

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
NOV 2006 2. REPORT TYPE

3. DATES COVERED
 00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE
CrossTalk: The Journal of Defense Software Engineering. Volume 19,
Number 11, November 2006

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
OO-ALC/MASE,6022 Fir Ave,Hill AFB,UT,84056-5820

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

32

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2 CROSSTALK The Journal of Defense Software Engineering November 2006

Are Management Basics Affected When Using
Agile Methods?
This article helps readers understand the similarities and differences of
traditional and agile project management approaches while introducing
factors to consider when contemplating implementation of Agile into
project life cycles.
by Paul E. McMahon

Becoming a Great Manager: Five Pragmatic Practices
In this article the author describes five pragmatic practices that will help
managers focus on the right work and create an environment for success.
by Esther Derby

Implementing Phase Containment Effectiveness Metrics
at Motorola
This article describes Phase Containment Effectiveness as a project
measurement technique that provides timely and accurate predictions
of a project’s current state and future risks, and shows how it was
successfully implemented at one Motorola business unit.
by Ross Seider

Exposing Software Field Failures
The authors examine the benefits of establishing a target software
reliability objective during software development and working toward
providing assurance that the software is achieving an acceptable
operational performance mark.
by Michael F. Siok, Clinton J. Whittaker, and Dr. Jeff Tian

Software Recapitalization Economics
This article analyzes the economics of cyclic replacement or
recapitalization of software, explaining some of the historic issues and
costs of software maintenance, and provides analysis on how much
software modernization occurs while still maintaining old code.
by David Lechner

Earned Schedule:An Emerging Enhancement to
Earned Value Management
This article defines why Earned Schedule is considered a
breakthrough technique to derive key schedule information from
Earned Value Management.
by Walt Lipke and Kym Henderson

4

9

12

15

21

26

3

20
25

30

31

D eD e p ap a rr t m e n t st m e n t s

From the Sponsor
From the Publisher

Online Articles

Coming Events

Web Sites

BackTalk

MaMananagement gement BasicsBasics

SoftwSoftwaarree EngineerEngineeringing TTechnolechnologogyy

CrossTalk
76 SMXG

CO-SPONSOR

309 SMXG
CO-SPONSOR

402 SMXG
CO-SPONSOR

DHS
CO-SPONSOR

NAVAIR
CO-SPONSOR

PUBLISHER

ASSOCIATE PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE COORDINATOR

PHONE

E-MAIL

CROSSTALK ONLINE

Kevin Stamey

Randy Hill

Diane Suchan

Joe Jarzombek

Jeff Schwalb

Brent Baxter

Elizabeth Starrett

Kase Johnstun

Chelene Fortier-Lozancich

Nicole Kentta

(801) 775-5555

crosstalk.staff@hill.af.mil

www.stsc.hill.af.mil/
crosstalk

CrossTalk,The Journal of Defense Software
Engineering is co-sponsored by the U.S. Air Force
(USAF), the U.S. Department of Homeland Security
(DHS), and the U.S. Navy (USN). USAF co-sponsors:
Oklahoma City-Air Logistics Center (ALC) 76
Software Maintenance Group (SMXG), Ogden-ALC
309 SMXG, and Warner Robins-ALC 402 SMXG.
DHS co-sponsor: National Cyber Security Division of
the Office of Infrastructure Protection. USN co-spon-
sor: Naval Air Systems Command.

The USAF Software Technology Support
Center (STSC) is the publisher of CrossTalk,
providing both editorial oversight and technical review
of the journal.CrossTalk’s mission is to encourage
the engineering development of software to improve
the reliability, sustainability, and responsiveness of our
warfighting capability.

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail us or use the form on p. 30.

517 SMXS/MXDEA
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

Article Submissions:We welcome articles of interest
to the defense software community.Articles must be
approved by the CROSSTALK editorial board prior to
publication. Please follow the Author Guidelines, avail-
able at <www.stsc.hill.af.mil/crosstalk/xtlkguid.pdf>.
CROSSTALK does not pay for submissions. Articles
published in CROSSTALK remain the property of the
authors and may be submitted to other publications.

Reprints: Permission to reprint or post articles must
be requested from the author or the copyright hold-
er and coordinated with CROSSTALK.

Trademarks and Endorsements:This Department of
Defense (DoD) journal is an authorized publication
for members of the DoD. Contents of CROSSTALK
are not necessarily the official views of, or endorsed
by, the U.S. government, the DoD, or the STSC. All
product names referenced in this issue are trademarks
of their companies.

Coming Events: Please submit conferences, seminars,
symposiums, etc. that are of interest to our readers at
least 90 days before registration. Mail or e-mail
announcements to us.

CrossTalk Online Services: See <www.stsc.hill.af.mil/
crosstalk>, call (801) 777-0857 or e-mail <stsc.web
master@hill.af.mil>.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

Cover Design by
Kent Bingham

ON THE COVER

Additional art services
provided by Janna Jensen

November 2006 www.stsc.hill.af.mil 3

From the Sponsor

Ibelieve the most valuable skill of a manager or leader at any level is their ability and
willingness to learn. My wife calls this having a teachable spirit. Whether we are new to

management or are a senior executive, we have to be willing to learn. I’ve taken lots of
courses and seminars on how to manage and lead people but my most valuable teach-
ings come from life experiences and studying other successful and unsuccessful lead-
ers. Lessons that didn’t come from textbooks or speakers have had the most influence
on how I lead people. If there was one piece of advice that I could give to all new man-

agers who want to be successful, it is to watch and learn. My first life lesson as a manager has
stuck with me my whole career. I vividly remember when I first entered management. I had just
completed a master’s degree in management, and thought I knew what kind of leadership style
best fit my personality and values. I quickly learned that one leadership style does not fit all peo-
ple. Some people wanted to be empowered and left alone. Some people needed clear and daily
direction. Some people needed more praise than others. In general, different people excelled or
responded to different styles so I quickly learned the value of situational leadership. I think a
similar thing can be said about how we manage projects. As large organizations, we tend to have
rigid or one-size-fits-all processes. But we managers need to listen to our project leads and do
what is going to make the project excel. It is easy to say that we have a process and we must fol-
low it, but one-size-fits-all processes can be just as ineffective as one-size-fits-all leadership.
Whether you are leading people or managing projects, the key to improving your contribution
is your willingness to learn.

Let me leave you with a few applicable quotes:
• A leader who won’t listen when his people tell him he is going the wrong way is destined for

a head-on collision.
• A leader who doesn’t learn to become a better leader might as well not be one.
• A leader who doesn’t learn from his mistakes will certainly repeat them.

AWillingness to Keep Learning

Kevin Stamey
Oklahoma City Air Logistics Center, Co-Sponsor

From the Publisher

This issue of CrossTalk includes a broad range of topics in order to cover the
needs of various software managers. We start this month with a comparison of

management approaches for traditional and agile software development methods in
Are Management Basics Affected When Using Agile Methods? by Paul McMahon. Next,
Esther Derby shares her insights from working with numerous software managers in
Becoming a Great Manager: Five Pragmatic Practices. In Implementing Phase Containment

Effectiveness Metrics at Motorola, Ross Seider discusses a basic practice that I believe all software
processes should include. Our final theme article by Michael F. Siok, Clinton J. Whittaker, and
Dr. Jeff Tian discusses how to plan the number of defects being released to the customer in
Exposing Software Field Failures.

For those wanting to delve deeper into management mysteries, we have David Lechner’s arti-
cle, Software Recapitalization Economics that provides useful formulas to help with decisions regard-
ing sustainment of old software. If you are a fan of Walt Lipke’s articles, you will find additional
insights in Earned Schedule: An Emerging Enhancement to Earned Value Management, which he co-
authored with Kym Henderson. While this issue targets software development and acquisition
management, all software practitioners can gain insight from this month’s CrossTalk.

Basic Articles

Elizabeth Starrett
Associate Publisher

4 CROSSTALK The Journal of Defense Software Engineering November 2006

Let us start with the basics. First, funda-
mental to project management is plan-

ning, monitoring, and controlling. Moni-
toring and controlling are achieved by exe-
cuting a plan and taking appropriate action
when a project deviates from that plan.
This article focuses on the planning activ-
ity. I like to simplify planning for new
managers by breaking it down into five
easy steps: What? Who? When? How? and
How Much?

Traditionally, a project management
plan is developed at the start of a project
to capture the answers to the first four
questions. The plan is then used in the How

Much? category to develop the cost, moni-
tor and control the project, and communi-
cate to the stakeholders what we are doing.

At the fundamental level, planning
includes understanding what must be done
(scope of effort), who needs to do it (staff-
ing and skills), when it needs to be done
(life cycle and schedule), how it is to be
done (reviews, methodology, tools, meet-
ings etc.), and how much it will cost (bud-
get). These same five steps occur on both
traditional and agile projects.

The What: Scope of Effort
Traditional Approach
Project planning includes scoping the

work. Traditionally, this has been accom-
plished by first partitioning the effort
through a work breakdown structure [1].
The intent is to break down the work into
manageable chunks that can be monitored
and controlled.

Agile Approach
The basic concept of breaking work down
does not change with agile methods, but
there is less detail provided early in the
project and care must be taken in how
work is structured so that it is fully scoped
while potential solutions are not overly
constrained. Some agile projects do not
fully scope all the work up front. Scoping
the work is discussed further in the section
on The When.

The Who: Staffing, Skills,
and Organization
Traditional Functional Approach
Traditional functional engineering organi-
zations include systems engineering, soft-
ware engineering, integration and test,
configuration management, and quality
assurance (see Figure 1). In the traditional,
functional organization, tasking is through
the functional manager, and the function-
al manager receives periodic status direct-
ly from assigned personnel.

Traditional Integrated Product
Team Approach
Integrated product teams (IPTs) are cross-
functional teams used in many organiza-
tions to achieve increased stakeholder col-
laboration and teamwork. Each IPT
includes representation from all function-
al disciplines. Historically on large pro-
jects, IPTs have often been large teams
(e.g. could have between 30 and 50 people
on each IPT); therefore sub-IPTs may be
formed for specific tasks. IPT tasking is
usually through both the functional man-
ager and the IPT, with the functional man-
ager providing a higher level task defini-
tion, and the IPT providing project specif-
ic tasking (see Figure 2).

Are Management Basics Affected
When Using Agile Methods?

Paul E. McMahon
PEM Systems

Just how different is project management when using agile methods? The purpose of this article is to help readers understand
the similarities and differences of traditional and agile project management approaches, as well as provide information that
can help them decide if an agile – or a hybrid agile – approach might be beneficial. Related factors to consider when making
decisions about using Agile, hybrid-agile, or a traditional approach, along with real project case studies, are provided.

Management Basics

ee

Systems

Engineering

Software

Engineering

Integration Configuration

Management

Quality

Assuranc

Functional

Manager

Functional

Manager

Functional

Manager

Functional

Manager

Functional

Manager

Systems

Engineering

Software

Engineering

Integration Configuration

Management

Quality

Assuranc

Functional

Manager

Functional

Manager

Functional

Manager

Functional

Manager

Functional

Manager

Project

Manager

Project

Manager

ee

Systems

Engineering

Software

Engineering

Integration

and Test

Configuration

Management

Quality

Assuranc

Functional

Manager

Functional

Manager

Functional

Manager

Functional

Manager

Functional

Manager

Systems

Engineering

Software

Engineering

Integration guration

Management

Quality

Assuranc

Functional

Manager

Functional

Manager

Functional

Manager

Functional

Manager

Functional

Manager

Project

Manager

Project

Manager

Cross -

Functional Team

IPT 1

Lead

Project

Manager

Project

Manager

Cross -

Functional Team

IPT 2

Lead

Cross -

Functional Team

IPT N

Lead

Cross -

Functional Team

IPT 1

Lead

Project

Manager

Project

Manager

Cross -

Functional Team

IPT 2

Lead

Cross -

Functional Team

IPT N

Lead

Figure 2: Traditional Integrated Product Team Approach

ee

Systems

Engineering

Software

Engineering

Integration Configuration

Management

Quality

Assuranc

Functional

Manager

Functional

Manager

Functional

Manager

Functional

Manager

Functional

Manager

Systems

Engineering

Software

Engineering

Integration Configuration

Management

Quality

Assuranc

Functional

Manager

Functional

Manager

Functional

Manager

Functional

Manager

Functional

Manager

Project

Manager

Project

Manager

ee

Systems

Engineering

Software

Engineering

Integration

and Test

Configuration

Management

Quality

Assuranc

Functional

Manager

Functional

Manager

Functional

Manager

Functional

Manager

Functional

Manager

Systems

Engineering

Software

Engineering

Integration guration

Management

Quality

Assuranc

Functional

Manager

Functional

Manager

Functional

Manager

Functional

Manager

Functional

Manager

Project

Manager

Project

Manager

Cross -

Functional Team

IPT 1

Lead

Project

Manager

Project

Manager

Cross -

Functional Team

IPT 2

Lead

Cross -

Functional Team

IPT N

Lead

Cross -

Functional Team

IPT 1

Lead

Project

Manager

Project

Manager

Cross -

Functional Team

IPT 2

Lead

Cross -

Functional Team

IPT N

Lead

Figure 1: Traditional Functional Approach

Are Management Basics Affected When Using Agile Methods?

November 2006 www.stsc.hill.af.mil 5

Agile Approach
The traditional functions are all still
required when using agile methods, but
the organization of the personnel, their
interactions, and task reception may be
different. The degree of difference de-
pends partially on how your organization
currently functions. Agile teams are small
(usually no larger than 10 people each),
and they are cross-functional like the tra-
ditional IPT. Two views of an agile orga-
nization are provided in Figures 3 and 4.

Figure 3 provides Agile Organization
View 1, which has similarities to the tradi-
tional IPT structure. With this structure,
agile teams operate as an extension of the
traditional IPT similar to sub-IPTs in tra-
ditional organizations. Note the following
caution associated with this view.

Not all organizations today implement
true IPTs in the sense of true cross-func-
tional and product focused teams. Many
organizations have struggled with imple-
menting IPTs because of the difficult cul-
ture-shift required from a functional per-
spective to an integrated product perspec-
tive. Similar issues are faced when imple-
menting agile teams which are also cross-
functional integrated product teams.
Typical differences with agile teams from
IPTs are their size (smaller), incremental
approach to work, and visibility of tasks
and task progress.

While Figure 4 appears significantly
different from Figure 3, the real difference
within a given organization may be more
pictorial than real. Some have argued
against representing agile teams as sub-
teams of IPTs because it may give the
impression they operate in a traditional,
hierarchical, and functional fashion where
tasking only flows down from manage-
ment.

The Hub organizational structure [2, 3]
depicted in Figure 4 is intended to repre-
sent the fact that the team is actively
involved in its own task definition and
estimation process, and proactively com-
municates with other teams directly when
necessary. This is in contrast to the tradi-
tional, hierarchical organization where the
focus of tasking and communication is
through the chain-of-command. It is
worth noting that this perception of how
communication happens in traditional,
hierarchical organizations is not always
true.

This leads to the question: How differ-
ent is the hub organization from the tradi-
tional organization? The answer to this
question depends largely on the culture
within your organization today. While the
traditional organization structure repre-
sented in Figures 1 and 2 may seem famil-

iar to many readers, implementations
within specific organizations can be signif-
icantly different [4].

If an organization has effectively
implemented true IPTs, and functional
managers already have shifted their task-
ing to a higher level in support of project
specific tasking by the IPT, then the shift
to Agile may not be traumatic from a man-
agement perspective. This is because some
of the hardest changes with Agile are cul-
tural. If the culture is already agile, this
makes the transition easier. In many orga-
nizations this operating model has existed
for many years informally [4, 5].

Case Study 1
I have observed this condition in one of
my client organizations that does not even
refer to itself as being agile, yet they have
exhibited agile-like behavior for many
years. I have referred to this in previous
publications as an unspoken adaptive
(agile) subculture [5]. In this organization,
small informal teams operate below-the-
radar of the formal organization with a do
whatever it takes team attitude to get the
job done. Tasking from the functional
managers in this organization is at a high
enough level so that it is not an issue for a
software engineer to help a systems engi-

Cross-Functional

Agile Team 1

Cross -

Functional Team

IPT 1

Lead

Project

Manager

Project

Manager

Cross -

Functional Team

IPT 2

Lead

Cross -

Functional Team

IPT N

Lead

Cross -

Functional Team

IPT 1

Lead

Project

Manager

Project

Manager

Cross -

Functional Team

IPT 2

Lead

Cross -

Functional Team

IPT N

Lead

Cross-Functional

Agile Team 2

Cross-Functional

Agile Team K

Cross-Functional

Agile Team 1

Cross-Functional

Agile Team 2

Cross-Functional

Agile Team K

Figure 3: Agile Organization View 1

Cross-Functional

Agile Team 1

Cross-Functional

Agile Team 2

Project

Manager

Cross-Functional

Agile Team K

C
Cross-Functional

Agile Team 1

Cross-Functional

Agile Team 2

Project

Manager

Cross-Functional

Agile Team K

C

Figure 4: Agile Organization View 2

Management Basics

6 CROSSTALK The Journal of Defense Software Engineering November 2006

neer and vice versa. It is expected as part
of the job. The culture of what it means
to do software engineering includes col-
laboration with systems engineering. I
have referred to this in previous publica-
tions as the integrated tasking model [4].

Case Study 2
On the other hand, I have another client
who employs what I have referred to as a
strict hierarchical tasking model [4]. In this orga-
nization, systems engineers are tasked
strictly and exclusively by the systems engi-
neering functional manager (see Figures).
In this organization it is not uncommon for
a systems engineer to write a specification
in her private office and then effectively
throw it over the wall to the software engi-
neering group with little personal interac-
tion throughout the process. When a soft-
ware engineer finds a problem in a specifi-
cation from system engineering in this
organization, they are not allowed to
change the specification and the culture
does not encourage software engineers to
go talk directly to a systems engineer with
respect to a potential change. They have to
send it back through the formal chain, and
it takes forever to get changes approved.

Different Reasons and Challenges When
Moving to Agile
The organizations for both case studies
use diagrams that look similar to Figures 1
and 2 to represent how they operate today.
Both are interested in moving their orga-
nizations toward more agile practices. But
the reasons they want to be agile and the
challenges each face in making this transi-
tion are very different.

Why Would an Organization Want
To Be Agile?
The reason Case Study 1 wants to move to
Agile is for better visibility of work status
and increased predictability. While this
organization already exhibits a small team
collaborative attitude, decisions some-
times get made without considering all the
consequences. As a result, negative side-
effects are not uncommon, such as slipped
schedules and build instability. They are
constantly at risk of falling into chaos and
often rely on late-night heroics by individ-
uals. The reason Case Study 2 wants to
become more agile is because changes
take far too long to cycle through all the
bureaucracy in the organization, and they
know they are not being responsive to
their customer’s needs.

Management Challenges Faced
In Case Study 1, a key management chal-
lenge is to get the small teams to self-man-

age their work more effectively. In Case
Study 2, a key management challenge is to
move decision making down in the orga-
nization and increase collaboration at the
lower levels.

