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Improving an empirical formula for the
absorption of sound in the sea

Laag frequent geluid plant zich in de zee over grote afstanden voort.
Een model hiervan dient de absorptie van dat geluid mee te nemen.
De standaard absorptieformule van Franqois en Garrison is erg complex.
Het doe] is deze formule te vervangen door een eenvoudigere. zonder verlies
van nauwkeurigheid. Het onderzoek dient ook het inzicht in de
absorptiernechanismen en de ervaring met inversiemethoden te vercgroten.

systemen. Hierbij is de absorptie van geluid door na te gaan hoe de beste parameter-

erg belangrijk. Kennis van deze absorptie vector verandert als slechts een deel van de

heeft zich verdicht tot absorptieformules, datapunten gebruikt zou worden.

waarvan de standaard, formule tamelijk

complex is. Met het oog op kennis- Resultaten en conclusies
bevordering is gezocht naar een Het onderzoek laat zien dat 'de beste'

vereenvoudiging van deze formule zonder tormule met bestaat, omdat deze athankeltik

dat dit ten koste van de nauwkeurigheid is van de gebruikte data en van de manier

gaat. waarop de afstand tussen formule en data

worth gemeten. Wel is een formule

Beschrijving van de gevonden die aanmerkeli jk eenvoudiger is

werkzaamheden dan die van Franqois en Garrison

De kwaliteit van cen empirische formule is (25% minder rekentijd) en daardoor

afhankelijk van de gemeten data. bijdraagt aan overzicht en inzicht.

Hiervoor is uitgegaan van de data die door Deze eenvoud is niet ten koste van de

William of Okharn(1285-1349): Franqois en Garrison bijeen zijn gebracht in nauwkeurigheid gegaan. DJeze is zelfs; iets
'1plurality should not he posited without necessity" twee artikelen. Bovendien zijn flu ook verbeterd, wat met een statistische test is

Probleernstelfing absorptiemetingen uit de Baltische Zee aangetoond. Deze formule is ook van
gebruikt, die veel informatie toevoegen. toepassing op ornstandigheden als in de

Voor de Koninklijke Marine (KM) komnt de Van de vele wiskundige constructies die Baltische zee, waar het zoutgehatte erg laag
dreiging met name uit het water. Voor de mogelijk zijn, is de niet-lineaire formule is.
waarneming van mijnen en onderzeeboten van Ainslie-McCohn gegeneraliseerd. zodat
is kennis van onderwaterakoestiek deze afgestemd kan worden op de data. Toepasbaarheid
essentieel. De KM rekent hiervoor op Omdat hierbij tegelijkertijd tien parameters Een eenvoudige formule verkleint de kans

onertenig,dor NODeenieenworden aangepast, is een automatisch op fouten en hevordert het overzicht binnen
Veiligheid te Den Haag. Het onderzoek van zoekalgoritme gebruiktL De fortnule die het ingewikkelde akoestische propagatie-
dit rapport richt zich op het bevorderen van dichtste bij de gemeten absorptiewaarden modellen. De verbNterde formule kan
de kennis van TNO van akoestische komt, is gevonden, Tegelijkertijd is de gebruikt worden bij updates van het
propagatie over grote afstanden, die onzekerheid van deze formule onderzocht operationele model ALMOST, binnen het
relevant is voor laagfrequente actieve sonar



3 /53
Improving an empirical formula for the absorption of

sound in the sea

otnderzoeksprogramma voor RUMBLF2 en gebmik ervan zal leiden in plaats van de

bij toepassingen als bodemc lassitficatie. standaardformule. Oude Waalsdorperweg 63
Verwacht kan worden dat publicatic tot Postbus 96864

2509 JG Den Haag

T +31 70 374 00 00
PROGRAMMA PROJECT F +31 70 328 09 61

Program mabegeleider Projectbegeleider info-DenV@tno.nl

LTZ1 drs. R. Dekeling, DM0 LTZ1 drs. R. Dekeling, DM0 TNO-rapportnummer
TNO-DV 2008 A202

Programmaleider Projectleider

dr. J.C. Sabel, M. Colin, 0Opd rachtn urnmer

TNO Defensie en Veiligheid TNO Defensie en Veiligheid
Datum

Programmatitel Projecttitel mei 2008

Sonar en Onderwater propagatie Advanced acoustic modelling Auteur(s)
ir. C.A.M van Moll

Programmanummer Projectnummer dr. M.A. Ainslie

V512 032.11648 ing. J. Janmaat

Rubricering rapport
Program ma planning Projectplanning Ongerubriceerd

Start 01-05-2005 Start 01-08-2007

Gereed 31-12-2008 Gereed 31-12-2008

Frequentie van overleg Projectteam

Met de programma/project- ir. C.A.M van Moll

begeleider werd 2 maal gesproken dr. M.A. Ainslie

over de invulling en de voortgang ing. 3. Janmaat

van het onderzoek. dr. R. Vossen



TNO report I TNO-DV 2008 A202 4/53

Contents

M anagem entuittreksel ............................................................................................ 2

1 Introduction ........................................................................................................ 6

2 Data processing ....................................................................................................... 8
2.1 Selection of usable data from several papers ............................................................. 8
2.2 M easured versus calculated absorption .................................................................... 9

3 Inverse theory ....................................................................................................... 14
3 .1 M o d e l .......................................................................................................................... 14
3.2 Cost functions ......................................................................................................... 15
3.3 Search methods ....................................................................................................... 16

4 Local search on the Full Ainslie-McColm model ............................................... 17
4 .1 M eth o d ........................................................................................................................ 17
4.2 Numerical values .................................................................................................... 17
4 .3 D iscu ssio n ................................................................................................................... 18

5 Global search on the Hybrid m odel .................................................................... 20
5 .1 M e th o d ........................................................................................................................ 2 0
5.2 Sensitivity plots ...................................................................................................... 20
5.3 Numerical values .................................................................................................... 26
5.4 Discussion ................................................................................................................... 26

6 Robustness of global search ................................................................................... 28
6 .1 M eth o d ........................................................................................................................ 2 8
6.2 Sensitivity plots ...................................................................................................... 28
6.3 Derivation of an Improved Tuning ........................................................................... 36
6.4 Illustration of improved accuracy ............................................................................ 39
6.5 New empirical formula and its characteristics ......................................................... 40
6.6 Errors of the Improved Tuning formula .................................................................. 41
6.7 Errors of the L. best vector formula ....................................................................... 43
6.8 Alternative data set ................................................................................................ 43
6.9 Discussion ................................................................................................................... 44

7 Testing for significance ......................................................................................... 45
7.1 Statistical theory .................................................................................................... 45
7.2 Tests of accuracy; the F- and Chi-square tests ......................................................... 46
7.3 Investigation of the errors ...................................................................................... 47

8 Applications and conclusion ................................................................................ 50

9 Literature ................................................................................................................... 51

10 Acknowledgem ents ................................................................................................ 52

11 Signature .................................................................................................................... 53



TNO report I TNO-DV 2008 A202 5/153

Appendices
A Franqois-Garrison formula
B Matlab rn-files
C Sample values



TNO report I TNO-DV 2008 A202 6/53

Introduction

The absorption of compressional waves in water depends mainly on frequency. It also
depends on temperature, salinity, acidity and pressure. Empirical formulae are derived
to express this relation. The accuracy of such a formula is important, mainly for sonar
performance modelling, but also for seabed classification and the estimation of fish
abundance. In their papers [1] [2] Franqois and Garrison present such an empirical
formula, given in Appendix A. Ainslie and McColm have derived a simpler formula [3]
by approximating that of Franqois and Garrison. It is our objective to tune the formula

of Ainslie and McColm to in situ data in a sophisticated way. We want to derive an
empirical formula for the absorption results whose simplicity and accuracy exceeds that
of the formula of Franqois and Garrison. Since this is a matter of tuning a model to
measured data, inverse theory will be used for this. The parameters of the formula
(the model) are tuned such that the samples of a dataset are fitted best. A cost function
is defined to quantify this fit, automated search is applied and issues of sensitivity and

uncertainty are addressed.

One should be aware that it is the increased computer power that allows us to apply a
different approach, which was not available to Franqois and Garrison twenty five years
ago. Their major effort of collecting the measurements still deserves appreciation.

Overview
After a description of the data processing in Chapter 2, three cost functions are defined
in Chapter 3. The conclusion is in Chapter 8. Chapters 4, 5 and 6 present the results of
several approaches to the search for the best formula and are described hereafter in
more detail. Chapter 7 applies statistical tests.

Chapter 4
At the start of this investigation it was assumed that the formula of Ainslie-McColm is
already accurate. If the optimal tuning of the formula can be expected to be in the
vicinity of their setting, a local search suffices to find the optimum. Chapter 4 presents
this approach.

The results depend on the data set that is used. Since the Baltic Sea has a very low
salinity, Baltic data differ considerably from the rest. Therefore two cases are
distinguished: one wherein all available data, including the Baltic, are used in the search
and a second case that only uses all non-Baltic data. As a consequence the local search
comes up with two different 'best' parameter vectors.

The absorption formula consists of three components, with the fresh water absorption as
one of them. During local search, this part was tuned too. Since fresh water absorption
can be measured in a laboratory tank, it is already accurately known. However, the
derived values of the local search deviate too much from these known values.
This could have been expected; absorption measurements at sea are not suited for the
tuning of the fresh water absorption part. Therefore, from Chapter 5 onward, it is
decided not to search for parameters of the fresh water absorption part of the formula
any more, reducing the number of parameters to search for from 13 to 10. In the
chapters 5 to 7 we accept the fresh water absorption part of the Franqois-Garrison
formula and don't use the simpler approximate fresh water part from Ainsly-McColm.
This results in a hybrid model that needs to be tuned.
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Chapter 5
To test the assumption that the tuning of Ainslie-McColm is already nearly optimal, a

global search has been applied. It is described in Chapter 5. The resulting best
parameter vector differed considerably from the local search result. More important,
however, is the sensitivity information that comes easily with the global search results.
The cost function, that quantifies the distance between the calculated and the measured
absorption values, showed to be very insensitive to changes of some parameters.
Without the Baltic data, parameters coupled to salinity, for instance, are very insensitive

and therefore poorly determined.

Chapter 6
The question remains to what extent the derived results depend on the dataset that is
used. Instead of looking for extra measured data, we choose a pragmatic solution by
considering what happens if we invert a random subset of the available data.
In Chapter 6 random subsets of the data are taken and on each subset a global search is
applied. The variation of the best parameter vectors of these search runs provides
information about the uncertainty of the tuning parameters. The variation of the
minimum cost value per subset gives a feeling for the significance of variations of the
cost. Facing this uncertainty and significance, a single tuning for the Ainslie-McColm
formula, combined with the Franqois-Garrison fresh water part, is chosen.

Chapter 7
The impressionist approach of uncertainty gets a more thorough basis in Chapter 7.
where statistics is applied on the chosen formula. For the given dataset the simple
formula is proven to be more accurate than that of Franqois and Garrison. However, the
resulting errors are not normally distributed, underscoring the need for new and better
empirical absorption data.
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2 Data processing

The derivation of an empirical formula for the absorption of acoustic power in water
depends on the availability of a proper data set. As a start, we use data provided by
Franqois and Garrison [1] [2] and Schneider [4], trying to find better and more recent
data later. The selection of these data is given here. The derived data are superficially
compared with calculated absorption values from different formulae.

2.1 Selection of usable data from several papers

The data that are used come from the papers of Franqois and Garrison [1] [2] and that of
Schneider [4]. Franqois and Garrison have collected and processed measurements given
in other papers, Schneider has done measurements in the Baltic Sea. The details of these
in situ measurements are given in the papers or in the papers to which they refer, but the
basic principle is as follows. Given the distance between the source and the receiver, the
propagation loss is calculated as if there were no attenuation. The difference with the
measured propagation loss is attributed to attenuation. Uncertainties result from a
multitude of sources. Variation in source levels, calibration errors of the receiver,
variation of electrical current to the devices, disturbing noise, variations in the distance,
small errors in the measurement of frequency, salinity, temperature, acidity and depth.
For the Schneider data we have estimated the error. For the papers of Franqois and
Garrison we assume that the numbers provided by ±... present the standard deviation of
the measured absorption value.

The first step to get data was to digitize measurement values given in the papers of
Franqois and Garrison [1] [2]. Although the pdf-files of these papers are essentially
scanned images of the original hard copy versions, it was possible to copy-paste the
values from the tables using text recognition software supplied with Acrobat Reader.
The conversion was not perfect, but it was faster than copying the data manually.

Since we require that with the measurements also a measure of uncertainty is provided,
we selected the following data. From [1] Table I (Bezdek), Table II (APL) and Table IV
(Greene, but not Schulkin and Marsh). From [2] we use the tables I and II.

