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Abstract

For high gas supersaturation levels in liquids, on the order of 300% as predicted in capillaries of

marine mammals following a series of dives [Houser et al., J. Theor. Biol. 213, 183-195 (2001)],

standard mathematical models of both static and rectified diffusion are found to underestimate

the rate of bubble growth by 10%-20%. The discrepancy is demonstrated by comparing predic-

tions based on existing mathematical models with direct numerical solutions of the differential

equations for gas diffusion in the liquid and thermal conditions in the bubble. Underestimation of

bubble growth by existing mathematical models is due to the underlying assumption that the gas

concentration in the liquid is given by its value for a bubble of constant equilibrium radius. This

assumption is violated when high supersaturation causes the bubble to grow too fast in relation to

the time scale associated with diffusion. Rapid bubble growth results in an increased gas concen-

tration gradient at the bubble wall, and therefore a growth rate in excess of predictions based on

constant equilibrium bubble radius. The effect of gas supersaturation level, excitation frequency,

duty cycle and sound pressure level on bubble growth were also studied.



I. INTRODUCTION

There is continued interest in possible effects of underwater sound on the growth of gas

bubbles in capillaries of marine mammals and humans. Numerical simulations motivated by

this interest have been reported by Crum and Mao, [1] who considered gas supersaturation

levels up to 223%. Houser et al. [2] subsequently calculated the evolution of the nitrogen

tension and relative supersaturation due to typical diving profiles executed by dolphins, blue

whales and beaked whales. Supersaturation levels were predicted to reach 250%-300% upon

completion of the dive profiles, depending upon the species. The highest level of 300% was

predicted for beaked whales.

One assumption in existing models is that supersaturation in the liquid far from the

bubble is constant. However, for constant external pressure P0 the gas concentration C

decays to its equilibrium level Co according to the kinetic equation

dC C -Co

dt t, (1)

where t,w, = th/ ln 2 is the exponential time constant for nitrogen washout, and t h is the

corresponding half-time. Ridgway and Howard [3] measured th - 6 min for washout from

dolphin muscle tissue. Other assumptions underlying existing models include large P6clet

numbers (dimensionless ratio of frequency to diffusion coefficient), coefficients that do not

depend on pressure and temperature, linear theory for thermal and radiation damping of

the bubble oscillations, and gas concentration in the liquid given by its value for a bubble

of constant equilibrium radius. All of these assumptions can be analyzed numerically. The

purpose of our paper is to present a relatively efficient numerical scheme for performing

such calculations and to compare results with those from previous work. It is found that the

last approximation, that of neglecting the effect of the rate at which the equilibrium bubble

radius grows on the gas concentration in the surrounding liquid, leads to underestimation

of bubble growth rate by 10%-20% at high supersaturation levels.

While recent work on bubble growth in marine mammals at high gas supersaturation

levels motivated the present study, it is not the purpose of this paper to speculate on the

impact of our study in this context. In vivo bubble dynamics is a complicated process af-

fected by many factors, such as constraints imposed by tissue, nonspherical bubble shapes,

and surfactants. Also to be considered is the matter of nucleation. [4] Uncertainties associ-

ated with such additional factors can easily dominate the contribution due to the percentage
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change in growth rate predicted here in connection with rectified diffusion in an unbounded

liquid. We nevertheless performed our calculations for sound pressure levels that may be

of interest in studies of the effects of underwater sound on marine mammals, for which the

percentage change in equilibrium radius predicted by the model presented here is at most

about 20%.

In Sections II and III, a new model for bubble growth by static and rectified diffusion,

applicable to high gas concentration levels, is developed and then compared to the predictions

of existing models in Section IV. The effect on bubble growth of a range of sonar parameters,

including frequency, amplitude, duty cycle, repetition rate, and ping type is also presented

in Section IV. Conclusions are presented in Section V.

II. THEORETICAL MODELS

A. Static (nonacoustic) diffusion

The basis for all existing theoretical models is Epstein and Plesset's model [5] for static

(nonacoustic) diffusion. The diffusion equation for spherical symmetry is

OC*DO r2 , (2)

where D is the diffusion constant. The initial concentration of the gas at t = 0 is assumed

to be uniform and given by C, and for t > 0 the gas concentration CR at the bubble wall

is determined by Henry's law,

CR =P,/HD, (3)

where Pg is gas pressure in the bubble, and HD is Henry's constant. The equilibrium

concentration of gas in a liquid at a planar boundary and for a given pressure P0 in the

liquid is Co = Po/HD. At the surface of a spherical gas bubble we have, when vapor

pressure is negligible,
CR 2orCo - 1+ ' (4)

Co PoRo'

where R0 is the bubble radius and a is the surface tension, which are related through

,q = P0 + 2a/Ro.

Epstein and Plesset [5] used the above relations to derive the following result for the rate
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of change in bubble radius:

dRo Dd C,, +2

dt - + 4o/3PoRo I -C Po0-

x + , (5)

where d = kBT/HD is a dimensionless parameter, T is temperature, and kB is Boltzmann's

constant. The physical sense of this parameter is that, for a given temperature, it is the

ratio of dissolved gas concentration near the bubble wall, CR, to the density of gas in the

bubble. According to Henry's law, Eq. (3), this ratio does not depend on concentration.

However, it does depend on temperature.

