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AFIT/GE/ENG/08-03 
Abstract 

 

This thesis presents a novel rotary-wing micro-electro-mechanical systems 

(MEMS) robot design.  Two MEMS wing designs were designed, fabricated and tested 

including one that possesses features conducive to insect level aerodynamics.  Two 

methods for fabricating an angled wing were also attempted with photoresist and 

CrystalBondTM to create an angle of attack.  One particular design consisted of the wing 

designs mounted on a gear which are driven by MEMS actuators.  MEMS comb drive 

actuators were analyzed, simulated and tested as a feasible drive system.  The comb drive 

resonators were also designed orthogonally which successfully rotated a gear without 

wings.  With wings attached to the gear, orthogonal MEMS thermal actuators 

demonstrated wing rotation with limited success.  Multi-disciplinary theoretical 

expressions were formulated to account for necessary mechanical force, allowable mass 

for lift, and electrical power requirements.  The robot design did not achieve flight, but 

the small pieces presented in this research with minor modifications are promising for a 

potential complete robot design under 1 cm2
 wingspan.  The complete robot design would 

work best in a symmetrical quad-rotor configuration for simpler maneuverability and 

control.  The military’s method to gather surveillance, reconnaissance and intelligence 

could be transformed given a MEMS rotary-wing robot’s diminutive size and multi-role 

capabilities. 
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CONCEPTUAL STUDY OF ROTARY-WING MICROROBOTICS 
 
 
 

I. Introduction 

 

 Flying micro-robots offer unimaginable military capabilities and a multitude of 

engineering challenges.  Also referred to as a micro-aerial vehicle (MAV), a flying 

micro-robot could provide our military with advanced methods of surveillance, 

reconnaissance and nuclear/biological/chemical detection.  The most intriguing feature of 

a MAV is its diminutive size.  Using a flying robot under 1 cm2, the aforementioned 

applications would be hardly detectable.  Further, the MAV could perform tasks in areas 

unthinkable to humans, such as a terrorist safe-haven, at negligible risk. 

 Of course, such implausible characteristics face great engineering challenges.  

The optimal MAV should operate both indoors and outdoors or during the day and night 

raising concerns about power and range limitations.  The MAV could exploit a 

helicopter, airplane or insect design.  Also, the flight control system of a MAV on the 

sub-centimeter scale is a daunting task in itself.   

Such a small MAV is only practical using MEMS technology—capable of 

micrometer dimension geometry.  MEMS and nano-electro-mechanical systems (NEMS) 

technology realize extraordinary devices daily.  Complementary metal oxide 

semiconductor (CMOS) technology currently uses minimum features of 45 nm, and 

MEMS devices exist at less than the width of a human hair (~100 µm).  Table 1 compares 

the size of MEMS and CMOS technology to other common objects. 
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Table 1:  Approximate size of common objects relative to MEMS. 

Length (m) Object 
102 Football field 
101 3-story building 
100 Height of child 
10-1 Computer mouse 
10-2 House fly 
10-3 Flea 
10-4 Width of human hair 
10-5 Limit of eyesight 
10-6 Bacteria, MEMS 
10-7 NEMS/CMOS fabrication
10-8 Viruses, Nanotechnology 
10-9 DNA 

10-10 Hydrogen atom 
 

Unfortunately, a MAV under 1 cm2 has not been successfully fabricated to sustain 

flight, let alone operate in realistic environments of unsteady state conditions (i.e.: 

temperature, air flow, moisture).  Fortunately, significant research and empirical results 

exist as pieces to consider for an overall MEMS flying robot design. 

1.1 Background 

The goal of developing a MEMS flying robot at AFIT is in the third phase of 

research.  Daniel Denninghoff was the first to investigate the topic at AFIT under funding 

support from AFRL/MNAV in 2005.  The second phase of research was conducted by 

Nathan Glauvitz at AFIT in 2006.  For each phase (including this thesis research), proof-

of-concept MEMS devices were fabricated to support the research.  Denninghoff 

successfully fabricated and demonstrated flapping motion on the MEMS scale, and 

Glauvitz fabricated rotary blade MEMS robots.  However, none have achieved flight.  
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1.2 Research Objectives 

The research arena of developing a MEMS flying robot is open-ended and limited 

only in creativity.  The objectives of this research include the following: 

• Progress aerodynamic theory of micro-sized aerial vehicles.  
 
• Define the theoretical limits and requirements of a MEMS flying robot. 
 
• Design and fabricate a wing design based on modern research and 

experiments. 
 
• Design, fabricate and demonstrate flight concepts at the MEMS scale using 

MEMS fabrication techniques on external power source. 
 

1.3 Research Focus 

The focus of this research is to develop a rotary-wing flying robot—similar to a 

helicopter.  The idea was originated by Miki, et al and further developed by Glauvitz 

whose research identified suitable MEMS actuators while ruling out unfeasible ones.  

This thesis improves upon MEMS fabrication lessons learned from his research while 

introducing additional design considerations.      

1.4 Methodology 

Analytical expressions will be developed using collective research of MEMS 

actuators and miniature flight aerodynamics.  The analytical results will be compared to 

modeled data using a MEMS Finite Element Analysis (FEA) software package.  To 

validate the analytical and modeled data, MEMS devices will be designed using 2-

dimensional computer aided design (CAD) software and fabricated using standard 
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MEMS techniques.  The MEMS chips will be electrically characterized to verify the 

theoretical and modeled data and demonstrate the actuation scheme. 

1.5 Assumptions/Limitations 

The MEMS fabrication process used at AFIT is limited to strict design rules and 

inevitable design features.  Also, the MEMS fabrication process typically is a couple 

months; therefore, due to the 18-month graduate program only three fabrication attempts 

were feasible for this research.  The empirical results were extracted using external 

power; although, the ultimate goal is to demonstrate wireless power scavenging 

capability. 

1.6 Organization of Thesis 

The remainder of this thesis is organized chronologically and by level of technical 

detail.  This document begins with an overview of relevant research towards a MEMS 

flying robot.  Chapter 3 subsequently delves into theory required to design a MEMS 

flying robot.  Chapter 4 discusses the MEMS designs and fabrication.  Chapter 5 presents 

the analytical and modeled data, and Chapter 6 assesses the empirical results.  The last 

chapter summarizes the results and comments on the successes and lessons learned. 
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II. Literature Review 

2.1 Chapter Overview 

The purpose of this chapter is to discuss past and present research related to 

fabricating a flying MEMS robot.  Very few attempts exist of a solely MEMS fabricated 

flying robot; therefore, the following research areas are reviewed:  autonomous land-

based MEMS robots, miniature flying vehicles, miniature flying robots with integrated 

MEMS technology, and attempts of a MEMS flying robot.  The last section presents the 

latest technology in micro-power devices capable of supplying untethered power. 

2.2 A Brief History of Robots 

The thought of developing a flying MEMS robot spawned from the continuous 

research of ground based mobile robots.  The field of general robotics has evolved over 

several years, without reference to the actual word, “robot”, until the early 20th century 

[1].  The concept of a robot originated from the human desire to do away with hard and 

dangerous work and have such jobs done by mechanical means [2].  Not all robots fell 

into this category, but it happened to describe the birth of American robotics.  Although 

debatable, the first robots were industrial remote micromanipulators for the Atomic 

Energy Commission in the early 1950s.  During this time, the well-known Nobel Prize 

recipient, Richard Feynman, delivered a historic speech which paved a road for 

miniaturization of electronics [3].   

The 1960s and 1970s saw a spike in robotics manufacturing.  Research began in 

the 1960s through the Defense Advanced Research Projects Agency (DARPA) funding 

of Artificial Intelligence labs at MIT, Stanford University, and Stanford Research 
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Institute.  Shortly following, robotics became a profitable business after the development 

of spot-welding and spray painting robots for the automotive industry [4]. 

 Robotics research stalled in the mid-late 1980s.  The reason was contributed to the 

slow development of sensors and software which were pivotal to robotics [4].  Sensors 

were required to detect movement, touch, and error.  Further, software programming was 

necessary for onboard robots to make sense of the sensor-detected information.   

 Fortunately, researchers were making progress in the 1980s with micro-systems 

technology (MST).  According to Middelhock, much credit was given to Simon 

Hiddeloek for cultivating the area of MST with extensive research in silicon sensors [5].  

The year 1987 was a landmark as the first IEEE Micro Robots and Teleoperators 

Workshop was held.  The results of the workshop led to the famed report, The Workshop 

on Micro-electro-mechanical Systems (MEMS) Research [6].  Thereafter, the workshops 

met regularly as IEEE/ASME MEMS workshops.   

 The late 1980s and 1990s saw a significant increase in MEMS research.  In 1987, 

T. Fukuda, et al proposed micro-assembly tweezers, one of the first significant MEMS 

robots, to further micro-assembly technology [7].  By the 1990s, the development of 

micro-robots utilizing the photolithography process was possible.  Simple MEMS 

building blocks such as the comb drive, cantilever beam, bimorph beam, electrostatic 

motor, and thermal actuator were demonstrated.  The first three-dimensional (3-D) 

MEMS insect-based robot was proposed in 1992 by K. Suzuki, et al [8] which fueled 

future biomimetic research.  In 1994, T. Fukuda, et al appeared, again, with experimental 

results for a novel swimming robot [9].  Eventually, flying MEMS research debuted in 
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the early 1990s, and the first attempt of a flying MEMS robot was achieved in 1994 by 

Isao Shimoyama, et al [10, 11].  A summary of significant MEMS robot research is 

summarized below in Table 2. 

 
Table 2:  Timeline of significant MEMS robot research [7-12]. 

Year Research Topic 
1987 Master/Slave Tweezers 
1989 1 cm3 inch robot 
1991 Magnetostrictive mover in pipe
1992 Insect-based robot 
1993 Ciliary-motion conveyor 
1994 Pipe inspection robot 
1994 Swimming robot 
1994 Flying robot 

 

 In 1993, the first feasibility study on MAVs was fulfilled by the RAND 

Corporation [13].  The study suggested that the development of insect-size flying 

vehicles could give the U.S. military services a significant advantage.  In the following 

two years, a more detailed study was completed at Lincoln Laboratory, resulting in the 

DARPA MAV research workshop in 1995 [14].  In the fall of 1996, DARPA funded 

formal MAV research programs under the Small Business Innovation Research (SBIR) 

program [15]. 

 So far, the term microrobotics has been used loosely.  Technically, a microrobot is 

defined as a robot with its largest dimension (length, width, or depth) less than one 

millimeter.  However, generally it has been acceptable to refer to a robot as “micro-” if it 

possesses a feature in the micrometer range.  More appropriately, the remainder of this 

thesis will refer to robots greater than one millimeter as a miniature robot. 
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2.3 Untethered Land-Based MEMS Robots 

 The literature search presented in this section concentrates on untethered land-

based miniature MEMS robots.  As shown in Table 2, flying robotics is a modern 

research area.  Flying MEMS robots were designed using concepts adapted from 

untethered land-based MEMS robots such as wireless power and actuation methodology.  

Therefore, MEMS robotics research is discussed briefly in this section before delving 

into existing flying robots. 

 Most land-based MEMS robots mimic the movement of crawling insects.  In 

2003, Hollar, et al fabricated a crawling robot made of polysilicon and powered from 

solar cells.  Hollar’s robot was capable of crawling 3 mm using electrostatic-controlled 

legs and is shown in Figure 1a [16, 17].  A crawling wireless MEMS robot was devised 

by Dartmouth engineers in 2006 pictured in Figure 1b.  The robot was powered with an 

underlying electric grid, and the robot crawled and steered using capacitive scratch drive 

actuation and a cantilever beam, respectively [18].  In 2007, Dalhousie University 

developed a novel microcrawler which uses frictional force to its advantage.  The 

microcrawler employs thermal actuators to travel down power rails [19].  A schematic of 

the Dalhousie University robot is shown in Figure 1c.  A summary of these representative 

MEMS robots is shown in Table 3.  For further examples, refer to Power Scavenging 

MEMS Robots [20] and Ebefor’s survey of conveyor micro-robotics [21]. 
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Figure 1:  (a) Hollar’s crawling silicon solar-powered robot, (b) Dartmouth’s crawling 
and steerable polysilicon robot and (c) schematic of Dalhousie University frictional 
microcrawler.  

 
 

Table 3:  Summary of representative land-based untethered MEMS robots [16-19]. 

Robot Hollar Robot Dartmouth 
Crawler 

Dalhousie 
Crawler 

Year 2003 2006 2007 
Largest dimension 8.5 mm 250 μm 1.4 mm 
Power Source solar electric grid power rail 
Actuator electrostatic scratch drive thermal  
Speed 12.5 μm/sec 200 μm/sec 700 μm/sec 

Other features shuffles sideways crawls and steers friction-based; 
reversible 
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2.4 Miniature Flying Robots 

 Undoubtedly, most flying robots are not small enough to require MEMS 

processing; therefore, they are presented in this section as miniature flying robots.  The 

timeframe of the following background information dates from the start of DARPA’s 

initiative to develop a micro (technically, miniature) aerial vehicle (MAV) with less than 

a 15 cm wingspan.  Several macro-size fixed-wing MAVs exist as a result of DARPA’s 

project.  The focus is towards the MEMS scale, but representative miniature robot MAVs 

are briefly presented here.  MAV robots are classified into three groups—flapping, rotary 

and fixed wing. 

 The first-ever autonomous MAV flight was achieved by MicroStar at Lockheed 

Martin.  MicroStar has a wingspan of approximately 22.8 cm and weighs 110 grams.  The 

MAV is powered using lithium ion batteries which provide 25 minutes of endurance at a 

top speed of 25 mph [22, 23].  MicroStar provides real-time imagery from 50-300 ft 

altitude via datalinks to ground computers [24].  MicroStar is shown in Figure 2a 

including the underwing electronics platform in Figure 2b.    

 

 
           (a)          (b) 

Figure 2:  (a) Lockheed Martin MicroStar with 22 cm wingspan, 110 grams mass and 25 
minute continuous runtime.  (b) MicroStar’s underwing electronics platform is shown on 
the right. [24]. 
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 In 2001, AeroVironment Inc. created Black Widow, a fully autonomous fixed-

wing MAV.  Black Widow holds the MAV record (< 100 grams) for longest endurance 

of 31 minutes (as of 2006) [22].  Black Widow is capable of down-linking a color video 

feed to the pilot.  Black Widow was fabricated of expanded polystyrene foam for a total 

mass of 80 g.  The wingspan, top speed and range of Black Widow are 6 inches, 30 mph 

and 1.8 km, respectively.  The propulsion system of Black Widow is a small propeller 

motor accounting for 62% of its total mass.  The power supply is a modern lithium 

battery capable of powering the MAV for 30 minutes [25].  The Black Widow is pictured 

in Figure 3a. 

 In 2002, a group from the University of Florida took the Black Widow concept 

one step farther with a flexible-wing design.  The flexible-wing assists in low-Reynolds 

number ranges (104 - 105) [26] by allowing the lifting surface to move and deform for 

favorable aerodynamics.  The Reynolds number is the ratio of inertial to viscous forces 

used to identify air flow regimes.  Unfortunately, the Reynolds number decreases 

significantly for MAVs because of their small dimensions and slow airspeed [26].  Low-

Reynolds number ranges are volatile under wind speed changes—fluctuating up to 30%.  

The ability of the wings to adapt is attained through extension and twisting of the wing, 

known as adaptive washout.  The shape of the wing changes as a function of the airspeed 

and angle of attack [27].     

 The flexible-wing MAV is shown in Figure 3b.  The MAV is designed to carry a 

small camera for reconnaissance or surveillance missions.  The novel wing is fabricated 

from a carbon fiber skeleton and thin latex rubber membrane.  The total weight is 52 g, 
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and the wingspan varies to a minimum of 5 inches, or 12.7 cm.  The power supply is a 

conventional lithium battery giving the MAV a runtime of approximately 15 minutes at 

15-25 mph airspeed [27].       

 

 
           (a)       (b) 

Figure 3: (a) AeroVironment and CalTech’s Black Widow MAV with 6 inch (15.2 cm) 
wingspan.  Black Widow can fly continuously for 30 min with a 1.8 km range [25, 28], 
and (b) University of Florida flexible-wing design with a wingspan of 5 in (12.7 cm) and 
run time of 15 min at 15-25 mph [27].   

   

 In 2002, AeroVironment and T.N Pornsin-Sirarak, et al from the California 

Institute of Technology developed MicroBat, a novel flapping MAV, or ornithopter.  

MicroBat holds two records:  (1) the first ever battery-powered, electric motor-controlled 

flapping MAV and (2) the longest-endurance flapping flight of 25 minutes (< 100 grams) 

[22].  The flapping motion was realizable using a 22:1 gear ratio transmission capable of 

42 Hz flapping frequency at 1.4 W.  The mass and wingspan were 14 grams and 9 inches 

(22.9 cm), respectively.  Although initially powered using one NiCd battery, two lithium 

batteries produced drastically longer runtimes up to 25 minutes.  The flapping motion 

was driven by a 4.5 V DC brush motor which required a power conversion from the 

battery [15].   Figure 4a shows MicroBat in its final configuration, and the transmission is 

pictured in Figure 4b. 
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       (a)              (b) 

Figure 4:  (a) MicroBat ornithopter developed by AeroVironment and Pornsin-Sirarak, et 
al.  The wingspan, mass, and run time are 9 inches, 14 grams and 25 minutes (with two 
lithium batteries), respectively [15].  (b)  The 22:1 gear ratio actuating the wings up to 42 
Hz at 1.4 W [29]. 

 

 MicroBat required integrated MEMS technology to fabricate the wings.  An 

intensive wing study revealed titanium-alloy metal (88% Ti, 6% Al, 4 % Vanadium, 2% 

other) and poly-monochloropara-xylylene (parylene-C) as the best wing frame and wing 

membrane materials, respectively.  Titanium is favorable over silicon because it is less 

fragile, lightweight, ductile and easy to etch.  Parylene was chosen as the membrane 

primarily due to its adhesion properties to titanium [29-31].   

 MicroBat’s wings were fabricated using a 250-µm thick titanium-alloy substrate.  

A dry resist was patterned above the substrate prior to isotropic etching the wing frame 

with an HF:HNO3:H2O (5:2:100) solution for 20 minutes.  Potassium Hydroxide (KOH) 

was used to strip the resist to prepare for the membrane fabrication, and another coat of 

dry resist was applied and patterned for the parylene deposition.  Two coats of parylene 

were required to strengthen the membrane [29-31].  The fabrication process is shown in 

Figure 5.     
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Figure 5:  MEMS fabrication process for wings of MicroBat MAV [29]. 

