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by
Carly A. Strasser
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on 1 April 2008, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy in Biological Oceanography

Abstract

In this dissertation, I explored metapopulation dynamics and population connectivity,
with a focus on the softshell clam, Mya arenaria. 1 first worked towards developing
a method for using elemental signatures retained in the larval shell as a tag of natal
habitat. I designed and implemented an experiment to determine whether existing
methods commonly used for fishes would be applicable to bivalves. 1 found that the
instrumentation and setup I used were not able to isolate and measure the first larval
shell of M. arenaria. In concert with developing this method for bivalves, I reared
larval M. arenaria in the laboratory under controlled conditions to understand the
environmental and biological factors that may influence elemental signatures in shell.
My results show that growth rate and age have significant effects on juvenile shell
composition, and that temperature and salinity affect larval and juvenile shell com-
position in variable ways depending on the element evaluated. 1 also examined the
regional patterns of diversity over the current distribution of M. arenaria using the
mitochondrial gene, cytochrome oxidase 1 (COI). I found minimal variability across
all populations sampled, suggesting a recent population expansion in the Northwest
Atlantic. Finally, I employed theoretical approaches to understand patch dynamics in
a two-patch metapopulation when one patch is of high quality and the other low qual-
ity. I developed a matrix metapopulation model and compared growth rate elasticity
to patch parameters under variable migration scenarios. I then expanded the model
to include stochastic disturbance. I found that in many cases, the spatial distribution
of individuals within the metapopulation affects whether growth rate is most elastic
to parameters in the good or bad patch.
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Chapter 1

Introduction

1.1 Metapopulations

The concept of a metapopulation, first introduced by Levins (1969; 1970), has received
much attention in marine ecology over the last two decades (e.g. Roughgarden and
Iwasa, 1986; Hanski, 1999; Thorrold et al., 2001; Kritzer and Sale, 2006). Original
definitions of the metapopulation centered around extinction/recolonization events
as the most important process to examine in metapopulation studies (Levins, 1969).
More recently, the concept of a metapopulation has been expanded to include many
other questions about interconnected populations, including population size, struc-
ture, and long-term trends.

In 2004, Kritzer and Sale examined the validity of Levins’ original metapopula-
tion definition from the perspective of marine ecology, drawing heavily from Hanski
(1999), and re-defined a metapopulation based on the two spatial scales at which
metapopulations exist: the patch (i.e. subpopulation or local population) scale, and
the regional scale (Kritzer and Sale, 2004, p. 138). More recently, Sale et al. (2006)
defined the degree of connection between patches more explicitly for their definition

of a metapopulation:

We define a metapopulation as a system in which (1) local populations

inhabit discrete habitat patches and (2) interpatch dispersal is neither
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so low as to negate significant demographic connectivity nor so high as
to eliminate any independence of local population dynamics, including a

degree of asynchrony with other local populations. (Sale et al., 2006, p. 6)

The degree to which patches are interconnected is determined by the migration of
individuals between those patches, which then dictates their demographic connectiv-
ity. Because of this link between migration and connectivity, Kritzer and Sale (2004)
suggest that estimates of exchange rates should be a priority for future research. Mi-
gration is, in fact, one of the most important features for determining metapopulation
dynamics (Stacey et al., 1997). Its importance extends beyond the effects of migra-
tion on local population dynamics. Migration facilitates gene flow among patches
and therefore affects metapopulation genetic structure (Gillespie, 1981), and is es-
pecially critical for long-term metapopulation success when patches are subjected to
stochastic environmental variability (Howe and Davis, 1991; Bascompte et al., 2002;
Hill et al., 2002).

Although the metapopulation concept evolved primarily in the terrestrial liter-
ature, it is highly relevant to marine populations. This was not recognized in the
literature any appreciable numbers until the mid-90’s (Grimm et al., 2003). Prior
to that time, marine ecologists had focused on the importance of larval recruitment
for structuring marine populations (Connell, 1985), later recognizing the impacts of
recruitment variability in population dynamics on coral reefs (Sale, 1977) and along
rocky coastlines (Caffey, 1985; Roughgarden et al., 1985). Although evidence from
larval dispersal and recruitment dynamics studies alluded to the concept of metapop-
ulations, population structure was not explicitly considered until Roughgarden and
Iwasa (1986) and Iwasa and Roughgarden (1986). Since then, there has been much
discussion of population connectivity and the importance of migration for structuring
marine populations.

Despite interest in population connectivity and marine metapopulations, empiri-
cal studies of migration rates are few in number for marine invertebrates. Much of the
published literature focuses on migration estimates based on genetics (e.g. Grosberg

and Cunningham, 2001; Gilg and Hilbish, 2003; Sotka and Palumbi, 2006) or theoret-
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ical models (e.g. Incze and Naimie, 2000; Roegner, 2000). The paucity of empirical
migration estimates for benthic invertebrates is due to characteristics of the stage
in which dispersal takes place; the larval stage is very small and is subject to high
mortality and dilution rates (Thorson, 1950, 1966). Despite these obstacles, in recent
years the field of marine ecology has sought to quantify the exchange of individuals
among geographically separated patches in a metapopulation, termed larval connec-
tivity (Cowen et al., 2007). In this thesis, I worked towards developing the use of
shell chemistry as a means of measuring migration rates, and therefore connectivity,
between patches of the softshell clam, Mya arenaria. 1 also used genetics as a natural
tag of environment to estimate gene flow. Finally, I developed and implemented a
theoretical model to explore metapopulation dynamics and understand the effects of

migration on metapopulation growth rate.

1.2 Thesis Goals

My thesis began as method development: I set out to study connectivity and retention
of the softshell clam Mya arenaria in the Northwest Atlantic using elemental signa-
tures incorporated into the larval shell as tags of natal habitat. My first goal was
to verify that the instrument commonly used in other natural tagging studies, laser
ablation inductively coupled plasma mass spectrometry (ICP-MS), could be used for
analyzing bivalve larval shell. Results from my experiment (presented in Chapter
2) instead indicated that this instrument, in the configuration used, was not able
to analyze the extremely thin first larval shell of M. arenaria. These results were
not expected, and I was forced to re-think my approach to my thesis questions. My
results serve to discourage ecologists from adopting methods that have proven useful
for other systems without first carefully considering and validating the method for
their particular species. The general approach of using biogenic carbonate chemistry
for connectivity studies is still useful; different sensors may be more sensitive, or even
a different application of ICP-MS might be developed to analyze the surface of larval

shells. Although I chose not to pursue further technique development, the potential
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for bivalve shell chemistry to provide ecologically relevant information—whether for

connectivity or other environment indicators—remains.

If biogenic carbonate is to be used successfully as an environmental indicator
(for connectivity studies or otherwise), it is essential to understand the effects of
environmental and biological factors on elemental composition. In Chapters 3 and
4 report on experiments I conducted to understand some of the factors potentially
affecting the composition of M. arenaria shell. Chapter 3 focuses on the effects of
growth rate and age on elemental incorporation into shell, and Chapter 4 focuses on

temperature and salinity effects on both larval and juvenile shell.

When I discovered that 1 would not be able to answer connectivity questions
about M. arenaria using laser ablation ICP-MS, at least in its present configuration,
I began pursuing population genetics as a different type of natural tag. The spatial
and temporal scale at which genetics is useful for parsing out population variability
depends on the genetic marker chosen. I sequenced the mitochondrial cytochrome
oxidase I gene, which has proven useful in connectivity studies of other invertebrates.
I included populations in the northwest Atlantic, the North Sea, and the Pacific in my
study; these sites represent the species’ native and introduced range. I was therefore
able to assess connectivity on larger temporal and spatial scales, and examine patterns

relating to M. arenaria’s natural history. These results are reported in Chapter 5.

The variability in COI that I was able to detect proved informative about the
history of M. arenaria over global spatial scales. Although my results showed that
populations in New England were not isolated from one another, I was not able to
address larval exchange rates over ecologically relevant time scales. In an attempt to
return to my original questions about population connectivity and metapopulation
dynamics, I began using mathematical models of M. arenaria metapopulations. The
matrix population model presented in Chapter 6 began by my adding spatial structure
to previous work on M. arenaria by Ripley and Caswell (2006). As I developed the
model, it metamorphosed into something more generally applicable to any metapop-
ulation subjected to stochastic disturbance. The model can be used to understand

how metapopulation dynamics are affected by environmental variability. In addition,
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I used sensitivity analysis to determine the effects of migration on metapopulation
growth rate. I found that since migration dictates the relative distributions of indi-
viduals in patches, metapopulation growth rate is highly sensitive to the proportion
of individuals moving between patches.

Although the chapters of this thesis are presented in chronological order, it might
be more useful to consider the results of Chapter 6 as evidence of the importance of
migration for determining metapopulation dynamics, providing justification for my
attempts to study dispersal in previous data chapters. The themes and questions of
this thesis are generally applicable to other marine benthic invertebrates and lend
knowledge to the broader concept of population connectivity and the techniques used

to explore this important ecological concept.
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Laser ablation ICP-MS analysis of larval shell in softshell clams
(Mya arenaria) poses challenges for natural tag studies

C.A. Strasser, S.R. Thorrold, V.R. Starczak, and L.S. Mullineaux

Woods Hole Oceanographic Institution, Woods Hole, MA 02543

Abstract

We investigated whether laser ablation inductively coupled plasma mass spectrometry (ICP-MS) could be used
to quantify larval shell compositions of softshell clams, My« arenaria. The composition of aragonitic otoliths has
been used as a natural tag to identify natal habitat in connectivity studies of fish. If it is possible to measure lar-
val shell reliably, this technique could also be applied to marine bivalves. To determine whether the first larval
shell (prodissoconch I) could be measured independent of underlying material, we conducted laboratory exper-
iments in which larval M. arenaria were exposed to enrichments of the stable isotope '*Ba during different stages
in shell development. We were unable to isolate the chemical signature of the prodissoconch I from subsequent
life stages in all combinations of shell preparation and instrument settings. Typical instrument settings burned
through the prodissoconch 1 on a post-settlement juvenile and at least 9 d of second larval shell (prodissoconch II)
growth. Our results suggest instrumental and technical improvements are needed before laser ablation ICP-MS
can be useful for connectivity studies that require analysis of larval shell on a post-settlement M. arenaria juve-
nile. Laser burn-through is potentially a problem in any connectivity study where it is necessary to assay the

small amounts of shell material that are deposited before a larva disperses away from its natal location.

Most marine benthic invertebrate life cycles include a plank-
tonic larval phase that facilitates dispersal among adult popula-
tions (Thorson 1950). Connectivity, or the degree to which geo-
graphically separated populations exchange individuals, is an
important factor in the spatial population dynamics of many
marine organisms (Moilanen and Nieminen 2002). An under-
standing of connectivity in marine benthic populations is
important because of the role spatial dynamics play in fisheries
management and the design and implementation of marine
protected areas. However, studying larval dispersal is challeng-
ing due to small larval sizes, high dilution rates, and high larval
mortality rates (Thorson 1950, 1966).

In recent years, the use of artificial and natural tags to track
marine larvae has been explored (e.g., Levin 1990; Thorrold et
al. 2002). One type of natural tag that may be useful for identi-
fying natal origins is elemental signatures recorded in biogenic
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carbonate. This technique relies on the observation that some
elements are incorporated into the calcium carbonate matrix
in amounts that are related to the dissolved concentrations
and physical properties of the ambient water (e.g., Bath et al.
2000; Elsdon and Gillanders 2003; Fowler et al. 1995; Thorrold
et al. 1997; Vander Putten et al. 2000). Provided water chem-
istry or temperature is significantly different among natal
habitats, such variation can serve as a natural tag, or signature,
of the geographic origin of organisms. The use of geochemical
signatures in fish otoliths as natural tags for population stud-
ies is well established (Campana and Thorrold 2001). Recent
efforts have expanded the use of elemental tags to inverte-
brates including decapods (DiBacco and Levin 2000), gas-
tropods (Zacherl et al. 2003), bivalves (Becker et al. 2005), and
cephalopods (Arkhipkin et al. 2004).

Most studies attempting to obtain time-resolved elemental
signatures from calcified tissues have used laser ablation induc-
tively coupled plasma mass spectrometry (ICP-MS). Conven-
tional solution-based ICP-MS analyses are generally more pre-
cise than laser ablation assays but lack the ability to resolve
elemental signatures from individual life stages (Campana et al.
1997). Laser ablation ICP-MS is particularly useful for larval
studies because it allows the core of an otolith or the larval shell
of a juvenile bivalve to be targeted. Yet, surprisingly few studies
have empirically tested the effective spatial resolution of laser
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Fig. 1. Shell development in M. arenaria. Pl and PII larval shells are
underlain by juvenile and, ultimately, adult shell.

ablation 1CP-MS. The goal of this study was to determine if
techniques that have proven successful in otolith studies were
also useful for quantifying larval dispersal of the softshell clam,
Mpya arenaria. Specifically, we tested if it was possible to isolate
and measure the early larval shell (prodissoconch 1) of M. are-
maria using laser ablation ICP-MS without contamination from
underlying late larval and juvenile shell material. This study is
an important step in developing the use of elemental signatures
in mollusc shells as tags of natal habitat because isolation of the
early larval shell is critical for connectivity studies.

Materials and procedures

Study species—Adult M. arenaria broadcast spawn their
gametes into the water, where fertilized eggs develop into
non-feeding shell-less trochophore larvae. Within 24 h of
spawning, the trochophore metamorphoses into a veliger and
lays down its first larval shell, the prodissoconch I (hereafter PI),
which is approximately 90 um in diameter (Loosanoff et al.
1966). After forming the PI, the veliger begins feeding in the
plankton. Over the next 1 to 3 weeks, it lays down the second
larval shell, the prodissoconch II (hereafter PII), which grows
to diameters of 150 to 200 um (Loosanoff et al. 1966). The
veliger then finds suitable habitat, settles to the bottom, and
metamorphoses into a juvenile M. arenaria. Juvenile and,
eventually, adult shell is laid underneath larval shell, extend-
ing away from the umbo (Fig. 1). Larval shells are retained dur-
ing clam growth and development, and the PI can be identi-
fied easily on newly settled juveniles. Estimated water
retention times for typical New England estuaries are 2 days to
a week (Asselin and Spaulding 1993; Brooks et al. 1999; Shel-
don and Alber 2002). If larvae are essentially passive particles,
then they are also retained in estuaries for 2 days to a week
after spawning, which would be sufficient for the PI larval
shell to form before potential dispersal occurs. If the composi-
tion of the larval shell on a juvenile M. arenaria can be mea-
sured accurately, we may be able to answer questions about
larval retention and dispersal.

Clam rearing—M. arenaria veligers were obtained from the
Eastham Hatchery Facility in Eastham, Massachusetts, within
6 h of spawning and transported to Woods Hole, Massachusetts.

Unspiked
No shell spiked

Early Spike
PII, juvenile shell
spiked

Late Spike
Some juvenile shell
spiked

Fig. 2. Location of the '*Ba spike treatments relative to shell develop-
ment. Shaded regions show areas of spiked shell.

Approximately 400,000 individuals were divided into nine
identical covered 10 L tanks. Tanks were filled with 20°C fil-
tered seawater (salinity = 32). Assuming roughly 10% mortal-
ity during transport from Eastham to Woods Hole, initial lar-
val counts were approximately 40,000 per tank. Each tank was
randomly assigned one of three treatments described below,
with three replicate tanks per treatment.

Several larvae were subsampled from each tank after 48 h,
and the PI was present in all sampled larvae. We then exposed
clams to one of three treatment conditions that differed in the
timing of exposure to the stable isotope '**Ba (Fig. 2). Tanks in
the first treatment received no '**Ba spike and therefore the
water had a natural '**Ba:'*’Ba ratio (“Unspiked”). Tanks in the
second treatment received a '**Ba spike of 25 ng g' at day 2,
immediately after the PI had set (“Early Spike”). Tanks in the
third treatment received a '**Ba spike of 25 g g' at day 9, 7 d
after the PI set (“Late Spike”). By day 9, most of the larvae
appeared to have set the PIl and become competent to settle
based on their shell size, tendency to accumulate at the bottom
of the tank, and use of their foot for locomotion. This is faster
than the estimated two to three weeks residence time of M. are-
naria veligers in the field. Laboratory clams typically grow and
mature faster compared with those in the field because of opti-
mized rearing conditions (H. Lind, pers. comm.).

Larvae swam freely in tanks for the first 10 d, after which
time they were contained in mesh sieves suspended in the
tanks. Water pumps were used to create a downward current
that encouraged larvae to settle out of the water column. Sub-
sampling of tanks indicated that larvae metamorphosed
within 2 to 3 d after downwelling began. Clams were fed
Isochrysis sp. and Pavlova sp. algae at least once every 2 d, and
the water in each tank was changed every 2 d. In the Early and
Late Spike tanks, a '**Ba spike concentration of 25 pg.g' was
maintained for the duration of the experiment by adding '**Ba
immediately after each water change. After 60 d, clams ranged
in size from 0.5 mm to S mm. They were removed from their
tanks and frozen until prepared for ICP-MS analysis. Mortality




rates were high in all tanks, and seven of the nine tanks had
survivors: three replicate tanks from the Unspiked treatment
(n=3S, n= 33, n=7), two replicate tanks from Early Spike
treatment (7 = 75, n = 22), and two replicate tanks from the
Late Spike treatment (7 = 14, 7 = 8).

Shell preparation—Shells were cleaned thoroughly using
techniques developed for foraminiferan tests (Boyle 1981)
with modifications specifically for M. arenaria. Clams were
placed in individual acid-washed vials using acid-washed plas-
tic forceps, and sonicated briefly to remove tissue and debris.
Individuals were rinsed three times with ultrapure H,O, then
soaked for 10 min at 80°C in 1% H,0, solution buffered with
suprapur NaOH (1 N) to remove organic material. Afterward,
shells were rinsed three times with ultrapure H,0, transferred
to clean, acid-washed vials, rinsed four times with ultrapure
H,O, then left to dry overnight under a laminar flow hood.
Shells were inspected after cleaning and drying for any
remaining organic material; dried tissue was removed in the
few cases where it was present.

Shells were mounted for laser ablation ICP-MS analysis on
glass slides using Devcon®© Super Glue. One valve of each clam
was oriented so that the retained larval shell was accessible by
the laser (i.e., umbo facing upward), while the second valve
was oriented concave side down so that the laser could access
the flattest portion of the juvenile shell. All cleaning and
preparations were conducted in a Class 100 clean room.

Laser ablation ICP-MS analysis—Shell material was analyzed
using a Thermo-Electron Element2 ICP-MS coupled to a New
Wave Research 213 nm laser ablation system. Vaporized mate-
rial from the ablation was transported via a helium gas stream
to the dual-inlet quartz spray chamber where it was mixed
with a 2% HNO, aerosol from a self-aspirating PFA 20 uL. min-"'
nebulizer. The analyte was then transported to the ICP-MS via
an argon carrier gas. An aragonite otolith reference material
dissolved in 2% HNO, and diluted to a Ca concentration of
40 pg g (Yoshinaga et al. 2000) and a 2% HNO, blank solu-
tion were run periodically to correct for mass bias drift. We
measured “*Ca, '*Ba, and '*7Ba in low resolution mode. Iso-
tope ratios of '**Ba to '*7Ba were calculated using mass bias cor-
rection calculated from calibration standards that we assumed
contained natural '**Ba:'¥Ba ratios. Blank intensity averages
and standard deviations were calculated for each of the three
analysis periods (Oct 2005, Jan 2006, Feb 2006). Limits of
detection (LOD) were calculated as the ratio of three standard
deviations of the blank intensity to the average blank-sub-
tracted sample intensity. For the three time periods over
which samples were analyzed, sample intensities were > 100,
> 690, and > 2800 times the detection limit for **Ca; > 100,
> 30, and > 20 times the detection limit for '*’Ba; and > 290,
> 127, and > 30 times the detection limit for '*Ba, respectively.

Measurements were taken from two positions on each
clam: one on the larval shell at the umbo, and a second on
juvenile shell material 600 um away from the umbo (umbo
and juvenile measurements, respectively). Shell composition
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Table 1. Laser ablation ICP-MS settings
M. arenaria shell

used to analyze

_ Raster setting Spot setting

Laser pattern 70 um? raster 80 um spot
Laser power 80% 50%

Beam size 25 pm 80 um
Repetition rate 10 Hz 5 Hz

Scan speed 12 um s

Line spacing 10 um

for each clam was analyzed using one of two laser settings
(Table 1). In the first case (Raster Setting), the laser removed
shell material systematically from a 70 uym x 70 um square
raster pattern. Instrument and laser settings were chosen to
maintain **Ca counts above two million counts s™'. For the
second setting (Spot Setting), the laser was focused on a single
spot with a beam diameter of 80 um, and laser energy was
reduced to 50% power. The laser pulsed on the spot repeat-
edly, boring down into shell material. Therefore, at least the
first few seconds of measurement at the umbo should reflect
larval shell; afterward the laser was expected to penetrate
underlying material. This setting was used to explore whether
the composition of thin larval shell could be quantified at
reduced laser power with minimal material removed (i.e., only
a few seconds of material ablation).

Rationale for experimental setup—Umbo and juvenile shell
were each measured on clams from the three Unspiked treat-
ment tanks (7= 13, 7 =9, 7 = 6) to test whether uptake dif-
fered between umbo and juvenile areas of the shell. No statis-
tically significant differences were found for the three tanks
combined (paired ¢ test, /= 0.83, » = 28, P = 0.42) so only
umbo measurements were used to simplify analysis.

Shell ratios of '*Ba:'*’Ba were expected to fall into one of
three categories: a natural ratio, a fully '**Ba-spiked elevated
ratio, or somewhere between these two end members. The
natural ratio was determined by measuring shell that was not
spiked (i.e., clams from the Unspiked treatment). The fully
spiked ratio was determined for each clam individually in the
Early and Late Spike treatments by measuring juvenile shell.
Umbo measurements of clams from Early Spike and Late Spike
treatments were expected to show one of three results,
depending on the depth of laser penetration (Fig. 3): (A) no
laser burn-through: umbo measurements from Early and Late
Spike treatments did not significantly differ from unspiked
shell; (B) some laser burn-through: umbo measurements from
the Early Spike treatment have a significantly higher ratio
than unspiked shell; umbo measurements from the Late Spike
treatment have a ratio that does not differ significantly from
unspiked shell; (C) extensive laser burn-through: umbo mea-
surements from Early and Late Spike treatment have ratios
that do not differ significantly from spiked juvenile shell.

If laser burn-through does occur, we may be able to cor-
rect for it by subtracting out the signal from any underlying
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Fig. 3. Three possible scenarios for extent of laser burn-through. Graphs
are the expected '**Ba:"*Ba ratios for umbo measurements from the three
treatments, depending on depth of laser penetration: (A) no laser burn-
through, (B) some laser burn-through, and (C) extensive laser burn-
through. Shaded regions of the shell graphics indicate spiked material.
The shaded horizontal line in each graph at Expected '**Ba:'*’Ba ~20
shows fully spiked shell, while the line at Expected '**Ba:'*’Ba ~6 shows
the natural '**Ba:'*’Ba ratio.

shell that might be contaminating our results. To determine
if this was possible, we used a simple mixing equation (Eq. 1)
to calculate the proportion of spiked and unspiked material
ablated for each clam’s umbo measurement from the spiked
treatments:

[ "™Ba)

{ "™Ba\

("5a

[ ™Ba\

“(Wa)

where X is the proportion of spiked versus unspiked material
ablated from the umbo of the clam, (“*Ba:'VBa)y ., is the
ratio from the juvenile measurement of the clam,
("**Ba:'Ba) . 15 the average ratio from umbos of clams in
the Unspiked treatment, and ('**Ba:'¥’Ba) is the ratio from

(1)
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the umbo measurement. Equation 1 was rearranged to deter-
mine the proportion of spiked material for each clam:

Unspikedt

Editing profiles from Spot Setting—The Spot Setting was used
to determine if unspiked material could be detected by pro-
ducing a Ba isotope depth profile centered on the PI position
of the shell. Data were initially acquired from a 2% HNO,
blank solution, with laser ablation beginning approximately
18 s into data collection. The resulting intensity profiles were
edited as follows to determine blank intensities and shell
material intensities for the three isotopes of interest. Blank
values were calculated as the average of the first 18 s of analy-
sis. We started collecting data for shell material once a data
point was 50% higher in **Ca intensity than its predecessor for
a total of 20 s. Detection limits were then calculated for the
three isotopes based on the blank intensities, and only data
with intensities at least 20% above the detection limit for all
three isotopes were included in analyses (Fig. 4). The criterion
used to remove data below the detection limit resulted in
some profile sequences being shorter than others; time pro-
files ranged from 9 to 20 data points.