It follows from Eq. (5) that the bubble loses mass (dRo/dt < 0) for C,, < CR. When the

liquid far from the bubble is saturated (C., = Co) Eq. (4) yields CR > C%o, and the bubble

dissolves. Only for C = CR = C0(1 + 2a/PoRo), i.e., for which the supersaturation is given

by 1 + 2a/PoRo, is the bubble stabilized. For supersaturation greater than this value the

bubble will grow.

When effects of surface tension are ignored (a = 0), and for bubble radius sufficiently

large (R 0 >> 2a/Po), Eq. (5) can be solved analytically. [51 However, the analytical solution

for this case exists only in complicated parametric form and can be analyzed only by plotting

graphs for different parameters. In this case it is preferable to solve Eq. (5) numerically.

Equation (5) is derived from the gas mass flow estimated using the diffusion equation

with the boundary condition imposed on a bubble of constant radius. This approach is valid

only for low levels of supersaturation and when the bubble growth rate is sufficiently small.

Also, the initial conditions are constant gas concentration everywhere from infinity to the

3 bubble wall. Therefore at the initial time t = 0 there is a jump in the gas concentration

across the bubble wall. The gradient across this jump in gas concentration is thus singular

at t = 0, and it is the source of the singular term 1/v-D-t that appears in Eq. (5). The

nonsingular term that contains 1/Ro corresponds to the gradient of the concentration at the

bubble wall for the stationary concentration

!t0C(r-) = C.o + (CR - C.o)-

For initial conditions that correspond to this stationary concentration there is no singularity.

Therefore, results depend on the initial concentration, and a stationary initial concentration

is more realistic than one that is singular.
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B. Gas diffusion outside bubble with changing radius

Fick's law, Eq. (2) with a convection term included, is used to account for motion of

the bubble wall. Using a transformed version of Fick's law in Lagrangian coordinates,

Eller and Flynn [6, 7] have shown that for the case of a small dimensionless parameter

1/Pe = D/wR, or large P6clet number Pe, where w is a characteristic angular frequency of

the bubble motion, the equation for the equilibrium bubble radius becomes

dRo Dd ( _ (P9 R 4)

dt 1 + 4r/3PoRo ( CO Po(R4}

F(R) +((R 4) ) 1/21 (7)RO R0rDt ,

where R(t) is the instantaneous bubble radius, and the angular brackets indicate time aver-

aging.

Fyrillas and Szeri [8] subsequently improved Eq. (7) by splitting the transformed Fick's

equation into an equation for the rapidly oscillating part of the solution and another equation

for the slowly varying part, for the same asymptotic case of large P6clet number. They

showed that the solution of the oscillatory problem yields zero mean flux of gas particles

through the bubble wall. To solve the problem for the slowly varying part they used a

standard averaging method to obtain

dRo _ Dd C. (Pg R4)
dt 1 + 4r/3PoRo (Co Po(R 4 )

1 r dxx - [. (8)
Ro 0 ([3x + (R/Ro)3 ]4 / 3)

The singularity 1/v7rDt was not retained in this formulation.

Both Eqs. (7) and (8) were used by Crum and Mao [1] in their numerical simulations. In

general the time averages in these equations must be calculated using numerical solutions

of the Rayleigh-Plesset equation. Crum and Mao also discuss an analytical approximation

of these time averages, valid only for small bubble oscillations, based on a perturbation

solution of the Rayleigh-Plesset equation in powers of the small parameter P,/Po, where P,

is the acoustic pressure.
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III. NUMERICAL MODEL

The starting point for our numerical model is the form of the diffusion equation, Fick's

equation in Lagrangian spherical coordinates, obtained by Eller and Flynn [7] and used by

Fyrillas and Szeri: [8]

C = D- [( R3)4/39Cj (9)at as (3I as]j

where3s=r -R 3 =qr-R and where rL is the Lagrangian radial coordinate, and r is

the Eulerian radial coordinate. The bubble radius R obeys an ordinary differential equation.

We will use a standard form of the Rayleigh-Plesset equation,

RR+ 3 23 = I PgP P,coswt 2a 4p (10)
2 P9 Po Raos R

where p is the density of the liquid, a is the surface tension, p is viscosity, P and w are the

amplitude and frequency of the acoustic field in the vicinity of the bubble, respectively, PO

is the ambient pressure, and Pg is the pressure of the gas in the bubble. In absence of an

acoustic field Pg = Pgo = Po + 2a/Ro. The number N of gas molecules in the bubble obeys

the equation
dN 0C

dt 47r 2D (11)
where the derivative 0C/Or is calculated at the bubble wall, r = R.

The boundary conditions on the bubble wall and at infinity are, respectively,

HP) (12)C(s = 0) = C(rL = Ro) = CR =9 H(---2)

C(s = c) = C(rL = o) = C. (13)

To avoid the boundary condition at infinity, or for very large rL, we transform Eq. (9) using

the dimensionless, reciprocal distance = Ro/rL:

5 00C D a0 R[ 3R\1 3  C

at - RO 1 + - 1 ) -- R (H

where E (0, 1). The boundary conditions for Eq. (14) are

C(= 1) = CR, C( = 0) = C., (15)

and Eq. (11) becomes
dN 47rDR 4 0C

dt R ]  O1
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where the derivative OC/O is calculated at { 1.

An implicit finite difference scheme with a homogeneous grid on the interval E (0, 1) was

developed to solve Eq. (14). The coordinate is particularly convenient for these calculations

because it provides a dense grid in real space near the bubble wall, where the gradient of

the concentration is greatest.

