
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments

regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington

Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection of

information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

a. REPORT

ARO Workshop on Security of Embedded Systems and Networks

14. ABSTRACT

16. SECURITY CLASSIFICATION OF:

Embedded systems and networks are used heavily in critical defense applications. Malicious or accidental failures in

embedded systems can have dire consequences. The integrity of embedded software infrastructures, such as configuration

and code, is of utmost importance. The autonomous nature of embedded systems also poses new challenges in the context

of system integrity.

The purpose of this workshop was for a group of experts to present the state of art of embedded system and network security

S

1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

28-10-2007

13. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department

of the Army position, policy or decision, unless so designated by other documentation.

12. DISTRIBUTION AVAILIBILITY STATEMENT

Distribution authorized to U.S. Government Agencies Only, Contains Proprietary information

9. SPONSORING/MONITORING AGENCY NAME(S) AND

ADDRESS(ES)

6. AUTHORS

7. PERFORMING ORGANIZATION NAMES AND ADDRESSES

U.S. Army Research Office

 P.O. Box 12211

 Research Triangle Park, NC 27709-2211

15. SUBJECT TERMS

embedded systems, embedded networks, security, adversary model, software security, hardware security, robust distributed services,

Languages and Software Engineering, Wireless Sensor Networks, MANET and Cellular Security

Peng Ning, Frank Mueller

North Carolina State University

Office of Contract and Grants

Leazar Hall Lower Level- MC

Raleigh, NC 27695 -7214

REPORT DOCUMENTATION PAGE

b. ABSTRACT

U U

c. THIS PAGE

2. REPORT TYPE

Final Report

17. LIMITATION OF

ABSTRACT

SAR

15. NUMBER

OF PAGES

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

5c. PROGRAM ELEMENT NUMBER

5b. GRANT NUMBER

5a. CONTRACT NUMBER

W911NF-06-1-0448

5M30V2

Form Approved OMB NO. 0704-0188

51429-CI-CF.1

11. SPONSOR/MONITOR'S REPORT

NUMBER(S)

10. SPONSOR/MONITOR'S ACRONYM(S)

 ARO

8. PERFORMING ORGANIZATION REPORT

NUMBER

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER

Peng Ning

919-513-4457

3. DATES COVERED (From - To)

15-Sep-2006

Standard Form 298 (Rev 8/98)

Prescribed by ANSI Std. Z39.18

- 14-Sep-2007

Report on the 2007 ARO Planning Workshop on Embedded Systems and Network Security

Report Title

ABSTRACT

Embedded systems and networks are used heavily in critical defense applications. Malicious or accidental failures in embedded systems can

have dire consequences. The integrity of embedded software infrastructures, such as configuration and code, is of utmost importance. The

autonomous nature of embedded systems also poses new challenges in the context of system integrity.

The purpose of this workshop was for a group of experts to present the state of art of embedded system and network security research and to

discuss and develop a research roadmap. Each invitee contributed a position paper/statement and had 20 minutes to present his/her research

interests/project. A 30-minute group discussion / Q&A session was also scheduled at the end of each session. The research areas covered

under the workshop included

1. Adversary models

2. Languages and Software Engineering

3. Software Security

4. Hardware Security

5. Robust Distributed Systems

6. Wireless Sensor networks, MANET and Cellular Security

This report gives the position papers/statements contributed by the workshop participants, the slides used during the workshop, the summary

of each session, and the research challenges identified by the workshop participants in embedded systems and network security.

(a) Papers published in peer-reviewed journals (N/A for none)

List of papers submitted or published that acknowledge ARO support during this reporting

period. List the papers, including journal references, in the following categories:

(b) Papers published in non-peer-reviewed journals or in conference proceedings (N/A for none)

 0.00Number of Papers published in peer-reviewed journals:

Number of Papers published in non peer-reviewed journals:

(c) Presentations

 0.00

Number of Presentations: 0.00

Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

Number of Non Peer-Reviewed Conference Proceeding publications (other than abstracts): 0

Peer-Reviewed Conference Proceeding publications (other than abstracts):

(d) Manuscripts

Number of Peer-Reviewed Conference Proceeding publications (other than abstracts): 0

Number of Manuscripts: 0.00

Number of Inventions:

Graduate Students

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

Names of Post Doctorates

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

Names of Faculty Supported

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

Names of Under Graduate students supported

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

The number of undergraduates funded by this agreement who graduated during this period with a degree in

science, mathematics, engineering, or technology fields:

The number of undergraduates funded by your agreement who graduated during this period and will continue

to pursue a graduate or Ph.D. degree in science, mathematics, engineering, or technology fields:

Number of graduating undergraduates who achieved a 3.5 GPA to 4.0 (4.0 max scale):

Number of graduating undergraduates funded by a DoD funded Center of Excellence grant for

Education, Research and Engineering:

The number of undergraduates funded by your agreement who graduated during this period and intend to

work for the Department of Defense

The number of undergraduates funded by your agreement who graduated during this period and will receive

scholarships or fellowships for further studies in science, mathematics, engineering or technology fields:

 0.00

 0.00

 0.00

 0.00

 0.00

 0.00

......

......

......

......

......

......

Student Metrics
This section only applies to graduating undergraduates supported by this agreement in this reporting period

The number of undergraduates funded by this agreement who graduated during this period: 0.00......

Names of Personnel receiving masters degrees

NAME

Total Number:

Names of personnel receiving PHDs

NAME

Total Number:

Names of other research staff

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

Sub Contractors (DD882)

Inventions (DD882)

Proceedings of 2007 ARO
Planning Workshop on Embedded

Systems and Network Security
February 22-23, 2007

Raleigh, NC, USA

Edited by Peng Ning

ARO Planning Workshop on Embedded Systems and
Network Security

February 22-23, 2007, Raleigh, NC, USA

Workshop Organizers:

Cliff Wang (ARO)
Peng Ning (NCSU)
Frank Mueller (NCSU)

Workshop Participants:

Kang Shin (U Mich)
John Stankovic (UVA)
Phil Koopman (CMU)
Wenliang Du (Syracuse U.)
Virgil Gligor (UMD)
Radha Poovendran (UW)
Adrian Perrig (CMU)
Gene Tsudik (UCI)
Mike Reiter (CMU)
Jack Davidson UVA)
Hsien-Hsin Lee (GaTech)
Suman Banerjee (U Wisc.)
Somesh Jha (U Wisc.)
Sean Smith (Dartmouth U.)
Wenye Wang (NCSU)
Purush Iyer (NCSU)
Yan Solihin (NCSU)
Tao Xie (NCSU)

Background

Embedded systems and networks are used heavily in critical defense applications. Malicious or
accidental failures in embedded systems can have dire consequences. The integrity of embedded
software infrastructures, such as configuration and code, is of utmost importance. The
autonomous nature of embedded systems also poses new challenges in the context of system
integrity. Since embedded systems are reactive, unexpected environment events or environment
events generated by a malicious adversary can cause failures in embedded systems and
networks. Embedded systems and networks often have to operate autonomously in a changing
environment. Therefore, infrastructure of an embedded system has to be updated to adapt its
behavior to the change in environment or the overall mission. Unauthorized or unverified
updates to the infrastructure of an embedded system can compromise its integrity. This workshop
intends to bring researchers that have expertise in a variety of techniques for ensuring the
security and integrity of mission-critical embedded systems and networks.

Objective of the Workshop
The purpose of this workshop was for a group of experts to present the state of art of embedded
system and network security research and to discuss and develop a research roadmap. Each
invitee contributed a position paper/statement and had 20 minutes to present his/her research
interests/project. A 30-minute group discussion / Q&A session was also scheduled at the end of
each session.
The research areas covered under the workshop included

1. Adversary models
2. Languages and Software Engineering
3. Software Security
4. Hardware Security
5. Robust Distributed Systems
6. Wireless Sensor networks, MANET and Cellular Security

The following sections of this report give the position papers/statements contributed by the
workshop participants, the slides used during the workshop, the summary of each session, and
the research challenges identified by the workshop participants in embedded systems and
network security.

Session I – Adversary Models
Session Chair: Peng Ning

Handling New Adversaries in Secure Mobile Ad-hoc Networks

Virgil D. Gligor

Electrical and Computer Engineering Department

University of Maryland

College Park, Maryland 20742

1. The Problem

Invariably, new technologies introduce new vulnerabilities which often enable new attacks by increasingly
potent adversaries. Yet new systems are more adept at handling well-known attacks by old adversaries
than anticipating new ones. Our adversary models seem to be perpetually out of date: often they do not
capture adversary attacks and sometimes they address attacks rendered impractical by new technologies.
An immediate consequence of using an out-of-date adversary model with a new technology is that security
analysis methods and tools cannot possibly handle the new vulnerabilities thereby leaving users exposed to
new attacks. An equally compelling reason for investigating new adversarial capabilities in Mobile Ad-hoc
Networks (MANETS) is this: without a precise adversary definition the very notion of security becomes
undefined. For instance, the fundamental question of ”what is the set of threats addressed” by a given
secure protocol cannot be answered without an adversary definition.

In short, we need to provide (1) a new definition for the new adversary attacks made possible by Mobile
Ad-hoc Networks (MANETS), (2) demonstrate that this new definition is more general than the traditional,
formal network adversary models (including the classic Dolev-Yao and Byzantine models), (3) illustrate
how this new adversary is countered with new practical protocols that operate under realistic performance
and cost constraints. Interesting protocols to investigate using the new adversarial definition include those
typically used in MANET management, distributed sensing and data fusion, as well as the more traditional
authentication protocols for principal and node-to-node authentication.

2. Background

A common vulnerability of MANETS, and in general of all networks whose nodes operate in hostile
environments, is is the possibility of physical capture and control of network devices by an adversary. Frank
Stajano’s ”big stick principle,” which states that whoever has physical control of a device is allowed to take
it over, suggests that such an adversary is ”difficult” to counter. In fact, no amount of device protection, nor
increased computational workload imposed on this adversary, seems to suffice: the adversary can selectively
control the inputs to network devices without causing physical tampering and thus can corrupt network
operations, and can selectively jam the outputs of network devices in a stealthy manner and thus deny
network operations. This implies that protecting device secrets (e.g., cryptographic keys) via physical security
measures, which currently range from those employed by smartcards (very little tamper resistance) to those
of IBM 4758 crypto co-processors (highest FIPS 140 evaluation), is both unrealistic and inadequate in the
face of the new adversary. Even when the cost of strong physical security measures is affordable in some
traditional networking environments (e.g., banking), such protection is inadequate in MANETS because
access to a node’s internal state is (1) usually possible without direct access to the protected cryptographic
keys and (2) typically the form factors and resource requirements (e.g., energy) of the protective devices
(e.g., IBM 4758 card) are not suitable for the limited power and small form-factor MANET nodes. Thus, in
captured MANET nodes (e.g., PDAs, laptops) access to the internal states by an adversary cannot always
be prevented.

A further problem caused by this new and ”difficult” adversary is that of adaptive capture of MANET
nodes: once a node is physically captured and its internal state discovered, all the secrets (e.g., crypto-
graphic keys) which the node may use for authentication with with other nodes are compromised. Now the
adversary can proceed to selectively capture additional nodes that execute network applications. Thus the
new adversary can control multiple nodes of a network thereby enabling collusion attacks perpetrated by
cooperating captured nodes.

1

A new MANET adversary model should include new features that are currently not present in the
traditional formal models. To see this, let us recall, for instance, the key features of the Dolev-Yao model
that dominated most analysis of cryptographic protocols for the past two decades. The Dolev-Yao model
has three basic components, namely:

1) the presence of the the ”man-in-the-middle” (MITM) everywhere in the network. That is, the adversary
can launch any MITM attack on any and all network links and thus can read, replay, block, insert messages
anywhere.

2) the adversary can send and receive messages from any legitimate principal (e.g., node) of the network.
Thus, the adversary can freely communicate with all legitimate principals and nodes of the network and use
them as oracles in attempts to discover secrets and forge messages. And,

(3) the adversary can be a legitimately registered principal of the network. Thus, s/he can attack other
network nodes by exploiting protocol features and vulnerabilities.

While the Dolev-Yao adversaries appear to be extremely powerful in any network, they lack the capa-
bilities of the new network adversary enabled by MANETS. For instance, the Dolev-Yao adversary cannot
capture network nodes an discover other principals’ or other nodes’ secrets. Further, this adversary does
not address the threat of collusion attacks launched by cooperating captured nodes under the adversary’s
control. Finally, this adversary cannot modify a network’s trust and physical topology. For instance, a
Dolev-Yao adversary cannot read a node’s internal state, replicate it on other nodes under its control and
insert the controled nodes within the network.

A similar analysis shows that the traditional Byzantine adversaries typically used in consensus protocols
are also less general than the new MANET adversaries. For example, such adversaries have a ”threshold” be-
havior: below a fixed threshold of captured nodes they can be countered (e.g., 1/3 captured nodes if message
authentication cannot be provided and a simple minority, otherwise). In MANETS applications, substantial
damage can be perpetrated even by capturing substantially fewer nodes than the Byzantine thresholds indi-
cate. Further, the traditional notion of adversary “mobility,” which suggests that the Byzantine adversary
captures a set of up to ”t” nodes in some protocol state and then captures a totally different set of up to
”t” nodes in another state [5], has changed. The new adversary’s behaviour is monotonic and not limited to
”t” nodes: once a node is captured, it stays that way and the number of captured nodes is not limited to a
fixed threshold value, ”t.”

3. What is Needed ?

We suggest that an adversary model is needed that is suitable for the new threats posed by using MANET
technologies in hostile environments. Once a comprehensive definition of the adversary is given, it become
necessary to investigate how this adversary can be handled in practical ways within the preformance and
cost constraints of typical MANETS. Specifically we nned to investigate how to handle the new adversary
within specific MANET protocols.

While perfect physical security of ad-hoc network devices is both currently unrealistic and fundamentally
inadequate a goal, ”good-enough” network security in the face of ”difficult” MANET adversaries can be
obtained with relatively inexpensive technologies. For example, algorithmic adversary-detection technologies
can be based on emergent properties and protocols. Intuitively, emergent properties are features that cannot
be provided by individual network nodes themselves but instead result from interaction and collaboration
among these nodes. Although one may think of the creation of an ad-hoc network as a set of emergent
connectivity and routing properties, our primary focus is on the specific properties that may emerge after
the ad-hoc networks are thus established. The emergent properties and protocols we propose to study for
the handling of ”difficult” MANET adversaries are different from traditional network properties established
via protocol interactions in several fundamental ways. First, it is possible that neither the time nor the
locus of emergence of these properties can be easily anticipated. Second, the emergence of these properties
may be uncertain, in the sense that it may be probabilistic. Third, these properties may be transient, in
the sense that they may disappear from the ad-hoc network during normal operation and not as a result of
exceptional events; e.g., node or protocol failures.

2

We believe emergent properties and protocols are essential to handling ”difficult” adversaries; e.g., ad-
versaries that exceed the powers of the traditional ”Dolev-Yao” and ”Byzantine” adversaries. Emergent
properties can be used to detect, often probabilistically, the presence of a ”difficult” adversary and to pin-
point with reasonable accuracy the affected network area (e.g., identify a specific captured node, a particular
property of captured nodes) [6, 4]. Correct assessment of node capture and replication is important for oth-
erwise false detection may also lead to node revocation [2], which in turn may lead to network partitioning
and denial of service. Similarly missed detection may lead to node replication and collusion among replicas
also leading to network partitioning and/or false data injection and application corruption.

Finally, emergent properties help determine the scalability and resilience of ad-hoc networks. For example,
emergent properties (such as establishment of secure communication paths in sensor networks via random
key pre-distribution) may place constraints on the network size but may also imply resilience of network
communications below a certain threshold of compromised nodes [1].

References

[1] H. Chan, A. Perrig, and D. Song, “Random Key Predistribution Schemes for Sensor Networks,”
Proc. of the IEEE Security and Privacy Symposium, Berkeley, CA, May 2003 (available at
http://www.ece.cmu.edu/˜adrian).

[2] H. Chan, V. Gligor, A. Perrig, and G. Muralidharan, ”On the Distribution and Revocation of Crypto-
graphic Keys in Sensor Networks,” IEEE Transactions on Dependable and Secure Computing, vol. 2,
no. 3, July-Sept. 2005.

[3] L. Eschenauer, V.D Gligor, and J.S. Baras, “On Trust Establishment in Mobile Ad-Hoc Net-
works”, in Security Protocols, Christianson et al. (eds.), Cambridge, UK, April 2002. (available at
http://www.ee.umd.edu/˜gligor)

[4] J. McCune, E. Shi, A. Perrig and M. K. Reiter. “Detection of Denial-of-Message Attacks on Sensor
Network Broadcasts,” Proc. of the IEEE Symp. on Security and Privacy, Oakland, California 2005

[5] R. Ostrovsky and M. Yung, “How to Withstand Mobile Virus Attacks,” ACM Symp. on Principles of
Distributed Computing, 1991, pp. 51-59.