 

 Stanford University, with assistance from SRI and Intel Corporation, are 

developing a “Mesicopter”.  The goal of the design team is to build the world’s smallest 

flying robot, and their simple theoretical models are feasible for 30 minutes of sustained 

flight.  The Mesicopter is autonomous and designed to gather atmospheric data using 

onboard sensors.  The initial Mesicopter prototype pictured in Figure 6 has a chassis of 

approximately 1.5 cm x 1.5 cm weighing about 3 grams.  The robot employs four rotors 

each of 1.5 cm diameter and driven by commercially available DC motors.  The rotors 

were fabricated using an additive and subtractive milling process.  The power system 

includes zinc-air battery cells which deliver 50 mA to turn the four rotors.  The sensor 

package is designed to eventually use a MEMS gyro for control and stability and even a 

small GPS sensor [32, 33].   
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batteries

 
Figure 6:  Initial prototype of Stanford’s Mesicopter designed to hover 30 minutes.  The 
four rotor design is 1.5 cm x 1.5 cm weighing 3g [33]. 

 

 Future improvements of the Mesicopter are ongoing.  The team is looking to use 

advanced metal stamping and casting for an enhanced rotor design.  The motor is under 

improvements at Stanford’s Rapid Prototype Laboratory (RPL) which utilizes tools 

fabricated in LIGA (German, Lithographie Galvanoformung Abformung) and silicon 

etching processes.  Tests showed the experimental motor successfully ran at 10,000 

RPM, but more research is required.  Likewise, the power source is under development 

by SRI which is capable of combining the highest level of power and energy densities 

into one battery package.  The latest prototype, shown in Figure 7, is designed slightly 

larger at 2.5 cm x 2.5 cm with completely redesigned rotors capable of four times the lift 

of the initial Mesicopter [32, 33].   

 

 
    (a)    (b) 

Figure 7:  (a) Improved rotor designed with four times more lift than initial prototype, 
and (b) future 2.5 cm x 2.5 cm prototype employing redesigned rotors [33]. 
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 The Micromechanical Flying Insect (MFI) project team from the University of 

California-Berkeley made prodigious findings for flapping-wing flight.  Beginning in 

1998, Fearing, et al created several MFI prototypes [34].  The early MFI design 

incorporated a 4-bar linkage mechanism which was created from laser cut stainless steel 

as shown in Figure 8a [35].  The flapping actuation is attained through piezoelectric 

unimorph beams.  The unimorph beams consist of purely elastic and piezoelectric 

material bonded together.  The piezoelectric material is strained longitudinally and 

transversely when an electric field is applied; thus, causing deformation [36]. 

 In 2003, the MFI team replaced the stainless steel frame with composite carbon 

fiber.  The carbon fiber change dramatically increased stiffness, cut weight and simplified 

construction.  The final configuration was a 26 joint prototype with four degrees of 

freedom (DOF) as shown in Figure 8b.  Initial tests of the modified MFI resulted in 160 

Hz flapping frequency compared to the previous model of 133 Hz [37].             

 
4-bar stainless steel

 
(a)          (b) 

Figure 8:  (a) Early prototype of the MFI using a stainless steel 4-bar frame, and (b) most 
recent prototype using a composite carbon frame [34, 37]. 
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 Students attending Delft University of Technology developed various flapping 

MAVs under the name DelFly.  The vision of DelFly was to mimic the flight of both 

birds and insects.  DelFly I has a 30 cm wingspan, weighs 16 grams, and has the ability to 

fly forward, backward and hover at speeds as low as 0.5 m/s.  The slow flight speed is 

advantageous for the onboard camera which communicates via its 35 MHz 

communication receiver [38].  DelFly I is shown in Figure 9a.    

 The most successful DelFly configuration, DelFly II, consists of two pairs of 

wings that flap in a clapping motion.  DelFly II, shown in Figure 9b, is capable of 15 

minutes of level flight or 8 minutes of hovering.  The power source is a lithium ion 

battery which delivers 130 mA-hr to the camera and DC motor.  The motor turns the 

crankshaft drive system which flaps the wings.  Improvements to miniaturize DelFly II to 

a 5 cm wingspan are under development.  The new configuration, DelFly Micro, will 

strive to be the smallest MAV equipped with an onboard camera [38, 39].  A picture of 

DelFly Micro is shown in Figure 9c. 

 

 
(a)    (b)    (c) 

Figure 9:  Three versions of DelFly exist in order of largest to smallest are (a) DelFly I, 
(b) DelFly II and (c) DelFly Micro [38, 39]. 
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In 2007, Harvard researcher Wood, et al created the MicroGlider.  The glider 

spans 10 cm, weighs 2 grams and is capable of autonomous flight.  The wing airfoil was 

unconventionally designed after research showed an increase in aerodynamic drag force 

in the range of low Reynolds Numbers (~7000).  The airfoil and control surfaces were 

fabricated out of a high Young’s Modulus composite material.  MicroGlider’s navigation 

controls include 10 mm piezoelectric actuators to create torque on the control surfaces at 

the tail end of the glider.  The actuator power source was located near the middle and was 

comprised of one 20 mA-hr lithium ion polymer battery.  Also included was amplifying 

circuitry due to the actuators’ 200 V input.  MicroGlider consumes approximately 400 

mW yielding up to 10 minutes of gliding [40].  A diagram of MicroGlider and its design 

features are shown in Figure 10.  Table 4 summarizes all miniature flying robots 

presented above.   

 

 
Figure 10:  MicroGlider which uses tail end control surfaces actuated by piezoelectric 
actuators.  MicroGlider has a 10 cm wingspan and can glide for 10 minutes [40]. 
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Table 4:  Summary of representative miniature and MAV flying  robots [15, 24-33, 38-
41]. 

Robot Black 
Widow 

UF flex 
wing MicroBat Mesi-

copter MFI DelFly Micro-
Glider 

Year 2001 2002 2002 2000 2003 2007 2007 
Type fixed fixed flapping rotary flapping flapping glider 
Largest 
dimension 15.2 cm 12.7 in 22.9 cm 1.5 cm  2.5 cm 30 cm 10 cm 

Mass 80 g 52 g 14 g 3 g ---- 16 g 2 g 

Power 
Source 

Li-ion 
battery 

Li-ion 
battery 

Li-ion 
battery 

zinc-air 
battery solar Li-ion 

battery 

Li-ion 
polymer 
battery 

Run time 31 min 15 min 25 min 30 min* 30 min* 15 min 10 min  
Speed 13.1 m/s 6.7-11.1 m/s 11.1 m/s ---- ---- ---- 700 μm/sec 
Achieve 
flight 
(Y/N)? 

Y Y Y N N Y Y 

Notable 
Features 

record 
MAV 
endurance 

flexible 
wing design 

first ever 
battery 
power 
MAV 

integrated 
sensor 
package 

piezo-
electric 
unimorph 
actuators 

capable 
of 
hovering 

piezo-
electric 
actuators 

*Theoretical Value Only 
 

2.5 Flying MEMS-Based Robots 

 In 1993, Kubo, et al published a study on insect-based flying micro-robots.  The 

research truly opened doors for fabricating a MEMS-scale flying robot.  The study 

recognized the following important low-Reynolds number characteristics:  (1) insects 

make good use of the elasticity of external skeletons to move their wings allowing high 

frequency flapping, (2) viscous forces (drag) become dominant as size decreases, (3) 

small insects use drag to their advantage using a rowing motion, and (4) aerodynamic 

forces are underestimated when using conventional calculations [42, 43].    

Simple flapping micro-robot models were created via semiconductor fabrication 

techniques.  Figure 11a shows the basic flapping wing concept using an elastic film 

surrounded by a frame.  On the upstroke, the elastic film separates from the frame 
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allowing air to flow through the gap and decreasing drag force.  Contrary, on the down 

stroke the film is pressed up against the frame eliminating the gap.  The kinematics are 

shown in Figure 11b where plane A moves in the opposite direction as B and C which 

actuate the wings [42]. 

 

 
   (a)              (b) 

Figure 11:  (a) Simple flapping concept using an elastic film and frame, and (b) flapping 
concept integrated in a closed-loop system; plane A is actuated in the opposite direction 
of B and C which actuate the wings [42]. 

 

 Kubo, et al fabricated sub-millimeter flapping wings as depicted in Figure 12 [42, 

43].  The wing was designed to utilize drag force by changing the shape of the wing on 

the up and down strokes.  The wing was made of 0.1-µm thick nickel sandwiched 

between two 1-µm thick polyimide layers.  The wing structure was approximately 400 

µm x 800 µm and is applicable to a 1 mm micro-robot.  Theoretically, the wing could be 

actuated by using magnetic resonance equal to the natural frequency of the wing [43].    

Chan, et al designed a flying MEMS robot in 2004 [44].  The structure was made 

from silicon using polymer MEMS technology and utilized many of Kubo’s concepts.  

The wings were fabricated as bimorph thermal actuators each with dimensions of 1000 

µm x 100 µm x 0.8 µm which match to insects of homoptera classification.  Homopteras, 
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such as an aphid, have masses ranging from 0.1 – 1.0 mg and flapping frequencies 

between 60–177 Hz; these ranges were the design targets [44]. 

 

 
Figure 12:  MEMS wing fabricated from nickel sandwiched between polyimide layers 
which is designed to utilize drag forces with a different wing shape on up and down 
strokes [43]. 

 

The wing actuator principle utilized sandwiched layers of material each 

possessing a different coefficient of thermal expansion (CTE).  Platinum was the middle 

layer, and the top and bottom were comprised of parylene.  The fabrication and actuation 

schemes are shown in Figure 13a.  A 6 V on-off pulse was applied between the platinum 

layers.  At 6 V, the layers deflect upward as a result of thermal expansion differences and 

return to their original position at 0 V.  Flapping frequencies up to 200 Hz were 

demonstrated which is sufficient for a micro-flying chip (MFC) the size of an aphid.  The 

actuation scheme is described in Figure 13b.    
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         (a)        (b) 

Figure 13:  (a) Cross section of layers used to fabricate the MFC wing actuator, and (b) 
actuation scheme of applied 0 V and 6 V [44]. 

 

 A conceptual design which integrates Kubo’s ideas is shown in Figure 14.  In this 

case, the elastic film is parylene, and the frame is platinum.  The platinum heater is 

designed as a grid structure to prevent the parylene from deforming [44].  Further, the 

actuators can be fabricated as different lengths to add a rotational DOF.  By using a 

symmetrical quadrant design, rotation is possible by actuating particular quadrants of 

wings.  Normal flight is possible because the rotational quadrants cancel each other when 

all four are actuated simultaneously.  Aside from the wing fabrication, the integrated 

MFC project was not completed most likely due to power constraints.   

 

 
       (a)        (b)         (c) 

Figure 14:  (a) MFC force diagram, (b) close-up of wing geometry and (c) quadrant array 
which allows the MFC to rotate or fly level [44]. 
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        A MEMS-scale rotary flight micro-robot was developed by Miki, et al in 2001.  

The novel feature of the micro-rotating wing robot was wireless actuation via a magnetic 

field.  The most successful prototype was comprised of 900-µm long nickel-iron (NiFe) 

magnetic wings weighing 165 µg shown in Figure 15a.  Successful demonstration of 

autonomous flight was achieved at 570 Hz rotation in the presence of an 8 kA/m external 

magnetic field [45-49].  Wing rotation was achieved using an alternating magnetic field.  

The wing’s magnetization changed as the wings rotate, and a torque was created under a 

magnetic field.  For rotation angles between 0-90°, torque opposed the direction of 

rotation, but aided rotation for angles between 90-180°.  This anisotropic magnetization 

behavior was a direct result of the two thin film magnetizing strips shown in Figure 15b 

[49].   

   The layer structure of the MEMS wings consisted of 10 nm chromium for 

adhesion, 100 nm seed layer of nickel, and 10 µm electroplated NiFe.  A hydrofluoric 

acid (HF) solution was used to etch away the sacrificial silicon dioxide.  The wing flaps 

were bent at a 45° angle to create additional lift.  A sharpened glass rod, acting as the axis 

of rotation, was glued to the center of the wings.  A hollow, glass tube shaft was used to 

support the rotation axis.  When the lift of the wings equaled the mass of the robot, a disk 

pressed against the body, lifting the robot in the air [48]. 
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(a)             (b) 

Figure 15:  (a) Diagram of Miki’s micro-rotary wing and (b) the fabricated robot with 
rotating wings in an alternating magnetic field [49]. 

 

 In 2006, Daniel Denninghoff designed novel flapping-wing MEMS robots.  The 

wings were comprised of a bilayer stack of polysilicon and gold fabricated in the 

PolyMUMPs®, or MUMPs®, process.  After a post-fabrication release of the sacrificial 

silicon dioxide, the bilayer wing relieved its tensile residual stress.  Tensile stress relief 

resulted in upward vertical deformation, or the upstroke of the wing.  Denninghoff also 

pointed out a downward vertical deformation was possible because the thermal expansion 

coefficients of polysilicon and gold vary considerably.  The top layer of gold expanded 

more than polysilicon which made the bilayer deflect downward, or the downstroke of 

the wing.  The thermal load was produced by an external 660 nm wavelength diode laser, 

and 175 mW energy from the laser was absorbed optothermally which conducted 

throughout the bilayer wing [20].   

 Figure 16a presents representative micro-robots designed by Denninghoff.  

Results showed the best robot configuration used one pair of flapping wings similar to an 

insect with a wingspan of 500 µm.  Unfortunately, the aerodynamic lift force was 

24 



 

dominated by the robot’s mass.  A solution for future research was to implement an 

additional wing frame made of polysilicon.  The frame would support a very thin and 

lightweight material thus increasing the wingspan and lift force, but only slightly 

increasing overall mass.  The optimal design is shown in Figure 16b. 

 

 

(a)       (b) 

Figure 16:  (a) SEM photographs of various flapping wing MEMS robots and (b) optimal 
design for achieving MEMS scale flight [20]. 

   

 Further research towards a flying MEMS robot at AFIT was conducted by Nathan 

Glauvitz in 2007.  Instead of insect-based flapping flight, Glauvitz focused his attention 

on achieving flight using rotary wings.  Glauvitz’ approach was to use two orthogonal 

MEMS comb drive actuators to drive a gear with attached wings.  The orthogonal 

actuators were designed to operate using identical voltage waveforms with a 90° phase 

difference.  The wings were custom-designed to utilize a flexible photoresist hinge to 

achieve the desired angle of wing deflection [50]. 

 The comb drive actuation scheme and hinged wing are shown in Figure 17.  The 

comb drives were designed to operate at approximately 11.3 kHz and turn the wing’s 
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gear at 754 Hz—theoretically sufficient for flight.  However, experimental results were 

not provided due to shortcomings of the fabrication process.  Experimental results from 

the photoresist-hinged wing confirmed using only the top layer of polysilicon in the 

MUMPs® process was necessary [50].  Figure 17 shows a theoretical diagram of a 

feasible rotary wing flying robot employing four rotors; similar to the Mesicopter concept 

[32, 33].  Several comb drives are combined beneath the wings to increase the force to 

turn the gear and rotor.  The center of the robot is open for a possible onboard power 

source for autonomous capability.  A summary of representative MEMS-based flying 

robots is shown in Table 5. 

 

Comb Drive

Comb Drive

 

Figure 17:  Vision of a rotary-wing MEMS flying robot as a result of Glauvitz’ research.  
The robot consists of four rotors and several comb drive actuators turning the wings’ 
gears.  The open area in the middle could be used for an onboard power source [50]. 
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Table 5:  Summary of representative MEMS-based flying  robots [20, 42-50]. 

Robot Kubo Miki Chan Denninghoff Glauvitz 
Year 1993 2001 2003 2006 2007 
Type flapping rotary flapping flapping rotary 
Largest 
dimension 1 mm 2 mm 2 mm 0.99 mm 8.4 mm 

Actuation 
method 

magnetic 
resonance 

alternating 
magnetic 
field 

thermal 
expansion 
differences 

optothermal 
expansion 

electrostatic 
comb drive 
resonator 

Achieve 
flight 
(Y/N)? 

N Y N N N 

Notable 
Features 

first MEMS 
flying robot 
concept 

570 Hz 
wing 
rotation 

200 Hz 
flapping 

powered by 
660 nm diode 
laser 

designed to 
use solar 
power 

 

2.6 Power MEMS and Photovoltaic Devices 

Integrating an onboard power source is considered one of the most challenging 

aspects of developing a MEMS flying robot.  Power requirements include small device 

area, lightweight, efficient, environmentally friendly and the capability of producing a 

high operating voltage and power in the micro- to milli-Watt range.  This section presents 

the latest technology in power MEMS and photovoltaic devices. 

 2.6.1 Power MEMS 

Power MEMS were first studied by Epstein and Senturia at MIT and refer to 

micro-devices which generate power or pump heat [51].  Power MEMS utilize 

hydrocarbon liquid which possesses a high specific energy compared to conventional 

sources as shown in Figure 18.  Power MEMS encompasses various technologies such as 

thermoelectrics, fuel cells and thermo-photovoltaics (TPV). 
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Figure 18:  Specific energy of liquid hydrocarbon compared to conventional engine, 
primary batteries and rechargeable batteries [52]. 

 

One sector of power MEMS is thermoelectric generation.  Thermoelectric 

generation was proposed by Sitzki, et al of University of Southern California to eliminate 

small moving parts found in micro-engines; thus, increasing reliability.  Sitzki developed 

a novel “swiss roll” burner to work in conjunction with a thermoelectric generator.  The 

burner, shown in Figure 19, is an efficient heat exchanger which produces higher 

enthalpy reactants conducive for combustion.  Theoretically, the system is capable of   

0.1 W with a device size of 0.04 cm3 [53, 54]; however, only larger physical models exist 

to support the theoretical limits. 

 

 
Figure 19:  Stanford’s “Swiss Roll” burner concept to be used in conjunction with a 
thermoelectric generator [53]. 
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Micro-fuel cells utilizing hydrocarbon fuels are gaining popularity.   A micro-fuel 

cell is portable and converts chemical energy (fuel) into usable electrical energy in a 

catalytic process.  The catalytic process occurs at each electrode; ions are generated and 

conducted via an electrolyte medium while creating free electrons available to drive an 

external load [55].   

Micro-fuel cells are classified into two groups—Proton Exchange Membrane 

(PEM) and Direct Methanol Fuel Cells (DMFC).  The major differences of each type’s 

catalytic process are shown in Figure 20.  Conventionally, micro-fuel cells are stacked 

vertically to increase the open-circuit voltage rating.  In 2002, Lee, et al developed “flip-

flop” interconnects at Stanford University where fuel cells can be fabricated side-by-side 

in series [56].  The best power-producing cell was fabricated in 2005 by Yu, et al.  The 

PEM silicon-based cell utilized hydrogen fuel and was reported to achieve 195 mW/cm2 

with a device area of 5 cm2 [55, 57].  Despite the sufficient power of micro-fuel cells, one 

major setback is fuel cell storage on a MEMS flying robot.      

 

 
Figure 20:  Catalytic process of a PEM and DMFC micro-fuel cell shown above and 
below the red line, respectively [55]. 
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 2.6.2 Photovoltaic Devices 

Photovoltaic (PV) technology is the most promising candidate for power 

scavenging.  PV devices convert solar energy to electrical energy and do not require fuel.  