For [1] the following pH values have been added: 8 for the Atlantic and 7.7 for the
Pacific. For the arctic region, north of the Bering Strait (Chukchi Sea and Beaufort Sea)
a value of 8.0 is chosen. They are taken from [6]. In Table H of [1] we have used the
'Adjusted ct' numbers if present, otherwise the 'Measured ct' values are taken.
The measured absorption values for Dabob Bay have been modified too, by dividing the
Uncorrected measurements of Table I and II of Murphy [5], using a more precise
transformation from dB/kyd to dB/km (division by 9.144 instead of 9.1). The sample of
10 May 1956 is removed, because it has zero salinity, which is unlikely. The Bering Sea
sample of 2 Apr 1973 is not removed, although it deviates very much from the
Calculated value of Franqois and Garrison.
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Data from the Baltic Sea come from Schneider [4]. Although they don't have a
specified error, it was possible to estimate it, because four measurements are given per
combination of variables'. Per setting for the measured attenuation values (in dB/km)
the average and standard deviation is calculated. Four summer data points are removed,
viz. point 4, 5, 6 and 7 of Figure 4 from [4], since the high values are attributed to
resonance from fish. These data are very valuable, because the Baltic Sea has a very
low salinity and provides an exceptional situation in this respect. Therefore we
distinguish the situation that the Baltic data are used together with the other available
data ('inc Baltic'), from that where the Baltic data are excluded form the available data
('exc Baltic').

The data have been placed in the single tab-delimited text file "alldata-prepared2.txt".
They are given in Appendix C. Listed are location, investigator and year, followed by
depth [m], range [km], sound speed [m/s], temperature [°C], salinity [ppt], pH value,
frequency [kHz], measured alpha [dB/km] and the accompanying error. In some cases,
no value was given for a quantity; in those cases, a 'NaN' has been filled in. The data
file alldata-prepared2.txt can be read easily using the Matlab script readtables.m.

2.2 Measured versus calculated absorption

As an example the low-frequency measurements (Figure 1) in the Mediterranean Sea by
Skretting and Leroy (Table I in [2]) are plotted against frequency, with error bars. In the
same Figure some calculated absorption values for the corresponding circumstances
(see caption) are given. As can be expected, the calculated values of Skretting and
Leroy match the measurements best.

Maybe we have used a biased estimator of the variance, taking I/N instead of 1/(N-l). Since we don't
expect this error to be of main importance and correcting it takes very much time, we don't correct this.
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0.8
- Francois-Garrison

-Ainslie & McColm
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..... Skretting & Leroy
- Measurement

0.6

0.5

R 0.4 -

0.3-

0.2 -
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Frequency [kHz]

Figure 1 Absorption Alpha [dB/kml in the Mediterranean at low frequencies.
T = 13'C, S = 38.0 ppt, pH = 8.15. c = 1517 m/s, depth = 800 m2.

A sample of higher frequency measurements together with computed absorption values
are shown in Figure 2. The data come from Table I in [ I ] and are the Pacific Ocean
shallow measurements by Bezdek. Above 80 kHz the discrepancy between the
calculated and measured absorption values is very big.

2 There is an ambiguity in the formula of Skreting and Leroy. Commonly a factor 0.007f 2 is used, but in

their original paper this factor was 0.006f 2 . The latter is used here.
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45
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- Measurement

35-
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Figure 2 Absorption Alpha in the Pacific Ocean at high frequencies.
T = 7.0°C, S = 34.0 ppt, assumed3 pH = 8.08, depth = 200 m.

For various areas with different pH values in the measurements taken from Table I in
[2], root mean square (RMS) errors for different models with respect to the
measurements have been calculated, and are shown in Figure 3. The data come from the
North-East Pacific (pH = 7.69) measured by Chow and Turner, the Atlantic (pH = 8.03)
measured by Thorp, the Mediterranean Sea (pH = 8.15) measured by Skretting and
Leroy, the Red sea (pH = 8.18) by Browning and the Gulf of Aden (pH = 7.72) also by
Browning.

Approximation to an interpolated value of the Pacific acidity. N. Pacific data from Mellen et. al. 1987,
p 44-48 referred to by Ainslie, Table 4; depth 0 m, pH = 8.23 and depth 500 m, pH = 7.70.
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0.1 T Tr
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0
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Figure 3 RMS errors El of the different models in various pH regions.

Each RMS value has been determined using the following distance measure ,-, with a
the calculated and the measured absorption and N the number of samples.

Figure 4 shows the result of using the following definition of the fractional mean square
error 62 as a measure of the distance of the models from the measurements.

'2 = _ a,-),N j= )i



TNO report I TNO-DV 2008 A202 13/53
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0.9- Skretting-Leroy

0 Ainslie-McColm
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0.5

C:S0.4
E

0.3

0.2 +
L +

+0

0.1 o 0
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Figure 4 RMS errors E2 of the different models in various pH regions.

Comparison of these figures shows that the distance measure can exert considerable
influence on the judgement of the quality of the fit of absorption formulae.
Other distance measures are presented in Section 3.2 about cost functions.

From these examples follows that it is impossible to analyse the performance of a
formula for each combination of frequency, temperature, salinity, etc. The more
systematic approach of inverse theory is needed.
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3 Inverse theory

A specific model provides the absorption, given the values of the independent variables

(frequency, salinity, etc). In inverse theory the measured absorption is given together
with the settings of these variables, and the best tuning of the model is searched for.
We are looking for the best coefficients of the Ainslie-McColm absorption formula and
use the apparatus of inverse theory for this.

Presentation of the model is followed by a discussion of cost functions. The two main
search methods are presented thereafter.

3.1 Model

The formula of Ainslie-McColm [3] - with independent variables frequency f [kHz],
salinity S [0/00], temperature T [°C], pH and depth z [km] - is composed of three
parts; the boric acid contribution a, , the magnesium sulphate contribution (42 and the
fresh water absorption a3 ,

a=- 1 +a, +a 3  dB/km

Boric acid contribution a,:

f 2 P18 S, T
a, =Al+--5IT J f, =F (eS

1 35

Magnesium sulphate contribution a2 :

e ff 2 =Fe
T

a2 A2 02 35 f22 + f2ef2 =2e

Fresh water absorption a3 :

a 3 =A 3 f 2 e-K z).

The 13 parameters F1, S1, T1, F2, T2, A1, P 1, A 2 , 02, Z2 , Aj, T4, and Z3 , are
introduced here to tune this model. In their paper [3] this tuning was not an issue and
the following values were inserted. We will call these values the 'Ainslie-McColm'
parameter setting.

Table 1 Ainslie-McColm parameter setting.

IF S, T1  F2  T2  A, P1 A2  02 Z2  A, T, ZT

0. 78 0.5 26 4 17 0.10 0.56 0.52 4 0.0009 27 17
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It will be explained later that a second 'Hybrid model' is needed, that combines the first

two parts of the fomula of Ainslie-McColm with the fresh water absorption part of
Franqois-Garrison. This hybrid model has the following fresh water absorption a3, that
will not be tuned.

a3 = A3 P3 f 2

A3 = 4.93710-4- 2.59 10 5T+9.11 10- 7T 2 -1.50 10-'T 3  for T<200C

A3 = 3.964 10-4 - 1.146 10- 5T+1.45 10- 7T 2 -6.5 10-O1 T3  for T>20"C

P3 = 1 -3.83 10 2 z + 4.9 104z 2

Although this formula is much more complicated than the Ainslie-McColm fresh water
part, we assume that it is more accurate since it is derived from measurements in tanks.
To distinguish both models, we call the formula with the Ainslie-McColm fresh water
approximation the 'Full Ainslie-McColm model'.

3.2 Cost functions

The RMS errors El and E2 presented in the previous section quantify the distance
between the measured and the calculated absorption and therefore can be chosen as cost
functions. Careful consideration, however, leads us to use other definitions of the cost
function. We define them by means of the following symbols.
ai = the measured absorption of sample i (i = 1 ..., N),
(i = the standard deviation of the measured absorption provided with sample i and
a(y,p) = the modelled absorption for the setting ji of the independent variables of
sample i, that depends on the model parameter vector p.

The first cost function is the 'fractional mean error' (notation: L1 -cost) and is defined
as follows:

COStLIF(P) = N- a i) - "

The second cost function is called the 'normalised mean error' (notation: LIN-cost) with
definition

cOStN() N - a-p i
COLINP)= E
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The third cost function we consider is named the 'RMS normalised error' (notation:

L2-cost), which is defined as:

cOstL2 (P) = N ra(__) aio'

The fractional mean error considers the error as a fraction of the measured value.
The normalised mean error expresses the distance between the measured and calculated

absorption values relative to the provided error of the sample. The RMS normalised
error squares this normalised error to weight larger errors extra, whereas the normalised
mean error gives equal weighting to each sample. If the measured data contains outliers,
their influence is larger in the L2- than in the LIN-cost. The L,2-cost resembles the
Mahalanobis distance. These cost functions will be applied on two different models;

the Full Ainsfie-McColm model and the Hybrid model.

3.3 Search methods

With 13 parameters to tune the full Ainslie-McColm model, the search space is huge.
As a result the search process is automated by means of an algorithm. The main choice

is between using a local search or a global search method. The local search method

assumes that a parameter vector is given that is already in the vicinity of the best vector.
It follows the gradient of the cost function so that the minimum is reached as fast as
possible. A global search method starts without the assumed a priori information and
samples the search space in such a way that it finds the global minimum after evaluating
a limited but often huge number of parameter vectors.

As local search method we chose Downhill Simplex, which is available as the built-in
Matlab script 'fminsearch.m'. Mainly because we are interested in the sensitivity of the

parameters, we also decided to apply a global search. Differential Evolution is the
algorithm used for this. The global search provides so much more information, that we
changed our approach and used global search as the main instrument for our
investigation from Section 5 onward. First we present the local search results.
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4 Local search on the Full Ainslie-McColm model

The local search is started in the 'Ainslie-McColm' parameter vector. In this section we
present the results of this search. A brief discussion follows thereafter. This discussion
leads to two main improvements of the method. An overview of the Matlab m-files used
is given in Appendix B.

4.1 Method

Downhill Simplex is a local search method that tries to find the vector with minimum
cost as fast as possible. Starting in a point of the cost landscape, it explores the direction
wherein the cost derivative is most negative. It follows the steepest downhill path.
The disadvantage of such an algorithm is that if a local minimum is found, the method
is not able to escape from it, possibly missing the global minimum. The state of the
algorithm is specified by a single vector, in contrast with global search methods, whose
state is often given by a population of vectors.

4.2 Numerical values

The best parameter vector depends on the data set used and on the cost function. For the
data set we distinguish using a data set that contains all available data and the option of
not using the Baltic data. The search can be done by means of the L1 f-, LlN- or the
L-cost function. This would lead to six 'best' vectors. Because this section mainly
serves to show the flaws of this approach, we only apply the Ll-- and L2-cost function.
At the next stage of our investigation we exchange the Ljtt- for the LIN-cost function.
The combination of two datasets with two cost functions provides us here with four

'best' vectors.

Table 2 Results of local search with 1000 function evaluations, starting at the 'Ainslie-McColm' setting. Values in brackets give

percentage change relative to 'Ainslie-McColm'.

inc Baltic exc Baltic

Para-m.. eter Aise- best vect.or with best vector with inslte- best vectorwith best vector with

F, 0.78 0.86 (+10) 0.98 (+26) 0.78 0.88 (+13) 0.88 (+13)

St 0.5 0.40 (-7) 0.56 (+11) 0.5 0.6 (+20) 0.12 (-76)
T, 26 30.5 (+17) 40.9 (+57) 26 30.1 (+16) 29.6 (+14)

T2 17 20.6 (+21) 20.5 (+21) 17 21.1 (+24) 22.3 (+31)
A, 0.106 '0.108 W+) 0.102 (-4) 0.106 0.109 (+3) 0.101 (-5)
P, 0.56 0.57 (+1) 0.58 (+3) 0.56 0.58 (+4) 0.58 (+4)

A2  0.52 0.51 (-2) 0.56 (+7) 0.52 0.51 (-2) 0.58 (+8)
e2  43 41.0 (-5) 77.9 (+81) 43 39.1 (-9) 86.8 (+102)

Z2 6' 4.8 (-20) 3.8 (-37 6'4.5 (-25)' 4.0 (-33)
A3  0.00049 0.00048(-2) 0.00047(-4) 0.00049 0.00045(-8) 0.00046(-6)

T3 27 2.1 (-18) 25. (-4) 27 23.5 (-3 2.9 (+3)'
17 16.0 (-6) 5.0 (-70) 17 8.5 (-50) 6.6 (-61)

Ll-COSt 0.11436 0.10602 0.1155 0.11286 0.10244 011257

L2-COSt 2.2235 2.0995 1.8506 2.2892 2.1557 1.8651
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To prevent misunderstanding, 'inc Baltic' means that the Baltic data are taken into
account during the search and also for the calculation of the presented cost value. In the
same way the Baltic data are left out during the search and are left out of the presented
cost value for the 'exc Baltic' cases. The consequence of this is that the costs of 'inc
Baltic' and 'exc Baltic' columns can not be compared, they will already differ only
because they use different data sets.