[6] B. Parno, A. Perrig, V. Gligor “Distributed Detection of Node Replication Attacks in Sen-
sor Networks,” IEEE Symposium on Security and Privacy, Oakland, CA. 2005. (available at
http://www.ece.cmu.edu/˜adrian).

3

Some challenges in wireless security
Suman Banerjee

Department of Computer Sciences, University of Wisconsin,Madison, WI 53706, USA
Email: suman@cs.wisc.edu

1 Introduction

Wireless communication technologies provide users with significant flexibility and portability and hence is
being widely adopted as a preferred mode of communication inmany military and civilian applications. By
eliminating the need for devices to be tethered by wires, such technologies enable new usage scenarios not
otherwise possible. A number of mobile, in-range wireless devices can self-organize themselves into an
ad-hoc network — such capabilities have many applications,e.g., for first responders.

However, such increased flexibility comes with increased vulnerabilities. Many unique vulnerabilities in
the wireless environment occur due to the shared and open nature of communication. In this short document,
we discuss some of these new threats, recent approaches to mitigate them, and further challenges that need
to be addressed.

2 Potential threats
While many of the vulnerabilities in wireless environmentsare similar to those in a wired network, oth-
ers are fairly unique in nature. A lot of ongoing research anddesign efforts are addressing many of these
vulnerabilities. Some of these issues that have received significant attention in recent years include mutual
authentication to users prior to communication, as well as data confidentiality, and data integrity. For exam-
ple, the 802.11i standards are being used to provide such authentication in wireless LAN environments [1].
However, even if these concerns are reasonably addressed, many further challenging security concerns re-
main.

- Availability attacks: The goal of these attacks are to reduce the availability of the wireless medium to
legitimate users. The inherent broadcast nature of the wireless medium implies that an attacker can easily
mount such attacks by selectively interfering with legitimate communication. For example, an attacker can
transmit packets with high NAV values, that prevent any legitimate user from accessing the channel for long
durations of time.

- Energy attacks: An attacker can easily send wireless traffic to a victim node that requires the latter to
process such traffic prior to realizing such traffic to have nolocal relevance. However, the effort of decoding
such traffic requires power consumption, and slowly drains the battery of the mobile node. Such attacks are
easy to mount and require sophisticated strategies to combat.

- Location privacy and authentication: An attacker can monitor communication patterns in the medium
to continuously track the location of different users in theenvironment. In order to guard against such attack
capabilities, it is important to design strategies that allow users privacy of their location information. How-
ever, design of such tools can benefit attackers too — if location privacy can be carefully preserved, then
attackers can utilize them to hide their own location from the system.

3 Approaches to mitigate such attacks
We now discuss some approaches that may be useful in mitigating such attacks in wireless environments.

- Availability attacks: The simplest form of an availability attack is PHY layer ’bit-jamming’ approach,
where the attacker causes continuous interference on the medium. Such attacks, however, are energy inef-
ficient. They require attackers to expend a lot of energy, a process which can potentially make the attack

1

detection and mitigation tasks easier. In contrast, an intelligent attacker may choose to attack the MAC
layer of the protocol stack. Since MAC layers typically define cooperation-based techniques for medium
access, an attacker (a non-cooperating node) can selectively mount attacks on specific MAC control frames
to disrupt all MAC level communication. Such an attack incurs very low energy costs at the attacker.

Hence, mitigation of availability attacks both at PHY and MAC layers should be an important compo-
nent of the wireless security research agenda. At the PHY layer, number of interesting approaches can be
researched, including various channel-matched signalingschemes, efficient packet coding, on top of con-
ventional spread-spectrum and antenna nulling approaches. At the MAC layer, it may be possible to design
new MAC protocols that utilize randomization and obfuscation techniques making it difficult for attackers
to opportunistically attack or fake MAC control frames.

- Energy attacks: These attacks are quite simple to mount and yet very effective in disrupting commu-
nication. Within the context of this workshop, these attacks are are applicable to both MANETs and mobile
phones. For mobile phones this problem can be particularly vexing, since the user has no explicit way of
pre-filtering against such irrelevant messages sent by an attacker. We believe that proper security against
these attacks would be multi-dimensional. One component ofthe solution will include support from less en-
ergy constrained devices that are not necessarily co-located with the device under attack. Another approach
may be to design strategies that can quickly evaluate the value of incoming packets to the user. However,
the speed (and energy costs) of such evaluation would trade-off against the accuracy of the decision process.

- Location privacy and authentication: There is an inherent tradeoff between the privacy of location
information of users and the ability for the system to authenticate the same information. The biggest chal-
lenge in maintaining location privacy stems from the ability of an attacker to triangulate the location of a
transmitter based on received signal strength, angle or arrival, and other such properties. Different strategies
can be considered to provide location privacy both at PHY andMAC layers. For example, it might be pos-
sible to utilize antenna-nulling techniques that obfuscate signal strength information. Similarly, the system
may design techniques to induce additional interference that achieves the same effect.

Location authentication is also a difficult problem becausetools useful for privacy can be employed
by attackers to guard against the system’s ability to determine the user’s or the attacker’s location. Past
research has studied different statistical techniques forlocation determination that are based on received
signal strength from different transmitters at a given location. However, location determination based on
received signal strength information is relatively easy toattack. In particular, an attacker can construct
efficient models that allows it to infer received signal strength in different parts of the physical space. Such
a capability will allow an attacker to fake its own location to the system. Some recent work utilizes the
notion of wireless congruity [2], which provides location authentication based on the “common experience”
of nodes that are physically close to each other. Hence, if the location of a set of trusted reference points
can be determined, then a proximity metric can be defined thatallows for location authentication. Further
evaluation of these and other such schemes need to studied.

Finally, the tradeoffs between location privacy mechanisms and the need for location authentication is a
challenging domain of work and will be an important direction of future study.

References

[1] IEEE. Amendment to standard for telecommunications andinformation exchange between systems -
LAN/MAN specific requirements - part 11: Wireless medium access control (MAC) and physical layer
(PHY) specifications: Medium access control (MAC) securityenhancements. IEEE Standard 802.11i,
2004.

[2] A. Mishra, S. Rayanchu, A. Shukla, and S. Banerjee. Towards robust localization using wireless con-
gruity. In ACM HotMobile, February 2007.

2

1

VDG, Feb 22, 2007 1
 Copyright © 2006

Handling of New Adversaries
in Secure MANETs

Virgil D. Gligor
Electrical and Computer Engineering

University of Maryland
College Park, MD. 20742

gligor@umd.edu

ARO Workshop on Embedded Systems and Network
Security

Raleigh, NC
February 22-23, 2007

VDG, Feb 22, 2007 2
 Copyright © 2006

Overview

1. New Technologies often require a New Adversary
Definition

Ex. – sensor and mesh networks, MANETs

2. Continuous Vulnerability State: use old Adversary Models
for New Technologies

3. Challenge: Define New Adversary Models and Security
Protocols to Handle New Threats in a Timely Manner

2

VDG, Feb 22, 2007 3
 Copyright © 2006

A system without an adversary definition cannot
possibly be insecure; it can only be astonishing…

… astonishment is a much underrated security vice.
(Principle of Least Astonishment)

VDG, Feb 22, 2007 4
 Copyright © 2006

1. New Technology ≈> Vulnerability ~> Adversary <~> Methods & Tools

Why an Adv. Def. is a fundamental concern ?

-sharing user-mode confidentiality and untrusted user- sys. vs. user mode (’62->)
 programs& data; integrity breaches; mode programs rings, sec. kernel (’65, ‘72)
- computing utility system penetration; & subsystems FHM (’75) theory/tool (’91)*
(early – mid 1960s) acc. policy models (’71)

- shared stateful DoS instances untrusted user DoS = a diff. prob.(83-’85)*
services processes; formal spec. & verif. (’88)*

 e.g., DBMS, net. protocols concurrent, DoS models (’92 ->)
 dyn. resource alloc. coord. attacks
(early - mid 1970s)

- PCs, LANs; read, modify, block, “man in the middle” informal: NS, DS (’78–81)
public-domain Crypto replay, forge active, adaptive semi-formal: DY (‘83)
(mid 1970s) messages network adversary Byzantine (‘82 –>)

 crypto attk models (‘84->)
 auth. prot. analysis (87->)

- internetworking large-scale effects: geo. distributed, virus scans, tracebacks
 (mid – late 1980s) worms, viruses, coordinated intrusion detection

 DDoS (e.g., flooding) attacks (mid ’90s ->)
2. Technology Cost -> 0, Security Concerns persist

3

VDG, Feb 22, 2007 5
 Copyright © 2006

Continuous State of Vulnerability

New
Technology ≈>

New
Vulnerability ~>

New
Adversary Model <~>

New Analysis
Method & Tools

+/- O(months) +O(years)

+O(years)

Reuse of Old
(Secure)
Systems &
Protocols

New
Technology ~>

New
Vulnerability

Old
Adversary Model

… a perennial challenge (“fighting old wars”)

mismatch

VDG, Feb 22, 2007 6
 Copyright © 2006

New vs. Old Adversary

 New Adversary =/= Old (NS, Dolev-Yao) Adversary
 - replicated nodes can adaptively modify network and trust topology

Old (NS, Dolev-Yao) Adversary can
 - control network operation

- man-in-the-middle: read, replay, forge, block, modify, insert messages
 anywhere in the network

 - send/receive any message to/from any legitimate principal (e.g., node)
 - act as a legitimate principal of the network

Old (NS, Dolev-Yao) Adversary cannot
 - discover a legitimate principal’s secrets
 - adaptively capture legitimate principals’ nodes
 - modify network and trust topology (e.g., by node replication)

4

VDG, Feb 22, 2007 7
 Copyright © 2006

A New App.: Distributed Sensing

VDG, Feb 22, 2007 8
 Copyright © 2006

Distributed Sensing

Application: a set of m sensors observe and signal an event
 - each sensor broadcasts “1” whenever it senses the event;

 else, it does nothing
 - if t ≤ m broadcasts, all m sensors signal event to neighbors; else do nothing

 New (Distributed-Sensing) Adversary
 - captures (i.e., any of m) nodes, forge, replay or suppress broadcasts

(within same or across different sessions)
 - increases broadcast count with outsiders’ false broadcasts

Operational Constraints
 - absence of event cannot be sensed (e.g., no periodic “0” broadcasts)
 - broadcasts are reliable and synchronous (i.e., counted in sessions)

Adversary Goals: violate integrity (i.e., issues t ≤ m/2 false broadcasts)
 deny service (i.e., t > m/2, suppresses m-t+1 broadcasts)

5

VDG, Feb 22, 2007 9
 Copyright © 2006

32

1

8

9

10
4

5

6

7

Communication
Neighborhood

revocation
 target

An Example: distributed revocation decision
[IEEE TDSC, Sept. 2005]

11

12

13

14

m=6, t = 4 votes in a session => revoke target

propagate revocation

 decision

propagate re
vocation

decis
ion

Keying
Neighborhood

VDG, Feb 22, 2007 10
 Copyright © 2006

New vs. Old Adversary

Q: A (Reactive) Byzantine Agreement Problem ?
 - both global event and its absence are (“1/0”) broadcast by each node
 - strong constraint on t ; i.e., no PKI => t > 2/3m; PKI => t >m/2
 - fixed, known group membership

 New (Distributed-Sensing) Adv. =/= Old (Byzantine) Adv.
 - new adversary need not forge, initiate, or replay “0” broadcasts
 - new adversary’s strength depends on a weaker t (e.g., t < m/2)
 - new adversary may modify membership to increase broadcast count (> t)

A: No. Byzantine Agreement Problem =>
 => Constrained Distributed Sensing

(i.e., “1/0” broadcasts, constrained t, constrained membership)
 => Distributed Sensing

6

VDG, Feb 22, 2007 11
 Copyright © 2006

Countermeasures for Handling New Adv.?

1. Detect adversary’s effect and recovery
- Ex. node replica attacks
- Cost ? Traditional vs. Emergent Protocols
- Advantage: always possible, good enough detection
- Disadvantage: “when you’ve been had, you’ve been had by a

professional [S. Lipner cca. 1985]”

2. Avoidance: detect adversary’s presence
- Ex. Periodic monitoring
- Cost vs. timely detection ? False negatives/positives ?
- Advantage: avoids damage done by new adversary
- Disadvantage: not always practical in MANETs, sensor and

mesh networks

3. Prevention: survive attacks by “privileged insiders”
- Ex. Subsystems that survive administrators’ attacks (e.g., auth)
- Cost vs. design credibility ? Manifest correctness

 - Advantage: prevent damage; Disadvantage: very limited use

VDG, Feb 22, 2007 12
 Copyright © 2006

Conclusions

3. How effective are the countermeasures ?
- provide good enough security; e.g., probabilistic security
properties

1. New Technologies => New Adversary Definitions
- avoid “fighting the last war”

2. No single method of countering new and powerful adversaries
- detection
- avoidance
- prevention

1

Adversary Models in Wireless
Networks: Research Challenges

Radha Poovendran
Network Security Lab (NSL)

University of Washington

Questions Posed by the Committee

• What are the three fundamental limitations
of today's security mechanisms?

• What are the three most important
research challenges?

• What are promising innovations and
abstractions for future systems?

• What are possible milestones for the next
5 to10 years?

2

Three fundamental limitations of
today's security mechanisms

• Refer to Virgil’s presentation
• Force-fitting the old models into the

wireless environment
• Considering security as an overlay instead

of a critical robustness requirement
• Optimizing network performance

independently of security

 Most Important Challenges
• Identifying the primitives that can be used to characterize adversary

models
– Characterize space of attacks against the network operations
– Incorporate resource constraints for the adversary (mobility, computation,

stealthiness, multiple presence)
– Address adaptive (intelligent) as well as mobile adversary
– Differentiate selfish vs. malicious behavior and network faults

• Defining suitable security metrics
– To quantify the impact of an attack on the network or individual nodes
– To couple the network performance with security
– Flexible enough to incorporate cross-layer impact while being adaptive to

attacks
• Not Ignoring the fact that in large scale networks, statistics often beat

out carefully designed attacks (such as MITM)—Leading to “Passive
attacks of probabilistic nature may be resource and computationally
efficient than active attacks in WSN/RFID.”

• Designing security protocols that leak minimal side information!

3

Promising innovations and
abstractions

• Graph abstractions
– Network connectivity, Throughput
– Robustness to intelligent attacks

• Probabilistic Analysis Techniques for
– Modeling attacks
– Quantifying the impact of attacks
– Tuning defense strategy

• Potential New Primitives (More from Peng,
Adrian)

• New Approaches in Network Optimization

Possible milestones for the next 5
to10 years

• Joint design of performance and security
• Development of performance metrics

– Characterizing/Knowing the limitations of our
solutions

• Adversarial models and extensions of them for
– Heterogeneous environments
– Resource as well as location adaptive attacks

• Also need breakthrough in new crypto primitives
– Lightweight, suitable for resource constrained devices

4

Final Thoughts

• Biggest Limitation: Security is considered
as an afterthought, decoupled from
network performance

• Biggest Challenge: Define cross-layer
security/performance metrics and realistic
attack models

• Final Goal: Span the space of attacks and
quantify their impact

1

Adversary models in wireless security

Suman Banerjee
Department of Computer Sciences

suman@cs.wisc.edu

Wisconsin Wireless and NetworkinG Systems (WiNGS) Laboratory

Wireless localization

Madison municipal WiFi
mesh network
•
• 9 square miles area
• 200+ APs

2

Wireless AP radio
Wireless backbone radio

Municipal Wi-Fi Mesh in Madison

Mesh AP on street light

Gateway

Mesh
Router

Municipal Wi-Fi Mesh in Madison

3

Location applications

•Assume a disaster scenario

Locate position of each
rescue personnel within the
city in a reliable, secure
fashion

Can take advantage of
existing (trusted?) WiFi
mesh deployment and
wireless communication of
rescue personnel

Location applications

G
PR

S1

UMTS

WLAN

GPRS1
UMTS

GPRS2

• Real-time city-bus fleet management

• Where are the different buses?