Assessment

Differences between treatments—Using the Raster Setting, the
average (+ SD) '**Ba:'*"Ba ratio in shell material was 6.4 + 1.0 for
Unspiked umbo (7= 19), 20.3 £ 6.1 for Early Spike umbo (7= 12),
and 15.5 + 2.3 for Late Spike umbo (# = 11) (Fig. S). Using the
Spot Setting, the average (+ SD) ratio was 5.8 + 1.1 for unspiked
umbo (7= 8), 20.0 £+ 1.9 for Early Spike umbo (7= 14), and 15.5
+ 3.9 for Late Spike umbo (7 = 3). To determine if laser burn-
through occurred, we first tested whether there was significant
variation in mean umbo measurements among treatments and
among tanks within treatments using a mixed model nested
ANOVA (Table 2). Under both Raster and Spot Settings, mean
umbo measurements were significantly different between the
three treatments (Raster, £, ,. = 56.4, 7<0.0001; Spot, £, ,, = 72.5,
P < 0.0001), with Unspiked ratio < Late Spike < Early Spike
(Tukey-Kramer Test). We found no significant differences among
tanks within treatments for the raster setting (= 0.88; number
of clams per replicate tank: 7= 7, 7= 6, #= 6 for Unspiked; 7= 6,
n = 6 for Early Spike; 7 = 6, n =5 for Late Spike). We were not
able to test for differences among tanks within treatments for the
spot setting due to insufficient numbers (number of samples: 7
=5, n= 3 for Unspiked; » = 14 for Early Spike; » = 3 for Late
Spike). Hereafter measurements from tanks of the same treat-
ment were pooled. Because both Early and Late Spike umbo
ratios differed significantly from Unspiked umbo, we rejected
laser burn-through scenarios A and B and concluded that exten-
sive laser burn-through was occurring (Fig. 3C).
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Fig. 4. Representative unedited intensity profiles for individual clams from laser ablation-ICP-MS measurements using the Spot Setting for (A) **Ca and (B)
1*Ba. The data in the first shaded region were used to calculate the blank levels, and the data in the second shaded region were excluded from analysis.

Ratios for individual clams—The extent of laser burn-through
was addressed by comparing umbo measurements with spiked
juvenile shell for each clam using a paired ¢ test. If the umbo
ratio was not significantly different from spiked juvenile shell,
it suggests that a measurable quantity of unspiked shell was not
present at the umbo. For the Raster Setting, umbo mea-
surements were not significantly different from juvenile mea-
surements in Unspiked clams (7 = -0.45, n = 19, 2 = 0.66) or
Early Spike clams (7 = -1.0, » = 12, 7 = 0.34). In Late Spike
clams, the umbo '**Ba:'*’Ba ratio of 15.6 was slightly lower
than the juvenile shell ratio of 18.3 (7= 2.7, n= 11, P < 0.05).
Results were similar using the Spot Setting. Unspiked and Early
Spike umbo means were not significantly different from juve-
nile measurements (/= 1.6, »=9, 2= 0.15; and 7= 0.85, n= 14,
P = 0.41, respectively), whereas Late Spike mean umbo and
juvenile ratios differed, although sample size was small (=-7.0,
n = 3, 2< 0.05). The umbo and juvenile ratios are plotted for
each clam from the Raster Setting (Fig. 6). Results were similar
for Spot Setting analyses and are not presented. The data were
again consistent with a scenario of extensive laser burn-
through (Fig. 3C). Umbo shell ratios tended to be more similar
to juvenile shell ratios than to unspiked shell, indicating that
umbo measurements were not isolating the unspiked larval
shell from underlying shell material.

For some clams, umbo ratios were unexpectedly higher
than juvenile ratios (Fig. 6). In theory, all juvenile clams expe-
rienced the maximum amount of spike, but ratios in juvenile
shell were variable among clams, ranging from 9.4 to 22.3.
Some of this variability might be attributed to physiological
differences among clams, but much of it likely originates from
variability in the laser ablation ICP-MS measurements. For
instances when umbo ratios were higher than juvenile ratios
for the same clam, the magnitude of the difference was within
the range of variability expected based on the range seen in
juvenile shell ratios.
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Late Spike umbo ratios were slightly lower than Early Spike
umbo ratios, indicating that a larger proportion of unspiked
shell was being ablated in Late Spike clams. Clams in this treat-
ment were allowed to set shell for 9 d without spike; however
measurements from the umbo still showed only a small differ-
ence from fully spiked shell. This is a surprising result with
implications for the usefulness of ICP-MS in connectivity stud-
ies. Measurements taken at the umbo may not represent natal
habitat signatures alone, but rather the integration of habitats
encountered by the organism over more than 9 d of life.

Time profiles of umbo measurements—Spot Setting data were
used to investigate whether unspiked larval shell could be
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Fig. 5. Average umbo "**Ba:'*’Ba ratios (+ standard error) for clams mea-
sured using Raster and Spot Settings in the three treatments. The shaded
horizontal line shows the natural '**Ba:'*’Ba ratio.



Table 2. Results from ANOVA testing for differences among
treatment mean ratios

Source df MS F p
Raster Setting
Treatment 2 760 56.4 < 0.0001
Tank (Treatment) 3 5.36 0.397 0.877
Error 35 13.5
Spot Setting
Treatment 2 497 725 < 0.0001
Error 23 6.86

For the raster setting, results are from a mixed model nested ANOVA test-
ing for differences among treatment means and for variation among tanks
nested within treatments. For the spot setting, results are from a one-way
ANOVA; data from tanks were combined to have sufficient sample size to
test for differences among treatment means (see Methods).

detected in the first seconds of laser ablation. This would be
evident if initial '**Ba:'¥’Ba ratios were near natural levels, or
at least significantly lower than subsequent ratios. Visual
inspection of depth profiles suggested that unspiked shell was
not being detected early during ablation (Fig. 7). To statisti-
cally test this, we averaged the first five points of shell ablation
data and compared the value with an average of the remain-
ing 15 points using a paired 7 test. Five points were averaged
to represent initial shell because single data points are highly
variable and subject to small fluctuations in the amount of
material ablated and instrument sensitivity (Guillong et al.
2001; Russo 1995). If a significant proportion of material
ablated early was composed of unspiked shell, the first five
points should be significantly lower than the last 15. In all
treatments, the first five points were not significantly lower
than the last 15 (Unspiked: 7= 1.2, n = 7, 7= 0.29; Early Spike:
1=1.979, n=13, P=0.071; Late Spike: t=-1.2, n= 5, P=.30).
The lack of unspiked material might be due to the over-
whelming signal of underlying spiked shell, or that the points
representing unspiked shell fell below the > 20% detection
limit cutoff and were excluded. In either case, our results sug-
gested that unspiked larval shell was not detectable even when
laser power was reduced and minimal material ablated.

Neither Early nor Late Spike treatments were spiked during
PI formation. As a result, initial shell measurements at the
umbo should have reflected unspiked shell if only the Pl was
measured. Measurements taken later (deeper) were expected to
have an increase in the ratio of '*Ba:'*’Ba, and the timing of
that increase would be related to the time when the spike was
added during shell formation. The absence of detectable
unspiked shell at the beginning of ablation for both Early and
Late Spike treatments suggests that laser ablation does not iso-
late and measure the first larval shell accurately. Furthermore,
based on results from Late Spike clams, the first few seconds of
laser ablation removes at least 9 d worth of shell growth from
laboratory-reared clams.

Although we were unsuccessful at measuring the larval shell
in our study, there is no evidence that the PI larval shell is meta-
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Fig. 6. **Ba:'*’Ba ratios for each clam, for each of the three treatments
as measured by the Raster setting: (A) Unspiked, (B) Early Spike, and (C)
Late Spike. The shaded horizontal line in each graph shows the natural
13¥Ba:'¥Ba ratio.

bolically reworked, absent from the juvenile shell, or otherwise
unusable for connectivity studies. However, our study demon-
strated that regardless of the presence, absence, or inert qualities
of the larval shell, we were unable to detect or measure the lar-
val shell with the settings and instrumentation reported.
Proportion spiked material—We calculated the proportion of
spiked material for Early and Late Spike umbo measurements
from the Raster Setting using Eq. 2 (Fig. 8). Average propor-
tions of spiked material (+ SD) were 1.3 + 0.7 (7= 12) for Early
Spike umbo measurements and 0.9 + 0.5 (7= 11) for Late Spike
umbo. A one-sample 7 test showed no significant difference
between mean proportions and unspiked material, i.e., the
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mean proportion did not differ from 1.0 (Early Spike: 7= 1.5,
P =0.16; Late Spike: 7= -0.7, P =.48). Results were similar for
Spot Setting clams and are not shown.

Variability in the ratios of umbo measurements among indi-
viduals from the two spiked treatments resulted in a high degree
of variability in the calculated proportion of spiked material. We
were able to detect this variability and quantify the amount of
spiked versus unspiked shell since material underneath the lar-
val shell was tagged using '**Ba. However, this variability is not
easily predicted or quantified in field samples of M. arenaria
since there is no known element with different, and constant,
concentrations in larval versus juvenile shell. Therefore, we
concluded that correcting for laser burn-through using Eq. 2
likely would not be useful for field samples.

Discussion

Implications for connectivity—We were unable to isolate and
measure the larval shell of M. arenaria using laser ablation
ICP-MS settings designed for minimal shell removal. The laser
consistently burned through the larval shell and into under-
lying late-stage larval and juvenile material. In addition, the
proportion of underlying shell ablated was too variable to
allow for any reliable correction to account for the burn-
through. Our study suggests laser burn-through is a significant
problem for connectivity studies of M. arenaria, and possibly
of other molluscan species that may spend only a short time
in their natal location.
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New England estuaries tend to have residence times on the
order of 2 d to more than a week (Asselin and Spaulding 1993;
Sheldon and Alber 2002), suggesting that larvae may experi-
ence their natal habitat for as few as 48 h. Our results indicate
that we burned through at least 9 d of shell growth in the
umbo region of laboratory-reared juvenile M. arenaria. The
number of days of growth ablated depends on shell growth
rate, which varies depending on field environmental condi-
tions and laboratory rearing conditions (LaValley 2001).
Although there may be some differences between growth rates
in the field and those of clams in our experiment, our results
show that laser ablation removes significantly more shell than
what is laid in the first 24 to 48 h, when clams are most likely
retained in their natal habitat.

Laser burn-through appears to be a substantial problem for
connectivity studies of organisms with rapid dispersal, but it
may be less problematic in other scenarios. Species that brood
their larvae may produce more shell material before potential
dispersal, making isolation of natal habitat signatures possible.
Similarly, larvae that are broadcast spawned but retained in
their natal habitat for most of their larval stage due to physics
might have time to deposit sufficient shell for reliable mea-
surement. However, requiring that organisms experience their
natal habitat for long periods of time limits the species we can
study using natural tagging techniques.

Alternative approaches—In this study, we chose to explore laser
burn-through issues relating to laser ablation ICP-MS because it
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Fig. 8. Proportion spiked material for umbo measurements of
'**Ba-treated clams using the Raster Setting, for (A) Early Spike and
(B) Late Spike treatments.

is an instrument commonly used for carbonate analysis and has
been chosen by other molluscan tagging studies. Our results sug-
gest that other techniques and instrument configurations should
be tested to determine whether they might more reliably isolate
the thin larval components of shell. For instance, researchers
have reported that excimer lasers operating at 193 nm generate
shallower craters than we were able to achieve in the present
study (e.g., Patterson et al. 2005), while the burn-through prob-
lem is likely more pronounced with instruments using lasers
with longer wavelengths (e.g., FitzGerald et al. 2004; Jones and
Chen 2003). We are unaware of any formal studies comparing
crater depths in carbonates for lasers of different wavelengths.
Gonzalez et al. (2002) showed, however, that crater shapes and
depths produced in glass standards were similar for 193 nm and
213 nm lasers, and both of these lasers produced shallower and
more regular craters than 266 nm lasers.
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Instrument sensitivity also plays a significant role in deter-
mining the amount of material that needs to be transported to
the plasma to make a sufficiently precise and accurate mea-
surement of shell chemistry. We did not experiment with run-
ning the ICP-MS in dry plasma mode with a desolvating neb-
ulizer, because in our experience such changes lead to only
small increases in sensitivity. Barnes et al. (2004) reported
that combining a laser with an ICP ionization source and a
Mattuch-Herzog mass spectrograph can dramatically increase
limits of detection (i.e., instrument sensitivity) and allow for
accurate measurement of material from single laser pulses
(5 nm depth per pulse). However, development of such
unique, customized systems designed for specific types of
analysis is difficult and expensive, making it an intractable
solution for most researchers.

Other instruments that may warrant further investigation
include secondary ionization mass spectrometry (SIMS) and pro-
ton induced x-ray emission (PIXE). Although they have been
used successfully in otolith studies, LOD and penetration depths
of the secondary ion beam (SIMS) and x-rays (PIXE) suggest that
neither instrument is likely to isolate larval shell material effec-
tively (Campana et al. 1997). Another potential problem with
SIMS and PIXE is that present configurations are not able to ana-
lyze trace elements such as Ba, Cd, Mn, and Pb as effectively as
ICP-MS (Campana 1999). Such elements have proven useful for
distinguishing different habitats in natural tagging studies of
fishes (e.g., Patterson et al. 200S; Thorrold et al. 1998; Thorrold
et al. 2001). Finally, both SIMS and PIXE require the surface of
the analyte to be flat. For bivalve larval shell analysis, this
requires that the juvenile shell be embedded in epoxy, then
cross-sectioned so that the larval shell is visible, and then pol-
ished. Obtaining a cross-section that includes the larval shell
after polishing is nearly impossible in our experience.

Shells, statoliths, and otoliths are three-dimensional struc-
tures, and the materials underlying the carbonate of interest
may confound elemental analysis. Based on our results, laser
ablation ICP-MS analysis may result in contamination of natal
habitat signatures by underlying carbonate material formed
later in the organism’s life. Laser burn-through issues are espe-
cially important in connectivity studies where it is often nec-
essary to target an extremely small area of a shell that repre-
sents the material deposited before potential dispersal away
from natal locations. We emphasize that any system should be
closely scrutinized to assure that analyses are not compro-
mised by laser burn-through.
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Abstract

The chemical composition of bivalve shells can reflect that of their environment, making them useful indicators of climate, pollution, and
ecosystem changes. However, biological factors can also influence chemical properties of biogenic carbonate. Understanding how these factors
affect chemical incorporation is essential for studies that use elemental chemistry of carbonates as indicators of environmental parameters. This
study examined the effects of bivalve shell growth rate and age on the incorporation of elements into juvenile softshell clams, Mya arenaria.
Although previous studies have explored the effects of these two biological factors, reports have differed depending on species and environmental
conditions. In addition, none of the previous studies have examined growth rate and age in the same species and within the same study. We reared
clams in controlled laboratory conditions and used solution-based inductively coupled plasma mass spectrometry (ICP-MS) analysis to explore
whether growth rate affects elemental incorporation into shell. Growth rate was negatively correlated with Mg, Mn, and Ba shell concentration,
possibly due to increased discrimination ability with size. The relationship between growth rate and Pb and Sr was unresolved. To determine age
effects on incorporation, we used laser ablation ICP-MS to measure changes in chemical composition across shells of individual clams. Age
affected incorporation of Mn, Sr, and Ba within the juvenile shell, primarily due to significantly different elemental composition of early shell
material compared to shell accreted later in life. Variability in shell composition increased closer to the umbo (hinge), which may be the result of
methodology or may indicate an increased ability with age to discriminate against ions that are not calcium or carbonate. The effects of age and
growth rate on elemental incorporation have the potential to bias data interpretation and should be considered in any biogeochemical study that
uses bivalves as environmental indicators.

Published by Elsevier B.V.

Keywords: Bivalve shell: Carbonate chemistry; Element incorporation; Growth rate; Mya arenaria

1. Introduction relationship is sometimes affected by environmental properties
such as temperature and salinity; researchers exploit this
Marine bivalves have been used successfully as indicators of ~ characteristic to explore environmental conditions that occurred
environmental properties for several decades (e.g. Dodd, 1965: during shell development (e.g. Rucker and Valentine, 1961;
Klein et al., 1996; Boisson et al., 1998). Bivalves are ideally Dodd, 1965; Lerman, 1965; Dodd and Crisp, 1982; Pitts and
suited for this purpose given their sedentary nature after re- Wallace, 1994; Lazareth et al., 2003). In studies where bivalves
cruiting to the benthos, high abundances, relatively large sizes, are used as indicators of environment, whole shells or portions
longevity, and hardiness (Phillips, 1977). In particular, bivalve of individual shells are analyzed for their elemental composi-
shells have proven useful for environmental reconstructions tion, and then related to spatial or temporal variation in ele-
since shell and ambient water elemental concentrations exhibit a mental concentrations, temperature, or salinity of the seawater
monotonically increasing relationship (Wilbur, 1972). This of formation.
Although the relationship between shell composition and
"+ Corresponding author. MS 34 Redfield 120, 266 Woods Hole Road, Woods ~ WAL€T chemistry has been studied in the past, there are no

Hole MA 02543, USA. Tel.: +1 508 289 2358: fax: +1 508 457 2134. consistent results across different species. For instance, Sr:Ca in
E-mail address: cstrasser@whoi.edu (C.A. Strasser). molluscan shell has been reported as correlating both positively

0022-0981/% - see front matter. Published by Elsevier B.V.
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34



154 C.A. Strasser et al. / Journal of Experimental Marine Biology and Ecology 355 (2008) 153163

(Dodd, 1965; Smith et al., 1979; Stecher et al., 1996) and
negatively (Zacherl et al., 2003) to temperature, depending on
the species examined. These differences likely originate in the
physiological underpinnings of shell formation and deposition,
such as regulation of extrapallial fluid composition by the
mantle, which differs depending on species (Wilbur, 1972).
Such contradictory results highlight the need for understanding
biological factors that potentially influence elemental composi-
tion of shell.

Despite some uncertainty about the physiological processes
that drive the monotonic relationship between shell chemistry
and water composition, many fields of study take advantage
of the relationship to answer questions about the environment
and the ecosystem as a whole. For instance, environmental
managers use bivalves as bioindicators of metal contamination
in coastal habitats by measuring the trace metal content of shells
(Lindh et al., 1988: Bourgoin, 1990; Fuge et al.. 1993; Pearce
and Mann, 2006). Another use of bivalve shell composition is as
a recorder of habitat use. For instance, population biologists are
exploring the use of geographically variable chemical signa-
tures recorded in larval shell as natural tags to track dispersal
(Zacherl, 2005; Becker et al., 2007). Shell chemistry also can be
used as a proxy for changes in water properties. Biological
monitors of water chemistry, such as bivalves, are especially
important in habitats that are difficult to extensively sample on
relevant time scales, such as deep-sea hydrothermal vents (Hart
and Blusztajn, 1998), or in paleoclimatic studies of salinity or
temperature change on millennial time scales (e.g. Bourgoin
and Risk, 1987).

In this study, we were most concerned with biological factors
that might affect elemental incorporation into shell, specifically
the effect of growth rate and age. Declines in elemental
incorporation into the shell’s crystal latice have been reported to
occur with age for Pb in the abalone Haliotis spp. (Hirao et al.,
1994: Arai et al., 2003) and for Sr and Mg in the bivalve Mvtilus
spp. (Dodd. 1965). In addition to age, growth rate may impact
elemental incorporation into shell. Individuals with rapid
growth rates have been shown to incorporate higher amounts
of elements into carbonate compared to slower-growing
individuals of the same species (Wilbur, 1972). This effect
has been observed in coral skeletons (Marshall and McCulloch,
2002; Mitsuguchi et al.. 2003), fish otoliths (Hamer and
Jenkins, 2007), and adult bivalve shells (Stecher et al., 1996:
Gillikin et al., 2005; Carre et al., 2006). These two biological
factors have the potential to decouple relationships between
ambient water properties and biogenic carbonate composition.
As such, they must be understood and taken into account during
any attempts to reconstruct environmental conditions or habitat
use based on shell chemistry.

Although the studies above have explored the effects of
growth rate and age on elemental incorporation into carbonate,
none have explored the effects of these two biological factors in
the same species and within the same study. The goal of this
study was to understand the relationships between growth rate
and age on shell chemistry in the commercially important
softshell clam, Mya arenaria. First, we examined the effects of
growth rate on shell elemental composition by comparing shells

of clams from the same cohort, reared in the same conditions,
but with different final sizes and therefore different growth
rates. Second, we compared different regions of shell within the
juvenile stage to explore the effects of age on incorporation.
Previous studies have focused on one or two elements for
exploring the relationship between biological factors and
elemental incorporation into shell (e.g. Hirao et al.. 1994;
Gillikin et al., 2005; Carre et al., 2006). Here we look at five
elements found to be useful indicators of environmental
properties in previous studies. In addition, we used controlled
laboratory conditions to distinguish between biological factors
and environmental factors that vary in natural settings, such as
temperature and salinity. Our results have implications for
biogeochemical studies that use bivalve shell elemental com-
position as an indicator of environmental parameters. If age or
growth rate affects incorporation of elements into carbonate,
investigators are obliged to take these factors into consideration
when interpreting environmental variables based on shell
chemistry.

2. Methods
2.1. Clam rearing

Adult M. arenaria with ripe gonads were obtained from
Cotuit, Massachusetts in April 2006 and transported to the
Environmental Systems Laboratory (ESL) at Woods Hole
Oceanographic Institution, where they were placed in mesh
bags and suspended in a 750 L tank with filtered scawater.
Spawning activity commenced approximately 1 h later, and the
tank was left undisturbed to allow spawning to complete and for
fertilization to take place. After 5 h the adult clams were
removed, and the tank contents were filtered through a 35 pm
synthetic nylon mesh sieve to concentrate the larvae into a small
volume (~20 L). We counted a subsample of larvae and
obtained a total estimate of 16 million trochophore larvae.

Trochophore larvae were placed into 12 L high-density
polyethylene tanks (three tanks per experiment) at a density of
approximately 45 larvae mL™'. Clams whose shells were
intended for the growth rate experiment (see explanation of
experiments below) were reared in water with salinity ~22.5%o
at 20 °C. Clams whose shells were intended for the age
experiment were reared in undiluted seawater (~30%o) at 24 °C.
Temperatures and salinities were within the range experienced
by this species in temperate tidal estuaries and were chosen
because the tanks were in use as part of a larger set of
experiments; no comparisons were made between shells of
clams reared in different salinities. Tanks were placed into large
water baths to maintain experimental temperatures. The 20 °C
water bath received a continuous supply of 20 °C water, which
was regulated for the facility’s seawater supply line by large-
volume chillers and heaters. The water bath for 24 °C tanks was
maintained using a 120-volt tank heater regulated by a
thermostat (Process Technology EasyPlug™ Heater with
Digital Controller, 1800 W). Seawater for tanks was obtained
from the in-house supply line, which pumps water from
Vineyard Sound 100 m offshore at a water depth of 4 m. All
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seawater was filtered to remove particles >1 pum before use.
Salinity was reduced to 22.5%o by adding ultrapure H,O to
Vineyard Sound seawater. Tank temperatures and salinities
were measured every other day, and water samples were taken
weekly to determine ambient elemental ratios over the course of
the experiment (see Section 2.2).