4.3 Discussion

These results demonstrate that the best vector depends on the cost function used during
the search (LIF- or L2-cost) and on the data set that is used (including or excluding the
Baltic data). Comparison of the costs of the search results with that of the Ainslie-
McColm parameter setting shows that a better choice of the parameters is possible.
This means that an improvement of the accuracy of the Ainslie-McColm absorption
formula can be derived.

The cost values that result are unexpectedly high. An L, .-cost of 0.11 rmeans an average
fractional error of 11% of the measured value. This is much more than the claimed
value of 5%. In the same way an L-cost of 1.9 means a root mean square error of the
normalised deviation of the measurements from the model of 1.9. For normally
distributed 'measurements errors' this would be considered a big Mahalanobis distance.
This raises doubts about the appropriateness of the model or the quality of the dataset.
Both issues will not be addressed here.

We compare the accuracy of the Ainslie-McColm formula with that of Franqois-
Garrison by means of their cost values.

Table 3 Comparison of costs.

Ainslie- Ainslie- Frangois- Frangois-
McColm McColm Garrison Garrison
inc Baltic exc Baltic inc Baltic exc Baltic

LIF-COSI 0.11436 0.11226 0.1157 0.11268
L2-cost 2.2235 2.2892 2.1805 2.2305

These cost values suggest that the accuracy of the Original Ainslie-McColm formula is
approximately the same as that of Franqois-Garrison. However, costs are only auxiliary
variables; the objective of the search are the derived parameter values and they deserve
more attention.

The fresh water contribution in the Franqois-Garrison formula is assumed accurately
known, because it has been established in a laboratory tank. The original values for A ,
Tj and Z of Ainslie-McColm provides an approximation for this part of the absorption.
However, the just derived values of A3, Tj and Z deviate too much from these original
values. It was therefore a mistake to search for these three parameters. We decide to
stop improving the approximate fresh water part of the Ainslie-McColm formula and
accept the more complicated fresh water absorption formula of Franqois-Garrison as the
most accurate.

This means that we stop using the Full Ainslie-McColm model and turn over to the
Hybrid model. The parameters A3, T3 and Z3 are removed from the search, reducing the
search space to 10-dimensions instead of 13.
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What is also missing in the results is how sensitive the costs are to small deviations of a
parameter from its 'best' value. Marginal sensitivity is the effect of a small variation of
a single parameter on the cost of the parameter vector. If such a change of a parameter
has no effect on the cost, little value should be given to the precise value of this
parameter. To get this sensitivity information it is required to calculate the cost of many
vectors that differ slightly from the minimum vector.

Global search automatically provides the costs of many vectors, since it explores at
random the region of a local minimum much more thoroughly than the efficient steep
downhill local search. Global search even has the extra advantage that no information
about the approximate position of the minimum in the parameter space is required.
Because of these arguments, we decide to restrict ourselves from now on to global
search.

A disadvantage of the LIF-COSt is that is does not take the error provided with the
measurements into account. For this reason it is replaced by the LIN-cost. This will be
our preferred choice. Just like the L,-cost it takes the given error into account, but in
contrast to the L2-cost it weights each sample equally, irrespective of the size of the
error of the sample.
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5 Global search on the Hybrid model

This section starts with a brief description of the inversion runs. Then the results are
presented by means of sensitivity plots, followed by the derived numerical values.
We conclude with a discussion of the results. An overview of the Matlab files used is
given in Appendix B.

5.1 Method

Global search is applied on the Hybrid model, using the data file alldata-prepared2.txt
(given in Appendix C). Because there are only 10 parameters left to search for, the
settings of the search method are set to a population size of 16 and 150 generations.
Here is an overview of the various runs.

Table 4 Files containing the results of the global search each file contains 200 runs.

L1N-cost L2-COSt

normalised mean error RMS normalised error
Baltic data included MathieusRuns-300108 MathieusRuns-310108
Baltic data excluded MathieusRuns_320108 MathieusRuns_330108

5.2 Sensitivity plots

An advantage of global search is that it can provide information about the sensitivity of
the parameters. This sensitivity is visualised by means of 'red dot' pictures, that
requires some explanation. In these pictures all evaluated vectors during the global
search process are considered, together with their cost values. For each parameter each
vector is represented by a single red dot in a picture that shows the parameter value
against the cost. A second much smaller set of vectors consists of all parameter vectors
from the last generation of each run. They usually will have low costs and are presented
by green dots. Black dots show the 200 best vectors of the global search runs (after a
local search of at most 1000 function evaluations on the single best vector of the last
generation of each run). Collecting all vectors from the 200 files of
MathieusRuns_300108 the red dot pictures look as follows. Vectors with an LIN-cost
higher than 1.6 are not presented.
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Figure 5 MathicusRuns-300108; Baltic data included, LIN-COSt.

Notice that the black dots are mostly very concentrated. The global search has found
many parameters very precisely. There also is no sign of ambiguity of the solutions.
Because the green dots represent vectors with very low costs too, they provide
sensitivity information. It is seen that the cost is very insensitive to the parameter T1.
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The sensitivity plots for MathieusRuns_320108, that excludes the Baltic data, are as
follows. Because the variation of the salinity in the measurements is very small without
the Baltic data, the parameter S can not be resolved.
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Figure 6 MathieusRuns-320108; Baltic data excluded, L N-cost.

The sensitivity of the parameters varies. The cost is very sensitive to the parameters AI,
P1 and A2 and very insensitive to S and T1. For the sensitive parameters a high
precision can be expected.
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Using the L2-cost function during the inversion runs gives the following results.
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Figure 7 MathieusRuns-310108; Baltic data included, L2-cost.
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Notice that the scale of the vertical axis has changed. LIN and L2-cost values are
incomparable. Besides, we have not discussed the significance of changes of the costs,
an issue that will be addressed in Chapter 6. The scale of the axis is chosen such that
approximately the same number of red dots as in Figure 5 are present.

In comparison with Figure 5, the sensitivity of the L2-costs for the parameters S 1. T1, P,
and 02 have become smaller than was the case with LIN-costs. Notice that the black dots
are much more concentrated.
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Figure 8 MathieusRuns-330108; Baltic data excluded, L2-cost.

Comparison of Figure 8 with Figure 6 demonstrates that the sensitivity for S1 and T1 for
inversions without Baltic data has deteriorated even further with L.-costs.
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5.3 Numerical values

For each parameter a search interval has to be chosen. We want to prevent that the
optimal setting of a variable is found on the upper or lower bound (as still happens for
SI). After some trial and error the very high variable upper bounds (vub) given in the
next table are used. The lower bound of the search interval of each parameter is taken
the upper bound divided by 10000, which is effectively zero. The horizontal axes of the
previous red dot pictures show the full search intervals. The numerical values of the
best parameter vectors are presented in the table.

Table 5 Overview of parameter vectors and upper search boundaries.

par variable Ainslie- Best vector for Best vector for Best vector for Best vector
upper McColm data inc. Baltic; data exc. Baltic; data inc. Baltic; for data
bound L1N-COSt LIN-COSt L2-cost exc. Baltic;

L2-cost

file nr ..... 300108 320108 310108 330108
Fy 1.6 0.78 1.04 1.02 0.92 0.94

S1  1.0 0.5 0.55 0.996 0.51 0.99997
T, 100 26 46.4 50.6 33.3 39.1
F2  120 42 46.6 49.3 46.4 47.9
T2  50 17 17.9 20.1 17.7 18.7

A, 0.25 0.106 0.104 0.103 0.101 0.101
P, 3 0.56 0.62 0.62 0.57 0.58
A2  1.2 0.52 0.52 0.51 0.56 0.55
02 120 43 44.4 40.2 73.2 67.0

Z2 8 6 5.8 5.8 4.92 4.9
LIN-COSt (inc. -- 1.4851 1.3153 -- (1.3824) --

Baltic)

L1N-COSt (exc. - 1.5304 1. .. 3266 (1.3975)
Baltic)
L2-cost (inc. -- 2.2346 (1.9845) -- 1.8905 --

Baltic)
~L-Ot (exc. 2.2988 ( 2.0153) -1.9122

The Ainslie-McColm parameter vector together with its cost is presented for
comparison. The cost values given here belong to non-rounded parameter vectors.
Since the vectors presented here are rounded, their costs will be slightly higher.
This issue is addressed more thoroughly in Section 6.3.

5.4 Discussion

Now we have the best parameter values and know the sensitivity of each of them.
Are we finished? No. This result relies fully on the supplied data set. Each time extra

data come available, another parameter setting will become optimal. Our solution is not
robust. What we want, is to derive a very good parameter setting that will not vary
much when new data come available. Instead of waiting for these new data, we
investigate the effect of leaving out a part of the available data. This gives an
impression of the certainty or robustness of each of the parameters. Where sensitivity
says something about the effect of a small change of a parameter for the cost
(considering a single set of measured data), uncertainty, of a parameter is caused by
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variations of the measurements, considering multiple sets of data. These ideas must be
distinguished.

In the next section the approach is adjusted a second time by varying the dataset to
which the formula is fitted. Global search on the hybrid model will still be applied.
From the previous Red Dot pictures (Figure 5 - 8) it is clear that the Baltic data are very
important to derive sensitivity for the parameters S and to a smaller extent T1.
Therefore we will consider results excluding Baltic data only briefly.
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6 Robustness of global search

After a description of the way wherein the dataset is varied, the results of the global
search on varying subsets are presented by means of sensitivity plots. Then a single
parameter vector is selected as the best one, that represents the Improved Tuning
formula. The improved accuracy is illustrated and the new formula is presented in its
full glory.

6.1 Method

The robust global search is applied on the Hybrid model, but with varying data sets.
For each inversion run we remove at random between 20 and 25% of the 166 samples
of alldata-prepared2.txt, including the Baltic data. The resulting random subset contains
at least 124, but usually 128 to 134 samples. The vectors of the inversion runs are
collected to see the effects of the variation of the data set. Again the LIN-cost and
L2-cost are used.

6.2 Sensitivity plots

The following red dot pictures show results of search runs on varying subsets.
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Figure 9 MathieusRuns_280108; Baltic data included, 200 runs, L1 \-COSt.

Notice that lower cost values are derived now. This is easy to explain. Reduction of the

set of measurements allows a better fit of the model. However, one must keep in mind
that the cost values of two different runs are incomparable now. They give a measure of
the distance of a single model to two different sets of data. The variation of the costs of
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'good' vectors gives a feel for the significance of these variations. Looking at the costs
of the best vectors only, it is clear that variations in the LIN-COStS of ca. 0.3 can result
from slightly different subsets of the data. Smaller variations than 0.3 can not be
considered to be significant. This means that all vectors below the minimum derived
cost plus 0.3 could be considered to be as good. As a consequence it is better to
concentrate on all vectors of the last generation (the green dots) than on the best vectors
(the black dots). If we tune the hybrid model well, the LIN-COSt should be below 1.5,
irrespective of the chosen subset.

A second observation is that there is no single model that is best for all datasets.
For each subset of the data a best model is derived, but one such best model is only best
for the particular dataset from which it comes. We must reduce our expectations and
look for a model that is reasonably accurate for most datasets, in other words: which is
robust to variation of the data set.

In the third place the results of these runs on random subsets of the data provide
information about the uncertainty of the parameters. If we concentrate on the green dots
of the vectors of the last generations, it can be seen there is very little uncertainty in for
instance the parameter A,, while T1 is very uncertain.

Showing the red dots of all evaluated vectors is very useful to understand these pictures.
However, the number of vectors is huge. Since we mainly want to know the spread of
very good and best vectors, we have done 2000 runs, each one on a newly chosen
random subset of the data. Showing all evaluated vectors of all these runs (red dots),
would cause memory overload. Therefore hereafter only the vectors of the last
generation (green dots) and the best vectors after local search (black dots) will be
shown. After 2000 runs, the last generation and best vectors are stored in the file
Summary-MathieuRuns_280108.mat, the files of the individual runs are deleted.
The results are as follows.
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Figure 10 MathieusRuns_280108; 2000 runs; Baltic data included, LIN-cost.

From these pictures follows that the parameters S, Tj and 02 are very uncertain in
comparison to their search regions and F2, A1 , P, and A2 are well determined. This can
be compared with the sensitivity derived earlier (Figure 5). Often, but not always,
uncertain parameters are also insensitive. The standard deviation ok of parameter k that
results from the green dots is as follows.
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Table 6 Uncertainty of the parameters from the last generations of 2000 runs of 280108 '

par vub minimum maximum mean error Ork

nr ak vub

1 F 1.6 0.638 1.387 1.058 0.099 0.062

2 S1 1.0 0.035 0.947 0.558 0.095 0.095
3 T, 100 16.84 99.86 50.65 13.4 0.134

4 F2  120 37.84 64.34 48.31 3.6 0.030
5 T2  50 12.71 43.99 19.64 3.5 0.071

6 Al 0.25 0.092 0.121 0.1049 0.0026 0.010
7 Py 3 0.462 0.837 0.626 0.035 0.012

8 A2  1.2 0.452 0.590 0.524 0.018 0.015
9 02 120 23.96 119.99 50.8 12.3 0.103

10 Z2  8 3.856 7.865 5.68 0.47 0.059
L1 N-cost .. 1.060 1.507 1.322 0.064 --

The last two columns of this table are the most valuable ones, the other columns are
given for comparison only. The amount of uncertainty of a parameter is clearly visible
in the last column.

