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retain their physiological activity, in order to effectively integrate them into practical 
applications. 

The immobilization of enzymes and other biomolecules within and adsorbed to inert 
supports has been practiced for over 30 years. Porous silica and silica sol gels are often used to 
support immobilized enzymes (4, 5). The approach can provide stabilized catalysts, but loading 
capacity is limited and conventional methods for producing the silica involve organic solvents 
and alcoholic byproducts that can denature the enzyme present during formation. Alternatively, 
mineralization reactions are wide-spread in biological systems and these biomineralization 
processes can be mimicked in the laboratory setting. Biomineralization refers to the process that 
organisms use for generating hard tissues that incorporate inorganic minerals (bone, teeth, shells, 
and exoskeletons). Biomineralization is typically initiated by a protein that acts as a sort of 
template or scaffold in order to form a composite material that combines the protein and 
inorganic components. The process can be mimicked in vitro to some degree, providing methods 
for production of nanometric structures and inspiration for a burgeoning branch of materials 
science (6-9). For example, peptides based on the silaffin protein from the marine diatom 
Cylindrotheca fusiformis catalyze formation of silica nanospheres in vitro (10). The reaction 
occurs under benign conditions (aqueous solution, neutral pH, ambient temperature), providing 
an attractive processing technique to form homogenous silica nanoparticles. The reaction also 
provides a method to entrap additional enzyme in silica matrices. When additional molecules are 
included in the precipitation reaction mix, they are entrained within the newly-formed material 
(11, 12). The approach might be broadly applicable to incorporating sensitive molecules within 
silica frameworks.  In addition, biomineralization reactions are not limited to amorphous 
inorganic matrices.  Organic molecule-mediated formation of metal nanoparticles has also been 
shown in a wide range of studies and is effective in synthesizing hybrid bioinorganic composites 
that retain properties from the organic and inorganic components (13, 14).   In particular, several 
studies have shown that silver nanoparticles can be easily synthesized from soluble silver salts 
using biomolecules as reducing agents and/or stabilizing surfactants (e.g. proteins, ribonucleic 
acids, and extracellular components) (15-17).  This phenomenon is of particular interest to our 
studies, as well as to the larger medical community, as silver inhibits the growth of the wide 
range of pathogenic bacteria, fungi, and viruses (18). 

Herein, we report synthesis of two antimicrobial composites where biological molecules 
inspired by the innate immune system of higher animals are integrated with inorganic supports to 
form hybrid bioinorganic materials. The effectiveness of the antimicrobial activity is influenced 
by properties of both the biochemical and inorganic components.  The resulting products offer 
effective antimicrobial activity and demonstrate the facile integration of biomolecules into 
devices and instruments.  These novel materials exploit natural antimicrobial mechanisms that 
have not been overused in the health care community and therefore, have the potential to be an 
effective countermeasure against multi-antibiotic resistant pathogens. 

EXPERIMENTAL 

Synthesis, physical characterization, and antimicrobial activity of the following composites 
were completed as reported elsewhere: antimicrobial peptide silica and titania nanocomposites 
(19), lysozyme-silver nanoparticles (20) and electrophoretic deposited coatings (21).  Detailed 
explanation of synthesis and preparation procedures, physical and chemical analysis, and 
antimicrobial assays can be found in these manuscripts. 



RESULTS 

Peptide-based synthesis of silica and titania antimicrobial nanoparticles (Si- and Ti-ANPs) 

The antimicrobial peptide, KSL (KKVVFKVKFK) mediated its own immobilization within 
silica and titania nanoparticles and retained the antimicrobial properties of the free peptide (19).  
KSL, a highly cationic peptide, not only demonstrates antimicrobial activity against a wide range 
of microorganisms, but also has inherent ability to mediate biomineralization of silica and titania 
(Figure 1).  When the peptide was added to phosphate buffer and either tetramethyl orthosilicate 
or potassium hexafluorotitanate, amorphous silica and titania oxide nanospheres form, which 
retain the antimicrobial properties of antimicrobial peptide and provide inhibitive and biocidal 
activities that is comparable to the native peptide (Table 1).  Furthermore, the novel composites 
protected much of the peptide from degradation and inactivation and also facilitate a continuous 
dose of the peptide over time. These protective and time-release properties of the nanocomposite 
material facilitated a more stable dose of the peptide than the un-immobilized, free form of the 
peptide when incubated with Staphylococcus aureus (Figure 2).  Altogether, the composites 
show promise for use as a potentially effective antibiotics.  For example, the material may be 
included in topical treatments or as components in self-sterilizing coatings. 
 

 

 

 
 
 

Figure 1.  Scanning and transmission electron micrographs (TEM and SEM), respectively, 
of KSL-catalyzed silica (A and B) and titania (C and D) nanoparticles (19). 
 
 
 
 
 



Table 1. Minimum Inhibitory and Biocidal Concentrations of native KSL, Si-ANPs, and Ti-
ANPs (19). 