A. Radiation losses

The influence of liquid compressibility on the dynamics of a single bubble has been dis-

cussed in many papers. [9-11] In Ref. [12] it was shown that the influence of compressibility

can be taken into account by adding the term V/4rc to the right-hand side of Eq. (10),
where V is the bubble volume, and c is the sound speed in the liquid. When expanded

in terms of the bubble radius this correction term becomes (R 2R + 6RRR + 2i 3 )Ic, which

coincides with the terms obtained previously by Prosperetti [10] to account for compressibil-

ity. In particular, it accounts for additional energy loss during bubble oscillations through

acoustic radiation.

We now rewrite V/47rc as follows:

V Id 3 R 3  ld '
47rc _3c dt c d[R(RR + 2R)]. (17)

Making use of the fact that the correction to the Rayleigh-Plesset equation that accounts

for compressibility is of order 1/c we may rewrite Eq. (10) in the form

R =-R2+_ 02a 4 + /O(1/c) (18)

2 p R R

substitution of which in Eq. (17) yields, up to order I/c,
V 1  + 1 RRRi

4rc 2c c

- R (Pg- Po- Pcoswt 4p ) . (19)

Adding this approximation of V/4,rc to the right-hand side of Eq. (10) and rearranging

yields

1- (1 )Rft+ 3(1-) (1+ + Rd
3c p cdt

( P2q-Po-PcosWt 0)
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This formulation is equivalent to Keller's equation [13] at order 1/c [like Eq. (20), Keller's

equation is only accurate to order 1/c]. One reason for our use of Eq. (20) is its derivation

from the compressibility term V/47c, the physical origin of which is easy to understand. [12]

Another reason is that there is a slight computational advantage to coding Eq. (20) for

acoustic pressures Pa(t) that are more complicated than the simple sinusoidal excitation

Pa cos wt considered in the present work, e.g., sonar signals or lithotripsy shock waves. The

Keller formulation requires evaluation of a time shifted pressure Pa[t + R(t)/c] rather than

a pressure and its derivative at the instantaneous time t.

B. Temperature dependence of Henry's law

Bubble oscillation generates a finite temperature gradient in the surrounding liquid that

is proportional to the excitation level and the temperature of the surrounding water. [14]

The effect of this gradient on the bubble dynamics was shown to be negligible for the case

studied in Ref. [14], but gas solubility is also temperature dependent, and has not previously

been accounted for in rectified diffusion studies.

Henry's law for our case is given by Eq. (3), where HD depends on temperature. In

Ref. [15] there are the tables for Henry's constants and their temperature dependencies. Our

definition of HD corresponds to (jfkH) -1 in Ref. [15], where M is the Avogadro constant

and kH is the concentration of a species in the aqueous phase divided by the partial pressure

of that species in the gas phase. Therefore d = kBTo/HD corresponds to k' for T = To

in Ref. [15], where k" is the dimensionless ratio of the aqueous-phase concentration of a

species to its gas-phase concentration.

According to Ref. [15], the measurements fall in the ranges 0.0149 < kcc < 0.0159 for

nitrogen and 0.0294 < kc < 0.0318 for oxygen. Using mean values of the reported ranges

and approximating air as 80% nitrogen and 20% oxygen we take k' = 0.019, which yields

the value d(To) = 0.02 that was used in our calculations. The temperature dependence

according to Ref. [15] is

d(T) = d(TO)exp [a)] (21)

where 0H = 1300 K for nitrogen.
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C. Heat conduction in the gas

A polytropic equation of state for the gas inside the bubble was used in Ref. [1], which is

common practice because of its ease of implementation. This approach has been shown to

be inadequate for large amplitude motion. [14, 16] Further, the model in Ref. [14] describes

heat conduction in the absence of mass flux. In this section, we develop a model for heat

conduction in the gas that accurately describes bubble growth by rectified diffusion under

high amplitude acoustic excitation, and which explicitly accounts for mass flux across the

bubble wall.

The thermometric conductivity Xg of the gas is

2g = vg/Pr. (22)

For air, v. = 0.15 cm 2/s is the dynamic viscosity coefficient and Pr = 0.733 is the Prandtl

number, and therefore Xg c 2.04 x 10- 5 m 2 /s. The characteristic length scale for the thermal

conductivity is

L9 = V xg/ 2  . (23)

For wl/27r = 100 Hz we have L. = 127 Ipm, which means that for R 0 < 100 pim we can ignore

the fact that the gas temperature is not uniform inside the bubble. For W/2r = 10 kHz we

have Lg = 12.7tim and R0  10 Im, and it is necessary to take into account the finite value

of Lg. The effect of this inhomogeneity is that the equation of state for the gas is close to

adiabatic and oscillations of the bubble radius are reduced. In this case rectified diffusion

of the gas dissolved in the liquid is also less.

To estimate the effect of a nonuniform temperature distribution we must solve the equa-

tion for heat conduction in the gas. An equation such as Eq. (14) cannot be used because

it applies only to incompressible liquids, and compressibility of the gas must be taken into

account. However, for our problem the full equations of gas dynamics are unnecessary be-

cause bubble size is small compared to a wavelength, permitting the simplification whereby

the gas pressure Pg may be assumed uniform inside the bubble.

