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Abstract

Four algorithms for simulating flicker FM phase noise (f−3 spectrum) are given, two old and
two new. Their Allan deviation and mean square time interval error (MSTIE) are examined.
The MSTIE shows that one of the old algorithms has deficient long-term phase deviations on
average. The Allan deviation does not reveal this deficiency.

1 INTRODUCTION

By a flicker FM model we mean a stochastic process that has a spectral density (in a sense that
can be made precise) that is asymptotically equal to const /f3 as f → 0. Many quartz oscillators
exhibit flicker FM phase noise over wide intervals of Fourier frequency, the evidence being Allan
deviation plots that are approximately flat over two or more decades of averaging time. Therefore,
simulations of systems containing quartz oscillators need to include flicker FM generators. Following
are three classes of existing flicker FM generation algorithms. They all have running time of order
N log N , where N is the number of points to be generated.

• Filter cascade generators [1]. White noise is applied to a set of first-order digital filters in
series; the filters are so designed that the output is a stationary process with approximate
spectrum f−1 over a frequency range whose low end depends on the number of filter stages.
One can obtain f−3 noise by a cumulative sum operation on the f−1 noise. Because these
algorithms generate the output sequentially, they take little memory.

• Discrete spectrum (DS) generators. Complex-valued Hermitian white noise (the Fourier
transform of real white noise) is generated in the discrete frequency domain, multiplied by
f−1/2 or f−3/2, and transformed back to the time domain. This is a special case of a general
method for generating colored noise; the author has no citation for its actual use to generate
flicker FM, but Ref. 3 of [2] cites a suggestion for its use.

1This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract
with the National Aeronautics and Space Administration.
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• Impulse response (IR) generators, discrete-time analogs of Riemann-Liouville fractional inte-
gration (see [2] for continuous-time power-law noise models). White noise is convolved with
a causal filter that represents fractional summation of order 1/2 or 3/2. The Kasdin-Walter
algorithm [3,4] discrete convolution in N log N time by using the FFT.

Our principal aim here is to compare a DS generator, an IR generator, and two new FFT-based
flicker FM generators that use the recent method of circulant embedding for exact simulation of
stationary processes [5-8]. The circulant embedding algorithm is given below; one may think of it as
the discrete spectrum method with a twist. Two statistical properties are used for the comparison:
1) Allan deviation; 2) a form of mean square time interval error (MSTIE) with an initial phase and
frequency removed. Lest this work be merely a discussion of models and algorithms, the comparison
also includes the phase residuals of two precision quartz oscillators that were chosen for flatness
of their Allan deviations. The MSTIE (but not Allan deviation) exposes a deficiency of the IR
generator, the same deficiency that a filter cascade generator has if it is not properly initialized [9]:
the generator’s long-term phase excursions are too small on average. Nevertheless, as Schmidt also
found [10], one can avoid this deficiency by generating twice as many points as needed and using
only the second half.

We will be working with discrete-time phase models xn, −∞ < n < ∞, with sample period 1,
normalized so that their two-sided spectral densities Sx (f), |f | ≤ 1/2, are asymptotic to |2πf |−3

as f → 0. To simulate samples x (nτ0) of flicker FM phase (time) x (t) with one-sided frequency
spectrum S+

y (f) = h−1f
−1 and Allan deviation

√
h−1 ln 4, multiply xn by

√
πh−1τ0.

2 TWO FLICKER FM PHASE MODELS

Before defining the four generators, we define two flicker FM models, against which the generators
can be compared. Although each model for phase xn is a nonstationary stochastic process, its
second increment ∆2xn = xn − 2xn−1 + xn−2 is a stationary, mean-zero, Gaussian process. The
definition of xn is ambiguous in that any constant phase and frequency can be added to it; to pin
down xn exactly, we can fix two values xa and xb. The two models differ mainly in their spectral
densities near the Nyquist frequency f = 1/2 (see Figure 1).

2.1 FD(3/2) (Fractional Difference) Model

For each value of the real parameter δ, there is a process called FD(δ) [11,12] with spectral density
|2 sinπf |−2δ (in a sense to be explained for δ = 3/2). This family has the convenient property that
if xn is an FD(δ), then ∆xn is an FD(δ − 1). (The frequency response of the difference operator ∆
is |2 sinπf |.) In particular, FD(−1/2) is defined as a stationary, mean-zero, Gaussian process zn

with spectral density |2 sinπf |. For its autocovariance (ACV) sequence, sz,n = Ezjzj+n, we have

sz,n =
∫ 1

0
ei2πfn (2 sinπf) df =

1
π

(
1
4 − n2

) . (1)
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By definition, xn is an FD(3/2) process if ∆2xn is an FD(−1/2) process. Then xn is a process
with stationary second increments, and Sx (f) = |2 sin πf |−3 in the following sense: if H is a
finite moving-average filter that contains ∆2 as a factor, then Hxn is stationary and SHx (f) =∣∣H (

e−i2πf
)∣∣2 Sx (f), where H (z) is the z-transform of the impulse response.

