates were not consistently placed on the same spot in 3-dimensional 

space.  At these conditions, a small pixel position error, translates into a large distance 

error in 3-dimensional space.  The primary cause poor matching was that the flight path 
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was relatively parallel to the Earth.  A set of purpose-built landmarks on a vertical surface 

could mitigate these problems.   This suggestion is supported by data taken up and away, 

looking down at a flat scene.  In this case, matching features and landmarks was 

accomplished consistently.  It is not unreasonable to place distinct, scale-invariant 

patterns (checkerboard, etc) around the airfield on vertical placards or small billboards.  

Airfields are already littered with markings and lights.  However, such purpose-built 

landmarks were not part of this flight test. 

Position errors exhibited relatively adequate performance, but the attitude states 

are another issue altogether.  To guide and land an aircraft precisely, attitude state must 

be known and controlled to a degree or less (depending on the aircraft).  Not only do the 

flight test results not come close, but they drift over time.  Removing the matching errors 

corrects the heading state, but only reduces touchdown roll and pitch errors by 

approximately 60% and 10%, respectively.  Even with the matching errors removed, the 

attitude errors are unacceptable for a landing task.   

Simulation suggested a very a highly precise navigation solution as shown in 

Figure 4.33.  The simulated results suggest that the benefits of scalability and surveyed 

landmarks overcome the geometric and dynamic penalty of the ever increasing V over h 

ratio. The difference between simulation and test data lies in the image processing and 

feature generation at high V over h ratios and at such a low altitude and descent angle.  

This is supported by the fact that navigation state errors and feature matching maintained 

an acceptable level of performance until an altitude threshold was crossed.  The 

mathematics and simulation indicate that very precise navigation should be possible, but 



 

250 

the un-modeled effects on the imagery and feature tracking overcome this potential.  It is 

thus proposed that improved feature generation and matching, coupled with finer optics 

and faster frame rates could improve performance of the SLAAMR algorithm allowing it 

to approach that suggested by simulation.   

Overall, the test data showed poor performance, failing adequate performance 

criteria by significant margins.  However, the data did show some promise for a SLAM-

based algorithm like SLAAMR.  In general, when matching errors were removed, the 

navigation state errors matched the predictions in nature and in sense, but were larger by 

orders of magnitude.  Improving the feature generation/matching process could bring the 

system into line with simulation.  These test results suggest that the SLAAMR algorithm 

could be used to provide precision landing navigation if the image processing is 

improved or the suggested strategies (purpose-built landmarks, etc) are employed. 

4.5.11 Capstone Design – Long Duration Performance.  The discussion up until 

this point has illustrated the great challenge posed by attempting to implement a SLAM 

navigation system.  The SLAAMR algorithm is designed to maximize the aiding benefit 

of landmarks of opportunity by inserting them into the algorithm immediately, but this is 

not enough to provide long-term navigation stability.  The great benefit of pointing the 

camera down or aft (versus forward) and using altimeter and heading measurements was 

shown.  Without a great leap in feature generation/tracking technology, and significantly 

more precise optics, landmark of opportunity tracking alone will not provide a MEMS 

grade IMU the aiding it needs to be a viable navigation platform.  However, adding the 

passive altitude and heading measurements, and using DTED to estimate landmark 
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position initially does provide a navigation solution comparable to much larger and more 

expensive navigation grade INS. 

Figure 4.34 illustrates the results of using altimeter, heading and DTED during a 

30 minute flight with a V over h of 0.08-0.10 sec-1.  This figure only displays the 

significant navigation states.  Vertical position, velocity, and heading errors were small 

and un-noteworthy because they were constrained by the altimeter and compass 

measurements.  The pitch errors were also very small, and identical in both cases.  It is 

believed that the combination of the altimeter and DTED eliminated any ambiguities 

between pitch, forward velocity, and altitude (making these errors very small).  Both the 

downward and aft looking results are displayed for comparison. 