To construct the finite difference scheme for this problem it is convenient to transform

the radial coordinate r inside the bubble, which occupies the variable domain 0 < r < R,
to a normalized spatial coordinate ( in the fixed domain 0 < ( < 1. First the heat, diffusion

equation is written in coordinates that are similar to Lagrangian coordinates but permit
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bubble growth and variation in the mass of the gas. We thus introduce the variable rm(r, t),

which is the mass of gas inside a sphere of radius r. Introduction of this variable permits

us to ignore the convection term in the heat conduction equation. The equation for the gas

temperature Tg thus becomes OTg(m,t) 1 aT_
CpPg K -

2  r , (24)

where cp is the specific heat and pg is the density of the gas. The thermal conductivity K,

of the gas depends on temperature but not on pressure, and according to the kinetic theory

of gases it can be taken proportional to the square root of the gas temperature,

3g = Tg o , (25)

where Kgo is the thermal conductivity at the reference temperature Tg0.

Introducing the reference thermometric conductivity for a gas with reference density pg,o,

XgO= Kgo, (26)
CvPgO

we may rewrite Eq. (24) as follows:

OTg(m,t) go_o 1 & T 9  (227)
at XgO pg r2 Tgor (27)

pg a(r3/3) T;- a(r3/3) (28)

2XgOP2- a [T 4 OT 29
(4 go (29)

where the final form results from noting that

d[(4/3)7rr3 ] = dm/pg. (30)

The maximum value of m is too(t) = MN(t), which is the total mass of gas in the bubble,

and where M is mass per molecule and N is the number of molecules. Since this quantity

changes with time it is convenient to introduce the relative mass m =n/mo E (0, 1). In

terms of ( Eq. (29) takes the form

Tg((,t) ffg (N 47 2 P9
at N a( at ( NM) ] gopgo P9 0

3 .[ Tgo4Tg] (31)
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We can calculate r from Eq. (30):

r3 3NM ffd' 3NM PgO o T ,3- - M -d(. (32)4 pg 47pgo Pg . 0Tgo

After substituting r 4 = (r 3 )4/ 3 in Eq. (31) we have

OT (~,t) ( 07 O 367r \2/3 2/3 (P 9 0 < 1/

Ot N 0( Ot (NM) XgOPgo pg)

a FTOS/ag
X19 T/ (33)

where wT((,t)o d(. (34)

A semi-implicit finite-difference scheme with a homogeneous grid on the interval ( c (0, 1)

was developed to solve Eq. (33) numerically. Equation (32) permits calculation of the gas

pressure P for any given bubble radius R = rj(=i and gas temperature T9.

D. Model implementation

A computer code was written to calculate bubble growth in supersaturated liquid in the

presence of a sound field via solution of a subset of equations presented in the previous sec-

tions. Gas diffusion in the liquid is described by Eq. (14), bubble dynamics by Eq. (20), and

thermal conductivity of the gas in the bubble by Eq. (33). To account for heat conduction

in the liquid surrounding the growing bubble an equation of the same type as Eq. (9) is

solved. The time step At for the calculations was taken to be of order 10- 7 s. Every time

step consists of four substeps: (i) a substep for the ordinary differential equation for bubble

radius and gas mass, Eqs. (20) and (11); (ii) a substep for the adiabatic expansion of the

gas to achieve a new bubble radius; (iii) a substep for gas diffusion, Eq. (14); (iv) a substep

for gas thermal conductivity, Eq. (31). At the end of the fourth substep the gas pressure

was calculated using Eq. (32) as follows:

Pg _3NM 3NMfo Tg d(-3N STJ :=. (35)

Pg0  47rpgoR a  Y 47rpgoR3

Substeps (ii) and (iv) combined describe the gas thermodynamics in exactly the same

way as Prosperetti et al. [14] It may be noted that their Eq. (12) depends on cp whereas our
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FIG. 1: Dependence of the equilibrium bubble radius Ro on time for gas concentration C/Co = 3
(a) in the absence of acoustic excitation and for sound pressure levels of (b) 205 dB and (c) 215 dB

(re 1 /iPa) at 100 Hz. Solid lines are results obtained from the present numerical model. Dashed

3 lines are the solutions of Eq. 8, which is Fyrillas and Szeri's model. [8]

3 ~ Eq. (31), with XgO defined in Eq. (26), depends on ci,. However, when our Eq. (31) [substep

(iv)] is combined with the adiabatic gas law [substep (ii)], which depends on the ratio cr/c,,,

3 the net result is a calculation that depends only on c, as in Ref. [14].

3 IV. RESULTS

The numerical calculations described in Section III D were performed for an air bubble
ii water at 300% supersaturation, which corresponds to Ca/o = 3. Results are presented
in Fig. 1 for (a) static diffusion in the absence of acoustic excitation, and for sound pressure

levels of (b) 205 dB and (c) 215 dB (re 1 Pa) at 100 Hz. In each case the initial bubble radius

3 ~ was 10 !Lm. The physical parameters used in the calculations were those for air bubbles in

S12



water at 20 'C: d = 0.02, p = I03 kg/m 3 , D = 2.4 x 10- 9 m 2 /s, )g = 2 x 10- 5 m2/s,

7 = 0.072 N/m, p = 0.001 kg/ms, cp/c, = 1.4, and P0 = 10' Pa. The number of samples in

the dimensionless coordinate was nd = 1000, the number of samples for calculations of heat

conduction in the gas was ng = 300, and the number of time steps per acoustic period was

74n = 2 x 10 4 . In each case, results of these numerical calculations, shown with solid lines,
are compared with predictions based on Eq. (8) and shown with dashed lines. In the last

case, Fig. 1(c), thermal conductivity of the gas in the bubble was taken into account in tile

same manner as by Crum and Mao. [1] Periodic oscillations of the bubble were calculated

using a standard shooting method, with the initial conditions for the bubble radius and its

derivative repeated for one period of the external acoustic pressure.