4

Location security
• Prove a user’s location to the infrastructure
• GPS does not help

• Adversarial scenarios:
– Integrity attacks:

• Attacker pretends to be in a different location
• Attacker makes the system believe that the victim is in a different

location

– Privacy attack:
• Attacker infers location of victim and can track the victim

A specific localization approach
• Partition space into

a grid
• System transmits

some packets
• Participant reports

RSSI tuple
observed

• RSSI tuple is
unique to a location
and is the location
signature

Pkt-2Pkt-1

Pkt-3Pkt-4

5

Adversarial models (1)
• Attacker present in

one location and
observes all traffic
using a regular
antenna
– May be able to infer

the RSSI tuple at
victim

Pkt-2Pkt-1

Pkt-3Pkt-4

Potential countermeasure
• System can employ

randomization
– Hide transmitter

MAC address
– Use random

transmit power
each time

• Attacker may not
know which packet
is transmitted by
which transmitter
– Makes inferencing

difficult

Pkt-2Pkt-1

Pkt-3Pkt-4

6

Adversarial models (2)
• Attacker able to tell

Angle/Direction-of-
Arrival

• Randomization
may not help

Pkt-2Pkt-1

Pkt-3Pkt-4

Adversarial models (3)
• Even more

sophisticated
attacker
– Present in multiple

locations
– Can allow attacker

to have better
location inference

Pkt-2Pkt-1

Pkt-3Pkt-4

7

Time-scheduled transmissions by the system that
 induce collisions may make inferencing harder

More countermeasures

Pkt-2Pkt-1

Pkt-2

Wireless congruity
[HotMobile 2007]

Wireless “congruity”

• Very robust in environments with high
entropy

• First metric :

• A is a trusted monitor, B is the user being
authenticated

8

Congruity implies spatial vicinity

Based on the “congruity”, it is possible to say

if X is near A, B or C

Optimizations

• Considering packets in error is useful

• Thresholding on RSSI of correctly
received packets can also be useful

• Summary:
– Wireless congruity is a promising approach to

implement robust location authentication

9

More countermeasures
• Trusted system can

use MIMO to
create NULLs in
certain directions

• Not always easy to
determine
directions to NULL

• Has other pitfalls

Pkt-2Pkt-1

Pkt-3Pkt-4

NULL

NULL

Adversarial models (4)
• Adversary can

create NULLs at
the victim as wellPkt-2Pkt-1

Pkt-3Pkt-4

NULL

NULL

10

Adversarial models (5)
• Captured node in

the system
Pkt-2Pkt-1

Pkt-3Pkt-4

More adversarial scenarios

Bit-jamming attacks
(protocol-agnostic)

RREQ X

RREP

RREQ X RREQ X

A

X

Protocol-aware attacks

TCP SYN

Random IP
packet

Behavioral attacks

Process
and discard

11

Range of adversary capabilities

• Protocol knowledge

• Energy source

• Location diversity (what communication
can it observe and affect)

• PHY layer capabilities – MIMO,
AoA/DoA inference, antenna sensitivity,
wormholes

• Computation capability

• Characteristics of the wireless topology
itself

• Malice vs mal-function/selfish

• Collusions

• Tradeoff against performance,
resilience, and other metrics

Summary

• Most popular wireless communication
mechanisms are relatively easy to attack

• Adversarial models not carefully
considered when these protocols were
designed

12

Thank you!
Suman Banerjee

Email: suman@cs.wisc.edu

http://www.cs.wisc.edu/~suman

Department of Computer Sciences
University of Wisconsin-Madison

Wisconsin Wireless and NetworkinG Systems (WiNGS) Laboratory

Session II – Languages and Software
Engineering

Session Chair: Frank Mueller

Securing Embedded Software using Software Dynamic Translation 1

Securing Embedded Software
using Software Dynamic Translation

Position Paper for ARO Planning Workshop on
Embedded Systems and Network Security

February 22–23, 2007

Jack W. Davidson and Jason D. Hiser, University of Virginia, {jwd, jdh8d}@virginia.edu

1. Introduction

Embedded computer systems have become key building blocks of our nation’s vital infrastructure. Critical systems
controlled by embedded computer systems include communications systems, transportation and navigation systems,
financial systems, medical systems, power distribution systems, and critical defense systems. Failure or compromise of
such systems can have significant consequences including disruption of critical services, financial loss, and loss of life.
Because critically functionality in embedded systems is increasingly implemented via software, three important
research challenges for securing these systems is to provide protection from malicious observation, making them
tamper resistant, and making them more resilient to unintentional and intentional memory errors in unsafe code that
could be used to compromise an embedded system.

Unfortunately, securing embedded systems present several unique challenges not found in typical desktop or
enterprise systems. Because of cost and power considerations, the execution environment for embedded software is
often resource constrained—CPUs have limited processing power, there is often no memory management unit, and
memory space is limited. Furthermore, embedded systems are frequently deployed in the field and must operate in
physically insecure environments.

In this position paper, we discuss software dynamic translation and its potential for protecting software from
malicious observation and tampering. While software dynamic translation can also be used to provide protection
from unintentional and intentional memory errors that can be used to compromise an embedded system, even a brief
discussion of the needed research and challenges in that area is beyond the scope of this paper.

2. Malicious Observation and Tampering

A trend in embedded systems is to provide functionality, which in the past was usually provided by hardware, via soft-
ware. There are many advantages to using software instead of hardware to provide required functionality—reduced
cost, increased flexibility, the ability to provide enhancements and patches, etc. However, moving functionality from
hardware to software provides malicious parties easier access to valuable intellectual property (IP). In the context of this
position paper, IP means information that an adversary could use for some malicious purpose (e.g., maliciously mod-
ifying a system, discovering a weakness that could be used to disable the system or render it ineffective, etc.) Malicious
observation is the process of obtaining valuable IP. Of course, malicious observation could also be used to obtain valu-
able IP for commercial or financial advantage. Closely related to malicious observation is malicious tampering. Mali-
cious tampering is the modification of software to change its intended behavior to achieve some malicious goal (e.g.,
cause damage, render the system ineffective, subvert some safeguards or licensing checks, etc.). Obviously, to intelli-
gently tamper with a system, an attacker must have some knowledge about the operation of the system. Consequently
malicious observation and tampering are closely related.

Because embedded systems are often deployed in hostile or insecure environments, one must assume that an
attacker can gain physical access to the system. Consequently, an attacker can employ a variety of means to mali-
ciously observe the operation of the software including the use of a virtual execution environment. The adversary can
inspect, modify, or forge any information in the system. An adversary can run the program repeatedly and aggregate
information from multiple runs of the program. In this extremely harsh environment, the adversary “holds all the
cards” and with adequate time and resources, can gain a detailed understanding of the operation of the system.

Securing Embedded Software using Software Dynamic Translation 2

3. Fundamental Limitations of Current Approaches

Current approaches to thwarting malicious observation have focused on making software hard to analyze statically.
Addressing dynamic approaches to malicious observation has received little attention. While hardware approaches to
preventing malicious observation and tampering can be effective in some contexts, hardware approaches may not be
feasible within the cost- and resource-constraints imposed on embedded systems. In a similar vein, the few software
approaches that have been proposed can require considerable computational resources and therefore are not applicable
to embedded systems. Finally, much previous work has assumed an unrealistic threat model where an attacker does
not have unfettered access to the system.

4. Software Dynamic Translation

A promising approach for addressing the very difficult problem of securing embedded software from malicious obser-
vation and tampering is to use software dynamic translation (SDT). SDT is a technology that enables software mal-
leability and adaptivity at the binary instruction level by providing facilities for monitoring and dynamically
modifying a program as it executes. SDT can affect an executing program by injecting new machine code, modifying
existing code, or by monitoring and changing the control flow of the executing program. SDT has been successfully
used in a variety of areas including binary translation, fast machine simulation, dynamic optimization, and to protect
software from attacks that inject malicious code or attempt to change the normal execution flow of the program.

Using SDT, we envision a three-pronged approach to address this difficult challenge. First, SDT coupled
with strong encryption technology can be used to make it difficult and costly for an adversary to statically and dynam-
ically analyze embedded software. However, with physical access to the system and with adequate resources, a sophis-
ticated and determined attacker could eventually obtain a detailed understanding of the software’s operation.
Therefore our second approach is to use SDT to make it difficult for an attacker to examine or modify a running sys-
tem (including the one that an attacker might have obtained for malicious observation). Third, SDT is used to create
diverse versions of the software to make it difficult to aggregate information across different executions of the system.
Dynamic diversity also ensures that knowledge gained by capturing and observing one instance of a system is not
applicable to any other deployed instance. Thus, even if an attacker can determine what modifications to make to
achieve their goal for one instance of the system (i.e., the system to which they have physical access), this knowledge
is not useful for attacking other instances of that system.

5. Milestones

For SDT to be applicable to embedded systems, it must be demonstrated that SDT can be applied to embedded soft-
ware running on typical embedded processors. Preliminary results for the ARM processor using some widely used
embedded benchmarks indicate that SDT can be efficiently accomplished on an embedded system. Research adapt-
ing SDT to other architectures and other types of systems (e.g., hard real-time systems, reactive systems, etc.) needs
to be carried out. Of paramount importance is the ability to perform SDT on resource-constrained systems without
excessive overhead.

A difficult problem is the assessment of the effectiveness of techniques to provide protection against mali-
cious observation and tampering. Of particular concern is that there are no objective metrics or models for assessing
the effectiveness of techniques to protect software against malicious observation when an intelligent human adversary
is guiding the effort (which will almost always be the case). Development of metrics and models for assessing the
effectiveness of techniques used to protect embedded software against malicious observation and tampering is critical.

While hardware solutions to the malicious observation and tampering problem have been proposed, they
can greatly increase the cost of a system. For systems where deployment means the delivery of thousands of devices,
the cost of a comprehensive hardware solution may not be feasible. However, modest hardware additions designed to
support SDT-based solutions to malicious observation and tampering may be cost effective and provide a higher level
of protection than simple hardware- or SDT-based protection mechanisms alone.

Position Paper: Deeply Embedded Survivability

Philip Koopman, Jennifer Black, Theresa Maxino
Carnegie Mellon University

{koopman, jenm, maxino}@cmu.edu

Abstract

This position paper identifies three significant

research challenges in support of deeply embedded
system survivability: achieving dependability at the
enterprise/embedded interface gateway, finding a viable
security patch approach for embedded systems, and
surviving run-time software faults.

1. Introduction
Deeply embedded systems consist of one or more

embedded systems connected to an enterprise system or
to the Internet (e.g., [3]). To be survivable, such systems
must continue to function in the face of faults, whether
accidental or malicious, and whether the faults are
caused by design errors or unexpected operating
conditions. Embedded system survivability can be more
challenging than enterprise survivability because
embedded systems may not be able to perform frequent
reboots, incorporate weekly patches, transfer large
amounts of data, or be cared for by trained system
administrators. Beyond this, the different natures of
embedded control vs. enterprise systems present
fundamental limitations to applying known techniques
from either area to the other. [1]

2. Fundamental limitations
2.1 Time triggered to event triggered interfaces

A fundamental limitation to achieving deeply
embedded system survivability is the inherent mismatch
between time triggered and event triggered systems.

Embedded systems are often “time triggered,”
meaning that they perform periodic computations and
messaging in support of hard deadlines (e.g., [2]).
Because of the dramatically different needs of real time
control systems compared to desktop computing, they
often use specialized network protocols such as CAN
that provide low-cost, but low-bandwidth solutions
optimized for very short messages (often 100 bits or
fewer per message with network speeds on the order of
1 Mbit/sec).

Enterprise systems, in contrast, are usually
characterized as “event triggered” systems with much
larger, sporadic events, and typically have orders of
magnitude more CPU power and network bandwidth.

The interface between the embedded and enterprise
sides of a deeply embedded system is usually in the form
of a “gateway” that provides a bidirectional transition
between the time triggered and event triggered worlds.
Given sufficient resources, each computing paradigm
can be made to simulate the other. Event triggered
systems can schedule events periodically to simulate
time triggered operation. Time triggered systems can
schedule periods so fast that they don’t miss events. But,
those approaches only work in the fault-free case.

Deeply embedded system gateways will encounter
fundamental limitations when attempting to map faults
and responses in one computing paradigm into the other
computing paradigm. For example, what happens when
event triggered messages are clumped in transit, and
arrive faster than the minimum inter-arrival rate assumed
by the time triggered side of the gateway? Queues in the
gateway provide only a partial solution, and can cause
problems when the system encounters queue overflow or
system instability as a result of queue lag time.

In the other direction, time triggered messages that
contain too much value jitter can defeat whatever low
pass filters are in place at the gateway and can
potentially flood the enterprise system with messages.
Leaky buckets and other throttling methods can provide
some relief, but are not necessarily able to do the right
thing in those cases where an event shower is
representative of a true emergency situation rather than a
fault or attack.

Despite a lack of understanding of these fundamental
issues, deeply embedded system gateways are already
being deployed, sometimes in critical systems.

2.2 Limits to the patch mentality
The approach of using security patches to address

emergent attacks is pervasive in the desktop computing
environment. Embedded systems have fundamentally
different constraints that make patching difficult.

Safety critical systems must be recertified each time
critical software is updated. Doing so is usually a costly
and time-consuming process. Quick-turnaround security
patches are currently impracticable if they affect critical
code. Unfortunately, many embedded systems are
designed in such a way that all their code is effectively
critical (i.e., any change to the code might affect critical
properties, so it must all be assumed to be critical).

Strategies to isolate critical from non-critical software on
the same CPU are still a subject of research.

An additional issue with patching embedded systems
is that many of them have a zero down-time
requirement. Maintenance reboots and physical operator
intervention are simply unacceptable in many unattended
applications.

Finally, patching approaches typically assume that the
owner of a system is trustworthy. This is often not the
case in embedded systems. For example, it is relatively
common for sports car owners to install engine
controller software that circumvents pollution emission
and fuel economy controls as a way to get more
performance.

2.3 Limits to the perfect software mentality
Much research in computer science is based on the

laudable goal of creating perfect software. Industry
practices also employ the assumption that “perfection”
(or a close approximation thereof) can be achieved by
identifying all the “important” bugs and removing them.

In the real world, very few application domains have
the time and resources to deploy low defect rate
software. Getting the highest software quality possible
within time and budget is certainly important. But,
spending exponentially increasing resources to chase
down the last few bugs is usually impractical. Instead, it
might make more sense to spend a small fraction of
available resources providing ways to survive bugs that
will inevitably be encountered, rather than throwing all
resources at an attempt to achieve absolute perfection.

3. Research challenges
There are several research challenges that stem from

the limitations just discussed. They are:
Understand what goes into the embedded/

enterprise gateway. While some combination of queues
and message filters can work in the fault-free case,
mapping fault manifestations and survivability
mechanisms across the time triggered to event triggered
interface provides fundamental research challenges.

Make patching of critical embedded software
viable. Patching of unattended, critical embedded
systems provides fundamental challenges that aren’t
encountered in most desktop systems. Creating patching
approaches that maintain system integrity promises to be
difficult.

Increase system survivability by tolerating
inevitable software defects. Software defects are
inevitable in most fielded systems. In some cases these
defects will result in security vulnerabilities. In others
they will result in failures to maintain critical system
properties. Making software faults more survivable

could offer improved cost effectiveness and reduced
system fragility.

4. Promising innovations and abstractions
4.1 Safety invariants

Safety invariants, which are formal expressions of
critical system properties that must hold true, offer new
promise for increasing system survivability.
Traditionally, analysis and testing are used to ensure the
invariants are never violated. But, these techniques only
work for the systems that are modeled (which are
usually fault-free systems). One could also check safety
invariants at run time to detect when a fault has occurred
that is severe enough to compromise system safety.
Safety invariant checks could act as failure detectors that
activate recovery or safe shutdown mechanisms.

4.2 Graceful degradation
The term graceful degradation encompasses several

meanings. The term was coined to describe modular
redundancy in fault tolerant computing, and later
evolved to encompass failover strategies and functional
diversity. More recently, the term has been used to
describe performability tradeoffs in Quality of Service
research. The notion of providing systems that can
partially work rather than only be fully working or fully
failed is essential to achieving cost-effective
survivability.

5. Possible Milestones
Survivability is an emerging research area, with the

current emphasis more on understanding fundamental
problems rather than on comprehensive solutions.
Long-term milestones should include discovering
fundamental tradeoffs, impossibility results, and
workarounds applicable to realistic systems. Short term
research milestones should emphasize characterizing
practical limitations and exploring techniques to offer
near-term improvement to system builders.

6. Acknowledgements
This work had been funded by the General Motors

Collaborative Research Laboratory at Carnegie Mellon
University and the Pennsylvania Infrastructure
Technology Alliance.

7. References
[1] Koopman, P., Morris, J. & Narasimhan, P.,

"Challenges in Deeply Networked System
Survivability," NATO Advanced Research Workshop On
Security and Embedded Systems, August 2005

[2] Kopetz, H., Real-Time Systems: Design Principles
for Distributed Embedded Applications. Kluwer, 1997.

[3] Tennenhouse, D., “Proactive Computing,” Comm.
ACM, 43(5): 43-50, May 2000.

1

• Presentation subtitle:
20pt Arial Regular,
green R223 | G255 | B102

Recommended
maximum length: 2 lines

• Confidentiality/date line: 13pt Arial Regular, white
Maximum length: 1 line

• Information separated by vertical strokes,
with two spaces on either side

• Disclaimer information may also be appear in this area. Place
flush left, aligned at bottom, 8-10pt Arial Regular, white

Indications in green = Live content

Indications in white = Edit in master

Indications in blue = Locked elements

Indications in black = Optional elements

• Presentation title:
28pt Arial Regular, white

Recommended maximum
length: 2 lines

• Group name:
17pt Arial Regular, white

Maximum length: 1 line

• Copyright: 10pt Arial
Regular, white

February 22-23, 2007 | ARO Planning Workshop, Raleigh, NC

Securing Embedded Software
using

Software Dynamic Translation

Jack W. Davidson and Jason Hiser

University of Virginia

• Title/subtitle/confidentiality line: 10pt Arial Regular, white
Maximum length: 1 line

Information separated by vertical strokes,
with two spaces on either side

• Slide heading:
28pt Arial Regular, light
blue R204 | G204 | B255

Maximum length: 2 lines

• Slide body:
18pt Arial Regular, white

Square bullet color:
green R223 | G255 | B102

Recommended maximum
text length: 5 principal
points

• Group name:
18pt Arial Regular, white

Maximum length: 1 line

• Copyright: 10pt Arial
Regular, white

February 22-23, 2007 | Securing Embedded Software Using Dynamic Translation2

Optional slide number:
10pt Arial Bold, white

Indications in green = Live content

Indications in white = Edit in master

Indications in blue = Locked elements

Indications in black = Optional elements

ARO Planning Workshop on Embedded Systems and Network Security

Problem

 Embedded systems key building blocks of nation’s
vital infrastructure

– Communication systems
– Transportation and navigation systems
– Financial systems
– Power distribution systems
– Defense systems
– Etc.