The 2000 inversion runs with LIN-cost and the hybrid model for the case that the Baltic
data are excluded, are stored as MathieusRuns_290108. Again the files are removed and
bestVectors and lastGeneration are stored in Summary-MathieuRuns_290108.mat.
The pictures can be compared with the previous ones to demonstrate the importance of
the Baltic data. Without the Baltic data, there is very little variation in the salinity.
As a result the parameter S cannot be resolved; there is even a concentration on its
upper bound. The parameter T1 is poorly determined too, it has best vectors on the (very
high) upper bound of its search interval. It is clear that the Baltic data are very valuable
and should be included in the dataset.

4 Because local search has been applied to derive bestVectors, they are not included in lastGeneration.
Therefore the sets lastGeneration and bestVectors are unified to get this table. There is a problem in
lastGeneration. 95 of 32000 vectors have NaN as cost. I don't understand this, but have removed these
vectors from the set.
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Figure I I MathieusRuns290108; 2000 runs. Baltic data excluded, LIN-cost.

It is also interesting to investigate the effect of using the L-cost instead of the Ll N-COSt.
MathieusRuns_020208 has 2000 runs with the Hybrid model, random selection of
subsets from the full dataset including the Baltic data. The L--cost is used. The spread
of the bestVectors is smaller than was the case with the LIN-cost (runs 280108).
The plots for S1, 02 and Z2 give the strong impression that there are two ambiguous
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solutions. This is most likely coupled to the subset of the data where the formula is
fitted to.

This calls attention to the composition of the data set. With five independent variables
(f, S, T, pH and z) 166 samples is an extremely small set. If there would be only 3 values
per variable, 35 = 243 samples are required for a uniform spread over the space of
independent variables. Therefore 166 samples cannot have such a uniform spread.
For a subset of 130 samples this non-uniform composition is even worse. This
phenomenon is the most likely cause for the big variation in costs and parameter
settings. Although the random subset approach exaggerates the uncertainty, it gives a
feeling for the effect of a changing data set and of a non-uniform spread of the data over
the space of all possible combinations of independent variables.
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Figure 12 MatheusRuns-020208; 20W runs, Baltic data included, 1,2-CoSt-
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6.3 Derivation of an Improved Tuning

Our search goes in the wrong direction. We are looking for one single best tuning of a
formula, but at each step the number of candidates increases instead of decreases.
Which parameter vector shall we choose? As stated earlier, there is no parameter vector

that has lowest cost for all possible subsets of the data. The best we can hope for is to
select a parameter vector that has low costs for most of the datasets.

This suggests the need to define a new cost function. Because a parameter vector should
perform well on all possible subsets of the data, a large number of random subsets can
be selected, for instance 10 000. The cost of a single vector for each of these subsets can
be calculated, whereafter the average of these subset costs gives the performance of the
vector on all subsets. Raising the number of random subsets to 100.000 or more, leads
to less statistical variation of this average cost value. However, with such huge
numbers, each data sample will be included in this average cost calculation
approximately as many times. As a consequence, the vector with the lowest average
cost will be the same as the vector that minimized the cost on the full dataset. But this is
a result we already derived in Chapter 5 and summarized in Table 5. The investigation
of the robustness by means of random subsets does not lead us to the preferred setting,
but has provided a feel for the uncertainty of the parameters and the significance of cost
variations.

It has become clear that it is important to include the Baltic data in the dataset.
We still can choose to use the LIN-cost or the L2-cost. We prefer to use the LIN-COSt
since it gives equal weight to each sample and is less sensitive to outliers in the data.
Therefore we reconsider the results of the 200 runs of 300108 on the full dataset inc.
Baltic (Figure 5) and combine it with the uncertainty information from the 2000 random

subset runs of 280108 (Figure 10).

The set of best vectors of the 300108 runs has 200 members, with LIN-costs varying
from 1.3153 to 1.3277. In comparison to the size of 0.3 for significant differences in
costs, the variation of the costs of the best vectors is negligible. All these vectors could
be considered of equal quality. To choose a single vector, we explore the wealth of
information that is available in this set. We want to choose a single vector which is
close to the 'middle' of the set, hoping that this increases its robustness. Selecting this
vector also means discretisation of the parameter values. The size of the discretisation

step is implied by the search intervals of the parameters, because normally three digits
for a parameter value suffices. The variable upper bounds (vub) and the chosen
stepsizes are given in Table 7.

Since the set of best vectors has a considerable spread, the following heuristic approach
is applied to select one vector. First 161 vectors that cost less than 1.32 are selected
(with testl80308B.m). The minimum and maximum value of each parameter in this set
gives the range of that parameter, which is used together with the stepsize to make a
histogram. The binned parameter values that appear most are selected for closer
inspection (test220308.m). This results in the parameter intervals of Table 7.
With the given step sizes an exhaustive search (over 46 million vectors) has been
applied (with testl60308.m). The results are given in Table 8.
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Table 7 Search intervals for exhaustive search with LIN-cost.

param vub minimum maximum parameter step size number of

parameter parameter interval steps
value value

F, 1.6 1.0011 1.2045 [1.03, 1.05] 0.01 3

S, 1.0 0.5154 0.65375 [0.54, 0.57] 0.01 4
T, 100 38.494 83.166 [46.0, 47.0] 0.1 11

F2  120 45.29 48.952 [46.0, 47.0] 0.1 11
T2  50 17.034 19.768 [17.5,18.5] 0.1 11
A, 0.25 0.10284 0.10656 [0.104,0.105] 0.001 2

P, 3 0.61569 0.64968 [0.60, 0.65] 0.01 6

A2  1.2 0.50491 0.5327 [0.50, 0.55] 0.01 6
92 120 38.014 50.816 [44.0, 44.7] 0.1 8
Z2 8 5.6077 6.0945 [5.6, 6.0] 0.1 5

The best non-rounded vector of 300108 has a cost of 1.3153, but rounding this vector to
digits given by the step sizes increases its cost to 1.3168. The search on the discretised

space has found a vector with a cost of 1.3157, just below this value but exceeding
1.3153. With a very small increase of the costs, the Improved Tuning vector is derived,

that makes the formula look simpler and will be our final choice.

Table 8 Overview of parameter vectors and upper search boundary.

par variable Ainslie- Best vector for error Improved

upper bound McColm data inc. Baltic; ak Tuning

Hybrid LIN-COSt (LIN-COSt)

file nr 300108 280108

F, 1.6 0.78 1.0392 0.099 1.04

$, 1.0 0.5 0.54538 0.095 0.55
T, 100 26 46.422 13.4 47

F2  120 42 46.575 3.6 46.7
T2 50 17 17.915 3.5 18

Ai 0.25 0.106 0.10387 0.0026 0.104
P, 3 0.56 0.62167 0.035 0.63

A 2  1.2 0.52 0.52075 0.018 0.52
02 120 43 44.405 12.3 44

Z2 8 6 5.7855 0.47 5.8

LIN-cost -- 1.4851 1.3153 -- 1.3161
2-cost -- 2.2346 1.9845 - 1.9875

LlF-cost -- 0.1134 0.1116 -- 0.1115

Notice that for all parameters the Improved Tuning is very close to the non-rounded
best vector. The Ainslie-McColm settings of F1, T, and P deviate considerably from
these values, even more than one standard deviation. The improved accuracy of the

simple Improved Tuning hybrid formula is demonstrated in the next section.

The following observation about the set op 200 best vectors of the 300108 runs
deserves to be mentioned. Several parameters in this set are strongly coupled.
The strongest correlations are the following.



TNO report I TNO-DV 2008 A202 38 /53

Table 9 Strongest correlations of parameters in the set of best vectors (300108 nns).

S1 Tj At T2 A2  02

F, 0.94 0.95 0.87 -- -- --

F 2  -- -- -- 1.00 -0.89 -0.88

The parameters S, T1 and A, are strongly correlated to F1; and T2, A2 and k, are coupled
to F2 . The linear least squares estimate of the relation between these coupled parameters
for the best vectors of the 300108 runs, are derived with the m-file testl70308.m.
After removing 19 'eccentric' vectors from the set, the linear relations are as follows:
S, = -0.12115 + 0.64651*F
T/= -137.49 + 176.19*Fl
A, = 0.088883 + 0.01457*Fl
T2 = -16.455 + 0.73837*F2
A2 = 0.80182 - 0.0060232*F2
02 = 174.39 - 2.7808*F2

This demonstrates that the number of parameters is too big and can be reduced.
However, we don't think that this over parametrization hampers our investigation.

For later use we also present the results of a search that minimizes the L,-cost on the
full dataset inc. Baltic (220308 runs) instead of the LIN-cost5 . The 1140 best vectors are
collected in the file Summary-MathieuRuns_220308.mat. The lowest L2-cost is 1.8905,
which is derived for a large number of vectors. The procedure of discretisation and
exhaustive search is used to select one discretised vector that is close to the middle of
the set of best vectors and has a low L2-cost.

Table 10 Search intervals for exhaustive search with L2-cost.

param vub parameter step size number Best L2  Improved

interval of steps discretised Tuning vector
vector

runs 220308 300108
F, 1.6 [0.89, 0.95] 0.01 7 0.91 1.04

S, 1.0 [0,48, 0.54] 0.01 7 0.5 0.55
T, 100 [31, 36] 1 6 33 47

F2  120 [46.4, 46.9] 0.1 6 46.6 46.7
T2  50 [16, 19] 1 4 18 18
A, 0.25 [0.100, 0.1021 0.001 3 0.101 0.104

P, 3 [0.55, 0.59] 0.01 5 0.57 0.63
A2  1.2 [0.54, 0.8) ~0.01 5 0.56 0.52
2, 120 [73,77] 1 5 76 44

Z2 8 [4.8, 5.0] 0.1 3 4.958
L2  -- -- . -- 1.8913 (1.9875)

L1N---- (1.3865) 1.3161

L1F .. ...... (0.1190) (0.1115)

Notice that the best L2 vector differs considerably in its parameter values from the
Improved Tuning vector. We prefer to use the Improved Tuning vector (derived by
minimizing the LIN-cost) for the simple formula and will not use the L,,-vector until
Chapter 7.

5 These results agree with those of the 310108 runs; see Table 5.
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It is worthwile to verify the position of these parameter vectors in the sensitivity plots of
Figure 10 (for the Improved Tuning vector) and 12 (for the best L2 discretized vector).
The central position of both vectors demonstrates that the applied method has derived

its objective and suggests robustness to variation of the data set.

6.4 Illustration of improved accuracy

Because there is no single parameter vector that has the lowest cost for all data subsets,

it is very illustrative to compare the costs of the Franqois-Garrison formula, the full
Ainslie-McColm formula and the Improved Tuning hybrid formula for a large number

of datasets. For this, 10.000 random subsets of the full dataset inc. Baltic are selected
and for each of them the LIN-costs of the three formulae is calculated and plotted.
The formula that has on average the lowest cost is the most accurate one.

1400 1 1 1
- Francois Garrison ,'
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1200 - Improved Tuning
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Figure 13 Comparison of the LIN-COStS of the Franqois-Garrison formula, the Hybrid Ainslie-McColm

formula and the Improved Tuning formula, for 10 000 random subsets of the data inc. Baltic.

The mean L1N-costs for Franqois-Garrison is 1.45, for the full Ainslie-McColm formula
it is 1.47 and for the hybrid Improved Tuning formula 1.32. The first picture shows that

the full Ainslie-McColm formula is an approximation to that of Franqois-Garrison.
The second figure shows that the hybrid Improved Tuning formula is more accurate
than Franqois-Garrison in most cases. In the third picture it is visible that for some
subsets Franqois-Garrison is more accurate than the Improved Tuning. The question
remains, however, if these differences in LIN-costs are significant, since they are far less

than 0.3. But even if improved accuracy of the Improved Tuning formula can not be
confirmed, it is sure that no accuracy has been sacrificed for the sake of simplicity.
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Comparison of the L2-costs for the three formulae is useful too. Instead of the previous
pictures, the cost values of the formulae on the full dataset provides the information.

Table II Comparison of costs on the full dataset inc. Baltic.

Frangois- Full Ainslie-McColm Hybrid Best L2

Garrison Ainslie- formula with Frangois- Improved discretised

formula McColm Garrison fresh water Tuning vector
formula part formula

LIN-COSt 1.4507 1.4745 1.4851 1.3161 1.3865

L2 -CoSt 2.1805 2.2235 2.2346 1.9875 1.8913

L1F-COSt 0.1157 0.1144 0.1134 0.1115 0.1190

This comparison shows that the hybrid Improved Tuning, never has less accuracy than
the Franqois-Garrison formula. The formula is simpler without loss of accuracy.