Strain cellsa 
peptide  
formc 

total peptided 
MICe MBCf

E. coli 

ATCC 25922 

5.27 ±2.65b free 0.8 ± 0.2 0.9 ± 0
Si-ANPs 3.0 ± 2.0 5.0 ± 2.0 
Ti-ANPs 2.0 ± 0.9 6.0 ± 0.2 

S. aureus 

ATCC 25923 

2.71 ±2.25 free 18.0 ± 8.0 >225.0  ± 0
Si-ANPs 24.0 ± 1.0 80.0 ± 25.0 
Ti-ANPs 62.0 ± 41.0 91.0 ± 22.0 

S. epidermidis 

ATCC 14990 

1.64 ±1.58 free 0.6 ± 0.2 1.0 ± 0.5
Si-ANPs 1.0 ± 0.4 3.0 ± 2.0 
Ti-ANPs 2.0 ± 0 3.0 ± 0 

C. albicans 

ATCC 10231 

1.50 ±0.58 free 0.7 ± 0.2 1.0 ± 0.4
Si-ANPs 2.0 ± 1.0 5.0 ± 2.0 
Ti-ANPs 4.0 ± 1.0 5.0 ± 2.0 

a Number (x105) of colony forming units (CFU) ml-1at start of assay. bStandard deviations are representative of at least three 
assays.  c KSL added to cell cultures either as the non-biomineralized, native form (free) or in silica and titania nanoparticles (Si-
ANPs and Ti-ANPs, respectively).  d The total amount of peptide added to cultures in μg ml-1.  e minimum inhibitory 
concentration.  f minimum biocidal concentration. 

 

Figure 2.  Measurement of antimicrobial peptide over time during incubation with S. 
aureus cells (19).  Soluble concentrations were monitored of KSL in the free form (squares, 
solid line) and Si-ANPs (triangles, dashed line) after addition of peptide (25 μg ml-1) to between 
106 and 107 viable S. aureus cells ml-1.  Standard error mean represents six individual assays.  
Regression analysis was calculated using second order polynomial curve fit for measurements 
between 5 and 360 min. 



Synthesis of lysozyme-silver antimicrobial nanoparticles and their deposition into medical 
instruments 
 

Lysozyme catalyzed silver reduction to form antimicrobial silver nanoparticles (20).  When 
exposed to silver ions in methanol, lysozyme acted as the primary reducing agent and formed 
stable colloidal suspensions of silver (Figure 3).  The enzyme also acted as an effective colloidal 
stabilizer and solutions can be stored in a concentrated form in methanol or water for months 
without significant change in physical or chemical properties.  Furthermore, the colloid solutions 
could be used to form homogeneous enzyme and silver coatings on surgical steel (21).  Uniform 
antimicrobial coatings were deposited on surgical stainless steel blades and needles using an 
electrophoretic deposition technique.  The antimicrobial activity of lysozyme and biocidal 
properties of colloidal silver were retained in the coatings and antibacterial assays demonstrate 
the coatings have potent biocidal activity over several strains (Table 2).  When used in an assay 
designed to mimic the standard use of the instrument, clearings of cell lysis formed in bacteria-
infused agarose around incisions and stab sites, demonstrating not only the coatings were a self-
cleaning surface, but also would transfer antimicrobial activity into a subject during use (Figure 
4).  The findings show that a one-pot method and simple electrophoretic deposition can be used 
to generate antimicrobial coatings that combine two different antimicrobial mechanisms.   

 

 

Figure 3.  Suspension of silver nanoparticles formed in lysozyme-catalyzed process (A) 
TEM image of silver nanoparticles (B) (21). 

 

 

 

 



Table 2.  Antimicrobial activity of coated blades towards bacterial and yeast strains (21). 

 

Strain 

Decreased viability (%)  

1.5 h†                      3 h† 

 

Inhibition type 

Acinetobacter baylyi 98 99 bactericidal 
Bacillus anthracis Sterne 99 >99.99 bactericidal 
Bacillus subtilis >99.99 >99.99 bactericidal 
Klebsiella pneumoniae 99 99.9 bactericidal 
Staphylococcus aureus 99 99.9 bactericidal 
Staphylococcus epidermidis 4 42 bacteriostatic 

  † Contact time 

 

 

 

 

 

 

Figure 4.   Cell lysis assay measuring antimicrobial activity of coated blades and needles 
(21).  Coated blades (left) and needles (right) were used to make incisions and punctures, 
respectively, and then placed on top of agarose infused with M. lysodeikticus cells.  The top 
blade contains a coating of lysozyme and silver nanoparticles, while the lower blade has a 
coating of lysozyme only.  Zones of cell lysis are seen at the incision and puncture site, as well 
as surrounding the blades and needles after incubation at 37oC for 30 min and 16 h (labeled as 
shown). 

 

 

 



CONCLUSIONS 

The rise in multi-resistant pathogens, along with rapid advances in microbial genomics and 
genetic engineering affords the opportunity for malicious design of biowarfare agents (22).  
Because microbes have evolved to overcome present antimicrobial therapies, conventional 
antibiotics may be useless against a terrorist attack that involves multi-resistant pathogenic 
agents.   Consequently, novel methods of materials design and the effective combination of 
different antimicrobial mechanisms are compelling approaches to counteract resistance to 
commonly-used antibiotics (23).  Two approaches explored for application are antimicrobial 
peptides and nanoparticulate silver.  While the concept shows promise, a substantial amount of 
study into their stability, sustainability, dosage, and means of delivery is still needed before the 
applications can be fully realized.  In general, establishing effective methods to combine multiple 
antimicrobial agents into one application are critical to defense against pathogenic resistance that 
will eventually arise to new antibiotics in the future, whether through natural evolution or by 
man-made design.  The results of the study will assist in accelerating these types of materials to 
commercial production and ultimately contribute to biological warfare mitigation in the future. 
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