Clams were raised for 60 days under treatment conditions,
with complete water changes every 2 days. New tank water was
adjusted to the appropriate temperature and salinity before
clams were added. Larvae metamorphosed into juveniles within
2 weeks of spawning. Larvae and juveniles were fed a mix of
live Isochrysis sp. and concentrated algae (Instant Algae©
Shellfish Diet 1800) one to two times daily based on clearance
rates. All tanks received the same food mixture over the course
of the experiment. After 60 days, clams ranged in size from
0.8 mm to 7.1 mm; they were removed from their tanks and
frozen until cleaned and prepared for analysis. There were >200
surviving clams in each of the six tanks, and we analyzed 25,
27, and 25 individuals from the three growth rate experiment
tanks and 7, 5, and 5 individuals from the three age experiment
tanks. These sample sizes were chosen based on statistical tests
that determined ideal sizes of 25 and 5 for solution and laser
ablation ICP-MS, respectively. We prepared two additional
samples from each tank when possible to account for losses
during the shell cleaning process. If samples remained intact
after cleaning, we kept the resulting larger sample size to
improve statistical power.

2.2. Seawater analysis

We quantified variability in seawater composition by
measuring elemental ratios in each tank for each week of the
experiment (n=9 per tank). Thus it was possible to distinguish
differences in elemental incorporation due to variable seawater
chemistry versus ontogeny or growth rate. Samples were
vacuum filtered using acid-washed plastic funnels with 0.2 um
cellulose nitrate membrane filters. Samples were then trans-
ferred to acid-washed HDPE bottles, acidified to pH ~2 using
ultrapure HNO;, and refrigerated for up to two months before
analysis. Seawater samples were prepared for analysis by
diluting 50-fold with ultrapure 2% HNO;.

Water samples were analyzed using a Thermo-Finnigan
MAT Element2 magnetic sector field inductively coupled
plasma mass spectrometer (ICP-MS). To correct for mass bias
and instrument drift, a 2% HNO; blank solution and CASS-4
Nearshore Seawater Reference Material (National Research
Council Canada Certified Reference Material) were run periodi-
cally. During analyses we monitored **Mg, **Ca, **Mn, **s,
13¥Ba, and *”Pb in low resolution mode. These elements were
chosen because of their previous use as environmental tags
(Kalish, 1989; Campana, 1999; Elsdon and Gillanders, 2003;
Zacherl et al., 2003). Molar ratios of each element to Ca were
calculated using mass bias corrections calculated from calibration
standards. Limits of detection (LOD, 30 of blank) were as
follows: 27 pg g~ ' forMg; 7.7 ug g™ forCa; 5.6 pg g™ for Mn;
59pgg ' forSr;0.42 pgg ' for Ba; and 0.50 ugg ' for Pb. We
tested for differences in seawater chemistry among tanks and over
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time within a tank using a two-way analysis of variance
(ANOVA). Significant differences in seawater composition
were accounted for by using partition coefficients to report shell
elemental incorporation. Partition coefficients, or the ratio
between Element:Ca values in carbonate and ambient water, are
used in biogeochemistry literature to relate seawater elemental
ratios to those of carbonate (Lea and Spero, 1992). We conducted
all analyses for growth rate and age effects using both elemental
ratios and partition coefficients. Both methods yielded the same
results, and we report only elemental ratios hereafter.

2.3. Growth rate experiment

Since all clams were from the same spawning event and were
allowed to grow for 60 days after fertilization, differences in
final shell size were attributed to different growth rates. We
recorded the final length along the longest axis of the shell to the
nearest 0.01 mm of each individual. This length was converted
to growth rate (um day” ') by assuming a linear relationship
between size and age. Typically, the nonlinear Von Bertalanffy
equation is used to describe bivalve growth rate (Brousseau,
1979; Appeldoorn, 1983). This equation, however, is most
applicable to clams much older than 60 days. The portion of the
Von Bertalanffy curve which accounts for clam growth during
the first 60 days is approximately linear (Von Bertalanity,
1938), therefore the assumption of linear growth was appro-
priate for our purposes.

Shells were cleaned thoroughly using techniques developed
for foraminiferan tests (Boyle, 1981) with modifications
specifically for M. arenaria. The most notable modification
was removal of the reductive cleaning step because it dissolved
the proteinaceous structure of the shell so that it could not be
prepared for laser ablation. Clam shells were placed in
individual acid-washed vials using acid-washed plastic forceps,
and sonicated briefly to remove organic matter. Individuals
were rinsed three times with ultrapure water, and then soaked
for 10 min at 80 °C in 1% H,0O, solution buffered in 1 N
ultrapure NaOH to remove organic material. Afterward, shells
were rinsed three times with ultrapure water, transferred to
clean, acid-washed vials, rinsed four times with ultrapure water,
then left to dry overnight in a laminar flow hood. After shells
were dry, they were weighed to the nearest 0.1 mg and dissolved
in 2% ultrapure HNO; to achieve a 20,000-fold dilution of
calcium carbonate for each clam based on weight. All shell
cleaning and preparation was done in a Class 100 clean room.

Shell material was analyzed using ICP-MS with corrections
for mass bias and instrument drift as for seawater analyses using
two solution-based standards, an aragonitic otolith reference
material (Yoshinaga et al., 2000) and the certified reference
material FEBS-1 (Sturgeon et al., 2005). The same elements
noted above were analyzed in low resolution mode and
converted into molar ratios relative to Ca using mass bias
corrections calculated from calibration standards. Limits of
detection were as follows: 0.218 ug g~ ' for Mg; 0.819 pg g~
for Ca; 1.36 pg g~ ' for Mn; 0.632 ug g~ ' for Sr; 0.150 pg g~
for Ba; and 0.122 pug g ' for Pb. Elemental ratios that were
more than two standard deviations from the mean of all sample
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500 pm

Fig. 1. Diagram of juvenile shell showing positions of the laser tracks for the age
experiment. The distances a = 700 pm and b = 360 pm. Lines ablated along
growth rings (dashed) are 1400 pm each.

intensities for a particular element (i.e. the global mean) were
eliminated from further analysis, and the entire shell was
eliminated if three or more elemental ratios met the exclusion
criteria. We removed 17/380 (4.5%) of the elemental ratios for
the age experiment, plus all data from one entire clam shell,
before further analyses. There was no evidence of matrix effects
for any element based on plots of E:Ca versus **Ca intensity.

To determine whether growth rate affected elemental
incorporation into shell, ideally we would pool data from
each replicate tank of the growth rate experiment to increase
statistical power. However because clam sizes differed among
tanks, we first performed regression analysis on growth rate
versus elemental ratios for each tank separately (analysis of
covariance). We then compared slopes among tanks to
determine the validity of pooling using equations from Zar
(1999). In the case where slopes were not significantly different
(i.e. F<F), we calculated the regression slope for all three
tanks combined.

Our method assumes a linear relationship between growth
rate and elemental incorporation into shell. If the relationship is
instead nonlinear, then slope differences among tanks may
result from the different ranges in growth rates represented in
each tank. To test for this possibility, we repeated the regression
analysis described above with the data selected to include only
the range in growth rates observed in all three tanks (0.040-
0.064 mm day™'). If a nonlinear relationship was responsible

for slope differences among tanks, we would expect those
differences to disappear when only selected data are used.

2.4. Age experiment

All clams were of the same age (60 days) when the experiment
was terminated. To determine variability in elemental incorpora-
tion with age, we measured and compared elemental composition
at different growth rings along the shell of an individual clam,
which correspond to different clam ages. Growth rings located
closer to the umbo were laid earlier in the clam’s life, and rings
further from the umbo were laid more recently. We chose
individuals that were of similar size to minimize the effects of
differences due to growth rate. Exploratory statistics showed that
there were no significant correlations between elemental
composition and growth rate for any of the individuals analyzed
for the age experiment, allowing us to interpret the effects of age
without the confounding effects of growth rate.

Shells were cleaned as in the growth rate experiment, and
their lengths were recorded to the nearest 0.01 mm. Individual
shell valves were then mounted on glass slides using Devcon©
Super Glue. We were not able to polish shells to an even plane
for analysis as this would have resulted in excessive sample loss
due to the combined effects of the shells’ curvature and thinness
(<500 pm). Shell material was analyzed using ICP-MS coupled
to a New Wave Research UP213 laser. We ablated material by
tracking the laser along five concentric growth increments of
Jjuvenile clam shells radiating out from the umbo. Each ring
ablated was 1400 um in length and traced one of the growth
increments of the shell. Measurements were taken at the same
distances from the umbo for all shells, with the assumption that
the resulting measurements represented similar ages among
individuals. This assumption was valid since growth rates did
not differ significantly. The first ring measured was 700 um
away from the umbo as measured along the axis of growth, and
the remaining four rings measured were spaced 360 pm from
one another (Fig. 1). The laser was set to 80% output (0.12 m)
per pulse), with a 10 Hz repetition rate, 30 pm spot size, and a
scan speed of 10 pm s~ "

Vaporized material from the ablation was transported via a
helium gas stream to the dual-inlet quartz spray chamber where
it was mixed with 1% HNO; aerosol from a self-aspirating PFA
20 uL min~ " nebulizer. The analyte was then transported to the

Table 1
Mean temperature, salinity, and dissolved ambient seawater elemental ratios to calcium (+SE) for tanks from both experiments
Temp Salinity Mg:Ca Mn:Ca Sr:.Ca Ba:Ca Pb:Ca
L& %0 (mol mol™ ") (umol mol™") (mmol mol™ ") (umol mol™ ') (nmol mol™ ")

Growth rate experiment

Tank 1 19.440.04 22.4+0.07 5.09+0.04
Tank 2 19.4+0.04 2244005 5.09+0.03
Tank 3 19.54+0.04 22.3+0.05 5.05+0.02

Age experiment

Tank | 23.9+0.05 29.5+0.02 5.03+0.01
Tank 2 23.8+0.05 29.740.06 5.03+0.02
Tank 3 23.9+0.05 29.540.25 5.01+0.03

18.6+4.94 8.56+0.03 149+1.38 15.3+4.12
13/64£355 8.64+0.03 15.1+1.41 9.37+2.27
14.7+3.98 8.57+0.03 15.1+1.19 9.32+1.53
12.8+3.26 8.58+0.03 14.9+0.68 11.042.04
11.6+3.66 8.61+0.03 14.540.17 831+1.91

12.6+2.65 8.61+0.04 15.6+1.03 9454226




C.A. Strasser et al. / Journal of Experimental Marine Biology and Ecology 355 (2008) 153-163

157
Table 2
Results of ANOVA testing for differences of seawater elemental ratios due to week of experiment or tank
Source DF  Mg:Ca Mn:Ca Sr:Ca Ba:Ca Pb:Ca

MS F P MS F P MS P P MS F P MS F P

Growth rate experiment
Week 8 0017 9.441 0.000 479.173 18.409 0.000 0.012 3.303 0.020 17.085 1405 0267 186.687 6.899 0.001
Tank 2 0003 1769 0.202 2.699 0.104 0902 0.011 3.101 0.073 0.211  0.017 0983 61.525 2286 0.134
Error 16 0.002 26.029 0.004 12.164 26.917
Age experiment
Week 8 0.006 1.884 0.134 183.184 5.282  0.002 0.011 1.625  0.194 4.193  0.878  0.555 82.594  4.936  0.003
Tank 2 0001 0485 0.624 3.680 0.106  0.900 0.001 0.174  0.842 2713 0.568 0578 16.065  0.960  0.404
Error 16 0.003 34.681 0.007 4.778 16.732

Bold F statistics and p values are significant.

ICP-MS via an argon carrier gas. We corrected for mass bias and
instrument drift using standards as in the growth rate
experiment. Elements were measured in medium resolution
mode, and molar ratios of each element to **Ca were calculated
using mass bias corrections as above. LOD were as follows:
0.153 pg g~ ' for Mg; 0.581 ng g~ ' for Ca; 0.836 pg g ' for
Mn; 1.04 pg g~ ' for Sr; 0.095 pg g~ ' for Ba; and 0.169 pg g~
for Pb. Elemental ratios that were more than two standard
deviations from the global mean were eliminated from further
analysis, and results for an entire growth ring were removed if
three or more of the elemental ratios met the exclusion criteria.
We removed 14/450 (3.1%) of the elemental ratios for the age
experiment, plus all data from two entire clam shells, before
analyses. There was no evidence of matrix effects for any
element based on plots of E/Ca versus **Ca intensity. To test for
differences in elemental incorporation due to age, we compared
shell composition between growth rings within a clam using
multivariate repeated measures ANOVA (Winer, 1971; Barci-
kowski and Robey, 1984). Data were log-transformed to

achieve a normal distribution; log-transformed data were used
for the plots and for all regression calculations.

3. Results
3.1. Seawater analyses

Although seawater for all tanks originated from the same
source, ambient elemental composition varied over time for
tanks in both experiments (Tables 1 and 2). Temporal variability
in seawater chemistry for the growth rate experiment was not
expected to affect our analyses since we compared only the bulk
shell composition with the time-averaged water composition.
For the age experiment, however, temporal variability might
affect our analyses since we measured areas of shell that
correspond to specific time periods. Results from ANOVA and
plots of tank elemental ratios over the course of the age
experiment showed that tanks differed over time for Mn:Ca and
Pb:Ca (Table 2, Fig. 2). Elemental ratios for weeks 1-3 were
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higher than for weeks 6-9 for Mn, and week 3 had higher Pb:Ca
than other weeks (p<0.01, Tukey—Kramer pairwise tests).

3.2. Growth rate effects

We used solution-based ICP-MS analysis of juvenile clam
shells from three replicate tanks (n=25, 27, 25) to test the
effects of growth rate on elemental incorporation into shell
(Fig. 3). Growth rates ranged from 0.014 to 0.119 mm day ™'
(0.050+0.023 mm day b mean+SD). To determine the rela-
tionship between shell elemental incorporation and growth rate,
we plotted elemental ratios versus growth rates for each tank
separately (Fig. 3). Values of R ranged from 0.005 to 0.634,
with 7 of the 15 regression slopes significantly differing from
zero (p<0.05, Table 3). There was a general trend of decreasing
elemental ratios with increasing growth rate, with the exception
of Sr:Ca and Pb:Ca from tank 3 (Fig. 3).

Slopes significantly differed among replicate tanks for two of
the five elemental ratios (»<0.001, Table 4). For Sr:Ca, the
slope of tank 3 differed from the other two, and for Pb:Ca the
slopes of tanks 2 and 3 differed. As a result of the differences
among tanks for these two elements, we were not able to draw
conclusions from the regression statistics for combined tanks. For
the remaining three elemental ratios (Mg:Ca, Mn:Ca, Ba:Ca),
slopes did not differ significantly among tanks, so we calculated
the common slope for each element with equation 18.30 in Zar
(1999) using data from all three tanks (Table 4).

We performed the same regression analyses on selected data
to test whether significant differences in slopes were due to a
nonlinear relationship between growth rate and elemental
incorporation into shell. However data truncation resulted in
the elimination of ~50% of data points (n=10, 9, 9), and as a
consequence we lost statistical power and were not able to
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detect significant relationships for any tanks or elements.
We could not, therefore, use the selected data to pool values
from replicate tanks, and the issue of nonlinearity remains
unresolved.

3.3. Age effects
We analyzed shell along five growth rings of juvenile clams

from three replicate tanks (n=7, 5, 5) to determine whether
elemental incorporation varied as the individual aged (Fig. 4).

Table 3
Results of regression analysis for growth rate experiment for individual tanks
Source B B R F r
Mg:Ca
Tank 1 -6.537 -0.214 0.089 2.057 0.166
Tank 2 -5.696 -0.431 0.434 18.374 0.0003
Tank 3 -6.896 —0.150 0.070 1.662 0.211
Mn:Ca
Tank | —11.311] 0.084 0.005 0.103 0.751
Tank 2 -10.510 =0.079 0.004 0.106 0.766
Tank 3 10.124 —0.338 0.109 2.682 0.116
Sr:Ca
Tank 1 -6.098 -0.031 0.120 3.010 0.097
Tank 2 ~5.775 —0.108 0.518 22.558 0.0001
Tank 3 -6.410 0.0583 0.199 5.483 0.029
Ba:Ca
Tank 1 —12.245 -0.303 0.243 7.051 0.014
Tank 2 -11.629 —0.469 0.606 33.861 0.000
Tank 3 -12.710 =0255 0.566 27.619 0.000
Pb:Ca
Tank 1 -17.262 -0.602 0.144 3.363 0.082
Tank 2 —13.570 —1.608 0.634 41.490 0.000
Tank 3 —21.435 0.387 0.032 0.737 0.400

The coefficients /4 and fi) correspond to the regression equation, where v =f,+ f3,x.
Bold F statistics and p values are significant.
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Table 4

Results of statistic testing for differences among regression functions of replicate
tanks

Elemental ratio 5 P B

Mg:Ca 1.320 0.273 ~0.271
Mn:Ca 0.745 0.465 0.078
Sr:Ca 12.936 <0.0005 -0.032
Ba:Ca 1.439 0.244 -0.347
Pb:Ca 8.010 <0.001 —-0.692

Bold F statistics are significant and indicate that slopes are different among
tanks, making it invalid to pool data.

Repeated measures multivariate ANOVA indicated that there
were significant differences in elemental ratios among growth
rings for Mn:Ca, Sr:Ca and Ba:Ca (Table 5). In all three cases,
the first growth ring (0.70 mm away from the umbo) differed
from the remaining four growth rings for individuals in one or
more replicate tanks (Tukey—Kramer pairwise comparisons).
There were also significant differences among measurements of
clam shells from the same tank for Mn:Ca, Ba:Ca, and Pb:Ca.
Finally, we detected a tank effect for one elemental ratio; mean
Ba:Ca of shells in tank 1 was higher than in tanks 2 or 3.
Although clam shells of similar size were chosen for the age
experiment, total lengths ranged from 3.36 to 6.45 mm (5.32+
0.77 mm, mean=+SD), as measured along the shell approxi-
mately perpendicular to the axis of growth. The difference in
size after 60 days resulted in a range of growth rates from 0.056
t0 0.107 mm day” ' (0.089+0.013 mm day” ', mean+SD). We
tested for a correlation between growth rate and elemental
incorporation for each clam (averaged over growth rings)
analyzed in the age experiment and found none (R’ ranged
from 0.0007 to 0.124; p values ranged from 0.15 to 0.91). This
lack of correlation suggests that the range of growth rates for clam

159

shells was sufficiently small so as not to impact elemental
incorporation.

4. Discussion
4.1. Growth rate effects

Previous studies have suggested that the rate of calcium
carbonate crystal formation, which is closely tied to growth rate,
influences elemental incorporation in bivalves (Stecher et al.,
1996; Gillikin et al., 2005; Carre et al., 2006). Intuitively, a
higher growth rate might be expected to result in more crystal
defects during shell formation: increased active transport of Ca®*
molecules into the extrapallial fluid would lead to higher rates of
inclusion of non-Ca®" ions that are of similar size and charge
(Wilbur and Saleuddin, 1983). Indeed, higher growth rates have
been reported as corresponding to increased inclusion of Mg, Mn,
and Ba in fish otoliths (Bath Martin and Thorrold, 2005; Hamer
and Jenkins, 2007), and bivalve shells (Stecher et al., 1996; Carre
etal., 2006). However in our study, we found that elemental ratios
of Mg:Ca, Mn:Ca, and Ba:Ca were all negatively correlated to
growth rate in M. arenaria. One explanation for our disparate
results may be that the organism’s physiological ability to
discriminate between Ca®" and other ions improves with size.
Clams with higher growth rates would have reached the threshold
size for improved discrimination for Ca®* sooner than those with
slower growth rates. As a consequence, proportionally more shell
would have been laid with lower elemental ratios to calcium over
our two-month study, resulting in the negative correlation that we
observed. Although such an age effect has not been observed
in M. arenaria, previous studies of molluscs have reported
decreased elemental incorporation with size (Dodd, 1965; Hirao
etal., 1994; Arai et al,, 2003).
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Table 5
Results of multivariate repeated measures ANOVA testing for differences between growth rings in three replicate tanks
Mg:Ca Mn:Ca Sr:.Ca Ba:Ca Pb:Ca

Univariate DF  MS F P MS F P MS F p MS F p MS F p
Among tanks 2 033 093 042 001 068 053 007 192 019 911 25.29  0.0001 10.1 236 0.13
Within tanks

Among rings 2 022 08 049 0.01 25 0.02 005 265 009 072 4.44  0.01 502 348 0.03

Ring x Tank 8 0.14 0.53 0.79 0.01 1.33 0.25 0.03 1.80 0.16 0.25 0.53 0.21 0.83 0.80 0.74
Multivariate DF A F p A F P A p A F p A F p
Among rings 4 0.70 1.06 0.42 0.38 4.05 0.03 0.27 5.41 0.02 0.31 4.44 0.04 0.52 2.56 0.10
Ring x Tank 8 0.74 0.40 091 0.49 1.07 0.42 0.24 2.06 0.10 0.47 0.92 0.52 0.49 1.18 0.35

Bold F statistics and p values are significant.

Although every attempt was made to assure environmental
conditions were consistent across tanks, we found a wide range
of growth rates for clams among the three replicate tanks. Our
analyses indicated no significant differences in water chemistry,
temperature, or salinity (Tables | and 2), however there may be
additional factors we did not account for that are the source of
the variability in growth rates. For instance, different biological
conditions were present in each of the tanks owing to a variety
of processes potentially occurring, such as algal growth and
microbial activity. Although we sampled the seawater weekly to
quantify the changes in its chemistry over time, we did not
attempt to identify or quantify biological activity. This biolo-
gical activity might in turn affect clam growth and elemental
incorporation into shell. For example, increases in food supply
due to algal growth would result in faster growth rates, or the
presence of additional oxygen-consuming organisms might
result in decreased oxygen supply to the clams and therefore
reduced metabolic and growth rates.

The most notable tank effect was seen in the relationships
between growth rate and Sr:Ca and Pb:Ca; we found positive or
negative correlations depending on tank. Our mixed results are
particularly interesting for Sr:Ca since previously reported
relationships indicated positive correlations in bivalves (Stecher
etal., 1996; Gillikin et al., 2005) and corals (Weber, 1973). Sr:Ca
correlations to growth rate from otoliths are mixed (Kalish, 1989;
Araietal., 1996; Bath et al., 2000; Martin et al., 2004) but studies
generally report negative correlations between Sr:Ca and growth
rate (Sadovy and Severin, 1992, 1994; Hamer and Jenkins, 2007;
Lin et al., 2007). Since Sr ions are of the same charge as Ca ions
and only slightly larger, they are substituted directly into the
aragonite crystal lattice (Speer, 1983). As a result, Sr:Ca ratios
should decrease with calcification rate (i.e. growth rate) since
higher Ca concentrations in the extrapallial fluid would dilute Sr
ions (Sinclair, 2005). Consequently we expected to find negative
correlations for Sr:Ca and growth rate in all of the replicate tanks,
and the mixed results suggest that other factors are influencing Sr
incorporation into bivalve shell.