 System functionality is increasingly provided by
software instead of hardware

 Must protect the software in these systems from
malicious observation and tampering

2

• Title/subtitle/confidentiality line: 10pt Arial Regular, white
Maximum length: 1 line

Information separated by vertical strokes,
with two spaces on either side

• Slide heading:
28pt Arial Regular, light
blue R204 | G204 | B255

Maximum length: 2 lines

• Slide body:
18pt Arial Regular, white

Square bullet color:
green R223 | G255 | B102

Recommended maximum
text length: 5 principal
points

• Group name:
18pt Arial Regular, white

Maximum length: 1 line

• Copyright: 10pt Arial
Regular, white

February 22-23, 2007 | Securing Embedded Software Using Dynamic Translation3

Optional slide number:
10pt Arial Bold, white

Indications in green = Live content

Indications in white = Edit in master

Indications in blue = Locked elements

Indications in black = Optional elements

ARO Planning Workshop on Embedded Systems and Network Security

Threat model
 Adversary has physical access to

system
 Adversary controls execution

environment
– Execute directly and observe
– Simulate and observe
– Provide false inputs
– Run repeatedly
– Use sophisticated dynamic analysis
tools

 White-box attack where the
adversary “holds all the cards”

– Example, HD protection recently
cracked
(http://www.theregister.co.uk/2007/02/1
4/aacs_hack/)

• Title/subtitle/confidentiality line: 10pt Arial Regular, white
Maximum length: 1 line

Information separated by vertical strokes,
with two spaces on either side

• Slide heading:
28pt Arial Regular, light
blue R204 | G204 | B255

Maximum length: 2 lines

• Slide body:
18pt Arial Regular, white

Square bullet color:
green R223 | G255 | B102

Recommended maximum
text length: 5 principal
points

• Group name:
18pt Arial Regular, white

Maximum length: 1 line

• Copyright: 10pt Arial
Regular, white

February 22-23, 2007 | Securing Embedded Software Using Dynamic Translation4

Optional slide number:
10pt Arial Bold, white

Indications in green = Live content

Indications in white = Edit in master

Indications in blue = Locked elements

Indications in black = Optional elements

ARO Planning Workshop on Embedded Systems and Network Security

Our Approach: Software Dynamic Translation

 Any software that
intercepts, controls, or
modifies a program as it
runs

 Subsumes:
–Dynamic optimization /
compilation
–Dynamic binary translation
–Dynamic instrumentation (e.g.,
profiling)
–Host virtualization
–Debugging

Application

Host CPU and OS

Target Specific Functions

Strata Virtual CPU

Context Management

Memory Management

Cache Management

S
tr

a
ta

 V
ir

tu
a
l

M
a
c
h

i n
e

Target Interface

Linker

3

• Title/subtitle/confidentiality line: 10pt Arial Regular, white
Maximum length: 1 line

Information separated by vertical strokes,
with two spaces on either side

• Slide heading:
28pt Arial Regular, light
blue R204 | G204 | B255

Maximum length: 2 lines

• Slide body:
18pt Arial Regular, white

Square bullet color:
green R223 | G255 | B102

Recommended maximum
text length: 5 principal
points

• Group name:
18pt Arial Regular, white

Maximum length: 1 line

• Copyright: 10pt Arial
Regular, white

February 22-23, 2007 | Securing Embedded Software Using Dynamic Translation5

Optional slide number:
10pt Arial Bold, white

Indications in green = Live content

Indications in white = Edit in master

Indications in blue = Locked elements

Indications in black = Optional elements

ARO Planning Workshop on Embedded Systems and Network Security

Using SDT for Obfuscation and Anti-tampering

Context Switch

Fetch

Decode

Translate

New

PC

Finished?

No

Strata Virtual Machine

With AT /Obf Engine

Yes

Context

Capture

Yes

New

Fragment

Next PC

Decrypt

inst
x

jmp L 2
inst

y

L 2: inst
3

Dynamic Obfuscation

and Anti -tampering

Transformations

Cached?

Obfuscated and Tamper Reistant

Fragment Cache

Encrypted Application Text

With Static Obfuscations Applied

inst
1

inst
2

…

Do_checksum

 ….
CF n

CF n+3

CF n+4

CF n+5

CF n+1

CF n+2

inst
1

inst
2

…
inst

x

jmp L2
inst

y

…
L2: inst

3

inst
4

cmpl %eax,%ecx
bne L4
inst

5

inst
6

…

• Title/subtitle/confidentiality line: 10pt Arial Regular, white
Maximum length: 1 line

Information separated by vertical strokes,
with two spaces on either side

• Slide heading:
28pt Arial Regular, light
blue R204 | G204 | B255

Maximum length: 2 lines

• Slide body:
18pt Arial Regular, white

Square bullet color:
green R223 | G255 | B102

Recommended maximum
text length: 5 principal
points

• Group name:
18pt Arial Regular, white

Maximum length: 1 line

• Copyright: 10pt Arial
Regular, white

February 22-23, 2007 | Securing Embedded Software Using Dynamic Translation6

Optional slide number:
10pt Arial Bold, white

Indications in green = Live content

Indications in white = Edit in master

Indications in blue = Locked elements

Indications in black = Optional elements

ARO Planning Workshop on Embedded Systems and Network Security

Benefits
 Prevents static disassembly and analysis

– Code is encrypted on disk
– Must run SDT system to materialize code

 Provides dynamic obfuscation of code
– Natural obfuscation of code by SDT system
– Dynamically apply obfuscations

 Prevents manipulation of running code
– Guards prevent changing application or SDT system
– Fragment cache is protected

 Limits leakage of information
– Flush fragment cache frequently
– Multiple runs provide less advantage to attacker

 Provides diverse implementations
– Dynamic transformations applied randomly
– Weakness or vulnerability discovered in one instance not necessarily exploitable in

other instances

4

• Title/subtitle/confidentiality line: 10pt Arial Regular, white
Maximum length: 1 line

Information separated by vertical strokes,
with two spaces on either side

• Slide heading:
28pt Arial Regular, light
blue R204 | G204 | B255

Maximum length: 2 lines

• Slide body:
18pt Arial Regular, white

Square bullet color:
green R223 | G255 | B102

Recommended maximum
text length: 5 principal
points

• Group name:
18pt Arial Regular, white

Maximum length: 1 line

• Copyright: 10pt Arial
Regular, white

February 22-23, 2007 | Securing Embedded Software Using Dynamic Translation7

Optional slide number:
10pt Arial Bold, white

Indications in green = Live content

Indications in white = Edit in master

Indications in blue = Locked elements

Indications in black = Optional elements

ARO Planning Workshop on Embedded Systems and Network Security

Research challenges for anti-tampering in
embedded systems

 Develop metrics for evaluating degree of obfuscation
and resistance to tampering

 Managing overhead (both space and time) in
constrained-resource systems

 Satisfying real-time requirements
 Investigate melding low-cost hardware approaches

(suitable for widely deployed embedded systems)
and SDT approach

 Many others …

• Title/subtitle/confidentiality line: 10pt Arial Regular, white
Maximum length: 1 line

Information separated by vertical strokes,
with two spaces on either side

• Slide heading:
28pt Arial Regular, light
blue R204 | G204 | B255

Maximum length: 2 lines

• Slide body:
18pt Arial Regular, white

Square bullet color:
green R223 | G255 | B102

Recommended maximum
text length: 5 principal
points

• Group name:
18pt Arial Regular, white

Maximum length: 1 line

• Copyright: 10pt Arial
Regular, white

February 22-23, 2007 | Securing Embedded Software Using Dynamic Translation8

Optional slide number:
10pt Arial Bold, white

Indications in green = Live content

Indications in white = Edit in master

Indications in blue = Locked elements

Indications in black = Optional elements

ARO Planning Workshop on Embedded Systems and Network Security

Limiting leakage of information

0%

10%

20%

30%

40%

- 2 4 6 8 10 12 14 16 18 20 22

Runtime (seconds)

A
p

p
lic

a
to

n
 T

e
x
t

T
ra

n
s
la

te
d

 (
%

 o
f

to
ta

l)

No flushing

10s flushing

1s flushing

0.1s flushing

5

• Title/subtitle/confidentiality line: 10pt Arial Regular, white
Maximum length: 1 line

Information separated by vertical strokes,
with two spaces on either side

• Slide heading:
28pt Arial Regular, light
blue R204 | G204 | B255

Maximum length: 2 lines

• Slide body:
18pt Arial Regular, white

Square bullet color:
green R223 | G255 | B102

Recommended maximum
text length: 5 principal
points

• Group name:
18pt Arial Regular, white

Maximum length: 1 line

• Copyright: 10pt Arial
Regular, white

February 22-23, 2007 | Securing Embedded Software Using Dynamic Translation9

Optional slide number:
10pt Arial Bold, white

Indications in green = Live content

Indications in white = Edit in master

Indications in blue = Locked elements

Indications in black = Optional elements

ARO Planning Workshop on Embedded Systems and Network Security

Runtime Overhead

0.5

1

1.5

2

17
7.
m

es
a

17
9.

ar
t

18
3.
eq

ua
ke

18
8.
am

m
p

16
4.
gz

ip

17
6.
gc

c

18
1.

m
cf

18
6.

cr
af

ty

19
7.
pa

rs
er

25
2.
eo

n

25
3.
pe

rlb
m

k

25
4.
ga

p

25
5.

vo
rte

x

25
6.
bz

ip
2

30
0.

tw
ol
f

av
er

ag
e

R
u
n
tim

e
 (

N
o
rm

a
liz

e
d

to
 N

a
tiv

e
 E

x
e
c
u
tio

n
)

No flushing

10s flushing

1s flushing

0.1s flushing

1

1

Challenges In Deeply
Networked System

Survivability
Philip Koopman

February 2007
koopman@cmu.edu

http://www.ece.cmu.edu/~koopman

&Electrical Computer
ENGINEERING

2

Overview
Brief introduction to the world of embedded control
• To a first approximation, desktop CPUs are 0% of the market

High Level look at two issues
• Embedded / Internet Gateways
• An example threat: household thermostats

2

3

My Experience in
Embedded Systems

4

How Many CPUs In A Car Seat?
Car seat photo from
Convergence 2004
• Automotive electronics show

3

5

Car Seat Network (no kidding)
Low speed LIN
network to connect seat
motion control nodes

This is a distributed
embedded system!
• Front-back motion
• Seat tilt motion
• Lumbar support
• Control button interface
• Connects to body controls

network beyond seat for
per-driver customization

CPU

CPU

CPU

CPU

15 Million PCs per month in 2004 (15,000 on this graph)

PCs

4

7

Trend: External Connectivity
Safety critical subsystems will be connected to external
networks (directly or indirectly)
• German proposal:

wireless networks control car’s max. speed
• E-enabled aircraft architecture (next slide)

[Airbus 2004] A-380 scheduled to enter service in 2006

8

Z`

Wargo & Chas, 2003, proposed Airbus A-380 architecture
Passenger laptops are 3 Firewalls away from flight controls!

5

9

Deeply Embedded System Gateway

TCP/IP

GATEWAY(s)

Ent 1 Ent 2

Emb 2Emb 1

Enterprise system

Embedded system

CAN

FlexRay

Vehicle

OnStar, etc.

How Do We Make A
Robust, Secure
Gateway?

PERIODIC
CONTROL

TRANSACTIONS

Emb 2Emb 1
CAN

FlexRay

Vehicle

Embedded system

Enterprise system + Embedded System =
“Deeply Embedded System”

10

Research Area: Embedded/Internet Gateway
What happens at the embedded/internet interface?
• Fault propagation across the gateway presents fundamental

challenges

Embedded
Side

Control-oriented
Time Triggered

Continuous
Real Time

Periodic Messages
Short Messages

Roll-forward
Lower cost

Enterprise
Side
Transaction-oriented
Event Triggered
Discrete
Mostly not Real Time
Aperiodic Messages
Longer messages
Rollback
Higher cost

G
AT

E
W

AY

6

Deeply Embedded
System Testbed

12

Initial Experiment: Queue overflow
How having a long queue can cause you to operate on stale data

Ideal case: Queue
is empty in the

steady state

Transactional
msgs in

Gateway
queue
detail Periodic

msgs out

?
Clumping delay leads to

missed deadline for
periodic messages

Delay due to
clumping

Need a policy for
dealing with having
no message to send.

Now all the messages
delivered to the embedded

system are 1 period old.

?
Two messages delivered, so a
message is stuck in the queue.

Clumped
messages
delivered

7

13

Deeply Embedded Scary Scenario
Consider the lowly thermostat
• Koopman, P., "Embedded System Security," IEEE Computer,

July 2004.

Trends:
• Internet-enabled
• Connection to utility companies for grid load management

Proliphix makes an Internet Thermostat
• (But it we’re not saying that

system has these vulnerabilities!)

• Somebody else makes one
almost exactly like this,
deployed July 2005

14

Waste Energy Attack
“I’m coming home” function
• Ability to tell thermostat to warm up/cool down house if you come

home early from work, or return from a trip
• Save energy when you’re gone; have a comfy house when you

return
• Implement via web interface or SMS gateway

Attack: send a false “coming home” message
• Causes increase in utility bill for house owner
• If a widespread attack, causes increased US energy usage/cause

grid failure
• Easily countered(?) – if designers think to do it!

– Note that playback attack is possible – more than just encryption of an
unchanging message is required!

8

15

Discomfort Attack
Remotely activated energy saver function
• Remotely activated energy reduction to avoid grid overload
• Tell house “I’ll be home late”
• Saves energy / prevents grid overload when house empty

Attack: send a false “energy saver” command
• Will designers think of this one?
• Some utilities broadcast energy saver commands via radio

– In some cases, air conditioning is completely disabled
– Is it secure??

• Consequences higher for individual than for waste energy attack
– Possibly broken pipes from freezing in winter
– Possibly injured/dead pets from overheating in summer

16

Energy Auction Scenario
What if power company optimizes energy use?
• Slightly adjust duty cycles to smooth load (pre-cool/pre-heat in

anticipation of hotest/coldest daily temperatures)
• Offer everyone the chance to save money if they volunteer for

slight cutbacks during peak times of day
• Avoid brownouts by implementing heat/cool duty cycle limits for

everyone

You could even do real time energy auctions
• Set thermostat by “dollars per day” instead of by temperature

– More dollars gives more comfort

• Power company adjusts energy cost continuously throughout day
• Thermostats manage house as a thermal reservoir

9

17

Energy Auction Attacks – Naïve Version
What if someone broke into all the thermostats?
• Set dollar per day value to maximum, ignoring user settings

– Surprise! Next utility bill will be unpleasant
• Turn on all thermostats to maximum

– Could overload power grid
• Pulse all thermostats in a synchronized way

– Could synchronized transients destabilize the power grid?

18

Energy Auction Attacks – Scary Version
What if someone broke into the energy auction server?

• If you set energy cost to nearly-free, everyone turns on at once to
grab the cheap power

• Guess what – enterprise computer could have indirect control of
thousands of embedded systems!

• Someday soon, almost “everything” will be “embedded,” at least
indirectly

10

19

“Unique” Embedded System Requirements
Embedded systems:

Are actually supposed to work
• Do you want to perform a workaround for your water heater?
• Often have 24x7 requirements – zero down time

Often are safety critical
• Have you ever ridden in a fully automated train/peoplemover?

(or an elevator?)

Are very cost sensitive & resource constrained
• A $0.50 CPU can’t run a “big” OS with full security features

Don’t have a sysadmin
• Who’s the sysadmin for your DVD player?
• The owner is often negligent, or even a malicious attacker

Session III – Software Security
Session Chair: Purush Iyer

Software Security Issues in Embedded Systems

Somesh Jha
Computer Sciences Department,

University of Wisconsin, Madison, WI 53706.

1 Introduction

Embedded systems and networks are becoming increasingly prevalent in critical sectors, such as medical
and defense sectors. Therefore, malicious or accidental failures in embedded systems can have dire conse-
quences. Hence, the integrity of embedded software infrastructures, such as configuration and code, is of
paramount importance. The autonomous nature of embedded systems also poses new challenges in the con-
text of system integrity. Since embedded systems are reactive, unexpected or malicious environment events
or can cause failures, which can have dire consequences in critical sectors. Embedded systems and networks
also often have to operate autonomously in a dynamic environment. Therefore, an embedded system has to
adapt its behavior to the change in environment or the overall goal. Unauthorized or unverified updates to
the infrastructure of an embedded system can also compromise its integrity.