It can be proved that an FD(3/2) process xn can be represented in the following way:

xn −
(

1 +
n

n1

)
x0 +

n

n1
x−n1

=
n∑

j=1

hn−juj +
0∑

j=−∞

[
hn−j −

(
1 +

n

n1

)
h−j +

n

n1
h−n1−j

]
uj , n ≥ 1, (2)

where n1 is a positive integer, un is a standard white noise sequence (independent Gaussians with
mean 0 and variance 1), and hn is defined by the power series (1 − z)−3/2 =

∑∞
n=0 hnzn; thus,

hn = (−1)n (−3/2
n

)
, and hn = 0 for n < 0 by convention. One can show that hn ∼ 2

√
n/π as

n → ∞.

2.2 Sampled PPL (Pure Power Law) Model

Starting with a continuous-time process x (t) with stationary second increments and spectral density
|2πf |−3 for all nonzero real f , we sample it at the integers to get a discrete-time process x (n). Its
second increment, z (n) = ∆2x (n), is stationary and has ACV

sz (n) = sx (n + 2) − 4sx (n + 1) + 6sx (n) − 4sx (n − 1) + sx (n − 2) , (3)

where sx (t) is the generalized ACV [13,14] of x (t):

sx (t) =
1
2π

t2 ln |t| for t �= 0, sx (0) = 0. (4)

The spectral density of the sampled process is not |2πf |−3, but

∞∑
k=−∞

|2π (f + k)|−3 , |f | ≤ 1/2 (5)

(see Figure 2).

3 TWO GENERAL ALGORITHMS

Three of the generators under discussion can be quickly given in terms of two algorithms of wider
utility; the second algorithm uses the first. With small changes, these descriptions follow Percival
and Walden [5]. We use a standard complex discrete Fourier transform (called the FFT from now
on) and its inverse, defined for M -point sequences by
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Ak =
M−1∑
n=0

an exp (−i2πkn/M) , an =
1
M

M−1∑
k=0

Ak exp (i2πkn/M) ,

respectively.

3.1 Discrete Spectrum Algorithm

Purpose: Generate values of a real stationary Gaussian process with a desired discrete spectrum.

Inputs: Nonnegative numbers S0, . . . , SN , where N is a power of 2 and Sk is the desired two-sided
spectral density at frequency fk = k/ (2N).

Outputs: Gaussian random variables z0, . . . , zN such that Ezn = 0,

Ezmzn =
1

2N

N∑
k=1−N

S|k| exp (i2πfk (n − m)) .

Procedure:

Generate U0, U1, . . . , UN , V1, . . . , VN−1 as independent standard Gaussians.

Let Z0 =
√

S0U0, ZN =
√

SNUN .

Let Zk =
√

Sk/2 (Uk + iVk), Z2N−k = Z∗
k for k = 1 to N − 1.

Let the real-valued sequence z0, . . . , z2N−1 be
√

2N times the inverse 2N -point FFT of the
Hermitian sequence Z0, . . . , Z2N−1.

Keep the values z0, . . . , zN (or any N + 1 consecutive values).

3.2 Circulant Embedding Algorithm

Purpose: Generate values of a real stationary Gaussian process with a given autocovariance (ACV).

Inputs: Real numbers s0, . . . , sN , the desired ACV up to lag N , where N is a power of 2.

Outputs: Gaussian random variables z0, . . . , zN such that Ezn = 0, Ezmzn = sn−m for 0 ≤ m ≤
n ≤ N .

Procedure:

Let s̃n = sn for n = 0 to N , s̃2N−n = sn for n = 1 to N − 1 (extension of sn by reflection).

Remark: “Circulant” refers to the covariance matrix that corresponds to s̃n.

Let the real-valued sequence S̃0, . . . , S̃2N−1 be the 2N -point FFT of s̃0, . . . , s̃2N−1.
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If any S̃k < 0, the method fails. (This means that the extended circular sequence is not
positive-definite.)

Use S̃0, . . . , S̃N in the discrete spectrum algorithm to generate the zn.

4 FOUR FLICKER FM GENERATORS

All these generators produce approximately N phase values xn, where N is a power of 2. The first
two are approximate; they do not simulate either target model exactly. The last two give exact
simulations of the two target models.

4.1 DS – Discrete Spectrum

Let fk = k/ (2N). Run the discrete spectrum algorithm with input S0 = 0, Sk = (2πfk)
−3,

k = 1, . . . , N , and output x0, . . . , xN . (One could also set Sk = (2 sinπfk)
−3 to approximate the

FD(3/2) model more closely.)