From a positional error standpoint, looking downward performs 3-4 times better 

than aft, reaching a maximum of 400 m of error in 30 minutes versus approximately 1000 

m.  In both cases, this is comparable to a navigation grade INS which could expect to 

drift 1 mile (1600 m) in one hour.  This isn’t the whole picture however.  The aft-looking 

condition outperforms downward-looking in both roll and velocity by a factor of 2, with 

maximum errors at 6 degrees and 10 m/s versus 12 degrees and 20 m/s.  The aft camera 

captures the horizon, providing better attitude aiding action.  If these measures are more 

important than position, pointing the camera aft is optimal.  However, both of these 

measures are outperformed by a navigation grade INS.  The following figure (Figure 

4.35) repeats the same scenario as above, except without the benefit of the heading 

measurements. 
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Figure 4.34:  Long duration flight using altitude, heading and DTED measurements.  

Data Basis: Flight Test 
1, 30 minute segment 
Airspeed: ~100 m/s 
Altitude: 1000-1300 m 
Camera Angle: Down & Aft 
Using: Altimeter, Compass & DTED 



 

253 

 

 

 

 
Figure 4.35:  Long duration flight using altitude and DTED measurements; no heading 

measurements used. 

Data Basis: Flight Test 
1, 30 minute segment 
Airspeed: ~100 m/s 
Altitude: 1000-1300 m 
Camera Angle: Down & Aft 
Using: Altimeter, DTED 
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The addition of the heading error (on the lower left attitude error plot) illustrates the 

dominating source of position error.  Despite roughly equivalent velocity and attitude 

errors as Figure 4.34, the position drifts significantly farther.  Examining the heading 

error and the ground track, it is evident that the drifting heading estimate points the 

otherwise good velocity estimate in the wrong direction.  Since position is the integral of 

velocity (in INS mechanization), the miss-pointed velocity causes the position to drift 

away.  It does not run off exponentially like in the free inertial case, the n-frame simply 

rotates as it goes.   

Another important finding is made from this test.  Despite best efforts (measuring 

altitude and incorporating DTED for landmark position estimation), the heading state 

appears un-aided, almost independent of the rest of the navigation state.  The same 

behavior is seen despite the number of LOO tracked.  The proposal that diluting un-

observability with many tracks appears to break down in the heading dimension.  The un-

observability is not evenly distributed across all states, and at least one vector in the null 

space of the observation matrix is closely aligned with the heading dimension.  In 

Chapter 3, it was shown that a measurement of any attitude state would have the same 

effect of increasing the rank of the observability grammian, but Figures 4.34 and 4.35 

suggest that the heading measurement has a more significant impact on the grammian 

condition number.   Ultimately, these findings illustrate the vital importance of 

independently measuring heading if a viable long-term navigation solution is desired. 

4.5.12 Ad Hoc Techniques That Did Not Work.  The SLAAMR algorithm is built 

around an extended Kalman filter that assumes certain properties of the system being 
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modeled and states being estimated.  The EKF assumes that all errors (measurement and 

process driving noise) are zero mean and Gaussian, and that the linearization of the 

system is accomplished about a good nominal.  Taking bearings measurements from 

images is inherently non-linear and plagued with errors violating these assumptions.  

Optical calibration errors are deterministic and not normally distributed.  Feature 

generation errors are systematic, and not Gaussian.  Any ZAPI navigation technique, 

such as the Far Guess initial landmark position estimation routine, inherently biases the 

initial landmark position estimate.  The INS-derived nominal about which the system is 

linearized drifts over time.  For these reasons, several ad hoc techniques were derived to 

mitigate the non-linear and un-modeled error sources.  None significantly improved 

performance without an inordinate computational penalty.  They are included for 

informational purposes and to strengthen the argument for using the basic SLAAMR 

algorithm described up to this point.  The ad hoc techniques evaluated were: 

• Second Order Extended Kalman Filter.  This filter model provided an 

insignificant performance increase, but at a huge computational penalty [15].  

This suggests that the main source of error in the measurement equation resides in 

the drifting nominal, not an insufficient error propagation model. 

• Partial Batch Estimation.  The first two frames in which a new landmark was 

visible were used to triangulate the initial position estimate.  This technique 

proved no better than the base algorithm, and complicated computation.   