In recent years, there have been significant advances in the area of software security. There have been
various techniques developed in the context of software security, such as automated signature generation,
vulnerability assessment, and detecting malicious behavior. However, all these techniques are not directly
applicable in the context of embedded systems because of following reasons:

• Dynamic and configurable environment:Embedded systems are generally deployed in environments
that are highly dynamic and configurable. For example, the environment of an embedded system
deployed in a battlefield is extremely dynamic.

• Changing functional requirements:Functional requirements of an embedded system change over
time. Functional requirements of an embedded system deployed in a battleship change with mission
of the operation.

• Interconnected network of components:Frequently an embedded system is a complex network of
components. Therefore, a malicious or accidental fault in acomponent can lead to a complex cascade
of events in the network.

• Recovery is paramount:Generally, techniques developed in the realm of software security focus on
detection and prevention. Embedded systems are frequentlydeployed in mission critical applications
where consequences of failures can be dire. Therefore, recovery from failures is extremely important
in the context of embedded systems.

2 Promising Research Directions

Extending existing techniques in software security to handle the four abovementioned characteristics of
embedded systems is an important research direction. I willprovide details of two such research directions.

1

• Vulnerability assessment and prevention in presence of a dynamic environment:Existing techniques
for vulnerability assessment have been developed for systems (such as servers) whose environments
are relatively static. Extending dynamic and static analysis techniques for vulnerability assessment
and prevention for systems with dynamic environments is a very interesting research direction. I envi-
sion that existing techniques will have to be extended to incorporate specification of the environment.
In this context, an interesting research direction would beto generate vulnerability signatures [2, 6]
for systems with dynamic environments. I envision the signatures in this case will be parametrized by
a specification of the environment, i.e., signatures will only be valid if certain environment conditions
are satisfied.

• Recovery from malicious or accidental faults:As mentioned before an embedded system is a complex
network of components. Therefore, a fault in a component cancreate a ripple of events throughout
the network. This makes recovery for embedded systems extremely challenging. A causality graph
for an embedded system is a graph where the nodes are events and edges are the causality between
events (e → e′ means that evente can cause evente′). Techniques for discovering a causality graph
of an embedded is essentially for recovering from faults. Essentially the effects of a fault can be
determined from examining the causality graph. Techniquesfor constructing attack graphs [1, 5] and
alert correlation [3, 4]

References

[1] P. Ammann, D. Wijesekera, and S. Kaushik. Scalable, graph-based network vulnerability analysis. In
ACM Conference on Computer and Communications Security, 2002.

[2] D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha. Towards automatic generation of vulnerability
based signatures. InIEEE Symposium on Security and Privacy, pages 21–24, May 2006.

[3] F. Cuppens and A. Mige. Alert correlation in a cooperative intrusion detection framework. InIEEE
Symposium on Security and Privacy, 2002.

[4] P. Ning, Y. Cui, and D. S. Reeves. Constructing attack scenarios through correlation of intrusion alerts.
In ACM Conference on Computer and Communications Security, 2002.

[5] O. Sheyner, J. W. Haines, S. Jha, R. Lippmann, and J. M. Wing. Automated generation and analysis of
attack graphs. InIEEE Symposium on Security and Privacy, 2002.

[6] H. J. Wang, C. Guo, D. R. Simon, and A. Zugenmaier. Shield:Vulnerability-driven network filters
for preventing known vulnerability exploits. InIn the Proceedings of ACM SIGCOMM, Portland, OR,
August 2004.

2

On Software Protection in Embedded Systems

Jisoo Yang and Kang G. Shin
Department of Electrical Engineering and Computer Science

The University of Michigan
{jisooy,kgshin}@eecs.umich.edu

Abstract
We argue that the conventional privilege separation of

a processor has inherent limitations in protecting soft-
ware with higher security requirements, and hence, a new
system of protection should be devised to overcome these
limitations. To enable the new protection, an operating
system needs to be restructured into two layers: the secu-
rity kernel which implements the new protection system,
and the management kernel which manages resources.
The security kernel protects the applications even when
the management kernel is compromised. The security
kernel should be made very thin and simple, thus mak-
ing it suitable for small devices like handsets and smart
sensors & actuators.

Limitations of Current Software Protection
With increasing computation power and storage capac-
ity, many embedded systems are adopting the paradigm
of user/kernel separation of a processor [3] to provide
better software protection and management. This protec-
tion paradigm is characterized by a complete separation
of privilege. Code executing in user mode (i.e., applica-
tions) is prevented from performing sensitive operations,
whereas code executing in kernel mode (i.e., operating
system) is considered privileged and hence, given unlim-
ited power.

This simple protection mechanism is effective in pro-
tecting the operating system (OS), but it does not serve
well the security needs of user applications. In an em-
bedded environment, where applications usually perform
critical operations and carry sensitive data, the applica-
tion must be protected as strongly as the OS. Although
the OS provides certain protection to the applications,
there are inherent limitations with the simple user/kernel
separation and complete reliance on the OS for the appli-
cation protection.

First, there is no effective second-line of defense that
applications can resort to in case the OS is compromised.

Many applications need to protect secret/confidential in-
formation, but once an attacker seizes the control of the
OS, it is very easy for the attacker to observe/steal the in-
formation. Any effort to further protect the information
will be futile as the attacker can exploit the OS’s power
to subvert, reverse-engineer, or simply disable the pro-
tection mechanism.

Second, verifying the correctness of an OS is becom-
ing intractable as its size and functionality continuously
grow—even in an embedded environment—to meet the
increasing demand for more features. Today’s mobile
phones, for instance, require some features comparable
to those of PCs. Unfortunately, it is difficult to reduce the
growing OS verification need due to the coarse-grained
user/kernel separation, where every privileged code has
unlimited power and thus, is subject to verification.

Third, the user/kernel separation generates trust de-
pendencies among software components, which do not
generally correspond to the relations of the component
providers. This mismatch incurs assurance overhead and
generates unwarranted conflicts of interest. For example,
user applications must trust the OS. To trust the OS, the
application providers need assurance of the OS’s trust-
worthiness. For the assurance, a complete and unbiased
validation of the OS is necessary, but doing so generally
goes against the interest of the OS provider due to the
cost of validation and the risk of exposing the system to
others.

Challenges in Designing New Application
Protection

We argue for the need of another system of protection
that can deal with the above limitations. The new system
should be able to protect applications even in the case
of OS compromises, reduce the size of code required for
verification, and break the trust dependencies between
software components. To design and implement such a

1

protection system, we must overcome the following chal-
lenges.

The first challenge is to define an appropriate threat
model for user applications. We need to identify the
security properties that the applications/users want for
protecting their information/data, so that the new pro-
tection mechanism can preserve themselves even if the
OS were compromised. Unfortunately, our problem is
not in the secure communication domain, and thus, it is
difficult to borrow familiar security properties from that
domain. Also, we need to avoid over-protection for sim-
plicity. Therefore, we need a threat model that represents
the problem domain and captures essential security needs
of the applications.

The second challenge is to preserve the OS’s usual
management power. With the new protection, however,
the OS is restricted somewhat; the new protection sys-
tem enforces certain rules and the OS is prevented from
performing actions against the rules. However, the re-
striction should not obstruct the OS from performing a
legitimate management job.

The third challenge is to find an implementation that is
small and simple to verify. With the new protection, the
OS can be verified less stringently, since applications can
still be protected even when the OS fails (as a result of its
compromise). However, the mechanism that implements
the new protection should be fully trusted, and hence,
the correctness of the implemented protection is critical
to the security of the entire system.

Security Kernel
The new protection requires a different OS arrangement
which consists of two layers of kernel: security and man-
agement kernels. Running with complete privilege, the
security kernel is a very thin layer that only implements
the new protection system. It must be fully trusted and
must thus be rigorously verified. The management ker-
nel, responsible for resource management and schedul-
ing, is a restricted version of a conventional OS. As
it runs on top of the security kernel, applications are
still protected from any compromise in the management
kernel. In this sense, it does not have to be trusted
and verified. Both security and management kernels
are protected from user applications by the traditional
user/kernel separation.

Since it is small and simple enough, the security kernel
can be realized entirely with hardware. Equipped with a
circuitry that implements the protection logic, a proces-
sor can extend its ISA to expose a programming interface
for the management kernel and user applications.

A software-only solution is also possible by using
virtualization techniques. A virtual machine monitor
(VMM) is capable of not only running multiple OSes,

but also realizing hardware extensions or implementing
system services without actually changing the real ma-
chine [1]. The VMM is more privileged than the OS and
its perimeter is safe. Therefore, the security kernel can
be implemented inside of the VMM.

Although we can implement the security kernel by
modifying a full-fledged VMM such as Xen [2], a full
VMM is not necessary as we do not have to run multi-
ple OSes. Instead, a lightweight security kernel is pre-
ferred only by using the techniques and constructs re-
quired to enable the hardware extensions and to safe-
guard the VMM’s perimeter.

Impact and Outlook
The new software protection system will make long-
term impacts since it relaxes many assumptions currently
made when software systems are composed. For in-
stance, the management OS is no longer assumed to be
trusted, thus creating opportunities for design of ambi-
tious distributed systems which were risky under the as-
sumption of trusted OS. Also, existing software systems
can be retroactively redesigned to exploit the enlarged
design space, thus making them more reliable with min-
imal additional effort.

Conclusion
The conventional user/kernel separation is not sufficient
to meet the growing demand for software protection in
embedded systems. We argue for the need of a new
protection mechanism that can protect user applications,
lessen verification overhead, and break trust dependen-
cies. The new protection is enforced by a ‘security ker-
nel’ which can be realized as a lightweight software layer
using virtualization techniques, making it suitable for
small devices and embedded systems, such as handsets
and smart sensors & actuators.

References
[1] Peter M. Chen and Brian D. Noble. When virtual is better than real.

In Proceedings of the 8th Workshop on Hot Topics in Operating
Systems (HotOS), May 2001.

[2] Boris Dragovic, Keir Fraser, Steve Hand, Tim Harris, Alex Ho,
Ian Pratt, Andrew Warfield, Paul Barham, and Rolf Neugebauer.
Xen and the art of virtualization. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles (SOSP), pages 164–
177, Oct 2003.

[3] Jerome H. Saltzer and Michael D. Schroeder. The protection
of information in computer systems. Proceedings of the IEEE,
63(9):1278–1308, Sep 1975.

2

1

Trusted Computing
Technologies for Embedded

Systems and Sensor
Networks

Adrian Perrig
Carnegie Mellon University

Motivation
 Embedded processors closely integrated into the fabric of

everyday life
• Anything with a powerplug is likely to already be equipped with an

embedded processor
• Additional battery-operated embedded devices are emerging (e.g.,

thermometers)

 Embedded processors enable new features
• Unfortunately, features increase complexity

 Steady increase in complexity results in bugs, which require
software updates to fix

 Trend: embedded systems become networked
• Network access enables many features
Scary: Embedded systems with network

access and code update features

2

Example: Vehicular Embedded Networks

 Technology trends
• Steady increase in number and

complexity of processing units
• GPS, in-car entertainment, safety

systems
• Car communication systems

• DSRC, cellular technologies,
BlueTooth, USB

 Security challenges:
• Vehicular malware!

Challenges

 Ensure integrity of code executing on
embedded device
• Ensure result obtained was created by correct

code
 Secure code updates
 Recovery after attack

• Re-establish code integrity
• Re-establish secret and authentic keys

3

How can we trust our devices?
 How do we securely use (potentially)

compromised devices or devices we don’t
trust?
• Cell phone, PDA, or car computer

Attacker Model

 Attacker controls software on embedded system
• Complete control over OS, memory
• Injection of malicious code

 No hardware modifications, verifier knows HW spec
• Hardware attacks are much harder to perform, requires

physical presence
• Very challenging to defend against

 In this talk, assume verifier controls network, such
that verified device cannot contact external helpers

4

Approaches to Ensure Code Integrity

 Hardware-based
• Fixed ROM-based code

• Cannot support code updates
• TCG

• Requires extra hardware, potentially high unit cost

 Software-based
• Software-based attestation

• Need to guard against proxy attack

Software-based Attestation Overview
 External, trusted verifier knows expected memory

content of device
 Verifier sends challenge to untrusted device

• Assumption: attacker has full control over device’s
memory before check

 Device returns memory checksum, assures verifier
of memory correctness

Checksum
function

External Verifier Embedded device
Challenge

Checksum of memory

Device
memory

Expected device
memory contents

5

ICE: Indisputable Code Execution
 Add chksum function execution state to checksum

• Include program counter (PC) and data pointer
 In memory copy attack, one or both will differ from

original value
 Attempts to forge PC and/or data pointer increases

attacker’s execution time

Code Unused memory

Checksum Code

0 .. 0

Malicious Code

PC

ICE Assembler Code
Generate random number using T-Function
mov r15, &0x130
mov r15, &0x138
bis #0x5, &0x13A
add &0x13A, r15
Load byte from memory
add r0, r6
xor @r13+, r6
Incorporate byte into checksum
add r14, r6
xor r5, r6
add r15, r6
xor r13, r6
add r4, r6
rla r4
adc r4

T-Func

Address
Generation

Memory
Read

Compute
Checksum

Seed from
verifier

6

ICE Protocol
Wireless link

t1: nonce, input

t2: cksum

 NodeBase station

output

• Successful verification if:
 t2 – t1 < expected time
 and
 cksum == exp. cksum

Verf. Func.

Target Code

nonce cksum

input output

Target Code

 Implemented as self-checksumming code
• Computes checksum over its own instructions

 Set up untampered execution environment
• CPU state for atomic execution
• E.g., turn off interrupts

 Compute checksum
• Using memory contents

and CPU state
 Checksum verifies integrity

and correct set-up of
execution environment

ICE Verification Function

Verification Function

7

ICE Properties

 Given target code T, verifier obtains property
that sensor node S correctly executes T,
untampered by any other (malicious) code
potentially present on S

 By incorporating node ID into checksum
computation, we can authenticate response

Key Establishment
 How to establish a shared secret?

• Attacker may know entire memory contents of a
newly shipped node

• After a node has been compromised, attacker
may have altered authentic public keys or knows
secret keys

• Without authentication Diffie-Hellman protocol is
vulnerable to man-in-the-middle attack:

• A  B: ga mod p
• B  A: gb mod p

8

Problem Formulation
 Given nodes in a sensor network, how can any pair

of nodes establish a shared secret without any prior
authentic or secret information?

 In theory, this is impossible … because of active
MitM attack

 Assumptions
• Attacker cannot compute faster than sensor node
• Each node has a unique, public, unchangeable identity

stored at a fixed memory address
• Secure source of random numbers

ICE Key Establishment

 Intuition: leverage ICE to compute checksum faster
than any other node, and use that checksum as a
short-lived shared secret

 Challenge: how to use short-lived shared secret to
bootstrap long-lived secret?
• Authenticate Diffie-Hellman public key

9

First Attempt

Pick random a Pick random b
Compute ga mod p Compute gb mod p

 t0: ga mod p
ga mod p = challenge
Compute cksum c

t1: gb mod p, MAC(c, gb mod p)

A B

Second Attempt

Pick random a
Compute ga mod p

 t0: ga mod p
ga mod p = challenge
Compute cksum c
Pick random b
Compute gb mod p

t1: gb mod p, MAC(c, gb mod p)

A B

10

Guy Fawkes

Goal: A and B can authenticate each other’s messages
Pick random v2 Pick random w2
v1 = H(v2), v0 = H(v1) w1=H(w2), w0=H(w1)
one-way chain: v0 ← v1 ← v2 w0 ← w1 ← w2
Assume: A knows authentic w0 B knows authentic v0

v1 , Ma , MAC(v2, Ma)
w1 , Mb , MAC(w2, Mb)

v2
w2

A B

ICE Key Establishment

Pick random a, ga = ga mod p
Compute g’a = H(ga), g’’a = H(g’a), g’’a ← g’a ← ga

t0: g’’a
g’’a = challenge
Compute cksum c
w0 ← w1 ← w2

t1: w0 MAC(c, w0)
random b, gb mod p

g’a
w1, gb mod p, MAC(w2 , gb mod p)

ga
w2

A B

11

Summary: ICE Key Re-Establishment
 Protocol can prevent man-in-the-middle

attacks without authentic information or
shared secret

 Attacker can know entire memory content of
both parties before protocol runs

 Forces attacker to introduce more powerful
node into network, prevents remote attacks

 Future work: relax strong assumption that
attacker cannot compute faster

Summary
 Software-based attestation provides interesting

properties, but many challenges remain
• Defeat proxy attacks in wireless environments
• Extend properties to general computation
• Build systems with perfect detection of code integrity

attacks
• Recover from malicious code infection
• Provide human-verifiable guarantees

 Study use of hardware-based support
• Determine minimal hardware requirements to provide

embedded systems security

1

Software Security Issues in
Embedded Systems

Somesh Jha
University of Wisconsin

Software Security

• Vulnerability Assessment
– Analysis tools for discovering vulnerabilities in

source code and binaries
• Automated Signature Generation

– Generating signatures that filter our malicious
inputs

• Malicious Code Detection
– Detecting whether a binary has malicious

behavior

2

Embedded Systems

• Increasingly used in critical sectors
– Defense, medical, power, …

• Malicious and accidental failures can have
dire consequences

• Embedded systems are not “all hardware”
– They have software too

• Autonomous nature

Dynamic and Configurable
Environment

• Embedded systems are highly
configurable
– They have to work in many different scenarios

• Environment is highly dynamic
– Think about embedded systems in a

battlefield
– Embedded system in a vehicle

3

Changing Functional Requirements

• Functional requirements of embedded
systems change over time

• Embedded system deployed in a
battlefield
– Functional requirements change with mission

Interconnected Network of
Components

• Embedded system are of a complex
network of components

• Components might be hardware or
software

• Source code might be available for some
components

• COTS components (only binary available)
• Failure can create cascading events

4

Recovery is Paramount

• Embedded systems used in critical
applications

• In some cases recovery is paramount
• Recovery complicated by complex

interaction of events
– Failure can cause a complex cascade of

events

Three Software Security Projects

• Automated generation of vulnerability
signatures

• Retrofitting legacy code

• Static analysis of binaries
– Malware Detection

5

Adversary VictimDefense
System

Motivating Scenario for
 Automatic Signature Generation

?