The When: Life Cycle
and Schedule
Traditional Approach:Work
Partitioning
Traditionally, work is partitioned into
major functions, and those functions are
further partitioned into tasks associated
with requirements, design, code, test, and
integration. Detailed schedules are devel-
oped up front in the project and task
assignments are given to each developer.

Agile Approach:Work Partitioning
While the traditional functions are all still
required, when they are done may be dif-
ferent. Up front, coarse grain planning is
done [6]. This is high level planning for
the long term of the project. This includes
the high level requirements which are then
allocated to increments. This is similar to
traditional incremental planning, but with
Agile, more details may be deferred which
implies more planned collaboration with
the customer later in the project.

As an example, one of my clients is
modernizing a legacy system. We defined all
the legacy system functional requirements
up front, but we deferred details of the user
interface. The most important thing to the
customer was to move the functionality to
the new system and shut down the legacy
system as soon as possible. We did identify
high level user interface requirements early
as part of our coarse grain planning, but we
deferred details because it was not high pri-
ority to the customer.

The customer collaboration on the
user interface details needed to be planned.
This collaboration was so important that
we added it to the project schedule. This
last step was also important to aid accurate
progress reporting. Planned and scheduled
collaboration throughout the project was a
key difference with Agile methods.

Why Defer Details? Potential Advantage
The rationale for deferring details is based
on the belief that by waiting to make deci-
sions just in time, we have the best infor-
mation possible and therefore reduce the
chance of rework. Reducing rework means
cost savings. Also, as we saw in the exam-
ple of the legacy system, we may defer
work based on value to the customer.

Why Defer Details? Potential Disadvantage
While on the surface this may seem logi-

cal, deferring details has also been known
to lead to inaccurate progress reporting
and scope creep late in projects. This is
why it is important to place deferred work
on the schedule or team task list where it
is kept visible.

Recommendation to Help Minimize
Scope Creep on Agile Projects
One recommendation that I have previ-
ously made [7] to help control require-
ments on an agile project is to fully scope
the requirements up front at a high level
(as we saw with the example of the lega-
cy system) and then plan and schedule the
time to work out the details at the start of
each increment. If you have a good col-
laborative relationship with your cus-
tomer this extra level of requirements
control may not be necessary. But my
experience on United States Department
of Defense contracts has found more of
an adversarial customer-contractor relationship
than a collaborative one and therefore this
extension to Agile for requirements con-
trol seems practical.

Agile Approach:Tasking and
Scheduling Responsibility
While project scheduling and personnel
tasking are still required with Agile, where
responsibility lies and when a task is done
may be different. Before making any
scheduling and tasking responsibility
changes, look closely at what your organi-
zation is doing today and analyze the
effectiveness of the current process.

In some organizations, the traditional
approach to scheduling is to build a large
detailed schedule early in the project. The
problem with this is that it can become
difficult to maintain when changes on the
project happen quickly. When this hap-
pens, senior management may no longer
have an accurate picture of where the pro-
ject truly is from a schedule perspective. If
your schedules are accurately reflecting
your project work, and you are able to
keep them current, then it may not make
sense to consider changing what you do.
But if they tend to be difficult to maintain
and often out of date then this may be a
good area where some agility can help.

How Agile Can Help With Schedule and
Task Status Accuracy
By keeping the project schedule at a high-
er level it becomes easier to maintain. This
is not to say the details are not important.
But by placing the details down inside
each agile team and giving the agile teams
the responsibility for keeping their status
visible and up to date, one may be able to

Are Management Basics Affected When Using Agile Methods?

increase their chances of accurate status
reporting on projects.

A question often asked by managers
considering moving toward Agile is how dif-
ficult is this change going to be for my organization?

The answer to this question usually
depends on where your organization is
today. In Case Study 1, the challenge faced
was to get the team leaders trained in how
to manage small teams more effectively
and letting the team members know they
are each responsible for maintaining and
reporting their own task status back to the
team. In this organization, there already
existed some very successful small team
leaders. The challenge was to mentor oth-
ers in what the successful leaders in the
organization were already doing so more
of the organization could benefit.

Example of Management Change When
Transitioning to Agile
In Case Study 1, the organization is grad-
ually learning they need less detail in the
high-level schedule as the small teams pro-
vide increased visibility into their task sta-
tus. As more small teams in the organiza-
tion meet their commitments, senior man-
agement’s confidence grows, and they
start to ask for less detail at the top. The
change is not yet complete, and it is not
happening over night.

Traditional Approach
Traditionally, when setting up work pack-
ages and planning the work to do, it makes
good sense to use what has been referred
to as a rolling wave approach. This means
only plan work in detail for a short dura-
tion. When this short duration period gets
close to the end, then plan the next wave
in detail.

We used to do this 30 years ago when
I was a programmer and a manager work-
ing for government programs building air-
craft simulation systems. The rolling wave
approach to planning is consistent with
agile thinking today – plan the details
incrementally and just in time. But over the
years in some organizations, culture and
control-oriented managers have pressured
engineering organizations to plan exces-
sive detail early.

Agile Approach
Agile approaches are driving us back to
execute the rolling wave concept as it was
always intended. But doing this the right
way is not always easy, which is part of the
reason why managers seeking to control
their projects pushed for more detail early.
When we do not plan the detail early, it
becomes easy to abuse the process by
pushing out real work that should be

going on now. This potential downside of
Agile needs to be taken into account when
choosing whether to go with an Agile or a
traditional approach.

The How:Tools and
Motivating Teamwork
Traditional Approach
Traditionally, when establishing a plan up
front, reviews to be conducted with the
customer and internal reviews to the orga-
nization are identified. The methodology
to be used is also established, along with
planned tools.

Agile Approach
With Agile, reviews, methodology and
tools must all still be planned, but the
focus of the team shifts from the tools and
methodology to personnel interactions
concerning real project status. Tools can
also affect the accuracy of status reporting
as seen in the following case studies.

Case Study 3
At one of my client locations, Scrum [8]
(a popular Agile method) was being used
on a number of projects. The project
leads and developers were reporting pos-
itive results with improved status report-
ing. The Sprint Backlog (Scrum term for
team task list) was kept informally as
sticky notes on the walls in conference
rooms. Thinking it would improve the
process, a commercial task management
tool was introduced in the organization.
Soon thereafter, team enthusiasm for the
process and the disciplined and accurate
status reporting fell off. After doing a lit-
tle digging, I discovered that the com-
mercial tool that had been introduced as
a process improvement was not easy to use.
The developers viewed the tool as a bur-
den, which led them to stop updating
their task lists and related progress in a
disciplined way.

It is easy to look at this case study and
say tools can be fixed, but too often they are
not, which can result in inaccurate status
reporting. But beware – there is another
side to this story.

Case Study 4
A common practice on agile teams is to
have team members sign up for work,
rather than being directed to work on a
task. The rationale for this practice is the
belief that it promotes personal commit-
ment to completing the task more effec-
tively and on schedule.

My client, who does not refer to itself
as agile (Case Study 1), uses a tool for task
management that many in the organiza-
tion do not like. All the developers in the

organization are required to log into the
tool every day to get their current assign-
ments and report their status. People con-
tinually complain about the tool because
of the time it takes to use it.

I would not say this organization
applies self-directed team practices as
described in many agile books, but they
may still achieve a good part of the intent.

As an example, individuals are given
tasks through the tasking tool by func-
tional managers. They do not sign up for
each task, but individual task performers
do have an opportunity and are encour-
aged to communicate back with their
manager after they have analyzed their
task. If they do not feel they can meet the
task due date, or they feel the allocated
hours are insufficient, or if the task
description is not clear, they can send the
task back to the manager.

This communication back and forth
usually creates healthy task discussions,
driving an understanding of the real work
being faced. As a result, increased visibili-
ty of where projects truly are is observed
and senior management becomes aware
earlier when projects are getting into trou-
ble. There is also an improved customer
confidence that has been observed as well
by many throughout the organization.

It is worth noting that this organiza-
tion-wide tool makes it easier for project
team members, who are not collocated, to
get their tasking and report progress, as
well as participate on projects as team
members from remote locations. It is also
worth noting that sticky notes on confer-
ence room walls do not scale well espe-
cially on large distributed projects.

Motivating Teamwork
Because people sign up for tasks, and are
asked to help others, an argument against
self-directed teams has been, why should I
do my job and yours too?

Jeff Sutherland, co-founder of
Scrum, provided one idea how to do this
through a performance review process he
applies within his own company. It is a
weighted average individual performance review
process where the rating components
include inputs from the customer, the
team, and the company perspective. With
this approach, employees can no longer
get good reviews based only on the per-
ceptions of their functional managers.
Their review now depends on what their
customer and teammates think, as well as
their overall contribution to the organiza-
tion. This technique can be used to help
teams collaborate more effectively in
both agile and traditional environments
and it could help whether tasks are

November 2006 www.stsc.hill.af.mil 7

assigned or signed up for.

The How Much:Cost and Metrics
Agile Cost
We do not yet fully know how cost is
affected by employing agile methods.
There is not yet enough real project data
to draw conclusions. But with Agile it is a
mistake to think it will cost less because
we do less engineering. Rather, we parti-
tion the engineering work and do it at the
best time, which should reduce rework
cost. This can be done with hybrid agile
methods and traditional methods as well.

Agile and Traditional Use of Metrics
Some organizations (both agile and tradi-
tional) use burn down (or burn up) charts
[9], to indicate schedule progress. In orga-
nizations that follow Agile strictly, burn
down charts are owned by the team, not
functional managers. It is not a separate
manager’s view. But there is another side
to burn down charts. Sometimes an objec-
tive perspective from outside the team can
help, especially when team members lack
progress estimation experience.

Ask yourself, who owns the burn
down charts in your organization? Is it the
team’s perspective, or a separate manager’s
perspective? Is someone filtering the
team’s view? This is not necessarily bad. It
might actually help convey the real
progress more accurately, but it might not.
It depends on your company’s culture and
project-specific conditions. But one indi-
cator of whether it is working well for you
is the accuracy of the reporting up the
chain. Are you hitting your schedules? Do
you have satisfied customers? Ultimately,
these are the questions that you should ask
to determine if your metrics and your sta-
tus reporting system are working for you.

With Agile, the team members report
their progress on the tasks they sign up to
do. In hybrid-agile organizations such as
Case Study 4, if they are given the task,
they are also given an opportunity to dis-
cuss it with their manager and refine it, if
necessary. When this process is working
right, each day you can see the work to do
– or team task lists – being updated, and
work accomplished being checked off.

Agile Tailoring for
U.S. Government Projects
Those who follow Agile strictly report
progress on their task lists when code has
been tested and works. In my recommen-
dations to contractors on government
projects, I tailor this strict software report-
ing focus to add all real tasks including
documentation and preparation for cus-
tomer reviews. My rationale is fueled by a

desire for the burn down chart to repre-
sent all real work. When the burn down
chart hits zero, I want to know that we are
really done.

Agile and Traditional Use of Lines of
Code Metric
Agile does not use lines of code as a mea-
sure of productivity, nor do many organi-
zations using traditional methods. The
problems with using lines of code as a
progress (or productivity) indicator have
been well documented, and with Agile this
does not change.

First, this measure tells us nothing
about value to meeting the customer’s
needs. It just tells us we have generated
code. With Agile, the focus is on doing the
simplest thing to achieve customer value,
and it is viewed as more valuable to
achieve it with less.

On the other hand, I have seen lines of
code metrics used with traditional
approaches as an effective trend indicator.
For example, tracking the number of lines
of code changed or added from one build
to the next is a useful trend indicator, espe-
cially as a team nears a delivery milestone.
It gives us a view of potential build stabil-
ity and another perspective on how close
we may really be to completion. The use of
lines of code metric in this way is no dif-
ferent for an agile or traditional project.

Conclusion
The five basic steps of planning and con-
trolling a project remain, but when
employing Agile methods, these steps may
be carried out with some key differences.
Agile methods provide the opportunity
for more accurate project status through
self managed teams, and they also provide
the opportunity for more rapid change
processing. Case studies indicate that
hybrid Agile-traditional approaches are
often appropriate and can be particularly
effective when based on the culture of a
given organization.

Just how different project manage-
ment is when using agile methods
depends on the organization. It is not a
matter of being agile or not being agile.
There are many degrees of agility, and one
can anticipate many decisions to be made
along the way.u

References
1. Project Management Institute (PMI).

A Guide to the Project Management
Body of Knowledge (PMBOK
Guide). 3rd ed. Newtown Square, PA:
PMI, 2000.

2. Highsmith, Jim. Agile Project Manage-
ment. Addison-Wesley, 2004.

3. McMahon, Paul. “Lessons Learned
Using Agile Methods On Large De-
fense Contracts.” CrossTalk May
2006 <www.stsc.hill.af.mil/crosstalk/
2006/05/index.html>.

4. McMahon, Paul. Virtual Project
Management: Software Solutions For
Today and the Future. CRC Press,
LLC, 2001.

5. McMahon, Paul. “Integrating Systems
and Software Engineering: What Can
Large Organizations Learn From
Small Start-Ups?” CrossTalk Oct.
2002 <www.stsc.hill.af.mil/crosstalk/
2002/10/index.html>.

6. Cockburn, Alistair. Crystal Clear: A
Human-Powered Methodology for
Small Teams. Addison-Wesley, 2005.

7. McMahon, Paul. “Extending Agile
Methods: A Distributed Project and
Organizational Improvement Perspec-
tive.” CrossTalk May 2005 <www.
stsc.hill.af.mil/crosstalk/2005/05/
index.html>.

8. Schwaber, Ken. Agile Project Manage-
ment With Scrum. Microsoft Press,
2004.

9. Cohn, Mike. User Stories Applied: For
Agile Software Development. Addison-
Wesley, 2004.

Management Basics

8 CROSSTALK The Journal of Defense Software Engineering November 2006

About the Author

Paul E. McMahon,
principal of PEM Sys-
tems, helps large and
small organizations as
they move toward in-
creased agility. He has

taught software engineering, conducted
workshops on engineering process and
management, published articles on agile
software development, and authored
“Virtual Project Management: Software
Solutions for Today and the Future.”
McMahon is a frequent speaker at indus-
try conferences including the Systems
and Software Technology Conference,
and he is a certified ScrumMaster. He
has more than 25 years of engineering
and management experience working for
companies, including Hughes and
Lockheed Martin.

PEM Systems
118 Matthews ST
Binghamton, NY 13905
Phone: (607) 798-7740
E-mail: pemcmahon@acm.org

November 2006 www.stsc.hill.af.mil 9

Ihad lunch the other day with a fellow whohad just pulled the kids out of school and
left for a new job in a different city.

“What was it about the job that made
it so attractive?” I asked.

“It was my boss,” he replied.
What kind of manager generated that

sort of loyalty? It was not a poor manag-
er; poor managers create the illusion of
progress with busyness. They depress pro-
ductivity and morale. It was not an average
manager – one who accomplishes work –
but not always the right work. This fellow
had a great manager, one he was willing to
follow halfway across the country.

I have met and interacted with dozens
of managers in software companies and
information technology (IT) departments.
Those who were successful accomplished
goals that contributed to the bottom-line
results of the company and developed
people. They had sufficient domain
knowledge to ask probing questions and
understand risk. They understood the
technology their teams worked with, even
when they did not have the skills to imple-
ment the technology, and they all followed
a similar set of management practices.

The following may not be practices
taught in management schools or written
down in software management and project
management books. They are the common
threads that emerge from my observations
of successful managers.

Decide What To Do and What
Not To Do
Great managers do not just accomplish
work, they accomplish the right work. For
companies that are in the software busi-
ness, it is work that helps the company
generate revenue, attract customers, and
keep profitable customers. For IT shops, it
is work that enables the business to oper-
ate effectively and efficiently.

Ask yourself how your company
makes money and how your group con-
tributes to the company’s success. If your
group develops the software that the com-
pany sells, the connection will be clear.
Sometimes, it is not so clear. If you are in
a testing group, you may contribute to
business success by providing information

that describes risks and enables good
release decisions. If you are in a docu-
mentation group, excellent technical man-
uals will reduce calls to the support group
and improve the customer’s experience
with the product [1].

Once you know how your group con-
tributes to your company’s success, you
can articulate the mission for your group.
For a development group, the mission
could be stated: Deliver features that meet
our customer’s need and provide a return
on investment for the company. When I
managed a group that wrote software for
investment portfolios, we determined our
mission was: Provide accurate and up-to-
date valuations for our funds.

We all have more than enough work to
do; a clear mission helps us prioritize
strategically important work and identify
work that does not need to be done (at
least not now, or not by our group).

I worked with a test manager to identi-
fy a mission for his group and prioritize all
the work his group was doing. He defined
his group’s mission: Assess and communi-
cate business and technical risks for the
applications we test. As he listed the work
his group was doing, one activity stood
out: client site pre-sales technical support.

Two years earlier, he had helped the sales
group by sending a tester on a sales call
when a member of the sales team fell ill. The
sales call was successful, and the sales man-
ager continued to ask for testers to accom-
pany the sales team on important accounts.

The test manager realized that while he
was building goodwill, it was not in his
mission to provide pre-sales support at the
customer site. As he examined the work
his group was doing (including the site vis-

its), he saw that sending testers on sales
calls was preventing the group from accom-
plishing work that would help assess and
communicate technical risks on applica-
tions under test. He also knew he could
not drop the responsibility immediately –
without his testers, the sales team would
flounder, and sales were the lifeblood of
the company. He worked with the sales
manager to provide training and transi-
tioned to phone support only for calls.

Deciding what to do and what not to
do helps focus efforts on the important
work – work that will contribute to the
bottom line of the company. Articulating a
mission has another benefit: When every-
one in your group knows the mission and
how the work they do contributes to it,
they will be able to make better decisions
about their own work every day.

Limit Multitasking
It seems like assigning people to multiple
projects will ensure all the projects are
completed. But contrary to popular belief,
multitasking does not speed work, it slows
work and delays delivery. Multitasking cre-
ates the illusion of progress by creating
busyness while robbing people of time
and mental cycles. Humans are not partic-
ularly good at switching contexts [2].
Gerald M. Weinberg quantifies the amount
of time lost in Table 1.

People lose time as they put away Task
A and remember where they were on Task
B. It takes time to retrieve and review doc-
uments or notes related to the task and to
re-create a train of thought. Assigning mul-
tiple tasks buys time only when there are
two tasks and one is clearly the top priority.
The person works on the top priority task

Becoming a Great Manager: Five Pragmatic Practices

Barry Boehm famously said,“Poor management can increase software costs more rapidly than any other factor.” If that’s true,
then we should be attending as much to management practices as we do software development methods. In this article, the author
describes five pragmatic practices that will help managers focus on the right work and create an environment for success.

Esther Derby
Esther Derby Associates, Inc.

Number of Tasks Percent of Time Spent on Each Task Total Task Time

100

40

20

10

5

100

80

60

40

25

1

2

3

4

5

Table 1: Quantification of Time Lost to Multitasking [3]

Management Basics

10 CROSSTALK The Journal of Defense Software Engineering November 2006

until he is stuck or can go no further, then
he picks up the lower priority task. This
reduces time a person might spend spin-
ning his wheels if he only had one task.