We cannot attribute our results to variable Sr:Ca available in
seawater since we found no significant differences in Sr:Ca
among tanks (Table 2). The more likely cause is the different
ranges in growth rate depending on tank. Tank 3 growth rates
were higher on average than those of tanks | and 2, and tank 3 is
the only replicate tank with clams having growth rates higher than
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75 umday . Indeed, shells from tank 3 had Sr:Ca and Pb:Ca that
negatively correlated with growth rate, while shells from the other
two tanks positively correlated. There may be different
physiological processes operating as the clam grows larger,
causing a shift in the correlation between growth rate and
elemental ratios with size. For instance, Carre et al. (2006)
found that curved shell sections in bivalves had higher Sr:Ca
than flat sections. This occurs because there is more organic
matrix in the curved sections of shell than in flat sections, and
therefore also more binding sites for Ca®* and its competing
ions (Rosenberg and Hughes, 1991). As the clam grows,
proportionally more shell is composed of flat sections, and
whole-shell analysis of a larger individual would have lower Sr:Ca
and Pb:Ca than a smaller individual.

In addition to a wide range of growth rates for clams among
tanks, we found a wide range within tanks as well. Explanations
for the observed range within tanks cannot be attributed to
biological activity or chemical differences since these factors
would affect all of the individuals of a particular tank. The
source of variability within tanks is therefore likely to be due to
physiology at the individual clam level. Metabolic rate and
growth rate are closely linked, and differences in metabolic rate
among clams might result in different growth rates (Bayne and
Newell, 1983: Rosenberg and Hughes, 1991). Variable meta-
bolic rates, and therefore growth rates, may originate from
genetic variability. If the genetic types of larvae produced in our
laboratory spawning varied widely in their metabolic rates, then
we might expect to see differences among individuals within a
given tank.

4.2. Age effects

Based on significant differences among growth rings within
individual clams, age significantly influenced the incorporation
of Mn, Srand Ba into M. arenaria juvenile shell. This result is
most likely attributable to increased variability in elemental
ratios with decreasing distance from the umbo. Visual
inspection of data plots indicates that variability in elemental
ratios is highest near the umbo (Fig. 4). Indeed, statistical
analyses confirm that all significant differences among growth
rings disappear when the first growth ring measured is removed
from analyses. This result may be an artifact of the laser ablation
method used. Although laser parameters are consistent over all
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measurements, the time period that ablated shell material
represents is not known. For instance, if a clam produces more
material per day at week 4 compared to previous weeks, then
measurements taken before week 4 will represent a larger time
period sampled, and therefore may result in larger variability in
the elemental ratios (see Elsdon and Gillanders, 2003 for a
complete discussion of problems associated with the analysis of
elements in calcified structures). This hypothesis contradicts our
assumption of linear growth over the course of our experiment,
however the data are not sufficiently conclusive to render our
assumption false. Another explanation for increased variability
in the first growth ring measured might be that seawater varied
more at the beginning of the experiment (Fig. 2). However this
hypothesis is not testable since we were not able to match shell
growth rings to particular experimental weeks, and therefore to
specific water chemistry. This is because growth patterns in
molluscan shell are a result of complex interactions between
physiology and environment, especially during early shell
formation, preventing accurate estimates of the shell formation
timeline in daily or weekly increments (see Lutz and Rhodes,
1980 for a complete discussion). Furthermore, based on
observations over the course of the experiment, the first growth
ring measured was likely accreted around week four, at which
point seawater chemistry variability was in decline.

Our results for Mn:Ca are at least in part attributable to
changes in seawater Mn:Ca over time. Mn:Ca significantly
differed in tank seawater over the course of the experiment
(Table 2, Fig. 2). There are two possible explanations for this
pattern. First, organic ligands may be in higher quantities later in
the experiment due to excretion by clams or biological activity
relating to food input; these ligands may bond to Mn and remove
it from solution (Libes, 1992). We would detect a drop in the Mn:
Ca ratios in seawater over time as a result, even though the input
water Mn:Ca is unchanged. Another explanation is that some
event occurred between seawater samples taken at weeks 4 and 5
that caused a decrease in Mn:Ca in the seawater. The unknown
event might have been natural, affecting the source of seawater
to the supply line, or it may have occurred within the supply
infrastructure (e.g. the pipes were flushed to remove a blockage,
causing seawater chemistry to change). Clams grew to~ 1 mm in
length (as measured perpendicular to the axis of growth) until
around week 4, which corresponds to approximately 0.8 mm in
width along the axis of growth. It is therefore likely that only the
first growth ring measured, located 0.70 mm from the umbo,
would have been affected by the elevated Mn:Ca ratios seen in
the seawater. Indeed, the highest Mn:Ca level for seawater was
during week 3 in tank 1, where clam shells also had the highest
two Mn:Ca ratios measured, for growth rings located 0.70 and
1.06 mm away from the umbo.

4.3. Conclusions and future directions

In this study, we found that both growth rate and age
significantly affect elemental incorporation into the shell of
M. arenaria. Growth rate significantly correlated negatively
with elemental ratios for 7 of the 15 analyses, which was
surprising since previously published studies tended to report
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positive correlations. There were significant tank effects in Sr:Ca
and Pb:Ca correlations to growth rate, potentially due to disparate
biological activity occurring in the three replicate tanks. We found
that growth rates varied widely within tanks, indicating that there
is a physiological factor that we did not control for in our ex-
periment, potentially originating at the genetic level. Our analysis
of the effects of age on elemental incorporation into M. arenaria
shell revealed higher variability closer to the umbo than further
away, which caused significant differences with age for clams.
When the first growth ring measured was removed from analyses,
these significant differences disappeared. We hypothesize that the
age effect is primarily a result of the shell’s more pronounced
curvature near the umbo, which affects physiological processes
such as uptake of Ca®" relative to other ions of similar size and
charge.

The effects of size on elemental incorporation have the
potential to bias data interpretation in any biogeochemical
study that uses bivalves as indicators of environment. Juvenile
bivalves are ideal candidates for environmental indicators: pre-
dictable spawning behavior allows one to be sure what season
their shell is laid, and they are more susceptible to some envi-
ronmental contaminants, making them an early indicator of
problems that might not yet affect adults. However studies that
use juveniles in this capacity must be careful to take into account
the variability in shell composition with age and growth rate.
Variability in shell chemistry could be interpreted as indicating
shifting environmental conditions when in fact composition may
reflect individual or ontogenetic variability in physiological
processes. As our data show, clams reared in identical environ-
ments may incorporate different elemental signatures in their
shells depending on their age or growth rate. Care must be taken to
understand the potentially confounding effects of physiology for
this and other bivalve species before making inferences about the
environment based on shell chemistry.

This study was the first to explicitly examine the effects of
variable growth rates and age in bivalves on incorporation of a
suite of elements into shell, and in the same species during the
same study. Although the variability we found is not cause for
dismissing bivalves as useful environmental indicators, further
studies should focus on the cause of variable incorporation within
a cohort, especially with relation to the variables we were not able
to control for in this set of experiments. The bioavailable levels of
elements in the seawater should be measured to ascertain whether
the source of variability in ratios is due to water chemistry or
physiology. The sizes of clams should be tracked and recorded
over the entire experiment to assess individual growth rates rather
than averages, and to identify exactly when individual growth
rings are accreted so they can be matched to the correct water
sample taken. Parental analysis would be useful to establish
genetic contributions of individuals and to determine if certain
genetic combinations lead to higher or lower growth rates,
explaining the variability that we saw within tanks.
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Chapter 4

Temperature and salinity effects on
elemental uptake in the shells of
larval and juvenile softshell clams

(Mya arenaria)

4.1 Introduction

Most marine benthic invertebrate life cycles include a planktonic larval phase that
facilitates dispersal among adult populations (Thorson, 1950). Connectivity, or the
degree to which geographically separated populations exchange individuals, is an im-
portant factor in the spatial population dynamics of many marine organisms (Moila-
nen and Nieminen, 2002). Understanding connectivity in marine benthic populations
is important because of the role spatial dynamics may play in new fisheries man-
agement approaches, including the design and implementation of marine protected
areas (Palumbi, 2003; Shanks et al., 2003). However, studying larval dispersal (and
therefore its role in connectivity) is challenging due to small larval sizes, high dilu-
tion rates, and high larval mortality rates (Thorson, 1950, 1966). In recent years,

the use of artificial and natural tags to track marine larvae has been explored (e.g.




Levin, 1990; Thorrold et al., 2002). One type of natural tag that may be useful for
identifying natal origins is the elemental signature recorded in biogenic carbonate.
This technique relies on the observation that some elements are incorporated into
the calcium carbonate matrix in amounts related to the dissolved concentrations or
physical properties of the ambient water (e.g. Bath et al., 2000; Vander Putten et al.,
2000; Elsdon and Gillanders, 2003). Provided water chemistry or temperature is sig-
nificantly different between natal habitats, such variation can serve as a natural tag,
or signature, of the geographic origin of organisms. The use of geochemical signatures
in fish otoliths as natural tags for population studies is well established (Campana
and Thorrold, 2001). Recent efforts have expanded the use of elemental tags to inver-
tebrates including decapods (DiBacco and Levin, 2000), gastropods (Zacherl et al.,
2003a), bivalves (Becker et al., 2005, 2007), and cephalopods (Arkhipkin et al., 2004;
Zumholz et al., 2007).

Although it is well established that biogenic carbonate composition reflects the
elemental concentrations of waters where it was formed, additional factors are known
to influence elemental uptake (Dodd, 1967; Wilbur, 1972). Environmental conditions,
such as temperature, salinity, oxygen levels, and nutrient load, may alter the direct
relationship between environmental and carbonate composition. Also, physiological
and biochemical factors may affect the signature, including differences in uptake be-
tween species or between stages within a species. These factors may potentially act in
combination, thereby complicating a simple relationship between ambient elemental
concentration and carbonate composition. Understanding the role each factor plays
in determining carbonate chemistry is critical to the appropriate design and inter-
pretation of studies that use natural elemental signatures as a proxy for geographic

origins or to reconstruct environmental conditions.

Our ultimate goal is to develop elemental signatures in shell as tags of natal habitat
for the softshell clam, Mya arenaria, a commercially important bivalve commonly
found in New England estuaries. In this study, we measured larval and juvenile
shell elemental composition of M. arenaria reared in the laboratory under controlled

temperature and salinity to understand their effects on elemental uptake and therefore
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allow us to interpret variability in elemental signatures. Temperature and salinity are
likely to vary on small time scales in estuaries (Bowden, 1980), and are known to

influence elemental uptake into biogenic carbonate.

First, we determined how the relationship between elemental composition of sea-
water and larval shell varied with temperature and salinity. Many studies have de-
tailed the various factors controlling elemental compositions of fish otoliths (e.g. Hoff
and Fuiman, 1995; Bath et al., 2000; Arai et al., 2003; Martin et al., 2004) and
adult mollusc shells (e.g. Rucker and Valentine, 1961; Dodd, 1965; Lerman, 1965;
Dodd and Crisp, 1982; Pitts and Wallace, 1994; Lazareth et al., 2003; Zacherl et al.,
2003b). For mollusc larvae, however, shell uptake has been examined only in one
gastropod (Zacherl et al., 2003b) and in no bivalves. We explored the relationships
between temperature and salinity and uptake of Mg, Mn, Sr, Ba, and Pb based on

the demonstrated utility of these elements in previous uptake experiments.

Second, we determined how the relationship between elemental composition of
seawater and juvenile shell varied with temperature and salinity, and compared the
uptake into shells of larval and juvenile clams to look for predictable correlations.
The physiological aspects of shell formation in larval and juvenile bivalves are likely
to vary due to morphological differences in these two life stages. Although the mantle
(or the precursor to the mantle, the shell gland) is responsible for shell production in
both larval and post-larval clams, there are drastic changes in the tissue during devel-
opment that might result in differences in shell composition. The differences between
larval and juvenile shell composition may offer insight into the physiological factors
potentially affecting elemental incorporation into shell. If temperature or salinity
affects incorporation of elements into carbonate, investigators may need to consider

these factors when interpreting environmental variables based on shell chemistry.
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4.2 Methods

4.2.1 Clam rearing

Adult Mya arenaria were obtained from Cotuit, Massachusetts in April 2006 and
were transported to the Environmental Systems Laboratory (ESL) at Woods Hole
Oceanographic Institution, where they were placed in mesh bags and suspended in
a 750 L tank with filtered seawater. Spawning activity commenced approximately
one hour later, and the tank was left undisturbed to allow spawning to finish and
for fertilization to take place. After five hours the adult clams were removed, and
the tank contents were filtered through a 35 um nylon mesh sieve to concentrate the
larvae into a small volume (20 L). We subsampled and counted larvae to obtain a
total estimate of 16 million trochophore larvae. Although polyspermy was evident
due to the high ratio of sperm to eggs, most larvae were well formed and regular in
appearance and behavior.

Trochophore larvae were placed into one of 24 12 L high-density polyethylene
(HDPE) tanks at a density of 45 larvae ml~!. The tanks were divided among six
treatments representing all combinations of two salinities (22.5, 30 PSU; hereafter
low and high) and three temperatures (15, 20, and 24 °C), with four replicate tanks
per treatment combination. These temperatures and salinities represent the range
of conditions experienced by this species during the summer months in its natural
estuarine habitats. Treatment temperatures were maintained by placing tanks in large
water baths. Water baths for the 15 and 20°C treatments received a continuous supply
of 15 and 20°C water, respectively, regulated for the entire seawater supply line by
chillers and heaters. The water bath for 24°C treatment tanks was maintained using
a 120-volt tank heater regulated by a thermostat (Process Technology EasyPlug?™
Heater with Digital Controller, 1800W). Seawater for all tanks was obtained from
the in-house seawater supply line, which pumps water from Vineyard Sound 100
m offshore of ESL at a water depth of 4 m. All seawater was filtered to remove
particles > 1 um before use. Salinity was reduced for the low-salinity treatments

by adding ultrapure HoO (Milli-Q) to Vineyard Sound seawater. Tank temperatures
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and salinities were measured every other day, and water samples were taken weekly
to determine ambient elemental ratios over the course of the experiment.
Subsamples of larvae were removed from each tank after 36 h for larval shell
analysis. The remaining individuals were raised for 60 days under treatment condi-
tions, with complete water changes every two days. Temperature and conductivity
measurements were taken daily for each tank. New tank water was adjusted to the
appropriate temperature and salinity before larvae were added. For the first 10 days
the larvae were allowed to swim freely in tanks. Water changes consisted of filtering
out larvae through a series of mesh sieves, then returning them to the cleaned tanks.
Most larvae were large, negatively buoyant pediveligers in the 20°C and 24°C tanks
at 8 d and in the 15°C tanks at 10 d. After 10 days, larvae were retained within
mesh sieves suspended in the tank, which restricted settlement to sieve surfaces and
facilitated tank cleaning. Larvae metamorphosed into juveniles within two weeks of
spawning. Larvae and juveniles were fed a mix of live Isochrysis sp. and concentrated
algae (Instant Algae(c) Shellfish Diet 1800) one to two times daily based on clearance
rates. All treatments and tanks received the same food mixture over the course of
the experiment. After 60 days, clams ranged in size from 0.5 mm to 10 mm; they
were removed from their tanks and frozen until the shells were cleaned and prepared

for analysis.

4.2.2 Sample preparation

Seawater preparation

We monitored the elemental composition of ambient seawater in the tanks during the
experiment. Water samples from each tank were collected weekly over the course
of the experiment. The samples were vacuum filtered using acid-washed plastic
Millipore(© funnels with 0.2 pm cellulose nitrate membrane filters. Samples were
then transferred to acid-washed HDPE bottles, acidified to pH 2 using ultrapure
HNO; (Seastar Chemicals Inc.), and refrigerated for up to two months. Seawater

samples were prepared for elemental analysis by diluting 50-fold with ultrapure 2%
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HNOs3.

Larval shell preparation

Subsamples of roughly 1000 individual larvae were removed from each tank 36 hours
after spawning. This allowed for the larval prodissoconch 1 (PI) shell to set under
treatment conditions, with minimal addition of post-PI shell material. Individual
larvae were pooled into one vial per tank. Shells were soaked in 1% NaClO (bleach)
for 6 hours to remove organic material. The cleaning solution was removed and
shells were transferred to clean 0.5 ml centrifuge tubes. Tubes were centrifuged to
concentrate larval shells, and then were rinsed three times with ultrapure HoO (Milli-
Q). Shells were soaked in 200 ul of 1% ultrapure HoOy (ULTREX* II Ultrapure
through VWR International) buffered to 1N in ultrapure NaOH (EMD Chemicals
through VWR International) for five minutes, then rinsed three times with ultrapure
H,O, transferred to clean acid-washed 1 ml vials, and then rinsed four more times.
Vials were transferred to a laminar flow hood to dry overnight. After all fluid had

evaporated, 1 ml of 2% HNO3; was added to each vial to dissolve the shells for solution-

based ICP-MS analyses.

Juvenile shell preparation

Juvenile clams were placed in individual acid-washed vials using acid-washed plastic
forceps, and sonicated briefly to remove tissue and debris. Individuals were rinsed
three times with ultrapure HoO, and then soaked for 10 minutes at 80°C in 1% H50,
solution buffered in 1N ultrapure NaOH to remove organic material. Afterward, shells
were rinsed three times with ultrapure H,O, transferred to clean, acid-washed vials,
rinsed four times with ultrapure H,O, then left to dry overnight under a laminar flow
hood. After the shells were dry, they were dissolved for solution-based analyses. The
retained larval shell was not removed prior to dissolution of the juvenile shell since
any contribution to elemental signal by the larval shell (< 0.05 pg) was assumed to
be negligible compared to the more massive juvenile material (mean weight = 2.5

mg). We measured elemental ratios of seawater from experimental tanks to calcu-
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late discrimination coefficients for both larval and juvenile Mya arenaria (Morse and
Bender, 1990). The discrimination coefficient D describes the relationship between

the elemental composition of carbonate and of its water of formation:

(Element:Ca) S G—

(Element:Ca) coppntor

where D < 1 indicates discrimination against inclusion of the element, D = 1 suggests

there is no discrimination, and D > 1 suggests elemental enrichment.

ICP-MS analyses

Shell material and water samples were analyzed using a Thermo-Finnigan MAT Ele-
ment2 magnetic sector field inductively coupled plasma mass spectrometer (ICP-MS).
To correct for mass bias and instrument drift, standards were run periodically during
the analyses. For shell analyses, the solution-based standards included an aragonitic
otolith reference material (Yoshinaga et al., 2000) and the certified reference material
(CRM) FEBS-1 (Sturgeon et al., 2005). For seawater analyses, CASS-4 Nearshore
Seawater Reference Material was used as the standard (National Research Council
Canada CRM).

During analyses we monitored Mg, *>Mn, #Sr, '“Cd, **Ba, and **Pb in low
resolution mode. These elements were chosen because of their previous use in suc-
cessful elemental tagging studies (Kalish, 1989; Elsdon and Gillanders, 2002; Zacherl
et al., 2003b; Martin and Thorrold, 2005). Molar ratios of each element to Ca (here-
after E:Ca) were calculated using mass bias corrections calculated from calibration
standards. Limits of detection (LOD) were calculated as the ratio of three standard
deviations of the blank intensity to the average blank-subtracted sample intensity.
For seawater and solution-based analyses respectively, sample intensities were as fol-
lows: > 10000 and > 1200 times the LOD for *Mg; > 700 and > 10000x LOD for
4#Ca; > 16 and > 57x LOD for *Mn; > 5500 and > 1100x LOD for #8Sr; > 1600
and > 130x LOD for *®*Ba; and > 75 and > 15x LOD for 2°°Pb. The intensities of

14Cd were not routinely above detection limits and this element was excluded from
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the remaining analyses. Elemental ratios that were more than two standard devia-
tions from the global mean were eliminated from further analysis as the anomalous
values likely arose from sample contamination. This resulted in removal of 6.5% (66
of 1010) of all shell measurements and 7.4% (74 of 1001) of all seawater measure-
ments. Measured precision (% relative standard deviation) of E:Ca during analysis of
juvenile shells (n = 32), larval shells (n = 10), and seawater (n = 52) respectively was
2.4%, 4.8%, and 7.9% for Mg:Ca; 8.6%, 11.9%, and 7.1% for Mn:Ca; 0.31%, 0.12%,
and 0.47% for Sr:Ca; 1.8%, 1.4%, and 2.1% for Ba:Ca; and 2.5%, 7.1%, and 3.5% for
Pb:Ca.

4.2.3 Statistical analyses

Although seawater for all tanks was obtained from the same supply line, it was impor-
tant to quantify any differences among tanks as these differences may have influenced
patterns in shell uptake. We used two-way analysis of variance (ANOVA) to test
for the effects of temperature and salinity on seawater E:Ca, with individual tank
analyses for each week as the unit of measurement (n = 216). Both temperature and
salinity were treated as fixed variables.

For each shell measurement, E:Ca was translated into a discrimination coefficient.
Larval shell discrimination coefficients were calculated by dividing E:Ca in the shell by
E:Ca for corresponding tank seawater sampled on day 2 of the experiment. Juvenile
shell discrimination coefficients were calculated by dividing the shell E:Ca by the
corresponding mean tank seawater E:Ca (averaged from samples taken over the nine
weeks of the experiment). We used discrimination coefficients rather than elemental
ratios of shell for statistical analyses because the discrimination coefficient accounts
for possible differences in water chemistry among tanks. We used a three-way ANOVA
to explore the effects of temperature, salinity and stage (i.e. larval versus juvenile
shell) on uptake. There were significant stage effects on discrimination coefficients
(p < 0.01 for Mg; p < 0.0001 for Mn, Sr, Ba, Pb; data not shown) and consequently
we chose to analyze larval and juvenile shells separately using two-way ANOVAs to

test for temperature and salinity effects. Finally, we tested for differences between
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Figure 4.1: Seawater elemental ratios (mean of replicate tanks +SE) for treatments
over experimental week for (a)Mg:Ca, (b)Mn:Ca, (¢)Sr:Ca, (d)Ba:Ca, and (e)Pb:Ca.
Gray, dotted, and black lines are 15°C, 20°C, and 24°C treatments respectively. Open
symbols are low-salinity treatments, and closed symbols are high-salinity treatments.

larval and juvenile uptake using simple linear correlation analysis of discrimination

coeflicients.