Exploit

Ok

Signature Generator

Sign
at

ur
es

Adversary Victim

Exploit

6

Adversary Victim

…
Many, perhaps infinite,
Polymorphic variants

Goals for Automatic Signature
Generation

• Create signature that matches exploits
• Reason about signature accuracy
―Does it match legitimate traffic (false +)?
―Does it miss exploits (false -)?

All
Exploits Signature

Accuracy?

7

Our Contribution:
A Language-Centric Approach

• Focus on the
language of the vulnerability
 Reason about signature via

 language

 Language captures all exploits

• New methods for
Automatic vulnerability
signature creation
Opens doors to PL techniques

Language of a Particular
Vulnerability

• A vulnerability is defined by:
1. What – The Vulnerability Condition:

Necessary conditions to violate safety
2. Where – The Vulnerability Point:

Location vulnerability condition first satisfied

The Vulnerability Language is all input
strings reaching the vulnerability point

meeting the vulnerability condition.

8

HTTP-like Running Example
1. int check_http(char input[9])
2. {
3. if(strcmp(input, “get”,3) != 0 ||
4. strcmp(input, “head”,4) != 0) return -1;

5. if(input[4] != ‘/‘) return -1;

6. int I = 5;
7. while(input[I] != ‘\n‘){ I++; }
8. input[I] = 0;

9. return I;
10. }

Our implementation
is on binaries

Vulnerability Point

Example Input: get_/aaaa\n
1. int check_http(char input[9])
2. {
3. if(strcmp(input, “get”,3) != 0 ||
4. strcmp(input, “head”,4) != 0) return -1;

5. if(input[4] != ‘/‘) return -1;

6. int I = 5;
7. while(input[I] != ‘\n‘){ I++; }
8. input[I] = 0;

9. return I;
10. }

9

Vulnerability
Condition: I >= 9

Example Input: get_/aaaa\n
1. int check_http(char input[9])
2. {
3. if(strcmp(input, “get”,3) != 0 ||
4. strcmp(input, “head”,4) != 0) return -1;

5. if(input[4] != ‘/‘) return -1;

6. int I = 5;
7. while(input[I] != ‘\n‘){ I++; }
8. input[I] = 0;

9. return I;
10. }

Retrofitting legacy code
Need systematic techniques to
retrofit legacy code for security

Legacy
code

Retrofitted
code

INSECURE SECURE

10

Retrofitting legacy code

• Enforcing type safety
– CCured [Necula et al. ’02]

• Partitioning for privilege separation
– PrivTrans [Brumley and Song, ’04]

• Enforcing authorization policies

Need systematic techniques to
retrofit legacy code for security

Resource manager

Enforcing authorization policies

Resource user

Operation request Response

Authorization policy‹Alice, /etc/passwd, File_Read›

Reference monitor

Allowed? YES/NO

11

Retrofitting for authorization
• Mandatory access control for Linux

– Linux Security Modules [Wright et al.,’02]

– SELinux [Loscocco and Smalley,’01]

• Secure windowing systems
– Trusted X, Compartmented-mode workstation,

X11/SELinux [Epstein et al.,’90][Berger et al.,’90][Kilpatrick et al.,’03]

• Java Virtual Machine/SELinux [Fletcher,‘06]

• IBM Websphere/SELinux [Hocking et al.,‘06]

Painstaking, manual procedure

Retrofitting lifecycle
1. Identify security-sensitive operations
2. Locate where they are performed in code
3. Instrument these locations

Input_Event
Create
Destroy
Copy
Paste
Map

Security-sensitive
operations Source Code Policy checks

Can the client
receive this

Input_Event?

12

Problems

• Time-consuming
– X11/SELinux ~ 2 years [Kilpatrick et al., ‘03]

– Linux Security Modules ~ 2 years [Wright et al., ‘02]

• Error-prone [Zhang et al., ‘02][Jaeger et al., ‘04]

– Violation of complete mediation
– Time-of-check to Time-of-use bugs

Our approach

• Retrofitting takes just a few hours
– Automatic analysis: ~ minutes
– Interpreting results: ~ hours

• Basis to prove security of retrofitted code
Reduces errors

Reduces manual effort

13

Connect

Send

push 10h
push eax
push edi
call connect
push esi
push eax
push [ebp+hMem]
call wsprintfA
add esp, 0Ch
push [ebp+hMem]
call lstrlenA
push 0
push eax
push [ebp+hMem]
push ebx
push eax
push ecx
push edi
call send

Netsky.B

X := Arg1

Arg1 = X
 &
Arg2 = “EHLO.*”

= +
Semantic component

describes
dependency constraints.

Syntactic component
describes

temporal constraints.

Malspec: Self-Propagation by Email

“Read Own Exe. Image”“Send Email”

Building a Real Malspec

send(X,“DATA”)

X:=socket()

connect(X)

send(X,“EHLO”)

send(X,T)

Y:=read(Z)

Z:=open(S)

S:=process_name()

14

send(X,“DATA”)

Malspec: Self-Propagation by Email

X:=socket()

connect(X)

send(X,“EHLO”)

Y:=read(Z)

send(X,T)
)),Base64(l(StringEqua YT

Z:=open(S)

S:=process_name()

AND-OR graph

Construction can be automated
through malspec mining.

send(X,“DATA”)

Malspec Constraints

X:=socket()

connect(X)

send(X,“EHLO”)

Y:=read(Z)

send(X,T)
)),Base64(l(StringEqua YT

Z:=open(S)

S:=process_name()
Local constraint

Dependence constraint:
X after socket = X before connect

Dependence constraint

15

Malspecs Benefits

X:=socket()

connect(X)

send(X,“EHLO”)

send(X,“DATA”)
Y:=read(Z)

send(X,T)
)),Base64(l(StringEqua YT

Z:=open(S)

S:=process_name()

 Symbolic variables

 Constraint-based
execution order

 Independent of
obfuscation
artifacts

Expressive to describe even obfuscated behavior.

Malspec Detection Strategies

• Static analysis

• Dynamic analysis

• Host-based IDS

• Inline Reference
Monitors

X:=socket()

connect(X)

send(X,“EHLO”)

send(X,“DATA”)
Y:=read(Z)

send(X,T)
)),Base64(l(StringEqua YT

Z:=open(S)

S:=process_name()

Malspecs are independent of detection method.

16

Detection of Malicious Behavior

Binary
File

Malware
Detector

X:=socket()

connect(X)

send(X,“EHLO”)

send(X,“DATA”)
Y:=read(Z)

send(X,T)
)),Base64(l(StringEqua YT

Z:=open(S)

S:=process_name()

Goal: Find a program path that matches the malspec.

Find A Malicious Program Path
X:=socket()

connect(X)

send(X,“EHLO”)

send(X,“DATA”)
Y:=read(Z)

send(X,T)
)),Base64(l(StringEqua YT

Z:=open(S)

S:=process_name()

Interprocedural
Control-Flow Graph

17

Stable Environment Assumption

• All the above mentioned work assumes a
“nearly” stable environment

• Example: web server
– Is configurable, but the environment is not that rich
– Environment is not too dynamic
– Not rich interaction with other components

• Incorporating “dynamic environments” into the
techniques described before is a challenge

Vulnerability Assessment in
Presence of a Dynamic

Environment
• Dynamic and static analysis techniques

assume a relatively stable environment
• Parameterized static analysis

– Parameterize static analysis with environment
assumptions

– Similar to assume-guarantee reasoning in
model checking

• Parameterized vulnerability signatures

18

Recovery from Failures

• A failure (malicious or benign) can cause a
complex cascade of events

• Need to understand the complex cascade
of events caused by a failure

• Need to analyze the complex network in
components in totality
– Scalability
– Compositional analysis

Questions

• My web page
– http://www.cs.wisc.edu/~jha

1

New Direction for SoftwareNew Direction for Software
Protection in Embedded SystemsProtection in Embedded Systems

Department of EECS
University of Michigan

Feb 22, 2007

Kang G. Shin

2

BackgroundBackground
Why application software protection in
distributed embedded systems?

In embedded systems, application programs perform
mission-critical tasks and carry sensitive info
Privacy/integrity of these applications is critical to the
security and robustness of any distributed embedded
system

Current approach: have the OS protect the
applications

E.g., OS provides process isolation, crypto services, etc.
Apps must trust OS. OS should be protected by
hardware
Processor protects OS via user/kernel separation

2

3

My PositionMy Position

 Classical user/kernel separation is too
coarse to confidently protect app
software with high security needs.
The limitation should be overcome by
creating a new protection system.

4

Classical User/Kernel SeparationClassical User/Kernel Separation

An autocratic model for separation of power: the kernel code
executes with absolute power
Entire security of the system hinges on the trustworthiness of the
kernel mode software (i.e., OS)
Effective for protecting OS, but this simple dichotomy is too
coarse and there are several limitations

Kernel mode User mode

Processor state without privilege
- Execution mode for applications
- Can’t execute system instructions
- Restricted access to hardware

Processor state with privilege
- Execution mode for OS
- Ability to execute all instructions
- Unrestricted access to hardware

3

5

Limitations of user/kernel DichotomyLimitations of user/kernel Dichotomy
1. No defense against OS compromise

There is no effective 2nd line of defense to applications
Further protection of applications is meaningless as the
attacker can easily disarm any protection mechanism

2.Difficult to reduce the OS verification overhead
Trend: OS is becoming larger and is from diverse sources
The dichotomy dictates any code that requires even
slightest privilege must execute in kernel mode, where
the code is subject to complete verification

3.Undue trust dependencies
App vendors require OS vendors not to spy on the apps
Apps must trust every component of OS
Every OS component must be validated (e.g., device
drivers)

6

New Directions for Software ProtectionNew Directions for Software Protection

Need a new protection system
Protect applications even in case of OS compromises
Lessen the kernel verification overhead
Break trust dependencies

Challenges in designing such a protection system
Identifying an appropriate threat model

Model that captures essential security needs of apps
Preserving OS’s management power

Restriction by the new protection shouldn’t obstruct OS’s job
Finding a small and simple enforcing mechanism

Implementation must be easily verifiable

My proposal: Separate security from management
The new protection system protects privacy/integrity of apps.
It is implemented by a ‘security kernel’ (continue)

4

7

Security Kernel vs. Mgmt KernelSecurity Kernel vs. Mgmt Kernel

Traditional OS  Security kernel + Management kernel
Management kernel is responsible for resource management
Security kernel is a thin layer enforcing the new protection system

It directly protects privacy/integrity of applications data
Applications are protected even if the management kernel is
compromised

Management kernel doesn’t have to be trusted by applications

App

Traditional layout

App App App

OS

Hardware

App App App App

Management Kernel

Security Kernel
Hardware

Security kernel approach

Trust Base

Security kernelSecurity kernel
directly protectsdirectly protects
the applicationsthe applications

8

Implementation AlternativesImplementation Alternatives

1. Hardware
Processor is modified to implement the protection logic

2. Software: Using virtual machine monitor (VMM)
A VMM, sitting between HW and OS, can be utilized
Due to size/complexity, verifying the VMM is challenging

3. Software: Standalone security kernel
A thin layer implementing only the protection system
Can be made small and simple, thus easy to secure

App

1. Hardware

App App

Mgmt Kernel

Hardware with
protection logic

App App App

Mgmt
Kernel
(VM)

App App App

Mgmt Kernel

Standalone
Security Kernel

Hardware EasyEasyEasyStandalone

EasyEasyHardVMM

HardHardEasyHardware

To
deploy

To
realize

To
Verify &
secure

2. VMM 3. Standalone

Mgmt
Kernel
(VM)

VMM with
Protection logic

Hardware

5

9

ImpactImpact
Paradigm shift in designing secure distributed
embedded systems

The new application protection system relaxes many
assumptions currently made
To ensure the security of application software,
management OS no longer has to be trusted
It enables implementing ambitious distributed systems
which were too risky under the assumption of trusted OS

10

ConclusionConclusion
Another system of protection is needed to
overcome the limitations inherent with the coarse
classical user/kernel separation.
The protection system must

Protect applications even in case of OS compromises
Lessen the kernel verification overhead
Break trust dependencies

We have been exploring approaches for
implementing such a protection system

Session IV – Hardware Security
Session Chair: Tao Xie

Position Paper: ARO Workshop Security of Embedded Systems and Networks

Sean Smith
Dartmouth College

http://www.cs.dartmouth.edu/∼sws/

February 4, 2007

I’ll start with two caveats. The first is a matter of scale. Trying to write this position paper leads me to a
conundrum. The workshop’s grand overture poses problems and issues that excite me, and spark research
ideas. “Hey, maybe we could address problem Z by combining techniques X and Y !” However, that is the
stuff of a specific proposal (and might become one, if my colleagues cooperate); the workshop invitation then
jars me out of this low-level vision to a high-level one. “What are the three most superlative....”

• Caveat 1: It’s hard to distinguish the “big picture” from the smaller details.

The second is a matter of tone. Before I came back to academia, I spent time working for the government
(advising folks worried about security in real-world deployments) and then industry (building security-
motivated embedded systems in the real worlds). But academics often value “intellectual depth” over the
real world.

• Caveat 1: It’s hard to distinguish the “fundamental science” from what’s merely an important problem
or promising tool for a real-world problem.

Fundamental limitations of today’s security mechanisms

Not Thinking about Enough Levels. My generation came of age at a time when the only way for a
young teen to get a computer was to build one—but in those early days of 8-bit microprocessors, one actually
could. History forced a computing education that started at almost the transistor level and worked its way
up. This approach had downsides, such as a predilection for C and a parsimony for saving bytes. But it
had an upside as well: one starts to see that there are many layers to what we consider as “computation.”
However, perhaps as a result of the increasing complexity of computing systems, we see too many security
mechanisms (for embedded systems—or any other system) focus on only one level.

• Use of typesafe languages may eliminate certain classes of vulnerabilities—but may come at a per-
formance and usability cost (ever try to code in Clay?) and have been successfully compromised via
light-bulb-induced memory errors. (Looking only at the language level also neglects how much of the
underlying libraries, OS, and firmware may be written in very primitive languages, such as assembler.)

• Hardware techniques such as trusted platform modules and the TCG architecture bind secrets and
attestations to a system configuration expressed by a series of hashes. However, mapping from this
expression to the properties that relying parties really care about is not obvious (and perhaps not
even tractable). What’s worse, until the emergence of resettable PCRs, this “configuration” ended
up including the whole operating system. Another example of this limitation is the contortions and
reworking required to mesh the TPM-based architecture with the full power of virtualization.

• Secure architectures don’t guarantee that their applications won’t have flawed APIs. (As a member of
the 4758 team, I know this one from personal experience.)

• Hardware tokens that protect private keys fail to take into account the integrity and authentication of
the software systems that request their use.

• Thinking about computation solely in the logical terms of a box with binary inputs and outputs neglects
the fact that the box functions as a physical device in the physical world. This oversight has led to
over a decade of side-channel attacks in the open world—and even perhaps to last week’s fun of using
audio content on Web sites to launch privileged commands on Vista.

• Thinking about a hardware device as some set of modules specified in VHDL or Verilog neglects to
take into account that whether the netlists and layout that comes out at the end correctly embody the
specification that went in.

1

http://www.cs.dartmouth.edu/~sws/

• The recent calls for a “Cyber Manhattan project” seem to implicitly assume that the computer security
crisis can be solved with technology alone. However, success requires navigating human, policy, and
economic angles as well. The original Manhattan project only had to build a few bombs—it didn’t
have to change the way all of humanity used refrigerators.

One might even go out on a limb and say that we need a new kind of composition theorem: not between
“peer” modules, but rather across layers and organizational boundaries.