In product development, we can think
of tasks as projects, or chunks of signifi-
cantly different work. Two or more pro-
jects zap productivity. Suppose you have
five tasks. Figure 1 shows how focusing on
one task delivers value sooner. The arrow
shows when the most important task,
Task A is completed.

What if you have five tasks and only
one person to do them? Rather than
assign five tasks to each person, create a
task queue. As each finishes a task she can
sign up for another. This limits multi-task-
ing and will actually improve delivery time.
Assume you have five tasks and they are
all assigned to the same person, with
instructions to make progress on all the
tasks, because they are all important. The
person doing the tasks splits her time
between all five tasks. Figure 2 illustrates
one simple effect of task switching. Each
slice of pattern represents time spent on a
different task. The down arrow shows the
first time the project will earn value from
a completed task. (In reality, the delay will
be much longer because of time lost with
each switch between tasks.)

Assume another project had identical
tasks, but the worker focused on one task
at a time until it was completed. The pro-
ject would realize value much earlier, as
illustrated in Figure 1. By the time the
worker has completed one task, the
focused worker has completed three tasks:
A, B, and C. Plus, she has started on D [4].

In spite of the evidence, I often see
people who are assigned to three or more
projects. Managers expect people to spend
a certain percent of their time on each pro-
ject. In reality, the requirements of most
projects do not fit neatly into 25 percent,
40 percent, or 75 percent of a week. The
worst case is expecting people to switch
between every assigned project every day.

In most workplaces, people are not
actually working on project tasks a full eight
hours a day. In a talk at the Software
Development Best Practices Conference

and Expo in 2003, Noopur Davis of the
Software Engineering Institute reported
that across 200 projects, the average
amount of time spent on task (work that is
directly referenced in a project plan) is 15
hours a week [5]. That is three hours a day!
How much can a person really accomplish
in 45 minutes – 25 percent of three hours
– in each day? The largest slice becomes the
de facto priority and everything else is
squeezed and rushed into overtime hours
when productivity is lowest.

Great managers realize this and assign
work (or have people sign up for work) on
one project or on two roughly similar
tasks. Great managers realize that they will
deliver value to the business faster if they
finish one important project before start-
ing on another.

Keep People Informed
People work best when they have the
information they need. Great managers
share what they know about the task and
how the task fits into the goal of the pro-
ject or organization.

People need information about their
tasks, but they also need information about
the big picture. Poor managers parcel out
knowledge on a need-to-know basis. Good
managers provide information about spe-
cific tasks and also explain how the work
fits into the group’s mission and the com-
pany’s success. Being able to put a task into
a bigger context provides motivation and
helps people make better decisions.

I met one manager who kept an over-
all project plan to himself and only
allowed people to see their assigned tasks.
The people on the team had to go behind
his back to see who was dependent on
their work, who they needed input from,
and where they needed to work together.
This manager lost an opportunity for peo-
ple to see their work in a larger context
and find efficiencies and possibilities for
collaboration. His actions communicated
that he did not trust people and viewed
them as biological code producing units rather
than intelligent, creative people who were
capable of planning and managing their
own work.

People need information about their
work. They also need information about
events and priorities within their organiza-
tion. When people lack information, they
fill in the gaps with their worst fears and
rumors. Rumor and conjecture consume
an enormous amount of time in organiza-
tions. Communicate what you can, with-
out revealing confidential personnel infor-
mation or violating clearances or con-
tracts. When you do not know something,
admit it and communicate when you will
have more information.

Managers need to be informed, too,
about status, obstacles, and concerns.
Serial status meetings (the kind where each
staff member reports status one-by-one to
their manager) save the manager time but
wastes everyone else’s. Typically, they only
provide a fraction of the information a
manager needs to know. Many important
issues remain unspoken in this sort of sta-
tus meeting. For example, people may be
reluctant to admit they are struggling,
reveal obstacles, or talk about their profes-
sional aspirations in a group meeting. That
is information that a great manager needs
to know. Hold regular one-on-one meet-
ings to learn about the personal side of
work tasks and stay in touch with profes-
sional goals. Save team meetings for inter-
dependent work, group problem-solving,
and team decision-making.

Provide Feedback
People need to know how they are doing
at work. Do not assume that people know
when they are missing the mark or what
they are doing well. Great managers meet
one-on-one with people regularly, every
week or every other week to have the
opportunity to give feedback when course
corrections are small. One-on-one meet-
ings also provide the opportunity to notice
and appreciate something about each indi-
vidual’s contribution.

Make feedback specific, so people can
act on it. I talked to one woman whose
manager told her she was too nice. She
was at a loss for what to do. Useful feed-
back describes behavior or results and
states the impact – whether you want the
person to change or continue a behavior.

I employ the following structure for
giving effective feedback:
1. Create an opening.
2. Describe the behavior or result.
3. State the impact.
4. Make a request or engage in joint

problem-solving.
The following is an example of what a

great manager might have told the woman
who was too nice:
1. I have some observations that I think

A B C D E

A B C D E A B C D E A B C D E

Figure 1: One Person Assigned One Task at a Time

Becoming a Great Manager: Five Pragmatic Practices

November 2006 www.stsc.hill.af.mil 11

might be helpful to you. Is this a good
time to talk?

2. I noticed in our meeting today that you
agreed to all the requests from market-
ing for feature changes.

3. I know you are working extra hours
and have a long backlog. What I see
happening is that you are losing credi-
bility with marketing because you
agree to do work that will not be
accomplished in the timeframe that
marketing expects.

4. Let us talk about what we can do to man-
age expectations and do the most impor-
tant work without burning you out.
Great managers do not wait until the

yearly performance review to give feed-
back – that is a prescription for broken
trust. If you want someone to be success-
ful, tell him or her what needs to change as
soon as feasible so that person can make
adjustments. There is no sense in allowing
sub-par performance or mistakes to con-
tinue; that just drives down productivity
and morale for the individual and the team.

Develop People
Great managers know the career and pro-
fessional aspirations of the people they
work with, and they strive to help them
meet those goals when they can and help
people move on when they cannot.

A longtime employee wanted to move
from testing to development. She took on
as many technical testing tasks as she
could and studied programming on her
own time. Because she knew how to read
code, she was an asset to the team in
understanding how to design tests that did
not depend on a graphical user interface.
When she told her manager she wanted to
apply for a job opening in the develop-
ment team, he blocked her. “You are too
valuable here,” he said. The employee was
gone within a month, taking a job as a de-
veloper at another company, and her team
and her company lost a valuable employee.

Great managers talk to people about
the skills they want to develop and the
direction they want to go. They find
opportunities to build skills and capabili-
ties in the day-to-day work. The intention
to develop a new skill almost always falls
victim to a pressing deadline unless those
intentions are planned into daily work.
Finding development opportunities in
daily work plans builds skill and loyalty.
Even when people move on, they remem-
ber the managers who invested in them
instead of just using their labor.

Another tester wanted to move into
project management. The deadline for the
project meant it was not feasible to send
the tester to an off-site seminar. But

together, he and his manager identified a
small library of books and articles for self-
study. His manager helped him apply his
book learning as the tester organized and
tracked his own work as a mini-project.
He coached the tester to break tasks into
one- or two-day chunks and define com-
pletion criteria. He showed the nascent
project manager how to gauge his
progress and think through his options
when his rate of progress did not match
his desired rate. By the end of the project,
both the tester and the manager felt confi-
dent in moving the tester into a test lead
role where he could organize and track his
own work and that of two colleagues.

Conversely, when great managers do
not have the work that will build skills, they
tell people directly. Years ago, I worked
with a young man who wanted to move
from mainframe programming to PC pro-
gramming. I knew that the work in our
group would not help him reach his goals.
Rather than try to hold on to him, I made
a few introductions within the company.
Later, after he had moved to a different
department where he could do the work
he wanted to do, he asked me out to lunch.

“You were honest with me,” he said. “I
felt bad about leaving the group, but grate-
ful that you didn’t try to talk me out of
what I wanted to do.” He became a good
recruiter for me, too.

You do not need a big budget to devel-
op people. Look for ways to develop tech-
nical or domain skills in daily work. Coach
to increase organizational savvy and dele-
gate to build management skills. It is one of
the best ways to retain valuable employees -
– for you and for your organization.

Conclusion
Great management is not easy, but it is
within reach. Apply these practices consis-
tently, and you will be well on your way to
being a great manager. You will leverage
other’s work by focusing on the highest
priority work and enabling productivity.
You will help people grow and develop by
helping them see their work in context, by
providing course corrections, and by giv-
ing them opportunities to develop new
capabilities. And (maybe best of all) you

will look good to your manager, too!u

References
1. Derby, Esther, and Johanna Rothman.

Behind Closed Doors: Secrets of
Great Management. Raleigh, NC and
Dallas, TX.: Pragmatic Bookshelf, 2005.

2. Shellenbarger, Sue. “Juggling Too
Many Tasks Could Make You Stupid.”
CareerJournal <www.careerjournal.
com/columnists/workfamily/20030
228-workfamily.html>.

3. Weinberg, G.M. Quality Software
Management: Vol. 1 System Thinking.
New York. Dorset House, 1992.

4. Patrick, Francis S. “Program Manage-
ment – Turning Many Projects Into
Few Priorities With TOC.” National
Project Management Institute Sym-
posium, Philadelphia, PA. Oct. 1999
<www.focusedperformance.com/
articles/multipm.html>.

5. Davis, Noopur. “Self-Directed Teams:
One Case Study.” Pres. at Software
Development Best Practices Confer-
ence and Expo, 17 Sept. 2003.

About the Author

Esther Derby is well
known for her work in
helping teams grow to
new levels of productivi-
ty and coaching technical
people who are making

the transition to management. She is one
of the founders of the Amplifying Your
Effectiveness Conference and is co-
author of Behind Closed Doors: Secrets of
Great Management. Her latest book is Agile
Retrospectives: Making Good Teams Great.
Derby has a master’s degree in organiza-
tional leadership and more than two
decades experience in the wonderful
world of software.

3620 11th AVE S
Minneapolis, MN 55407
Phone: (612) 724-8114
Fax: (612) 724-8115
E-mail: derby@estherderby.com

A B C D E A B C D E A B C D E

Figure 2: One Person Assigned Five Tasks With Instructions to Make Progress on All of Them

12 CROSSTALK The Journal of Defense Software Engineering October 2006

Two of the most commonly used pro-
ject management tools are the PERT

and Gantt charts. When either is
employed, a project’s progress can be mea-
sured and extrapolations can be made
about future project schedule accuracy.
These tools focus on milestone achieve-
ment and task interdependencies.

The practical shortcomings of PERT
and Gantt charts are well known to project
managers. Among these are the following:
• Milestone achievement can be

ambiguous. Often, milestones are
qualitative events and opinions on
attainment may vary. This ambiguity is
not handled well by either tool. The
project manager must rely on insight
and experience to discern the true state
of such milestones.

• Neither tool inherently measures
the quality of the milestone deliver-
able. Nor do the tools anticipate
downstream risks arising from poor
quality of upstream deliverables.
Despite these and other limitations,

PERT and Gantt techniques are popular
because they do provide useful insight.
Project managers can supplement these
with other tools to gain further insight into
a project’s true state.

PCE is a quantitative, real-time mea-
surement technique that addresses these
limitations. PCE techniques provide an
excellent means to unambiguously judge
the completeness and quality levels of cer-
tain development milestones. PCE is an
inherent indicator of downstream perfor-
mance giving program managers time to
adjust plans.

The PCE method described herein
relies on the existence of foundation
processes such as repeatable project plan-
ning, project tracking and oversight, and
quality assurance. At the time of the events
described in this article, the Motorola busi-
ness unit was a Software Engineering
Institute Capability Maturity Model®
(CMM®)-Level 2 organization with many

established Level 3 capabilities. For
Motorola, PCE was a valuable next step in
process maturation. Without the founda-
tion processes, taking this step would not
have been fruitful.

Theory of Phase
Containment
It is a well-established project manage-
ment axiom that the longer problems go
undiscovered, the more costly they will be
to correct.

For example, it is far less costly to cor-
rect an error in the architect’s drawing
than in the finished building. The archi-
tect’s drawing error could have been dis-
covered during a review of the building’s
design. It also could have been uncovered
when the drawings were sent out to
potential contractors. The building
inspector might have detected the error
before issuing the permit. Finally, it might
have been spotted by the builders who
reviewed the plans prior to the start of
construction. A design error going unno-
ticed at all these review points may be
very expensive to correct.

The thesis of phase containment is
similar to the previously stated axiom:
The most effective projects identify and
fix mistakes at the earliest possible point
in the project life cycle. This thesis is
backed by substantial evidence across vir-
tually all types of development activities.
Stated another way: If mistakes are escap-
ing early detection, then the project is at
increased risk for missing its time and
cost goals. Statistically, if the probability
of escapes is increasing, the probability of
costly and time-consuming downstream
corrections is also increasing.

It was this thesis that convinced
senior division management to sponsor a
PCE improvement initiative at Motorola.
PCE was an attractive initiative because it
provided actionable management data
that could further improve the effective-
ness of the engineering operations.

PCE provides an early warning signal
to diligent project managers. It allows
them time to react; for instance, by

adding resources to the system testing
activities.

Applying PCE
As applied to software projects, PCE is a
statistical measurement of the problems
(bugs) uncovered at the earliest possible
review (or containment) point compared
to the total faults uncovered. The more
effective the containment (the higher the
PCE metric), the more likely the project
will proceed smoothly and not experience
downstream delays, quality problems,
and/or cost overruns.

The PCE metric differentiates
between problems discovered at the earli-
est possible review point to problems that
are discovered at subsequent review
points. The former problems are referred
to as errors and the latter are referred to as
defects. The sum of errors and defects repre-
sents the total project faults expressed
mathematically:

Errors (problems discovered at

the right time)

+

Defects (problems discovered at

the wrong time)

=

Total Project Faults

Well-executed projects strive to dis-
cover a high proportion of the total faults
as errors and not as defects. When prop-
erly conducted, project design reviews
yield this type of data and the risk of
downstream problems is reduced.

When faults are discovered during
reviews, they must be classified as either
errors or defects. This classification is
made through a root cause analysis. Once
faults are logged into the bug tracking
database, the engineers and Quality
Assurance (QA) team determine how and
when each significant bug was injected
into the design. If the root cause analysis
determines that the fault should have been
uncovered at an earlier review point, the
fault is logged as a defect. If the root
cause analysis determines that the fault

Implementing Phase Containment
Effectiveness Metrics at Motorola

Phase Containment Effectiveness (PCE) is a project measurement technique that provides timely and accurate predictions of
the project’s current state and future risks. PCE methods deliver project insights beyond those provided by the Gantt and
Program Evaluation Review Techniques (PERT). PCE provides data that increases the probability of a successful project
outcome. This article describes the way in which PCE was implemented at one Motorola business unit.

Ross Seider
On-Fire Associates

® Capability Maturity Model and CMM are registered in the
U.S. Patent and Trademark Office by Carnegie Mellon
University.

November 2006 www.stsc.hill.af.mil 13

could not have been caught earlier, it is
logged as an error. While there was incre-
mental effort associated with this catego-
rization, the Motorola development teams
rapidly learned how to evaluate the
sources of the faults, and the process took
little additional time.

Implementing PCE served another
Motorola objective: Management was
committed to holding comprehensive
design reviews. They were keenly interest-
ed in evaluating the quality and thorough-
ness of the design reviews. Phase-contain-
ment metrics provided data for this pur-
pose, too. The fault information was com-
bined with 1) the size of the work product
being reviewed, 2) the number of people
participating in the review, and 3) the time
spent conducting the review. The com-
bined data yielded benchmark ratios that
allowed QA and project managers to eval-
uate the comprehensiveness of the review.
Review milestones were challenged if the
resulting data showed major variances
from expected results.

Historical PCE Data
In principal, if a project is uncovering an
unusually large number of defects, it is prob-
able that additional latent problems exist
and will be found downstream. But what
constitutes an unusually large number of
defects? Without a pre-existing comparison,
this threshold is subjective. To solve this
problem, Motorola reviewed historical
fault discovery performance from earlier
projects.

In many software organizations, new
projects can bear strong resemblance to
already completed projects. The resem-
blance can take many forms:
• The project is a variant of a past pro-

ject.
• The project is similar in concept to

past projects.
• The engineers executing a new project

have worked together on previous pro-
grams.

• The software tools and processes are

similar to the tools and processes used
in the past.

• The new functionality is an add-on to
the legacy functionality.
If two or more projects are similar,

historical PCE data can add significant
insight when interpreting new PCE ratios.
Deviations from benchmark trajectories,
either positive or negative, form the
thresholds for comparison. When the cur-
rent project’s PCE ratios are compared to
the norms measured on previous projects,
negative deviations are a warning indica-
tor. On the other hand, if the current pro-
ject’s PCE is better than historical bench-
marks, then the project manager has evi-
dence of reasonable progress.

PCE initiatives do not automatically
require historical data reconstruction.
Many companies choose to not imple-
ment PCE in this manner. Instead, they
opt to accumulate historical data from
new projects. While this approach is less
burdensome, it takes longer to establish
thresholds.

Case Study
Consider a hypothetical project named
Reliant Release 4.0. Assume there have
been previous releases of Reliant and the
historic PCE records of past projects have
been saved.

At an early milestone point in the pro-
ject, the Reliant 4.0 development team cre-
ated a Release 4.0 functional specification
and a high-level design. Both of these
have been design reviewed, and the results
of the reviews have been captured in
Figure 1.

The diagram’s rows relate to the differ-
ent Reliant 4.0 work products. The dia-
gram’s columns relate to the design review
points. The spreadsheet’s cells represent
the data collected and analyzed at each
review point. The four right-hand
columns summarize the results of all the
reviews by work product. The final col-
umn summarizes the total effectiveness of
each review.

At the release of 4.0 functional speci-
fication review, six faults were uncovered.
This number has been inserted into the
chart in the upper left cell.

Sometime thereafter, at the high-level
Reliant 4.0 design review, 139 total faults
were uncovered. When evaluated for root
cause, nine of these faults were attribut-
able to Functional Specification problems
(i.e. problems that should have been
caught in the earlier functional specifica-
tion review), and 130 were attributable to
problems in the high-level design.
Therefore, the numbers nine (the defects
that escaped the earlier review) and 130
(the errors uncovered during the high level
design review) are inserted into the second
column. In a similar manner, as the Reliant
4.0 project continues, further data will be
added to the chart.

Based on the data available at this early
project stage, the PCE of the Functional
Specification is equal to the ratio of the
total errors/total faults. Mathematically:

PCE = # of errors / # of faults

PCE = 6/15 (40 percent)

This ratio is shown in the far right-hand
side of the table’s first row. Notice too
that the PCE for the Functional
Specification will degrade if further down-
stream reviews uncover new problems
that are attributable to defects in the
Functional Specification.

On one level, this PCE data suggests
that a moderate amount of time may have
been lost in high-level design implement-
ing the wrong functionality. A more
refined question to pose to project man-
agement is whether this situation is typical
of the company’s prior projects at a simi-
lar point in the development life cycle.