• Delayed Inclusion.  Landmarks with fewer tracking frames than a set threshold 

(2-5) were excluded from aiding the basic navigation states.  This was 
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accomplished by zeroing out the applicable Kalman filter gain matrix elements 

and error state uncertainty cross-covariance components.  This technique showed 

significant performance degradation and posed a computational penalty. 

• Predictive Feature Selection.  The scale, orientation and descriptor properties 

(provided by SIFT©) were used in an attempt to select features that would both 

persist and have stable placement characteristics.  There was no perceived 

advantage to any of the properties, except scale.  Large scaled features tended to 

be associated with low spatial frequency portions of an image, and were more 

resistant to aliasing and fading away.  However, they also tended to be placed on 

the centroid of the feature and were inconsistently placed if the scale changed, as 

was the case with the forward and rearward cameras.  Also, features near the edge 

of the image appeared to gain some measure of scale from image edge effects, 

and changed as they translated away from the edge.  The best scaled features were 

in the middle of the pack, but as relative scale values changed with the scene, it 

was difficult to predict. 

• Tracking Coast Mode.  Landmarks with tracks that became lost were allowed to 

coast for a determined number of frames (2-5) before the track was considered 

broken.  While in coast mode, the position estimate and uncertainty remained 

unchanged, and no measurements were taken until a positive match was made in 

later frames.  If the coast time expired, the track was replaced with a new 

landmark.  This mode showed slight performance degradation, and increased 

computational load. 
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• Higher Quality IMU.  Though a higher quality IMU does significantly decrease 

the rate of INS drift, the high quality IMU may preclude any aiding strength from 

tracking landmarks of opportunity.  Practically speaking, observable drift had to 

occur in the time that a feature could be maintained in view if it were to have a 

significant impact.  For example, if the INS drifted 100 meters in an hour, 

tracking a landmark for 10 seconds with a real camera (limited resolution) did 

nothing as the drift over 10 seconds was unobservable.  This would not be the 

case if an infinite resolution camera was used or landmarks could be maintained 

in view for very long periods of time.  An INS using a high quality IMU did not 

benefit from tracking landmarks of opportunity in the scenarios described herein. 

 

4.6 Summary 

 In summary, the flight test portion of this study generally validated the assertions 

and propositions made (in Chapter 3) that led to the principles of design.  Image 

processing proved to be the most challenging aspect of the SLAAMR algorithm, and 

flight test data served to help characterize its performance.  Though the data did not 

always match simulation precisely, it did serve to illustrate the effects of the major 

influencing factors (predicted in Chapter 3), and to characterize the true aiding potential 

of bearings-only measurements.  The SLAAMR algorithm design is ultimately validated 

by navigation grade performance in the capstone evaluation. 
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V.  Conclusions and Recommendations 

 

This thesis developed and explored the fundamental observability of bearings-

only measurements and their effect on aiding an inertial navigation system.  This 

exploration was used to develop a practical, robust Simultaneous Location And Mapping 

(SLAM) algorithm, and is expressed as a collection of principles of design.  An 

experimental apparatus was built and flight test data collected in a representative full-

scale environment.  The flight test data was collected to support and demonstrate the 

principles of design, and illustrate the challenges faced when operating in a real-world 

environment.  This chapter summarizes the results of the flight test, and draws 

conclusions about the principles of design.  Recommendations for future work will be 

made, based on shortcomings in this test and areas that showed promise.  

 

5.1 Conclusions 

Overall, the navigation performance of the Simultaneous Location Aiding And 

Mapping Recursively (SLAAMR) algorithm performed significantly worse with flight 

test data than in simulation.  This was due to the many non-linear, non-Gaussian errors 

sources in image processing and optical effects that were not accounted for in the system 

model or simulation.  Generally, however, the sense and nature of the navigation errors 

matched simulation, suggesting that the underlying model is sound.  The study of the 

observability grammian matrix suggested various factors influencing performance.  Flight 

test results validated the predictions, and each is addressed in this section.  Moreover, the 
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flight test results were based on the statistics of many independent data runs, capturing 

the true nature and trends. 