Cryptography’s Questionable Future. Sending a computing system out into the cold, cruel world is
scary—particularly for embedded devices, which often must fend for themselves. Security architectures to
control code updates and to authenticate devices are based on cryptographic protocols. Best practices tell
how to soundly engineer protocols from the primitives and keylengths that cryptographers deem secure.
However, the security of these primitives are themselves based on assumptions. History has shown these
assumptions don’t always remain true as long as anticipated. Here one cite ambitious predictions about
RSA and DES; the slow decline of MD5 over ten years; or the lesser-noticed rapid decline of the ISO9796
padding function. The elephant on the table now is SHA1; the TCG meetings just last week were full of
heated discussion on how to add “hash agility” to the TPM specification—and the pushback from businesses
who don’t want to commit product hardware to a specification that is proving malleable.

Keeping Secrets. Sending a self-protecting embedded system out into the cold, cruel world also often
requires that the system itself be able to keep and use cryptographic secrets. Here again, history shows
that keeping secrets is difficult. In the open world, one need only look at Ross Anderson’s lab for a good
sampling of how researchers have made repeated hash of low-cost “tamper-protected devices” and exploited
amusing side-channels. A few promising techniques have come along—our 4758 device has yet to have its core
protections broken (to our knowledge), but is rather expensive and brittle; the SPUF work from MIT looks
interesting. However, a method by which inexpensive, environmentally durable devices can keep secrets with
high assurance—and a method to have assurance that they can—eludes us (at least in the public world).

Promising innovations and abstractions for future systems

TCG. I could go on for a long time on all the problems with the TCG organization and architecture. The
standard quips—such as “designed by committee, and it shows”—suffice. However, to paraphrase someone,
the important thing here is not that the bear dances well, but that it dances at all. Fifteen years ago, we
could play with secure coprocessor prototypes and say “pretend that all commodity devices had something
like this built in.” Now they do, sort of. Getting an idea to permeate the broader infrastructure is the hard
part, but industry has now done that, and looks poised to continue being amenable to such thinking.

Multicore. Perhaps as a consequence of trying to adhere to Moore’s Law, hardware vendors are now
giving us more cores than we know what to do with—and are desperately searching for applications, usage
models, and a business case. This position gives us an opportunity to rethink what a CPU “does”—and to
see these changes happen in the real world.

Calls for a principled revolution. Voices over recent years (e.g., at the CRA Grand Challenges in
Infosec workshop a few years back, or at the NSF Safe Computing Workshop last fall, or at the Cyber Trust
PI meeting last week) have repeated the observation that things aren’t working, that the current approaches
to securing computing systems aren’t working, and that (to paraphrase Rich DeMillo) we’re not “likely to
program our way out of this mess.” The right questions are being asked.

Possible milestones

This part is harder for me. I might joke that it’s because I’ve already pushed the limits of my space
budget; however, the reality is that it’s hard for me to describe the end result of a research program that
hasn’t happened yet.

2

Secure Processing On-Chip

Hsien-Hsin S. Lee Santosh Pande

School of Electrical and Computer Engineering College of Computing
Georgia Institute of Technology Georgia Institute of Technology

Atlanta, GA 30332-0250 Atlanta, GA 30332-0280
leehs@ece.gatech.edu santosh@cc.gatech.edu

ABSTRACT
Providing security in embedded systems is in urgent needs while
there are many challenges in both software and hardware sides that
require further research to understand their implications. This pa-
per discusses microarchitectural and compiler support to address
a variety of vulnerabilities due to physical tampering, program be-
havior exploits, and digital rights management issues. We also ad-
vocate the need for protecting intellectual properties programmed
in the growing number of FPGA-based embedded systems.

1. INTRODUCTION
While embedded computing is becoming more pervasive and

invisible, the ways users communicate and operate data on these
devices, however, are becoming more vulnerable to malicious ex-
ploits. When these data, either sensitive or insensitive, are manip-
ulated in a way they are not intended for, some dire consequence
may ensue. For example, crackers can reverse-engineer the crypto-
graphic keys of a multimedia system or game console to duplicate
and distribute illegal copies of proprietary software [1].Another
example described in [2] shows that well-resourced crackers can
invade one’s privacy by monitoring the thermostat to determine if
one is at home or not. Even worse, malicious attackers can change
the setting of the thermostat through Internet and damage pipes or
kill pets during winter times.

To provide reliable security for these devices to combat against
various types of attacks remain a major challenge to both hardware
and software designers. The reality is that embedded systemde-
signers can no longer consider security as an afterthought as many
robust security features require shrewd and thorough consideration
at the very early design stage. In this paper, we discuss potential
security breach from a system’s perspective at the microarchitec-
ture level and the compiler level. We hope our advocates willraise
the consciousness of building security as an indispensablepart in
the embedded system design flow.

2. PHYSICAL TAMPERING
One of the greatest concerns on embedded devices is regarding

malicious exploits via physical tampering of the devices when ad-
versaries gain full physical access to the hardware and reveal sensi-
tive data or intellectual property (IP) algorithms employed in these
compromised devices. Obviously, secrets inside these devices must
be protected against these physical attacks. However, the issue be-
comes even more challenging when both IP protection requirement
and real-time constraint need to be met for these embedded applica-
tions. To guarantee both criteria, hardware-based encryption sup-
port is generally implemented to provide satisfactory performance
while caution must be made to not adding too much cost to the sys-
tems. Nevertheless, employing encryption alone is not sufficient to
avoid new types of attacks via other new breed of attacks suchas

using side channels [3, 4, 5]. Vulnerability can be exploited by an-
alyzing information leaked through these channels. For example,
the absolute and relative locations of the program code are not al-
tered during instruction fetch. In other words, addresses are issued
on the bus as plaintext and can be probed by crackers to reconstruct
the control-flow graph of a program. Such a vulnerability is partic-
ularly pronounced in embedded processors, which typicallydo not
employ cache hierarchies for the requirement of predictable tim-
ing. Even with the presence of an instruction cache, a cracker can
still easily circumvent the cache by turning off the cache orflush-
ing the cache to force instruction addresses shown on the external
bus. In some cases, such information leakage can lead to the reve-
lation of critical information such as encryption keys or passwords
of the compromised systems. Another example of the same typeof
exploits is differential power analysis (or DPA). As shown in pre-
vious studies, a well-equipped and motivated cracker can perform
non-invasive power (or current) analysis by using oscilloscope on
an embedded device such as Smart Cards to retrieve secrets. The
idea is based on the observation that power dissipation is strongly
correlated to different program behavior on a processor, which can
then be used as a signature to compromise secrets. Furthermore, the
growing application of low-power techniques such as clock gating
makes such attacks even easier.

To combat such issues, effective and efficient obfuscation tech-
niques must be considered, in particular, building them directly into
the hardware at the microarchitectural and circuit levels.Funda-
mentally, obfuscation is aimed to randomize any trace or signa-
ture exhibited from address stream or measurable power or current
consumption, making distinctive computation operations indistin-
guishable. A solution demonstrated by [6] uses an on-chip shuf-
fle buffer to perform randomization for the address footprint. The
shuffle buffer, essentially an extended small memory array but ex-
clusive to the memory, was designed to reorder all addressesto the
memory, obfuscating the address recurrences. Addresses that are
ready to be evicted from the shuffle buffer due to a conflict will
swap their locations between the shuffle buffer and the main mem-
ory. As such, the same address request will appear differently on
the bus every time and the goal to evenly distributing the observed
addresses can be achieved. Several other literature [7, 8] also inves-
tigated such address leakage issues for different system platforms.

3. CONTROL FLOW VULNERABILITY
Exploits such as buffer overruns that alter the program behavior

by injecting malicious codes or manipulating high-privileged users
inputs represent another major concern. The latter often interacts
with input channels such as keyboard or network connection and
changes the intended program flow to accomplish their illegitimate
actions. Note that a pure software countermeasure can be slow and
incapable of detecting such violation. To make the softwaremore
robust and evident to such attacks, anomaly detection mechanisms

need to be established. An anomaly system is aimed to monitor
program execution and raise an alarm whenever there is a detected
abnormal program behavior such as program is redirected to unin-
tended or undefined program paths.

An effective mechanism requires to enforce the control-flowaware-
ness via compiler’s analysis and microarchitectural support to en-
able the protection with high efficiency and high accuracy. For in-
stance, an Infeasible Path Detection System (IPDS) proposed in [9]
explores the synergy of compiler and microarchitecture to counter-
act such memory tampering attacks causing invalid program con-
trol flow. In the proposed system, the compiler analyzes correla-
tions among conditional branches to realize illegal program flow
changes. Then the collected information is made available to the
runtime system. The runtime system, with the support of small
hardware tables, will detect dynamic violation of infeasible pro-
gram paths based on the static information.

4. DIGITAL RIGHTS MANAGEMENT
With the emergence of online commerce on virtual properties

such as 3D game characters or arts, to protect these intellectual
property on embedded devices and to restrict their usage have be-
come a new design challenge. The recent incident of hacking Xbox [1]
furthers the urgent need to include native hardware supportfor pro-
viding a more robust digital rights management (DRM) to enable
a tamper-proof embedded platform. To integrate such protection
scheme into media processing systems more seamlessly and se-
curely without compromising performance, it requires thatsecurity
experts and embedded hardware and software designers to align
their tasks together. A DRM-enabled 3D graphics processor was
demonstrated in [10]. It consists of two components, a crypto-
graphic unit that decrypts protected IP data, and a license verifi-
cation unit that authenticates the license of these data. Similar to
digital rights licenses used in other content protection scenarios,
the graphics digital rights licenses released by their providers spec-
ify and designate the desired usage of the graphics data. Under
this system, exploits are prevented by restricting the otherwise arbi-
trary bindings among geometry input, textures and shaders through
the licenses that define the legal bindings of these objects.Dur-
ing rendering, the binding context consisting of decryption keys
and digests of protected data will be checked and verified in the
cryptographic hardware units. Additionally, such a DRM-enabled
graphics system also protects the Z-buffer, i.e. the depth informa-
tion, to prevent crackers from reconstructing a 3D geometrymodel
by dumping out the Z-buffer values.

5. IMPLICATIONS OF FPGA-BASED DE-
SIGN

More recently, due to the substantial improvement in FPGA tech-
nology, digital designs using FPGA is no longer simply for early
prototype or proof-of-concept. In fact, products are beingimple-
mented using FPGA for its efficiency (design turnaround time), re-
configurability, and flexibility. FPGA is also an attractivesolution
for implementing cryptographic applications to adapt the needed
changes and enhancements in security policies. An example is
set-top boxes which use FPGA to encrypt and decrypt the media
stream for pay-per-view movies. Even though the above applica-
tions seem to fall into two different groups, yet their demands in
security are almost identical — i.e., how to protect the contents im-
plemented and configured in the FPGA? The contents from the first
category are related to the IP (i.e. the algorithms) issues of a pro-
prietary design, while the contents from the second category will
contain critical secrets such as the cryptographic keys. Similar to
what we described earlier, FPGA-based designs suffer from physi-
cal tampering — from IP theft by simply reading bitstream outof

the FPGA to DPA side-channel attacks. To address such vulner-
abilities, new ideas are needed for both FPGA chip vendors and
synthesis tools and algorithms to protect the contents programmed
on the gate arrays.

6. CONCLUSION
We are entering an interesting time for embedded designers to

(re)consider security as a top design priority at the early design
stage. The problem is multi-faceted, involving all layers in a de-
sign including the system software (OS and compiler), architecture,
microarchitecture, and circuits. Several challenges are lying ahead
and a holistic solution across the stack is in need.

In this paper, we are advocating to integrate inherently high secu-
rity hardware and system support to embedded processors. These
schemes typically require dedication of on-chip hardware resources
being used to achieve high efficiency and be effective. Neverthe-
less, any additional hardware feature for cost-constrained embed-
ded systems must be carefully evaluated and justified. Another
challenge of integrating security solutions in embedded systems
is power consumption, which is already a constraint for battery-
powered devices. It will become worse when obfuscation tech-
niques are applied to randomize and disguise program behavior.
Adding security to both compiler and hardware levels could also
procrastinate the design turnaround time, a critical cost and com-
petitiveness concerns given the short time-to-market cycles of these
products. All these trade-offs need to be deliberately balanced in
the design of future embedded systems to enable highly security
processing.

7. REFERENCES
[1] Andrew Huang.Hacking the Xbox: An Introduction to Reverse

Engineering. No Starch Press, 2003.
[2] Philip Koopman. Embedded System Security.IEEE Computer, pages

95 – 97, July 2004.
[3] P.C. Kocher, J. Jaffe, and Jun B. Differential Power Analysis. In

Proceedings of Advances in Cryptology, Crypto 1999, 1999.
[4] Weidong Shi, Hsien-Hsin S. Lee, Chenghuai Lu, and Mrinmoy

Ghosh. Towards the Issues in Architectural Support for Protection of
Software Execution.SIGARCH Computer Architecture News,
33(1):6–15, 2005.

[5] Weidong Shi and Hsien-Hsin S. Lee. Authentication Control Point
and its Implications for Secure Processor Design. InProceedings of
the 39th Annual International Symposium on Microarchitecture,
pages 103–112, 2006.

[6] Xiaotong Zhuang, Tao Zhang, Hsien-Hsin S. Lee, and Santosh
Pande. Hardware Assisted Control Flow Obfuscation for Embedded
Processors. InProceedings of the 2004 International Conference on
Compilers, Architectures, Synthesis on Embedded Systems, pages
292–302, Washington D.C., 2004.

[7] Lan Gao, Jun Yang, Marek Crobak, Youtao Zhang, San Nguyen, and
Hsien-Hsin S. Lee. A Low-Cost Memory Remapping Scheme for
Address Bus Protection. InIn Proceedings of International
Conference on Parallel Architectures and Compilation Techniques,
pages 74–83, September 2006.

[8] Xiaotong Zhuang, Tao Zhang, and Santosh Pande. HIDE: An
Infrastructure for Efficiently Protecting Information Leakage on the
Address Bus. Inthe 11th International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
72–84, 2004.

[9] Xiaotong Zhuang, Tao Zhang, and Santosh Pande. A Low-Cost
Memory Remapping Scheme for Address Bus Protection. InIn
Proceedings of the 39th International Symposium on
Microarchitecture, pages 113–122, September 2006.

[10] Weidong Shi, Hsien-Hsin S. Lee, Richard M. Yoo, and Alexandra
Boldyreva. A Digital Rights Enabled Graphics Processing System. In
In Proceedings of the ACM SIGGRAPH/Eurographics Workshop of
Graphics Hardware, pages 17–26, 2006.

A Case for Tamper-Resistant and Tamper-Evident Computer Systems

Yan Solihin
Center of Efficient, Secure, and Reliable Computing (CESR)

North Carolina State University
solihin@ncsu.edu

Abstract

Recent industrial efforts in architectural and system support for
trusted computing still leave systems wide-open even to relatively
simple and inexpensive hardware-based attacks. These attacks at-
tempt to snoop or modify data transfer between various chips in
a computer system such as between the processor and memory,
and between processors in a multiprocessor interconnect network.
Software security protection is completely exposed to these attacks
because such transfer is managed by hardware without any cypto-
graphic protection. In this paper, we argue that the threats from
such attacks are serious and urgent, and that computer design should
place a priority in protection against these attacks.

1 Fundamental limitations of today’s security
mechanisms

While data transfer between several computer systems that are
networked is managed by software, data transfer within a computer
system between its components is managed completely by hard-
ware and is transparent to the software. For each computation task,
lage amounts of data are transferred between various chips such as
the processor and memory, or between processors in a multipro-
cessor system. Currently, such data transfer is completely unpro-
tected, which can be snooped or altered through relatively simple
hardware devices attached to various buses and the interconnects.
This presents a serious security challenge in that even the most se-
cure software protection can be broken because its sensitive infor-
mation is stored as program variables off the processor chip. Fur-
thermore, by snooping data brought into the processor chip, attack-
ers can reverse engineer code, snoop unencrypted data, or even alter
data before it enters the processor chip. Recognizing some of these
challenges, industrial efforts have resulted inTrusted Computing
efforts [9, 15]. Unfortunately, Trusted Computing only addresses a
small subset of these attacks. While authentication of certain sys-
tem software is provided with trusted computing, data transfer is
still unprotected against snooping and tampering.

Granted, such hardware attacks require the attackers to have
physical access to the computer systems, so they are not common-
place yet. However, we believe that there are several important use
scenarios of computer systems in which the possibility for such at-
tacks is quite high and needs to be taken very seriously.

The first scenario is whenattackers has almost unlimited physi-
cal access to the systembecause they either own it, or they adminis-
ter it. One example from this scenario is consumer electronics such
as game consoles and portable media players. Such systems often
come with copyright protection mechanism. Users or owners of the
system can repeteadly attack the system in order to break such pro-
tection mechanism with a strong financial incentive because such
devices are common and the cost of designing the attacks can be

amortized over many instances. This seriousness of such attacks
has been demonstrated by the commercial success of mod-chips,
enabled by unencrypted transfer between the BIOS and the proces-
sor chip [4].