Given the availability of other project
data, and the project manager’s ability to
assess the similarities and differences
between Release 4.0 and earlier projects,
Release 4.0’s data can be put into a richer
historical context. For the sake of illustra-

6 9 6 9 15 0.40

130 130 130 1.00

0 0 0

0 0 0

0 0 0

6 139

Project Reliant Release 4.0

Phase Review Points

Work Products

Functional Specification

High-Level Design

Low-Level Design

Code

Test Plan

Faults by Phase

Functional

Spec

Review

High-Level

Design

Review

Low-Level

Design

Review

Code

Review

Module

Test

Integration

Test

Alpha

Test
Total

Errors

Total

Defects

Total

Faults

Phase

Containment

Effectiveness

P

N/A

N/A

N/A

Figure 1: Current Project

Implementing Phase Containment Effectiveness Metrics at Motorola

Management Basics

14 CROSSTALK The Journal of Defense Software Engineering November 2006

tion, assume that Reliant Release 3.0 is a
good comparative benchmark and that
Figure 2 shows the phase containment
data for the recently completed release 3.0
project.

One can observe in the right-most col-
umn that the PCE for Reliant Release 3.0’s
Functional Specification was 63 percent for
the entire duration of the project. But at the
time of Release 3.0’s high level design
review, (the point in time we seek to com-
pare to Release 4.0’s data), the Functional
Specification’s PCE was:

PCE = # of errors / # of faults

PCE = # of errors / (# errors + # defects)

= 5 / 7 (71 percent)

This data comes from the top row on the
left-hand side of the Release 3.0 chart.

When comparing the new project to
the benchmark project in their early stages,
Release 4.0 is experiencing lower phase
containment effectiveness than its bench-
mark project (40 percent compared to 71
percent). Even more glaring, the Release
4.0 Functional Specification PCE is already
substantially lower than the final Release 3.0
Functional Specification PCE (40 percent
compared to 63 percent). This should be a
cause for concern on the new project.

Furthermore, the total number of
faults discovered in the Release 4.0 high-
level design review raises additional con-
cern. This data is available on the bottom
row of each chart.

High-Level Design Review Results:
• Release 4.0 139 faults uncovered
• Release 3.0 80 faults uncovered

This data raises further questions for
project management, and possibly greater
concerns. For example, is it reasonable
that 59 additional faults should be discov-
ered at this phase of Release 4.0 compared
to Release 3.0? Were the two high-level
design reviews equally thorough? Are
there major functionality or complexity

differences between the two releases? Is it
possible that the Release 4.0 engineers
have been exceptionally thorough and suc-
cessfully uncovered a higher percentage of
latent problems, thereby minimizing the
escapes? Or is the data suggesting some-
thing more sinister?

Some of these questions cannot be
conclusively answered at this point.
However, the concern has been noted and
the results of the next containment
opportunity – the low-level design review
– ought to be more closely monitored. If
this upcoming review also reveals an
unusually high number of escapes from
the high-level design, one can reasonably
conclude that Release 4.0 is getting into
serious trouble.

If Release 4.0 milestones are tracking to
expectations, PERT and Gantt tracking
tools would not indicate any cause for con-
cern. PCE metrics give the Reliant 4.0 pro-
ject manager an early warning indicator.

By now, it should be obvious to the
reader how phase containment metrics
complement Gantt and PERT charts and
how they better illuminate certain types of
information. But one of the most impor-
tant benefits is that this data is available
early in the project’s life cycle.

As organizations become better at col-
lecting and archiving project metrics, their
ability to accurately interpret phase con-
tainment data improves. Further root
cause analysis and process re-engineering
can address additional ways to improve
operations, namely how to avoid the injec-
tion of faults. Ultimately, problem avoid-
ance is the most cost effective way to
speed a project.

Conclusions
Understanding the true state of an ongo-
ing project affords organizations the
opportunity to take timely corrective
action. A project’s successful outcome is
best ensured by making adjustments at the
earliest point possible. When Gantt
and/or PERT metrics are combined with

phase containment metrics, far richer pro-
ject data can be discerned and much of
the subjective problems with milestone-
based tools can be avoided. If for no
other reason than its early warning capa-
bility, PCE would have been a valuable
addition to Motorola.

PCE’s benefits extend beyond this.
PCE metrics quantified the effectiveness of
the business unit’s design reviews. Improv-
ing reviews was a key element in Motorola’s
quality road map. Finally, over time and
across multiple projects, PCE results pro-
vided quantitative evidence of continuous
improvement. Project outcomes were
more predictable and fewer faults escaped
into customer environments.u

5 2 1 0 0 0 0 5 3 8 0.63

78 34 5 15 11 12 78 77 155 0.50

112 32 22 13 11 112 78 190 0.59

89 34 12 2 89 48 137 0.65

22 5 2 22 7 29 0.76

5 80 147 126 93 41 27

Project Reliant Release 3.0

Phase Review Points

Work Products

Functional Specification

High-Level Design

Low-Level Design

Code

Test Plan

Faults by Phase

Functional

Spec

Review

High-Level

Design

Review

Low-Level

Design

Review

Code

Review

Module

Test

Integration

Test

Alpha

Test
Total

Errors

Total

Defects

Total

Faults

Phase

Containment

Effectiveness

N

Figure 2: Benchmark Project

About the Author

Ross Seider is president
of On-Fire Associates, an
executive management
consultancy agency that
focuses on engineering
execution excellence. His

career spans 35 years in Boston’s high-
technology engineering community.
Previously Seider was vice president of
product development and network oper-
ations for Cambridge-based Akamai
Technology, and spent 12 years at
Motorola in a variety of executive roles.
In the 1980s, he co-founded and was
vice president of engineering for two
successful networking start-ups. Seider
holds a bachelor of science in electrical
engineering from Rensselaer Polytechnic
Institute and a master of business
administration from Northeastern
University.

184 Brookline ST
Needham, MA 02492
Phone: (617) 680-3600
E-mail: ross@on-fireassociates.com

November 2006 www.stsc.hill.af.mil 15

Growing the quality of software dur-
ing a fighter aircraft avionics soft-

ware development project is a natural
outcome of conducting a disciplined
software development effort. Through
each step of the process, the software
product evolves toward its end-product
state, implementing more capabilities as
it progresses toward its scheduled
release date. Through a comprehensive
and directed test regimen, the risk of
releasing serious defects in the delivered
software diminishes greatly as testing
progresses, demonstrating software reli-
ability growth. Once software develop-
ment is complete and aircraft are being
delivered, on-site operations teams
manage the day-to-day operations of
the deployed aircraft. Any malfunction-
ing avionic computers (e.g., computer
will not boot, improper return to opera-
tion following a reboot, selected avion-
ics operations in obvious violation of
functional specification) may be man-
aged through maintenance event actions
by either replacing faulty equipment or
reprogramming the computer and veri-
fying a return to normal operation.
These software maintenance events, how-
ever, have a cost – they take a fighter air-
craft out of active service for the dura-
tion of the maintenance action. While
software may not be the root cause of
all such software maintenance events, if
it were responsible for some, then per-
haps models could be developed to pre-
dict their frequency. With these models,
the software organization could then
drive their software development efforts
toward a specifiable and measurable
operational quality goal and later
observe the results of that effort in the
field.

This article describes a practical and
tested approach to using SRE time-
based software reliability growth models
to relate the release quality of fighter
aircraft avionics software to the occur-

rence of software maintenance events
in field operations. Using this approach,
the frequency of expected software
maintenance events can be estimated
before the software is deployed to the
field. This provides the software devel-
opment organization with a key soft-
ware quality metric, one with a cus-
tomer-oriented view of the operational
performance of the avionics software – a
mean time to next software maintenance
event.

Software Reliability Growth
Models
Software is nothing more than a set of
instructions and data derived from a
software design used to control the
operation of a computer system. Once
software is written, it is tested in stages
(e.g., unit, component, system) to iden-
tify and remove defects [1]. All con-
tracted capabilities in software are tested
and verified prior to delivery. However,
it is nearly impossible with large embed-
ded fighter aircraft real-time computer

systems to completely and economically
test the software in all possible opera-
tional conditions under all possible
workloads. A comprehensive and suc-
cessful test program will, however, suf-
ficiently exercise the system, providing
assurance that the risk of a serious com-
puter system failure due to software will
be acceptably low [2]. Assuming that the
software organization manages their
software processes in keeping with or
bettering historical performance and
assuming that these processes are
demonstrably in control, then software
reliability growth can be assessed using
software reliability growth models
(SRGMs). An SRGM is a mathematical
expression of software reliability
growth based on, typically, the detection
rate of software failures during test. A
software failure in this case is the mani-
festation of a software fault (i.e., a latent
defect in the code) during execution of
the software, creating an anomalous
behavior that would be evident to the
system user [1, 2, 3]. Numerous SRGMs
exist in the literature; standards and

Exposing Software Field Failures

Software Reliability Engineering (SRE) provides a way to quantify the likelihood of software failures in software-intensive sys-
tems during test and in-field operations. One simple-to-use, yet practical technique uses software reliability growth models, field and
laboratory usage models, and acceleration factors to estimate software field failure rates. A case study illustrates the technique for
fighter aircraft avionics software and compares predicted to observed software field failures. Establishing a target software relia-
bility objective during software development and working toward it provides assurance that the software is achieving an acceptable
operational performance mark – a mark that can be predicted, observed, and measured both in the laboratory and in the field.

Dr. Jeff (Jianhui) Tian
Southern Methodist University

Test TimeTest Time

C
u
m

u
la

ti
v
e

D
e
fe

c
ts

C
u
m

u
la

ti
v
e

D
e
fe

c
ts

D
e
fe

c
t
R

a
te

D
e
fe

c
t
R

a
t e

h(th(t))

Defect RateDefect Rate

F(tF(t))

Cumulative DefectsCumulative Defects

Probable

Post-Release

Defect Count

h(t)h(t)

Software Reliability Objective

Software

Release
Test Time

Software Release

Figure 1: Example SRGM

Michael F. Siok and Clinton J. Whittaker
Lockheed Martin Aeronautics Co.

16 CROSSTALK The Journal of Defense Software Engineering November 2006

guidance on development and applica-
tion of SRGMs, as well as other soft-
ware reliability methods, are also widely
available [2, 3, 4, 5, 6, 7]. While it is not
necessarily a simple task, the software
analyst chooses an SRGM that best
models the defect discovery process on
the software project while not creating
an additional undue data collection and
analysis burden on the software devel-
opment staff [5, 7].

In its simplest form, an SRGM rep-
resents software reliability growth as a
plot of defect arrivals per unit of mea-
sure (i.e., test time in this case) fitted to
a mathematical model of the same.
Defect counts may or may not be
grouped. Software defects fall into the
usual severity classes as their occur-
rences during test are visible by a system
user and are recorded. Trivial, duplicate,
and document-only defects are not
counted.

Figure 1 (see page 15) provides an
example SRGM; it illustrates the cumu-
lative defects F(t) and Defect discovery
rate h(t) curves. These curves show the

expected arrival times and arrival rates
of software faults discovered during
test. Software reliability growth is also
evident in this example – the rapid
increase of defects discovered over time
eventually starts to slow while testing
continues at the same test intensity. By
establishing a defect rate objective for
software delivery and by planning the
software development to achieve that
objective, the software organization can
estimate the total test time needed to
reach that objective, estimate the proba-
ble release date of the software based
on achieving that objective, and esti-
mate the number of probable remaining
defects in the software at release.

Software reliability objectives can be
set early in the software development
project so that software reliability
growth can be modeled and tracked
throughout the development effort. An
example objective may be no known sever-
ity 1, 2, or 3 defects at delivery. This objec-
tive is quantified, coordinated, and is
then, by declaration, an acceptable soft-
ware defect rate at release. Figure 2 illus-

trates a software development effort
progressing toward a software reliabili-
ty/quality objective. A software mean
time between failure (MTBF) metric
may be computed and used as the mea-
sure of software release quality. Failure,
in this case, means the occurrence of
the next severity, 1, 2, or 3 defect1. This
software MTBF measure is compatible
with other system reliability measures
used on the project outside the software
organization.

Once released and deployed, soft-
ware exhibits a constant failure rate (i.e.,
no more software reliability growth due
to code corrections and re-release. For
this discussion, assume no field updates
for software). Since software is not
updated in the field like it was during
laboratory test, the software organiza-
tion can easily render a prediction of
the expected software field failure rate
based on testing experience in the labo-
ratory and expected usage in the field.
However, field usage rates may vary sig-
nificantly from laboratory usage rates
causing observed field failure occur-
rences to differ noticeably from predic-
tions. To render a useful prediction,
software field usage needs to be quanti-
fied, compared to laboratory usage, and
an acceleration factor must be derived.

Relating Laboratory to Field
Experience
Software defect discovery rates at
release in the laboratory are expected to
be different from field-reported soft-
ware defect discovery rates due primari-
ly to the differing usage rates of the
software in the various operational envi-
ronments. Reliability engineers are
aware of this phenomenon when work-
ing with electronic equipment, and they
use an acceleration factor to adjust
observed laboratory reliability perfor-
mance with expected field reliability
performance [8, 9]. The same technique
can be used for software. The accelera-
tion factor is simply a ratio of the labo-
ratory usage rate (LUR) to the customer
field usage rate [8]. LUR is the average
usage rate of the software while it
undergoes testing. LUR is determined
by summing the software test time for
each test system used during the test
phases of the project and dividing by
the average number of test systems used
concurrently over the entire test period.
The resulting LUR provides a usage rate
that is similar to running the software in
its various operational environments in
x number of systems, where x is the

Flight

Month

(Flight

Hours)

FH

Number

of

Aircraft

FI LUR
Acceleration

Factor

1

2

3

4

5

6

7

.

.

227.6

314.3

521.4

550.3

591.4

652.0

590.7

.

.

13

13

16

16

16

16

19

.

.

17.50

24.17

32.59

34.39

36.96

40.75

31.09

.

.

90

90

90

90

90

90

90

.

.

5.14

3.72

2.76

2.62

2.43

2.21

2.89

.

.

S ft N b f

Table 1: Example Software Field Usage and Acceleration Factor

Test TimeTest Time

Test Time

S
o
ft
w

a
re

D
e
fe

c
t
R

a
te

Software Release

h(t)

Software Development

and Test

MTBF

Test Time

S
o
ft
w

a
re

D
e
fe

c
t
R

a
te

Software Release

h(t)

Software Development

and Test

MTBF

Software

Release

M
T

B
FMTBF at

Software Release

Constant MTBF After

Software Release

(assuming no software repair/updates)

Constant h(t) After Software Release

(assuming no software repair/updates)

Test Time
Software Release

Test Time
Software Release

Software Reliability Objective

Figure 2: Example Software Quality Goal Using SRE

Management Basics

November 2006 www.stsc.hill.af.mil 17

Exposing Software Field Failures

number of test systems instead of field-
ed aircraft.

To determine customer field usage
rates, consider that deployed software
may be installed on many fighter aircraft
systems that may be operated within the
same time periods but at different rates.
Variable customer software usage must
be counted for each aircraft. Flight
intensity (FI) is used to establish an
average customer usage rate for a group
of aircraft. FI is determined by taking
total flight hours (FH) and dividing by
the number of in-service aircraft for
each time period. The acceleration fac-
tor is then simply, LUR/FI. Table 1
illustrates how flight intensity and the
acceleration factor are computed.

Estimating Software
Maintenance Events
Estimating the expected number of
software maintenance events is now a
matter of completing a few simple com-
putations. Starting with the software
release quality expressed as MTBF, mul-
tiply by the acceleration factor to get a
field-adjusted MTBF. Then, divide the
expected total flight hours for that time
period by the field-adjusted MTBF to
get the expected number of software
maintenance events for that time peri-
od. (Round the answer to the nearest
whole number.) Table 2 illustrates how
to estimate software maintenance events
using software release quality, accelera-
tion factor, and FH.

Process Summary
Figure 3 provides an overview of the
process to compute the expected soft-
ware maintenance events just discussed.
To compute the software maintenance
event rate, enact the following steps:
1. Determine the release quality of the

software by reviewing software
development historical records and
modeling/analyzing software relia-
bility growth. Determine also the
LUR of the software; use models in
absence of recorded data.

2. Quantify the expected customer
field usage of the software.
Determine FI using the number of
in-service aircraft and FH. Use mod-
els in absence of recorded data.

3. From the customer and LUR, com-
pute an acceleration factor to relate the
laboratory software reliability experi-
ence with the expected field usage
software reliability.

4. Compute the number of software
maintenance events using software

release quality, the acceleration fac-
tor, and FH. Identify and count
maintenance events observed in the
field that exhibit the characteristics
of a software failure. Compare the
observed software maintenance
event data to predictions.

The following case study provides some
practical experience using this tech-
nique.

Case Study
As part of an engineering study, the
Lockheed Martin Aeronautics Company
software engineering organization
teamed with the system reliability engi-
neering organization to determine if
some aircraft field maintenance events
reported with a particular aircraft avion-
ics configuration could, in fact, be soft-
ware or software-related maintenance
events. Further, if they were, could their
occurrence frequency be predicted?
Recall that a maintenance event is a
request for maintenance action on an
aircraft due to an observed operational
anomaly. To service the maintenance
request, the aircraft is temporarily
removed from active service. Once ser-
viced, a description of the observed
anomaly as well as the corrective action
performed is noted on a maintenance
event report and the aircraft is returned
to active service. For this study, one
embedded computer of a specific fight-

er aircraft avionics system configuration
was identified for investigation.

Maintenance events are coded to
identify an affected part needing main-
tenance action. Software maintenance
events had no assigned maintenance
codes. Suspected software maintenance
events, however, were usually assigned
to the system category against the
embedded computer system serviced.
Unknown maintenance event causes as
well as a few other maintenance event
actions were also assigned to this catego-
ry. Software maintenance events and
their subsequent actions had to be iden-
tified by reviewing every system-coded
maintenance event record charged
against the specific embedded comput-
er. Selected other non-system-coded main-
tenance event reports were also
reviewed looking for likely software
maintenance events that might have
been coded differently. Probable soft-
ware maintenance requests and actions
(e.g., software will not boot, improper
avionics software operation after
reboot, selected operations in violation
of specification, computer repro-
grammed and checked out OK) were
identified and counted. From this work,
the number of software maintenance
actions per month was collected along
with the number of aircraft and flight
hours logged during the first 18 months
of field operations of this specific

1. Determine

Software Release

Quality

2. Determine

Software Field

Usage

3. Compute

Acceleration

Factor

4. Compute SW

MEs and Compare to

Observed SW MEs

1. Determine

Software Release

Quality

2. Determine

Software Field

Usage

3. Compute

Acceleration

Factor

Flight

Month

(Flight

Hours)

FH

Number

of

Aircraft

FI LUR
Acceleration

Factor

1

2

3

4

5

6

7

.

.

227.6

314.3

521.4

550.3

591.4

652.0

590.7

.

.

13

13

16

16

16

16

19

.

.

17.50

24.17

32.59

34.39

36.96

40.75

31.09

.

.

90

90

90

90

90

90

90

.

.