It is clear from Fig. 1 that, at the high level of supersaturation used here, the contribution

to bubble growth from rectified diffusion at sound pressure levels of 205 dB and below is

negligible in comparison with the contribution from static diffusion. It is also seen that

accounting for the finite rate of bubble growth in the present model yields a moderate

amount of diffusion enhancement. For static diffusion alone [Fig. 1(a)] the present model

predicts about 8% more growth than Eq. (8), while at the highest excitation level [Fig. 1 (c)]

the present model predicts about 18% more growth than Eq. (8).

The same calculations were repeated for different parameters, including different frequen-

cies, bubble sizes and the treatment of the gas concentration at infinity. Calculations for

1000 Hz yield approximately the same results but take much longer because the time step

must be reduced by one order of magnitude. Likewise, when the initial bubble size is varied,

there is little effect on the growth, as long as the excitation is well below the bubble resonance

frequency. When the supersaturation of the water far away from the bubble is held constant,

the bubble radius grows monotonically. In reality the gas concentration in the surrounding

liquid approaches exponentially the equilibrium concentration Co = PO/HD corresponding

to the external pressure P0 . We can take into account the variation of the concentration due

to this relaxation process by, according to Eq. (1), adding the term -(C - Co)/t,, to the

right-hand sides of Eqs. (9) and (15). In this case the gas concentration far away from the

bubble will decrease exponentially with time constant ta,, and for durations of order several

times t. the concentration far away from the bubble is nearly at its equilibrium value, and

bubble growth is practically stopped. For illustration, shown by solids lines in Fig. 2 are the

results of a calculation with th = 360 s for static diffusion and for a sound pressure level of

13
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FIG. 2: Dependence of the equilibrium bubble radius R0 on time with and without sound for

washout half times of th = 360 s (solid lines) and th = o0 (dashed lines).

215 dB, but otherwise for the same parameters as were used for Fig. 1. This washout time

corresponds to muscle tissue for both dolphins [3] and humans [17]. Shown for comparison

on the same graph are dashed lines for the same parameters but with t, = so, i.e., for

constant C./Co = 3.

To investigate the temperature dependence of Henry's constant and thermal conductivity

of the gas we included Eqs. (21) and (25) in the numerical calculations. It was found that

the influence of the temperature dependence of Henry's constant is negligible when the

surrounding liquid is at 20 'C. At this equilibrium temperature, changes in the temperature

of the liquid near the bubble are very small because of the high thermal conductivity of

the liquid in comparison with the thermal conductivity of the gas. There was less than

a 0.1% change in bubble growth when Eq. (21) was used. This effect could become more

important if the surrounding liquid is at an elevated temperature. For example, the case

studied in Ref. [14], which was for an air bubble of radius 0.1 cm at resonance, in water with

a temperature of 100 'C, the temperature gradient is more than thirty times larger than the

gradient at 20 'C. [14] The effect of radiation losses was studied by substituting Eq. (10) for

Eq. (20) in the numerical calculations. For the relatively low acoustic frequencies studied

here, 100 Hz -1000 Hz, the influence of radiation losses on bubble growth is also negligible.

For all the cases discussed above, the results for bubble growth are higher than what are

obtained using models such as Eqs. (7) and (8). Kamath and Prosperetti [18] also observed

an increased bubble growth rate using direct numerical solution of the diffusion equation,

but they considered only low supersaturation levels near the threshold of bubble growth and

did not consider the high supersaturation level used here. A difference between our results
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and those obtained with models of the type given by Eqs. (7) and (8) is that the latter

do not take into account the influence of systematic bubble growth on gas diffusion. The

gradient of the dissolved gas concentration OC/Or, and the mass flow of gas into the bubble

dmg/dt according to either Eq. (5) or (7), are estimated for a given equilibrium bubble

radius. In reality this gradient and mass flow depend on the growth rate of the equilibrium

bubble radius. It can be shown that the correction introduced by the bubble growth rate

becomes significant when the characteristic time for bubble growth tR = R 2 /[Dd(C,/ C o ) - 1]

approaches the characteristic time of gas diffusion near the bubble, tDJ = R 2/D. The ratio

tD/tR = d(Co,Co - 1) does not depend on D and is of order 0.1 for high levels of the

supersaturation C,/,o - 1. This in turn means that the growth rate correction may be of

order 10% or more. This approximation is indeed borne out, as nearly the same difference in

bubble growth appears in Fig. 1 between the predictions of the present model and Eq. (8).