4.2 IR – Impulse Response

This generator is an approximate simulation method for the FD(3/2) model. Its output is given
by the formula

xn =
n∑

j=1

hn−juj , 1 ≤ n ≤ N, (6)

where hn is defined after (2), and u1, . . . , uN are independent standard Gaussians. The convolution
is carried out by zero-padding the sequences to length 2N , Fourier transforming them, multiplying
the transformed sequences, and inverse transforming the result. For details, see [3]. Observe that
(6) is just one part of (2).

4.3 FD – Fractional Difference

This generator is an exact simulation of N + 3 values xn of the FD(3/2) model. Run the circulant
embedding algorithm using the ACV (1) for the input s0, . . . , sN , and z0, . . . , zN as output. It can
be proved that the algorithm succeeds. (The ACV satisfies Craigmile’s criterion [8].) This produces
an exact realization of N + 1 values of FD(−1/2). Then perform two cumulative summations:

yn = yn−1 + zn−1 for n = 1 to N + 1,

xn = xn−1 + yn−1 for n = 1 to N + 2.

The initial values y0 and x0 are arbitrary, and may be set to zero.
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4.4 PPL – Pure Power Law

This generator is an exact simulation of N + 3 values of the sampled PPL model. It is identical
to the FD generator just described except that the ACV (3) is used in place of (1). Again, it can
be proved that the algorithm succeeds. There is one complication: to avoid catastrophic roundoff
error in (3), use the asymptotic approximation

sz (n) ∼ − 1
πn2

(
1 +

1
n2

+
3

2n4

)
(7)

in place of (3) whenever n ≥ 35.

5 COMPARISONS

We compare the four flicker FM generators with each other and with the phase residuals of two
quartz oscillators (Oscilloquartz and C-MAC) that were compared once per second against hydrogen
masers. The test runs were chosen for flatness of Allan deviation between 1 and 1,000 seconds2.

Figure 1 shows a sample output of the four generators with N = 1024. Also shown are the first
1,025 phase residuals of the quartz oscillators, scaled up as explained in the next section. The exact
generators are both initialized so that x0 = x1 = 0. The IR output starts with a small nonzero
value of x1. The DS output, which realizes a stationary process, has no special initial value.

Figure 2 shows the spectral density of the two target models along with the discrete spectrum of
the DS generator for N = 32. The spectral densities, multiplied by (2πf)3, are plotted on a linear
scale against f . As the next section shows, the rise in the sampled PPL spectrum (5) near the
Nyquist frequency is just right to make its Allan deviation exactly flat for all integral τ . The DS
spectrum actually has too little high-frequency power for this purpose, the FD spectrum too much.
For many purposes these high-frequency deviations are of little concern.

5.1 Allan Deviation

Figure 3 shows the theoretical Allan deviation (lines) and the square root of measured Allan variance
(small dots), averaged over 10,000 trials, for the four generators with N = 1, 024. Also shown are
the Allan deviations of the quartz oscillators (symbols) as estimated from their test runs, which
lasted about 45,000 s for the Oscilloquartz, 129,000 s for the C-MAC. The oscillator results were
normalized so that σy (64 s) =

√
(ln 4) /π

.= 0.664, the theoretical value assumed by the PPL model
for all τ . The σ axis has an expanded linear scale to bring out the differences among the plots. The
IR generation was actually performed with N = 2, 048; IR1 refers to the first half of the generated
sequence, which is equivalent to IR with N = 1, 024; IR2 refers to the second half.

2Thanks to Albert Kirk for making these tests available.
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The Allan deviation appears to confirm that all generators behave like flicker FM. The PPL line is
exactly flat. For the other generators, we see the expected minor deviations from flatness for small
τ and an insignificant droop by DS and IR1 for large τ .

5.2 Two-Point MSTIE

Suppose that the phase x (t) of a clock is measured at times t0 − τ1 and t0. For the purpose of this
discussion, the mean square time interval error (MSTIE) of a clock after a delay τ is defined by

MSTIE (τ, τ1) = E
[
x (t0 + τ) −

(
1 +

τ

τ1

)
x (t0) +

τ

τ1
x (t0 − τ1)

]2

, (8)

which is the mean square error of linear extrapolation from the two phase measurements. This
is independent of t0 for all processes x (t) with stationary second increments, including all models
and generators discussed here except IR. Although the method of phase calibration is crude, this
measure serves the purpose of showing how the variance of the long-term phase deviations grows
as we go farther and farther from a fixed calibration interval. (See [15] for a discussion of more
sophisticated calibrations.)