5.14

3.72

2.76

2.62

2.43

2.21

2.89

.

.

Flight

Month

Software

Release

Quality

(MTBFSW)

Acceleration

Factor

Field-

Adjusted

MTBFSW

FH

Number of

Expected ME

(FH/Field Adj.

MTBFSW)

1

2

3

4

.

.

100

100

100

100

.

.

5.14

3.72

2.76

2.62

.

.

514.2

372.4

276.2

261.7

.

.

227.6

314.2

521.4

550.3

.

.

0

1

2

2

.

.

Software Release Quality

LUR

FI Number of Observed

Software Maintenance

Events (Software ME's)

4. Compute Software

MEs and Compare

to Observed

Software MEs

Figure 3: Process to Compute Software MEs

1. Determine

Software Release

Quality

2. Determine

Software Field

Usage

3. Compute

Acceleration

Factor

4. Compute SW

MEs and Compare to

Observed SW MEs

1. Determine

Software Release

Quality

2. Determine

Software Field

Usage

3. Compute

Acceleration

Factor

Flight

Month

Software

Release

Quality

(MTBFSW)

Acceleration

Factor

Field-

Adjusted

MTBFSW

FH

Number of

Expected ME

(FH/Field Adj.

MTBFSW)

1

2

3

4

.

.

100

100

100

100

.

.

5.14

3.72

2.76

2.62

.

.

514.2

372.4

276.2

261.7

.

.

227.6

314.2

521.4

550.3

.

.

0

1

2

2

.

.

Software Release Quality

LUR

FI Number of Observed

Software Maintenance

Events (Software ME's)

4. Compute Software

MEs and Compare

to Observed

Software MEs

Table 2: Computing Software Maintenance Event (ME) Estimates

avionics configuration.
To establish the release quality of the

avionics software, the management team
on the project that initially developed and
delivered the software was consulted on
details of the software development activ-
ities. Software project metrics used during
the development effort were reviewed to
gain an understanding of the software
process performance as well as the project
dynamics at the time. From interviews,
archived project data, and results of simi-
lar discussions on other similar in-house
avionics software projects, an SRGM was
selected, a LUR was estimated, and the
software quality at release was computed
and expressed as an MTBF.

The data for this engineering study
from both the system reliability and soft-
ware engineering groups was collected and
organized into a spreadsheet. The soft-
ware release quality, LUR, FI, acceleration
factor, field-adjusted software MTBF, FH,
and the number of predicted software

maintenance events, rounded to the near-
est whole number, were put into this
spreadsheet. A last column identified the
number of probable software mainte-
nance actions observed in the data set.
This data is presented in Table 3; the data
is derived from the actual data taken from
the study but has been altered to disguise
proprietary information.

The number of predicted and
observed software maintenance events
for each month is plotted in Figure 4.
FH is also plotted on the same graph. It
was expected that the number of soft-
ware maintenance events would follow
the flight hours; that is, as flight hours
increased or decreased for each month,
so too did the number of software
maintenance events. The observed soft-
ware maintenance events exhibited this
relationship with some small variation.
In comparing the number of predicted
to observed software maintenance
events, the prediction tended to be a lit-

tle pessimistic early in the field program,
while later the prediction turned per-
haps a little optimistic. This method
models an effect generally observed in
software reliability, where early in the
field program when new software is
released, field failure reports are initially
high. As more systems are deployed
with the same software, the number of
failure reports per accumulated system
time reduces to a near steady rate [3].
While not a perfect predictor of soft-
ware maintenance events, this method
does provide a useful approximation of
the expected software field perfor-
mance.

Some variations were expected in
predicted and observed software main-
tenance event counts in this study. This
variation could be attributable to the
estimates of software MTBF, LUR, and
FI used, possible errors in identifying
appropriate maintenance event records
for the study, errors in maintenance
event record documentation, or record-
keeping itself.

The study results indicated that, on
average, the longer that the software
was being run in this group of aircraft,
the more likely it was that a software
maintenance event would occur. It
would seem to follow then that if one
could predict the occurrence of these
software maintenance events, one could
also fix the software so that these events
would not recur. Discovery of software
maintenance event causes in the field is
not usually easy, however. All the easy
and nearly all of the hard-to-find software
faults were found and fixed during the
laboratory and flight-test program.
Further, since maintenance event

Management Basics

18 CROSSTALK The Journal of Defense Software Engineering November 2006

1 100 90 17.50 5.14 514.2 227.6 0 0

2 100 90 24.17 3.72 372.4 314.2 1 0

3 100 90 32.59 2.76 276.2 521.4 2 1

4 100 90 34.39 2.62 261.7 550.3 2 1

5 100 90 36.96 2.43 243.5 591.4 2 2

6 100 90 40.75 2.21 220.9 652.0 3 2

7 100 90 31.09 2.89 289.5 590.7 2 2

8 100 90 33.24 2.71 270.7 638.2 2 2

9 100 90 33.73 2.67 266.8 683.7 3 3

10 100 90 26.75 3.36 336.5 699.0 2 2

11 100 90 14.87 6.05 605.0 491.9 1 1

12 100 90 15.17 5.93 593.3 703.9 1 2

13 100 90 14.68 6.13 612.9 689.2 1 2

14 100 90 18.47 4.87 487.2 867.1 2 3

15 100 90 17.49 5.15 514.7 830.0 2 2

16 100 90 12.27 7.33 733.2 582.6 1 1

17 100 90 12.85 7.00 700.4 616.8 1 1

18 100 90 15.12 5.95 595.3 725.6 1 2

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

100

200

300

400

500

600

700

800

900

1000

Number of Predicted ME

Number of Observed

Software ME

FH

Flight

Month

Software Release

Quality (MTBFSW)
LUR FI

Acceleration

Factor

(LUR/FI)

Field-

Adjusted

MTBFSW

FH

Number of

Predicted

Software ME

Number of

Observed

Software ME

Predicted Versus Observed Software MEs

N
u

m
b

e
r

o
f

M
E

s

Months

F
H

s

Figure 4: Predicted Versus Observed Software ME Counts

1 100 90 17.50 5.14 514.2 227.6 0 0

2 100 90 24.17 3.72 372.4 314.2 1 0

3 100 90 32.59 2.76 276.2 521.4 2 1

4 100 90 34.39 2.62 261.7 550.3 2 1

5 100 90 36.96 2.43 243.5 591.4 2 2

6 100 90 40.75 2.21 220.9 652.0 3 2

7 100 90 31.09 2.89 289.5 590.7 2 2

8 100 90 33.24 2.71 270.7 638.2 2 2

9 100 90 33.73 2.67 266.8 683.7 3 3

10 100 90 26.75 3.36 336.5 699.0 2 2

11 100 90 14.87 6.05 605.0 491.9 1 1

12 100 90 15.17 5.93 593.3 703.9 1 2

13 100 90 14.68 6.13 612.9 689.2 1 2

14 100 90 18.47 4.87 487.2 867.1 2 3

15 100 90 17.49 5.15 514.7 830.0 2 2

16 100 90 12.27 7.33 733.2 582.6 1 1

17 100 90 12.85 7.00 700.4 616.8 1 1

18 100 90 15.12 5.95 595.3 725.6 1 2

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

100

200

300

400

500

600

700

800

900

1000

Number of Predicted ME

Number of Observed

Software ME

FH

Flight

Month

Software Release

Quality (MTBFSW)
LUR FI

Acceleration

Factor

(LUR/FI)

Field-

Adjusted

MTBFSW

FH

Number of

Predicted

Software ME

Number of

Observed

Software ME

Predicted Versus Observed Software MEs

N
u

m
b

e
r

o
f

M
E

s

Months

F
H

s

Table 3: Project Data

Exposing Software Field Failures

November 2006 www.stsc.hill.af.mil 19

reports are often short on problem
descriptions and aircraft are not usually
instrumented to collect data with the
maintenance action request, the soft-
ware maintenance events identified may
not all undeniably be software maintenance
events. Recovery and study of fault logs
provide some help with fault cause iden-
tification, but require expert analyses.
Without instrumentation data and/or
complete descriptive information lead-
ing up to the point when the observed
failure occurred, any likely future fix in
software or the software development
process is remote unless this same
anomalous behavior can be repeated
reliably in the laboratory or can be dis-
covered in the laboratory on future ver-
sions of that same software.

To determine if these study results
were coincidental, this same method was
used on two other embedded avionic
computer systems on two different field-
ed fighter aircraft programs. Not sur-
prisingly, the results were similar. While
results of three studies hardly prove
method validity, results associated with
these applications indicated that further
use of the technique in-house was war-
ranted and encouraged. Since this study
was completed, SRE methods have been
and continue to be applied on new start
software development efforts and on
additional completed and near-complet-
ed projects in a number of software
application domains within the compa-
ny. These SRE measures are being used
in concert with other more traditional
software metrics to estimate and predict
the overall quality of the company-
developed and fielded software.

A Note on Software Failure
When software fails to deliver its
required service, the service is said to
have failed. Software itself does not fail.
Failures attributable to software general-
ly occur because of requirements,
design, or programming errors or they
occur as a result of a computer equip-
ment malfunctions. The software main-
tenance events recorded in this study
could be attributed to any of these error
types or computer equipment malfunc-
tions. They likely resulted from any one
or more of the following causes:
1. A specific rare event occurring in the

operational environment uncovered
a latent defect in the software.

2. A specific but rare use of the soft-
ware not completely tested in the
laboratory uncovered a latent defect
in the software.

3. A specific unforeseen new use of

the software not specifically provid-
ed for or tested caused an unexpect-
ed response from the software.

4. An unexpected rare event occurring
in the operational environment
caused an unexpected response from
the software.

5. An equipment anomaly that the soft-
ware was not designed to handle was
encountered causing an unexpected
response from the software.

6. Corrupted data caused anomalous
operation.

Wrap-Up
With software size for fighter aircraft
embedded real-time systems growing
into the millions of source lines of
code, implementing thousands of capa-
bilities required to be operational under
all workload scenarios, it is becoming a
daunting challenge to economically
assemble, debug, and verify this soft-
ware within the complete range of sys-
tem operations using current methods.
Further, since software plays such a
major role in providing the fighter air-
craft’s total system capabilities, the
fighter’s overall reliability is now being
viewed as a function of the reliability of
the hardware and the software [10].
Using the SRE methods described in
this article to model the reliability
growth of software provides a fairly
simple-to-use and useful quality mea-
sure that can be used during software
development as a predictor and estima-
tor of software operational quality.

The SRE techniques described in
this article provide a practical use of
time-based SRE measures and metrics
in identifying software product opera-
tional quality and in confirming that
quality in field operations. It is a low-
cost metric; it uses software fault and
field failure data readily available to the
engineering staff. In introducing this
technique to our software engineering
staff, no additional costs were incurred
for data collection (i.e., required infor-
mation was already being collected) and
only a small cost was incurred for staff
training and metrics deployment (i.e.,
about one person-month to develop
training material and deliver instruction
to a target audience of about 20 engi-
neers). Our study results indicated that
use of these few simple but tested SRE
techniques within our current family of
software measures had value as software
operational performance predictors.
Since this study, SRGMs have been
studied and applied in-house on a num-
ber of fighter aircraft software pro-

grams. In the longer term, these mea-
sures are proving their worth and earn-
ing their way into our company’s stan-
dard software practice.u

References
1. Tian, Jeff. Software Quality Engi-

neering: Testing, Quality Assurance,
and Quantifiable Improvement.
Hoboken, NJ: John Wiley & Sons,
Inc., 2005.

2. Musa, John. “Software Reliability
Engineering: More Reliable Soft-
ware, Faster Development and Test-
ing.” Software Reliability Engineer-
ing and Testing Courses. McGraw-
Hill, 1998.

3. Lyu, Michael R. Handbook of Soft-
ware Reliability Engineering New
York, NY: McGraw-Hill Companies,
1996.

4. American National Standards Insti-
tute (ANSI). “Recommended Prac-
tice for Software Reliability.” ANSI
R-013-1992. Feb. 1993.

5. Carnes, Patrick. Software Reliability
in Weapon Systems. Proc. of the
Eighth International Symposium on
Software Reliability Engineering –
Case Studies, 2-5 Nov. 1997.

6. Schniedewind, Norman F. “A
Recommended Practice for Software
Reliability.” CrossTalk Aug. 2004
<www.stsc.hill.af.mil/crosstalk/
2004/8>.

7. Wallace, Delores R. Practical Soft-
ware Reliability Modeling. Proc. of
the 26th Annual NASA Goddard
Software Engineering Workshop,
Nov. 2001.

8. O’Conner, Patrick D.T. Practical Re-
liability Engineering. 3rd ed. West
Sussex, UK: John Wiley & Sons Ltd.,
1991.

9. Ireson, Grant W., Clyde F. Coombs,
and Richard Y. Moss. Handbook of
Reliability Engineering and Manage-
ment. 2nd ed. New York, NY:
McGraw-Hill Companies, 1996.

10.Hamner, Robert S., “Software Relia-
bility?” Transactions of the ASME
Journal of Electronic Packaging 122.
4 (Dec. 2000): 357-60.

Note
1. The defect severity code identifies

the consequence of the defect
occurring in the released software.
Severity 1 – Mission cannot be
accomplished. Severity 2 – Task
within the mission cannot be accom-
plished. Severity 3 – Task can be
accomplished using a work-around.

20 CROSSTALK The Journal of Defense Software Engineering November 2006

About the Authors

Clinton J. Whittaker
has 18 years of profes-
sional experience as a
reliability/avionics engi-
neer. Currently, he is the
reliability engineering lead

at Lockheed Martin Aeronautics in Fort
Worth, Texas. Since joining Lockheed
Martin in 2002, Whittaker has provided
reliability oversight of selected aircraft
programs primarily focusing on avionics
hardware and software development and
test. His background includes reliability
and avionics experience with Alcatel in
telecommunication networks; Beal
Aerospace, as the avionics lead over the
hardware and software development for
a commercial rocket venture; and Texas
Instruments/Raytheon, as a production
and field reliability engineer on two mis-
sile programs. Whittaker has a bachelor’s
degree in electrical engineering from
Texas A&M University.

Lockheed Martin Aeronautics Co.
P.O. Box 748, MZ 2462
Fort Worth,TX 76101
Phone: (817) 762-3034
Fax: (817) 655-7181
E-mail: clinton.j.whittaker

@lmco.com

Michael F. Siok is a
software engineer for
Lockheed Martin Aero-
nautics Company in Fort
Worth, Texas. He has
been with the company

for 20 years, most recently performing
software project planning and applying
software reliability engineering tech-
niques. Siok is a member of the Institute
of Electrical and Electronics Engineers,
the Association for Computing Machin-
ery, and the International Council of
Systems Engineering, and is a registered
professional engineer in Texas. He has a
Bachelor of Engineering Technology in
electronics from Southwest State Uni-
versity in Marshall, MN; a master’s de-
gree in engineering management from
Southern Methodist University (SMU) in
Dallas, Texas; and is currently pursuing a
doctorate in engineering management at
SMU.

Lockheed Martin Aeronautics Co.
P.O. Box 748, MZ 8604
Fort Worth,TX 76101
Phone: (817) 935-4514
Fax: (817) 762-9428
E-mail: mike.f.siok@lmco.com

Jeff (Jianhui) Tian,Ph.D.,
is currently with the com-
puter science and engi-
neering department at
Southern Methodist Uni-
versity in Dallas, Texas,

and worked for IBM Software Solutions
Toronto Laboratory from 1992-1995 as a
software quality and process analyst. His
current research interests include soft-
ware testing, measurement, reliability,
safety, and complexity and application to
various systems. Tian is a member of the
Institute of Electrical and Electronics
Engineers and the Association for Com-
puting Machinery, and is a registered pro-
fessional engineer. He has a bachelor’s de-
gree in electrical engineering from Xi’an
Jiaotong University, a master’s degree in
engineering science from Harvard
University, and a doctorate in computer
science from the University of Maryland.

Southern Methodist University
Dept. of Computer Science
and Engineering
PO Box 750122
Dallas, TX 75275
Phone: (214) 768-2861
Fax: (214) 768-3085
E-mail: tian@engr.smu.edu

Integrated Quality Assurance for
Evolutionary, Multi-Platform Software

Development

Dr. Robert B.K. Dewar
AdaCore

A software product is rarely a static artifact resulting from a one-
time effort; it needs to evolve. The development team might be
distributed geographically, requiring careful coordination. A soft-
ware producer must have well-defined processes for dealing with
these issues, to ensure that its products successfully meet users’
needs. This article is a case study of how one software producer,
AdaCore, handles this challenge, but the processes are not com-
pany specific and can be adopted by any organization. By way of
background, AdaCore is an international company that produces
and supports a family of Ada language tools comprising compil-
ers, debuggers, integrated development environments, supple-
mental tools and packages, and other components. With two
releases of each product annually on more than a dozen platforms,

the company requires clearly defined procedures for change track-
ing, configuration management and quality assurance. In many
ways, AdaCore faces the same issues as other growing software
organizations. This article shows how these are addressed through
a combination of automated tools and human management.

Uncommon Techniques for Growing
Effective Technical Managers

Paul E. McMahon
PEM Systems

This article utilizes real project scenarios to demonstrate a set of
techniques that support common patterns employed by many
effective technical managers across a range of organizations.
Planning, status, metrics, and communication with task perform-
ers and senior management are addressed. If you are in a growing
organization that is striving to institutionalize its processes, this
article will provide you with a wealth of insights and practical
techniques that could help you become more effective in your job.

MORE ONLINE FROM CCRROOSSSSTTAALLKK

CrossTalk is pleased to bring you these additional articles
with full text at <www.stsc.hill.af.mil/crosstalk/2006/11/index.html>.

Management Basics

Large commercial and government sys-
tems are increasingly software inten-

sive. The costs of supporting software
over a 10 to 20-year lifetime are increas-
ingly significant in today’s software depen-
dent world. Software support costs con-
tinue long after development ends, typical-
ly costing between 67 percent and 80 per-
cent of the overall life-cycle cost. As
shown in Figures 1A and B [1, 2], this is
two-to-four times the development cost.
This article will investigate options on
how to spend that life-cycle maintenance
budget to both maintain and enhance the
code at the same time.

The U.S. Air Force (USAF) [2] studied
487 commercial software development
organizations to see how software support
costs are distributed among different
tasks. According to the report, most soft-
ware support dollars are spent on defin-
ing, designing, and testing changes.
Support activities they identified include
the following:
• Interacting with users to determine

what changes or corrections are need-
ed.

• Reading existing code to understand
how it works.

• Changing existing code to make it per-
form differently.

• Testing the code to make sure it per-
forms both old and new functions cor-
rectly.

• Delivering the new version with suffi-
cient new documentation to support
the user/product.
The USAF also shows that in post-

deployment software support, 75 percent
of the effort involves enhancement and
refinement, and the remaining 25 percent
is associated with maintenance of existing
modules, as shown in Figure 2 (see page
22) [2]. Historically, the maintenance of
software involves correcting bugs and
supporting the required deployment
changes. Research by Roger Pressman in
Software Engineering: A Practitioner’s Approach

also confirmed this 21 percent factor and
found that:

… only about 20 percent of all
support work is spent fixing mis-
takes, while the remaining 80 per-
cent is spent adapting existing sys-
tems to changes in their external
environment, making enhance-
ments (possibly categorized as
refinement) requested by users, and
reengineering an application for
future use. [4]

We will use the term enhancement for all
non-maintenance program improvements,
including refinement. We will use the term
post-deployment support to include both
maintenance and enhancement.