5.1.1 Surveyed Landmarks are the Practical Equivalent to Perfectly Known 

Landmarks.  Perfectly known landmarks allow full navigation state observability with 

only two tracks.  This was shown mathematically by examining the observability 

grammian matrix.  Full observability ensures that the navigation state errors are bounded 

by the resolution of the measurement system and by geometry.  It was asserted that, if a 

landmark is independently surveyed to a fine enough precision (not perfectly known), 

and included into the state vector for simultaneous estimation, the navigation state will 

receive practically the same aiding benefit as the known landmark case (despite the state 

vector dimension growth).  Flight test data illustrated this effect plainly.  The errors were 

bounded over time, and limited by the geometry of the tracked landmarks.  Therefore, 

though the system never obtains full observability, independent but imperfectly surveyed 

landmarks are the practical equivalent to the perfectly known case.  In fact, the quality of 

the survey merely drives the magnitude of the bounded navigation state errors, but any 

independent survey will constrain the drift. 

5.1.2 Full Observability is Achievable by Tracking Only Two Landmarks.  It 

was asserted that only two landmark tracks are required to achieve full observability (in 

the perfectly known landmark position model).  This contradicts intuition, which suggests 

three are needed for triangulation.  Flight test data supported the first assertion, as there 

was no fundamental difference between tracking two or three surveyed landmarks. (It 

was previously shown that surveyed landmarks are the practical equivalent to the 

perfectly known case.)  Both showed bounded navigation state errors, consistent with full 
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observability.  The three-track case showed smaller average error magnitudes, but this 

was determined to be due to better average GDOP and observability grammian matrix 

condition number, not a difference in the degree of observability (observability grammian 

matrix rank).   

5.1.3 The SLAAMR Algorithm Naturally Builds a Surveyed Map of the 

Environment, but the Quality is Driven by Optics, Frame Rate, Tracking Angle and V-

over-h Ratio.  It was suggested that an extended Kalman filter based SLAM algorithm 

naturally builds a map of the surroundings and that this map could then be used to 

constrain errors in the navigation state.  The strength of navigation state aiding is driven 

by the quality of the map generated.  It was also asserted that the precision of the map 

position estimates approach that of the aircraft position estimate.  This theoretical lower 

bound was found also to be a function of optical resolution, camera frame rate, landmark 

cumulative tracking angle, altitude (i.e., scalability) and the velocity-to-height ratio.  The 

maps generated in flight test proved to be of very poor quality.  This was, however, 

attributed to the test apparatus used in flight.  The combination of poor camera resolution, 

low frame rates, and small tracking angles due to poor feature tracking, limited the 

resolution of the self-surveyed maps.  However, despite poor performance, the data 

validated the model relating map precision to these factors, and the original assertions 

were supported.  Precision self-surveyed maps can be generated, but a precision sensor 

system is required. 

5.1.4 Navigation with Zero A Priori Information Requires a Much More Precise 

Sensor System than was Tested.  It was asserted that a self-generated, self-surveyed map 

of landmarks can be used to constrain navigation state errors.  This approach was 
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demonstrated in simulation and previous studies.  However, due to the poor quality of the 

self-surveyed landmark maps generated by the flight test apparatus, zero a priori 

information navigation (using the Far Guess initial position estimate routine) performed 

worse than the free inertial case.  A previous study showed that this type of navigation 

can prove to work in certain conditions, but was not representative of a realistic flight 

environment [5].  The full-scale and representative flight environment used in this test 

proved too challenging for the flight test apparatus.  Thus, zero a priori information 

navigation cannot be validated in this study.  Due to the poor precision test apparatus, it 

also cannot be invalidated. 

5.1.5 Additional Passive Aiding Overcomes the Challenges Posed by Full-Scale, 

Realistic Flight Environments.  It was shown that the additional passive measurements of 

altitude, heading, and use of DTED for initial landmark position significantly increase 

system observability and resolve ambiguities in bearings-only measurements.  The 

realistic flight test environment and scale posed great challenges for the SLAAMR 

algorithm, and errors quickly became unacceptable for flight.  Landmark tracking was 

limited by feature generation, and the scalability principle meant that what were small 

errors at low altitudes (seen in previous studies), were very large at realistic altitudes 

(used in this test).  The additional measurements of altitude, heading and DTED 

significantly improved navigation performance, making up for poor image processing.  