6.5 New empirical formula and its characteristics

With the Improved Tuning parameter vector the new empricial formula is as follows.

a=a1 +a 2 +a 3 dB/km

Boric acid contribution a,:

PH f
2  

p-8 ( 055 T

2+..1 04  'f J e 0.63 L=1.04 e 47

Magnesium sulphate contribution a2

(T ( S ( f2f2 ~z T

a, =0.52LI+- - J fJ2 +f2 e 5.8 f 2 =46.7 e'5

Fresh water absorption a3 according to Franqois-Garrison:

a 3 =A 3 P3 f
2

A3 =4.937 10-4 - 2.59 10- 5 T+9.11 10-7 T2 -1.50 10-ST 3  for T<200C

A3 =3.964 10-4-1.146 10- 5T+1.45 10-7T 2 -6.5 10-1 °T 3  for T>20"C

P3 =1 -3.83 10- 2 z + 4.9 10-4 Z2

The five independent variables are the frequency f [kHz], pH, salinity S [o],

temperature T [°C] and depth z [km]. The formula should certainly not be used
outside the range of the data, given in Table 12.
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Table 12 Range of the data.

f [0.16, 6501 kHz
pH [7.69, 8.18]
S [8, 40.5] ppt
T [-1.75, 22] 00

z [0.013, 3.35] km

A major deficiency of the data is their non-uniform distribution over the space of the

independent variables, which can be seen from Figure 16.
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Figure 14 Histograms of the spread of the independent variables in the data.

6.6 Errors of the Improved Tuning formula

How big is the expected error? For this we need to take into account that the absorption
values differ many orders of magnitude, depending on the setting of the independent

variables vi. 6

To illustrate this we recall the following definitions:
ai = measured absorption sample i,
a(vi) = calculated absorption for setting vi and

ai = error provided for sample i of the measured data.
Table 13 provides some characteristics of the errors for the Improved Tuning formula.

6 Made with ProoflmprovedSetting3.m.
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Table 13 Maximum and minimum of absorption values and errors; ImprovedTuning vector.

minimum maximum

measured absorption ai 0.0016 227
modelled absorption aLv,) 0.00164 247.64

provided error ai 0.0009 17

fractional error ai - a(vi) -0.43 0.38

a
a, -a(E~) -7.24 11.74

normalised error a.i

A better overview is given by the two dimensional plot of the fractional error versus the
normalised error of the data points in Figure 17 (left).

measured ve.s- caculed absorplion measured versus caleuated bso,plio.
12 12
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2 2
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Figure 15 Fractional and normalised errors of all data points for Improved Tuning ItN hybrid formula
(left) and for the best L2 vector formula (right).

Data points that are more than 5 times the provided error away from the calculated
absorption can be considered to be outliers. There are 2 of them, sample nr 24
(normalised error -7.24) and nr 50 (+11.74). These samples are given in Table 14.

Table 14 Overview of the 2 outliers (sample numbers 24 and 50).

Investigator location year a error F T S pH Z

Bezdek Pacific 1972 32.7 0.9 145 7.0 34.0 7.7 0.00
APL Bering Sea 1973 18.7 0.3 60 -1.75 32.9 7.7 0.045

With this kind of errors it is difficult to provide an error measure for the derived
absorption formula.



TNO report I TNO-DV 2008 A202 43/53

6.7 Errors of the L2 best vector formula

For the hybrid formula tuned by the best L2 vector, the errors are as follows.

Table 15 Maximum and minimum of absorption values and errors; L2 best vector.

minimum maximum

measured absorption a1  0.0016 227
modelled absorption aLv) 0.00165 249.41

provided error ai 0.0009 17

fractional error al - a(v i ) -0.55 0.37

ai
a.. -a(v) -7.47 7.69

normalised error at

The picture of the errors is comparable to the previous one and given in Figure 16
(right). The same two samples are outliers here too, but with different normalised
errors: -7.47 for sample nr 24 and +7.69 for sample 50. The quadratic nature of the
L-cost function has resulted in smaller cost values for these outliers in comparison to
the normalized errors of the Improved Tuning formula (that used the LIN-cost), but this
was only possible at the expense of larger fractional errors.

6.8 Alternative data set

Although the errors of the dataset are interesting, the cost values of the Improved
Tuning formula given in Table 11 can not be used to provide an error estimate, since the
formula has been tuned on these data. An estimate of the expected error should come
from an alternative data set.

There are 48 measured absorption samples that have not been used during the search,
because they have no measurement error provided with them. This dataset can be used
to test the improved accuracy and to provide some estimate of the expected errors.
With the L1 -cost it is possible to express in a single number the distance of these
samples to their calculated absorption value for each of the formulae. The following
table demonstrates that - for this dataset - the accuracy of the hybrid Improved Tuning

7formula and the best U formula is still at least as accurate as that of the other formulae .

Table 16 LF-cost for the dataset of 48 samples of FG provided without an error.

Frangois- Full Ainslie- Ainslie-McColm Hybrid Hybrid
Garrison McColm formula Improved best L2-cost

formula formula with Frangois- Tuning formula

Garrison fresh formula

water part

LiF-COSt 0.369 0.374 0.374 0.21 0.329

An estimate for the fractional error of 0.33 is huge and much bigger than the 5% claim
of others.

7 Is this new dataset reliable? It is worrying that the LIF-costs are 3 times as high as for the original dataset,
but this can be attributed to the tuning process.
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6.9 Discussion

At last we have selected a tuning that results in a simple formula that is at least as
accurate as the Franqois-Garrison formula. Since its parameter values are in the centre
of the distribution of the sensitivity plots of the random search runs, it is expected that
this tuning is robust for changes in the data set. At this moment we prefer to use the
LIN-cost during the search process, leading to the Improved Tuning formula.
However we also present the best L2-cost hybrid model. It is worrying that both
parameter vectors differ considerably in some of their values. The sensitivity to outliers
of the L-cost function is a serious argument to prefer the Improved Tuning, especially
if the quality of the in situ absorption data with their provided errors can be questioned.
But the nice mathematical properties of the L2-cost function allows for the application
of tests, as will be explained in Chapter 7.

We are not able to provide an error for the simple formula. For a big part this is caused

by the very small size of the data set. With 5 independent variables (f, T, S, pH and z)
166 samples covers only a negligible part of the variable space. These samples have
therefore inevitably a non-uniform spread over this space, which will degrade the
estimation performance of the formula. If some of these samples are dependent, this
even becomes worse. Hopefully these effects of a limited number of samples is
considerably compensated by the physical basis of the formulae.

However, all these issues also hold for the Franqois-Garrison formula and in
comparison to the latter, our formula can be considered to be simpler, robust and at
least as accurate. In Chapter 7 we will prove its increased accuracy.
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7 Testing for significance

Careful consideration of Chapter 6 reveals that the analysis of the significance of
variations of the costs is qualitative. However, statistical testing can be applied. 8

By means of the F-test we proof that the simple hybrid formula is significantly more
accurate than the formulae of Franqois-Garrison and Ainslie-McColm. Thereafter the
distribution of the errors of the data with respect to the formulae is investigated.
The method presented in this report is suited for an extended improved dataset, if one
becomes available in the future.

7.1 Statistical theory

From statistical theory the following is known. If N errors fi are independent and
normally distributed with zero mean and standard deviation ai , the statistic X2 has the
central Chi-square distribution X (N,O) with N degrees of freedom.

N 2 2

Since the errors Ej = a(vi,p) - ai that we consider are coupled to a fitting function u(Av,p)
for which the ma parameters of the vector p are estimated from the data, the statistic X,,2

has a Chi-square distribution with N-m,, degrees of freedom.

If the fitting function agrees with the parent function (the true function) of the data, the
statistic Xa2 represents the spread of the random data around this function. If there is a
mismatch between both functions, Xi,2 combines the data quality with the misfit, and
distinguishing the contribution of each is problematic. However, if two functions (A(vi,j)
and/O(vi,q) are fitted to the data, with m, and m estimated parameters respectively, the
statistics Xa2 and Xb2 differ in their fitting accuracy, but have the same data quality
contribution. As a result, combining both statistics affords comparison of the fitting
accuracy of the two functions. For this purpose the statistic Fb is constructed, which
has a central F-distribution with (N-ma, N-r,) degrees of freedom.

X' (N-ma)

,, (N-mb) F.

If the a-fitting function matches the parent distribution better than the b-function, it can
be expected that on average Xa 2 is smaller than Xb2 which results in small values of Fa,,.
Very large and very small values of F,b show that it is very likely that one of the fitting
functions represents a considerably better description of the data than the other function.

8 The reviewer R. van Vossen has proposed this testing, leading to the addition of this Chapter. The test

proves the improvement of the accuracy of the simpler formula.
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With these statistical instruments three topics will be considered:
1 Use Fab to test whether the Simple formula is significantly more accurate than the

Franqois-Garrison formula.
2 Use X"2 to test whether the Simple formula provides a sufficiently accurate

description of the data.
3 Investigate the assumed independence and normality of the errors and the

correctness of the assignment of uncertainties to the measurements.

7.2 Tests of accuracy; the F- and Chi-square tests

The L2-cost is closely related to the statistic X,,2 . The definition of the U-cost

costL2(p) 1N ra-i-)a J results in X2 = N(L, cost)2

The full dataset inc. Baltic has N = 166 samples. Ten parameters are derived from these
measured absorption values. This leads to the following overview.

Table 17 Overview of statistics on the full dataset inc. Baltic.

Francois- Full Ainslie- AMC formula Improved Best L2

Garrison McColm with Frangois- Tuning discretised

formula (AMC) Garrison fresh formula vector
formula water part

L2-cost 2.1805 2.2235 2.2346 1.9875 1.8913
N-m 166 156 156 156 156

Xei(N-m) 4.7546 5.2609 5.3135 4.2034 3.8063

Assuming that the Improved Tuning formula is more accurate than the other formulae.
the statistics Fother, proved are calculated, each exceeding unity. How big is the
probability that, given the respective degrees of freedom, F,,b-values or larger ones
result from the data purely by chance, while both fitting functions are equally accurate.
If this probability is smaller than 5%, it can be concluded that the assumption of equal
accuracy is very unlikely and thus that the Improved Tuning formula is significantly
more accurate than the formula to which it is compared. The values are as follows.

Table 18 Results of the F-test tbr LIN Improved Tuning comparison.

Formula_a, Formula-b Fb Degrees of probability

freedom
FG, Improved 1.1311 166,158 0.22
AMC, Improved 1.2516 156, 156 0.08

AMChybridI, Improved 1.241 156, 158 0.07

The values Fa, are small for more than 150 degrees of freedom. The probabilities that
such a small Fb-value or larger ones appear exceed 0.05, making it a common (not a
rare) event. If, for instance, the Franqois-Garrison and the Improved Tuning formulae
are equally accurate, randomly selected data will produce an Fab-value of !. 13 or more
in 22% of the experiments. This means that the assumption of equal accuracy is quite
likely to be true and therefore that the accuracy of the Improved Tuning formula is not
proven to be significantly better than that of the other formula.
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The Xa2 statistic is smaller for the selected L2-best discretized vector. If the Simple
Formula is tuned with this vector, the comparison is as follows.

Table 19 Results of the F-test for L2-best Simple Formula comparison.

Formula_a, Formula-b Fab Degrees of probability
freedom

FG, Simple 1.2491 166, 156 0.080
AMC, Simple 1.3821 156, 156 0.022

AMC hybrid, Simple 1.3959 156, 156 0.019
Improved, Simple 1.1043 156, 156 0.268

FG, Simple 1.3292 156, 156 0.038

Since the probability of the Franqois-Garrison comparison (with 166 degrees of
freedom) exceeds 0.05, improved accuracy is not yet established with respect to
Franqois-Garrison. However, the low probability confirms the claim that the L2-best
Simple Formula is at least as accurate than Franqois-Garrison. The value of 0.08 means
that, when both formulae are equally accurate, the derived value (or larger ones) will
occur only in 8% of the cases due to the random nature of the data.
The test demonstrates that the accuracy of the L2-best Simple Formula is significantly
better than the Ainslie-McColm (AMC) formulae. The comparison of the Improved
Tuning and the Simple formula on the other hand shows that they are of comparable

accuracy.

The previous test on Franqois-Garrison is too conservative with respect to the assigned
degrees of freedom. It is known that Franqois-Garrison have used a part of the dataset to
tune their more complex formula. This justifies a reduction of the number of degrees of
freedom for Franqois-Garrison too. If we assume that Franqois-Garrison have also tuned
10 parameters from the data (resulting in 156 degrees of freedom), the probability of the
F-value is 0.038, well below the 0.05 threshold. In this sense it is established that the
L,-best Simple Formula is not only simpler, but also more accurate than Franqois-
Garrison.