According to the USAF and other
research, newly developed software has a
high failure rate until the bugs are worked
out, and after this point, failure rates usu-
ally drop to a low level [1, 2]. Theoretically,
software should stay at that reliable level
forever because it is not getting physical
wear. Since software continues to get
changed, however, it will continue to have
bugs and reliability problems. Thus, software
wears out because it is maintained [5].

There are more modern reasons for
software maintenance, namely the follow-
ing:

• Changes required for security consid-
erations and protection from hackers.

• Changes in the operating system (ver-
sions), often driven by security or reli-
ability.

• Changes due to other changing com-
mercial off-the-shelf (COTS) software
or hardware products.

Validating the Maintenance
Expense
The 2:1 relationship of software support
cost to development costs (i.e. 66 percent
to 33 percent ratio) is critical to develop-
ing a strategy for life-cycle maintenance,
but how real are these typical relationships?
One significant study published data on
coding errors and support [6]. The rele-
vant data in Table 1 (see page 22) was
taken from the Information Technology
department of a large commercial bank.
This data represented 35 projects and 20
million source lines of code (SLOC). We
tested those rules of thumb by using them
to calculate the theoretical support costs
and compared them to the actual reported
annual support cost.

The age of code was not available, so
we assumed a mean 30 year lifetime and a
typical productivity of one line of code per
hour at a cost of $50 per man hour to
obtain a derived development cost. That
derived development cost was then multi-

Software Recapitalization Economics

This article analyzes the economics of cyclic replacement or recapitalization of software. It analyzes some of the historic issues
and costs of software maintenance. Then, it provides analysis on how much software modernization occurs while still main-
taining old code. I recommend a combination of minimal maintenance and a cyclic re-engineering to maximize the amount of
code refresh and minimize the code’s average age. In theory, regular refresh will allow rapid introduction of new or improved
functions. It finishes by recommending strategies to target improved productivity as a component of recapitalization.

David Lechner
WeC2 Technologies

November 2006 www.stsc.hill.af.mil 21

Software Engineering Technology

Development

20%

Maintenance

80%

Maintenance

49%

Other

8%

Validation

21%

Implementation

9%

Requirements/

Design

13%

Refinement

25%

Enhancement

50%

Maintenance

21%

Other

4%

Figure 1

Figure 2

A and B

Figure 3

New SLOC

Generated

Each Year

Productivity Ratio

(Maintenance/Development)

Sensitivity Analysis: New SLOC/Year

Given A $100M Annual Investment

and $20M SLOC Program

Desired

Practice

Percentage of

Money Spent on

Re-Engineering

Current

Practices

Maintenance

49%

Requirements/

Design

13%

Implementation

9%

Validation

21%

Other

8%

Refinement

25%

Other

4%

Maintenance

21%

Enhancement

50%

Development

20%

Maintenance

80%

Figures 1 A and B: Software Life-Cycle Support Cost for Two Types of Large Programs

Development

20%

Maintenance

80%

Maintenance

49%

Other

8%

Validation

21%

Implementation

9%

Requirements/

Design

13%

Refinement

25%

Enhancement

50%

Maintenance

21%

Other

4%

Figure 1

Figure 2

A and B

Figure 3

New SLOC

Generated

Each Year

Productivity Ratio

(Maintenance/Development)

Sensitivity Analysis: New SLOC/Year

Given A $100M Annual Investment

and $20M SLOC Program

Desired

Practice

Percentage of

Money Spent on

Re-Engineering

Current

Practices

Maintenance

49%

Requirements/

Design

13%

Implementation

9%

Validation

21%

Other

8%

Refinement

25%

Other

4%

Maintenance

21%

Enhancement

50%

Development

20%

Maintenance

80%

Note: The USAF report used the term maintenance for generic post-deployment life-cycle support [2].

Software Engineering Technology

22 CROSSTALK The Journal of Defense Software Engineering November 2006

plied by two and divided by 30 years to get
a theoretical annual support cost, which
we compared to the actual expenditures
by the bank. This ratio was within 3 per-
cent for the mean project value and 7 per-
cent for the average project. This calcula-
tion does not correct for the present value
versus annual value of money or the actu-
al age of each program. The rules of thumb
on software life-cycle maintenance howev-
er still seem reasonable and applicable
today.

Given that the life-cycle software sup-
port costs is twice the development cost,
we can divide that by a nominal 20 years
lifetime to estimate annual support costs.
We use 20 years here instead of 30 years
since technology is moving quickly and we
want a conservative estimate. This ratio
implies that support costs 10 cents per
year for each development dollar spent.
This annual expense does not cover the
capital recovery of the initial development
expenses. We call this the 10 percent rule for
software maintenance budgeting. This rule
checks the adequacy of a project’s long-
term software support budget, or perhaps
determines the required sales/licensing
revenue to justify a commercial project.

To have a really successful long term pro-
ject, with functionality growth and satis-
fied users (and perhaps a sustaining busi-
ness operations point), the ratio of a long
term support budget (or revenue) vs. a
development budget should be at or
above 10 percent. To recover develop-
ment costs and do maintenance, the prod-
uct income stream must be even higher
(with a three year payback on develop-
ment costs, the annual revenue must
exceed 40 percent of the development
budget).

This ratio illustrates the problem with
starting up new software projects on a reg-
ular basis (such as Department of
Defense Small Business and Innovative
Research projects) unless they replace old
code. The project is a distraction that
siphons budgets from other maintenance
needs unless the customer is prepared to
spend 10 percent of the development cost
on an annual basis to support the code. If
the vendor does not commercialize to
recoup the difference, the project is
doomed.

This 10 percent rule can be dissected
further. Data shows that 25 percent of
costs are for maintenance and other, and 75
percent of the long term cost is for refine-
ment and enhancement [3]. Thus out of our
10 percent of development expense, there
is an annual 2.5 percent minimum budget
required for reliability and bug fixing and
7.5 percent recommended for functionali-
ty change.

The High Costs of Software
Support
Unfortunately, software support cost for
old code, measured as a ratio per line of
source code, can be up to 40 times more
expensive than engineering new code [1].
This factor has a huge impact on long-term
software support. It is commonly attributed

to several reasons, namely the following:
1. The support engineers are often not

the original developers and must
relearn the program’s design and
requirements.

2. The code becomes more complex as it
evolves and is patched, introducing
more bugs and requiring more testing
[7].

3. The programming technology is old
and static, requiring greater labor.

4. Documentation problems require
additional effort and repair.

5. There are definitive system limitations
on how fixes can be made.

6. Extensive testing to ensure that the
system performance is met [8, 9].

7. The use of older technology requiring
older (more senior and more expen-
sive) workers, often considered gurus,
who are the only ones with the famil-
iarity that can make a change [10].
Typical legacy style support involves

analyzing user problems and requests,
operating system updates, COTS product
version changes, urgent reliability prob-
lems and security issues, and hardware
obsolescence issues in order to define and
determine what support is done. This
effort can be challenging since some prob-
lems are incredibly difficult to find or
recreate. Teams supporting legacy code
typically work in a cyclic mode based on
budget availability.

Software Re-Engineering
Software re-engineering is the complete over-
haul of a software application, tearing it
down to its component requirements and
rebuilding it with modern methods, codes,
and practices. The USAF policies advo-
cate re-engineering of software when the
program manager concludes that it is better to pay
now, rather than waiting to pay much more later
[11]. Paying now is what William E. Perry
calls avoiding the rathole syndrome. Perry
defines a rathole as the dark place where soft-
ware maintainers throw their money with no pos-
sibility of return on investment, and he com-
pares software with old cars. In the short
term, it is cheaper to fix your old car than
it is to buy a new one, but in the long term
it costs more than buying a new car. Perry
also explained that once one software
rathole is plugged up (bug is fixed) anoth-
er usually appears.

The 40:1 ratio of costs for maintaining
old vs. new code should really be a factor
that changes over time, starting out closer
to a regular 1:1 factor if the maintenance
team was chosen from the remnants of
the original developers and used the same
development environment. It would then
worsen as the staff changes, tools age,

Commercial Application Systems Profile

(35 Systems, Total 20M SLOC, 1970s to 1990s) [6]

Mean Average Minimum Maximum

Errors per Month (After Deployment) 8.3 9.7 1 101

Support Costs/Year $693,000 $661,000 $83,000 $3,532,000

Application Size – in # of Modules 217 266 18

Application Size – Lines of Code

Authors Analysis (Added):

Rule of Thumb Development Cost $10,750,000 $9,250,000 $2,700,000 $35,100,000

30 Years of Support Would Then Cost $20,790,000 $19,830,000 $2,490,000 $105,960,000

Percentage Support Cost of Total Life

Cycle Cost 66% 68% 48%

Dev. Cost * (2/ Life) $716,667 $616,667 $180,000 $2,340,000

Ratio of Theoretical to Actual Support

Cost 103% 93% 217% 66%

Table 1: Recent Commercial Data Helps Validate That Post Deployment Life -Cycle Costs are Twice

Development Costs

ASSUMPTIONS / INPUT DATA

Labor Cost/MY $100,000

Productivity: New SLOC/MY 2,000 (8 SLOC/Day)

Development Cost $/SLOC 50 $/SLOC

SLOC Developed 20,000,000 New SLOC

Total Dev $ (SLOC * Cost/SLOC) $1,000,000,000 ($1B)

Support Factor (40:1 more expensive) 40

$2,000

Life 20

$100,000,000

OPTION 1: 100% Maintenance Approach

$100,000,000/

($2,000 /SLOC) =

50,000 SLOC

% SLOC Maintenance/Year = 50K/20M = 0.25%

(Clearly you did not get much for the $100M Budget)

OPTION 2: 100% Effort Is Re-Engineering Each Year

$100,000,000/

($50/SLOC) =

2,000,000 SLOC

% of Program Enhanced = 10%

Table 2: Sample Analysis with Post Deployment Support Options

For a Large Program

Variable

215,000 185,000 54,000 702,000

1,500

75%

Maint. Software Cost $/SLOC

Annual $/Year (10% of Development $)

Maintained SLOC/Year (Based

on Annual $/Software Support Cost)

Maintained SLOC/Year

(#SLOC) if 100% Dev. Type Work:

Years

#/SLOC

Table 1: Recent Commercial Data Helps Validate That Post-Deployment Life -Cycle Costs Are Twice
Development Costs

Development

20%

Maintenance

80%

Maintenance

49%

Other

8%

Validation

21%

Implementation

9%

Requirements/

Design

13%

Refinement

25%

Enhancement

50%

Maintenance

21%

Other

4%

Figure 1

Figure 2

A and B

Figure 3

New SLOC

Generated

Each Year

Productivity Ratio

(Maintenance/Development)

Sensitivity Analysis: New SLOC/Year

Given A $100M Annual Investment

and $20M SLOC Program

Desired

Practice

Percentage of

Money Spent on

Re-Engineering

Current

Practices

Maintenance

49%

Requirements/

Design

13%

Implementation

9%

Validation

21%

Other

8%

Refinement

25%

Other

4%

Maintenance

21%

Enhancement

50%

Development

20%

Maintenance

80%

Figure 2: Approximately 75 Percent of Software
Post-Deployment Support Is Associated With
Refinement and Enhancement to the Program [3, 2]

Software Recapitalization Economics

complexity increases, and reliability
degrades due to change [8, 9]. Some
researchers identify code that is over 15
years old as alien code [8, 9], since by this
age there are no longer any members of
the original development staff left. Today,
most applications that are old are unstruc-
tured, have architecture problems, poor
documentation, and questionable change
records. A good support strategy should
avoid letting code get too old.

The average equipment age is a concept
used in economics, replacing a capital item
on a regular cycle is called recapitalization.
At any given time the average age is the
sum of the different ages multiplied by a
weighting factor that is the inverse of the
cyclic time period. In the example below,
we shortened the math using the formulae
for a series summation developed by Carl
F. Gauss in the 1800s. The average age of
an inventory just before one unit is
replaced is simply half of the sum of one
plus the cycle time period.

7 Year Cycle: (1/7)*1 + (1/7)*2 +(1/7)*3 +

(1/7)*4 +(1/7)*5 + (1/7)*6 + (1/7)*7

= (1/7) * {1+2+3+4+5+6+7 }

= (1/N) * {Summation 1:N}

Generalized Case; Average Age of Items

Replaced Every N Years:

= (1/N)*{N * (N+1)/2} by

using Gauss’ summation formula

= (N+1) / 2

Can we apply a cyclic recapitalization
strategy to get code improvement via re-
engineering and still continue acceptable
support? To answer this question we ana-
lyzed a large hypothetical project of 20
million source lines of code. The key con-
sideration is the amount of new software
source code (new SLOC) created each
year. One key input is the mix or alloca-
tion between maintained old code and
newly re-engineered code. The other is the
productivity, which ranged from eight
SLOC/day for new code to 0.2
SLOC/day for old code (40 times worse).
Software productivity is actually a very
complex product of many factors besides
the age of the code [12]. There are many
problems with simple productivity factors,
but we ignore them to seek a simple
approximation and show hypothetical
first-order effects based on the age of the
code.

We calculate the cost of software code
by multiplying the daily labor rate
($50/New SLOC at $100,000 per man
year) by the coding productivity (equiva-
lent new SLOC per day). Our simple labor
rate allows the readers to easily scale their

own labor costs.
We also do not attempt to quantify

considerations in the cost of code since it
is beyond the scope of this analysis and
well covered by other research [13].
Option 1 in Table 2 shows the results of a
typical support project, with the heroic
efforts invested in supporting old code. As
time goes by and the code ages, this
investment will only produce 0.25 percent
of changed code (50,000 lines) per year due
to the poor productivity factor. If all of
the investment goes into re-engineering
code (i.e. replacing an old module with a
brand new one), at the good productivity
rate of eight SLOC/day, the result would
be 2,000,000 source lines being modified
as shown in Option 2 of Table 2. Clearly
changing 10 percent of the program per
year provides a good return on the invest-
ment and stays far back from the 15-year
rathole age identified by [9].

The equation of interest:

New SLOC/Yr = [BA* % RE * (ERE / Clabor)] +

[BA* % M * (EM / Clabor)]

where

BA = Annual SW Maintenance Budget, in

$/year

% RE = Percentage Budget Spent on

Re-engineering,

ERE = Efficiency for Re-engineering, (units

as SLOC/$)

Clabor = Cost of Labor, Assumed Constant

%M = Percentage of Budget Spent on

Legacy Maintenance, and

EM = Efficiency for Maintenance Efforts

(Units as SLOC/$)

Note that the amount of code is depen-
dent on the cost per SLOC which is an
extremely complex factor. It can even
vary inversely to expectations, with
newer projects often costing less overall
but having a much greater cost per
source line of code due to having used
compact 4GL languages [12]. Our simple
metrics are therefore starting points
which allow the reader to make compar-
isons with their own project or metrics.

Figure 3 (see page 24) shows the
results of a sensitivity analysis where we
vary the percent of investment into re-
engineering and the productivity ratio.
The bar heights represent how much
total code is changed each year. A proven
numeric relationship for the productivity
factor as a function of code age would
have improved this model but was
unavailable.

The desired position to be on this
graph is the back corner where the team
productivity is high (i.e. low ratio) and
the percent of code being re-engineered
on a planned cycle is high (lots of new
functionality possible at lower costs).
The result would be newly re-engineered
modules that have a lot of the new capa-

November 2006 www.stsc.hill.af.mil 23

Commercial Application Systems Profile

(35 Systems, Total 20M SLOC, 1970s to 1990s) [6]

Mean Average Minimum Maximum

Errors per Month (After Deployment) 8.3 9.7 1 101

Support Costs/Year $693,000 $661,000 $83,000 $3,532,000

Application Size – in # of Modules 217 266 18

Application Size – Lines of Code

Authors Analysis (Added):

Rule of Thumb Development Cost $10,750,000 $9,250,000 $2,700,000 $35,100,000

30 Years of Support Would Then Cost $20,790,000 $19,830,000 $2,490,000 $105,960,000

Percentage Support Cost of Total Life

Cycle Cost 66% 68% 48%

Dev. Cost * (2/ Life) $716,667 $616,667 $180,000 $2,340,000

Ratio of Theoretical to Actual Support

Cost 103% 93% 217% 66%

Table 1: Recent Commercial Data Helps Validate That Post Deployment Life -Cycle Costs are Twice

Development Costs

ASSUMPTIONS / INPUT DATA

Labor Cost/MY $100,000

Productivity: New SLOC/MY 2,000 (8 SLOC/Day)

Development Cost $/SLOC 50 $/SLOC

SLOC Developed 20,000,000 New SLOC

Total Dev $ (SLOC * Cost/SLOC) $1,000,000,000 ($1B)

Support Factor (40:1 more expensive) 40

$2,000

Life 20

$100,000,000

OPTION 1: 100% Maintenance Approach

$100,000,000/

($2,000 /SLOC) =

50,000 SLOC

% SLOC Maintenance/Year = 50K/20M = 0.25%

(Clearly you did not get much for the $100M Budget)

OPTION 2: 100% Effort Is Re-Engineering Each Year

$100,000,000/

($50/SLOC) =

2,000,000 SLOC

% of Program Enhanced = 10%

Table 2: Sample Analysis with Post Deployment Support Options

For a Large Program

Variable

215,000 185,000 54,000 702,000

1,500

75%

Maint. Software Cost $/SLOC

Annual $/Year (10% of Development $)

Maintained SLOC/Year (Based

on Annual $/Software Support Cost)

Maintained SLOC/Year

(#SLOC) if 100% Dev. Type Work:

Years

#/SLOC

Table 2: Sample Analysis With Post-Deployment Support Options for a Large Program

Software Engineering Technology

24 CROSSTALK The Journal of Defense Software Engineering October 2006

bilities that the users want, albeit released
at a slow, cyclic pace. Users may be asking
to delete functions, add new ones (more
code) or just change how the old one
works (in theory not adding code).

The product manager or customer
liaison team would have to balance the
added functionality and deleted features
within the annual budget. It would seem
prudent however to assume some mar-
ginal loss in productivity in determining
the amount of code changed each year
and allow users to add new capabilities.
Hopefully customers and users of a soft-
ware program would be satisfied and live
with some problems as long as others are
getting fixed. Some of the reasons stated
for maintenance (e.g. security and reliability)
are pretty imperative, so it is unlikely that
the maintenance can be completely elimi-
nated. Earlier we discussed a target of 25
percent of the annual budget as being
necessary for this normal maintenance
activity.

The balance of a fully funded annual
support budget (that annual 10 cents per
initial development dollar) would be 75
percent of the support budget available
for new functionality via re-engineering.
Here we are considering percentages of
support dollars however, not percentages
of SLOC that comes from including pro-
ductivity. A 10-year replacement cycle
would have an average age of just over
five years. It avoids getting into the rathole
region at 15 years and appears achievable
with an allocated mix of 25 percent spent

on true maintenance and 75 percent for
enhancement via re-engineering.