The sun is the source of solar energy, and the energy is radiated as photons of light.  The 

photons are electromagnetic particles emitted with various energies and corresponding 

wavelengths.  A breakthrough study in 1954 revealed that silicon p-n junctions absorbed 

photon energy to create current flow [58].  The photons’ energy was higher than the 

electronic bandgap of silicon, and the absorbed energy generated an electron-hole pair in 

the doped silicon p-n junction.  Electrons travel through the p-type silicon to the contact 

as a minority carrier, and holes travel in the n-type silicon.  The current transportation 

method is primarily drift (electric field driven) and diffusion (concentration gradient 

driven).  However, the photons’ excess energy beyond that of silicon’s bandgap energy is 

wasted as shown in Figure 21.   

 

 
Figure 21:  Photovoltaic effect shown in doped silicon material.  Photon energies greater 
than the silicon bandgap are absorbed and generate electron-hole pairs.  Lower energies 
are transparent to silicon. 

. 
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Notable PV cell applications have appeared in recent research.  In 1995, Takahisa, 

et al demonstrated 207 V open-circuit voltage using 295 horizontal and vertical stacked 

cells connected in series.  The PV array was 1 cm2, and each unit cell was comprised of 

amorphous silicon [59].  In 2003, Hollar, et al demonstrated 90 silicon solar cells 

connected in series to produce an open-circuit voltage of 50 V, and each cell occupied 

150 x 150 μm2 [16].   

Multi-junction solar cells (MJSC) were fabricated for the purpose of collecting 

more photons and wasting less photon energy.  The concept is achieved by stacking 

direct bandgap materials with varying bandgap energy which decrease top to bottom.  

Direct bandgap materials are suitable because they possess higher absorption coefficients 

due to their distinct conduction and valence band structure.  In a triple MJSC design 

shown in Figure 22, the lower two sub-cells absorb photons which are wasted or 

transparent to the top layer; thus, MJSC designs are more efficient than single layer solar 

cells.  In 2007, Spectrolab fabricated the most efficient MJSC; 40.7% efficiency was 

achieved using metamorphic GaInP/GaInAs/Ge as the three sub-cells with an open circuit 

voltage of ~0.4 V [60].  Further, theoretical models predict 50%+ efficiencies with 4-6 

sub-cells comprised of nitrogen quaternary compounds such as GaInNAs [61].  Also, the 

National Renewable Energy Laboratory (NREL) recently demonstrated replacing Ge 

with GaAs in the GaInP/GaInAs/Ge MJSC increased the open circuit voltage to over  

2.95 V (although decreasing to 33.8% efficiency) [62]. 
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Figure 22:  Triple junction GaInP/GaInAs/Ge solar cell.  More photons are absorbed 
using stacked direct bandgap materials with decreasing bandgap energies.  Tunnel 
junctions are implemented as a transition material between sub-cells.  

       

An MJSC is the core component of a TPV device.  Four components typically 

form a TPV system—a heat source, an emitter (combustor), a filter and a PV array shown 

in Figure 23.  Heat is generated in a micro-combustor or an emitter by solar radiation, 

nuclear decay, or onboard fuel such as hydrogen.  The emitter, typically made of SiC or 

similar materials, is suitable for the resultant high temperatures.  The broadband emitter 

irradiates photons on the PV or MJSC array.  The PV device absorbs photons greater than 

the bandgap of the PV array.  The low-energy photons are absorbed as wasted thermal 

energy; thus, increasing device temperature and decreasing quantum efficiency.  The 

filter is integrated to reflect and absorb low energy photons resulting in higher conversion 

and quantum efficiency.  The National University of Singapore reported a hydrogen 

fueled and filtered GaSb TPV with 2.92 V open circuit voltage, 0.92 W and device area 

of 0.113 cm2 [63].  The University of Queensland Australia reported theoretical TPV 
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systems comprised of a Co/Ni-doped MgO emitter and GaSb PV array occupying 2.62 

cm2 with 3.08% efficiency compared to 2.64% efficiency of the PV array alone [54]. 

 

 
Figure 23:  Four components of a TPV system are a heat source, an emitter, a filter and a 
PV array which converts thermal energy to electrical energy.  The emitter (combustor) 
irradiates photons upon the low bandgap PV array.  The low-energy photons are recycled 
back to the emitter which improves the conversion efficiency of the photocell and overall 
TPV system [54]. 

 

2.7 Chapter Summary 

  This chapter presented an overview of miniature and MEMS flying robots 

including various land-based MEMS robots.  Micro-power devices applicable to a 

wireless flying robot were also discussed.  The research of Glauvitz’ revealed many 

successes using comb drive actuators to achieve rotary flight.  The addition of a solar cell 

array capable of 200 V open circuit voltage and area of less than 1 cm2 is the most 

promising candidate for scavenging power.  The next chapter explains the necessary 

theory to analyze the aerodynamics and electro-mechanical aspects of a flying MEMS 

robot.  
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III.  Device Theory 

3.1 Chapter Overview 

The purpose of this chapter is to create analytical expressions resulting from the 

small scaling effects of MEMS devices.  Specifically, this chapter delves into low-

Reynolds number aerodynamics, general MEMS device theory, scaling effects of friction 

and electro-mechanical power requirements. 

3.2 Aerodynamics  

An aerodynamics analysis is required to fabricate a MEMS flying robot.  

Conventional aerodynamics theory is used to predict an object’s behavior in a fluidic 

medium possessing a Reynolds number greater than 105 [12].  However, as the object 

size decreases to the insect regime, the aerodynamics relationships break down.  This 

section presents basic aerodynamic theory and current low Reynolds number research to 

characterize MEMS scale objects. 

 3.2.1 Conventional Aerodynamics 

 Four primary aerodynamic forces are noteworthy—lift, drag, thrust, and weight.  

The lift force always counteracts the weight force and acts perpendicular to the aircraft’s 

orientation; when the two forces are equal the aircraft is capable of level flight.  The 

thrust force acts in the direction of flight and is created from the propulsion source.  

Thrust is generally what differentiates the aerodynamics of fixed-wing versus rotary-wing 

aircraft which are shown in Figure 24a and Figure 24b, respectively.  Each of the four 

forces is dependent on associated dimensionless coefficients to account for size, shape, 

and speed factors.  
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       (a)     (b) 

Figure 24:  Primary aerodynamic forces acting on (a) fixed-wing aircraft in horizontal 
flight and (b) rotary-wing aircraft in vertical flight. 

 

 The aerodynamic lift and drag forces, FL and FD, are expressed as 

SUCF FLL
2

2
1 ρ=    (N)  (1) 

and 

SUCF FDD
2

2
1 ρ=    (N)  (2) 

where CL, CD, ρ, UF and S are the lift coefficient (ratio), drag coefficient (ratio), air 

density (kg/m3), flight speed (m/s), and lift surface area (m2), respectively.  Therefore, 

both forces are extremely small as a flying MEMS robot is beset by its diminutive size 

and air speed. 

 An object is capable of sustained level flight if the aerodynamic lift force is equal 

to its weight.  The lift force is obtained using wings with an airfoil cross section.  A 

proper airfoil cross section has a rounded leading edge and a sharp trailing edge.  In a 

simple deflection analysis, the rounded edge deflects the fluid (air) downward, and the 

force required to do so is equal to lift.  In order to achieve lift, the angle the airfoil makes 
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with the direction of fluid flow must be positive (neglecting camber) referred to as angle 

of attack.  Camber is defined as the bow, or curvature, of the airfoil which typically 

enhances the lift force.  The chord is defined as the length of the airfoil from leading to 

trailing edge.  Figure 25 shows these well-known aerodynamic features. 

 

  
Figure 25:  Diagram of a conventional airfoil of an aircraft wing. 

 

 Bernoulli’s principle also characterizes the lift force.  The principle states that a 

pressure differential is created as the oncoming fluid separates above and below the 

leading edge of the wing.  Bernoulli’s principle is similar to the ideal gas law with the 

exception of velocity changes.  Because the upper and lower surfaces of the airfoil are not 

identical, neither is the air velocity above and below the surfaces.  Bernoulli showed that 

a pressure differential is inversely related to velocity [64].  

 The Reynolds number is used to characterize the flow behavior of a fluid medium.  

Reynolds number is a dimensionless number which is a ratio of the inertial forces to 

viscous forces expressed as  

υ
CUL

=Re      (3) 

where U is the air velocity (m/s), LC is the length of the chord (m) and υ
 
is the kinematic 

viscosity of air (m2/s).   
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 The Reynolds number classifies a fluid as either laminar or turbulent.  For a 

typical airfoil, laminar flow occurs for Reynolds numbers up to approximately 105 where 

the transition to turbulent occurs.  Laminar flow is dominated by viscous forces where the 

flow is smooth and constant.  Turbulence transpires when the inertial forces dominate 

resulting in small, random leading edge vortices (LEV) and chaotic flow motion.  LEVs 

are low-pressure rotations of the fluid velocity which are more pronounced and controlled 

in laminar flow.  In the case of high turbulence (or high Reynolds number), the inertial 

forces dissipate the vortices; therefore, the LEVs are commonly assumed negligible.    

 Most flight vehicles operate in high Reynolds numbers because of their 

considerable size and air speed.  According to Figure 26, the Reynolds number varies 

linearly with air vehicle weight on a logarithmic scale.  Figure 26 verifies large aircraft 

rely on dominating inertial forces to obtain sustainable lift.  The opposite is true for 

MAVs and insects which operate primarily in laminar air flow where drag forces 

dominate. 

 
Figure 26:  Logarithmic plot of air vehicle gross weight versus Reynolds number.  
Heavy aircraft operate in high Reynolds number ranges [65]. 
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 3.2.2 Low-Reynolds Number Aerodynamics 

 From the scale of MAVs down to flying MEMS robots, the Reynolds number 

drastically decreases.  Unfortunately, no concrete research exists to explicitly define 

aerodynamic behavior of insect-size flying robots.  Fortunately, enough empirical data 

and models exist to formulate hypotheses on micro-flight dynamics. 

  3.2.2.1    Flapping-Wing Low-Reynolds Number Theory 

 A key parameter for macro-scale lift is quasi-steady state flow aerodynamics.  

Quasi-steady state flow is characteristic of soaring birds and fixed wing aircraft where 

flapping speed is minimal.  The other extreme, unsteady state air flow, is observed 

mainly with flapping objects.  Generally, the transition between the two regimes occurs 

when the wing flapping speed surpasses the flight speed.  MAVs and flying robots 

operate in the unsteady flow regime because of their low flight speed relative to wing tip 

speed  [66].  The degree of unsteady flow, k, is dependent on the inverse of flight speed, 

FU
k 1
∝      (4). 

Clearly, the degree of unsteady flow is higher for a MEMS flying robot and is presented 

in Figure 27.   

Small birds and insects have been closely studied to determine other contributions 

to their superior aerodynamic efficiency in unsteady state flow regimes.  Theory suggests 

unsteady LEVs have a significant effect on lift.  The unsteady LEVs are assumed 

negligible for large aircraft and some have theorized LEVs are quickly dissipate on small 

birds and insects [66].  Later, Liu, et al confirmed LEVs were prevalent on a MAV wing 
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using 3-D computational fluid dynamic (CFD) analyses [67].   The study pointed out 

LEVs were preserved by spanwise flow, or flow in the dimension of the wing’s length 

[66, 67].  In steady state flow, the LEV is quickly shed along the length of the wing; 

hence, the reason for simpler 2-D models.  However, in unsteady state conditions, 

spanwise flow conserves the low-pressure LEV above the wing accounting for the 

pressure-gradient lift phenomena [68]. 

Insect Regime

 
Figure 27:  Air speed vs. air vehicle mass showing the approximate division of the two 
flow regimes [66]. 

 

 Insect flight studies have identified the influences of various forces at low 

Reynolds numbers.  Quasi-steady state flow flyers use lift to their advantage.  However, 

when Re < 1000, insects (and a flying MEMS robot) experience larger drag forces in 

unsteady state flow, and the lift forces are negligible [42, 43, 69].  Kawachi, et al defined 
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appropriate locomotion methods for various Reynolds Number ranges as depicted in 

Figure 28.   

 
Figure 28:  Characteristic length of flyer versus Reynolds number defining various 
ranges of locomotion methods [70]. 

 

 Figure 28 shows devices operating with Re < 1000 are suited for flapping flyers, 

and the lower limit for a rotary-wing flyer was Re = 1000 relying on lift [70].  The 

research of Tsuzuki, et al pointed out a rotary-wing device is feasible in the range of Re = 

1000 after observing that maple tree “seed helicopters” rotate as they fall from limbs in 

this range [69, 71].  The Reynolds number of a rotary-wing MEMS robot falls in the 

range of 101-102.  However, further research and experiments are required to validate that 

a rotary-wing MEMS robot is possible. 
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  3.2.2.1    Rotary-Wing Theory 

 Rotary wings create lift identically to that of fixed wings.  The major difference is 

the thrust force is vertical as opposed to horizontal for fixed wing (for level flight) as 

shown in Figure 24.  The phenomenon of a LEV exists to enhance rotary-wing lift 

capabilities since the lift principle is the same.  The LEV boost is thought to increase the 

allowable weight than that calculated using conventional aerodynamics [69].  To compare 

rotor performances, the figure of merit (FOM) as described by Tsuzuki, et al is expressed 

as  

2
T

Q

T
rotor

C
C
CFOM =      (5) 

where CT and CQ are the thrust (lift) and torque coefficients (ratios), respectively.  

Analyzing Equation 5, it is clear an increase in thrust coefficient improves rotor 

performance.  The torque coefficient is not covered here in detail, but it increases linearly 

with the thrust coefficient; therefore the CT / CQ term remains fairly constant. 

 Additional aerodynamic analysis for rotary wings was conducted by Miki, et al.  

In particular, Miki developed an equation to calculate thrust force based on lift and drag 

coefficients.  The thrust force, FT, is given as 

)(
3
2 322

DLCT CCRbLF ϕρπ +Ω=   (N)  (6) 

where b is the number of rotor blades, Ω is the frequency of rotation (Hz),  R is the wing 

radius (m), φ is the induced angle (rad) and CD is the drag coefficient (ratio) [45-49].  The 

unknown parameter of Equation 6 is (CL+φCD), or Crw.  This parameter was measured for 
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wing lengths 1.5 mm – 8 mm and increased as the length decreased to 2.5 mm; thereafter, 

the parameter showed instability.  The instability was most likely attributed to vibration 

sensitivity or from a higher degree of unsteady air flow.  The measurements were also 

lower when the wings were attached to the rotor shaft, especially for shorter wing 

lengths.  For example, a 2.5 mm wing coefficient was measured at 2 but dropped to 0.74 

after attachment.  According to Figure 29, a MEMS flying robot with wings 1-2 mm long 

is presumed to have a coefficient of 2, but could vary as low as 0.5-1.0 accounting for the 

experimental vibration in Miki’s setup.  The discontinuity shown in Figure 29 at R=3 mm 

could also be a sign of the transition to unsteady-state aerodynamics. 

MEMS Flying Robot

 
Figure 29:  Miki’s measurement of the unknown aerodynamic coefficient in order to 
calculate thrust force [49]. 

 

 In order to achieve lift, the sum of the lift and thrust force must be greater than the 

weight force of the MEMS robot.  Literature suggests the drag forces dominate, and the 

lift force due to LEVs is much smaller than the thrust force; therefore, lift force can be 

assumed negligible at Reynolds Numbers below 1000 as verified in Figure 28 [11, 69].  

With this assumption, the required thrust force for flight is expressed as 
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mgFT ≥      (7) 

where m and g are the mass of the robot and acceleration due to gravity (9.81 m/s2).  

Inserting Miki’s expression for thrust force into Equation 7 and solving for rotor 

frequency, the rotor frequency required for lift, ΩL, can be expressed as 

rwC

L

CRbL

mg
32

3
2 ρπ

≥Ω   (Hz)  (8). 

 3.2.3 Bio-inspired Wing Design 

 A flying MEMS robot should mimic the wing of small, flying insects.  Over a 

million different species of insects and 10,000 types of birds and bats exist which utilize 

their wings for locomotion [72].  Conventionally, the Blade Element Theory (BET) is 

used when designing a wing when the flow regime is steady-state (high Reynolds 

number).  Because the flow is unsteady, the BET technique is inaccurate and frequently 

underestimates the thrust force in rotary blades [73, 74].  Again, the reason is due to the 

unsteady LEVs which provide additional thrust and lift unaccounted for using 

conventional aerodynamics.  Thus, any guidelines for accurate wing design are based 

purely from empirical data. 

 Tsuzuki, et al presents excellent guidelines for designing a rotary-wing blade on 

the premise of increasing the rotary wing figure of merit (FOMrotor).  Experiments 

showed the optimum pitch angle, the angle of wing deflection, is 15-20° for unsteady 

flow of Re = 4000 compared to Miki’s 45° flap.  The aspect ratio (AR), the ratio of 

wing’s length to chord, was optimum for 5.5 shown in Figure 30a.  The surface 
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roughness (corrugation) was found to make the wing rigid against bending and torsional 

deformations [73, 75].  Additional optimal geometric findings from Tsuzuki’s research 

are summarized in Table 6.   For all findings, a wing cross section of a flat plate increased 

the rotary FOMrotor.  To corroborate these results, a cross section of an actual dragonfly 

wing is shown in Figure 30b producing these experimental results [69, 76].   

 

AR=5.5

 
    (a)     (b) 

Figure 30:  (a)  The FOM of a rotary-wing blade is maximum for pitch angle range of 
15-20°, and (b) the dragonfly cross section mimics Tsuzuki’s optimal geometric design 
guidelines [69, 76]. 

 

Table 6:  Rotary-wing design guidelines for increasing FOM [69]. 

1.  Flat-plate overall wing shape 
2.  Pitch angle of 15-20° 
3.  Aspect ratio of 5.5 
4.  Thickness-to-chord ratio of 2% 
5.  Leading edge cut of 45° 
6.  Camber-to-chord ratio of 10% 
7.  Max camber occurring at chord midpoint 
8.  Gentle leading edge corrugation of 15° 
9.  Small projection offset approx 15% from leading edge 
10. Surface roughness across trailing edge 
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3.3 PolyMUMPsTM Process 

The Polysilicon Multi-User MEMS ProcessesTM (PolyMUMPsTM or MUMPs®) is 

utilized by AFIT to fabricate conceptual MEMS devices.  The MUMPs® process is a 

three layer polysilicon surface micromachining process.  Surface micromachining is an 

additive process; beginning with the substrate, thin films are deposited on top of the 

substrate and lithographically patterned and etched to form features.  Structural layers are 

separated by sacrificial layers which are removed at the end of the fabrication process to 

enable device movement [77].  In the MUMPs® process, the structural layer is 

polysilicon, and the sacrificial layer is silicon dioxide, or oxide.  An important feature of 

the MUMPs® process is each layer’s topology is conformal with respect to the underlying 

layer.  For example, a recessed feature in one polysilicon layer will be duplicated in the 

layer above it—similar to how a blanket conforms to the topology of the surface that is 

covered. 