Is the LIN Improved Tuning formula accurate enough to describe the data? Can it be
considered to represent the parent function of the data? This can be investigated by
means of the Chi-square test. A Chi-square probability distribution with 156 degrees of
freedom has a probability of zero that the statistic X, 2 I(N-m) = 4.2034 or bigger. Such a
big deviation of the data from the formula is therefore very unlikely. Can we conclude
that the formula does not describe the data properly? The Chi-square test assumes
normally distributed errors. Violation of this assumption, a bias in the data, or outliers,
immediately result in big values of the Chi-square statistic. This makes it impossible to
make a clear inference from the failure of this test. The conclusion that the formula is a
poor description of the data is therefore not justified. In particular it is the reduced
sensitivity of the F-test for these phenomena that makes this test so valuable, more than
the Chi-square test.

7.3 Investigation of the errors

What causes the poor fits? The distribution of the errors provides clues. The histograms
of the deviations of the samples from the Franqois-Garrison formula and from the
Improved Tuning simple formula are presented in Figure 19 together with the expected
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number of observations per bin from the standard normal distribution (in total 166) for
comparison.
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Figure 16 Comparing occurences of errors for the FG and the Simple formula.

The histograms of the normalised errors (Ei/a) deviate significantly from the normal
distribution, especially their tails9. For the Franqois-Garrison formula 5 samples have
errors that are more than 5 times the provided uncertainty, while for the simple
Improved Tuning formula this happens 2 times. The last 2 samples also differ more than
5 standard deviations from the calculated absorption values of Franqois-Garrison.
They are the samples number 24 and 50, which are already presented in Chapter 6.
Five standard deviations can be considered statistically 'impossible'. These outliers
suggest an explanation for the very big values of the X2 statistic, because a quadratic
distance measure (the L2-cost function) is very sensitive to outliers.

We investigate if removing these two samples leads to considerably different results.
Global search is applied on the full dataset inc. Baltic, but without the 2 samples nr 24
and 50, using the LIN-COSt (1000 runs of 230308) and the L2-cost (1000 runs of
240308). From the sets of best vectors the procedure already applied in Chapter 6
results in discretised vectors, that are very good and near the center of the sets of best
vectors. The results are as follows.

Table 20 Discretised parameter vectors with their costs.

param vub best discrete vector with LlN-cost best discrete vector with L2-cost
runs 230308 240308
F, 1.6 1.02 0.93

S, 1.0 0.53 0.50
Tj 100 46.3 33.9

F2  120 48.6 45.6
T2  50 19.3 16.6

A, 0.25 0.103 -0.101
P, 3 0.62 0.57
A2 ,1,2 0.50 0.53
12 120 37.5 50.1
Z2 80 6.2 .. .4 .

LIN -- 1.2205 (1.2565)

L2 (.7189) 1.65 5

Testing is possible; see also probability plots mentioned by Rice [71.
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With two very poor samples removed, the 12-costs of all formulae decrease
considerably. A new overview of statistics is given in Table 20.

Table 21 Overview of statistics on the full dataset inc. Baltic; exc 2 samples 24 and 50.

Franqois- Full Ainslie- Ainslie-McColm Selected

Garrison McColm formula with Franqois- vector L1N-

formula formula Garrison fresh water formula

part 230308

L2-cost 1.8593 1.895 1.9314 1.7189
N-m 164 154 154 154

)el(N-m) 3.457 3.824 3.973 3.1465

Application of the F-test results in the following probabilities.

Table 22 Results of the F-test for LI N-best Selected Formula comparison.

Formula-a, Formula_b Fab Degrees of probability
freedom

FG, Selected LiN 1.0987 164, 154 0.28
AMC, Selected LiN 1.2153 154, 154 0.11

AMChybrid, Selected LIN 1.2627 154, 154 ~ 0.075

The removal of two outliers has improved the fit of Franqois-Garrison and Ainslie-
McColm more than the LIN-Selected simple formula. This decreases the difference in
accuracy and thereby increases the probabilities of the F-statistics. The same happens
with the best vector derived with the L2-cost (240308 runs). The dubious approach of
removing some unwelcome samples, does not help us to find a more accurate simple
formula than the one we already have.

The investigation of the distribution of the errors demonstrates that some or all
assumptions, needed to infer a Chi-square distribution of the errors, are violated.
The samples are not independent, the normality assumption does not hold, or the
estimated uncertainties of the data are too small. With more than 150 samples the law of
big numbers compensates for a non-normal distribution of errors. This leaves the other
two aspects of the data that deserve closer inspection, but not in this report.

We conclude that - if we accept that the Franqois-Garrison formula should be assigned
156 degrees of freedom, instead of 166 - we have derived a significantly more accurate
simple formula than Franqois-Garrison (the L2-best Simple formula). The major flaw is
that the errors with respect to this formula are not normally distributed. However, the
method presented here can be applied on a better dataset once it becomes available.
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8 Applications and conclusion

Many sonar applications rely on a proper modelling of the propagation of sound in
seawater. Since absorption of sound is one aspect of this propagation, an accurate
absorption formula is needed. If it is also simple it improves understanding too. In this
report an accurate and simple formula is derived. It is suitable for replacing the well
known formula of Franqois and Garrison in ongoing or future TNO projects. such as
ALMOST updates (sonar performance prediction), RUMBLE2 and Mean Grainsize
Mapping (geoacoustic parameter estimation).

The best absorption formula depends on the cost function used and the dataset that is

considered. This is demonstrated by investigating the effect of either including or
excluding the low salinity Baltic data on the best tuning of the model, and the effect of
selecting a subset of the available data. The robust and simple formula which is derived.
is shown to be more accurate than the standard formula of Franqois and Garrison.
Only the boron and magnesium relaxations have been elaborated on; the fresh water
part of the absorption is that of Franqois and Garrison. While at the start the objective
was to simplify the formula without loss of accuracy, it was found that a small, but
statistically significant improvement of the accuracy could also be derived.
These characteristics of robustness, simplicity and accuracy provide strong arguments
to use this formula instead of the standard formula of the last decades.



TNO report I TNO-DV 2008 A202 51/53

9 Literature

[1] R.E. Franqois and G.R. Garrison,
'Sound absorption based on ocean measurements: Part I: Pure water and
magnesium sulfate contributions',
Jasa 72 (3), September 1982, pp 896-907.

[2] R.E. Franqois and G.R. Garrison,
'Sound absorption based on ocean measurements: Part II: Boric acid contribution
and equation for total absorption', Jasa 72 (6), December 1982, pp 1879-1890.

[3] M.A. Ainslie and J.G. McColm.
'A simplified formula for viscous and chemical absorption in sea water', Jasa
103, March 1998, pp 1671-1672.

[4] H.G. Schneider, R.Thiele and P.C. Wille,
'Measurement of sound absorption in low salinity water of the Baltic sea', Jasa

77, April 1985, pp 1409-1412.

[5] S.R. Murphy, G.R. Garrison and D.S. Potter,
'Sound absorption at 50 to 500 kc from tranmission measurements in the sea',
Jasa 30, September 1958, pp 871-875.

[6] R H Mellen, P M Scheifele and D G Browning,
'Global Model for Sound Absorption in Sea Water Part II: Geosecs PH Data
Analysis', NUSC Technical Report 7925, May 1987.

[7] John A. Rice,
'Mathematical statistics and data analysis', Duxbury Press, ISBN 0-534-20934-3.



TNO report I TNO-DV 2008 A202 52 /53

10 Acknowledgements

The authors are very grateful to the reviewer R. van Vossen, whose valuable comments
resulted in a significant improvement of this report.



TNO report I TNO-DV 2008 A202 53/153

11 Signature

The Hague, May 2008 TNO Defence, Security and Safety

F.P.G. Driessen, MSc C.A.M van Moll, MSc
Head of department Author



TNO report I TNO-DV 2008 A202 Appendix A I 1/2

A Franqois-Garrison formula

The formula of Franqois-Garrison is complicated and is as follows [2].

The independent variables are the frequencyf [kHz], temperature T [C], pH, salinity
S [°/oo] and depth D [m]. The total absorption consists of three contributions: a for
boric acid, a2 for magnesium sulphate and a3 for fresh water.

a=a0x +a,, +a3  [dB km-']

Boric acid contribution (A,

a, I fj f 2

f" , - 2 + f 2

A, 8.86 1 0 (0,78p1 -5) [dB km -' kHz-']

C

P=I

SS 0 °5 (4- 1245)

f= 2.8 3 10 '9 [kHz]

c = 1412+3.21T+1.19 S+0.0167 D sound speed [ms]

0 = 273+T

MgSO4 contribution a2 :

A2, P f 2 f 2

a= - 12 "02 j2 + f

A, = 21.44 S (1+0.025T) [dB km -' kHz -']
C

P, =1-1.37 10-4 D + 6.2 10-9 D2

8.17lf o

f= - .71(190 kHz]
1+ 0.0018(S-35)

Fresh water absorption a:

a3 = A 3p 3f 2
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A3 = 4.937 10-4- 2.59 10- 5T+9.11 10- 7 T 2 -1.50 10-8 T 3 for T<200 C

[dB km-' kHZ-2]

A3 = 3.964 10-4 - 1.146 10-5T + 1.45 10-T 2 - 6.5 10-10 T3 for T >20°C

P3 = 1 -3.83 10-5 D + 4.9 10- 0 D2
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B Matlab m-files

During the investigation the following Matlab rn-files have been used 1° .

Table 23 M-files used during local search.

m-file function calls

Driver_AbsorptionEstimationPa stores measured data as global; setdataset.m
rameters_local.m applies local search on the fminsearch

original vector getcosLMathieu_local

setdataset.m calls measured data; choose readtable
including baltic data or not

readtable sets the path to the digital data --

fminsearch applies Downhill Simplex (local --

search) on a parameter vector (it

is a standard Matlab routine)

getcost-Mathieu_iocal. m calculates the cost for as uplied

Anslie-McColm formula chos
btween L,and L.2 nrmd

Table 24 M-files used for global search.

mn-file function calls
D river-AbsorptionEstimationPa set the tunings, DEparameters-Mathieurameters-gobalm Gall th data an....tae
agi o starts th bal search s structure-DE

DE-parameters_Mathieu.m sets a multitude of tunings: getcost-Mathieu-global
file names, energyfunction, vlb, Hybrid

vub and DE tuning parameters getcost-Mathieu-global-r

andom_FullAtten

getcost-Mathieu-global-Hybrid calIculates the cost for a supplied check-gen
.m paramte vtor FehWaerAbsorptonFG

...... LiN and L2.ost
getcost-Mathieu-global_rando calculates the cost for a supplied check-gen

m_FullAtten.m parameter vector on a random FreshWaterAbsorptionFG

subset of the data;

choose between AMC and FG
fresh water part; choose

between LIN and L2 cost

FreshWaterAbsorptionFG.m cacuaes the frs water *

RandomSubset.m selects a random subset from --

the ori inal data set

These files are burned on a CD with the name '22 April 2008, Absorption formula estimation'.
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Table 25 Global optimization m-files.

m-file function calls

structure_DE.m starts the Diffemetial Evolution DE-parameters_Mathieu
global search; RandomSubset

include 4 restarts? include local preprocess

search at the end? Select random conditional_lhd

subsets? Save the global search process_DE
results. fminsearch

preprocess.m creates a starting population and conditional_lhd

applies global serach on it; process_DE

selects a quarter of the last reduce-population

generation
reduce-population.m selects a quarter of the vectors - .

from the present generation

conditional_lhd.m creates a random new generation satisfy-requirements_Ma
that satisfies the extra thieu
requirements, while there is not

an existing generation
process-DE.m applies the DE search process on new-generationDE

the populations

new-generation_DE.m creates a new generation an create_descendants_DE

calculates the costs of the vectors

therein
create_descendants,DE.m creates a new generation from satisfy-equirementsMa

the present one, that satisfies thieu

extra requirements

satisfy-requirements-Mathieu. no extra requirements are
m inforced; this file is only needed

to prevent a lot of changes in the

optimisation m-files

check_gen.m checks if all parameters are

between vlb and vub
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Table 26 M-files used for the analysis of the results of globals search runs.

m-file function calls

AnalyseResults_Mathieu collects the vectors evaluated --

during the search and presents
red dot pictures for the 10-

parameter global search
ProoflmprovedSetting4.m selects random subsets of the setdataset

dataset and calculates several RandomSubset

costs for a particular parameter
vector, shows the results in a getcost-Mathieu-global-

dot-picture, calculates the Hybrid

average costs getcost_Mathieu_global-
random_FullAtten

getcost_FrancoisGarrison

_FullAtten

getcost-FrancoisGarrison_Full calculates the FG cost for a abscoef
Atten.m random subset of the dataset
abscoef calculates the absorption with

the FG formula

CompareErrors.m alculates the absorption fo a setdataset
sigl paamt vecor~r an reshWaterAbsorptionFG

normalised error for all data
samples

Proof lmprovedSetting3.m used to make the report; setdataset
investigates the errors of FreshWaterAbsorptionFG

different formulae
test170308.m used to make the report;

betweensevea arameters
test180308.m and used to make the report; --

test180308B.m plot histograms for the
test220308.m parameter values in bestVectors

testl&0308.m to mak the eport; DE-parametersMathieu

exhustve earh fr stdatse~t Oa
discretise parameter v lue .... stM t....g.