4.3 Results

4.3.1 Rearing conditions

|
Although we made efforts to optimize conditions for survival and growth, survivor- 1
ship was highly variable between tanks. Some tanks had hundreds of surviving clams |
after the 60 day interval of the experiment, while two tanks had no survivors (Table
4.1). We therefore analyzed juvenile clam shells from 22 of 24 tanks, with at least
three replicate tanks for each treatment. Elemental ratios were obtained from a total |
of 23 larval shell samples (from 23 tanks) and 174 juvenile shells (from 22 tanks) to

examine temperature, salinity, and stage effects on uptake. Seawater elemental com-

position varied among treatments and tanks (Fig. 4.1). A two-way ANOVA showed
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that elemental ratios significantly varied with salinity for Mg and Mn (low salinity >




Tank N Temp Sal Mg:Ca Mn:Ca Sr:Ca Ba:Ca Pb:Ca

—

32 15.4(0.10) 22.6(0.06) 5.00(0.03) 30.3(4.74) 8.53(0.02) 14.7(0.83) 9.17 (1.03)

2 2 15.5(0.10) 22.6(0.07) 5.03(0.02) 27.5(3.80) 8.52(0.02) 16.9 (1.54) 15.9 (3.40)
330 153(0.09) 22.5(0.06) 5.05(0.02) 21.4(5.01) 8.54(0.02) 14.4(1.09) 8.61 (1.46)
4 0  15.3(0.10) 22.5(0.05) 5.02(0.02) 18.7(6.34) 8.54(0.03) 16.6(1.58) 14.1(5.02)
5 5 153(0.09) 30.1(0.04) 5.00(0.02) 20.0(5.20) 8.53(0.02) 15.0(0.77) 10.0(2.37)
6 5 15.4(0.09) 30.0(0.04) 5.03(0.02) 15.6(3.76) 8.56(0.02) 13.2(0.85) 6.29 (1.10)
7 6  15.4(0.09) 30.0(0.05) 5.03(0.02) 17.9 (4.09) 8.55(0.03) 13.0(0.61) 11.6(3.74)
8 7 15.4(0.09) 30.0(0.05) 5.05(0.01) 18.5(3.58) 8.51(0.02) 15.2(0.79) 12.2(3.19)
9 1 19.4(0.04) 22.3(0.07) 5.04(0.01) 17.9(3.27) 8.56(0.02) 15.1(1.06) 10.0 (1.12)
10 >100 19.4(0.04) 22.4(0.07) 5.09(0.04) 18.6(4.94) 8.56(0.03) 14.9(1.38) 15.3 (4.12)
11 >100 19.4(0.04) 22.4(0.07) 5.09(0.03) 13.6(3.55) 8.64(0.03) 15.1(1.41) 9.37(2.27)
12 >100 19.5(0.04) 22.3(0.05) 5.05(0.02) 14.7(3.98) 8.57(0.03) 15.1(1.19) 9.32(1.53)
13 >100 19.4(0.03) 29.7(0.04) 5.02(0.02) 13.6(3.00) 8.52(0.01) 14.9(0.44) 6.80(1.75)

14 4 19.4(0.04) 29.8(0.05) 5.00(0.02) 15.8(4.09) 8.51(0.01) 15.2(1.08) 9.12(2.01)
15 8  19.4(0.03) 29.8(0.06) 5.01(0.02) 19.6(3.45) 8.51(0.01) 18.3(2.58) 11.2(2.09)
16 4 19.4(0.03) 29.8(0.06) 5.02(0.01) 14.9(4.13) 8.53(0.01) 15.2(0.91) 12.0(4.03)
17 0 23.9(0.05) 22.5(0.10) 5.06(0.01) 13.8(3.13) 8.55(0.01) 17.5(2.21) 12.9(2.29)
18 15 23.9(0.05) 22.7(0.27) 5.06(0.01) 16.2(4.11) 8.60(0.01) 16.3(1.32) 9.9 (1.52)
19 1 23.8(0.05) 22.4(0.09) 5.05(0.01) 15.4(3.13) 8.55(0.01) 15.0(0.77) 14.1(3.46)
20 >100 23.9(0.05) 22.4(0.09) 5.05(0.02) 15.5(4.25) 8.61(0.01) 16.8(1.75) 11.5(2.26)
21 >100 23.9(0.05) 29.5(0.25) 5.03(0.01) 12.8(3.26) 8.58(0.03) 14.9 (0.68) 11.0(2.04)
22 >100 23.8(0.05) 29.7(0.06) 5.03(0.02) 11.6(3.66) 8.61(0.03) 14.5(0.17) 8.31(1.91)
23 40  24.0(0.05) 29.7(0.08) 5.01(0.03) 12.6(2.65) 8.61(0.04) 15.6(1.03) 9.45(2.26)
24 >100 23.9(0.05) 29.5(0.25) 5.02(0.01) 12.2(3.30) 8.56(0.01) 15.5(0.38) 18.7(5.83)

Table 4.1: Number of surviving clams (N) at the end of the 60 day experiment and
mean water temperature (Temp., °C [£SE], n = 30), salinity (Sal., PSU [+SE],
n = 30), dissolved Mg:Ca (mol mol™!, £SE), Mn:Ca (umol mol~!, +SE), Sr:Ca
(mmol mol™!, £SE), Ba:Ca (umol mol™!, £SE), and Pb:Ca (nmol mol~!, £SE) for
treatment tanks (n = 9 for each tank).
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Mg:Ca Mn:Ca Sr:Ca Ba:Ca Pb:Ca

Source DF MS F MS F MS F MS F MS F
T 2 7x10° 2.04 968 7.62** 4x102% 10.7** 11.1 0.903 294 046
S 1 4x102% 123** 510 4.02* 1x10*> 2.98 28.5 233 92.1 144
TxS 2 8ix10° 242 164 1.29 3 x10% 7.02** 210 1.72 5.51 0.09
Error 195 3x10? 127 4 x10° 1253 63.9

Table 4.2: Results of ANOVA testing the effects of temperature (T) and salinity (S)
on tank water sample dissolved elemental ratios. All tank measurements for all weeks
were used as the experimental unit (n = 216). F statistics are significant at the level
of *p < 0.01 or **p < 0.001.

high salinity), and with temperature for Mn and Sr (Table 4.2). Seawater elemental
composition also varied temporally (Fig. 4.1). In order to account for this variability
in seawater chemistry across treatments, we calculated discrimination coefficients for
shells using seawater values from week one only for larval discrimination coefficients
(Table 4.3), and using seawater values averaged over the nine-week experiment for
juvenile discrimination coefficients (Table 4.1). Whole-shell solution analysis of juve-
niles resulted in shell E:Ca values that represent an average of elemental uptake over
the experiment. By using the nine-week average for each tank to calculate juvenile

shell discrimination coeflicients, we are accounting for this averaging.

4.3.2 Temperature & salinity effects on uptake
Larval shell

Across all treatments and tanks, the average (+SE) larval shell elemental ratios were
3.140.83 mmol mol~! for Mg:Ca, 44.8 +4.1 mol mol~! for Mn:Ca, 2.5 £ 0.04 mmol
mol~! for Sr:Ca, 3.37 & 0.30 umol mol~! for Ba:Ca, and 157 + 17.6 nmol mol~! for
Pb:Ca. Average discrimination coefficients were less than one for Mg (6.2 x 107% +
1.7 x 107*), Sr (0.30 & 0.005), and Ba (0.24 £ 0.02), and greater than one for Mn
(1.86 £ 0.19) and Pb (22.3 £ 3.8).

Temperature significantly affected larval uptake of Ba and Mn (Table 4.4; Fig. 4.2).

Mean Dpg, for larval shells from 15°C tanks was higher than those from 20°C or 24°C

%)




Tank Temp Sal Mg:Ca Mn:Ca Sr:Ca Ba:Ca Pb:Ca

1 14.9(0.15)  22.7(0.06) 491 44.0 8.53 17.49 11.4
2 15.1(0.20)  22.8(0.45)  5.10 37.77 8.45 15.42 17.1
3 149(0.12)  22.9(034)  5.15 31.40 8.46 12.18 9.88
4 14.8(0.12)  22.6(030)  5.06 3247 8.60 12.19 10.5
5 150 (023)  30.1(0.11)  5.10 17.68 8.46 13.24 5.20
6 152(0.12)  30.0(0.10)  5.05 17.15 8.55 13.57 5.74
7 15.1(0.07)  302(0.26)  4.86 16.41 8.44 12.98 6.83
8 15.0(0.09)  30.0(0.22) 5.1 19.78 8.56 14.72 7.43
9 19.5(0.26)  22.1(0.11)  5.09 23.65 8.53 12.59 6.27
10 195(0.17)  22.1(0.15)  5.06 24.85 8.60 20.97 4.92
11 19.5(0.26)  22.2(0.06)  5.04 2437 8.51 14.54 7.31
12 19.5(0.26)  22.0(0.08)  5.09 34.48 8.63 1205 3.93
13 19.5(0.20)  29.7(0.17)  5.05 21.74 8.60 14.62 7.95
14 19.5(021)  29.4(0.05) 5.0l 17.09 8.55 13.71 6.25
15 19.5(0.19)  29.3(0.09)  5.06 15.92 8.58 13.97 3.98
16 195(0.19)  29.4(0.19)  4.99 24.56 8.54 15.37 33.5
17 23.8(038)  223(0.30)  5.09 2291 8.57 18.91 4.06
18 238(0.19)  22.1(026)  4.99 31.95 8.48 15.61 275
19 234(020) 222(044)  5.01 19.09 8.69 13.08 8.11
20 235(0.13)  22.1(0.19)  5.03 27.08 8.53 18.17 15.0
21 23.6(0.15)  29.4(0.08)  4.99 23.08 8.50 13.53 512
22 235(0.09)  29.7(031)  5.07 2723 8.52 13.51 3.56
23 23.7(0.15)  29.1(034) 498 25.51 8.53 13.45 6.17
24 238(035)  29.7(0.09)  4.96 24.84 8.46 14.87 7.33

Table 4.3: Mean water temperature (Temp., °C [£SE], n = 3), mean salinity (Sal.,
PSU [£SE], n = 3), and dissolved Mg:Ca (mol mol™!), Mn:Ca (umol mol™'), Sr:Ca
(mmol mol™!), Ba:Ca (umol mol~!), and Pb:Ca (nmol mol~!) for treatment tanks
during the first week only.
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Dy D _ e - Puw Dy

Source DF  MS F MS B MS F MS F MS F
Larval shell

it 2 73%x107 1.34 2.50 9.50* 9.9x10* 3.45 0.081 27.7% 357 1.03

S | 4.4x107 0.81 2,59 9.85* 1.0x10° 3.75 9.6x10° 3.26 537 1:55

TxS 2 2.5x107 046 2.19 8.33* 1.2x10° 4.06 7.7x10° 2.62 184 0.53

Error 15  5.5x107 0.26 2.9x10* 2.9x10° 347
Juvenile shell

i1 2 2.3x101%" 10:82 0.39 6.43*  3.4x10* 4.55 6.6x10°  9.24* 072 10:5*

S 1 6.4x10"" 0.23  1.0x10°* 0.01 3.9x10% 52.2%**+ 1.0x10® 0.001 0.01 0.07

TS 2 0.54 0.54 0.19 3.14 6.5x10* 8.64* 83x10% 1.7 0.04 0.58

Error 15 2.8x10" 0.06 T:5x10°* 7.1x10* 0.68

Table 4.4: Results of ANOVA testing the effects of temperature (T) and salinity (S)
on larval and juvenile discrimination coefficients. F statistics are significant at the

level of *p < 0.01 or **p < 0.001.
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Figure 4.2: Mean discrimination coefficients (£SE) for larval shell samples, averaged
over replicate tanks within treatments for the five elements, (a) Dy, (b) Dagy, ()
Ds;, (d) Dpga, and (e) Dpy. Open circles are low-salinity treatments and closed circles
are high-salinity treatments.




tanks while shells from 15°C tanks had higher mean D, than both 20°C and 24°C
tanks. Salinity significantly affected Mn uptake in larval shell: high-salinity tanks had
significantly higher Dy, than low-salinity tanks. There was a significant interaction
between salinity and temperature in larval shells, caused by a variable effect of salinity
depending on temperature: low-salinity tanks had lower D,;, than high-salinity tanks

at 15°C and 24°C, while this trend was reversed at 20°C.

Juvenile shell

The average (+SE) juvenile shell elemental ratios across all treatments and tanks were
0.67 £ 0.02 mmol mol~! for Mg:Ca, 14.3 & 0.92 pmol mol~! for Mn:Ca, 1.99 £ 0.04
mmol mol™?! for Sr:Ca, 1.52+0.11 pmol mol~! for Ba:Ca, and 4.56 & 0.65 nmol mol !
for Pb:Ca. All of the average discrimination coefficients for juvenile shell were less
than ene (1.3 % 104 £1.0% 107" for Dasg, 0.88 £ 0.13 for Dpsy, 0.23 £ 0.003 for Dg;,,
0.10 £ 0.008 for Dp,, and 0.45 4 0.13 for Dpy).

Temperature significantly affected uptake of Mn, Ba and Pb in juvenile shell
(Table 4.4; Fig. 4.3). Tukey-Kramer pairwise comparisons indicated the significant
relationships were as follows: mean D,;, was higher for individuals from 20°C tanks
than from either 15°C or 24°C tanks; mean D g, was higher in 15°C tanks than in 24°C
tanks; and mean Dp, was higher for individuals from 15°C tanks than from either
20°C or 24°C tanks. Mean Dg, did not vary consistently with temperature, but was
significantly greater in low than high salinity. There was a significant interaction
between salinity and temperature for Dg,, likely caused by the less distinct salinity
effect at 20°C than at 15°C or 24°C.

Tests for correlations between larval and juvenile uptake in each tank showed
consistently higher discrimination coefficients in larval than juvenile shells (Fig. 4.4).
There was, however, little correspondence between larval and juvenile discrimination
coefficients between tanks for any element except Ba (p < 0.05, r = 0.56) (Table
4.5). The discrimination coefficient used for each tank was a single value for larvae
(measured from shells pooled into a vial), and a single or average value for juveniles

(calculated from 1 to 15 shells). Only tanks with values for both larvae and juveniles

o8



Dpg (x 107)

DBa

0.1}

0.0

0 00—
—9 O0—

15 20 24
Temperature °C

D
AR

Temperature "C

DPb

2.0

0.5

0.5

0.0

;0

?

15 20 24
Temperature °C

E

!

[y,

15 20 24
Temperature “C

*

15 20 24
Temperature “C

Figure 4.3: Mean discrimination coefficients (£SE) for juvenile shells, averaged over
replicate tanks within treatments for the five elements, (a) Dasg, (b) Dasn (¢) Dsy,
(d) Dp,, and (e) Dp,. Open circles are low-salinity treatments and closed circles are
high-salinity treatments.

T p
D,,  -0.166 0.5I
D,,  -0.064 0.80
D, 0120 063
D, 0.560* 0.02
D,  0.164 0.50

Table 4.5: Results of analyses testing for correlations between juvenile and larval
discrimination coefficients. Correlation coefficients are significant at the level of *p <

0.05.
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were used in the correlations (n = 18,19,19, 18,19 for Dy, Dasn, Dsr, Dpa, and Dpy,

respectively).

4.4 Discussion

We examined the effects of temperature and salinity on discrimination coefficients
(and therefore uptake) in larval and juvenile bivalve shell in order to improve our
ability to interpret natural variability in elemental signatures. First, we explored
relations between temperature, salinity, and elemental composition of larval Mya
arenaria shells. We found that uptake of Ba was affected by temperature, and uptake
of Mn was affected by temperature and salinity. Second, we compared uptake in
larval and juvenile shell at various temperatures and salinities. We found significant
differences between larval and juvenile discrimination coefficients for all five of the
elements studied. Correlation analysis further indicated that there was no clear and
predictable relationship between larval and juvenile uptake for any element except

Ba. Although we expected that discrimination coefficients would differ between larval
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and juvenile shells, we were surprised to find that temperature and salinity influenced

discrimination in shells of the two stages differently.

4.4.1 Temperature & Salinity Effects on Uptake
Magnesium Uptake

Our observation that neither temperature nor salinity had a significant effect on Dy,
in larval or juvenile Mya arenaria shells is in contrast to results from some previous
studies of bivalve calcite, (Rucker and Valentine, 1961; Dodd, 1965) in which a positive
correlation to temperature was reported. Lerman (1965), however, reported no effect
of temperature on Dy, in oyster shells. We found no prior studies of salinity effects
on Dy, in bivalve shells. Calcite and aragonite formation tend to differ with relation
to solution chemistry due to their different crystal structures, even within the same
organism. Lorens and Bender (1980) hypothesized that Mg was regulated by mantle
cells during calcite formation but not during aragonite precipitation in the shell of
the bivalve Mytilus edulis. The radius of Mg?* ions is smaller than Ca’* ions, and

2+ in the

therefore although Mg inhibits formation of calcite due to substitution for Ca
crystal lattice (Berner, 1975), it is unlikely to be substituted into aragonite (Onuma
et al., 1979; Speer, 1983). However the extremely low discrimination coefficients we
found suggest that the amount of Mg in shell carbonate is highly regulated by the
organism during shell formation. Although the mechanisms regulating discrimination

of Mg during shell formation in M. arenaria remain are unresolved, temporal changes

in temperature and salinity are unlikely to complicate interpretation of Mg signatures.

Manganese Uptake

The influence of salinity on Mn uptake between larval and juvenile shells suggests that
Mn regulation changes during ontogeny. Ontogenetic changes in discrimination of Mn
have not been reported in other studies of biogenic carbonate, but investigations of
otolith chemistry have found complex relations between Mn uptake and temperature

and salinity. Elsdon and Gillanders (2003) found no significant relationship between
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Acanthopagrus butcheri otolith Mn:Ca and the Mn content of the water of formation.
Martin and Thorrold (2005) reported complex temperature and salinity interactions
for Mn:Ca in Leiostromus zanthurus otoliths. The authors attributed this result to
biological processes that might be mediating the amount of biologically available Mn
in the seawater of formation. For instance, microbial activity can contribute to the
formation of Mn oxides (Sunda and Huntsman, 1987; Klinkhammer and McManus,
2001), which removes Mn ions from solution and makes relationships between Mn:Ca
in shell and seawater unpredictable.

Despite the unpredictable nature of Mn uptake, Mn has repeatedly proven useful
for elemental tagging studies (e.g. Thorrold et al., 1998, 2001; Patterson et al., 2005;
Becker et al., 2007). Our study suggests that experimenters should proceed with
caution when including Mn in the suite of elements for tagging studies due to the
interactions among temperature, salinity, and biology that contribute to Mn content
in aragonite. Further, salinity effects on Mn discrimination in larval shells of estuarine
species (where salinity varies on small spatial scales) may result in variable signatures
for larvae within a particular site and consequent misclassification of individuals in

natural tagging studies.

Strontium Uptake

Our observation that temperature did not significantly affect uptake of Sr into larval or
juvenile Mya arenaria shell contrasts with early molluscan studies generally reporting
negative correlations between temperature and Sr (Dodd, 1965; Hallam and Price,
1968; Thorn et al., 1995). However shells analyzed in these studies were collected
from the field, and the authors did not account for differences in growth rates or
metabolism in their analyses. As a result, temperature-associated variation in growth
rates or metabolism could have been responsible for the Sr uptake patterns rather
than temperature itself. A more recent study of temperature effects on Sr in statoliths
of the laboratory-reared cuttlefish Sepia officinalis that controlled for growth rates
also reported no correlation, suggesting biological regulation of Sr ions outweighs the

kinetic effects of temperature on Sr incorporation (Zumholz et al., 2007). Zacherl
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et al. (2003b) came to similar conclusions in their study of the gastropod Kelletia
kelletii: they found that Sr:Ca correlated positively with temperature in protoconchs
and negatively in larval statoliths. They concluded that there are strong biological
controls on Sr incorporation into aragonite, likely due to the differential discrimination
of Sr across different biological membranes responsible for statolith and protoconch

production.

There is less ambiguity in the literature for the relationship between Sr uptake
into molluscan calcium carbonate and salinity. The most commonly reported result
is a lack of correlation (Dodd, 1965; Hallam and Price, 1968; Stecher et al., 1996;
Zumbholz et al., 2007), as we found in our larval shells. Because the low-salinity
treatment was achieved by diluting seawater with ultrapure water, we did not expect
to detect differences in Sr:Ca among treatments. However we found Dg, significantly
differed with salinity for juvenile shells, which suggests that Sr concentration, as well
as Sr:Ca ratios, in ambient water influenced uptake of Sr into juvenile shells. A similar

result was found in otoliths by Martin and Thorrold (2005).

Our data suggest that molluscan Sr:Ca ratios in aragonite of shells are controlled
by physiology. However, the exact mechanism by which these “vital effects” influence
shell chemistry remains unknown. There is evidence in the literature that Sr up-
take is dependent upon calcification rates in aragonitic mollusc shells (Purton et al.,
1999; Takesue and van Geen, 2004). Any factor that affects calcification rates could,
therefore, influence the interpretation of trends in Sr:Ca in shell (Likins et al., 1963;
Stecher et al., 1996; Carre et al., 2006). This may explain reports that temperature,
which is often positively correlated with growth rate, influences Sr uptake. Gillikin
et al. (2005), however, carefully documented the relationship between environmental
factors and Sr uptake in two species of marine bivalves with aragonitic shells, and
concluded that Sr:Ca ratios in shell are regulated by biological processes rather than
thermodynamics. Studies of growth rate effects on Sr incorporation into Mya are-
naria juvenile shell have produced both positive and negative correlations to growth
rate for juvenile shells reared in the same conditions (Strasser et al., 2008). These

ambiguous results lend support to the idea that Sr incorporation may involve a num-
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ber of physical and biological processes. One example of a process that might be
influencing Sr incorporation is entrapment of material on the surface of the crystal
during carbonate formation. Recent studies suggests that elemental fractionation in
inorganic calcite (Watson, 2004) and aragonite (Gaetani and Cohen, 2006) is domi-
nated by non-equilibrium processes including surface entrapment. Indeed, with more
study, surface entrapment may provide a powerful unifying mechanism for explain-
ing apparently divergent behavior of Sr:Ca in fish otoliths, bivalve shells and coral

skeletons.

Barium and Lead Uptake

We found evidence for a negative correlation between temperature and Ba uptake
in both larval and juvenile shells, which is consistent with results of Zacherl et al.
(2003b) and Zumbholz et al. (2007), who both found a negative correlation in the
aragonite structures of laboratory-reared molluscans. We found no significant rela-
tionship between Dp, and salinity, which is also consistent with results from Zumbholz
et al. (2007). Ba is likely to be a useful addition to elemental tagging studies, even in
situations where its concentration does not vary spatially, as uptake into molluscan
shell appears to have a consistent relationship with temperature.

Larval shell Dp, did not vary significantly with temperature, although juvenile
shell Dp, showed evidence of a significant negative correlation. Previous research
generally has shown that clams incorporate Pb into their shells in relation to ambient
water concentrations (Babukutty and Chacko, 1992; Pitts and Wallace, 1994; Almeida
et al., 1998; Boisson et al., 1998), however these studies do not examine the relation-
ship at different temperatures or salinities. More recently Mubiana and Blust (2007)
showed that Pb uptake into soft tissue is positively correlated to temperature, but
they did not examine the effects of temperature on Pb uptake into shell. It is difficult
to discern the underlying causes of the significant relationship between temperature
and juvenile shell Dp;, that we found. Therefore studies that use trace metals as part
of unique geochemical signatures should be cautious until there is more information

about discrimination coefficients at variable temperatures and salinities.
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4.4.2 Differences in Larval & Juvenile Uptake

We found highly significant differences between uptake in larval and juvenile Mya
arenaria shells. In addition, larval and juvenile discrimination coefficients were not
significantly correlated for four of the five elements studied, suggesting that the phys-
iological mechanisms influencing uptake are quite different for the two stages. Not
only do discrimination coefficients change with ontogeny, but the effects of environ-
mental conditions on discrimination coefficients change as well. The one exception we
found was for Ba; discrimination coefficients correlated positively between larvae and
juveniles, suggesting that incorporation of Ba into shell is not as affected by ontogeny
as the other elements in this study. This may be because Ba is not known to be a
critical element in shell construction, nor is it harmful to the organism when present
in the extrapallial fluid. Ba concentrations in biogenic carbonate are therefore likely

to reflect ambient levels.

The differences between larval and juvenile shell discrimination coefficients are not
surprising given the disparate mechanisms that produce larval and juvenile shell in
bivalves. Production of the first larval shell, or prodissoconch I, starts by evagination
of a shell gland and subsequent spreading of the shell field. Prodissoconch II formation
begins after the two valves surround the body and close against each other (Waller,
1981). Early in prodissoconch I formation, the shell gland transitions into the mantle
structure, which is responsible for shell production thereafter (Waller, 1981). These
intense morphological and developmental changes occurring during PI production
are likely to cause significant differences in elemental uptake compared to juvenile
shell production when the mantle has formed completely. Our results lend support
to the idea that the effects of physiology on larval and juvenile shell production are

sufficiently different to affect uptake and incorporation of elements into carbonate.

In a study of Mg and Sr concentrations in nautilus shells, Mann (1992) found
consistently higher and more variable elemental concentrations in carbonate formed
earlier in life. Three possible explanations are given: (1) an age-related change in

biomineralization, wherein elemental concentrations depend on carbonate accretion

65




rates; (2) maturation of the biomineralization system which results in increased con-
trol over shell chemistry; or (3) larvae are exposed to stresses related to food acquisi-
tion and protection that are less problematic in older organisms. Given the evidence
that growth rate affects elemental incorporation (Onuma et al., 1979; Purton et al.,
1999; Sinclair, 2005), and the fact that different processes are involved in larval and
juvenile shell accretion, it is plausible that any or all of these ontogenetic explanations
are applicable to our data.