The MUMPs® process begins with a phosphorus-doped silicon dioxide (PSG) 

layer to dope the silicon substrate of <100> crystal orientation.  A 0.6 µm silicon nitride 

layer is deposited in a low-pressure chemical vapor deposition process (LPCVD).  The 

nitride layer serves as an excellent dielectric and electrical isolation layer.  A 0.5 µm 

layer of polysilicon (Poly0) is deposited next using LPCVD.  The Poly0 layer is patterned 

and etched via a Reactive Ion Etch (RIE) according to the Poly0 mask level drawn in L-

Edit software. 

 Continuing, a 2 µm PSG layer (Oxide1) is deposited via LPCVD to define the 

first sacrificial layer.  Dimples are implemented next to prevent stiction—the act of 
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MEMS devices unexpectedly bonding together.  Dimples are small protrusions which are 

used to reduce the amount of contact surface area.  The dimples are created via a timed 

RIE.   

 The first structural layer, Poly1, is 2 µm thick and LPCVD-deposited above the 

remaining Oxide1.  Poly1 is not deposited completely flat; rather, the Poly1 follows the 

topology of the Poly0, dimple and Oxide1 features.  An additional PSG layer is deposited 

onto Poly1 and annealed at 1050° C to dope the layer which reduces its internal stress 

and increases its conductivity [78].  The process is repeated for Poly2 and Oxide2 with an 

option of joining the two polysilicon layers using a Via etch.     

 Gold is deposited directly to the Poly2 topology in a metal evaporation process.  

Metal evaporation is conducive for patterning the gold layer because it produces no side 

walls on recessed features.  Without side walls, the unwanted gold is removed using 

metal-lift off.  Metal lift-off is performed in the MUMPs® process by rinsing the wafer in 

acetone.  Figure 31 shows a comprehensive diagram integrating all MUMPs® design 

features. 

The last step of the MUMPs® process is releasing the sacrificial oxide.  The chips 

are submerged in 48% Hydrofluoric Acid (HF) to etch away the two sacrificial oxide 

layers.  Figure 31 shows an unreleased device; however, a released version would simply 

have oxide layers removed.  For more information, refer to the PolyMUMPsTM Design 

Handbook [78]. 
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Figure 31:  Comprehensive figure showing thin-film deposition layers of the 
PolyMUMPs® process.  Oxide etch features are also shown with resulting conformal 
topology. 

  

3.4 Thin-film Residual Stress  

Residual stress is a byproduct of the MUMPs® process often resulting in material 

deformation.  Residual stress can be advantageous in applications such as an actuation 

method, self-assembly—or in this case, wing deflection.  Residual stress obtained from 

MUMPs® is a direct result of different thermal depositions and internal dopant gradients 

within the materials.  MUMPs® is a defined process which deposits two releasable layers 

of structural polysilicon and one layer of gold.  The material properties of the three layers 

are given in Table 7. 

After each of the polysilicon layers are deposited, a very thin 200 nm layer of PSG 

is applied.  The phosphorus atoms of the PSG layer diffuse into the polysilicon during a 

1050° C annealing process [78].  During this process the undoped polysilicon becomes n-
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type doped, or donor type, due to the increase of electrons “donated” to the conduction 

band.  The dopant reduces its electrical resistance, RE, expressed as 

E

EE
E A

LR ρ
=    (Ω)  (9) 

where ρE, LE and AE are the electrical resistivity (Ω-m), electrical path length (m) and 

electrical path cross section (m2) of the doped polysilicon, respectively. 

 

Table 7:  Typical PolyMUMPsTM layer material properties. The symbols C and T denote 
compressive and tensile residual stress, respectively [78-80]. 

Variable Poly1 Poly2 Gold 
Young’s Modulus (GPa) 131 162 78 
Poisson’s Ratio 0.22 0.22 0.44 
Coefficient of Thermal Expansion (K-1) 2.3 E-06 2.3 E-06 14.3 E-06 
Layer Thickness (µm) 2 1.5 0.5 
Typical Residual Stress (MPa) 5 C 7 C 13 T 

 

 Residual stress gradients are classified as either tensile or compressive and vary in 

the axis perpendicular to the substrate.  Polysilicon is typically compressive due to the 

techniques used to grow its crystalline structure.  Contrary to pure silicon’s repeated 

crystal lattice structure, polysilicon is a repeated lattice structure contained within varying 

grain boundaries.  The grain boundaries during the initial 200 nm of growth are under 

significant compressive stress; thereafter, the stress decreases.  Therefore, thinner layers 

of polysilicon are prone to increased levels of residual stress.  Notable causes of residual 

stress are a result of interstitial dopant or oxygen atoms at the layer interface [81].  Figure 

32 shows how the grain boundary formations vary vertically during poly-crystalline 

growth. 
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 The phosphorus atoms diffuse from the top surface into the material leaving 

behind a non-uniform dopant distribution.  Each dopant atom disrupts the crystalline 

polysilicon lattice creating internal stress.  The amount of internal stress decreases in the 

vertical direction for each polysilicon layer yielding a stress gradient.  Studies have 

shown phosphorus dopant in polysilicon shifts the internal residual stress more 

compressive.  However, depending on the temperature of deposition and annealing, 

phosphorus can enhance the stress relief during the anneal [82]. 

 
Figure 32:  Poly-crystalline growth process varies in the vertical direction due to grain 
boundary and lattice defects [83]. 

 

 The annealing process is another integral element of residual stress.  As part of 

the dopant diffusion step, the material is heated several times to 1050°C in the MUMPs® 

process.  The anneal serves to reduce residual stress, dope the polysilicon layer, allow the 

dopant and polysilicon atoms to rearrange themselves, and reduce crystal defects [84].  

However, the annealing is a source of thermal stress, a component of overall residual 

stress.  Thermal stress is a result of a temperature gradient formed during the deposition 
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of the material layers which cools to room temperature after the deposition and annealing 

is complete. 

 Thermal residual stress is critical when two dissimilar materials are stacked; in the 

MUMPs® process, polysilicon and gold.  The two materials have drastically different 

coefficients of thermal expansion (CTE).  Table 7 shows gold has a higher CTE than 

polysilicon, and following the gold deposition, the layers are cooled to room temperature 

where tensile stresses develop in the gold layer from the expansion difference.  When the 

device is released in HF, the stress in the gold is relieved by curling the Poly2/Gold layer 

upward out-of-plane. 

 Two components of thin-film stress were discussed—internal residual stress and 

thermal stress.  These two components when added together form the total residual stress 

of a single layer, σlayer, which is expressed as 

       layer

PP
layer R

tE
2
′

=σ    (Pa)  (10) 

where E’P, tP and Rlayer are the biaxial modulus of elasticity for polysilicon (Pa), 

polysilicon layer thickness (m) and radius of curvature (m), respectively.  The biaxial 

modulus of elasticity and radius of curvature are defined as 

P

P
P

EE
υ−

=′
1

   (Pa)  (11) 

and 

M
IER xP

layer =    (m)  (12) 
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where EP, υP, Ix and M are Young’s Modulus (GPa) of polysilicon, Poisson’s Ratio of 

polysilicon, x-axis area moment of inertia (m4) and bending moment (N-m) of the layer.  

For a bilayer structure of polysilicon and gold, the stress components add distinctly as 

thermalernalbilayer σσσ += int   (Pa)  (13) 

where σthermal is given as 

      ( )( )0TTE PGGthermal −−′= αασ   (Pa)  (14) 

where αG,P is the CTE of gold and polysilicon (K-1), E’G is the biaxial modulus of 

elasticity of gold, T is the fabrication temperature (K) and T0 is the post-process 

temperature (K).  Values of σinternal are typically found on the MUMPs® website and are 

published for every run.  In a similar manner as Equation 10 was written, residual stress 

of a Poly2-Gold cantilever, σbilayer, is expressed as 

     bilayerG

PP
bilayer Rt

tE
6

2′
=σ      (Pa)  (15) 

where tG is the thicknesses (m) of gold, and Rbilayer is the radius of curvature of a bilayer 

Poly2-Gold cantilever (m) given as [20] 

     

( )
thermalGP

GPG
bilayer tt

ttE
R

σ6

2+′
=   (m)  (16). 

Equation 15 is known as Stoney’s equation which relates deflection and residual stress 

components.  The overall vertical deflection for a thin beam of polysilicon and a bilayer 

Poly2-Gold beam is  
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layer
layer tE

L
v

′
=

2σ
   (m)  (17) 

and 

2

23

PP

Gbilayer
bilayer tE

Lt
v

′
=
σ    (m)  (18) 

where v and L are the deflection and length (m) of the beam, respectively. 

3.5  Drive Actuator 

An actuation method is required to drive a MEMS robot’s wings at a frequency 

capable of a thrust force at least equal to the robot’s weight.  Because the robot will 

employ rotary style wings, the actuation method must also be capable of rotary actuation.  

Other requirements include increasing the force, displacement and frequency of the 

actuator.  In reality, all three of these requirements have engineering trade-offs as 

discussed below. 

3.5.1  Survey of Actuators 

Figure 33 shows available MEMS actuators and their respective force versus 

displacement limitations.  The bold, black lines represent MEMS-scale actuators.  From 

Figure 33 it is clear the comb drive and solid expansion (including thermal actuators), 

both capable of MUMPs® fabrication, possess similar displacements.  However, the comb 

drive is limited by an order of magnitude lower force (~ 0.1 mN) than solid expansion (~ 

1 mN).    
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Figure 33:  Maximum displacement versus maximum force for common MEMS 
actuators [85].  The black and green lines refer to MEMS and macro-sized actuators, 
respectively. 

 

Figure 34 shows available MEMS actuators and their respective frequency versus 

displacement limitations.  Again, the bold, black lines represent MEMS scale actuators.  

Figure 34 shows the comb drive actuator can be designed for a wide variety of 

frequencies from 10 Hz to 50 kHz; whereas, the solid (thermal) expansion operates under 

a narrow band of frequencies of about 500 Hz to 5 kHz.  These results verify that 

electrostatics trade off force for increased frequency performance. 
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Figure 34:  Maximum displacement versus maximum frequency for common MEMS 
actuators [85].  The black and green lines refer to MEMS and macro-sized actuators, 
respectively. 

 

Figure 35 shows an example of a solid expansion actuator utilizing thermal 

expansion.  A current source is applied across the anchors which cause the arms to 

expand via Joule heating.  The hot arm generates more heat than the cold arm because the 

cross sectional area is smaller.  As a result, the hot arm expands farther with the resulting 

deflection toward the cold arm.  The frequency response is limited to how quickly the hot 

arm cools between pulses.  Hickey, et al researched MUMPs® fabricated thermal 

actuators, and their empirical data shows a cutoff frequency range of 1–2.6 kHz in the 

configuration shown in Figure 35 [86].   This frequency range could be useful if large 
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gear ratios were used, but to minimize mass and parts thermal actuators are ruled out for 

application of a flying MEMS robot. 

 

 
Figure 35:  Thermal (solid expansion) actuator diagram.  The hot arm expands more than 
the cold arm pushing actuator in the direction of the cold arm as depicted [86]. 

 

3.5.2  Comb Drive Resonators 

Comb drive resonators offer several advantages over thermal actuators such that 

numerous aspects of the resonator are easily controlled.  First, the capacitive nature of 

electrostatic MEMS scales down very well.  For example, the small gap formed between 

the comb fingers (few micrometers) is on the order of the mean free path of air 

molecules.  The small gap increases the breakdown electric field, and the MEMS comb 

drive is capable of handling high voltage (although a disadvantage from a power-

scavenging view) [87].  Another advantage is the designer has a multitude of geometric 

considerations for various applications as shown by the large circle in Figure 34. 

 Figure 36 shows a scanning electron microscope (SEM) picture of the basic 

components of a comb drive.  The outer comb fingers are fixed to the substrate with 

either end at an applied voltage potential.  The inner fingers are attached to a shuttle-truss 

system which is connected to ground potential.  The upper and lower trusses both contain 

two sets of folded spring flexures.  The folded springs largely suppress the residual stress 
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inherent in the MUMPs® process [88].  The shuttle is free to move laterally forming a 

spring-mass-damper system.  Therefore, the inner comb fingers move in a back-and-forth 

motion when the system is in resonance.  The resonance frequency occurs when the 

applied voltage sine wave matches the natural frequency of the spring and mass 

mechanical system.  The interdigitized fingers remain parallel to one another forming a 

parallel-plate capacitance with air as the dielectric medium as shown in Figure 37.   

    

 
Figure 36:  SEM picture of a comb drive showing basic components and electrical 
configuration. 
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Figure 37:  SEM picture of interdigitized comb fingers and the electrical capacitance 
formed between each pair.  

 

 The actuation cycle begins when the outer comb fingers have an applied voltage 

potential at the system’s resonance frequency.  The interdigitized comb fingers are 

oppositely charged forming capacitors on either side of the inner comb fingers.  The 

capacitors store energy on each side of the finger (one side is illustrated in Figure 37), 

and the total stored electrical energy, WE, is expressed as 

( )21 EEE WWnW +=   (J)  (19) 

where WE1 and WE2 are the stored energies to the left and right of each finger (J), and n is 

the number of comb finger pairs.  The expression for electrical energy (J) is expressed as 

2

2

21
CVWW EE ==   (J)  (20)   
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where C and V are the electrical capacitance (F) and applied voltage (V) for each finger 

pair, respectively.  Each capacitor is modeled as a conventional parallel plate device with 

air as the dielectric.  The electrical capacitance, C, is expressed as  

h
xtC Pairεε0=        (F)  (21) 

where ε0, εair, tP, x and h are the permittivity of free space (F/m), permittivity of air 

(unitless), thickness of comb finger (m), finger overlap (m) and gap between fingers (m), 

respectively.  Substituting Equation 20 and 21 into Equation 19, the stored energy is 

rewritten as 

20
22

22
V

h
xtnCVCVnW Pair

E ⎟
⎠
⎞

⎜
⎝
⎛=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

εε  (J)  (22) 

 The potential difference induces an electrostatic force, FE, calculated by taking 

the first derivative of the energy stored in the capacitor, WE, with respect to x, is given as 

20 V
h

tn
dx

dWF PairE
E ⎟

⎠
⎞

⎜
⎝
⎛==

εε
  (N)  (23). 

 The electrostatic force pushes the shuttle and inner comb fingers away from the 

voltage source.  The flexures attached to the shuttle absorb the electrical energy from the 

capacitor and store it as mechanical energy.  The mechanical spring energy, WS, and 

spring force, FS, are defined according to Hooke’s Law as 

2

2
xS

S
dkW =    (J)  (24) 
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F ==   (N)  (25) 

where kS and dx are the system spring constant (N/m) and lateral spring displacement (m), 

respectively. 

 The spring design of the comb drive was discussed as a top and bottom truss each 

with two sets of folded springs.  Each folded spring is modeled in Figure 38, and the 

spring constant (N/m) for one set of folded springs, kfold is given as 

3
6

S

ZP
fold L

IEk =    (N/m)  (26) 

where IZ and LS are the z-axis area moment of inertia (m4) and spring length (m), 

respectively.  Spring constants combine exactly as electronic capacitors; parallel springs 

are simply added.  The comb drive’s four sets of folded springs act in parallel, and the 

total system spring constant is given as 

           
3

24

S

ZP
S L

IE
k =    (N/m)  (27) 

where 

  
12

3twIZ =     (m4)  (28) 

and w (m) and t (m) are the width and thickness of the spring, respectively. 
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Figure 38:  Folded spring design diagram for an electrostatic comb drive allowing left-
to-right actuation at resonance. 

 

 There exists a balance of energy between the electrical capacitors and mechanical 

springs.  Assuming no energy loss, the electrostatic and spring forces are equal at the 

midpoint of oscillation.  Given this, the displacement of the shuttle in each direction, dx, 

can be solved for in terms of applied voltage and given material properties.  Setting 

Equations 22 and 24 equal to each other and solving for dx, we arrive at 

                                     =xd 2
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(m)      (29). 

Equation 29 defines the distance of the shuttle from the center to either end.  However, it 

should be noted that twice this distance is available for actuation, or 

2
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 Actuation is deficient unless the applied voltage sine wave and the mechanical 

comb drive frequencies are in resonance.  The frequency of the sine wave is easily 
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adjusted using an electronic waveform generator.  The natural frequency of the comb 

drive is calculated by modeling the system as an oscillating mass and spring—the spring 

being the long flexures attached to the trusses and the mass incorporating the truss, 

shuttle (and inner combs) and flexures.  In general, the natural frequency, f (Hz), of any 

mechanical oscillator is shown as 

*

*

2
1

m
kf

π
=    (Hz)  (31), 

and k* and m* are the spring constant and mass of the oscillating system, respectively.  

The system spring constant of the comb drive was calculated in Equation 27, and the 

mass is the sum of the shuttle and fingers, mS (kg), the flexures, mF (kg), and folded 

trusses, mT (kg).  In 1989, Tang, et al formulated an expression for the mass term based 

on empirical data [88].  Incorporating Tang’s findings, the expression for the natural 

frequency of the comb drive, fcomb, is given as 

FTS

S
comb

mmm

kf

35
12

4
12

1

++
=

π
  (Hz)  (32). 

3.6 Statics and Dynamics 

A circular actuation scheme is required to turn a set of rotary-wing blades.  Gears, 

a fundamental MEMS component, are ideal to spin rotary-wings at the required lift 

frequency.  Two gears of different sizes, a master and pinion, are related by gear ratios 

assuming intermeshing gear teeth.  The pinion gear is the MEMS actuating system, and 

the master gear is the larger gear attached to the rotary wings.  Assuming the master gear 
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is rotating at a sufficient lift frequency, ΩL, the required pinion gear drive frequency, fP, is 

expressed using the gear ratio, 

LP
M

P

L

P Gf
N
Nf

G Ω=⇒=
Ω

=  (Hz)  (33), 

where G, NP and NM are the gear ratio, pinion gear number of teeth and master gear 

number of teeth, respectively. 

 As the comb drive actuates, friction forces due to polysilicon-to-polysilicon 

surface rubbing of the actuator and gear occur.  In macro-size devices, the force of 

friction is independent of surface area.  However, due to the MEMS scaling effect, the 

surface area-to-volume ratio significantly increases.  At the MEMS regime, surface 

roughness and surface area play a major role in determining the friction force [89].  The 

conventional expression for friction force, FF, is 

mgF SF μ=    (N)  (34) 

and μS is the dimensionless coefficient of static friction.  This force expression represents 

the force required to move an object from rest.  Technically, once the device is in motion, 

the frictional force is decreased because the static friction coefficient is replaced with the 

kinetic friction coefficient which is typically less.  However, due to the micro-scaling 

uncertainty and to remain conservative, the static friction force will be used throughout. 