Hybrid
test210308.m used to make the report; setdataset

select a single vector from the getcost-Mathieu-global-
vectors derived from an Hybrid

exhaustive search, by means of
2 cost values
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C Sample values

The contents of the file alldata-prepared2.txt is as follows
FG [ 1 ], Table I
Location investigator year depth range cs[m/s] temp salinity pH frequency attenuation error

Pacific Bezdek 1971 750 0.9 NaN 4.0 34.3 7.7 75.8 18.9 1.0

Pacific Bezdek 1971 1350 0.9 NaN 3.4 34.4 7.7 75.8 17.0 1.0

Pacific Bezdek 1971 1950 0.9 NaN 2.8 34.5 7.7 75.8 15.3 1.0
Pacific Bezdek 1971 2550 0.9 NaN 2.1 34.6 7.7 75.8 15.1 1.0

Pacific Bezdek 1971 3150 0.9 NaN 1.5 34.7 7.7 75.8 13.0 1.0
Pacific Bezdek 1971 910 1.3 NaN 3.8 34.3 7.7 75.8 19.3 1.0

Pacific Bezdek 1971 910 1.3 NaN 3.8 34.3 7.7 75.8 20.0 1.0
Pacific Bezdek 1971 910 1.3 NaN 3.8 34.3 7.7 75.8 20.5 1.0
Pacific Bezdek 1971 1520 1.3 NaN 3.2 34.4 7.7 75.8 17.8 1.0

Pacific Bezdek 1971 1520 1.3 NaN 3.2 34.4 7.7 75.8 17.1 1.0
Pacific Bezdek 1971 1520 1.3 NaN 3.2 34.4 7.7 75.8 17.6 1.0

Pacific Bezdek 1971 2130 1.3 NaN 2.5 34.5 7.7 75.8 16.4 1.0
Pacific Bezdek 1971 2130 1.3 NaN 2.5 34.5 7.7 75.8 16.8 1.0
Pacific Bezdek 1971 2130 1.3 NaN 2.5 34.5 7.7 75.8 17.0 1.0
Pacific Bezdek 1971 2740 1.3 NaN 1.9 34.6 7.7 75.8 14.4 1.0

Pacific Bezdek 1971 3350 1.3 NaN 1.3 34.7 7.7 75.8 13.3 1.0
Pacific Bezdek 1972 200 1.3 NaN 7.0 34.0 7.7 30 10.5 4.3
Pacific Bezdek 1972 200 1.3 NaN 7.0 34.0 7.7 45 12.6 3.5

Pacific Bezdek 1972 200 1.3 NaN 7.0 34.0 7.7 60 18.4 3.4

Pacific Bezdek 1972 200 1.3 NaN 7.0 34.0 7.7 75.8 24.5 3.6
Pacific Bezdek 1972 200 1.3 NaN 7.0 34.0 7.7 75.8 23.5 2.9
Pacific Bezdek 1972 200 1.3 NaN 7.0 34.0 7.7 75.8 20.9 4.2
Pacific Bezdek 1972 200 1.3 NaN 7.0 34.0 7.7 90 21.0 3.5
Pacific Bezdek 1972 200 1.3 NaN 7.0 34.0 7.7 145 32.7 0.9
Pacific Bezdek 1972 2800 1.3 NaN 2.5 34.6 7.7 30 3.6 0.8

Pacific Bezdek 1972 2800 1.3 NaN 2.5 34.6 7.7 45 6.3 1.8
Pacific Bezdek 1972 2800 1.3 NaN 2.5 34.6 7.7 60 9.9 1.8
Pacific Bezdek 1972 2800 1.3 NaN 2.5 34.6 7.7 75.8 13.0 1.0

Pacific Bezdek 1972 2800 1.3 NaN 2.5 34.6 7.7 75.8 10.8 2.6

Pacific Bezdek 1972 2800 1.3 NaN 2.5 34.6 7.7 90 12.6 1.8
Pacific Bezdek 1972 2800 1.3 NaN 2.5 34.6 7.7 145 25.3 2.6

From Table I and II Murphy, Garrison, Potter, Jasa 1958; corresponds to FG [I], table 11, column measured a

absorption and error adjusted 23-01-2(X)8 by taking uncorrected and recalculate to m by division by 0.9144.

Dabob Bay APL 1953 46 .820 NaN 9.9 30.4 7.7 60 16.95 0.11

Dabob Bay APL 1954 91 .780 NaN 10.1 30.4 7.7 60 16.95 0.55

Dabob Bay APL 1954 34 .650 NaN 8.0 29.1 7.7 60 15.42 1.31
Dabob Bay APL 1954 128 .900 NaN 9.5 30.9 7.7 60 15.42 0.87

Dabob Bay APL 1954 82 1.300 NaN 8.0 29.1 7.7 60 15.86 0.22

Dabob Bay APL 1954 76 .900 NaN 9.0 29.5 7.7 60 15.09 0.33
Dabob Bay APL 1954 76 .400 NaN 9.4 29.7 7.7 60 15.64 0.44
Dabob Bay APL 1954 76 1.100 NaN 9.3 29.6 7.7 60 15.86 0.44

Dabob Bay APL 1955 91 .580 NaN 9.0 29.8 7.7 142 37.95 1.20
Dabob Bay APL 1955 91 .540 NaN 7.8 30.0 7.7 142 36.64 0.87

Dabob Bay APL 1956 61 .560 NaN 8.0 29.8 7.7 142 38.93 0.55
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Dabob Bay APL 1956 149 .325 NaN 9.3 30.4 7.7 272 62.12 0.66

Dabob Bay APL 1955 91 .270 NaN 9.0 30.0 7.7 467 102.36 3.17

Dabob Bay APL 1955 91 .300 NaN 7.8 29.8 7.7 467 119.20 2.84

Dabob Bay APL 1956 46 .280 NaN 8.3 29.4 7.7 467 107.83 1.42

Dabob Bay APL 1956 67 .270 NaN 8.0 29.5 7.7 467 107.39 20.8

Dabob Bay APL 1956 128 .310 NaN 9.2 30.4 7.7 467 113.74 0.98

From Table II FG I l I

%hole line has been removed, because the zero sanlity is supiclous

T3 APL 1972 35 .570 NaN -1.62 31.9 7.7 50 12.0 1.1

Bering Sea APL 1973 45 .9 NaN -1.75 32.9 7.7 60 18.7 0.3

there is no justification for remving

Chukchi Sea APL 1974 45 1.3 NaN -1.6 32.3 8.0 10 1.43 0.55

Chukchi Sea APL 1974 45 1.3 NaN -1.6 32.3 8.0 20 362 0.55

Chukchi Sea APL 1974 45 1.3 NaN -1.6 32.3 8.0 30 7.78 0.55

Chukchi Sea APL 1974 45 1.3 NaN -1.6 32.3 8.0 40 10.40 0.44

Chukchi Sea APL 1974 45 1.3 NaN -1.6 32.3 8.0 60 13.90 0.55

Chukchi Sea APL 1975 45 1.1 NaN -1.6 32.0 8.0 7.1 0.82 0.44

Chukchi Sea APL 1975 45 1.1 NaN -1.6 32.0 8.0 20 4.86 0.22

Chukchi Sea APL 1975 45 1.1 NaN -1.6 32.0 8.0 30 8.47 0.33

Chukchi Sea APL 1975 45 1.1 NaN -1.6 32.0 8.0 60 14.93 0.55

Kane Basin APL 1979 40 1.077 NaN -1.7 33.8 8 10 0.88 0.45

Kane Basin APL 1979 40 1.077 NaN -1.7 33.8 8 20 3.11 0.78

Kane Basin APL 1979 40 1.077 NaN -1.7 33.8 8 30 5.25 0.97

Kane Basin APL 1979 40 1.077 NaN -1.7 33.8 8 60 10.89 1.64

Kane Basin APL 1979 40 1.077 NaN -1.7 33.8 8 75 13.00 1.90

Bering Sea APL 1980 13 0.71 NaN -1.7 32.1 7.7 100 21.7 1.4

Bering Sea APL 1980 13 0.71 NaN -1.7 32.1 7.7 150 30.2 2.5

Bering Sea APL 1980 13 0.71 NaN -1.7 32.1 7.7 200 38.6 2.6

Bering Sea APL 1980 13 0.71 NaN -1.7 32.1 7.7 275 55.6 2.6

Bering Sea APL 1980 13 0.71 NaN -1.7 32.1 7.7 300 71.5 7.1

Bering Sea APL 1980 13 0.71 NaN -1.7 32.1 7.7 350 93.0 3.8

Bering Sea APL 1980 13 0.71 NaN -1.7 32.1 7.7 420 106.0 7.0

Bering Sea APL 1980 13 0.71 NaN -1.7 32.1 7.7 500 135.0 5.0

Bering Sea APL 1980 13 0.71 NaN -1.7 32.1 7.7 550 131.0 14.0

Bering Sea APL 1980 13 0.71 NaN -1.7 32.1 7.7 650 227.0 17.0

Beaufort Sea APL 1980 200 0.16 NaN -1.5 33.6 8 59 24.1 2.7

Beaufort Sea APL 1980 200 0.16 NaN -1.5 33.6 8 84 26.6 1.4

Beaufort Sea APL 1980 200 0.16 NaN -1.5 33.6 8 107 28.4 2.9

Beaufort Sea APL 1980 200 0.16 NaN -1.5 33.6 8 161 36.6 2.7

Beaufort Sea APL 1980 200 0.16 NaN -1.5 33.6 8 251 60.6 2.2

Beaufort Sea APL 1980 200 0.16 NaN -1.5 33.6 8 297 66.4 1.1

Beaufort Sea APL 1980 200 0.16 NaN -1.5 33.6 8 347 89.9 7.3

Beaufort Sea APL 1980 200 0.25 NaN -1.2 33.6 8 59 21.0 2.7

Beaufort Sea APL 1980 200 0.25 NaN -1.2 33.6 8 84 24.2 2.9

Beaufort Sea APL 1980 200 0.25 NaN -1.2 33.6 8 107 30.6 2.7

Beaufort Sea APL 1980 200 0.25 NaN -1.2 33.6 8 161 41.7 3.8

Beaufort Sea APL 1980 200 0.25 NaN -1.2 33.6 8 251 60.4 3.2

Beaufort Sea APL 1980 200 0.25 NaN -1.2 33.6 8 297 77.8 4.1

Beaufort Sea APL 1980 200 0.25 NaN -1.2 33.6 8 347 100.9 6.4
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FG [I], Table IV

Arctic Greene 1965 122 1.2 NaN -1.4 32.6 8 19 3.95 1.17

Arctic Greene 1965 122 1.2 NaN -1.4 32.6 8 30 5.45 0.98

Arctic Greene 1965 122 1.2 NaN -1.4 32.6 8 39 9.39 1.07

Arctic Greene 1965 122 1.2 NaN -1.4 32.6 8 49 11.29 1.28

Arctic Greene 1966 122 .97 NaN -1.3 32.3 8 31 8.04 0.71

Arctic Greene 1966 122 .97 NaN -1.3 32.3 8 41 8.84 0.59

Arctic Greene 1966 122 .97 NaN -1.3 32.3 8 52 11.19 0.69

Arctic Greene 1966 122 .97 NaN -1.3 32.3 8 72 15.06 0.95

Arctic Greene 1966 122 .97 NaN -1.3 32.3 8 84 19.23 0.96

FG [2, Table I; From here on the wrong column of the table was used. The right colun is 'Adjusted to give ep. (7)

fi, Total a (dB/km)'. The proper values are inserted in alldata-prepared2.txt as given here.