Each was shown to be critical for long-term stability, and these dimensions are weakly 

observable from bearings-only measurements.  They also follow the low-cost, jamming-

resistant, stealth model, since these measurements are readily available on many aircraft 

and are passive in nature.  Image processing will always be the crux of a SLAM-based 
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algorithm.  Measuring heading, altitude, and incorporating DTED significantly make up 

for poor image processing by complementing bearing-only measurements in 

unobservable dimensions. 

5.1.6 Tracking Many Landmarks Ensures Good GDOP and Improves 

Performance.  It was proposed that tracking many landmarks of opportunity would 

improve performance by diluting the degree of un-observability, guaranteeing better 

average GDOP, and ensuring at least two well (self) surveyed landmarks.  Flight test data 

clearly showed that performance improved as the number of tracks increased to ten, 

supporting this assertion.    There was a slight and unexplained decrease in performance 

above ten, but ten proved to be enough and did not induce too heavy a computational 

burden.   

5.1.7 Camera Look Angle Significantly Affects Navigation Performance.  It was 

proposed that the direction in which the camera (used for imaging the environment) is 

pointed, greatly affects the order and flow of geometry in a scene.  This in turn affects the 

aiding action provided to the INS.  Flight test data clearly showed that camera look angle 

plays a significant role in the performance of a SLAM-based system.  Looking forward to 

the horizon performed very poorly, as expected.  Looking downward or rearward 

performed significantly better than looking forward (orders of magnitude by some 

measures), each having its strong points.  Rearward performed better in attitude and 

velocity states and downward in position.  The rearward condition was expected to 

perform better than downward in all cases, but it is suspected that the more complicated 

image processing problem looking rearward leveled the playing field.  The downward 



 

263 

looking camera was presented a benign, flat scene with little distortion or blur, while 

angling the camera created feature scale changes and depth of field problems. 

5.1.8 Velocity-to-Height Ratio (Feature Angular Rate) Significantly Affects 

Navigation Performance.  It was suggested that the ratio of velocity to height (V over h), 

or more specifically the angular rate of features as they pass through a scene, drives 

navigation aiding effectiveness.  The effect on performance is manifested in two ways, 

the dynamics of the observability grammian and the ability of the feature generator to 

place features consistently on landmarks.  Dynamically, a lower V over h ratio 

presumably benefits the attitude states, while a higher ratio benefits positional states.  

There exist sweet spots where aiding is most evenly distributed, but which are difficult to 

predict.   Optimally, a system should attempt to capture landmarks exhibiting the span V 

over h ratios in order to maximize aiding benefit.  Practically, however, the image 

processing was the driving force on performance.  Flight test data showed that lower V 

over h ratios performed better than high, and a V over h near 1 sec-1 performed worse that 

free inertial.  At this condition, landmark tracking became nearly impossible due to poor 

image processing, while V over h between 0.30-0.05 sec-1 was not terribly affected.  

Image processing is a function of the specific system under test, but will challenge any 

SLAM-based system.  In this case, any potential benefit of good GDOP at higher V over 

h values was overcome by poor image processing.  It must be noted that the observability 

study accomplished in Chapter 3 focused on the deterministic measurement equation, 

neglecting the contribution of the inertial measurement unit quality.  The poor quality 

IMU (used in test) may have impacted the algorithmic performance in a way not captured 

by this analysis. 
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5.1.9 Using a Partial Catalog of Surveyed Landmarks Provides a Practical 

Compromise to A Full Survey.  The SLAAMR algorithm allows the seamless insertion of 

surveyed landmark tracks into a population of landmarks of opportunity.  This enables a 

smaller set of surveyed landmarks to be carried in memory and accounts for poor 

surveyed landmark recognition.  Both realistic scenarios gain the benefit from surveyed 

landmarks when available (correcting drift), and can continue navigating when they are 

not using Landmarks of Opportunity.  Flight test data showed that a minimal set (2 every 

minute or 6 km) provided a very good compromise for this configuration, as navigation 

state errors were bounded and reasonable for flight. 

5.1.10 The SLAAMR Algorithm Shows Promise for Use as a Precision Landing 

System, but the System Under Test Has Major Deficiencies.  The landing profile was 

flown as a proof of concept test for military utility in precision landing tasks.  Simulation 

and theory suggested that highly precise navigation could be achieved during landing.  