 Lumbantobing, et al researched the friction force of polysilicon-to-polysilicon 

using MUMPs® fabricated comb resonators [89].  The frictional force was a result of 

polysilicon MUMPs® dimple features rubbing against the polysilicon electrode.  Dimples 
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are small protrusions allowing for minimal surface area contact.  Lumbantobing’s 

empirical results modified Equation 33 as 

                                                  
mg

A
mgKF
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1−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=         (N)  (35) 

where K and B were found to be 134.1 and 0.610, respectively, and AC is the contact area 

of the dimples (m2) [89].  The empirical results were recorded using ten dimples varying 

25-100 μm2.   Although these findings were associated with a comb drive, the same 

analysis will be applied for friction forces of the gear-substrate interface as well.  

3.7 Electromechanical System Theory 

The comb drive actuator is a transducer which converts electrical energy to 

mechanical energy; hence, a coupled electromechanical resonating system.  The 

electromechanical system can be simplified into an inductor-resistor-capacitor (LRC) 

circuit with electromechanical couplings as shown in Figure 39.  The LRC components 

represent the spring-mass-damper, and the transformer represents the coupling from the 

electrical capacitance to mechanical resonance. 

 

 
Figure 39:  Electromechanical equivalent circuit of a comb drive resonator. 
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 Second-order differential equations are used to express mechanical and electrical 

resonance expressed as 

)()()()( 2

2

tkxtx
dt
dtx

dt
dmtF ++= β   (N)  (36) 

and 

)(1)()()( 2

2

tq
C

tq
dt
dRtq

dt
dLtv ++=  (V)  (37) 

where F, m, β, k, x and t are force (N), oscillating mass (kg), damping coefficient (kg/s), 

spring constant (N/m), position (m) and time (s).  For Equation 37, L, q, R and C are the 

inductance (H), charge (C), resistance (Ω) and capacitance (F).  Mechanical-electrical 

translations can be drawn after noting the similarities of Equations 36 and 37.  The 

inductor, resistance and capacitance can be modeled as the oscillating mass, damping 

coefficient, and inverse spring constant shown in Figure 39 accounting for mechanical 

resonance. 

 The transformer coupling relates the electrical and mechanical domains of Figure 

39 as described by Yalcinkaya [90].  The transformer has a conversion ratio of 1:ηT , and 

⎟
⎠
⎞

⎜
⎝
⎛= C

dx
dVnTη   (C/m)  (38) 

where ηT, n, V and C are the transformer coupling, number of capacitive comb finger 

pairs, applied voltage (V) and comb finger capacitance (F) [90].   

 When the electrical and mechanical sections of Figure 39 are oscillating at the 

resonance frequency, the inductor and capacitor reactance cancel each other.  In other 
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words, the magnitude of the resonating comb drive shuttle is defined solely by damping 

(resistor).  The value of the mechanical resistor in Figure 39 is given as 

          
22

*

T

S

T Q
mk

R
ηη

β
==       (Ω)       (39) 

where Q is the quality factor of the comb drive actuator and m* is the oscillating mass (g) 

[90].  Equation 39 is divided by the square of the transformer coupling to normalize the 

resistance.  The quality factor is a dimensionless parameter defining the energy loss of 

the comb drive.  Schmidt, et al [88, 91] researched energy loss of MUMPs® comb drives 

and approximated Q as 

S

SFT

A
kmm

zQ
μ

)( +
=       (40) 

where z, μ, and AS are the distance between the shuttle and substrate (m), absolute 

viscosity of air (N-s/m2) and area of the shuttle plate (m2).  Given Equation 39, the 

average sinusoidal power required to operate a comb drive, Pcomb, is expressed as 

R
VPcomb 2

2

=    (W)  (41) 

3.8 Chapter Summary 

Several aspects of engineering were discussed from low-Reynolds number 

aerodynamics to electro-mechanical system power requirements for a rotary blade 

MEMS robot.  MEMS actuators were surveyed, and the comb drive’s exceptional 

frequency response is ideal for high spin rates.  The analytical expressions developed for 
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actuator force, resonance frequency and power will be utilized to develop a conceptual 

model for the robot. 

 

 



 

IV. Design and Fabrication Methodology 

 

4.1 Chapter Overview 

This chapter presents the flying MEMS robot design.  The design of MEMS comb 

drive rotary actuators and three wing designs are presented.  The following sections 

describe how the MEMS devices assemble to form the actuating system.  The chapter 

concludes with other design considerations and assembly using flip chip/bond 

technology.     

4.2 MEMS Surface Micro-Machining Design 

4.2.1 Actuation 

 Section 3.5.1 ruled out most actuators excluding comb drive resonators for 

turning rotary wings.  Comb drive resonators offer exceptional frequency for high spin 

rates.  Comb drives provide lateral deflection, but when two are connected orthogonally 

they are capable of circular actuation.  The circular actuation corresponds to the pinion 

gear concept discussed in Section 3.6.   

As shown in Figure 40, the orthogonal comb drives are physically attached at the 

ends of their push rods.  At this joint, the pinion gear teeth are positioned linearly—

similar to a rack gear, but the rotary motion is modeled as a circular pinion gear.  The 

comb drive electrostatic force is used to position the linear rack, but the restoring force of 

the flexures is utilized to turn the master gear and wings.  The number of teeth that 

engage the master gear per cycle of the comb drive is the “net” number of teeth for the 

modeled pinion gear.  The interdigitized comb fingers are designed of stacked Poly1-2 to 
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increase the electrostatic force as evident in Equation 23.  The shuttle and springs are 

designed of Poly1 for frequency and force optimization (details in Section 5.3). 

 

 
Figure 40:  SEM picture of orthogonal comb drive design showing an SEM close-up 
picture of the linear rack and master gear. 

 

 The orthogonal comb drives are designed so the peak-to-peak displacement, dpp, 

of the rack is not longer than the length of the rack.  Exceeding this distance is wasteful 

as the number of teeth meshing with the master gear remains the same per cycle.  This 

relationship is expressed as 

           
rack
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12
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where Lrack  is the length of the rack (m).  
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4.2.2 Gear 

 The master gear is the turning mechanism for the rotary wings.  The rack gear 

rotates like a pinion gear which engages the master gear.  The dynamics of the master 

gear are determined by a gear ratio and are dependent on the design of the orthogonal 

comb drive system.  The gear is made of Poly1 to reduce total weight and to possibly 

fabricate the wings pre-attached which requires Poly2 (since only two structural 

polysilicon layers are available with the MUMPs® process).  The gear utilizes dimples to 

reduce stiction and friction.  The gear rotates on Poly0 to ensure a common electronic 

ground between the comb drive rack and gear.  Without Poly0, the isolating nitride layer 

could break down at the high voltages required for actuating comb drives [50].  The 

stationary hub axis is made of Poly2 and holds the gear in place.  The gear is not 

anchored; so, when the sacrificial oxide layers are released, the gear slides down the hub 

1.25 µm (Oxide1-Dimple) to rest on the Poly0.  Figure 41 shows a diagram of the gear 

and hub. 

 

 
Figure 41:  SEM picture showing the Poly1 master gear and Poly 2 hub axis.  The gear 
rotates on the Poly0 ground electrode using dimples. 
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4.2.3 Wings 

 Three rotary wing designs were implemented using the MUMPs® fabrication 

process.  The first wing design was slightly modified from Glauvitz’ version [50].  The 

second design followed design guidelines put forth by Tsuzuki, et al.  These two designs 

were fabricated separately in an attempt to assemble the wing to the master gear using 

flip bond technology.  The last design attempted to fabricate wings without assembly.  

The following paragraphs describe each in more detail. 

  4.2.3.1    Glauvitz Wing (Wing-G) 

 The first wing design existed prior to conducting this research, and was only 

slightly modified.  Glauvitz’ research found fabricating wings were best designed using 

Poly2 and Gold.  The thin-film stress of the two materials created a small pitch angle 

required for thrust, but the angle was small (~5°) relative to the required 15-20° shown by 

Tsuzuki [69].   

 The pitch angle solution was to create a hinge using photoresist.  For the Glauvitz 

wing (Wing-G), the wing ribs were separated 2-3 µm from the main spar.  Glauvitz 

attempted the hinge on Poly1 wings, but the overlying Oxide2 layer above Poly1 created 

challenges for the HF oxide release.  Similar wings were designed of Poly2 and Gold 

(eliminating Poly1) in this research to fabricate a wing with a 15-20° pitch angle as 

shown in Figure 42.   

 The dimensions of the wing in Figure 42 are 1270 µm radius x 540 µm chord 

length.  Due to the large chord segment, it is difficult to position more than four wings 
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adjacent to each other.  Therefore, the best designed rotor is a four wing rotor, or quad-

rotor. 
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Poly2Poly2
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Wing RibWing Rib Wing RibWing Rib
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PhotoresistPhotoresistAA--AA PhotoresistPhotoresistAA--AA

Wing SparWing Spar
 

Figure 42:  Poly2-Gold rotary wing showing the separation of the ribs from the spar for 
the photoresist hinge.  A cross section of the photoresist hinge is shown in the top right. 

 

  4.2.3.2    Tsuzuki Wing (Wing-T) 

The second wing was modeled after following Tsuzuki’s design guidelines 

described in Section 3.2.3.  The research pointed out the overall wing geometry benefits 

most from a flat rectangular shape, which is ideal for the planar MUMPs® process; but, 

for the same reasons a few guidelines were challenging to include in the design.  The 

implemented design ideas were overall dimensions, corrugation, camber, and associated 

ratios between them.  Figure 43 shows the Tsuzuki wing (Wing-T) designed in L-Edit 

and imaged with an SEM. 
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Figure 43:  Wing-T modeled in L-Edit using the MUMPs® fabrication process.  The 
corrugation detail was achieved using alternating Poly0 spacer and Via-Dimple trench 
lines. 

 

 The overall dimensions of the wing are approximately 1250 µm radius x 250 µm 

chord.  The aspect ratio, the ratio of radius to chord, results in 5.0.  The thickness of the 

wing is simply a Poly2 and Gold stack, or 2 µm.  Therefore, the thickness-to-chord ratio 

is approximately 0.8 %.  Each corrugation of the trailing edge is roughly 8 µm wide and 2 

µm deep.  The depth of the corrugation was achieved using alternating lines of Poly0 as a 

spacer and Via/Dimple trenches.  The Poly0 raised the surface 0.5 µm and the Via/dimple 

trench lowered the surface 1.5 µm for a total 2 µm deep corrugation.  The resulting 

corrugation width-to-depth ratio is 4.  The addition of a Poly 1 spacer combined with 

Poly0 lines can decrease the ratio to approximately 2.  Up to five wings are available per 

72 



 

rotor since the chord length is shorter than Wing-G.  Table 8 summarizes the wing design 

parameters compared to Tsuzuki’s recommendations. 

 

Table 8:  Wing-T design parameters compared to Tsuzuki’s recommendations. 

Parameter MUMPs® Design Tsuzuki Design 
Wing Geometry Flat Plate Flat Plate 
Aspect Ratio 5.0 5.5 
Thickness:Chord Ratio 0.8 2 
Corrugation Width:Depth 4.0 (2.0)* 1.87 

         *using a Poly0 and Poly1 spacer 

 
  4.2.3.3    Pre-Attached Wings 

The third type of wing is not necessarily a new design; instead, the same two 

wings as described above are fabricated pre-attached to the master gear.  This 

methodology would not require flip bond assembly technology.  The wings are attached 

to the master gear using the Via etch by removing Oxide2 above the gear where the Poly2 

wings adhere to the Poly1.  Figure 44 shows the Via wing attachments. 

 

 
Figure 44:  L-Edit 3-D render of Poly2-Gold wing sections attached to the master gear 
using Via etches.  A close-up SEM of the wing attachment is shown on the right. 
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  4.2.3.4    Conformal Topology 

 The MUMPs® process is conformal meaning the topology of underlying layers is 

reproduced in the layers above them.  For designing wings pre-attached to the master 

gear, the underlying topology will yield a peculiar shaped wing.  The solution is to add a 

spacer layer underneath the wings to mitigate unnecessary corrugation.    

The wings are attached near the center of the gear and extend far beyond the gear.  

As the wing extends beyond the gear teeth, an imprint of the gear teeth and a drop off 

resulting from the outer edge of the Poly1 gear will result in a bent wing.  But, if a layer 

of Poly1 is fabricated below the wing (unattached), the drop off topology is mitigated.  

Creating a spacer with meshing teeth below the wing will further reduce the topology 

effects on the wing.  The same concept applies Figure 45 shows a diagram of the effects 

of including a Poly1 wing spacer.   

 

Poly2/Gold Wing

Poly2/Gold Wing

Poly1 GearPoly0 Ground

NO SPACER

…with
POLY1 SPACER

Poly0 Ground Poly1 Gear

TOP VIEWTOP VIEW XSEC VIEWXSEC VIEW

Poly1 Gear
Oxide1

Poly2 Wing

Poly1 Gear
Oxide1

Poly1 Spacer

Poly2 Wing

Poly0 Oxide2

Metal

Unwanted Topology

Desired Flat Topology

Poly 1-2 Via

 
Figure 45:  Shown on the left is the L-Edit top view of the master gear where the 
Poly2/Gold wing extends beyond the gear teeth.  The effects of using a spacer are shown 
in the lower half.  Shown to the right are the associated cross sectional views to 
conceptualize the desired topology effect using a spacer. 
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The same concept can be used in other ways underneath the wing.  The Poly1 

spacer can be patterned identically as the Poly0 corrugation lines discussed in the 

previous section.  This additional 2 µm height decreases the corrugation width-to-depth 

ratio to roughly 2.0—close to Tsuzuki’s guideline of 1.87 (refer to Table 6).  Spacers 

were also included near the push rods.  However, using residual stress theory presented in 

Section 3.3, the Poly2/Gold wings will deflect upward; most likely sufficient to avoid 

contact with the comb resonator actuators parts beneath.     

 Perhaps most important of all is ensuring the gear teeth mesh with the comb drive 

rack teeth.  The issue is exigent because the master gear will drop 1.25 µm after the oxide 

layers are released in HF (post-release height range of 0.75-2.75 μm).  Without 

compensation, the meshing teeth (post-release height range of 2-4 μm) will overlap just 

0.75 µm posing the risk of the rack teeth sliding above the gear.  The solution is to use a 

dimple etch over the comb drive rack teeth lowering it 0.75 µm.  Using the dimple etch, 

the teeth will have 1.50 µm of overlap.  Figure 46 shows the dimple feature on the rack. 

 

 
Figure 46:  SEM picture illustrating the advantage of lowering the rack teeth 0.75 μm 
using the dimple etch feature.  Lowering the teeth increases the mesh alignment to the 
gear teeth. 
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4.3   Assembling MEMS with Flip Chip Technology 

 The wings were primarily designed for the purpose of assembling them to form a 

MEMS system.  Assembling is achieved using flip chip, or flip bond, technology.  Flip 

bonding requires two separate chips—one containing the MEMS system and the other a 

MEMS part.  Typically, flip bond machines use vacuum force to hold the respective 

chips.  The top and bottom chips are faced toward each other.  Using sophisticated 

aligning techniques, the chips are brought into contact, and a combination of high 

pressure (40-60 psi) and high temperature (400-650° C) gas is applied to the chips to 

create the bond. 

 Several MEMS devices were fabricated for assembly—the actuating system, 

wings, and shaft collars.  The shaft collars are shaped like an O-ring and are placed 

around the gear hub so they rotate at the gear’s frequency.  The shaft collars serve to add 

height to the wings to:  (1) increase the airflow beneath the wing for suitable thrust force 

and (2) prevent the wings from contacting the substrate resulting from the downward 15-

20° pitch angle (wing trailing edge points down after assembly).  Each shaft collar is 4.75 

µm thick—the maximum structural thickness available in the MUMPs® process layers.  

Unfortunately, the larger the wing’s chord length, the more collars are required to offset 

the wings’ vertical deflection.  Figure 47 shows an SEM image of one shaft collar, and 

Table 9 shows the minimum number of shaft collars required for each wing design based 

on the optimum angle of attack.   
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Figure 47:  SEM picture of a shaft collar with thickness of 4.75 μm.  The shaft collar, 
when stacked, forms the shaft to offset the wings above the substrate. 

 

Table 9:  Required shaft height and assembly steps for the optimal pitch angle range of 
15-20°. 

Parameter 
Wing-G Wing-T 

15° 20° 15° 20° 
Chord length (μm) 540 540 250 250 

Vertical offset (μm) 139.8 184.7 64.7 85.5 
Required shaft collars* 29 39 13 18 

    * Includes the offset of the Poly1 master gear and dimples 

 
 When using the flip bonder, the two chips are joined together before releasing the 

oxides.  After establishing a sufficient bond, the two chips form a “sandwich” with oxide 

in the middle.  The joined chips are submerged in HF together to release the oxide 

between the chips.  The chip with the MEMS part will separate from its parent chip while 

attached to the MEMS system chip.  Small anchors tethering the MEMS device to the 

parent chip are broken beforehand to ensure the MEMS device separates.  This process is 

repeated as necessary to build the shaft to sufficient height and attach the rotary wings.  A 

diagram of the flip chip process is shown in Figure 48. 
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Figure 48:  Flip chip assembly process.  The MEMS device and substrate are bonded to 
the MEMS system using high temperature and/or high pressure.  The device substrate 
floats away leaving behind the assembled MEMS device during an HF oxide release. 

 

4.4   Chapter Summary 

 This chapter presented MEMS designs to enable rotary-wing actuation.  The 

rotary actuation system consisted of two orthogonally attached comb drive actuators.  

Two wing designs were shown including one with features conducive to low-Reynolds 

number flow regimes.  The building blocks of the design—the master gear, rotating 

pinion rack and wing attachments were discussed in detail.  The concept of using spacers 

was also introduced as a method to overcome undesirable topology effects.  Finally, the 

details of building a shaft of collars for attaching the rotor via flip bond technology were 

explained.  For further design details refer to the L-Edit 2-D CAD drawings in Appendix 

A.  Next, Chapter 5 combines the theory of Chapter 3 and designs of this chapter to 

analyze and model the components of a rotary-wing flying MEMS robot. 
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V. Modeling and Analysis 

5.1 Chapter Overview 

This chapter presents the modeling and analytical results for predicting the 

performance of the flying MEMS robot presented in Chapter 4.  Modeling was achieved 

using CoventorWare® MEMS finite element analysis (FEA) software.  Simulations were 

conducted to compare beam and wing deflection, comb frequency and displacement to 

the theoretical expressions given in Chapter 3.  Analytical expressions were also 

formulated to define the required actuation force, mass limitations, and total power 

required for flight. 

5.2 Thin-film Residual Stress 

 Thin-film stress is sensitive to the ambient environment (temp, humidity, etc) and 

the release process.  Therefore, it is imperative to determine the residual stress for each 

die received from the MUMPs® fabrication foundry as they differ chip to chip.  Residual 

stress values are commonly extracted from simple MUMPs® cantilever beams using the 

theoretical relationships developed in Section 3.4.  