Larval discrimination coefficients tended to be closer to 1 than juvenile discrim-
ination coefficients for all elements (Fig. 4.4). This result suggests that the more
advanced development of juveniles compared to larvae results in a greater ability to
discriminate against ions that are not Ca?* during shell production. Hirao et al.
(1994) suggested that Pb content in abalone Haliotis shells decreased due to the de-
velopment of a physiological mechanism for Pb exclusion that becomes more efficient
with age. Bivalve shell composition is influenced by the efficiency of the Ca?* channel
that transports ions into the extrapallial fluid for shell construction, as well as the
ability to discriminate against non-Ca?* ions (Carre et al., 2006). Although there are
no data published on differences in channel function for larval and juvenile molluscs,
large changes in morphology and cell function during PI production may influence

the composition of the fluid from which the shell is precipitated.

4.4.3 Conclusions & Implications for Future Studies

Results from studies such as this one are crucial to studies that rely on biogenic car-
bonate to indicate either natal habitat or past environmental conditions. Temperature
and salinity effects on discrimination coeflicients of any element can be beneficial for
connectivity studies when temperature and salinity vary geographically while the el-
ement itself does not. However this tool is useful only if the study focuses on a single
cohort or if the temperature and salinity conditions do not vary over time. In con-
trast, temperature and salinity influences on discrimination coefficients complicate
interpretations when variation in shell elemental composition is used as a recorder

of past elemental concentrations in water, or in natural tagging studies when bio-
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genic carbonate formed outside of the spawning time frame is used to identify natal
habitats.

We found that temperature and salinity significantly influenced shell chemistry
of larval and juvenile Mya arenaria. However, physiological processes, whether in-
fluenced by ontogeny or environmental conditions, have the potential to complicate
interpretations of elemental composition in biogenic carbonates. Variability in shell
chemistry could be interpreted as indicating shifting environmental conditions when
in fact composition may reflect individual (i.e. organism-level) or ontogenetic vari-
ability in physiological processes. Therefore, care must be taken to understand the
potentially confounding effects of physiology before shell chemistry is used in studies

as a proxy for environment or to identify natal habitat for connectivity studies.
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Chapter 5

Limited genetic variation and
structure in softshell clams (Mya
arenaria) across their native and

introduced range

5.1 Introduction

Benthic marine habitats of the Northwest Atlantic Ocean (NWA) are structured into
distinct biogeographic provinces (Engle and Summers, 1999). These biogeographic
divisions are a function of environmental gradients resulting from the synergy of the
coastal geography of Eastern North America with the Gulf Stream and Labrador
Currents, combined with latitudinal gradients in temperature and salinity (Hutchins,
1947). The most commonly recognized biogeographic divisions are the Nova Sco-
tian and Virginian Provinces, with Cape Cod serving as the boundary between the
two (Hall, 1964; Hutchins, 1947). Superimposed on these divisions is a history of
Pleistocene glaciations that extirpated many benthic marine species from northern
latitudes and formed Cape Cod (Upham, 1879a,b), reshaping regional patterns of

biological and genetic diversity (Wares and Cunningham, 2001; Wares, 2002; Hewitt,
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1996).

The presence of distinct biogeographic provinces in the NWA has significant im-
plications for management of fish and invertebrates in this region because species
spanning multiple provinces of the NWA can have populations adapted to local envi-
ronmental conditions. For example, the Atlantic Silverside Menidia menidia exhibits
heritable local variation in growth rate and vertebral number, resulting in a latitudinal
phenotypic cline across the NWA (Present and Conover, 1992; Billerbeck et al., 1997;
Yamabhira et al., 2006). On a smaller scale, the mussel Mytilus edulis exhibits a sharp
cline in the leucine aminopeptidase (LAP) allele across salinity gradients in Long
Island Sound (Gardner and Kathiravetpillai, 1997; Gardner and Palmer, 1998). The
presence of regional genetic structure, particularly if it is locally adaptive, needs to
be accounted for in fisheries management so that genetic diversity is conserved and
locally adaptive gene complexes are not disrupted through indiscriminate stocking

(Hansen, 2002).

Mya arenaria is a commercially important bivalve with a contemporary distribu-
tion that includes 1) the northwest Atlantic ranging from Nova Scotia to Virginia, 2)
the North Sea and European waters, including the Black, Baltic, Wadden, White, and
Mediterranean Seas, and 3) northeast Pacific from San Francisco to Alaska (Strasser,
1999). M. arenaria has a complex history of extensive global distributions, with
several extinctions and re-colonization events (reviewed in Strasser 1999). M. are-
naria originated in the Pacific Ocean during the Miocene then extended its range to
the Atlantic and European waters in the early Pliocene. Extinction of Pacific and
European populations in the early Pleistocene left the only surviving populations in
the NWA until recent history (MacNeal, 1965). M. arenaria re-invaded European
waters in the 17th century after being brought from the NWA by Vikings (Petersen
et al., 1992). In the late 19th century M. arenaria was reintroduced into the Pacific,
first accidentally then as a potential commercial fishery (Carlton, 1979; Powers et al.,
2006). The natural and introduced distribution of M. arenaria results partly from the
clam’s ability to withstand wide salinity and temperature ranges, and its capability

of inhabiting different sediment types from fine mud to coarse sand (Newell and Hidu,
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1982; Abraham and Dillon, 1986; Hidu and Newell, 1989).

Despite characteristics that made softshell clams a successful invasive species in
European waters and the northeast Pacific, the last two decades have seen appreciable
declines in softshell clam landings in New England (Brousseau, 2005; Anonymous,
2007). This decline has been attributed to habitat degradation or loss, overfishing,
contamination, and predation by invasive species (Brousseau, 2005). Managers and
state agencies have enacted various management strategies to combat these declines,
including using protective nets to reduce predation on newly recruited clams, and
seeding flats using hatchery-reared juveniles (Marcotti and Leavitt, 1997, H. Lind,

pers. comm. ).

While stocking of fish and shellfish is a long-standing practice, research is increas-
ingly showing that the genetic impacts of stocking cannot be ignored. Stocking should
seek to maintain levels of genetic diversity (Waples and Do, 1994); although multiple
individuals are spawned to produce seed clams, it is unknown whether the genetic
diversity represented among these individuals is reduced in comparison to naturally
occurring cohorts, where entire adult populations spawn simultaneously (Brousseau,
1978). In addition, given that brood stock is not always taken from the flat into
which seed clams are stocked, locally appropriate genotypes could be introduced into
inappropriate areas. For example, Mya arenaria exhibit local variation in resistance
to paralytic shellfish toxins (Connell et al., 2007). Seeding flats using brood stock
from other clam populations may result in either reduction of the locally dominant
alleles due to success of the introduced seed clams, or significant loss of seed clams
due to a lack of a genetic background appropriate to the local environment. Similar

declines in local fitness have been documented in salmonids (Hansen, 2002).

Previous genetic studies on softshell clams have found limited genetic diversity
despite the wide geographic ranges represented among studies. Morgan et al. (1978)
used allozymes to study Mya arenaria genetic variation in the NWA, and found low
polymorphism and low heterozygosity per individual for both populations examined.
Caporale et al. (1997) found similar low variability in three regions of the NWA (12

locations total) using the internal transcribed spacer ribosomal DNA region (nDNA),
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and concluded that although the three regions were not genetically distinct, the data
from the study were insufficient to indicate a panmictic population. More recently,
Lasota et al. (2004) used allozymes to study seven locations in the northeast Atlantic
and two in the North Sea. They also found low genetic variability and a lack of genetic
differentiation, and concluded that M. arenaria is a successful invader despite a high
degree of genetic homogeneity. They suggested the patterns observed were evidence
of rapid population expansion, allele neutrality, and high gene flow. However, nDNA
is known to evolve slower than mitochondrial DNA (mtDNA), and allozyme studies
may mask underlying sequence variation. Therefore the results seen in these studies
might be because of the markers chosen to conduct the studies.

In this study, we examine population genetic variability of Mya arenaria across its
natural range in the NWA and portions of its introduced range in the northeast Pa-
cific and European waters using the highly variable mitochondrial cytochrome oxidase
I (COI) gene that commonly resolves phylogeographic structure in marine inverte-
brates (Wares, 2002; Barber et al., 2006) including bivalves (King et al., 1999; May
et al., 2006). First, we examine how populations may be geographically structured
across the NWA to determine whether the distinct environments and biogeographic
provinces partition softshell clams into genetically distinct regional stocks. Second,
we compare NWA to NEP and NSE populations to examine the geographic origins
of these populations and the effects of recent introduction on genetic diversity. The
results of this study have implications for management of softshell clams in New Eng-
land, in addition to insights gained about historical extinction and colonization events

of M. arenaria with reference to biogeographic boundaries and glaciation.

5.2 Methods

Juvenile and adult M. arenaria(N = 212) were collected between 2001 and 2006 from
12 locations: one northeast Pacific site (n = 20), ten NWA sites (n = 177), and one
North Sea, Europe site (n = 15) (Fig. 5.1, Table 5.1).  Most M. arenaria were

frozen after collection to prevent DNA degradation, and then transferred to 70-95%
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Figure 5.1: Unrooted minimum-spanning tree depicting the relationship of the 27
mitochondrial COI haplotypes from 217 Mya arenaria individuals, collected from 12
sites in the NWA (white; n = 177), one site in the North Sea, Europe (black; n = 15),
and one site in the northeast Pacific (gray; n = 20). Line distance between circles
corresponds to the number of nucleotide differences (1 or 2); size and number of
divisions in each haplotype circle correspond to the number of individuals.
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ethanol for at least 24 hours prior to DNA extraction to improve the success of DNA
extractions. Some individuals were preserved directly in ethanol without freezing.
For clams < lem total length, we used the entire clam for DNA extraction. For
larger clams we extracted DNA from small fibers of adductor muscle tissue. All DNA
extractions were performed with a 10% Chelex®(BioRad) solution (Walsh et al.,
1991). A 661 bp fragment of the mitochondrial cytochrome oxidase subunit-1 gene
(COI) was amplified via polymerase chain reaction (PCR) using the primers HCO-
2198 and LCO-1490 (Folmer et al., 1994). PCR occurred in 25 | reactions with 2.5 1
of 10x buffer, 21 MgCl, (25 mM), 2.51 DNTPs (8 mM), 1.25 1 of each 10 mM primer,
11 of template, and 0.625 units of Amplitaq (Perkin Elmer). Hot-start thermocycling
parameters were as follows: initial denaturation 94°C (3 min); followed by 38 cycles

of 94°C (30 s), 50°C (30 s), 72°C (45 s); then a final extension of 72°C (10 min).

PCR products were visualized on 1% agarose PAC 1% sodium hydroxide and boric
acid gels, and then enzymatically prepared for sequencing by digestion in 0.5 units
of Shrimp Alkaline Phosphotase and 5 units of exonuclease per 51 of PCR product,
incubated at 37°C for 30 min followed by 80°C for 15 min. PCR product was cleaned
using isopropanol precipitation, and sequencing reactions were performed for both for-
ward and reverse strands on an ABI 377 (Applied Biosystems) using BigDye(©)(Perkin
Elmer) terminator chemistry. Complementary strands for each sample were proof-
read and aligned in Sequencher”™ | and translations confirmed using MaClade 4.05
(Maddison and Maddison, 2002) .

To explore regional distribution of genetic diversity in Mya arenaria, we calculated
haplotype diversity (h), nucleotide diversity (7), and theta () for all populations
using Arlequin 3.1 (Excoffier et al., 2005). To explore patterns of phylogeographic
structure we constructed a minimum-spanning tree using the MINSPNET algorithm
as employed in Arlequin. Frequency of haplotypes was then plotted against geography
for NWA populations.

To further explore geographic genetic structure, we investigated genetic partitions
in analysis of molecular variance (AMOVA) as implemented in Arlequin. Values of

¢st were calculated with statistical significance determined by 20,000 random per-
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mutations. Analyses were run both unstructured, and structured into two regions
(NWA + NEP and NSE) or three regions (NWA, NEP, NSE). Patterns of genetic
structure were similarly estimated within the NWA by excluding NEP and NSE pop-
ulations. NWA analyses were both unstructured and assuming three regions: north
of Cape Cod, Cape Cod, and South of Cape Cod. To further examine patterns of
genetic exchange, pairwise Fgr values were calculated among all populations with

20,000 permutations used to establish significance.

Because of extremely low levels of genetic variation within the dataset, we tested
for neutrality by calculating Fu’s Fg statistics (Fu, 1997), which establishes whether
non-neutrality might be due to population growth and range expansion. To further
explore the possibility of recent demographic or spatial population expansion, we
used mismatch distributions, which compares the expected and observed number of
differences between pairs of haplotypes (Rogers and Harpending, 1992; Ray et al.,
2003). Finally, we used Bayesian Markov Chain Monte Carlo analysis of molecular
sequences to produce a Bayesian skyline plot using BEAST v1.4 and Tracer v1.4
(Drummond and Rambaut, 2006), which plots population size over time and estimates
the approximate time since population expansion (Drummond et al., 2002, 2005). We
used MODELTEST (Posada and Crandall, 1998) implemented in PAUP* ver.4.0b10
(Swofford, 1998) to find the most appropriate model for BEAST (Hasegawa, Kishino,
and Yano Model). A strict molecular clock was used to produce the skyline plot,
which was based on five skyline groups. We ran the program using default priors for
Bayesian skyline analysis for 50 million generations, and repeated the program run
four times to increase effective sample size and assure that results were converging.
Results reported in mutational units were converted to years for the skyline plot by
assuming a molluscan-specific COI divergence rate of either 1% per million years

(%Myr~1) for all COI sites or 5 %Myr~! for third positions alone (Marko, 2002).
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5.3 Results

A total of 661 bp of COI was collected from 212 individuals, yielding only 27 unique
haplotypes that differed by one or two nucleotide substitutions, all in the third codon
position and silent with one exception, haplotype I (Table 5.2). There was one dom-
inant haplotype (A) found at all of the locations sampled, ranging in frequency from
0.65 to 1.00 for individual populations, with an overall frequency of 0.79. Of the
remaining 26 haplotypes, only five were found more than once in a single population,
ranging in frequency from 0.10 to 0.27 (haplotypes B-F). Two private alleles, haplo-
types that occur more than one time in only one site (Slatkin, 1985), were found in

NSE (Haplotype E) and NEP (Haplotype G).

Haplotype diversity (h) in the NWA ranged from 0.178 to 0.648 (Table 5.1). Com-
parable levels of haplotype diversity occurred in NSE (h = 0.65) and NEP (h = 0.57)
populations. Nucleotide diversity was low for all NWA populations, ranging from
0.0003 to 0.001 (Table 5.1), while 7 = 0.0010 in NSE and 7 = 0.0012 in NEP. Theta
ranged from 1.854 to 0.549 in the NWA and was 0.615 and 1.127 in NSE and NEP,
respectively (Table 5.1). There were no clear geographic patterns in genetic diversity

measures.

Consistent with the low nucleotide diversity, the minimum spanning tree of M.
arenaria COI haplotypes revealed a star-shaped phylogeny (Fig. 5.1). The dominant
haplotype (A) was located at the center of the star with 21 of 26 remaining haplo-
types differing from haplotype A by a single nucleotide substitution. Five haplotypes
differed by 2 mutational steps (haplotypes J, O, T, U, AA). No geographic structure
is evident in the minimum spanning tree topology and NEP and NSE haplotypes are
scattered throughout the tree. Plotting the frequency of the 6 non-singleton haplo-
types revealed no clear phylogeographic patterns in the NWA except for the lack of

genetic diversity in Nova Scotia (Fig. 5.2).

Results from AMOVA found the majority of variability was within populations, re-
gardless of any structure imposed on the locations sampled (Table 5.3). Unstructured

AMOVA analyses indicated the presence of subtle but significant genetic structure

83




‘pordures so31s ([ Jo wins st uwnjod Ty ‘seseyjuared ur adAjordey 1od spenprarput jo
Iaquinu o) Ym ‘pajdures A31[eo0] yoro 10j ULAIS aIe serousnbaly odAjordey wuwua.w vfipy 10y suornquusip odAjordey :z°G 9[qe],

s[enptaipul
e S 0z 6 S S 54 0z 61 o4 1z [ 0z iBia g

(15000 TIro

(1) s00°0 (D1ro

(1) 5000 (1) Loo

(1) $00°0 (1) L00

(1) 000 (1) Loo

(1) 000 (1) 00

(1) S00°0 (1) ¥0°0

(1) s00°0 (1) 00

(1) s00°0 (1 ¥0°0

(1) S00°0 () voo (1) soo

(1) 000 (1) so0

(1) 000 (1) soo

(1) 5000 (1) s00

(1) 5000 (1) s0°0

(1) s00°0 (1) s00

(1) $00°0 (1) soo

(1) $00°0 (1) soo

(1) 5000 (1) 00

(1) $00°0 (1) s0°0

(1) $00°0 (1) 600

(2) 6000 (@ oro

() ¥10°0 (Do (Dvoo  (1)so00

() 6100 () LTO

(#) 6100 (@) oro (1) so0 (1) 6070

(#) 6100 @o1ro0 (Di1ro (1) s00

(8) 800 (€)ozo (1) soo0 (oo (oo (D00 (1) 6070
(L91) 88,0 (8) €50 (€1)s90 (9,90 (znogo (D) eco (61)oLo (spsco (Deo (D160 (190  (8)€L0o  (02) 001

TIV dSN diaN [QIE] ann AN VIAM VI VINY VINO IR aN SN adAjordey
uonjedn’|

<CRUAREUI="X¥A5SZOMOX®OED> B X >N

84



76 W 72'W 68 W 64 W 60 W

T T
50N
48N
D
46 N |-
44 N
MMD f
N
2 NFE "/
EMD ‘
0
J0O N+ ;
41 (»}3 f MMA
o

Figure 5.2: Distribution of mitochondrial COI haplotypes for Mya arenaria in the
NWA. Gray shades are unique haplotypes found in only one location; patterns are
haplotypes shared among two or more locations. See Table 5.1 for site abbreviations
and sample sizes.
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Among regions Among populations within regions Within populations

df Var. % Var. @7 df Var. % Var. O df Var. % Var. ®gg

All Locations

Unstructured 11 0.0062 2.67 200 0.2271  97.3 0.0267*

Structured: 2 groups 100429 159  0.159 10 0.00003 0.01  0.0001 200 0.2271  84.1 0.1591*

Structured: 3 groups 2 0.0239  9.57  0.957 9 -0.0014 -0.54 -0.0060 200 0.2271  91.0  0.0903*
NWA Only

Unstructured 9 0.00008 0.04 167 0.2020  99.9  0.0004

Structured 2 0.00043 0.21 _ 0.0021 7 -0.0002 -0.12 -0.0012 167 0.2020  99.9  0.0010

Table 5.3: Results of AMOVAs to determine the source of genetic variation in Mya
arenaria COI. * indicates that the value is significant at the p = 0.005 level. See text
for group descriptions.

(psr = 0.0267, p < 0.005) with 3% of the variation between populations and 97%
of the variation within populations. Imposing regional partitions comparing North
American (NWA+NEP) and European (NSE) populations produced ¢sr = 0.159
(p < 0.005) with 15.9% of variation among regions, 0.01% among populations within
regions, and 84.1% of the variation within populations. When we imposed three re-
gional partitions, NWA, NEP, and NSE, ¢sr = 0.0903 (p < 0.005) with 91% of the
variation within populations, 9% among regions, and no variation among populations
within regions.

Unstructured AMOVA analyses across the NWA revealed no significant genetic
structure with 99.9% of all genetic variation contained within populations (Table 5.3).
Similarly, when locations were grouped into regions north of Cape Cod, Cape Cod,
and south of Cape Cod (Table 5.1), ¢sr = 0.0010 (n.s.) with 99.9% of all genetic
variation contained within populations and no significant variation among regions or
among populations within regions.

Population pairwise Fgr’s were significant and high between NSE and 7 popula-
tions, including NEP (Fgr = 0.09 to 0.222; p < 0.05) (Table 5.4). In addition, NEP
showed moderate divergence with QMA (Fgr = 0.039; p = 0.006). Within the NWA,
sites showed low variability between populations. Only the northernmost population
(Nova Scotia) had significant Fgp values, with moderate divergence between Nova
Scotia and populations from New Brunswick (Fgr = 0.058) and Eastern Bay Mary-

land (Fgr = 0.097). In addition, there was minimal divergence (Fsr = 0.02) between
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NSE NS NB ME QMA BMA MMA WMA NY MMD EMD NEP

NSE - 0.0007 0 0.0003 0.001 0.0003 0.009 0.008
NS 0.222* - 0.036 0.026 0.023
NB 0.065 0.058*
ME 0.143* -0.002 0.008
QMA 0.182* -0.004 0.028 0.001 - 0.006
BMA 0.166* 0.003 0.006 -0.001 0.001 -
MMA 0.115* 0.000 -0.018 0.001 0.003 -0.008 -
WMA 0.099* 0.000 -0.010 -0.010 0.005 0.001 -0.001 -
NY 0.084 0.02* -0.023 0.003 0.012 0.007 -0.013 -0.015

MMD 0.092 0.020 -0.023 0.000 0.009 0.005 -0.003 -0.010 -0.019 -
EMD 0.052 0.097*  -0.024 0.012 0.060 0.047 0.013 -0.020 -0.010 -0.006
NEP 0.104* 0.045 -0.023 0.013 0.039* 0.022 0.009 -0.001 0.013 0.012 -0.015

Table 5.4: Pairwise population comparisons, Fgr (below diagonal) and their associ-
ated p values if significant (above diagonal). * indicates that the value is significant
at the p = 0.05 level.

Nova Scotia and New York. However, no other pairwise Fgp’s were significant at the
p < 0.05 level.

Some haplotypes found in NSE and NEP were not shared with the NWA. To
determine whether this was due to inadequate sampling, we constructed a rarefaction
curve for the NWA (Fig. 5.3) using equations appropriate for population sample sizes
much smaller than total sample size (Heck et al., 1975). The rarefaction curve did not
reach an asymptote over the range of the number of individuals sampled. Although
it is not valid to extrapolate the curve and predict how many haplotypes might be
present in the NWA, the slope of the curve does appear to be leveling off, which
suggests that a majority of the available haplotypes were sampled.

Fu’s Fg Statistic was significantly large and negative for 9 of the 12 populations
(Table 5.1) suggesting non-equilibrium dynamics. Mismatch analysis revealed no
significant fit to the models of recent spatial or demographic expansion (data not
shown). However, p-values were generally lower (i.e. the model was a better fit) for
the spatial expansion hypothesis.

Support for a range expansion comes from the Bayesian skyline plot indicating
that Mya arenaria populations in the NWA were much smaller in recent history
(Fig. 5.4). The plot indicates that a pronounced demographic expansion event took

place in NWA populations of M. arenaria between 75,000 and 15,000 years ago. These
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Figure 5.3: Rarefaction curve constructed using data from Mya arenaria populations
in the NWA.

values correspond to 0.00035 mutational units and a mutation rate of 0.005 to 0.025

mutations Myr~!, based on the clock calibrations of Marko (2002).

5.4 Discussion

5.4.1 Patterns in the Northwest Atlantic

Genetic analysis of Mya arenaria populations across the Northwest Atlantic revealed
a near complete absence of genetic structure. This result stands in contrast to previ-
ous studies of other marine species that show pronounced phylogeographic structure
in the NWA (see Wares 2002 for a review), particularly among populations along
the northern and southern coastline of the NWA (e.g. Waldman et al., 1996; Smith
et al., 1998; Dahlgren et al., 2000; Brown et al., 2001). Within the NWA the only
evidence for differentiation among northern and southern populations comes from
three significant pairwise Fgr values among Nova Scotia populations and those to the
south. These significant differences are likely driven by the lack of diversity in the
NS sample, where only the dominant haplotype was observed.