Some recent research has indicated
that the bulk of the maintenance effort
gets concentrated on only 20 percent of
the program code [14]. The maintenance
efforts may indeed focus on a small sub-
set of code, but this does not mean that
80 percent of the code does not ever
need re-engineering. Re-engineering pro-
vides the users with new functionality and
modernizes the code. Thus, managers
need to examine systematic replacement
of the whole code base in order to keep
the average age low and avoid ratholes.

The challenge of improving efficiency
in software maintenance is considerable.
Our analysis assumed a linear worsening
of productivity with age, but in reality
productivity rates will need to be aggres-
sively managed to be successful. There
are several strategies that could be used to
do this, namely the following:
• Use modern tools. We have shown

numerically that cyclic replacement
and minimized average code age can
have positive effects. Most large, old
programs have both old and new
modules with ready candidates for
replacement, but even newly complet-
ed projects must start aggressively
replacing modules since a permanent
bias will creep into the average age for
each year of delay.

• Modular software design. This is
the basis of object-oriented design
principles, and benefits the code

maintainer by allowing easier replace-
ment of modules. The method called
software re-factoring advocates replac-
ing software on a modular basis as
developed by Ward Cunningham [15]
and Martin Fowler [16]. A modular
strategy may help maintenance by
providing defined interfaces and func-
tionality.

• Add more off-the-shelf code. This
leverage of existing code or products
can save support cost, but this can also
cause problems. Some vendors change
their product or stop supporting a ver-
sion, thus increasing maintenance
costs. Databases, publish/subscribe
services, and web servers and browsers
are all modern examples of products
that can modernize code.

• Staff rotation. Regular rotation of
staff between development and main-
tenance teams could minimize the dif-
ferences in skill sets, productivity, expe-
riences, and employee enthusiasm.
Engineers that have maintenance expe-
rience know first-hand why it is impor-
tant to develop code for maintenance.

• Modern languages. New software
languages that use fewer lines of code
to do the same function can help
lower support costs. Alan Albrecht at
IBM developed methods to use func-
tion points as a measure of software
functions to estimate program size
[17]. Current data shows that HTML
and Web-service methods take 25
percent less SLOC than C+ or Java
for similar function points (function-
ality) [18]. Another study [19] showed
that a representative program of 300
Web objects (function points, links,
multimedia files, scripts and Web
building blocks) took 38 percent
fewer person-months to develop
when HTML was used instead of
Java. This implies that added empha-
sis should be placed on replacing
older code with newer software struc-
tures and languages in order to cap-
ture the improved productivity rate.

Concluding Remarks
Software support is expensive, is
absolutely necessary, and will be neces-
sary for many years. In military programs,
the support costs are borne by the tax-
payers, and in commercial projects, sup-
port expense is subtracted from sales or
licensing revenue. Strategies for cyclic
recapitalization of the code to keep the
average age young and improve program-
ming productivity should minimize long-
term maintenance costs and allow the
support team to regularly add improve-

Development

20%

Maintenance

80%

Maintenance

49%

Other

8%

Validation

21%

Implementation

9%

Requirements/

Design

13%

Refinement

25%

Enhancement

50%

Maintenance

21%

Other

4%

Figure 1

Figure 2

A and B

Figure 3

New SLOC

Generated

Each Year

Productivity Ratio

(Maintenance/Development)

Sensitivity Analysis: New SLOC/Year

Given A $100M Annual Investment

and $20M SLOC Program

Desired

Practice

Percentage of

Money Spent on

Re-Engineering

Current

Practices

Maintenance

49%

Requirements/

Design

13%

Implementation

9%

Validation

21%

Other

8%

Refinement

25%

Other

4%

Maintenance

21%

Enhancement

50%

Development

20%

Maintenance

80%

Figure 3: The Amount of Code Changed as a Function of the Mix of Maintenance Investment and
Productivity Factors

November 2006 www.stsc.hill.af.mil 25

ments and functionality.u

References
1. Boehm, Barry W. Software Engineer-

ing Economics. Englewood Cliffs, NJ:
Prentice-Hall, 1981.

2. United States Air Force. Software
Technology Support Center. Guide-
lines for Successful Acquisition of
Software Intensive Systems: Weapon
Systems, Command and Control Sys-
tems, Management Information Sys-
tems (GSAM). Version 3.0 May 2000
<www.stsc.hill .af.mil/resources/
tech_docs/>.

3. Piersall, COL James. “The Importance
of Software Support to Army
Readiness.” Army Research, Develop-
ment, and Acquisition Bulletin. Jan.-
Feb. 1994.

4. Pressman, Roger S. Software Engi-
neering: A Practitioner’s Approach 3rd
ed. New York, NY: McGraw-Hill, 1992.

5. Glass, Robert L. Building Quality
Software. Englewood Cliffs, NJ:
Prentice Hall, 1992.

6. Banker, Rajiv, Srikant M. Datar, Chris
F. Kemerer, and Dani Zweig. Software
Errors and Software Maintenance
Management. The Netherlands: Klu-
wer Academic Publishers, 2002.

7. Lehman, M.M. “Programs, Life
Cycles, and Laws of Software Evolu-
tion.” Proc. of the IEEE 68.9 (Sept.
1980): 1060-1076.

8. Eisenbach, Susan. “Software Mainte-
nance, No Jokes, Lectures 2 and 3.”
<www.doc.ic.ac.uk/~sue/475/lec%
202%202%20&%203%20 -%20
maintenance.pdf>.

9. Lano, Kevin and Howard Haughton.
Reverse Engineering and Software
Maintenance. New York: McGraw
Hill, 1994.

10. Wade, Stu and Andy Laws. Legacy
System Management via the Triage
Model, Software Triage. Liverpool,
UK: John Moores University, 1998
<www.cms.livjm.ac.uk/research/docs
/CMS1898.DOC>.

11. Perry, William E. “Don’t Pour Money
Down Rat Holes that Infest Your
Budget.” Government Computing
News Dec. 1993.

12. Jones, Capers. Programming Produc-
tivity. New York: McGraw Hill, 1986.

13. Hinh, Jarus M. “The Impact of Faster,
Better, Cheaper.” Spacecraft Ground
Systems Architecture Workshop, 1999
<http://sunset.usc.edu/events/
GSAW/gsaw99/dpdf-presentations/
breakout-2/hihn-1.pdf>.

14. Boehm, Barry W. “The Economics of
Software Reliability.” International

Symposium on Software Reliability
Engineering, 19 Nov. 2003 <www.
cs.colostate.edu/~malaiya/issre/barry
boehm.pdf> .

15. Beck, Kent. eXtreme Programming
eXplained: Embrace Change. Reading,
MA: Addison Wesley Longman, 1999.

16. Fowler, Martin, et. al. Refactoring: Im-
proving the Design of Existing Code.
Addison-Wesley Professional, 1999.

17. Albrecht, Alan J. “Measuring Appli-
cation Development Productivity.”
Proc. of the Joint SHARE/GUIDE/
IBM Application Development Sym-
posium, Oct. 1979.

18. Quantitative Software Management,
Inc. “Function Point Programming
Languages Table.” Version 2.0 2002
<www.qsm.com/FPGearing. html>.

19. Reifer, Donald J. “Estimating Web
Development Costs: There Are
Differences.”CrossTalk June 2002
<www.stsc.hi l l .af.mil/crosstalk/
2002/06/reifer.html>.

About the Author

David Lechner current-
ly works as a consultant
for GeoLogics Corp.,
and recently founded
WeC2 Technologies, a
small business focusing

on Web-enabled C2 software. He has 20
years of experience in Department of
Defense systems development and ac-
quisition. Lechner’s civil service career
includes: Naval Air Systems Command
(Reconnaissance, Electronic Warfare,
Special Operations, Navy); Naval Elec-
tronic Systems Command (PMW143);
General Systems Administration (Fed-
eral Systems Integration and Manage-
ment Center); and Naval Sea Systems
Command (PMS425). His private indus-
try experience includes DRS Electronics
Systems and GeoLogics Corp. Lechner
has a bachelor of science in Electrical
Engineering from Carnegie Mellon
University, a M.E.Ad. from George
Washington University, and a master of
science in Computational Physics from
George Mason University.

GeoLogics Corp.
5285 Shawnee RD
STE 300
Alexandria,VA 22312
Phone: (240) 418-1544
Fax: (703) 750-4010

COMING EVENTS

November 30-December 8
QFD 2006

18th Symposium on QFD
Austin, TX

www.qfdi.org/symposium.htm

December 3-8
LISA ’06

20th Large Installation System
Administration Conference

Washington, D.C.
www.usenix.org/events/lisa06

December 4-7
ICSOC 2006

4th International Conference on Service
Oriented Computing

Chicago, IL
www.icsoc.org/

December 4-7
IITSEC 2006 Interservice/Industry
Training Simulation and Education

Conference
Orlando, FL

www.iitsec.org/index.cfm

December 5-7
XML 2006

Boston, MA
http://2006.xmlconference.org

December 11-15
ACSAC 2006 Annual Computer
Security Applications Conference

Miami, FL
www.acsac.org

December 14-15
11th Annual ITC East

2006 Conference
Harrisburg, PA

www.govresources.com/itceast
2006.html

June 18-21, 2007
2007 Systems and Software

Technology Conference

Tampa, FL
www.sstc-online.org

Software Recapitalization Economics

26 CROSSTALK The Journal of Defense Software Engineering November 2006

EVM was created within the U.S.
Department of Defense in the

1960s and has shown over the four
decades from that time to be a very valu-
able project management and control
system. EVM uniquely connects cost,
schedule, and requirements thereby
allowing for the creation of numerical
project performance indicators.
Managers now have the capability to
express the cost and technical perfor-
mance of their project in an integrated
and understandable way to employees,
superiors, and customers.

For all of the accomplishments of
EVM in expressing and analyzing cost
performance, it has not been as success-
ful for schedule performance. The EVM
schedule indicators are, contrary to
expectation, reported in units of cost
rather than time. And, because cost is the
unit of measure, the schedule indicators
require a period of familiarization before
EVM users and project stakeholders

become comfortable with them and their
use. Beyond this problem, there is the
much more serious issue: The EVM
schedule indicators fail for projects exe-
cuting beyond the planned completion
date.

Because these problems are well
known to EVM practitioners, over time
the application has evolved to become a
management method focused primarily
on cost. The schedule indicators are
available, but are not relied upon to the
same extent as the indicators for cost.
The resultant project management
impact from the EVM schedule indicator
issues is cost and schedule analyses of
project status and performance have
become disconnected. Cost analysts view
the EVM cost reports and indicators
while schedulers tediously update and
analyze the network schedule. Frequently
for large projects, these separate skills are
segregated and, often, their respective
analyses are not reconciled.

It has been a long expressed desire by
EVM practitioners to have the ability to
perform schedule analysis from EVM
data similarly to the manner for cost.
Various approaches to using earned
value (EV) for this analysis have been
proposed and studied from time to time.
However, none of the methods have
proven to be satisfactory for both early
and late finishing projects.

Before discussing the ES approach to
overcoming the described cost-schedule
dilemma, let us first review EVM.

EVM Measures and
Indicators
EVM has three measures: planned value
(PV), actual cost (AC), and EV. Refer to
Figure 1 as an aid to this discussion. The
planned values of the tasks comprising
the project are summed for the periodic
times (e.g., weekly or monthly) chosen to
status project performance. The time-
phased representation of the planned
value is the performance management
baseline (PMB). AC and EV are accrued
and are likewise associated with the
reporting periods. For each measure, the
time-phased graphs are characteristically
seen to be S-curves. Observe that PV
concludes at the Budget at Completion
(BAC), the planned cost for the project.
The BAC is the total amount of PV to be
earned.

From the three measures, project per-
formance indicators are formed. The
cost variance (CV) and cost performance
index (CPI) are created from the EV and
AC measures, as follows: CV = EV - AC
and CPI = EV/AC. In a similar manner,
the schedule indicators are: SV = EV -
PV, and SPI = EV/PV, where SV is the
schedule variance and SPI is the schedule
performance index.

Now examine the formulation of the
schedule indicators and recall that the PV

Earned Schedule: An Emerging Enhancement to
Earned Value Management

Kym Henderson
Education Director, Project Management Institute, Sydney Chapter

Earned Schedule (ES) is a method of extracting schedule information from Earned Value Management (EVM) data. The
method has been shown to provide reliable schedule indicators and predictors for both early and late finish projects. ES is con-
sidered a breakthrough technique to integrated performance management and EVM theory and practice. The method has
propagated rapidly and is known to be used as a management tool for software, construction, commercial, and defense projects
in several countries, including the United States, Australia, United Kingdom, Belgium, and Sweden. The principles of ES
have been included in the “Project Management Institute College of Performance Management, Practice Standard for EVM”
as an emerging practice [1].

Walt Lipke
Retired Deputy Chief Software Division, Oklahoma City Air Logistics Center

CPI=
EV

AC

SPI=
EV

PV

D
o

ll
a

rs

AC

EV

Time

PV
BAC

Figure 1: Earned Value

November 2006 www.stsc.hill.af.mil 27

Earned Schedule:An Emerging Enhancement to Earned Value Management

and EV curves conclude at the same
value, BAC. The fact that PV equals BAC
at the planned completion point and
does not change when a project runs late
causes the schedule indicators to falsely
portray actual performance. In fact, it is
commonly observed that the schedule
indicators begin this behavior when the
project is approximately 65 percent com-
plete.

The irregular behavior of the sched-
ule indicators causes problems for pro-
ject managers. At some point it becomes
obvious when the SV and SPI indicators
have lost their management value. But,
there is a preceding gray area, when the
manager cannot be sure of whether or
not he should believe the indicator and
subsequently react to it. From this time
of uncertainty until project completion,
the manager cannot rely on the schedule
indicators portion of EVM.

Earned Schedule Description
The technique to resolve the problem of
the EVM schedule indicators is ES. The
ES idea is simple: Identify the time at
which the amount of EV accrued should
have been earned [2]. By determining
this time, time-based indicators can be
formed to provide schedule variance and
performance efficiency management
information.

Figure 2 illustrates how the ES mea-
sure is obtained. Projecting the cumula-
tive EV onto the PV curve (i.e., the
PMB), as shown by the diagram, deter-
mines where PV equals the EV accrued.
This intersection point identifies the
time that amount of EV should have
been earned in accordance with the
schedule. The vertical line from the point
on the PMB to the time axis determines
the earned portion of the schedule. The
duration from the beginning of the pro-
ject to the intersection of the time axis is
the amount of ES.

With ES determined, it is now possi-
ble to compare where the project is time-
wise with where it should be in accor-
dance with the PMB. Actual time, denoted
AT, is the duration at which the EV
accrued is recorded. The time-based
indicators are easily constructed from the
two measures, ES and AT. SV becomes
SV(t) = ES - AT, and SPI is SPI(t) =
ES/AT.

The graphic and the box in the lower
right portion of Figure 2 portray how ES
is calculated. While ES could be deter-
mined graphically as described previous-
ly, the concept becomes much more use-
ful when facilitated as a calculation. As
observed from Figure 2, all of the PV

through May has been earned. However,
only a portion of June has been com-
pleted with respect to the baseline. Thus
the duration of the completed portion of
the planned schedule is in excess of five
months. The EV accrued appears at the
end of July, making actual time equal to
seven months. The method of calcula-
tion to determine the portion of June to
credit to ES is a linear interpolation. The
amount of EV extending past the cumu-
lative PV for May divided by the incre-
mental amount of PV planned for June
determines the fraction of the June
schedule that has been earned.

Evolution of Earned Schedule
The ES concept was conceived during
the summer of 2002 and was publicly
introduced in March 2003 with The
Measurable News article, Schedule Is
Different [2]. This was quickly followed a
few months later by the complementary
article, Earned Schedule: A Breakthrough
Extension to Earned Value Theory? A
Retrospective Analysis of Real Project Data
[3]. Using EVM data from several com-
pleted real projects, this second article
verified the ES measure and its derivative
indicators functioned as described in the
seminal article Schedule Is Different. From
that time, the behavior of the calculated
measure of ES and its indicators has
been verified many times by practitioners
using real data from various types of
projects.

Schedule Is Different alluded to the
potential of using ES to forecast when a
project would complete, but did not
develop the equations. The second arti-
cle [3] identified a schedule duration pre-
dictor analogous to the predictor for

final cost, BAC/CPI. This schedule pre-
dictor, PD/SPI(t), where PD is the
planned duration, was applied to real
data and demonstrated the potential of
the project duration and completion date
prediction using ES.

Following the second article was
Further Developments in Earned Schedule [4].
This article further expanded the ES
schedule prediction and algebraically com-
pared the ES methods with other pub-
lished techniques. Two ES predictive cal-
culation methods were identified as the
short form and long form. The short form is
as described previously, IEAC(t) = PD /
SPI(t), where IEAC(t) is termed the
Independent Estimate at Completion
(time). The long form, just as for the short
form, mimics an equation for forecasting
final cost: IEAC = AC + (BAC - EV) /
PF, where PF is a selected performance
factor [1]. The long form schedule dura-
tion equation is as follows: IEAC(t) = AT
+ (PD - ES)/ PF(t), where AT is the actu-
al duration, and PF(t) is a selected time
performance factor.

In the Further Developments in Earned
Schedule article, two common methods of
schedule prediction were used for com-
parison to the predictive performance of
ES [5]. The first method uses SPI from
EVM, and the second applies a perfor-
mance factor termed the critical ratio. The
critical ratio is equal to SPI multiplied by
CPI. The short form results were com-
pared against two scenarios, early finish
and late finish performance. Using data
from two real projects discussed in the
article, the results for the three forecast-
ing methods are tabulated in Table 1 (see
page 28) [4]. Only the ES forecast yield-
ed correct results for both early and late

SPI=
EV

PV

SPI(t)=
ES

AT

SV = EV-PV

SV(t) = ES-AT

PV

EV

ES=Jan thru May + Portion of June

EV-PV(May)
ES=5+

PV(June)-PV(May)

AT=7

D
o

ll
a
rs

Time

J F M A M J J A S O N

Figure 2: ES Concept

28 CROSSTALK The Journal of Defense Software Engineering November 2006

Software Engineering Technology

completion. Neither of the other two
methods provided correct results in
either scenario.

In the same article, the long form
equation was shown to provide correct
end point results, regardless of the PF(t)
used [4]. Thus, the long form equation
possesses the identical characteristic of
its companion equation for forecasting
final cost. This characteristic of calculat-
ing and obtaining the correct result at
project completion is required for the
exploration and research of potential
schedule based performance factors.

As the application of ES grew, it was
recognized that there needed to be a
common set of terminology. The inter-
ested parties involved agreed to a com-
mon theme: The terms should be paral-
lel to, but readily distinguishable from
those of EVM. It was thought that these
characteristics would encourage the
application of ES by minimizing the
learning curve required. As seen from
Table 2, ES Terminology, the chosen
terms are comparable to those from
EVM. In most instances, the ES term is
simply the analogous EVM term
appended by the suffix (t).