Flight test data illustrated that the real world image processing problem presented by such 

a task was not solved by the specific system being tested.  However, the (artificial) 

removal of some of the many complicating feature tracking errors showed great 

improvement.  It is thus proposed that a more refined system that solves the image 

processing problem could prove viable for this task. 

5.1.11 The SLAAMR Algorithm Provides Navigation-Grade INS Performance for 

Long-Term, Up-and-Away Flight When Tracking Landmarks of Opportunity.  When the 

SLAAMR algorithm is employed fully, to include altitude, heading, and DTED data, the 

navigation performance was on the order of a contemporary navigation-grade INS.  The 

addition of the altitude, heading and DTED data overcomes the challenges presented by 
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image processing and scaling.  If flown high enough to provide a V over h of 

approximately 0.01 sec-1, and pointing the camera downward or rearward, the system 

under test proved viable for use in a contemporary aircraft on a realistic mission.   The 

problem of scalability to realistic altitudes and airspeeds was also solved, as well as 

allowing long distance travel into unknown environments populated with unknown types 

of features.  Improving the system by increasing optical resolution, frame rate, feature 

generation/matching performance etc, would only improve upon this result. 
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5.2 Recommendations for Future Work 

The conclusions in this chapter validated many of the original assertions and 

design decisions, but the limitations of the particular test apparatus left some conclusions 

incomplete, and did not allow the exploration of the SLAAMR algorithm’s full potential.  

This section makes recommendations for future work that will improve upon the test 

apparatus and expand the envelope for its use.  The following recommendations should 

be followed when attempting to use a SLAM-based system for INS aiding. 

5.2.1 Optimize Feature Generation/Matching Algorithm for Feature 

Persistence.  It was shown that dwell time and landmark tracking angle drive the GDOP 

and precision of the self-surveyed maps used by the SLAAMR algorithm.  These are 

ultimately driven by the ability to find the same landmark feature/landmark in successive 

frames.  Unfortunately, this is the most difficult and least understood portion of the 

SLAAMR algorithm, leaving ample room for improvement.  Many of the techniques and 

added aiding used to overcome poor image processing may not be needed.  Other studies 

have shown the benefit of good feature persistence, but do not employ a robust algorithm 

that would work in realistic environments.   

5.2.2 Increase Camera Frame Rate.  It was shown that increasing camera frame 

rate gives more measurements to the extended Kalman filter and increases performance.  

Another benefit lies in the feature matching problem.  Faster frame rates would reduce 

the change in the scene from frame to frame (as less time has gone by).  Features would 

also be expected to change less, and thus be easier to match.  The frame rate used in test 
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was driven by hardware and computational limitations, and found to be inadequate for the 

higher V over h data points. 

5.2.3 Explore the Full  V over h Spectrum.  The angular rate of features in the 

scene (driven by V over h) proved to be the most challenging problem for the system 

under test.  Thus, only a portion of the spectrum was confidently evaluated (0.3-0.07   

sec-1).  The recommendations above would, in theory, allow this envelope to be extended 

above 0.3 sec-1.  Some attention should also be paid to the very low V over h ratios 

(below 0.07 sec-1) at very high altitudes (10,000-60,000 ft), as many unmanned vehicles 

may be expected to fly there. 

5.2.4 Re-Evaluate the Zero A Priori Information Navigation Performance.  

Other studies [4][5][6][11] showed the promise of the zero a priori information 

navigation, but were not plagued by the image processing deficiencies of the system 

under test.  A system improved by the above recommendations should perform more 

closely to predictions. 

5.3 Summary 

In summary, this thesis rigorously explored the nature of bearings-only optical 

measurements and their aiding benefit to an INS using a SLAM-based system.  The 

theories were generally validated, but deficiencies in the system under test leave room for 

further exploration.  The practical limitations of optics, image processing and 

computational power greatly affect the performance of a SLAM system, but can be 

overcome with the added measurement of altitude and heading.  All in all, the SLAAMR 
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algorithm as described in this report provides passive, stealthy, and jamming-resistant 

navigation-grade INS performance in robust environments. 
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