The lack of genetic diversity and limited genetic structure reported here echoes

previous genetic studies on softshell clams (Morgan et al., 1978; Caporale et al., 1997;
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Figure 5.4: Bayesian skyline plot derived from Mya arenaria NWA sequences. The
solid line is the median estimate of population size, and the shaded region shows
95% highest posterior density limits (see Drummond et al., 2005). The dashed line
indicates where in time the population expanded. Axis A is the years before present
when a 1% per million years divergence rate is used; Axis B is the years before present
when a 5% per million years divergence rate is used (see text for details). The gray
arrows on each axis represent the approximate timing of the last glacial maximum.
Population size on the y-axis is relative to its current size.
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Lasota et al., 2004). The concordant results among these multiple studies provide
strong evidence for lack of genetic boundaries in Mya arenaria. The lack of genetic
structure among NWA populations of M. arenaria could result from high levels of
gene flow, as suggested by Lasota et al. (2004), due to extensive dispersal and open
population dynamics. This species has a planktonic larval phase that can last up to
three weeks in the water column, during which time the larva feeds on algae and is
transported by currents (Abraham and Dillon, 1986). Transport via strong currents
along the NWA could promote high dispersal and gene flow among NWA populations.
Genetic mixing could be further augmented by human-mediated transport within the
NWA. High gene flow, however, should increase the effective population size, reducing
drift and resulting in high levels of genetic diversity. This expectation is contradicted
by the minimum spanning tree and the minimal genetic diversity measures. Thus,
while high dispersal may contribute to genetic homogeneity in M. arenaria, other

processes must also be acting to reduce diversity within populations.

One process that could contribute to limited genetic structure across the NWA
is a recent population expansion event, also suggested by Lasota et al. (2004). The
NWA was heavily impacted by ice sheets during the Pleistocene glacial period ap-
proximately 2.5 million years ago, with the southern limit of glaciation near Cape
Cod, Massachusetts (Shackleton et al., 1984; Cronin, 1988). It is hypothesized that
the ice sheet caused a southward shift in population ranges of NWA intertidal species.
After glaciers subsided approximately 18,000 years ago, individuals from the south
spread into previously unavailable northern habitats (Wares and Cunningham, 2001;
Wares, 2002). These re-invasions may manifest themselves in genetic structure that
suggests population expansion, i.e. limited genetic structure across areas affected by
glaciation. Wares (2002) compiled a comprehensive map of genetic variability in NWA
intertidal species and found substantial evidence of recolonization of ice-covered areas.
Generally modern populations located north of the southern extent of the ice sheet
have lower genetic diversity than those located to the south, with shifts in genetic

structure located near Cape Cod.

Given the contemporary distribution of Mya arenaria and the geographic extent
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of Pleistocene glaciations, northern populations in the NWA likely represent a recent
range expansion. Evidence for a demographic expansion comes from the star-like phy-
logeny, low genetic diversity measures, and the significantly large and negative values
of Fu's Fg. Further evidence of demographic expansion comes from the Bayesian
skyline plot produced using NWA data (Fig. 5.4). The plot shows that M. arenaria
populations in the NWA expanded between 15,000 and 75,000 years ago depending
on mutation rate. Pleistocene ice sheets retreated beginning approximately 18,000
years ago, which is within this range. Although the data from Bayesian Skyline plot
analyses do not produce exact estimates without stringent assumptions regarding
mutation rates and molecular clocks, the data do not contradict the hypothesis of

post-glacial expansion.

Given a northward range expansion following glacial retreat, one might predict
decreasing genetic diversity measures with increasing latitude. Although the north-
ernmost population in Nova Scotia had the lowest diversity measures, there was no
pattern across the remainder of the NWA. This result suggests that while dispersal
and gene flow may be high among most populations spanning the NWA, Nova Scotia

populations may be relatively isolated.

An alternative explanation for the signal of demographic expansion is recovery
following a selective sweep, where selectively advantageous haplotypes go to fixation
(e.g. Berry et al., 1991). Recovery from a recent selective sweep could also yield a star-
like phylogeny and lower genetic diversity that would inflate genetic similarity and
gene flow estimates among populations. While a selective sweep cannot be excluded,
given the signal of demographic expansion during the Pleistocene when demographic
expansion would be required to achieve contemporary distributions, a selective sweep

may be a less parsimonious explanation.
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5.4.2 Patterns across the Northwest Atlantic, European wa-

ters and the northeast Pacific

While populations in the NWA had minimal genetic structure, the strongest signal of
regional genetic structure comes from comparing NWA populations to NSE. Struc-
tured AMOVA results with NSE, NEP, and NWA defined as separate regions resulted
in a significant ¢gr of 0.0903 (Table 5.3). Furthermore, of 11 pair-wise comparisons, a
total of 7 pair-wise F g7 values among NSE and the NWA were significant (Table 5.2).
This result indicates that despite being introduced from NWA populations, there are

significant genetic differences among these regions.

Surprisingly, NEP and NSE populations also exhibited the highest levels of ge-
netic diversity. Previous studies have found higher than expected genetic diversity
in recently colonized habitats due to multiple invasions that reduced the founder ef-
fect (e.g. Stepien et al., 2002; Voisin et al., 2005; Simon-Bouhet et al., 2006). In
these studies, however, the diversity observed was not higher than that of the re-
gion of origin, as was the case in our study. The unusually high levels of haplotypes
and nucleotide diversity observed in the introduced North Sea population (Table 5.1)
potentially suggests introductions from multiple source populations, a result that is
consistent with significant Fgp values among NSE and some NWA populations but

no others (Table 5.3).

Curiously, both Pacific and European populations also contained private haplo-
types (Fig. 5.1). The presence of unique haplotypes found multiple times in a single
population suggests genetic isolation (Hartl and Clark, 1997). Given the geographic
separation of the NWA| Pacific and European waters, observation of genetic isolation
should be expected. However, this result is surprising given that both NEP and NSE
populations are thought to have been introduced from the NWA within the last 150
and 400 years, respectively. This seems a particularly short amount of time for local
variation to both evolve in situ and increase in frequency sufficiently to be detected
by sampling 15-20 individuals. In contrast, no private haplotypes were detected in

sampling of 177 individuals from the entire range of M. arenaria in the NWA.
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As a heuristic we constructed a rarefaction curve plotting number of haplotypes
versus number of samples. Although the slope shallows, it did not asymptote over
the range of number of individuals sampled (Fig. 5.3) indicating that sampling 177
individuals was insufficient in the NWA to detect the rare haplotypes that founded
NEP and NSE populations. Paradoxically, if they are in very low frequencies in the
NWA, it seems unlikely that they would be introduced to the Pacific and European
waters. One interpretation of this result is that these private haplotypes may represent
ancestral polymorphism from relic populations that survived the extinction events in
the Pacific and European waters. However if these were relic haplotypes, genetic
divergence in excess of one mutational step would be expected, suggesting that these

are indeed introductions of rare NWA haplotypes.

5.4.3 Management Implications

One of the current management strategies for NWA softshell clam populations is to
increase local abundances by seeding flats with hatchery-reared juvenile clams. As
has been demonstrated in fish, this approach has the potential to decrease or alter
genetic variability by introducing non-native genotypes that may affect the fitness of
both introduced and native stocks (Hansen, 2002).

The low genetic diversity and minimal genetic structure observed in COI combined
with previous results showing limited genetic diversity in Mya arenaria using nuclear
sequences (Caporale et al., 1997) and allozymes (Morgan et al., 1978; Lasota et al.,
2004) suggests that the brood stock origins may not be critical to maintaining levels
of genetic diversity and patterns of genetic structure across the NWA. Results of this
study suggest that brood stocks should be quite similar regardless of their locality,
and their resulting juvenile seed clams are likely interchangeable across geography.

Although we did not detect genetic structure using the mitochondrial COI gene,
there may yet be other genes that might show variability within the NWA. However,
given that Mya arenaria is recovering from a severe reduction in genetic diversity, the
odds of detecting neutral genetic variation that correspond to locally adaptive gene

complexes is remote. Given that local adaptation has been noted in the softshell clam
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for toxin resistance (Connell et al., 2007), there may very well be important regional
genetic differences among clam stocks in non-neutral genes. As such, seeding from

local stocks should be preferred.
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Chapter 6

Sensitivity analyses of a

metapopulation model

6.1 Introduction

The dynamics of most populations are governed by interactions between demographic
processes, spatial processes (e.g. dispersal), and stochastic environmental variability
(e.g. disturbance). Each of these processes is sufficiently complex that ecologists have
tended, depending on their objectives, to focus on one at at time. For instance, con-
servation ecologists tend to concentrate on demographic structure (e.g. Mertz, 1971;
Crouse et al., 1987; Pascual and Adkison, 1994) since population growth or decline is
of primary concern, and is ultimately determined by demographic parameters. Man-
agers of harvested populations, such as fish or deer, also tend to focus on demography
and devise management strategies that are based on parameters such as such as sex,
size, or age (e.g. Brenden et al., 2007; Collier and Krementz, 2007). In recent vears,
interest in implementing marine protected areas has shifted some attention towards
spatial structure (Roughgarden and Iwasa, 1986; Thorrold et al., 2001; Fagan and
Lutscher, 2006). Similarly, growing interest in metapopulation theory (Hanski, 1999)
has increased the number of studies that focus on spatial processes (Kritzer and Sale,
2006).

Ideally, demographic and spatial structure, as well as environmental variability,
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would be taken into account when deciding how best to manage real populations.
In addition, since management efforts are inevitably limited by resources (i.e. time,
manpower, money etc.), it is necessary to have a quantitative way of choosing the
patches and/or stages on which to focus. One way to select patches is according
to their ability to contribute to metapopulation growth rate. Of the many different
indices used for population assessment, growth rate is the most important because of

the power of exponential growth (Caswell, 2001, Chap. 18).

In addition to demography and dispersal, we are interested in how patch dynam-
ics are influenced by the presence of environmental variability; we therefore added
stochastic disturbance to our model. We are specifically interested in how elasticities
to individual patch demographic parameters change with relation to one another. We
explore the case where, in the absence of disturbance, one patch has a positive growth
rate (the “good” patch) and the other has a negative growth rate (the “bad” patch).
We use the “elasticity ratio” throughout this manuscript to quantitatively assess the
relative elasticities of growth rates in the good and bad patches to their respective
parameters. We define this ratio as the elasticity of growth rate to parameters in the

good patch, divided by the elasticity to those same parameters in the bad patch.

The elasticity ratio (E) has the potential to be useful when deciding on the best
strategy to increase metapopulation growth rate. Assuming all things are equal in
the good and bad patch (other than the parameters responsible for causing one to be
good and the other bad), using the elasticity ratio is straightforward. In this simplest
case, if £ > 1, efforts should focus on the good patch, and if E < 1, efforts should
focus on the bad patch. Rarely in natural metapopulations, however, are all things
equal among patches. For instance, it may be more costly to enact changes in one
patch versus another, and the difference in cost should be accounted for in analyses.
If acting in patch 1 is 10 times more expensive than in patch 2, then E need not be
less than 1 but only less than 0.10 to suggest efforts focus on the bad patch. Although
we examine here only on the simplest case where the deciding quantity for E is 1, it
is important to remember that the decision-making process must take into account

the relative effect of managing each patch, including cost, feasibility, legality, etc..
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In this manuscript, we combine demographic and spatial structure in a matrix
metapopulation model. We are not the first to explore this combination, however.
One example is using a “megamatrix” approach (Pascarella and Horvitz, 1998; Tul-
japurkar et al., 2003; Petr, 2007), introduced by Horvitz and Schemske (1986). In
this method, both the spatial and demographic dynamic processes are included in the
projection matrix. More recently Hunter and Caswell (2005) showed how to combine
demographic and spatial structuring in a way that simplifies calculations, particu-
larly calculations involving the sensitivity of growth rate to lower-level parameters.
Their approach uses the vec-permutation matrix to rearrange demographic matrices
arranged by patch and dispersal matrices arranged by stage, thereby allowing both

types of structure within the same model.

Here, we build on the work of Hunter and Caswell (2005), expanding the tech-
nique to stochastic models and calculating the elasticities of metapopulation growth
rate to individual parameters in the demographic and dispersal matrices (Caswell,
2005, 2007). Our construction facilitates the efficient calculation of sensitivity of
metapopulation growth rate to demographic, dispersal, and other parameters. The
formulae maintain these processes as distinct matrices, which allows for more intuitive

exploration of the dynamics of each process.

We begin by examining a two-patch metapopulation with no disturbance or stage
structure using a deterministic model. We then determine the effects of stochastic
disturbance on the population by adding a variable environment to the model and
re-evaluating our results. We explore the elasticity of metapopulation growth rate
to migration parameters specifically since migration dictates the demographic con-
nectivity of metapopulation patches (Stacey et al., 1997) and is especially critical for
long-term metapopulation success when patches are subjected to stochastic environ-
mental variability (Howe and Davis, 1991; Bascompte et al., 2002; Hill et al., 2002).
Finally, we include stage structure to more closely resemble a natural population and
compare the outcomes to previous simpler versions of the model. Throughout this

study, we use “patch 1”7 to refer to the good patch and “patch 2”7 to refer to the bad

patch.




6.2 One Stage, No Disturbance

Imagine a metapopulation consisting of two patches. Let n;(¢) be the population
density in patch ¢ at time ¢, referred to hereafter as population 7. Two processes
acting sequentially will account for changes in n;(t). First, individuals survive and
reproduce with a net per capita rate R; in patch i. Next, a proportion m; of individuals
from patch 7 emigrate to patch 7. Combining these two processes, we can write the

following matrix model to project the population from time ¢ to ¢t + 1:
n(t+1) = An(t) (6.1)
where n(t) = [n,(t) , ns(t)]" and

R1 (1 —ml) RQTTLQ

A= . (6.2)
R] mi R2 (1 = mz)

In our model, we set Ry > 1 and Ry < 1. Thus in the absence of migration, population
1 is increasing in size and population 2 is decreasing in size. In this simple model,
the metapopulation growth rate A is the dominant eigenvalue of A, and the stable

patch distribution w is the right eigenvector corresponding to A.

We used sensitivity analysis to determine the relative effects of changes to R; and
Ry on A. The sensitivities of A to the elements of A are given by the sensitivity

matrix with entries

o\
Sij = 80,2-]-. (63)
This matrix is
o
- (6.4)
v*w

where v is the left eigenvector corresponding to A (Caswell, 2001). The entries of S
are the sensitivity of A to the corresponding entry in A, and therefore depend on a
combination of the parameters that make up that entry. A more interesting analysis

is the sensitivity of A to the lower level parameters that compose A. From Caswell
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Figure 6.1: Contour plots of log E: red contours are where E > 1 and blue contours
are where E < 1. Shaded regions are where A > 1.

>

(2001, Chap. 9), we calculate the proportional sensitivity, or elasticity, of A to the

lower level parameter R; as

R

()/\ (.‘)(Iv,'j

ox R
TTFL n T ;allu 0R1

We then define the elasticity ratio of A to R; as

_ R O\/OR,
" R, OMOR,

(6.6)

If £ > 1, then A is more elastic to changes in R,. If £ < 1, then X is more elastic

to changes in R,. The value of £ can be used to choose patches on which to focus

efforts when the goal is to increase metapopulation growth rate efficiently.
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Figure 6.1 shows log E for different combinations of net reproductive rates, with
my and my ranging from zero to one. When migration out of the good patch was low,
log E tended to be less than 0. (Fig. 6.1). That is, if individuals in the good patch
tend to stay in that patch, then regardless of the fraction of individuals who migrate
out of the bad patch (m;), metapopulation growth rate is more sensitive to changes
in R, than R,. As migration out of the good patch m, increases, the proportion of
individuals located in the bad patch also increases and E becomes less than 1.

Using equations (6.4)-(6.6), we can write an expression for £ in terms of the model

parameters R; and m; and entries of the right and left eigenvectors v and w:

_ Ryw [vg (1 = my) + vomy]

F= ) 6.7
Raw, [vg (1 — my) + vymy) L
The equation for the line where £ = 1 (the dashed line in Fig. 6.1) is
R
me=14=(my—1). (6.8)
R,

To the left of this line (as m; decreases), £ > 1 and increasing R, results in the
largest proportional increase in A\. To the right of this line (as m, increases), £ < 1
and increasing R; results in the largest proportional increase in A.

The values for A are also of importance for patch prioritization, as the transition
from A < 1 to A > 1 indicates where the metapopulation switches from declining
to growing. As one might expect, increasing net reproductive rate in either patch
increases the area of parameter space where A > 1 (shaded areas in Fig. 6.1).

An unexpected result is that there are instances when £ < 1 and A > 1 (Fig. 6.1B,
6.1D). That is, there are times when the metapopulation growth rate is positive and is
more sensitive to net reproductive rate in the bad patch. In these instances, migration
rates are such that the majority of the metapopulation is found in the bad patch.
This can be seen if one imagines a 1:1 line in any of the plots of Fig. 6.1; this line
is where m; = my. Below the line there are more individuals in patch 2, and above
this line, there are more individuals in patch 1. Cases where £ < 1 and A > 1 are

always below, suggesting that a necessary condition for this result is that the majority
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Figure 6.2: Life cycle graph for one-stage. two-patch model with stochastic distur-
bance.

of the metapopulation is found in the bad patch. One might assume that if the
majority of individuals are in the bad patch then growth rate of the metapopulation
would be negative; however, this is clearly not the case. This result indicates that
increasing Ry has a larger effect because it impacts more individuals than increasing
R,. Tt also suggests that not only should individual patch growth rates be considered
when determining a patch’s “goodness” or “badness”, but also the distribution of

individuals among patches within the metapopulation.

6.3 One Stage, With Disturbance

Metapopulations in nature are subject to stochastic environmental variability. We
would therefore like to add stochastic disturbance to our model and reassess the
elasticity ratio. One typical way that disturbance affects a metapopulation is by
reducing its size. Here we model disturbance as a random event with probability p
that acts by reducing population size in patch ¢ by a proportion 0;(t) (Fig. 6.2).

To construct () = [§,(¢),d2(¢)]", we first let z;() be an indicator variable for the
event that population i is disturbed, such that

1 if population 7 is disturbed

zi(t) = (6.9)
0 otherwise
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We then collect these events into the random vector x(¢), and set
() =1- Dx(t), D€ [0,1]. (6.10)

Thus D is a measure of disturbance intensity; given that patch ¢ is disturbed, then
x;(t) = 1 and the population in that patch is reduced by the proportion D. 4(t) is
therefore the number that survive the disturbance, equal to 1 — D. Large values of

D result in high disturbance intensity.

We next assume that x(t) is drawn from a bivariate Bernoulli distribution (Mar-

shall and Olkin, 1985). We set the expectation

Ex@]=| ¥ |, (6.11)
P

so that the patches are disturbed with equal probability at each time. One can
imagine that the occurrence of disturbance at two patches may be independent, or
it may be positively or negatively correlated. If, for instance, the disturbance event
is a large weather event such as a hurricane, it might affect all of the patches in a
metapopulation and therefore covariance of patch disturbances (¢) would be positive.
With ¢ = cov(zy,x3), the variance-covariance matrix for x(t) is the constant matrix

arp) < [ PETP ¢ ), (6.12)

c p(1 —p)

One can show (Appendix) that p and ¢ must satisfy the inequalities

g = pll=ph (6.13)
g = =tk (6.14)
e 2 —(1=p)° (6.15)

and that the sum of probabilities of all possible disturbance events equals 1. Inequal-

ities (6.13)-(6.15) define a two-dimensional parameter space of all allowable combina-
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tions of p and ¢ (Fig. 6.3).

Including disturbance, the deterministic projection matrix (6.2) becomes the stochas-

tic matrix

R|(1—7N|)(51(f) RQ"?’Q(j](f)

A.f — ” - . (()1())
Rl m) (52(1‘) RQ (]. = 777-2) ()3(,)

The stochastic growth rate
-y -
logA\s = lim —=log||As_1--- Apnyl| (6.17)
Sl

is (except under bizarre circumstances) the long-term average growth rate of every
realization of the model with probability 1 (Furstenberg and Kesten, 1960; Cohen.
1976; Tuljapurkar and Orzack, 1980; Caswell, 2001). The elasticity of the stochastic

growth rate to the net reproductive rate in patch i is

dlog A\, 1< RvT(t+ 1) w(t) ‘
=1 6.18
dlog R, T‘BL";, OVt + w (z‘+1) ey

(Caswell, 2005, pg. 80). Here v(t) and w(t) are the stochastic analogs to the left
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and right eigenvectors of the deterministic projection matrix, and r(¢) is the one-step

growth rate

|[Aew ()|
W@l

Equation (6.18) gives the proportional change in log A; with net reproductive rate

Pli]= (6.19)

over many stochastic simulations. Bigger values for (6.18) indicate bigger changes in
log A\s with a proportional change in R;. We define the stochastic elasticity ratio of

log As to the R; as
_ 0OlogA;/0log R,
7 Olog A\, /0log Ry

(6.20)

As in the deterministic case, if £, > 1 then log A\, is more elastic to changes in R;.

Conversely, if F; < 1, then log A, is more elastic to changes in R,.

We calculated log A, and the elasticity ratio (6.20) for R, = 2.5, R, = 0.9, D = 0.9,
and for four migration scenarios in which migration is high or low from the patches

and either equal or not:
0.1, 0.1

-
(
(0.1, 0.9
(my,ma) € <
(0.9, 0.1
(

)
) (6.21)
)
0.9, 0.9)

\

As in the deterministic case, the elasticity ratio is correlated to the distribution of
individuals among patches in the metapopulation. Determining where the majority of
individuals are located is not as straightforward in the stochastic case. Rather than
determine this based on migration rates, we must instead calculate the long-term

average patch distribution.

In (6.4A), there are, on average, more individuals in patch 1 than in patch 2 since
few individuals leave patch 1 m; = 0.1 and most individuals from patch 2 migrate
to patch 1 my = 0.9. As expected, elasticity ratio is greater than 1 and changes
to the good patch will result in proportionally greater increases in metapopulation
growth rate. In the case where migration rates are equal (6.4B-C), individuals are,
on average, distributed equally between the two patches. Again, the elasticity ratio

is greater than 1.
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no disturbance case (Fig. 6.1).
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The result changes if emigration from patch 1 is high and emigration from patch 2
is low (Fig. 6.4D). Migration rates in this case result in more individuals, on average,
in patch 2. This is because migration out of patch 1 is high (m; = 0.9 and most
individuals from patch 2 do not migrate (my; = 0.1). Consequently £, < 1 for
all combinations of disturbance parameters p and c¢. These results parallel those of
the deterministic model: Fs < 1 only if there are more individuals on average in
population 2 than in population 1. Changes to parameters in patch 2 will affect
more individuals of the metapopulation, resulting in proportionally greater increase

in metapopulation growth rate.

For the reproductive rate and disturbance intensity used for Fig. 6.4, the stochastic
metapopulation growth rate is positive only when the probability of disturbance is low
(shaded areas, Fig. 6.4). In addition, the probability of disturbance appears to have
a greater effect on population growth rate than the covariance of patch disturbance.
The set of disturbance parameters p and ¢ for which log A; > 0 is largest when on
average population 1 is larger than population 2. The set shrinks as individuals
become more evenly distributed between the two patches. When population 2 is
larger, as in Fig. 6.4D, log As > 0 only for the smallest values of the disturbance
probability p.

Although there is only a small amount of variability in E; within a given panel,
E, varies dramatically among the four panels (note the log scale). Migration rates
appear to affect F, to a much greater extent than disturbance parameters. F, < 1
only when emigration was high from patch 1 and low from patch 2 (Fig. 6.4D), and
in that migration scenario log A; < 0 for most combinations of p and ¢. There is a
small set of disturbance parameter values (p < 0.05, ¢ = 0) where both log Ay > 0
and E < 1; this occurs at the lowest values of p, when disturbance is so improbable
that results from the stochastic model are comparable to those of the deterministic

model (Fig. 6.1B).