  
5.2.1  Thin-Film Stress and Deflection 

 Thermal and internal thin-film stress values are required for input into 

CoventorWare®. An accepted method for approximating modeled thin-film stress is to 

iteratively match, or calibrate, modeled cantilever beam deflection to experimental 

cantilever beam deflection results [20, 50].  First, the Poly2 layer cantilever beams are 
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calibrated followed by fine-tuning the gold stress of a Poly2/Gold bilayer to match the 

empirical results.   

Three MUMPs® dies were fabricated during this thesis research, and the internal 

residual stresses for each run are shown in Table 10.  The beams were calibrated for 

MUMPs® Run 79 after measuring them under a Zygo interferometric microscope (IFM) 

as shown in Figure 49.  The total FEA-calibrated thin-film stress of Poly2 and Gold was -

12 MPa (compressive) and 95 MPa (tensile), respectively; these values were used 

throughout to standardize the models.   

Table 10:  PolyMUMPs® foundry internal residual stress and thickness data for 
MUMPs® Runs 78-80. Tensile and compressive stress is denoted T and C, respectively 
[92]. 

Layer 
Run 78 Run 79 Run 80 

Thickness 
(µm) 

 Stress 
(MPa) 

Thickness 
(µm) 

Stress 
(MPa) 

Thickness 
(µm) 

Stress 
(MPa) 

Nitride 0.608 150 T 0.585 62.5 T 0.601 79 T 
Poly0 4.919 25.3 C 0.4944 26.7 C 0.497 32 C 
Oxide1 1.909 --- 1.983 --- 1.922 --- 
Poly1 1.999 7.7 C 1.998 8.3 C 2.002 7.3 C 
Oxide2 0.731 --- 0.756 --- 0.743 --- 
Poly2 1.512 8.7 C 1.509 4.3 C 1.509 8.3 C 
Metal (Au) 0.484 13.2 T 0.515 10.3 T 0.4933 13.2 T 
 
 

 
  (a)             (b) 

Figure 49:  (a) Cantilever beams were measured under a Zygo Interferometric 
Microscope (IFM) and (b) calibrated in CoventorWare® to match the empirical 
deflections. 
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5.2.2  Wing Deflection 

The stress results of Section 5.2.1 were used to predict the deflection of the rotary 

wings.  The deflection of the wing occurs in two sections—the leading edge (LE) and the 

rib arrays (chord).  The deflection of the LE is different than a simple cantilever beam 

due to the increased mass in the chord dimension and variable cross sectional area along 

the LE.  However, the rib arrays can be modeled as one wide cantilever beam with 

uniform deflection.  The rib arrays are attached to the spar; therefore, the point of 

maximum wing deflection occurs at the tip of the farthest rib. 

Each wing design was imported into CoventorWare® to model the stress-related 

deflection.  Wing-T was modified to include less corrugation because CoventorWare® 

was limited in simulation memory.  For similar reasons, the Wing-G used a tapered 

design to eliminate rounded features.  Figure 50 and Figure 51 show the simulated 

results.  The left ends of each model are fixed since they will be attached to the master 

gear at this point.   

 
Figure 50:  CoventorWare®

 analysis of Wing-G deflection.  The maximum deflection 
occurred at the farthest rib tip at approximately 160 μm out-of-plane. 
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Figure 51:  CoventorWare®

 analysis of Wing-T deflection.  The maximum deflection 
occurred at the farthest rib tip at approximately 210 μm out-of-plane. 

 

Data points were extracted from the leading edge of each wing and compared to 

calculated deflection in Figure 52 and Figure 53.  For ease, the analytical values were 

computed using simple cantilever beam expressions.  Two methods were used for 

analytical deflection calculations—(Analytical 1) using Equations 13 and 18 independent 

of Rbilayer  and (Analytical 2) using Equations 15 and 18 dependent on Rbilayer.  Wing-G 

matched closely with Analytical 1 for lengths less than 1 mm, and Wing-T followed 

Analytical 2 results within 20%.  In general, the simulated and calculated values agree 

very well for wing lengths less than 0.6 mm.  The discrepancy of the analytical values at 

larger distances is attributed to neglecting the variable area moment of inertia and chord 

mass of the wing; so, the simulated results are the most accurate.  The shorter chord of 

Wing-T allowed the spar to deflect more parabolic as opposed to the near-linear 

deflection of the heavy Wing-G.    
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Figure 52: Simulated and analytical Wing-G deflection versus leading edge length.  The 
simulated wing deflection closely resembles Analytical 1 values for length less than 1- 
mm 
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Figure 53:  Simulated and analytical Wing-T deflection versus leading edge length.  The 
simulated wing deflection closely resembles Analytical 2 values within 20%. 

 

 The simulated and calculated deflection of each wing’s chord is shown in Figure 

54.  Only Analytical 1 was included because the chord segments are simple cantilevers 
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beams.  The calculated deflection was within 5% of the simulated data.  Deflection 

calculations are shown in Appendix B. 
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          (a)                (b) 

Figure 54:  Simulated and analytical chord length results of (a) Wing-G and (b) Wing-T 
agree within 5%.  

 

 The simulated and calculated maximum wing deflection values are given in Table 

11.  Wing-G has a large mass and an unaccounted area moment of inertia in the analytical  

calculations which explains the large error.  But, Wing-T has less than half of the mass on 

the chord; so, the modeled data closely matches the analytical values. 

Table 11:  Comparison of simulated and calculated maximum deflection of the MEMS 
wings. 

 Modeled 
(μm) 

Analytical1
(μm) 

Analytical2
(μm) 

Percent Difference 

Mod
AMod )1( −

100
Mod

AMod )2( −
100

Wing-G 172.1 214.3 290.7 -24.5 -68.9 
Wing-T 212.8 173.0 247.2 18.7 16.1 

     

5.3 Analysis of Drive System 

 The comb drive actuator presents many engineering aspects worth analyzing.  The 

comb drive includes a myriad of geometric design considerations to optimize frequency, 
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deflection and force.  Such comb drive geometric parameters include the number of comb 

finger pairs, the thickness of the comb fingers, the stiffness of the flexures, length of 

flexures and the mass of the shuttle—all of which have engineering trade-offs. 

 5.3.1 Analysis of Frequency 

 Optimizing frequency is priority since obtaining a suitable thrust force is solely 

dependent on how quickly the rotor turns.  According to Equation 31, 

                                                             

5.0

* ⎟⎠
⎞

⎜
⎝
⎛∝

m
k

f S
comb   (Hz)  (43) 

which focuses attention towards a balance between increasing flexure stiffness and 

decreasing the mass of the shuttle, flexures, and truss.  However, the flexures and truss 

typically account for less than a quarter of the total mass; so, decreasing the shuttle mass 

is essential. 

 Most of the shuttle’s mass is found in the comb fingers.  Figure 55 shows the 

effect of increasing the shuttle’s total number of comb fingers on the comb drive’s 

operating frequency.  The frequency rapidly increases as the number of comb fingers 

decreases less than 36.  The trade-off between the two polysilicon layers is subtle for 36 

or more comb fingers.  When n<36, the decrease in mass using Poly2 outweighs the 

increase of the Poly1 spring constant; thus, slightly improving the frequency 

performance.  The highest frequencies are obtained using a stiffer Poly1-2 stacked layer, 

but the overall mass of the comb drive is almost doubled.  Utilizing Poly2 exhibits 

superior frequency performance for comb fingers less than 36, and for n=36 the material 

choice is insignificant. 
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Figure 55:  Graph of number of comb fingers versus the comb drive frequency.  As 
shown, the number of comb fingers is best designed at or below 36 for high frequency 
application.  As the number of fingers increase, the frequency trade-off of using Poly 1 or 
Poly 2 is subtle.  

 

 CoventorWare® finite element models (FEM) were created with varying number 

of comb fingers.  The finite element analysis (FEA) was strictly mechanical which found 

the particular frequency mode of the lateral shuttle displacement.  Table 12 compares the 

calculated and FEA results for a Poly1 device which is in close agreement. 

Table 12:  Calculated and modeled resonance frequency for various numbers of total 
comb fingers.  For each, the shuttle is Poly 1 with 200 μm long and 2.5 μm wide flexures.   

No. Comb 
Fingers 

Calculated Resonance 
Frequency (kHz) 

Modeled Resonance 
Frequency (kHz) 

% 
Difference 

36 9.249 8.648 6.49 
40 8.946 8.315 7.05 
44 8.643 8.017 6.99 
48 8.369 7.749 6.93 
52 8.120 7.507 7.55 
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 5.3.2 Analysis of Deflection 

 The rack will deflect laterally for one comb drive and in a circular motion in the 

orthogonal comb drive setup.  Each of the two comb drives in the orthogonal pair is 

designed identically so their deflections are equal.  The more equal their lateral 

displacements, the more circular the rack motion in the orthogonal scheme.     

 A deflection analysis was calculated using Equation 30 and compared to FEA 

models in CoventorWare®.  The FEA stepped through voltages of 0-200 V in 50 V 

increments for three different models—Poly1, Poly2 and stacked polysilicon flexures.   A 

representative FEA mesh of one comb drive actuator is shown in Figure 56.  Figure 57 

shows the simulated displacement results for a 200 V applied potential to the outer comb 

fingers.  Poly2 deflects the most because it possesses a low spring constant. 

 

Figure 56:   Simplified CoventorWare® FEA model of comb drive.  The comb drive has 
a Manhattan Brick mesh of 25 x 25 x 5 μm3 (x, y, z axes) partitions. 
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Figure 57:  The effect of changing the flexure thickness is shown with (a) Poly1, (b) 
Poly2 and (c) Poly1-2 thickness.  The flexures are all 200 µm long and 2.5 µm wide, and 
the applied voltage is 200 V. 

 

 Figure 58 compares the simulated and calculated displacement results.  The Poly2 

springs deflect the most which is attributed to its low spring constant resulting from a 

lower area moment of inertia.  Figure 58 also confirms using a stacked polysilicon 

flexure is not effective; not only does the displacement decrease, but the added thickness 

increases the weight of the robot.  The modeled data increased more linearly than the 

calculated displacement, but both were in agreement for Poly1 and Poly2 at high 

voltages.  Differences in the calculated values are attributed to residual stress and mesh 

size which are unaccounted for in the stress expressions.       

88 



 

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

14

16

18
Poly 1 Flex.-Simulated
Poly 2 Flex.-Simulated
Poly 1-2 Flex.-Simulated
Poly 1 Flex.-Calculated
Poly 2 Flex.-Calculated
Poly 1-2 Flex.-Calculated

Peak-to-Peak Comb Drive Displacement -vs- Voltage

Voltage (V)

D
is

pl
ac

em
en

t (
um

)

Comb Drive Parameters:
-- 36 Combs Fingers
-- Poly 1-2 Stack Finger Thickness
-- Poly1 truss, shuttle
-- 200 um flexure lengths
-- 2.5 um flexure width

Poly 1-2 stack comb 
drive is ineffective for 
displacement and also 
increases mass

Poly2 exhibits best 
deflection performance

 
Figure 58:  Simulated and calculated peak-to-peak displacement of three types of comb 
drive actuators as a function of voltage.  The effect of changing the material and 
thickness of the flexures is shown.  

 

 Another FEA was conducted to observe the effect of using different length folded 

flexures.  A CoventoreWare® analysis was designed using flexure lengths ranging from 

150-300 µm in 50 µm increments using the same mesh in Figure 56.  The FEA results are 

pictured in Figure 59 (for L=200 μm, see Figure 57a) and verify the relationship given by 

Equation 29—shuttle deflection increases with increasing flexure length.  Poly1 was 

simulated because it has a higher restoring force (higher spring constant) with just 

slightly less deflection compared to Poly2. 
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Figure 59:  The effect of changing the flexure length is shown with (a) 150 µm, (b) 250 
µm and (c) 300 µm long Poly1 flexures.  Each comb drive is completely Poly1 with 
stacked comb fingers, and the applied voltage is 200V.  The 200 µm long flexures are 
shown in Figure 57a. 

 

 Figure 60 compares the modeled results in Figure 59 and the calculated results 

using Equation 29.  The modeled results appear to diverge from the calculated curves for 

each flexure length, but the divergence is less pronounced for shorter flexure lengths.  In 

general, the modeled results match closer to the calculated values for longer flexures.  

The discrepancy of the two curves is attributed to the method of calculating the area 

moment of inertia for the flexure spring constant; CoventorWare® uses the bending stress 

equation (Equation 12) and the analytical values use geometric dimensions (Equation 28).  

Detailed comb drive deflection calculations are shown in Appendix C. 
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Figure 60:  Peak-to-peak displacement of comb drive actuator as a function of voltage.  
The flexure length is varied from 150 µm to 300 µm in 50 µm increments.  Increasing the 
spring length is effective because the displacement is significantly increased while only 
slightly increasing overall mass. 

 

 5.3.3 Analysis of Actuator Force 

 The comb drive actuators should possess enough force to rotate a large master 

gear at the required frequency.  The major force acting against the comb drive actuation 

is friction.  The frictional results used in Lumbantobing’s research (Equation 35) will be 

utilized to approximate the friction force of the master gear. 

 Force of the comb drive is largely dependent on the electrostatic force induced by 

the aggregate capacitance of the inter-digitized comb fingers.  The proportion, 
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h
ntF P

comb ∝    (N)  (44), 

from Equation 23 shows an increase in comb finger pairs, and finger thickness, but 

minimal capacitive air gap are desired.  The finger thickness is maximum using Poly 1-2 

stacked, and the air gap is kept at a minimum of 3 µm; anything less could yield 

fabrication errors.  Therefore, the number of comb finger should be analyzed. 

 Figure 61 shows the linear relationship of force and the number of comb fingers.  

Approximately 2-4 µN is available per actuator (for a typical resonator voltage range of 

125-175 V) for 36 total comb fingers—the number of comb fingers yielding good 

frequency performance.  Comparing Figure 61 and Figure 55, the engineering trade-off is 

clear between increasing comb fingers for increased force vice decreasing the fingers for 

increased frequency.   
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Figure 61:  Comb drive actuator force as a function of number of comb fingers.  
Approximately 4 µN of force is available per actuator for 36 total comb fingers at 200 V. 
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 The frictional force of the gear opposes the actuator force shown in Figure 62.  

The gear design is comprised of ten dimples—similar to the study conducted by 

Lumbantobing.  The dimples of the master gear were patterned radially of two different 

diameters as shown in Figure 62.  In a similar manner, the resonating parts of the two 

orthogonal combs drives will rub against the Poly0 surface on dimples. 
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Motion

 
Figure 62:  L-Edit drawing of outer and inner diameters containing dimples on the 
master gear.  The average diameter (shown in gold) is used for frictional torque analysis.  
A simple force diagram of the friction force and actuator force is shown on the right. 

 

 Equation 35 is used to calculate the total frictional force acting against the comb 

drive actuator.  The frictional force is largely dependent on the mass of the gear and the 

wings.  The right half of Figure 62 shows a simplified force diagram on the actuator rack.  

The gear pictured in Figure 62 has a weight of 0.418 µg, and the resonating sections of 

the orthogonal pair of comb drives weigh 0.701 µg.  The two parts create a frictional 

force of 1.763 µN together.  Separating the mass of the gear, wings, and shuttle of 

Equation 34 and subtracting the frictional force from the actuator force in Equation 23 

yields the net available actuator force, FNet, expressed as 
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 The effect of increasing the mass of the wings in Equation 45 on the net available 

actuator force is shown in Figure 63.  As voltage increases, the electrostatic force 

increases allowing more wing mass to be fabricated above the gear.  The x-intercept of 

each voltage curve of Figure 63 indicates the maximum allowable wing mass; thereafter, 

the pushing rods of the orthogonal comb drives will stop against the gear teeth.  Because 

the test setup is limited to 200 V, the wing mass should be kept below 12.0 µg per 

orthogonal comb actuator pair.  Figure 63 also shows the voltage required to turn the gear 

alone without any wing mass attached is roughly 90 V.  
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Figure 63:  Net actuator force as a function of wing mass.  The effect of increasing 
voltage allows for a larger wing mass.  The x-intercept indicates the maximum wing mass 
for a particular voltage.  Just less than 100 V is required to turn the master gear alone. 

94 



 

Wing-G and Wing-T wing designs were fabricated in the MUMPs® process for 

attachment to the master gear.  Unfortunately, the masses of each wing are substantially 

more than the 12.0 µg extracted from Figure 63.  The weight of Wing-G and Wing-T is 

6.1 µg and 2.8 µg, respectively—or 24.7 µg and 14.3 µg per rotor, respectively.  

Therefore, to increase force the solution is to link comb drive actuators together to add 

their pushing forces.  To do so, adjacent comb drive shuttles are connected so they 

resonate together.  The total force of a multi-linked comb drive actuator is now expressed 

as 

20)( V
h

nt
JVF Pair

comb
εε

=   (N)  (47) 

where J  is the number of connected comb drive actuators on one side of the orthogonal 

system.  For example, Figure 64 shows a 2-linked orthogonal comb drive where J=2.  

  

 
Figure 64:  Two-linked orthogonal comb drive actuators provide more push force.  The 
pushrods are connected so each shuttle resonates together. 
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 The heavy mass of the rotor is required to be turned using multi-linked comb 

drives.  The net force of the actuators change when multiple comb drives are utilized.  

Equation 45 is re-expressed as 
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Figure 65 shows the net actuator force as a function of voltage for each wing 

design.  Each curve represents a certain number of linked comb drive actuators, and the 

x-intercept corresponds to the minimum force required to overcome friction of the 

actuator and master gear without attached wing mass.  The key point is more actuating 

force is required as the wing mass is increased, and more actuating force is achieved by 

linking comb drives together.  Wing-G is heavier; and, for this reason, the 6-linked comb 

drive begins at 154 V versus the 6-linked Wing-T curve at 137 V shown in Figure 65. 
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Figure 65:  Net actuator force as a function of voltage for both Wing-G and Wing-T 
rotor designs.  Four-link actuators are required for the Wing-G rotor while only three are 
necessary for the Wing-T rotor. 
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5.4 Aerodynamic Feasibility 

 The weight of the wings, actuators, gear, power supply, assembly parts and 

substrate mass must be kept minimal to attain sufficient lift.  To compare both wing 

designs, a 5-linked orthogonal comb drive system is analyzed to maintain the required 

power below 170 V for either design.  The wing, gear and resonating comb drive masses 

are known; so, the remaining mass to allocate as the onboard power supply, substrate and 

ancillary assembly parts can be analyzed. 

 The frequency to lift the robot is determined by the gear ratio from the rotational 

frequency of the rack.  The rack is comprised of seven teeth which are spaced out every 

10 µm, and the master gear possesses 82 teeth.  So, if the dpp was 10 µm the rack would 

displace the gear approximately one tooth per cycle.  In this case, the gear ratio, G, would 

be 82:1.  The inevitable engineering trade off is rack rotational frequency for 

displacement, as the two are inversely proportional. 