NE Pacific Chow and Turner 1973 505 1400 1467 4.6 34.05 7.69 0.160 0.0016 0.0009

NE Pacific Chow and Turner 1973 505 1400 1467 4.6 34.05 7.69 0.250 0.0047 0.0012

NE Pacific Chow and Turner 1973 505 1400 1467 4.6 34.05 7.69 0.400 0.0101 0.0016
NE Pacific Chow and Turner 1973 505 1400 1467 4.6 34.05 7.69 0.630 0.0234 0.0027

NE Pacific Chow and Turner 1973 505 1400 1467 4.6 34.05 7.69 0.800 0.0298 0.0033

Atlantic Thorp 1962 1200 1800 1490 5.0 35.0 8.03 0.354 0.0135 0.0010

Atlantic Thorp 1962 1200 1800 1490 5.0 35.0 8.03 0.446 0.0203 0.0010

Atlantic Thorp 1962 1200 1800 1490 5.0 35.0 8.03 0.562 0.0266 0.0010

Atlantic Thorp 1962 1200 1800 1490 5.0 35.0 8.03 0.707 0.0372 0.0010
Atlantic Thorp 1962 1200 1800 1490 5.0 35.0 8.03 0.891 0.0524 0.0010

Atlantic Thorp 1962 1200 1800 1490 5.0 35.0 8.03 1.120 0.0612 0.0025

Atlantic Thorp 1962 1200 1800 1490 5.0 35.0 8.03 1.410 0.0763 0,0037

Atlantic Thorp 1962 1200 1800 1490 5.0 35.0 8.03 1.780 0.1103 0.0120
Atlantic Thorp 1962 1200 1800 1490 5.0 35.0 8.03 2.240 0.1485 0.0170
Atlantic Thorp 1962 1200 1800 1490 5.0 35.0 8.03 2.820 0.1800 0.0200

Atlantic Thorp 1962 1200 1800 1490 5.0 35.0 8.03 3.540 0.1905 0.0250

FG already corrected these values; correction according to Sketting and Leroy is already accounted for.
Mediterranean Sea Skretting and Leroy 1966 800 32 1517 13 38 8.15 0.500 0.0350 0.0100

Mediterranean Sea Skretting and Leroy 1966 800 32 1517 13 38 8.15 0.600 0.0390 0.0080

Mediterranean Sea Skretting and Leroy 1966 800 32 1517 13 38 8.15 0.800 0.0580 0.0150
Mediterranean Sea Skretting and Leroy 1966 800 32 1517 13 38 8.15 1.0 0.0790 0.0160
Mediterranean Sea Skretting and Leroy 1966 800 32 1517 13 38 8.15 1.500 0.1370 0.0200

Mediterranean Sea Skretting and Leroy 1966 800 32 1517 13 38 8.15 2.0 0.1820 0.0300
Mediterranean Sea Skretting and Leroy 1966 800 32 1517 13 38 8.15 2.500 0.2170 0.0300

Mediterranean Sea Skretting and Leroy 1966 800 32 1517 13 38 8.15 3.0 0.2220 0.0300
Mediterranean Sea Skretting and Leroy 1966 800 32 1517 13 38 8.15 3.500 0.2820 0.0300

Mediterranean Sea Skretting and Leroy 1966 800 32 1517 13 38 8.15 4.0 0.3220 0.0400
Mediterranean Sea Skretting and Leroy 1966 800 32 1517 13 38 8.15 4.500 0.3620 0.0400

Mediterranean Sea Skretting and Leroy 1966 800 32 1517 13 38 8.15 5.0 0.4220 0.0400
Mediterranean Sea Skretting and Leroy 1966 800 32 1517 13 38 8.15 5.500 0.4420 0.0300

Mediterranean Sea Skretting and Leroy 1966 800 32 1517 13 38 8.15 6.0 0.4720 0.0300
Mediterranean Sea Skretting and Leroy 1966 800 32 1517 13 38 8.15 8.0 0.6020 0.0400

Red Sea Browning 1971 200 280 1536 22 40.5 8.18 0.570 0.0264 0.0022
Red Sea Browning 1971 200 280 1536 22 40.5 8.18 0.720 0.0344 0.0044
Red Sea Browning 1971 200 280 1536 22 40.5 8.18 0.890 0.0514 0.0044

Red Sea Browning 1971 200 280 1536 22 40.5 8.18 1.150 0.0824 0.0044
Red Sea Browning 1971 200 280 1536 22 40.5 8.18 1.400 0.1134 0.0077
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Red Sea Browning 1971 200 280 1536 22 40.5 8.18 1.800 0.1434 0.0077

Red Sea Browning 1971 200 280 1536 22 40.5 8.18 2.280 0.1814 0.0109

Red Sea Browning 1971 200 280 1536 22 40.5 8.18 2.850 0.2244 0.0131
Red Sea Browning 1971 200 280 1536 22 40.5 8.18 3.500 0.2804 0.0241

Red Sea Browning 1971 200 280 1536 22 40.5 8.18 5.600 0.4494 0.0601
Red Sea Browning 1971 200 280 1536 22 40.5 8.18 8.900 0.8324 0.2406

Gulf of Aden Browning 1973 300 500 1510 14.31 35.8 7.72 0.400 0.0072 0.0040

Gulf of Aden Browning 1973 300 500 1510 14.31 35.8 7.72 0.500 0.0122 0.0040

Gulf of Aden Browning 1973 300 500 1510 14.31 35.8 7.72 0.630 0.0182 0.0040
Gulf of Aden Browning 1973 300 500 1510 14.31 35.8 7.72 0.790 0.0272 0.0050

Gulf of Aden Browning 1973 300 500 1510 14.31 35.8 7.72 1.0 0.0412 0.0040

Gulf of Aden Browning 1973 300 500 1510 14.31 35.8 7.72 1.300 0.0542 0.0050

Gulf of Aden Browning 1973 300 500 1510 14.31 35.8 7.72 1.650 0.0702 0.0060

Gulf of Aden Browning 1973 300 500 1510 14.31 35.8 7.72 2.0 0.0922 0.0060

Gulf of Aden Browning 1973 300 500 1510 14.31 35.8 7.72 2.500 0.1252 0.0070

Gulf of Aden Browning 1973 300 500 1510 14.31 35.8 7.72 3.200 0.1422 0.0100

Gulf of Aden Browning 1973 300 500 1510 14.31 35.8 7.72 4.0 0.1532 0.0100

Gulf of Aden Browning 1973 300 500 1510 14.31 35.8 7.72 5.0 0.2672 0.0300

Gulf of Aden Browning 1973 300 500 1510 14.31 35.8 7.72 6.0 0.3442 0.1000

F(G 12], Table 11

NE Pacific Thorp 1965 753 3000 1479 4.25 34.1 7.67 0.120 0.0011 NaN

NE Pacific Thorp 1965 753 3000 1479 4.25 34.1 7.67 0.150 0.0018 NaN

NE Pacific Thorp 1965 753 3000 1479 4.25 34.1 7.67 0.200 0.0026 NaN

NE Pacific Thorp 1965 753 3000 1479 4.25 34.1 7.67 0.250 0.0035 NaN

NE Pacific Thorp 1965 753 3000 1479 4.25 34.1 7.67 0.300 0.0062 NaN

NE Pacific Thorp 1965 753 3000 1479 4.25 34.1 7.67 0.400 0.0094 NaN

Pacific Lovett (ISAR) 1969 700 245 1481 5.0 34.4 7.67 0.750 0.0221 NaN

Pacific Lovett (ISAR) 1969 700 245 1481 5.0 34.4 7.67 1.500 0.0547 NaN

Pacific Lovett (ISAR) 1969 700 245 1481 5.0 34.4 7.67 3.0 0.1470 NaN

Gulf of Alaska Lovett 1971 75 270 1465 4.0 33.1 7.72 1.500 0.0744 NaN

Gulf of Alaska Lovett 1971 75 270 1465 4.0 33.1 7.72 2.500 0.1290 NaN

NE Pacific Morris 1975 505 2900 1476 4.60 34.1 7.69 0.050 0.0002 NaN

NE Pacific Morris 1975 505 2900 1476 4.60 34.1 7.69 0.080 0.0004 NaN

NE Pacific Morris 1975 505 2900 1476 4.60 34.1 7.69 0.100 0.0007 NaN

NE Pacific Morris 1975 505 2900 1476 4.60 34.1 7.69 0.125 0.0012 NaN

NE Pacific Morris 1975 505 2900 1476 4.60 34.1 7.69 0.160 0.0018 NaN

NE Pacific Morris 1975 505 2900 1476 4.60 34.1 7.69 0.200 0.0028 NaN
NE Pacific Morris 1975 505 2900 1476 4.60 34.1 7.69 0.250 0.0042 NaN

NE Pacific Morris 1975 505 2900 1476 4.60 34.1 7.69 0.310 0.0068 NaN

NE Pacific Morris 1975 505 2900 1476 4.60 34.1 7.69 0.400 0.0092 NaN

S Pacific (Line PA) Kibblewhite and Denham 1971 1250 1150 1488 4.31 35.0 7.96 0.106 0.0007 NaN

S Pacific (Line PA) Kibblewhite and Denham 1971 1250 1150 1488 4.31 35.0 7.96 0.212 0.0030 NaN

S Pacific (Line PA) Kibblewhite and Denham 1971 1250 1150 1488 4.31 35.0 7.96 0.424 0.0083 NaN

S Pacific (Line PB1)Kibblewhite and Denham 1971 1250 1700 1487 4.07 35.0 7.90 0.106 0.0002 NaN

S Pacific (Line PB1)Kibblewhite and Denham 1971 1250 1700 1487 4.07 35.0 7.90 0.212 0.0032 NaN

S Pacific (Line PB1)Kibblewhite and Denham 1971 1250 1700 1487 4.07 35.0 7.90 0.424 0.0084 NaN

S Pacific (KIWI WEST)Kibblewhite and Denham 1974 1250 3000 1488 4.31 35.0 7.96 0.029 0.0015 NaN

S Pacific (KIWI WEST)Kibblewhite and Denham 1974 1250 3000 1488 4.31 35.0 7.96 0.060 0.0012 NaN

S Pacific (KIWI WEST)Kibblewhite and Denham 1974 1250 3000 1488 4.31 35.0 7.96 0.120 0.0021 NaN

S Pacific (KIWI WEST)Kibblewhite and Denham 1974 1250 3000 1488 4.31 35.0 7.96 0.250 0.0034 NaN
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S Pacific (KIWI WEST)Kibblewhite and Denham 1974 1250 3000 1488 4.31 35.0 7.96 0.424 0.0079 NaN

S Pacific (TAS 1) Kibblewhite and Denham 1963 1300 900 1489 4.35 35.0 7.87 0.450 0.0203 NaN

S Pacific (JAS 1) Kibblewhite and Denham 1963 1300 900 1489 4.35 35.0 7.87 0.900 0.0246 NaN

S Pacific (TAS 2 Northwest)Bannister et al 1975 1350 1800 1488 3.92 35.0 7.87 0.125 0.0016 NaN

S Pacific (TAS 2 Northwest)Bannister et al 1975 1350 1800 1488 3.92 35.0 7.87 0.250 0.0063 NaN

S Pacific (TAS 2 Northwest)Bannister et at 1975 1350 1800 1488 3.92 35.0 7.87 0.500 0.0167 NaN

S Pacific(TAS2West) Bannisteretal 1975 1100 2800 1484 3.94 35.0 7.87 0.1250.0012 NaN

S Pacific (TAS 2 West) Bannister et al 1975 1100 2800 1484 3.94 35.0 7.87 0.250 0.0055 NaN

S Pacific (AS 2 West) Bannister et al 1975 1100 1600 1484 3.94 35.0 7.87 0.500 0.0189 NaN

Baffin Bay Mellen et al 1972 100 400 1442 -1.5 33.7 8.01 0.320 0.0170 NaN

Baffin Bay Mellen et al 1972 100 400 1442 -1.5 33.7 8.01 0.410 0.0198 NaN

Baffin Bay Mellenetal 1972 100 400 1442 -1.5 33.7 8.01 0.500 0.0246 NaN

Baffin Bay Mellen etal 1972 100 400 1442 -1.5 33.7 8.01 0.640 0.0393 NaN

Baffin Bay Mellen et al 1972 100 400 1442 -1.5 33.7 8.01 1.0 0.0683 NaN

Bismarck Sea Mellen and Browning 1974 45 NaN 1546 30 36 8.20 0.560 0.0700 NaN

Bismarck Sea Mellen and Browning 1974 45 NaN 1546 30 36 8.20 1.200 0.1000 NaN
Bismarck Sea Mellen and Browning 1974 45 NaN 1546 30 36 8.20 2.300 0.1900 NaN

Bismarck Sea Mellen and Browning 1974 45 NaN 1546 30 36 8.20 4.500 0.3600 NaN

Schneider, from Figure 4, removing 4 xoints summer 0.8-1.5 kHz; high values attributed to resonance from fish

Baltic Schneider 1983 50 NaN NaN 4 8 8 0.5012 0.0379 0.0158

Baltic Schneider 1983 50 NaN NaN 4 8 8 0.6321 0.0455 0.0222
Baltic Schneider 1983 50 NaN NaN 4 8 8 0.8036 0.0503 0.0143

Baltic Schneider 1983 50 NaN NaN 4 8 8 1.0036 0.0422 0.0084

Baltic Schneider 1983 50 NaN NaN 4 8 8 1.2555 0.0402 0.0027

Baltic Schneider 1983 50 NaN NaN 4 8 8 1.6079 0.0535 0.0130

Baltic Schneider 1983 50 NaN NaN 4 8 8 2.0098 0.0583 0.0124

Baltic Schneider 1983 50 NaN NaN 4 8 8 2.5080 0.0762 0.0181

Baltic Schneider 1983 50 NaN NaN 4 8 8 3.1578 0.0773 0.0110

Baltic Schneider 1983 50 NaN NaN 4 8 8 4.0083 0.0962 0.0097

Baltic Schneider 1983 50 NaN NaN 4 8 8 5.0304 0.1333 0.0212

Baltic Schneider 1983 50 NaN NaN 4 8 8 6.3904 0.1908 0.0198

Baltic Schneider 1983 50 NaN NaN 4 8 8 8.1380 0.2733 0.0298
Baltic Schneider 1983 50 NaN NaN 4 8 8 9.9838 0.3673 0.0129
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