To further understand the effects of migration on metapopulation dynamics, we
calculated the elasticity of log A; to both m; and m, under the same four migration

scenarios explored in Fig. 6.4 (Fig. 6.5). We did not calculate elasticity ratios since
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Figure 6.5: Elasticity of log A\; to changes in migration for four migration scenarios.

Blue contours are where elasticity is negative: red contours are where elasticity is
positive. For all panels, R} = 2.5, R, = 0.9, and D = 0.9.




elasticity values were both positive and negative, thereby complicating the interpreta-
tion of such a ratio. In general, when migration was such that there were, on average,
an equal number of individuals in the two patches (6.5C-6.5F) or there were more
individuals in patch 2 (6.5G-6.5H), elasticity to m; was less than 0 and elasticity to
my was greater than zero. These results indicate that log A\ was negatively impacted
by increasing migration from the good patch, and positively impacted by increasing
migration from the bad patch. Results were more complicated when migration re-
sulted in more individuals on average in patch 1 (6.5A-6.5B). As covariance decreased,
elasticity to m; switched from negative to positive and elasticity to m, switched from
positive to negative. This corresponds to the good and bad patches essentially switch-
ing their “goodness” and “badness” when covariance is negative, so that increasing
migration from patch 1 results in increased metapopulation growth rate, and increas-

ing migration from patch 2 causes decreases in metapopulation growth rate.

6.4 Two Stages, With Disturbance

The softshell clam, Mya arenaria, is a commercially important bivalve commonly
found in New England estuaries. M. arenaria’s life cycle is typical of nearshore marine
benthic invertebrates (Thorson, 1950; Abraham and Dillon, 1986). It is characterized
by a relatively sedentary adult stage, with adults highly aggregated into patches of
suitable habitat. Dispersal between these populations is accomplished by a short-
lived larval stage. In many species, larvae are produced in vast quantities during a
short reproductive season. Almost all of the larvae die before recruiting to the adult
phase.

To model such a population requires at least two patches, with dispersal between
them, and two stages: adults and larvae/juveniles (Fig. 6.6). We assume that demog-
raphy, migration, and disturbance act sequentially (in the intervals (¢,¢;), (t1,¢2) and
(t,t + 1) respectively) within a given projection interval (¢,¢ + 1).

Between times ¢ and t;, the population undergoes demographic processes. The

demographic transitions within population ¢ are given by the matrix B;, with entries
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Figure 6.6: Life cycle graph for two-stage, two-patch model with stochastic distur-
bance. B, M, and D denote the block-diagonal matrices for demography, migration,
and disturbance, respectively (Equations (6.25), (6.29), and (6.31)).




composed of adult survival (o;), per capita larval production and survival (5;), and

survival and maturation of new recruits (;):

0 M
B = B (6.22)

Yi Oi

If we define the entries n;;(t) of the vector n(t) to be the number of individuals in

stage j of population ¢ at time ¢ and arrange the elements as

, (6.23)

then the demographic transitions are described by

n(t;) = Bn(¢) (6.24)

where

Next, individuals migrate between patches. Let M; be the matrix of migration
rates for individuals in stage j. A simple model for migration has these stage-j
individuals migrating from patch 7 at the per capita rate m;;. Thus,

1— my; ma;

M, = . (6.26)

mlj 1-— mgj
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If we now rearrange the vector n(¢;) as

(6.27)

then

fi(ts) = Mi(t)), (6.28)

where

M = . (6.29)
0 M,

Since M. arenaria adults are sedentary, we set M, = 1. To simplify notation, we
will set my; = m, and mo; = ms from here on.

Finally, disturbance reduces the number of individuals in population ¢ by the
fraction ¢d;, as described in equations (6.10) through (6.15). If we return to the

original arrangement (6.23), we then have

n(t+ 1) = Din(ty). (6.30)
where
D,(t 0
D, = 1) (6.31)
0 Ds(t)
and
o(t) 0
D) = : (6.32)
0 (1)

To convert between the vectors n and n, conversions that are required at every
time step, we employ the vec-permutation matrix P (Henderson and Searle, 1981):
(6.33)

(6.34)




For the two-patch, two-stage case

(6.35)

= & IS
)
(e
= O o

At last, combining the demographic, migration, and disturbance processes gives

the model
n(t+1) = An(t) (6.36)

where

A, = D,P"MPB. (6.37)

This decomposition of the projection matrix into its demographic, migratory and
disturbance components is useful. It allows us to use matrix calculus to calculate the
elasticity of the stochastic metapopulation growth rate to each of the demographic

parameters (Caswell, 2007).

The elasticity of log A; to parameter changes is

T

+1 A
8log)\$ i L 1 Z{ Hwit)@vT(t+1) (‘i?vecT ¢ (6.38)
Olog@"  T—oo T <= [r(t th+1) (t+1) 06

where 0 is a column vector of parameters, and the operator vec(-) stacks the columns
of a matrix on top of each other (Caswell, unpublished). The matrix dvecA,/08" is
the derivative of the projection matrix at each time step with respect to each lower-
level parameter in 6. In our model, A; is the product of several matrices, therefore

the calculation of dvecA,/00" is not trivial,

Taking the differential of both sides of equation (6.37) gives
dA = (dD)P"MPB + DP'(dM)PB + DP"MP (dB). (6.39)

Multiplying the first and third terms in equation (6.39) by the identity matrix leaves
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those terms unchanged.
dA = 1(dD)P"MPB + DP"(diM)PB + DP"MP (dB) 1. (6.40)

We can then apply the vec operator to each term in (6.40) . Using the fact that
vec(ABC) = (CT ® A) vecB, we obtain an equation for dvecA in terms of the com-

ponent matrices:

dvecA = [(PTMPB) ®I] dvecD
+ |(PB)T @ (DPT) | dvecM
+ [I" ® (DP "MP)] dvecB. (6.41)

Using the chain rule, along with the first identification theorem of Magnus and

Neudecker (1985) then gives

dvecA dvecD
= = [(PTMPB) ®1]

e’
dvecM 2 [IT 5 (DPTMP)] ﬁw('B

de’ a0’

ki [(PB)T ® (DPT)] (6.42)

The matrices dvecD/d@", dvecM/dO" and dvecB/d@T can be rewritten as in terms

of their component matrices (i.e. D;, M;, and B;). For example,

2
dveclD dvecD
—_— = H®I : 6.43)
67 ; = =
where

and E; is the 2 x 2 matrix with every entry zero, save the (7,7)-th, which is 1 (Magnus
and Neudecker, 1985). To calculate dvecM/dOT, simply replace D and D; in (6.43)

by M and M; respectively. Analogous steps yield dvecB/d@" .

'The procedure described in equations (6.22) through (6.44) are valid for the two-stage, two-
patch case. The elasticity equation corresponding to (6.42) for the general s-stage, k-patch case is
more complicated but can be similarly derived.
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We analyzed model (6.36)-(6.37) with the parameters set at: o; = 0.9, 0 = 0.3,
vy = 0.8, 2 = 0.24, 5, = 5.6, and f#s = 7.5. We chose these parameter values so
that (1) the individual patch growth rates would be similar to the net reproductive
rates for the one-stage case above, i.e. Ry = 2.5 and R, = 0.9; and (2), so that
they would roughly comport with the results of Ripley and Caswell (2006) who esti-
mated demographic parameters for M. arenaria from field studies. Migration rates
are difficult to obtain for M. arenaria, as they are for all benthic invertebrates with
pelagic larvae, but the values m; = my = 0.1 are arguably realistic. We assumed
that disturbance affects all patches and stages with intensity D = 0.9, and set the

probability of disturbance at the two patches to p = 0.5.

When the covariance of patch disturbance ¢ is positive, both patches tend to be
disturbed simultaneously. This preserves the inherently higher quality of population
1, and the resulting elasticities of log As to population 1 parameters (Fig. 6.7A) are
much larger than the elasticities to population 2 parameters (i.e. £, >> 1). When
covariance is negative, the patches tend to be disturbed at different times. As a result,
population 2 can be temporarily of higher quality than population 1. The elasticities
of log A\ to population 2 parameters are therefore larger than they are when ¢ > 0
(Fig. 6.7B). Nevertheless elasticities to population 2 parameters are still much smaller
than those to population 1 parameters. These results parallel those we obtained for
the one-stage model (cf. Fig. 6.4C). In both disturbance scenarios, the elasticity of
log Ay was negative to m; and positive to ms; the magnitude of these elasticities was

quite small, however, compared to the other parameters investigated.

We also explored the effects of dispersal scenarios that resulted in the majority
of the metapopulation density being in patch 1 (m; = 0.1, mo = 0.9; Fig. 6.8A)
or patch 2 (m; = 0.9, my = 0.1; Fig. 6.8B). We chose a low probability of intense
disturbance (p = 0.15, D = 0.9) and no covariance between patches (¢ = 0). In both
dispersal scenarios, log A is more elastic to changes in population 1 parameters than
it is to the corresponding parameters in population 2. When the population in patch
1 is larger than the population in patch 2 (Fig. 6.8A), elasticities to population 2

parameters are much smaller than to population 1. When the majority of individu-
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Figure 6.7: Elasticity of log A to changes in lower-level parameters, @ under two dis-
turbance scenarios: probability of disturbance p is 0.5, with covariance either positive
(A) or negative (B). White bars are elasticities in patch 1; gray bars are elasticities
in patch 2. In both plots, m; = 0.1, mg = 0.1, D = 0.9, and log A\; < 0 (-0.27 and
-0.23 for (A) and (B) respectively).

als are found in population 2 (Fig. 6.8B), elasticity to population 2 parameters are
much closer to those to population 1, but log A, still is most elastic to population 1
parameters. For both migration scenarios, the elasticity of log A was negative to m,
and positive to mo. The magnitudes of these elasticities were quite small for the mi-
gration scenario that resulted in more individuals in patch 1 (6.8A), and much larger
for the second migration scenario that resulted in more individuals in patch 2 (6.8B).
When the model complexity was increased by adding a second stage, the elasticities
of stochastic metapopulation growth rate to population 1 parameters increased, while
those same elasticities to population 2 parameters decreased. Even when the major-
ity of individuals were in the bad patch, growth rate elasticity was still greatest to

parameters in the good patch.

6.5 Discussion & Conclusions

We have demonstrated how to incorporate stochastic disturbance into matrix popu-

lation model with two patches. Our results suggest that stochastic metapopulation
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Figure 6.8: Elasticity of log A\; to changes in lower-level parameters (6) under two
migration scenarios: (A)m; small and mo large, resulting in more individuals in
patch 1, and (B)m; large and ms small, resulting in more individuals in patch 2.
White bars are elasticities in patch 1; gray bars are elasticities in patch 2. In both
plots, p = 0.15, ¢ = 0, and D = 0.9, and log Ay > 0 (0.53 and 0.05 for (A) and (B)
respectively).

growth rate tends to be more sensitive to the population that holds the larger propor-
tion of the total metapopulation. This is true with or without stochastic disturbance,
although as expected metapopulation growth rate is lower when disturbance occurs.
When a second stage was added, the elasticities of stochastic metapopulation growth
rate to population 1 parameters increased, while those same elasticities to population
2 parameters decreased. Metapopulation growth rate is most elastic to adult survival
in population 1 for all scenarios we examined. If the majority of the metapopula-
tion is located in the bad patch, then the elasticity to changes in parameters of that

population increase but do not surpass elasticity to changes in the good patch.

Previous studies have reported that the distribution of individuals is important
for determining the relative effects of good and bad patches, but have approached
the problem from a different perspective. Managers sometimes use abundance as
an indicator of habitat quality (i.e. for determining good and bad patches) because
it is easily determined by surveys (e.g. Peres, 2001). This strategy is not valid,

however, since low-abundance good patches can support high-abundance bad patches
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via dispersal (Pulliam, 1988). When managers neglect to identify processes that
drive changes in abundance, the may incorrectly infer the status of patches based
solely on abundance (Van Horne, 1983). Our results suggest that the problem can be
reversed; one may assume it ineffective to invest in improving the bad patch, while if
abundances are factored in, focusing management efforts on the bad patch will result

in the most efficient increases in metapopulation growth rate.

A more common way of referring to good and bad patches is as “sources” and
“sinks”. The source/sink literature (Runge et al., 2006; Howe and Davis, 1991; Pul-
liam, 1988) and intuition suggest that if one must choose between focusing manage-
ment efforts on a source or a sink, one should always choose the source. Our results
comport with this choice, especially when there is no available information about
exchange rates via migration. This result does not, however, preclude the necessity
of the sink populations to long-term metapopulation persistence. In a constant en-
vironment with density-dependent recruitment, individuals unable to settle at source
populations due to high densities can migrate to sinks. In this way, the presence
of a sink results in larger overall metapopulation size (Pulliam, 1988). Emigration
from the source patch becomes beneficial, as it offers “insurance” against catastrophe
(Levin et al., 1984). This is especially true if the environmental variability is spatially
negatively correlated (Wiener and Tuljapurkar, 1994). We found that this was true
for both one-stage and two-stage cases we examined. As covariance of patch distur-
bances decreases, the elasticity ratio also decreases. That is, effects of parameters
in the bad patch increase, and effects of those same parameters in the good patch

decrease (Figs. 6.4, 6.7-6.8).

The benefits of sinks are even more pronounced when the environment varies
over time. If population density in the source falls below a sustainable level due
to a stochastic event, the sink can serve as a refuge for the metapopulation and
provide emigrants to recolonize the source (Runge et al., 2006). Based on their model
of source/sink dynamics, Howe and Davis (1991) similarly concluded that although
sinks may not persist independently, they contribute to metapopulation size and

longevity. Runge et al. (2006) also found that sinks may be critical to metapopulation
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persistence. They found that although populations may appear to be a sink based on
demographic parameters, there may be a sufficient number of emigrants to classify
it as a source. We similarly found that migration rates to and from the bad patch
are critical for determining their roles in affecting stochastic metapopulation growth
rate. Migration rates that result in more individuals in the bad patch also result in
decreases in the elasticity ratio.

Migration strongly affects metapopulation growth rate, in some cases surpassing
in magnitude the elasticity to demographic parameters (e.g. Fig. 6.8B). The direc-
tional relationship between elasticity and metapopulation growth rate is dictated by
patch quality. Elasticity of metapopulation growth rate to migration from the high-
quality patch tended to be negative, while the same elasticity for the low-quality patch
was positive. These relationships switched when covariance of patch disturbance was
negative, further indicating that the interactive effects of dispersal and demogra-
phy cannot be ignored. Results here strongly suggest that migration rates play a
substantial role in patch dynamics and metapopulation growth rate, and therefore
offer further evidence that metapopulation studies should move towards obtaining
estimates of connectivity to advance the field.

Although the elasticity ratio is a useful metric for determining the relative ef-
fects of patches on metapopulation growth rate, other factors might be necessary to
consider when deciding where to focus management efforts. If one patch is inside
a protected area (e.g. a national park), it may be illegal to take steps towards in-
creasing parameters such as survival or reproduction. One patch may be much more
accessible than another patch due to geography, making it more realistic for managers
to focus on that patch irrespective of the elasticity ratio. Other costs associated with
management efforts might result in similar situations where, once “real world” fac-
tors are considered, the outcome of the elasticity ratio may be a poor indicator of
the most logical management plan. This ratio is therefore useful as a tool for guiding
management decisions, along with associated costs, legality issues, accessibility, and

other considerations.
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6.6 Appendix

6.6.1 Bivariate Bernoulli Distribution

There are four possible disturbance scenarios:

1. Both populations are disturbed (d;,d, = d);
2. Population 1 is disturbed and Population 2 is not (6; = d,d, = 1);
3. Population 2 is disturbed and Population 1 is not (6; = 1,4, = d);

4. Both populations are not disturbed (d;,0, = 1).

If we assign each of these four possibilities a probability ¢;, we can establish a set of

rules under which disturbance acts. First,
Gtgtgtg=1 (6.45)

where 0 < g; < 1. That is, the four disturbance scenarios described above are the only
four possible scenarios that can occur. Second, disturbance must be equally probable
in the two populations so that any differences in sensitivity of metapopulation log A, to
the demography of the populations is due to their inherent “goodness” and “badness”,

i.e. their R;, rather than the nature of the disturbance. If this is true, then

G+g=0p (6.46)
gitqs=2Dp (6.47)

and therefore (6.48)
¢ = g3 (6.49)

Finally, we establish the covariance of disturbance for the two populations. The

covariance of disturbance events at patches 1 and 2 is given by the equation

CO’U(Xl,.X'Q) = E(Xl)(g) = E(;\rl) . E()(Q). ((_)5())

Only one of the four possible scenarios ((1) above) results in a non-zero value for
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covariance. We can therefore simplify equation 6.50 in terms of ¢;, p, and covariance

of disturbance between the two patches (¢) to for our purposes to

c=q —p° (6.51)

where disturbance tends to occur at both patches simultaneously if ¢ > 0, and tends

to occur at only one of the two patches at a time if ¢ < 0.

6.6.2 Derivation of ¢ and p Inequalities

If c = q — p?, and (6.45) through (6.51) are true, then the following inequalities are

also true:

Inequality 1

Rearranging (6.46),
a1 =p— qa-
Given (6.51) and substituting,

c=(p-gq)-p"
Rearranging,
p—p'—c=g,.

Since 0 < ¢, <1,
0<p—-p*-cx<1
and therefore

e<pll=n)
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Inequality I1

Rearranging (6.51),
9
g =c—p°.
Since 0 < ¢q; <1,
0<e—-p?<1
and therefore

c> —p?.

Inequality III

Given (6.45) and substituting (6.49),
Q1+ 292 +q4 = 1.
Rearranging (6.46),
@2=p—q

Combining these gives
G +2p—q1) +q=1
and 2p—¢q; +¢q4 = 1.
Rearranging 6.51, ¢, = ¢ + p*.
Substitution gives
2p=(e+p°) Fga=1
and 2p—c—p? —1=q,.
Since 0 < g4 <1,
0<2p—c—-p*—-1<1.
Rearranging,
c>—-p>+2p—1

g & ~(p*=2p+1)

c> —(1-p).
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Chapter 7

Conclusions

7.1 General Summary

The goal of this dissertation was to explore metapopulation dynamics and population
connectivity, with a focus on the softshell clam, Mya arenaria. 1 first worked towards
developing a method for using elemental signatures retained in the larval shell as
a tag of natal habitat. In concert with this method, I designed and implemented
experiments to understand environmental and biological factors that may influence
elemental signatures. Next, I used a genetic marker to study regional patterns of
diversity over the current distribution of M. arenaria, including populations outside
of the Northwest Atlantic. Finally, I used theoretical approaches to understand the
importance of migration in determining patch connectivity, and the impacts of dis-

turbance on metapopulation patch dynamics.

7.2 Chapter Summaries & Future Directions

In Chapter 2, I reported on experiments designed to determine whether laser abla-
tion ICP-MS was able to remove and measure the first larval shell of M. arenaria
reliably, without burning through to the juvenile shell material underneath. 1 found
that ICP-MS, in its current configuration, consistently ablated material beneath the

first larval shell, rendering the measurements unreliable for determining natal habitat
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based on elemental composition. Results from Chapter 2 have consequences for in-
vertebrate ecologists who wish to use elemental chemistry to explore questions about
population connectivity. Methods that have proven useful for other study systems,
such as otoliths in fishes, should be carefully examined and tested before they are

transferred to a new system.

Although I was not able to measure connectivity of New England softshell clam
populations using their larval shell elemental composition, there may be other sensors
or configurations of the ICP-MS that would be able to accomplish this task. For
these studies, or any study that uses shell elemental chemistry as an environmental
indicator, it is important to understand the effects of factors potentially affecting
shell composition. Such factors may be environmental (e.g. temperature, salinity,
seawater elemental concentrations) or biological (e.g. growth rate, age, physiological

condition).

Chapter 3 investigated the effects of biological factors on elemental composition in
juvenile M. arenaria shells, specifically age and growth rate. I found that growth rate
was negatively correlated to some elements and unresolved in others; one explanation
of the negative correlation with growth rate is that ability to discriminate against
non-Ca?* ions increases with the animal’s size. 1 found that age significantly affected
incorporation of some elements into shell. This was evident in the large differences
in shell chemistry earlier versus later in the juvenile clam’s life. Both of these results
suggest that age and growth rate should be considered when designing and imple-
menting studies where shell elemental composition is used as a proxy for environment,

including connectivity studies.

In Chapter 4, I continued with my investigation of the factors affecting shell el-
emental composition. I determined the effects of temperature and salinity on shell
composition of larval and juvenile M. arenaria, and compared the effects of these
factors between the two stages. I found that both of these environmental variables
influenced shell chemistry for some elements in both life stages, but this relationship
was different for the two stages. The conclusions of Chapter 4 are therefore similar to

those of Chapter 3: environmental factors have the potential to affect shell composi-
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tion, and therefore must be taken into account in studies that use biogenic carbonate
as an environmental indicator. It is important to note, however, that geographic vari-
ability in temperature and salinity may serve to create unique elemental signatures

in habitats that might otherwise produce similar shell chemical compositions.

Chapters 3 and 4 are useful for future studies that use elemental composition of
shell as an indicator of environment, for the purposes of studying population connec-
tivity, climate, pollution, or otherwise. Experiments like those reported in chapters
3 and 4 are essential for interpreting the results of fine-scale chemical analyses that

modern technology, such as ICP-MS, has made possible.

In Chapter 5, I investigated the genetic structure of M. arenaria populations across
the current distribution of the species, testing for patterns of regional differentiation.
[ found that populations exhibited extremely low genetic variation, with a single hap-
lotype of the COI gene dominating at all of the sites. Populations sampled outside
of the Northwest Atlantic exhibited higher diversities despite their more recent in-
troduction. Chapter 5 has implications for management of M. arenaria. One of the
most commonly used management strategies for increasing softshell clam populations
in New England is by seeding less productive flats with juvenile clams that usually
originated from other locations. Our results suggest that this management strategy
is not likely to significantly impact the regional distribution of genetic variation.

[ developed a matrix population model in Chapter 6 to explore the relationship
between migration rates and metapopulation growth rate, and to understand the ef-
fects of disturbance on metapopulation dynamics. Although my model was applied
to M. arenaria for demonstrative purposes, it is broadly applicable to any population
that experiences stochastic environmental variability. First, I used the model to de-
termine what population parameters should be maximized to most efficiently increase
metapopulation growth rate. I found that it is usually best to focus efforts on the
patch with the highest individual population growth rate. It is also important, how-
ever, to determine the spatial distribution of individuals in the metapopulation (i.e.
the migration rates). If migration is such that the majority of individuals are located

in the lower-quality patch, it can be more efficient to focus efforts on protecting that
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patch over the higher-quality patch. I then introduced disturbance and reexamined
the results, finding that they held true when the environment varied stochastically.
Finally, I expanded the model to include two stages in each patch. For the particular
set of parameters I chose, I found that it was always best to focus on the higher
quality patch. The addition of the second stage appeared to reduce the importance
of where individuals are distributed within the metapopulation.

Metapopulations are a useful framework under which to consider many marine
populations. Coastal benthic invertebrates, like M. arenaria, are especially suited
for analysis as a metapopulation: they occur in geographically separated habitats
that are connected via dispersal of the larval phase in the water column. Measuring
larval connectivity (i.e. migration rates) is difficult due to the characteristics of the
larval phase, but this fact does not diminish the importance of migration processes
for influencing metapopulation dynamics. Therefore it is important to have both
theoretical studies (e.g. Chapter 6 of this dissertation) that quantify the importance
of migration, as well as empirical studies (e.g. Chapters 2-5) that seek to measure

actual migration rates.
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