In the remaining sections, bubble growth will be investigated for a variety of acoustic

excitations that are similar to sonar signals. The maximum sound pressure level used in

these calculations is 215 dB (re 1 [iPa). Note that the use of "source level" to characterize

the acoustic output of a transducer does not imply that the acoustic pressure is ever actually

as high as the stated source level. By definition, source level is an inferred quantity. The

acoustic pressure radiated by a transducer is measured in the acoustic far-field, and then

scaled back to a range of 1 m via spherical spreading. [19] The maximun sound pressure level

near the source never achieves a level equal to the source level, as illustrated in Fig. 3. The

solid curve was calculated using Eq. (7.4.5) of Ref. [20], which is for on-axis radiation from

a piston in an infinite baffle, and shows the characteristic pattern of maxima and minima

found in the near field of a transducer. The piston for this calculation is 2 in in diameter,

radiating at 3 kHz with a source level of 235 dB (re 1 pPa), as illustrated by the dashed line,

which is typical of the source level of mid-frequency active sonars. The maximum sound

pressure level near the transducer is 212 dB.

A. Effect of Gas Concentration for Continuous Wave Signals

The calculations that were described in Section III D, and presented as solid lines in Fig. 1

are computationally intensive. For example, the solid curves in Fig. 1 required several hours

to compute on a desktop computer. In comparison, the dashed curves require only minutes
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FIG. 3: The on-axis sound pressure level radiated by a piston in an infinite baffle is shown with the

solid line. The dashed line indicates how the far-field acoustic pressure is scaled back to a range

of 1 in via spherical spreading for the purpose of determining the source level. This transducer's

source level is 235 dB (re 1 piPa), but the maximum sound pressure level actually radiated by the

transducer is only 212 dB.
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FIG. 4: The effect of gas concentration is shown through dependence of the equilibrium bubble

radius Ro on time, for CW acoustic excitation at 1 kHz and SPLs ranging from 205 dB to 215

dB (re 1 IiPa), and for gas concentrations C,/Co = 1.5 (a) and C /Co = 3 (b). The initial

equilibrium bubble radius was 10 pm.

and they result in predictions that are only a few percent too low. In order to facilitate the

study of a much larger parameter space, the remaining calculations were conducted using

the method previously described for the dashed lines in Fig. 1, that is, using Eq. (8) and

Eq. (36) in the Appendix. Figure 4 shows the effect of gas concentration for continuous wave

(CW) signals at 1 kHz for an initial equilibrium bubble radii of 10 pm. At a gas concentration
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FIG. 5: The effect of excitation frequency is shown through dependence of the equilibrium bubble

radius R0 on time, for CW acoustic excitation at various frequencies and SPLs ranging from 205 dB

to 215 dB (re 1 jtPa). Gas concentration C,/Oo = 1.5 is shown in (a), (c) and (e), and C,i1o = 3

in (b), (d) and (f). In all cases, increasing SPL monotonically shifts the growth curves to higher

values, as labeled in (a). The legend and the dB values are the same for the remaining plots. The

initial equilibrium bubble radius was 10 pm for all cases.
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of 150% supersaturation, there is little significant bubble growth beyond that provided by

static diffusion alone (no sound), at acoustic excitation levels below 210 dB. At higher

acoustic excitation levels, bubble growth is enhanced by acoustic excitation. For example,

after 100 seconds at 215 dB, the acoustically driven bubble is about 60% larger than the

bubble with no sound. At an increased gas concentration of 300%, the acoustic excitation

has a smaller effect. There is only a 20% increase in bubble growth under an acoustic

excitation of 215 dB, as compared to static diffusion alone (no sound).

B. Effect of Excitation Frequency for Continuous Wave Signals

The calculations presented in the previous section (Section IV A) were repeated for dif-

ferent frequencies and the results are shown in Fig. 5. In all cases, the acoustic excitation

was CW, but the frequencies 100 Hz, 10 kHz and 100 kHz were used. The left column of

Fig. 5 shows gas concentrations of 150% and the right column shows 300%. The drive fre-

quency has little effect at 150% supersaturation. The bubble growth is nearly the same for

all three drive frequencies, across all three drive amplitudes. For higher gas concentration,

increasing frequency initially causes a slight increase in bubble growth, as seen when com-

paring Fig. 5(b) and (d) at times greater than about 60 seconds. As the frequency increases,

it appears that rectified diffusion is eliminated. There is no significant difference between

bubble growth by static diffusion (no sound) and the three cases with acoustic excitation.

Even at the highest amplitude, 215 dB, bubble growth is dominated by static diffusion.

The effect of excitation frequency is demonstrated in another way in Fig. 6. The equilib-

rium bubble radius Ro(t = 100) after 100 seconds of acoustic excitation was calculated for

a variety of drive amplitudes and for five excitation frequencies: 102, 103, 10, 3 x 104 and

105 Hz. At a gas concentration of 150% supersaturation, the curves for all five drive ampli-

tudes are flat below 10' Hz, which indicates that the excitation frequency has a negligible

effect on bubble growth when the drive frequency is below bubble resonance. The bubble

growth increases as the drive frequency approaches bubble resonance, and then decreases

above resonance. For example in Fig. 6(a) at a drive amplitude of 210 dB, the curve is

flat through f = 10 kHz, which coincides with a bubble radius of 80 /Ini. At this size, the

resonance frequency is about 40 kHz, and hence the bubble is being driven below resonance.

At f = 30 kHz, one finds a bubble size of 85 jim, which has a resonance frequency of about
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FIG. 6: The equilibrium bubble radius Ro(100) after t = 100 seconds of excitation is plotted as a

function of excitation frequency, for various drive levels and two gas concentrations.

37 kHz, hence the drive frequency is approaching resonance and the bubble growth has

increased over that at subresonance drive frequencies. Well above the resonance frequency,

the bubble wall motion is significantly reduced, which leads to lower bubble growth rates.