 The remaining mass to allocate to the MEMS chip was analyzed for a range of 

practical comb drive resonant frequencies.  Substituting Miki’s thrust equation (Equation 

6) and the gear ratio equation (Equation 33) into the robot lift condition equation 

(Equation 7) and solving for the available mass to allocate to the substrate, power and 

assembly is expressed as  
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where Ngear and Nrack are the number of teeth on the gear and rack, respectively.   
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 Figure 66 shows the relationship of maximum available mass as a function of 

comb drive frequency.  The two wing designs are plotted for various Crw aerodynamic 

coefficients, and the difference of changing the coefficient just 0.25 boosts the available 

mass approximately 100 µg and 50 µg, respectively.  The Wing-G rotor design clearly 

provides more lift but requires more power to rotate. 
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Figure 66:  Maximum additional mass versus comb drive frequency in order to obtain 
suitable lift.  Both the Glauvitz and Tsuzuki wings are shown at different Miki 
aerodynamic coefficients.  For the configuration shown, between 7-11 kHz resonating 
frequency is necessary. 

 

 Figure 66 was generated using specific comb drive parameters; so, the comb drive 

frequency was known.  Given the parameters, the resonance frequency was 9.25 kHz 

which falls very low on the curves, and will hardly turn the heavy wing mass.  A solution 

is necessary to preserve the comb frequency while shifting the curves in Figure 66 as far 

left as possible.  Analyzing Equation 49, it is apparent a simple design feature to increase 
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the robot’s maximum available mass is to decrease Ngear which also serves to decrease 

overall weight.  Nrack can be enhanced significantly by designing the comb drive for high 

displacement (longer, thinner flexures).   

 However, due to the frequency-displacement trade-off, the design parameters 

should be carefully weighed.  The percent increase of displacement must outweigh the 

percent decrease of comb frequency.  According to Figure 61, dpp increases linearly for n 

comb fingers; whereas, in Figure 55, the comb frequency decreases exponentially for n 

comb fingers.  However, the frequency decrease is less pronounced when n>36; so, 

designing the comb resonator for low frequency (LF) and high displacement is best to 

increase available mass for lift.  Doing so, the number of comb fingers and flexure 

lengths are increased to 60 and 300 μm, respectively.  The flexure width is also decreased 

to 2 μm, and the number of master gear teeth is decreased from 82 to 60.  The effect of 

the low-frequency changes is shown in Figure 67.  

The required comb frequency is much lower in Figure 67 (2.98 kHz), but the 

available mass is nearly 20 times increased compared to Figure 66.  The disadvantage is 

the significantly increased range of displacement requiring of 160 μm.  The larger range 

of motion could pose a problem because the pushrods each would experience 

deformations of half dpp—in this case 80 μm if the pushrods are rotating with a constant 

radius.   

 A quad-rotor design is best for aerodynamic balance and efficiency as shown by 

Glauvitz, Chan’s MFC and Stanford’s Mesicopter [32, 33, 44, 50].  A quad-rotor design 

implements four rotors in each quadrant of a square substrate.  For aerodynamic balance, 
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no two adjacent rotors rotate in the same direction.  Further, because of the balanced 

design, two adjacent rotors can share the linked comb drives between them.  The sharing 

configuration is similar to a push-pull or engage-disengage setup suggested by Glauvitz 

and shown in Figure 17.  The sharing decreases the overall mass of the combs by a factor 

of two, and utilizing four rotors quadruples the thrust force.  Equation 42 is modified as 
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Figure 67:  Additional mass available to produce lift versus required comb drive 
frequency.  Decreasing the master gear size and teeth, increasing comb fingers above 36, 
and decreasing the spring constant is the optimum comb design. 

 

 Figure 68 shows the leftover mass to allocate for substrate, power and assembly 

as a function of comb drive frequency for the quad-rotor.  As expected, the additional 

mass values are four-fold that of Figure 67 without modifying the resonating frequency. 
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Figure 68:  Maximum additional mass versus comb drive frequency in order to obtain 
suitable lift for the quad-rotor design.  Both the Glauvitz and Tsuzuki wings are shown at 
different Miki aerodynamic coefficients.  For the configuration shown, up to 3.0 mg and 
5.25 mg could be supported using the Tsuzuki and Glauvitz rotors, respectively. 

 

5.5  Power Requirements 

A quad-rotor design is made of four multiple-link orthogonal comb drives shared 

between four rotors.  Each corner of a square quad-rotor chip is driven by a Y-linked 

orthogonal comb drive pair, where Y is the number of linked comb drives resonating as 

one large shuttle.  Therefore, the MEMS robot will possess two Y-linked orthogonal 

comb drive pairs (each pair is shared between two rotors rotor).   

For power analysis, each Y-linked comb drive will be treated as one large 

resonating shuttle with Y times the push force, spring force and mass.  The resistance of 

each Y-linked comb drive resonator is re-expressed as  
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and each of the four sides of a Y-linked comb drive is connected in parallel.  The 

equivalent resistance, Req is expressed as 

4
Y
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and the corresponding average sinusoidal power requirement, Pcomb, for actuating all of 

the comb drives is expressed as 
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Figure 69 shows representative power requirements for the given comb drive parameters. 
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Figure 69:  Average power versus applied voltage for quad-rotor flying robot employing 
4, 5 and 6-linked orthogonal comb drive actuators.  
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The power requirement significantly increases for voltages greater than 120 V.  In the 

normal operating range of 150-200 V, the flying MEMS robot will consume 0.2-1.0 mW 

of power.  

5.6 Chapter Summary 

This chapter presented modeling and analysis of MEMS theory toward a flying 

MEMS robot.  The frequency and displacement of the comb drive actuator were modeled 

and in close agreement of analytical values.    Utilizing the MEMS research of Miki and 

Lumbantobing, analytical expressions were formulated for available mass to allocate to 

the robot.  A summary of a feasible rotary-wing MEMS robot design for both wing 

designs is presented in Table 13.  The next chapter summarizes the empirical data and 

laboratory testing performed during this thesis. 

 

Table 13:  Summary of key parameters for a feasible rotary-wing MEMS robot design. 

Parameter Wing-G Wing-T 
Poly2-Gold  

wings 
No. rotor wings 4 5 

Angle of attack (deg) 15-20 15-20 

Poly 1 
comb drive actuators 

Interdigitized comb fingers 60 60 
Flexure length/width (μm) 300/2 300/2 

Peak displacement (μm) 165 165 
Resonance frequency (kHz) 2.98 2.98 

No. linked comb drives per rotor 6 5 

Shaft Minimum height (μm) 139.8-184.7 64.7-85.5
No. Collars 29-39 13-18 

Poly 1 
gears 

Rack length (μm) 165 165 
No. master gear teeth 60 60 

Power Power for 150-200 V operation (mW) 0.3-1.0 0.25-0.85
Mass Quad-rotor available mass (mg) 3.0-5.25 1.0-3.0 
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VI.  Experimental Tests and Results 

  

6.1 Chapter Overview 

 This chapter presents the experimental results of the wings and actuators.  The 

wings were measured for deflection and compared to simulated and analytical data.  An 

attempt was also made to create a suitable 15-20° wing pitch angle using both photoresist 

and CrystalbondTM.  Comb drives actuators were characterized and compared to 

simulated and analytical data.  The rotary actuation of orthogonal comb drives was 

characterized, and wing rotation using backup orthogonal thermal actuators is discussed.    

6.2 Chip Release 

 Each MEMS chip was released of sacrificial oxide and dried prior to testing.  The 

sacrificial layer oxide is etched in HF, and the chips are dried either in a critical point 

carbon dioxide (CO2) dryer or on a hot plate.  The drying process is critical because 

stiction, resulting from residual moisture, is one of the most common MEMS failure 

mechanisms.  The CO2 dryer automatically controls the temperature, pressure and 

humidity; whereas, the hot plate method is volatile and sometimes unreliable.  Figure 70 

shows a detailed analysis of the MEMS sacrificial oxide release process, and Table 14 

summarizes the CO2 dryer oxide release procedure performed at AFIT. 
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Figure 70:  Detailed time versus temperature diagram of the MEMS oxide release 
process [77]. 

 

Table 14:  Procedure for releasing and CO2 drying the MEMS chips. 

Step Time 
1.  Agitate chip in acetone 2-4 min 
2.  Submerge in second acetone 15-20 min 
3.  Submerge in HF 3-5 min 
4.  Rinse in methanol 5-10 min 
5.  Submerge in second methanol 10-15 min 
6. Transfer chips to CO2 dryer with methanol 30-40 min to dry 

 

6.2 Wing Deflection 

6.2.1 Residual Stress Deflection 

 The vertical wing deflection induced by residual stress is shown in Figure 71 and 

Figure 72.  Figure 72 also shows the Wing-T rotor is fully released of oxide because the 

wings rotated from their respective Poly1 spacer.  The vertical deflections were measured 

under a Zygo IFM and compared to the simulated and analytical results in Section 5.2.2.  
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Figure 71:  Post-release SEM picture of the Wing-G quad-rotor.  The picture clearly 
shows the vertical wing deflection. 

 

 
Figure 72:  Post-release SEM picture of the Wing-T 5-wing rotor.  The picture clearly 
shows vertical wing deflection.  The capability of the gear and wings to rotate about the 
gear hub confirms the chip was fully released. 
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 The Zygo IFM scans devices vertically and utilizes differences in optical 

diffraction to calculate deflection.  Figure 73 and Figure 74 show the LE deflection of 

Wing-G and Wing –T, respectively.  Both wings deflected linearly to approximately 100 

μm.     

 
Figure 73:  Zygo IFM scan showing vertical deflection of the Wing-G leading edge (blue 
line).  The leading edge deflected approximately 100 μm. 

 

Figure 74:  Zygo IFM scan showing vertical deflection of the Wing-T leading edge (blue 
line).  The leading edge deflected approximately 100 μm. 

 

 Figure 75 and Figure 76 show the empirical deflections compared to the 

calculated and modeled data.  The measured data for Wing-G appeared linear just as the 

modeled data.  The near-linear deflection confirms the calculated deflection does not 
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account for the variable moment of inertia and large wing mass.  Likewise, Wing-T was 

predicted to follow the modeled parabolic deflection; however, the measured data was 

flat and near-linear.     
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Figure 75:  Wing-G empirical data compared to calculated and simulated deflection.  
The measured data closely resembles the modeled data. 
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Figure 76:  Wing-T empirical data compared to calculated and simulated deflection.  The 
measured data closely resembles calculated and modeled data up to 0.5 mm.   
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 SEM pictures were taken to investigate the reason for the flat deflection shown in 

Figure 76.  The corrugation appeared to affect the evaporation of gold in the MUMPs® 

process.  Illustrated in Figure 77, the corrugation trenches created steep sidewalls leading 

to disconnected gold pieces.  The individual pieces, as opposed to long gold strips, likely 

inhibited the leading edge deflection. 

 
Figure 77:  SEM picture of Wing-T corrugation.  The evaporated gold was likely the 
cause of the lower deflections compared to calculated and simulated results. 

 

 The deflection of the chord was also measured using the IFM.  The chord of 

Wing-T deflected despite the disconnected gold segments shown in Figure 78; the total 

deflection was 11.5 μm over the 250 μm chord—closely matching the simulated 8 μm .  

The deflection of the Wing-G chord was out-of-scope for the IFM due to the steep 

deflection outward at the chord tip.  However, since the chord closely resembles a simple 

cantilever, the modeled data of 48 μm can be used as an approximation.  The maximum 

empirical wing deflections were 144.7 μm and 109.7 μm for Wing-G and Wing-T, 

respectively.  Wing-G was just 9.6% less than the modeled maximum deflection.   
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Figure 78:  Screenshot of deflection of the Wing-T chord measured on the Zygo IFM 
(blue line).  The corrugation is shown to the right, and the total deflection was 
approximately 11.5 μm. 

 

The use of spacers under the wings was moderately successful.  The wing was 

kept straight as evident by Figure 73 and Figure 74, but Poly2 seeped between the gear 

teeth.  With insufficient wing deflection, this feature will cause the comb drive rack teeth 

to skip or become caught under the wing where the teeth would mesh.  The deflection 

was checked with the SEM and confirmed the Poly2 wing covered the gear teeth shown 

in Figure 79. 

 
Figure 79:  SEM picture showing the undesired Poly2 which seeped between the Poly1 
gear teeth.  The deflection was insufficient to lift the wing above the gear. 
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6.2.2 Wing Hinge 

 The 15-20° required pitch angle of the chord is not possible using the residual 

stress of Poly2/Gold.  Therefore the chord requires to be assembled at this angle.  

Glauvitz attempted using Shipley 1818 photoresist to create the pitch angle, but the 

overlaying oxide required etching to expose the polysilicon.  This thesis work re-

attempted the photoresist hinge since the sacrificial oxide of Wing-G and Wing-T was 

beneath the polysilicon. 

 A mask was designed to create the photoresist pattern and is shown in Appendix 

D.  Shipley 1818 photoresist was applied to the wings at 4000 RPM for 30 sec for a 

thickness of 1.8 μm.  After baking for 75 sec, the chip was placed under an EVG620 

Mask Aligner with a dose of 120 mJ/cm2 using a 500 W mercury lamp.  Following 

exposure, the chip was developed in 351 solution for 30 sec, rinsed in deionized water 

(DIW) for 30 sec, and baked at 110 °C for 2 min on a hot plate.  Figure 80a shows the 

results of these steps.   

 To release the oxide and observe the deflection, the chip was released and dried 

using the hot plate method.  The chip was submerged in 48 % HF and rinsed in DIW and 

isopropyl alcohol each for 10 min before drying on the hot plate for 15 min at 110 °C.  

Figure 80b shows the resist dissolved during the release.  The resist did not adhere to the 

gold layer.  Most likely, the width of the resist strip was too thin, and the mask design 

should have utilized 2-3 times wider patterns for better adhesion to the gold.  Another 

reason may be due to overexposure; decreasing the exposure dose to 60-100 mJ/cm2 may 

yield better results. 
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(a)          (b) 

Figure 80:  (a) Photoresist pattern after 120 mJ/cm2 dose exposure, 30 sec of 351 
developing, and 2 min hot plate bake.  (b) The photoresist dissolved after releasing the 
oxide in HF for 3.5 min and dissolving in DIW and isopropyl alcohol each for 10 min.  

  

 Another attempt used CrystalbondTM
 multi-purpose wafer bonding adhesive.  

CrystalbondTM is a clear solid at room temperature, which softens to a liquid at 120 °C 

and is resistant to HF.  Prior to applying the adhesive, the chips were agitated and soaked 

in acetone for 15 minutes, submerged in methanol for 5 minutes, and dried with nitrogen 

gas and hot plate for 2 minutes at 110 °C.  The CrystalbondTM was applied manually with 

fine point tweezers using optics from a wire bond machine and a heated stage at 120 °C.  

This task required high precision but was practical.  Figure 81a shows a top view of the 

MEMS chip with CrystalbondTM applied, and Figure 81b shows the CrystalbondTM 

successfully bonding the wing’s chord to the spar. 
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          (a)                        (b) 

Figure 81:  (a) Top view of MUMPs® 80 chip with CrystalbondTM attachments on two 
Wing-T rotors, and (b) SEM picture of CrystalbondTM successfully bonding the hinge. 

 

 The MEMS chips were released in HF for 3.5 min and dried using the hot plate 

method.  The hot plate process requires chips to be submerged in DIW and isopropyl 

alcohol each for 10 minutes immediately after etching in HF.  The chips were then set on 

a hot plate for 10-15 min at 110°C which fully dried the chip and reflowed the 

CrystalbondTM.  

 The CrystalbondTM successfully created a hinge, but the resulting deflection of the 

wing was not increased beyond the residual stress deflection.  One possible reason for the 

deficient deflection was applying the CrystalbondTM while it was softened; precisely 

placing small solid pieces and reflowing naturally could provide better adhesion 

properties and higher surface tension.  Future work should also consider solder spheres of 

25-75 μm diameter and 62Sn/36Pb/2Ag composition with low-melting point of 179°C.  

The weight of one solder sphere in this range is 0.07-1.86 μg.  Assuming two spheres per 

wing, a total of 0.55-14.9 μg and 0.7-18.6 μg of additional chip mass is obtained using 

the Wing-G and Wing-T designs, respectively.  Solder spheres were successfully reported 

by Linderman, et al in the development of a micro-rotary fan with angled fan blades [93].  
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6.3 Comb Drive Actuation 

6.3.1 Comb Drive Resonator 

 Various comb drive designs were fabricated to compare frequency and 

displacement to simulated and analytical data.  A 100 V sine wave was applied to one 

side of the comb fingers, and a frequency sweep was utilized to hone in the peak resonant 

frequency.  All the comb resonators were fabricated of 36 stacked Poly1-2 comb fingers 

and either Poly1 or Poly1-2 stack shuttle.  Several comb drive resonators were tested, and 

representative analytical, simulated and empirical data is shown in Figure 82.       
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   (a)      (b) 

Figure 82:  Calculated, simulated and experimental comb drive frequencies versus 
flexure length for (a) Poly1 and (b) Poly1-2 shuttle.  The comb drives have 36 
interdigitized fingers with a thickness of 3.5 μm (stacked Poly1-2). 

 

Figure 83 shows representative comb drive displacement at 100 V.  The 

displacement could not be precisely measured, but using known sizes of geometric 

features, the displacement was estimated to be 15 μm and 28 μm for 200 μm and 250 μm 

flexures, respectively.  The higher displacement of Figure 83 compared to Figure 60 is 
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attributed to the fabrication process and HF sacrificial oxide release.  The sacrificial 

oxide release also can slowly thin the flexures at an extremely slow etch rate.  The 

thinning is often negligible of larger devices, but a change of just 0.1 μm of a 2 μm x 2 

μm flexure can drastically affect the spring constant and resulting deflection.   

Nevertheless, the 50 μm increase in length yielded roughly double the displacement 

which is clearly shown by Figure 60. 

 

 
(a)        (b) 

Figure 83:  At 100 V, twice as much deflection was observed by lengthening the flexure 
lengths from (a) 200 μm to (b) 250 μm as predicted by simulated and analytical models. 

 

6.3.2 Orthogonal Comb Drives 

Rotary actuation was possible using two identical electronic signals at the 

system’s resonance frequency which have a phase angle difference near 90°.  The 

pushrod perpendicular to the rack acts as the clutch to engage and disengage the rack, and 

the pushrod in-plane with the rack is the pusher.  Figure 84 shows how the two (2) signals 

interact to rotate the gear.  Figure 85 shows the laboratory test setup to obtain the desired 

signals. 
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Figure 84:  Electric signals for the orthogonal comb drive actuation scheme have a 90° 
phase angle difference.  The shaded yellow section corresponds to the time period the 
teeth are engaged and turning the rotary wings. 

 

 
Figure 85:  Laboratory test setup to obtain two amplified oscillating signals with a 
difference in phase angle.  