Figure 4 plots theoretical and measured values (averaged over 10,000 trials) of MSTIE(τ, 10) /τ2

against τ for the flicker FM generators. For IR1, t0 = 1; for IR2, t0 = 1, 025. The MSTIE for the
quartz oscillators (normalized as before) was measured by averaging the squared extrapolation error
over all available t0, just as one does when estimating Allan variance. All the curves except IR1
show the same asymptotic π−1 [1 + ln (τ/τ1)] behavior that has been calculated for the PPL model
[?], with a tiny droop at the largest τ for the DS generator. The IR2 curve cannot be distinguished
from the FD curve, but the IR1 curve falls off significantly from the others as τ increases.

6 CONCLUSIONS

According to the tests that we have applied, the DS, FD, and PPL generators are good fits to the
phase noise of a quartz oscillator in its flicker FM range, whereas the IR generator has significantly
smaller long-term mean square phase deviations. Although the Allan deviations of the Oscilloquartz
and C-MAC oscillators (Figure 3) rise as τ increases beyond 64 s, this rise is not enough to explain
why the oscillator MSTIE points (Figure 4) tend to line up with the curves for DS, FD, PPL, and
IR2 (the “second-half” modification of IR), but not with the IR1 curve.

The deficiency of the IR generator is exposed by the two-point MSTIE, but not by the Allan
deviation. Flatness of Allan deviation is a necessary criterion for a flicker FM generator, but it is
by no means sufficient.

The FD and PPL generators are exact simulators of their nonstationary target models. Even
though their outputs live on a finite time interval, they contain contributions from arbitrarily low
Fourier frequencies. The DS generator output, though it is only a stationary process, still behaves
substantially like a nonstationary f−3 process on its design interval. We may regard the IR gener-
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ator as an inaccurate simulator of the FD(3/2) model. Fortunately, one can still get an accurate
FD(3/2) simulation from IR by generating twice as many points as one needs and keeping only
the second half. In this case, one has to use FFTs of size 4N to generate N points. (One can also
improve the accuracy of the DS generator by using an FFT size of 4N instead of 2N .)

The IR generator is deficient because it neglects the past of the FD(3/2) process; the same is true
for the fractional integration models in [2] and the filter cascade generator with zero initial state
[9]. The IR output (6) is just the first term of the right side of the FD(3/2) formula (2), whose
other terms represent the effect of the random shocks uj from the past, j ≤ 0, on the future value
xn. It is one thing to tie the present to zero, as we often do; it is another thing to neglect the past
of these long-memory processes.

Finally, despite being able to produce models and generators that have the right sort of behavior,
the author does not pretend to understand the physical mechanisms behind flicker noise.
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Fig. 1. Phase samples from flicker FM generators and 
quartz oscillators. Generators: DS = discrete spectrum, 
IR = impulse response, FD = fractional difference, 
PPL = pure power law. Oscillators (normalized): 
OQ = Oscilloquartz, C-MAC.

Fig. 2. Spectra of the DS generator (N = 32), the 
FD(3/2) model, and the sampled PPL model.
The spectral densities are multiplied by (2πf)3.
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Fig. 3. Allan deviation of flicker FM generators 
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QUESTIONS  AND  ANSWERS 
 
DAVE HOWE (National Institute of Standards and Technology):  Chuck, what is the 
rationale for reflecting the autocorrelation function and then extending it, the embedded circulant 
approach?  Because, it looks like what you are assuming is that the data that you have is a piece 
of something that is periodic. 
 
CHARLES GREENHALL:  You are only trying to simulate N plus 1 points exactly.  What it 
says is that there is a two-end periodic stationary process whose joint distribution is exactly equal 
to N plus 1 successive values of the stationary process you are trying to simulate. 
 
HOWE:  My question is how do you know a priori that this is a noisy quasi-periodic 
phenomenon?  Why would you do the reflection in a physical sense? 
  
GREENHALL:  It is hard to explain.  If you go through the mathematics, you just find that it 
works.  But it doesn’t always work.  It fails if the phony spectrum you get out of that periodic 
autocorrelation has some negative values.  But it can be proven that, for the FD minus 1/2 and for 
the other model that I worked with in the paper, it always does work. 
 
HOWE:  Because ordinarily you would extend the autocovariance so that it didn’t appear 
periodic, but rather, for example, you have truncated data – you might assume that it would 
exponentially decay.   
 
GREENHALL:  We are not making any assumptions.  We are just trying to get an exact – 
 
HOWE:  Right.  I understand that you are trying to generate flicker.  Second comment:  As far as 
the Allan deviation as a test for flicker, you commented that it was not a good test for flicker. 
 
GREENHALL:  Well, it is a necessary condition, but not sufficient. 
 
HOWE:  Right.  But in long term, you know that the distribution isn’t symmetric.  And is the 
fact that the last point drops off a result of lack of number of degrees of freedom at the last point? 
 
GREENHALL:  Are you talking about IR1? 
 
HOWE:  Yes. 
 
GREENHALL:  No, it has nothing to do with that.  That is just expected values.  That is theory. 
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