A similar behavior is seen for a gas concentration of 300% supersaturation. Frequency has

little effect on rectified diffusion unless the acoustic excitation frequency becomes similar to

the bubble resonance frequency.

C. Effect of Duty Cycle and Repetition Rate for Gated Sinusoidal Signals

Because continuous wave signals continuously deliver energy to an oscillating bubble,

they will lead to the maximum bubble growth by rectified diffusion. Underwater acoustic

communication systems typically use CW signals while transmitting data, but echolocation

sonar systems do not. Gated signals are used instead. In this section, we repeat the calcu-

lations that were performed in Section IV A but for gated sinusoidal signals. Such a signal

is illustrated in Fig. 7 with period T,,p and duty cycle DC = T/Tr,p. Bubble growth was

calculated as in Section IV A, with Tep = 10 seconds, for various duty cycles DC and two gas

concentrations. The frequency of the sinusoid was 1 kHz and the excitation level was 215 dB

(re 1 plPa). Initial equilibrium bubble radius was 10 jim. The results are shown in Fig. 8.

As expected, the growth due to low duty cycles is not significantly higher than growth due

to static diffusion alone (no sound) for 150% supersaturation, but as duty cycle increases

toward 100%, growth increases. At 300% gas concentration, there is even less significant
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FIG. 7: A gated sinusoidal signal is shown with period Trep and duty cycle DC = T/Jrep.
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FIG. 8: The effect of duty cycle is shown through dependence of the equilibrium bubble radius R 0

on time, for gated sinusoidal acoustic excitation with a carrier frequency of 1 kHz and an SPL of

215 dB re 1 yiPa (during the active part of the period), and for gas concentrations C"/CO = 1.5

(a) and C,/Co = 3 (b). The initial equilibrium bubble radius was 10 pm.

growth enhancement due to rectified diffusion. For the typical sonar duty cycles of 10% to

20%, the bubble growth due to rectified diffusion is less than 4% greater than growth due

to static diffusion alone (no sound).

The bubble growth due to a gated signal was found to be the same as bubble growth

due to a CW signal of lower amplitude. The equivalent CW SPL is shown in Fig. 9

for gated signals of various duty cycles DC and a peak pressure level of 215 dB (re

1 ItPa). The other parameters are the same as in Fig. 8. The solid lines were determined

by the relation: 216 + 10logi0 [DC/100%] dB. When considered over multiple pings, the
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FIG. 9: The equivalent CW SPL is shown, for gated sinusoidal acoustic excitation with a carrier

frequency of 1 kHz and a peak SPL of 215 dB (re 1 LPa), and for gas concentrations C ./Co = 1.5

(a) and C,/Co = 3 (b). The initial equilibrium bubble radii were 10 jim.
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FIG. 10: The effect of repetition rate Trep is shown for gated sinusoidal acoustic excitation with

3 ~ a carrier frequency of 1 kHz, a peak SPL of 215 dB (re 1 iiPa), a duty cycle of 20%, and a gas

concentration Coo/Co = 1.5. The initial equilibrium bubble radii were 10 tro. When different

sonar periods end at the same time, Ro(t) is equal for each case, such as at 40 and 80 seconds.

sonar repetition rate Trep wa s found to have a minor effect on bubble growth, as long as

3 the parameters of duty cycle and SPL were the same. This is illustrated in Fig. 10 for a

sinusoidal frequency of 1 kllz.
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FIG. 11: The frequency content of a typical hyperbolic frequency modulated (HFM) sonar ping is

shown in (a). Bubble growth (b) due to HFM pings at 20% duty cycle and three gas concentrations,

compared to static diffusion (no sound). The repetition rate was Trep = 12.5 seconds and the peak

SPL of signal was 215 dB re 1 IiPa.

D. Bubble Growth Due to Hyperbolic Frequency Modulated Signals

Hyperbolic frequency modulated (HFM) signals are often used in radar and sonar systems.

The frequency content of such a signal is shown in Fig. 11 (a) and a typical duty cycle is 20%

with a repetition rate of Trep = 12.5 seconds. The calculations described in Section IV A

were repeated for such a signal with a peak SPL of 215 dB (re 1/tPa). This excitation causes

a minor increase in bubble growth as compared to bubble growth due to static diffusion

alone (no sound), as shown in Fig. 11(b). For the highest gas concentration level, 300%

supersaturation, the increase in bubble size due to rectified diffusion is about 5%, and for

150% supersaturation, the increase is about 12%. The initial equilibrium bubble size was

10 pm.

E. Passive Growth and Dissolution of Bubbles at Zero Depth in Muscle Tissue

Another case of interest is the long-term passive growth of bubbles at zero depth, such

as might be applicable to a stranded marine mammal. At the surface, subject to atno-

spheric pressure, the muscle tissue gas supersaturation will decrease and eventually reach

atmospheric levels. While this is occurring, the bubble will grow while the tissue is super-

saturated, but once the pressure of gas in the bubble is greater than that in the tissue (due
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FIG. 12: Passive bubble growth in a stranded marine mammal.

to surface tension), the bubble is not stable and will dissolve. This is illustrated for three

initial gas concentrations in Fig. 12. The washout half-time th = 360 seconds was used,

which corresponds to muscle tissue of dolphins [3] and humans. [17] The maximum bubble

size is reached after about 48 minutes at 300% concentration, after about 42 minutes for

200% and after about 33 minutes for 150%.