 

 The orthogonal comb drive was capable of rotating a gear successfully and an 

example is shown in Figure 86.  The actuators response was sensitive to the DC offset of 

the wideband amplifier and the phase angle difference of the two waveform generators.  
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The output of both parameters was viewed by the oscilloscope.  As the voltage was 

increased, the DC offset required constant readjustment so the minimum voltage of each 

sine wave coincided with 0 V (ground).  The phase angle difference was observed to 

work for a range of 75 – 105° and did not appear consistent for identical devices. 

 

 
Figure 86:  Screenshot of the lateral deflecting comb drives resulting in rotational 
actuation of the rack.  The comb drives are comprised of a Poly1 shuttle and 52 shuttle 
teeth which resonated at 7.7 kHz. 

 

 The design concept was successful but allowed only intermittent rotation.  Poly0 

was placed under the entire actuator, but was omitted in the wire runs.  Incorporating 

Poly0 is significant in order to avoid breaching the electrically isolating silicon nitride 

layer.  The Poly1-2 wire runs in this design consisted of Anchor1 to connect Poly1 to the 

substrate and Poly1-2 Via to join Poly1 and Poly2; the two oxide etches are enough to 

breach the nitride according to the design rules of PolyMUMPs® [78].  At voltage ranges 

of 100-200 V, the comb shuttles would occasionally become completely stuck to the 
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underlying Poly0 ground electrode.  This is evident of a nitride breach because an 

undesirable capacitor is formed as illustrated in Figure 87. 

 

 
Figure 87:  The poly1 shuttle becomes attracted to the substrate when a nitride breach 
occurs.  In this case, the substrate is biased to the applied voltage, and the nitride serves 
as a dielectric between two different voltage potentials forming a capacitor. 

  

A few other design flaws are worth mentioning.  In some cases, the wires were 

too close to the deflecting shuttle resulting in damaging electrical shorts as shown in 

Figure 88a.  Positioning the comb drives away from the edge of the MEMS chip would 

alleviate this problem.  Another repeatable problem was the clutch arm attachment to the 

rotating rack.  The clutch arm typically broke from the rack for voltages greater than 100 

V and for instantaneous voltage surges below 100 V (such as turning ON/OFF with ON 

set to 80 V) shown in Figure 88b.  The cross sectional area of the attachment is 8 μm2 and 

should be increased in future designs.  Fortunately, the rack remained oscillating even 

with the clutch disconnected.  
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(a)      (b) 

Figure 88:  (a) An electrical short occurred because the balancing shuttle arm deflected 
and touched the high voltage wire, and (b) the clutch arm typically breaks from the rack 
at higher voltages. 

 

6.3.2 Wing Rotation 

As presented in Section 5.3, up to 6 connected comb drives are required to turn 

the wings designed in this research.  Unfortunately, only 2-linked orthogonal comb drive 

actuators were fabricated due to lack of space on the chip.  However, thermal actuators 

were fabricated to rotate the wings to demonstrate proof-of-concept rotation.  According 

to Figure 33 and Figure 34, thermal actuators contribute high force—sufficient to 

overcome the weight of the gear and wings (but not to create sufficient thrust because 

they are not fast enough). 

 The thermal actuators are arranged orthogonally and are comprised of 

individually connected single hot-arms actuators shown in Figure 35.  Half of the 

orthogonal thermal actuators are shown in Figure 89.  The complete orthogonal actuator 

is viewable near the bottom right corner of Figure 71 and Figure 72.  The test setup was 
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identical to that of Figure 85 except two square wave DC signals were used and 

approximately 90° out-of-phase.   

 

 
Figure 89:  SEM of a 2x5 thermal actuator array with high force output to rotate wings.  
The array was created as a proof-of-concept rotary actuator because a 6-link orthogonal 
comb drive actuator was not fabricated. 

 

 As with the orthogonal comb drive, the actuation cycle was very sensitive to the 

DC offset and phase angle difference.  The thermal actuators were driven to a voltage 

range of 10-13 V.  The thermal actuators would fail at approximately 16 V where the 

thermal effects plastically deformed and burned the hot arms.   

Figure 90 shows successful rotation of the Wing-G rotor.  The orthogonal thermal 

actuators were driven by a 12 V, 20 Hz DC square wave with an approximate 90° phase 

angle difference.  The wings rotated approximately 40° in 66.67 ms.  Similarly, the 

Wing-T rotor was rotated the same angle in approximately 123.33 ms shown in Figure 

91.  Note the time and angle approximations were made by studying the frame rates 

which is highly imprecise.  Overall, the rotation of both rotors was erratic because it was 
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difficult to dial in the precise DC offset on the analog amplifier.  The slightest touch of 

the DC offset knob was capable of completely changing the actuation cycle. 

 

 
(a)                                              (b) 

Figure 90:  (a) At t=0 sec, a 20 Hz, 12 V actuation cycle is applied to the Wing-G rotor, 
and (b) the rotor rotates approximately 40 deg in one frame segment 66.67 ms. 

 

 
(a)                                              (b) 

Figure 91:  (a) At t=0 sec, a 20 Hz, 12 V actuation cycle is applied to the Wing-T rotor, 
and (b) the rotor rotates approximately 40 deg in two frame segments of 123.33 ms. 

  

 For both rotor designs, the actuator rack typically became caught in the teeth 

beneath each wing.  When this occurred, the rack vibrated continuously against the Poly2 
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which seeped between the Poly1 gear teeth addressed in Figure 79.  Figure 92 shows the 

actuator stuck on the interfering Poly2 wing. 

 

 
Figure 92:  The Poly2 wing interferes with the Poly1 actuator rack.  The rack 
intermittently gets stuck in the Poly2 covered gear teeth as shown in the picture. 

 

6.4 Robot Assembly 

Parts of the MEMS flying robot were designed for flip chip assembly.  The shaft 

section, top shaft section, and wing rotor are shown in Figure 93.  The shaft section was 

designed to fit around the Poly2 hub which held the Poly1 master gear in place.  

However, if utilizing a Poly1 master gear a partial HF oxide etch is required to remove 

Oxide2 covering Poly1.  The shaft section assembly is repeated until sufficient height is 

achieved to allow the wings to deflect downward.  The last section of the shaft is the top 

shaft section designed to hold the rotor in place using four notches.  The disadvantage of 

this design is the numerous assembly steps to build the shaft sections (see Table 9).  

Perhaps a better design for the shaft would incorporate a single, tall silicon shaft 
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fabricated aside from MUMPs®.  Unfortunately, the feasibility of this design was not 

tested because the flip bond machine at AFIT was newly purchased and without 

necessary parts, resources and training.   

 

 
Figure 93:  SEM pictures of the MEMS devices in order of assembly.  The shaft ring (1) 
assembles around the hub of the master gear, and it is designed to repeat until sufficient 
height is achieved.  The top of the shaft (2) holds the rotor (3) in place using the notch-
lock design. 

 

6.5   Chapter Summary 

This chapter presented the experimental tests and results of creating a rotary-wing 

MEMS robot.  The wing deflection of the leading edge and chord segment were 

measured with an IFM and compared to simulated and calculated data.  The deflection of 

Wing-G was within 10% of simulated data and matched almost identically to calculated 

data up to 0.75 mm.  The deflection of Wing-T was much lower than calculated and 

simulated data due to disconnected evaporated gold. 
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The orthogonal comb drive setup was moderately successful.  The out-of-phase 

comb drives actually rotated the master gear without wings, but the frequency was not 

analyzed because the rotation was erratic.  A nitride breach in the wiring created a 

capacitor between the shuttle and substrate on many of the designs as well.  Also, the 

clutch arm often broke from the rack at high voltages and instantaneous changes in 

voltage. 

The wings were capable of intermittent rotation using alternate orthogonal 

thermal actuators.  The thermal actuators were designed as a backup drive source since 5 

and 6-linked orthogonal comb drives were not fabricated.  The actuators were capable of 

rotating the wings for small angles, but typically were stuck beneath the wings where the 

Poly2 covered the gear teeth.  However, a 12 V, 20 Hz DC cycle demonstrated proof-of-

concept rotation. 

An attempt to manually create a 15-20° pitch angle with photoresist and 

CrystalbondTM was unsuccessful.  The photoresist was deposited, but dissolved in the 

sacrificial oxide release due to the thin width of the hinge pattern or possible 

overexposure.  CrystalbondTM adhered the wing parts together but did not increase 

deflection beyond that of residual stress.  Chapter 7 summarizes the conclusions and 

recommendations for future rotary-wing MEMS robot research. 



 

VII. Conclusions and Recommendations 

 

7.1 Chapter Overview 

This chapter presents the conclusions and recommendations culminating from this 

research effort.  The conclusions of this research fall in four categories—wing deflection, 

wing hinge, orthogonal comb drive actuation and wing rotation.  The significant findings 

and future direction of this research will also be discussed.    

7.2 Conclusions of Research 

The deflection of the two wing designs were analyzed along the leading edge and 

chord segments.  The wing deflection of each wing was calculated using two methods—

one dependent of the radius of curvature and the other independent.  The calculated data 

did not account for the large variable moment of inertia of both wings; so, analytical data 

predicted Wing-G to deflect the most due to its longer chord.  However, the simulated 

results in CoventorWare® identified Wing-T to deflect more because its chord is smaller 

with less mass (less moment of inertia).  The analytical and simulated data agree very 

closely for 0.5 mm or less.  The empirical deflection of Wing-G was within 10% of the 

more realistic simulated data.  The measured deflection of Wing-T was much less than 

simulated and calculated results due to the disconnected evaporated gold layer in the 

corrugation.  

Two attempts were made to assemble the wing’s chord at a 15-20° pitch angle.  A 

single layer of 1818 photoresist was deposited and lithographically patterned for the 

hinge.  However, the photoresist dissolved during the sacrificial oxide release.  The width 
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of the resist hinge was too thin to adhere to the gold of the spar and chord, and the 1818 

photoresist may have been overexposed.  A second attempt using CrystalbondTM adhered 

to the gold but did not increase the deflection more than the small angle created by 

residual stress.  Future research should consider solder spheres. 

The orthogonal comb drive designs were moderately successful.  The actuation 

scheme rotated a large gear as anticipated, but the rotation was irregular.  The nitride 

layer of the MEMS chip was breached due to a design flaw in the wiring from the probe 

pad to the actuator.  The nitride breach created a capacitor which attracted the comb drive 

shuttle to the underlying ground electrode.  Also, the clutch arm attached to the rotating 

rack would often become broken due to high voltage and sudden spikes in voltage. 

Multiple-linked orthogonal comb drives were identified as the best means for 

actuating the gear and wings.  Theoretical expressions were derived to determine the 

number of comb drives required to rotate both wing designs.  Calculations predicted at 

least four, and preferably six connected comb drives arranged orthogonally provided 

sufficient force to turn the wings at a rate that would generate sufficient lift.  Multiple-

linked comb drives were not demonstrated in this research since they would have taken 

up most of the chip space.  However, orthogonally connected thermal actuators were 

fabricated as a backup to demonstrate wing rotation. 

Wing rotation was demonstrated using thermal actuators.  The actuators provided 

sufficient force when two 20 Hz, 12 V DC square waves were applied with an 

approximate 90° phase difference.  Limited wing rotation was demonstrated with both 

rotor designs.  A constant rotation was not successful because the Poly2 wing interfered 
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with the gear teeth below.  The rotating rack would become caught in the Poly2 wing 

covering the master gear teeth.  Controlling the wing rotation was difficult because the 

system required both a precise phase angle difference and DC offset.  In particular, tuning 

the DC offset was challenging since the amplifier was an analog device.  Perhaps a digital 

wideband amplifier would enhance the experimental results.     

7.3 Significance of Research 

The results of this research have identified important limitations and requirements 

of a rotary-wing MEMS robot.  The following bullets are highlights resulting from this 

research effort: 

• Fabrication of a low-Reynolds number wing design.  A novel MEMS wing 

was designed and fabricated in this research (Wing-T) incorporating the 

significant findings of Tsuzuki, et al which is conducive for low-Reynolds 

number insect regime of flight.  To the author’s knowledge, this is the first 

attempt to fabricate a wing with insect features using solely MEMS 

technology.   

• Derived expressions for minimum actuator force and allowable robot mass.  

The minimum force to turn a gear with attached rotary-wings was derived.  

The expression accounted for the unknown aerodynamic coefficient 

developed by Miki and the friction of MUMPs® dimples research by 

Lumbantobing.  Similarly, an expression to define the maximum allowable 

mass available to a quad-rotor robot employing orthogonal comb drive 
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actuators was defined.  These expressions are shown below again for 

reference. 
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• Derived expressions for average power consumption of a quad-rotor robot.  

The average sinusoidal power consumption for a rotary-wing MEMS robot 

was expressed in this research.  The expression accounts for the electro-

mechanical comb drive modeling of Yalcinkaya and the quality factor energy 

loss research of Schmidt.  The expression is shown below for quick reference. 
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• Demonstrated proof-of-concept wing rotation.  The work of this research 

demonstrated limited wing rotation using orthogonal thermal actuators.  In the 

same way, multiple-linked comb drives are capable of turning rotary wings.  

The concept of orthogonal comb drive actuators turning a gear without wings 

was demonstrated with limited success. 

7.4 Recommendations for Future Research 

There still remains tremendous room for improvement to successfully develop a 

flying MEMS robot.  For the MEMS robot to achieve lift is just half the battle; 
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configuring the robot to operate in a realistic environment full of threatening obstacles 

also requires precise sensors and CMOS circuitry.  Figure 94 shows the vision of a future 

rotary-wing MEMS robot. 

 
Figure 94:  Vision of a quad-rotor robot employing multi-linked orthogonal comb drive 
actuators, biomimetic Wing-T rotors, power scavenging solar cells and CMOS control 
circuitry beneath the substrate.  This model was created using SolidWorksTM. 

 

For the near future, PolyMUMPsTM is an excellent source for proof-of-concept 

devices; however, to fabricate the entire robot in this process is unfeasible.  Other options 

such as Sandia’s Sandia Ultra-planar Multi-level MEMS Technology V (SUMMiT VTM) 

are capable of planar (versus conformal) deposition and include a third layer of structural 

polysilicon.  An extra layer would increase the electrostatic force of the comb drive 

actuator, and the planar capabilities would fix the problem of the wings interfering with 

the underlying gear teeth.  However, if improving upon this design in MUMPs®, it is 

imperative to include Poly0 for wire runs and make sure any meshing gear teeth have 
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enough overlap.  Also, smaller corrugation in the Wing-T design could increase its 

deflection. 

Flip bond technology is the next step in making this project a reality.  The shaft 

could be etched in one piece of polysilicon via deep RIE (DRIE) and assembled to the 

gear and actuating system.  Likewise, the wings could be fabricated on a separate wafer 

and assembled to the shaft.  The easiest way to assemble separate devices is to utilize 

silicon-over-insulator (SOI) wafers.  An SOI wafer is basically two silicon wafers 

combined with silicon dioxide in the middle.  Releasing a SOI wafer in HF would yield 

two wafers, and the top wafer is as thin as 40-50 μm.  Devices can be completely etched 

in the top wafer via DRIE and assembled to the parent chip (also a SOI wafer)—similar 

to the process shown in Figure 48. 

The capability of depositing polysilicon and nitride layers via LPCVD is an 

anticipated capability in AFIT’s near future.  Simple MEMS devices could have quick 

turnarounds rather than relying on the PolyMUMPs® schedule. 

7.5 Summary 

This chapter summarized the results of this research effort, and future follow-on 

research should take the following guidance.  Realize the PolyMUMPsTM schedule is, 

unfortunately, arranged so that MEMS designs are due before the previous run is 

received.  Therefore, any simple mistakes are likely to occur twice; have all designs peer 

reviewed.  Also, it is in the best interest to explore other fabrication avenues such as those 

offered at AFRL/RYDD or Sandia Laboratory.   
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Appendix A:  L-Edit Mask Designs 

 
Figure 95:  MUMPs® 78 L-Edit mask design with Wing-G rotors, shaft ring assembly 
parts, and individual and orthogonal comb drives for empirical data.   

 

Comments 

Wing-G Rotor The rotors consist of a Poly1 spar; later this was changed to Poly2 
for ease of making a photoresist hinge. 

Orthogonal Comb 
Drive 

Designed to rotate a Poly1 gear with stacked polysilicon meshing 
teeth. 

Test Comb Drives Varied the flexure length and width. 
Shaft Rings Designed to build the shaft and hold the rotor using four notches. 
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Figure 96:  MUMPs® 79 Chip 1L-Edit mask design with orthogonal actuators, 2-Link 
orthogonal comb drive actuator, Wing-G rotors, and measureable Wing-T designs.  

 

Comments 
Orthogonal 

Actuators for 
Wing-G

Both orthogonal comb drive and thermal actuators were fabricated 
to turn the Wing-G rotor.  The thermal actuators served as a 
“backup” to the comb drives which possessed too low of force. 

2-Link Orthogonal 
Comb Drive

The design was created to observe two CDs resonating together 
although too little force was observed. 

Wing-T Designed to measure the deflection of the wing. 

Micro-Wings Proof-of-concept design to observe small wings turn.  This design 
was faulty because the ground plane did not run under the rack. 
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Figure 97:  MUMPs® 79 Chip 2 L-Edit mask design with orthogonal actuators, Wing-T 
designs, and orthogonal comb drive micro-wings.  

 

Comments 
Orthogonal Comb 

Drives Micro-
Wings

These designs were created to show proof-of-concept wing rotation, 
but the ground plane was incorrectly designed.  The ground should 
have run underneath the comb drive rack. 

Wing-T
Designed to measure the deflection of the wing.  The spacer had 
little effect except to raise the structure by the thickness of the 
spacer. 

Orthogonal 
Actuators for 

Wing-T

The orthogonal comb drive did not have enough force to turn the 
Wing-T rotor.  The orthogonal thermal actuators were designed as a 
backup. 
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Figure 98:  MUMPs® 80 L-Edit mask design with orthogonal actuators, Wing-T designs, 
and orthogonal comb drive micro-wings.  

 

Comments 

Wing-T 
Photoresist Hinge

The photoresist hinge design simply separated the rib array from 
the spar in an attempt to deposit photoresist between them and 
create an upward deflection angle of 15-20°. 

Wing-T Actuators
The orthogonal comb drive did not have enough force to turn the 
Wing-T rotor.  The orthogonal thermal actuators were designed as a 
backup. 

Shaft Rings Designed to build the shaft and hold the rotor using four notches. 
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Appendix B:  Residual Stress Deflection Calculations 
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Analytical 2 Deflection Calculations 
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Appendix C:  Comb Drive Actuator Calculations 
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Appendix D:  Photoresist Hinge Mask 

 

 

 

 

Figure 99:  L-Edit drawing of the photoresist hinge mask.  The mask consists of hinge 
patterns for Wing-G (MUMPs® 79) and Wing-T (MUMPs® 80).  Shown to the right is a 
close-up of one of the Wing-T reticules.  For each wing 5, 7.5, 10 and 12.5 μm hinge 
width patterns were designed on the mask. 
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