After the ES method was published
in March 2003, it rapidly became viewed
as a viable extension to EVM practice.
By fall of 2003, the Project Management
Institute - College of Performance
Management (PMI-CPM) had become
interested in the new practice. Within the
next year an emerging practice insert citing
the principles of ES was included in the
2004 release of the PMI-CPM Practice
Standard for EVM [1].

With increasing use and interest in

ES came the question, does ES provide the
long sought bridge between EVM and the net-
work schedule? Mainstream EVM thought
is that other than the creation of the
PMB, there can never be a strong con-
nection between these two management
components. The reasoning is EVM pro-
vides a macro-type assessment of per-
formance but cannot yield the detail
required to assess the true schedule per-
formance.

Two articles, one published June 2005
and the other spring 2005, addressed the
question of how ES contributes to mak-
ing the direct connection between the
schedule and the EVM data. The June
2005 article is appropriately titled
Connecting Earned Value to the Schedule,
while the spring 2005 article is Earned
Schedule in Action [6, 7]. The Connecting
Earned Value article describes how ES
facilitates the bridge. The value of ES
coincides with a PV point on the PMB.
In turn, the PV is directly connected to
specific tasks or work packages either
completed or in work. Having this iden-
tification allows determination of how
well the schedule is being followed.
Differences in plan versus the actual dis-
tribution of EV provide insight as to
which tasks may have impediments con-
straining progress and which have the
possibility of future rework. The article
introduces a measure of schedule adher-
ence, directly connecting EVM to the
network schedule, termed the P-Factor
[6]. This new measure has lead to a theo-
ry which may prove to yield earlier and
better prediction for both cost and
schedule.

A considerable amount of interest

has been shown for Earned Schedule in
Action. The article compares the results
from applying ES and Critical Path (CP)
duration prediction methods to a small
scale yet time-critical IT project. What
was observed during project execution is
the duration predicted from ES con-
verged to the actual, final value from the
pessimistic side, while the forecast from
CP analysis converged optimistically.
Because the ES predictive method takes
into account past schedule performance
while the CP method may not, it has
been conjectured that, in general, ES
yields a more consistently reliable sched-
ule forecast. Further research is needed
to confirm this hypothesis.

One advantage of ES became obvi-
ous in the CP study. Prediction obtained
from ES calculations is considerably less
effort than the CP approach, which
requires very detailed task-level bottom-
up analysis of the network schedule.

As a final point, the two articles dis-
cussed here provide rationale for the
position that ES bridges the two disci-
plines of EVM and network schedule
analysis. Even so, just as for cost, neither
EVM nor ES can completely supplant
bottom-up estimation techniques. For
both, their respective predictive calcula-
tions are useful as macro methods for
rapidly generating estimates and as a
cross check of the corresponding bot-
tom-up analysis.

Applications
Early in the existence of ES, some con-
strued that the methods are limited in
application. They believed that ES could
only be used successfully for small infor-
mation technology (IT) type projects.
This perception occurred because soft-
ware and IT projects were the environ-
ments in which the concept was created
and first applied. The presumption is
demonstrably false. ES is scalable up or
down, just as is EVM. As well, ES is
applicable to all types of projects, as is
EVM. It follows that the scalability and
applicability characteristics must exist;
after all, ES is derived from EVM.

ES is known to be used in several
organizations and countries for a variety
of project types. Small IT and construc-
tion projects as well as large defense and
commercial endeavors have employed
and continue to include ES as part of
their management toolset. The users
have reported an increased ability to
forecast future outcomes and the capa-
bility to identify late occurring problems
that are masked when viewing EVM data
alone. Significant applications in the

Planned Duration

Actual Duration

CPI

SPI

SPI(t)

PD/SPI(t)

PD/SPI

PD/(CPI * SPI)

Early Finish

Weeks

25

22

2.08

1.17

1.14

21.4

10.3

Late Finish

Weeks

20

34

0.52

1.00

0.59

20.0

38.7

22.0 34.0

Table 1: IEAC(t) Comparison

November 2006 www.stsc.hill.af.mil 29

Earned Schedule:An Emerging Enhancement to Earned Value Management

United States are at Lockheed Martin,
Boeing Dreamliner, and the Air Force
(use in acquisition oversight). The
United Kingdom Ministry of Defence
has identified two major programs apply-
ing ES: Nimrod (maritime patrol aircraft)
and Type 45 (Naval destroyer). Several
smaller applications, mostly IT-related
projects, have occurred in Belgium by
Fabricom Airport Systems, as well as in
the United States and Australia.

Research
Small-scale research has occurred
throughout the evolution of ES. Each
idea and next step has been applied and
examined against real project data.
However, due to data limitations, the
testing and conclusions are not consid-
ered sufficiently complete. Although lack
of testing is a drawback, the risk associ-
ated with ES usage is minimal. One com-
pelling point supporting ES is that,
regardless of the circumstances of the
application (who, project type, company,
country), the findings from all sources
are consistent. The ES method, in every
application, outperforms other EVM-
based methods for representing schedule
performance.

A research team at the University of
Ghent, Belgium has recently published
findings comparing ES to other project
duration methods based on EVM mea-
sures [8]. Their conclusions coincide
with the statement above; ES is the bet-
ter performer. This research team has
aspirations to perform rigorous testing
of ES and the other prediction methods,
using simulation techniques. They have
also indicated interest in exploring the
implications of the P-Factor (the mea-
sure of schedule adherence) discussed
earlier.

What’s Next?
The expectation is the application of ES
will continue to expand and propagate,
coincident with the worldwide expansion
of EVM. As ES is used more and more,
it is reasonable to believe there will be
increasing demand for its inclusion in
EVM tools. Our conjecture is that the
availability of tools employing ES is
forthcoming in the near future. Along
with increased application and tool avail-
ability, ES training will be requested as
part of the provided EVM course. And
most certainly as the use of ES expands,
more information will be published,
which will improve and mature the
method and add to a rapidly expanding
ES Body of Knowledge. Ultimately, we fore-
see that ES will become generally accept-

ed and subsequently included within
Earned Value Management standards
and guidance. Finally, it is our belief that
ES will lead to improved prediction tech-
niques for both cost and schedule.

Available Resources
There is a considerable amount of acces-
sible ES information to aid current and
potential users. Published papers, confer-
ence presentations, and workshop mate-
rials are available from two Web sites:
<www.earnedschedule.com> and <http://
sydney.pmichapters-australia.org.au/>
(Education, then Papers and Presen-
tations). Both sites offer downloading of
the information free of charge.
Additionally, calculators facilitating the
application of ES are available from
<www.earnedschedule.com>.

Summary
ES was created as a non-complex solu-
tion to resolve the problem of the EVM
schedule indicators failing for late-finish-
ing projects. The ES method requires
only the data available from EVM and has
been shown to provide better prediction
than other EVM-based methods.
Duration forecasting using ES is easier to
do than detailed, bottoms-up estimation,
and possibly yields better results, as well.
ES is scalable up or down, and it is applic-
able to any project using EVM. ES facili-
tates identification of tasks with possible
impediments, constraints, or future
rework and has the potential to improve
both cost and schedule prediction.

ES is a powerful new dimension to

integrated project performance manage-
ment and practice. It has truly become a
breakthrough in theory and appli-
cation.u

References
1. Project Management Institute. Practice

Standard for EVM. PMI, 2004.
2. Lipke, Walt. “Schedule Is Different.”

The Measurable News Mar. 2003: 10-
15.

3. Henderson, Kym. “Earned Schedule:
A Breakthrough Extension to Earned
Value Theory? A Retrospective Anal-
ysis of Real Project Data.” The
Measurable News Summer 2003: 13-
23.

4. Henderson, Kym. “Further Devel-
opments in Earned Schedule.” The
Measurable News Spring 2004: 15-22.

5. Anbari, Frank T. “Earned Value
Project Management Method and
Extensions.” Project Management
Journal 34.4 (Dec. 2003): 12-23.

6. Lipke, Walt. “Connecting Earned
Value to the Schedule.” Cross-
Talk June 2005 <www.stsc.hill.af.
mil/crosstalk/2005/06/0506Lipke.
html>.

7. Henderson, Kym. “Earned Schedule
in Action.” The Measurable News
Spring 2005: 23-30.

8. Vanhoucke, Mario, and Stephan
Vandevoorde. “A Comparison of
Different Project Duration Forecast-
ing Methods Using Earned Value
Metrics.” International Journal of
Project Management 24.4 (May
2006): 289-302.

EVM Earned Schedule

Status

Future

Work

Prediction

Earned Value (EV)

Actual Costs (AC)

SV

SPI

Budgeted Cost for Work

Remaining (BCWR)

Estimate to Complete

(ETC)

Variance at Completion

(VAC)

Estimate at Completion

(EAC) (supplier)

Independent EAC

(EAC) (customer)

To Complete Performance

Index (TCPI)

Earned Schedule (ES)

Actual Time(AT)

SV(t)

SPI(t)

Planned Duration for Work

Remaining (PDWR)

Estimate to Complete (time)

ETC(t)

Variance at Completion (time)

VAC(t)

Estimate at Completion (time)

EAC(t) (supplier)

Independent EAC (time)

IEAC(t) (customer)

To Complete Schedule

Performance Index (TSPI)

Table 2: ES Terminology

Software Engineering Technology

30 CROSSTALK The Journal of Defense Software Engineering November 2006

WEB SITES

Jim Collins
www.jimcollins.com/lib/articles.html#
We must reject the idea that the primary
path to greatness in the social sectors is
to become more like a business. Most
businesses fall somewhere between
mediocre and good. Few are great. When
you compare great companies with good
ones, many widely practiced business
norms turn out to correlate with medi-
ocrity, not greatness. So, then, why
would we want to import the practices of
mediocrity into the social sectors?

Agile Alliance
www.agilealliance.org
The Agile Alliance (AA) is a non-profit
organization that supports individuals

and organizations who use Agile ap-
proaches to develop software. Driven by
the simple priorities articulated in the
Manifesto for Agile Software Develop-
ment, Agile development approaches
deliver value to organizations and end
users faster and with higher quality. The
AA exists to help more Agile projects
succeed and to help the enthusiasts start
more Agile projects. The AA is uncover-
ing better ways of developing software
by doing it and helping others do it, and
have come to value individuals and in-
teractions over processes and tools,
working software over comprehensive
documentation, customer collaboration
over contract negotiation, and respond-
ing to change over following a plan.

Get Your Free Subscription

Fill out and send us this form.

517 SMXS/MXDEA

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:
JULY2005 c CONFIG. MGT. ANDTEST

AUG2005 c SYS: FIELDG. CAPABILITIES

SEPT2005 c TOP 5 PROJECTS

OCT2005 c SOFTWARE SECURITY

NOV2005 c DESIGN

DEC2005 c TOTAL CREATION OF SW
JAN2006 c COMMUNICATION

FEB2006 c NEWTWISTONTECHNOLOGY

MAR2006 c PSP/TSP
APR2006 c CMMI
MAY2006 c TRANSFORMING

JUNE2006 c WHY PROJECTS FAIL

JULY2006 c NET-CENTRICITY

AUG2006 c ADA 2005
SEPT2006 c SOFTWAREASSURANCE

OCT2006 c STARWARS TO STAR TREK

To Request Back Issues on Topics Not
Listed Above, Please Contact <stsc.
customerservice@hill.af.mil>.

About the Authors

Kym Henderson is cur-
rently the education di-
rector of the PMI’s Syd-
ney Australia Chapter.
His IT career has cov-
ered project and program

management, software quality assurance
management, and project planning and
control. Henderson has worked for a
number of companies in many industry
sectors including commercial, defense,
government, manufacturing, and tele-
communications and financial services.
He has extensive experience in project
recovery, where the use of simplified
EVM techniques to assist in rapidly eval-
uating current project status has proven
invaluable. Henderson has received sev-
eral awards, including a Reserve Force
Decoration for 15 years’ efficient service
as a commissioned officer in the
Australian Army Reserve. He has a mas-
ter of science in computing from the
University of Technology, Sydney.

P.O. Box 687
Randwick NSW, 2031
Sydney, Australia
Phone: +61 414 428 537
Fax: +61 283 949 295
E-mail: kym.henderson

@froggy.com.au

Walt Lipke recently
retired as the deputy
chief of the Software Di-
vision at the Oklahoma
City Air Logistics Center.
He has more than 35

years of experience in the development,
maintenance, and management of soft-
ware for automated testing of avionics.
During his tenure, the division achieved
several software process improvement
milestones, including first Air Force ac-
tivity to achieve Level 2 of the Software
Engineering Institute’s Capability Ma-
turity Model (CMM) in 1993; the first
software activity in federal service to
achieve CMM Level 4 distinction in
1996; division achieved ISO 9001/
TickIT registration in 1998; and the divi-
sion received the SEI/IEEE Award for
Software Process Achievement in 1999.
He is the creator of Earned Schedule©,
which extracts schedule information
from earned value data. Lipke is a grad-
uate of the U.S. Department of Defense
course for Program Managers. He is a
professional engineer with a master’s
degree in physics.

1601 Pembroke DR
Norman, OK 73072
Phone: (405) 364-1594
E-mail: waltlipke@cox.net

© 2003 by Walt Lipke. All Rights Reserved.

BACKTALK

November 2006 www.stsc.hill.af.mil 31

This month CrossTalk echoes the clarion call back to
basics. Been there, done that? Not so fast; while the bleed-

ing edge of technology can be exciting, every engineer under-
stands the importance of a good technical foundation.

Confucius reminds us: “Study the past if you would define
the future.” 1

In our case (engineers), study the essential ingredients, princi-
ples, and procedures learned in our formative years that form the
heart of our profession. A technical déjà vu or déjà review.

This summer, I experienced an academic déjà vu. My son
decided to start his college career early by enrolling in a chemistry
class at the BCS2-busting University of Utah. Chemistry in the
summer? I give him credit – the summer of my high school
senior year social bonds trumped covalent bonds.

Nevertheless, I accompanied him to his first class. His moth-
er instructed him to sit in the front of the class. I corrected him
by offering him the advantages of a good seat in the back of the
lecture hall: 1) a quick exit to the next class; 2) easy to step out
for a snack, and 3) a good buffer from the explosions, recalling
most chemistry professors are closet pyromaniacs.

We settled into our seats. Why are college seats smaller these
days? In typical academic fashion, the professor started in the
middle of a lecture with no set-up, explanation, or introduction.
Bam! He is rambling on about Sig Figs. Although the term was
familiar, to be honest, I was not sure if he was promoting tobac-
co products, a local fraternity, or soft chewy cookies rumored to
be named after Sir Isaac Newton.

Gaining my bearings, I ascertained the lecture to be a primer
on Significant Figures (Sig Figs), a basic concept used in chem-
istry, physics, engineering, and disciplines that rely on measure-
ments. It was a nice refresher. The following are sample ques-
tions used in the lecture. They are simple and you are a profes-
sional, so have a go at them.

Identify the number of significant figures:

a) 0.00072
b) 2.07200
c) 500
d) 210.0

Answer according to the rules of significant figures:

e) 4.7832 + 1.234 + 2.02
f) 1.0236 – 0.97268
g) 2.8723 x 1.6
h) 45.2 ÷ 6.3578

Write down your answers. Before checking your answers, review
the following Sig Fig rules:

• Non-zero digits are always significant.
• Leading zeros are never significant.
• Zeroes between two significant digits are significant.
• Trailing zeros are significant only if the decimal point is specified.
• For addition and subtraction, the last digit retained is set by the first

doubtful digit.
• For multiplication and division, the answer contains no more signif-

icant figures than the least accurately known number.
Review the questions and your answers and make any correc-

tions based on the Sig Fig rules. Now check your answers against

the answers below3.
How did you fare initially? How did you fare after a quick

review of the rules? Did your answers improve or was there lit-
tle to improve upon? For those still confused a few examples of
applying each rule would bring you onboard. That is the power
of technical déjà review.

The Sig Fig rules provide a veiled insight on revitalizing and
reinforcing your technical foundation.

Engineering is an amalgamation of several disciplines –
mathematics, physics, chemistry, and electronics to name a few.
Like non-zero digits, foundational disciplines are always signifi-
cant in an engineer’s performance.

Constantly exposed to unproven theories, products and solu-
tions, engineers should dismiss unfounded approaches like a sci-
entist disregards leading and trailing zeros. Stick with proven, ver-
ified, and documented technologies. There is a reason it is called
the bleeding edge.

Just as zeroes between significant digits are significant, an
engineer’s true value lies in understanding the interrelationships,
limitations, and synergy between various system technologies and
the foundational disciplines they are based upon.

Engineers have strengths and weaknesses. Strong skills lead to
specialization while pride downplays weaknesses. In the vein of
the Sig Fig rule for addition and subtraction, an engineer is only
as effective as his most doubtful skill, and akin to the Sig Fig rule
for multiplication and division, an engineering team contains no
more effectiveness than the least accurate member. Hence, sur-
round yourself with colleagues who complement your strengths
and offset your weaknesses.

Do not let your engineering/management skills rust. Map
out your own déjà review, revitalize your technical skills and lay a
sound foundation for your career.

— Gary A. Petersen
Shim Enterprises, Inc.

gary.petersen@shiminc.com

Notes
1. Confucius, a Chinese philosopher and reformer (551-479

B.C.).
2. Bowl Championship Series, a system that selects the college

football matchups for five prestigious bowl games.
3. Answers: a) two; b) six; c) one; d) four; e) 8.04; f) 0.0509;

g) 4.6; h) 7.11.

Déjà Review

Can You BackTalk?

Here is your chance to make your point, even if it is a bit
tongue-in-cheek, without your boss censoring your writing. In
addition to accepting articles that relate to software engineer-
ing for publication in CrossTalk, we also accept articles for
the BackTalk column. BackTalk articles should provide a
concise, clever, humorous, and insightful perspective on the
software engineering profession or industry or a portion of it.
Your BackTalk article should be entertaining and clever or
original in concept, design, or delivery. The length should not
exceed 750 words.

For a complete author’s packet detailing how to submit
your BackTalk article, visit our Web site at
<www.stsc.hill.af.mil>.

CrossTalk / 517 SMXS/MXDEA
6022 Fir AVE

BLDG 1238

Hill AFB, UT 84056-5820

PRSRT STD

U.S. POSTAGE PAID

Albuquerque, NM

Permit 737

CrossTalk is

co-sponsored by the

following organizations:

	Front Cover
	Table of Contents
	From the Sponsor
	From the Publisher
	Management Basics
	Are Management Basics Affected
When Using Agile Methods?
	Becoming a Great Manager: Five Pragmatic Practices
	Implementing Phase Containment
Effectiveness Metrics at Motorola
	Exposing Software Field Failures

	Software Engineering Technology
	Software Recapitalization Economics
	Earned Schedule: An Emerging Enhancement to
Earned Value Management

	Online Articles

	Integrated Quality Assurance for
Evolutionary, Multi-Platform Software
Development
	Uncommon Techniques for Growing
EffectiveTechnical Managers

	Coming Events

	Web Sites

	BackTalk

	Back Cover