V. CONCLUSIONS

For high gas supersaturation levels in liquids, on the order of 300% as predicted in

capillaries of marine mammals following a series of dives, [2] standard mathematical models

of both static and rectified diffusion were found to underestimate the rate of bubble growth by

10%-20%. The discrepancy was demonstrated by comparing predictions based on existing

mathematical models with direct numerical solutions of the differential equations for gas

diffusion in the liquid and thermal conditions in the bubble. Underestimation of bubble

growth by existing mathematical models is due to the underlying assumption that the gas

concentration in the liquid is given by its value for a bubble of constant equilibrium radius.

This assumption is violated when high supersaturation causes the bubble to grow too fast

in relation to the time scale associated with diffusion. Rapid bubble growth results in an

increased gas concentration gradient at the bubble wall, and therefore a growth rate in excess

of predictions based on constant equilibrium bubble radius. We also studied the dependence

of Henry's "constant" on temperature and found that it was not significantly temperature
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dependent and can be accurately represented as a constant.

The direct numerical computations that account for this (and that were presented in

Fig. 1) are computationally intensive. To explore a wider range of the parameter space,

such as the effect of frequency, and the effect of using pulsed signals and chirps, additional

calculations were performed using the model of Fyrillas and Szeri, [8] which is the next

most accurate model and less computationally intensive. The results presented here, for the

idealized conditions of a preexisting single spherical bubble in a pure infinite fluid, absent of

any surfactants or stabilization mechanisms, indicate that acoustic excitation typical of sonar

systems results in minor enhancement of bubble growth over that of static diffusion alone

(no sound). For the highest level of gas concentration studied here, 300% supersaturation,

and for a realistic sonar ping with a peak SPL of 215 dB (re 1 pPa) at the bubble and

a duty cycle of 20%, there is only about a 5% increase in bubble growth due to rectified

diffusion. Note that at 300% saturation, the results obtained with the model of Fyrillas and

Szeri [8] underestimate the growth by 10%-20%. It was also shown that frequency plays a

minor role in bubble growth, unless the excitation frequency coincides with the resonance

frequency for the bubble at some time in its growth history. Gated sinusoidal signals with

less than a 100% duty cycle cause bubble growth that can be simply related to a lower-

amplitude CW signal. There are no additional effects due to excitation by an HFM chirp,

as compared a gated sinusoid. Any gated signal will produce less bubble growth than its

3 CW counterpart. Finally, for static diffusion at atmospheric pressure, under conditions that

mimic those potentially experienced by a stranded marine imammal, bubbles were found to

grow passively to their maximum size in about 40-50 minutes, followed by a reduction in

size and eventual dissolution in 5 to 40 hours, depending on initial gas concentration.

In separate but related studies, the authors and their collaborators investigated the effect

of tissue shear elasticity on the dynamics of bubbles, [21, 22] confinement of bubbles by

plates and tubes, [23, 24] and coalescence of bubbles. [25 27] For bubbles in elastic tissue,

the increased effective external pressure due to tissue shear elasticity inhibits bubble growth

as compared to a bubble in a liquid. For bubbles in tubes, any confinement by walls inhibits

flow and bubble oscillation, hence confined spaces also inhibit bubble growth, compared to

free bubbles. Under high amplitude excitation, such as that due to a lithotripter shock wave

(peak pressures of order 10 MPa), micron-size bubbles can grow dynamically and coalesce

into significantly larger bubbles. It is also possible that neighboring micron size bubbles
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could grow by rectified diffusion and coalesce into larger bubbles. Knowledge of the density

and distribution of bubble nucleation sites would be required to further investigate this

effect.

Finally, we reiterate that our calculations were performed for the idealized system of a

preexisting single bubble in a pure liquid of infinite extent. The significant and potentially

complex issue of bubble nucleation was not addressed. [1, 4] A sound source is a necessary,

but insufficient condition for bubble growth. Supersaturated fluids or tissues and stabilized

bubble nuclei must exist. A sound source can destabilize bubbles, which then grow primarily

by static diffusion. Further, in vivo bubble dynamics is a complicated process affected by

many factors, such as constraints imposed by tissue, nonspherical bubble shapes, surfactants

and potential bubble coalescence. Uncertainties associated with such additional factors can

easily dominate the contribution due to the percentage change in growth rate predicted here

in connection with rectified diffusion in an unbounded liquid.

Appendix

The form of the Rayleigh-Plesset equation used in Sections IV A through IV E is:

RR + 2 + 0 + - 2 7 (36)3 2 4. 2+ P sincwt-- - pRo - (b, + bt) i

where or is the surface tension, w is the angular frequency of the acoustic source, and , is

the coefficient of shear viscosity. [1] The angular resonance frequency of the bubble wo is

2 = 1 [31(P+ 2a )2a

The polytropic index 7r is defined by

Uweei (1+b2) 1+ 3 ) (38)

where

S3 = sinh X ± sin X, (39)

C- = cosh X - cos X, (40)

X =RO (2w/Dl)1 / 2 , (41)
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and D1 is the thermal diffusion constant of the gas. The thermal damping constant is

bt =3( -1) X2C S+ 2)X -  . (42)

The radiation damping constant br is given by
3

br -- pRo (433b i = (P0 + 2o/Ro) c {1 - 2a/ [3,qRo (P0 + 2a/Ro)]} (43)
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