Another example of such scenario involvesvoting machines.
Since these machines are placed in a great number of sites, it is hard
to provide them with complete physical security. It is hard to ensure
that administrators of the machines will not tamper the machines,
or will not unintentionally let others to tamper with them.

Another scenario is whenattackers has limited physical access
to the system but there are non-intrusive and traceless ways to at-
tack the system. Large multiprocessor systems used for utility or on-
demand computing servers are particularly vulnerable. In the util-
ity computing model, companies “lease” resources of a large-scale,
powerful servers (e.g. the HP Superdome [10]) to customers who
need such resources on a temporary basis or who want to offload
their IT operations. These large-scale systems are not under the con-
trol of the customers who are using their resources. The customers
are likely to be wary about adopting the utility computing model
unless the secrecy and integrity of their data can be ensured. In
fact, concerns about data privacy have been reported to slow down
the adoption of utility computing model [1]. If the server system
itself does not ensure data confidentiality and integrity, malicious
employees or other attackers who can get through the physical se-
curity protecting the machine could easily steal or modify important
data. The risk of security attacks by selected employees or parties
that have physical access to the machine should not be underesti-
mated. For example, in the case of ATMs, Global ATM Security
Alliance (GASA) reported that more than 80% of computer-based
bank-related frauds involve employees [6]. In the case of DSM sys-
tems used for utility computing, the large amounts of sensitive data
in these systems create a financial incentive for the attackers to per-
form corporate espionage or other malicious intents. To make mat-
ters worse, such attacks could be performed without disrupting the
system, for example by attaching a simple device to an intercon-
nect wire. Such attacks also do not produce traces that can alert
other users about the existence of the attacks. These concerns may
prompt customers to demand that DSM utility computing systems
be equipped with hardware support for data confidentiality before
they would be willing to use those systems. This also suggests that
data security in DSM systems will become an increasingly impor-
tant issue in the future.

2 Important research challenges

One main research challenge is how toefficientlyensureprivacy,
tamper-resistantandtamper-evidentproperties for a computer sys-
tem. Privacy requires data transfer to be encrypted so that attackers
cannot gain much insight into the data from snooping it. Tamper-
resistance requires that data transfer is enrcypted in such a way that

1

it is hard for the attackers to tamper the data in a meaningful way.
Finally, tamper-evidence requires authentication of data transfer to
detect attack attempts and secure logging to record information of
the attacks.

Data transfer between chips must be provided with very low la-
tencies, and any delay due to cryptographic operation can signif-
icantly slow down the computer systems. For example, current
memory access latency is in the order of 200ns, while decryption
operation applied to incoming cache block can easily add 30-50%
to the latency. Another important challenge is the space overhead
due to storing hash codes. In recent studies, to prevent tampering of
data transfer, a Merkle tree of hash codes requires a space overhead
of 25%. This is clearly unacceptable in a system where performance
or cost are critical issues.

Another main research challenge is how to retain the operability
of such system. Since the entire memory is encrypted, secure mech-
anisms are needed in order for the system to communicate with ex-
ternal devices, such the I/O subsystem.

Another major research challenge is how to securely boot the
system. For uniprocessor system, this is relatively simple to
achieve, but for multiple processors communicating with each other,
we need a mechanism to establish trust between the communicating
processes. Traditional protocol such as Kerberos is hard to apply
because it assumes the existence of secure software. Secure hard-
ware booting cannot assume that the security software is already
running.

3 Promising innovations and abstractions for
future systems

A body of research exists on memory encryption and authenti-
cation schemes for uniprocessor systems [2, 3, 5, 7, 8, 12, 13, 14,
16, 17]. The main assumption in memory encryption and authen-
tication work is that on-chip data is secure and cannot be observed
by attackers, while data that resides anywhere off-chip can be ob-
served and altered by attackers using hardware attacks. Therefore,
the goal of memory encryption and authentication schemes is to en-
crypt and hash data before it leaves the processor chip, and then to
decrypt and authenticate it when it is brought back on-chip. Sev-
eral studies use a direct encryption approach where a block cipher
such as AES is used to directly encrypt and decrypt data [3, 7, 8].
However, these approaches add the long latency of the block ci-
pher to the critical path latency of off-chip data fetches. To hide
this latency, several studies have examined counter-mode encryp-
tion where a data block is encrypted or decrypted through an XOR
with a pad [12, 14, 16, 17]. The pad is constructed by encrypting
a seed, which is typically composed of a per-block counter and the
block’s address. The security of counter-mode encryption relies on
uniqueness of pads, which is maintained by by incrementing the
block’s counter each time the data is updated. Counter-mode hides
decryption latency by caching [14, 16, 17] or predicting [12] the
block’s counter, so pad generation can proceed in parallel with the
fetch of the block’s data from DRAM. For authentication, Merkle
hash trees have been proposed to protect the integrity of data in
memory from data tampering and replay attacks. In the Merkle tree
scheme, a tree of Message Authentication Codes is formed over the
blocks of data in memory, with the root of this tree always kept on-
chip. Data integrity can be verified by computing MACs up the tree
to the secure root.

Our own research has advanced the state of the art of counter-
mode memory encryption and authentication by enabling the pro-
cessor to hide cryptographic operation latency so that no noticeable

slowdown is observed, for both uniprocessor system [16], and large
multiprocessor server system [11].

All such technologies serve as a proof-of-concept that efficient
memory encryption and authentication can be achieved. However,
many research challenges, such as communication mechanism with
the external world, secure booting, and tolerating space overheads,
remain unaddressed.

4 Possible milestones for the next 5 to 10 years
Milestones should include a working prototype of secure chips.

A prototype requires addressing problems that may not be obvious
at the research stage, such as the impact of the design on the Operat-
ing System and application software. It is also useful to subject the
prototype to various attacks on data transfer to make sure that the
protection is reasonably secure and securely implemented. Finally,
prototyping requires the changes to existing systems to be reduced
to a minimum while still providing strong security.

References
[1] D. Bartholomew. On Demand Computing – IT On Tap?

http://www.industryweek.com/ReadArticle.aspx?ArticleID=10303
&SectionID=4, June 2005.

[2] B. Gassend, G. Suh, D. Clarke, M. Dijk, and S. Devadas. Caches and
Hash Trees for Efficient Memory Integrity Verification. InProc of the
9th Intl. Symp. on High Performance Computer Architecture (HPCA-
9), 2003.

[3] T. Gilmont, J.-D. Legat, and J.-J. Quisquater. Enhancing the Security
in the Memory Management Unit. InProc. of the 25th EuroMicro
Conf., 1999.

[4] http://www.modchip.com, 2005.
[5] IBM. IBM Extends Enhanced Data Security to Consumer Elec-

tronics Products.http://domino.research.ibm.com/comm/pr.nsf/pages/
news.20060410security.html, April 2006.

[6] M. Lee. Global ATM Security Alliance focuses on insider fraud.
ATMMarketplace, http://www.atmmarketplace.com/article.php?
id=7154, 2006.

[7] D. Lie, J. Mitchell, C. Thekkath, and M. Horowitz. Specifying and
Verifying Hardware for Tamper-Resistant Software. InIEEE Symp.
on Security and Privacy, 2003.

[8] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. MItchell,
and M. Horowitz. Architectural Support for Copy and Tamper Resis-
tant Software. InProc. of the 9th Intl. Conf. on Architectural Support
for Programming Languages and Operating Systems, 2000.

[9] Microsoft Corporation. Microsoft Next-Generation
Secure Computing Base – Technical FAQ.
http://www.microsoft.com/technet/archive/security/news/ngscb.mspx,
2003.

[10] T. Olavsrud. HP Issues Battle Cry in High-End Unix Server
Market. ServerWatch, http://www.serverwatch.com/news/article.php/
1399451, 2000.

[11] B. Rogers, Y. Solihin, and M. Prvulovic. Efficient data protection for
distributed shared memory multiprocessors. InIntl. Conf. on Parallel
Architectures and Compilation Techniques, 2006.

[12] W. Shi, H.-H. Lee, M. Ghosh, C. Lu, and A. Boldyreva. High Ef-
ficiency Counter Mode Security Architecture via Prediction and Pre-
computation. In32nd Intl. Symp. on Computer Architecture, 2005.

[13] W. Shi, H.-H. Lee, C. Lu, and M. Ghosh. Towards the Issues in Archi-
tectural Support for Protection of Software Execution. InWorkshop on
Architectureal Support for Security and Anti-virus, pages 1–10, 2004.

[14] G. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas. Efficient
Memory Integrity Verification and Encryption for Secure Processor.
In Proc. of the 36th Intl. Symp. on Microarchitecture, 2003.

[15] Trusted Computing Group. https://www.trustedcomputinggroup.org,
2005.

[16] C. Yan, B. Rogers, D. Englender, Y. Solihin, and M. Prvulovic. Im-
proving cost, performance, and security of memory encryption and
authentication. InProc. of the Intl. Symp. on Computer Architecture,
2006.

[17] J. Yang, Y. Zhang, and L. Gao. Fast Secure Processor for Inhibiting
Software Piracy and Tampering. InProc. of the 36th Intl. Symp. on
Microarchitecture, 2003.

2

Vox Clamantis in Deserto

ARO Planning Workshop Security of Embedded Systems and Networks

Hardware-Based Security:
Trouble and Hope

Sean W. Smith
Department of Computer Science

Dartmouth College
Hanover, NH USA

http://www.cs.dartmouth.edu/~sws/

February 22, 2007

Vox Clamantis in Deserto

Trouble Area #1:

Not Thinking about Enough Levels

Vox Clamantis in Deserto

Trouble Area #1:

Not Thinking about Enough Levels

 ?

Vox Clamantis in Deserto

Trouble Area #1:

Not Thinking about Enough Levels

 ?

Vox Clamantis in Deserto

Trouble Area #1:

Not Thinking about Enough Levels

 ?

Vox Clamantis in Deserto

Trouble Area #1:

Not Thinking about Enough Levels

 ?

Vox Clamantis in Deserto

Trouble Area #1:

Not Thinking about Enough Levels

 ?

Vox Clamantis in Deserto

Trouble Area #1:

Not Thinking about Enough Levels

 ?

Vox Clamantis in Deserto

Trouble Area #1:

Not Thinking about Enough Levels

 ?

Vox Clamantis in Deserto

Trouble Area #1:

Not Thinking about Enough Levels

 ?
User User

User User
User User

Vox Clamantis in Deserto

Examples

• Java type-safety vs. light bulbs

• Type-safe C variant for kernel coding vs. kernel coders

• hardware-based attestation vs. the computational entity

• hardware-based attestation vs. the operating system

• IBM 4758 platform vs. API flaws in the CCA app

• Cyber-Manhattan project vs. economic roll-out

Vox Clamantis in Deserto

Examples

• Java type-safety vs. light bulbs

• Type-safe C variant for kernel coding vs. kernel coders

• hardware-based attestation vs. the computational entity

• hardware-based attestation vs. the operating system

• IBM 4758 platform vs. API flaws in the CCA app

• Cyber-Manhattan project vs. economic roll-out

Vox Clamantis in Deserto

Examples

• Java type-safety vs. light bulbs

• Type-safe C variant for kernel coding vs. kernel coders

• hardware-based attestation vs. the computational entity

• hardware-based attestation vs. the operating system

• IBM 4758 platform vs. API flaws in the CCA app

• Cyber-Manhattan project vs. economic roll-out

Vox Clamantis in Deserto

Examples

• Java type-safety vs. light bulbs

• Type-safe C variant for kernel coding vs. kernel coders

• hardware-based attestation vs. the computational entity

• hardware-based attestation vs. the operating system

• IBM 4758 platform vs. API flaws in the CCA app

• Cyber-Manhattan project vs. economic roll-out

Vox Clamantis in Deserto

Examples

• Java type-safety vs. light bulbs

• Type-safe C variant for kernel coding vs. kernel coders

• hardware-based attestation vs. the computational entity

• hardware-based attestation vs. the operating system

• IBM 4758 platform vs. API flaws in the CCA app

• Cyber-Manhattan project vs. economic roll-out

Vox Clamantis in Deserto

More Trouble Areas

2. Cryptography's questionable future

Vox Clamantis in Deserto

More Trouble Areas

2. Cryptography's questionable future

Vox Clamantis in Deserto

More Trouble Areas

2. Cryptography's questionable future

3. Keeping and using secrets

• effectively

• affordably

Vox Clamantis in Deserto

More Trouble Areas

2. Cryptography's questionable future

3. Keeping and using secrets

• effectively

• affordably

Vox Clamantis in Deserto

Reasons for Hope

1. Industry is open to designing and deploying hardware-
based techniques to enhance security.

Vox Clamantis in Deserto

Reasons for Hope

1. Industry is open to designing and deploying hardware-
based techniques to enhance security.

Vox Clamantis in Deserto

Reasons for Hope

1. Industry is open to designing and deploying hardware-
based techniques to enhance security.

2. The consequences of keeping up with Moore's Law

Vox Clamantis in Deserto

Reasons for Hope

1. Industry is open to designing and deploying hardware-
based techniques to enhance security.

2. The consequences of keeping up with Moore's Law

Vox Clamantis in Deserto

Reasons for Hope

1. Industry is open to designing and deploying hardware-
based techniques to enhance security.

2. The consequences of keeping up with Moore's Law

3. Repeated calls for principled revolution

• CRA, I3P, "Cyber-Manhattan Project,"....
• This workshop

Vox Clamantis in Deserto

Thanks

● NSF CAREER, DoJ/DHS, Mellon, Internet2/AT&T
● Sun, Intel, Cisco (and IBM Research)

● http://www.cs.dartmouth.edu/~sws/
● Trusted Computing Platforms: Design and Applications.
 Springer, 2005.

For more information:

Sponsors:

TAEC Employee

Title goes here 1

Secure Processing On-Chip

Hsien-Hsin “Sean” Lee

School of Electrical and Computer Engineering
Georgia Tech

Atlanta, GA
ARO Workshop on Embedded Systems and Network Security

Raleigh, NC, February 22, 2007

2H.-H. S. Lee: Secure Processing on-Chip (ARO ESNS’07)

Layered Secure Architecture

self-timed circuit,
obfuscation
techniques

Power, EM emission analysis
timing analysis, etc

Sub Platform
Level

SolutionExploitsLayer
application signing,
access control, …

software patching/amputation,
de-compilation, worm, virus

Application

OS signing,
virtualization, …

rootkit, system call tampering
kernel space eavesdrop

OS

TPMBIOS spoof/hijack,boot image
virus

Firmware/
Boot image

secure processor,
memory encryption

chip interconnect/bus
snoop, eavesdrop, device

spoof

Platform
Level

secure packaging,
private circuit

de-packaging, micro-probing,
optical reverse engineer

Package &
Circuit Level

TAEC Employee

Title goes here 2

3H.-H. S. Lee: Secure Processing on-Chip (ARO ESNS’07)

Secure Processor Assumption

Processor Core Protected
Domain

4H.-H. S. Lee: Secure Processing on-Chip (ARO ESNS’07)

Thread Model: Physical Tampering

Processor Core

DRAM

Ethernet Mouse Keyboard Disk

South Bridge

North Bridge

Protected
Domain

TAEC Employee

Title goes here 3

5H.-H. S. Lee: Secure Processing on-Chip (ARO ESNS’07)

Secure Processors

Anti reverse engineering

Tamper-proof
distributed computing
(trusted end-system)

Tamper-proof
digital right protection

Tamper-proof
embedded sensor device

Secure Processor

Crypto Engine

Processor Core

Caches
MAC hash tree

Secure Processor

Root
Signature

6H.-H. S. Lee: Secure Processing on-Chip (ARO ESNS’07)

Types of HW-based Physical Attacks
• HW-based physical attacks

– Trace system bus, peripheral bus
– Power/Timing analysis
– Build fake devices, device spoof (e.g., MOD-

chip)
– Modify RAM
– Replay bus signals, fake bus signal injection

• XBOX with MOD-chip installed. MOD-
chip is a low cost bus snoop and spoof
device widely used to break XBOX
security.

TAEC Employee

Title goes here 4

7H.-H. S. Lee: Secure Processing on-Chip (ARO ESNS’07)

Designing Secure Processors
• HW-based Encryption/Authentication

– A common strategy to protect data confidentiality and integrity
– Performance, performance, performance

• Deficiencies ─ Side Channels
– Power (or current) signature
– Execution time distinction
– Instruction addresses on the bus (unprotected control flow)

• Potential Solutions
– Randomization
– To be effective, rethink HW design, raise the level of difficulty to

break
– Design trade-off between

• power saving ()
• execution time, RT constraint ()
• security level ()

8H.-H. S. Lee: Secure Processing on-Chip (ARO ESNS’07)

B1

B2

B3

Control Flow Graph Address Sequence

Assume all code are encrypted

Control Flow Leakage  Example 1

TAEC Employee

Title goes here 5

9H.-H. S. Lee: Secure Processing on-Chip (ARO ESNS’07)

B1

B2

B3

Control Flow Graph Address Sequence

Addr(B1)

Control Flow Leakage  Example 1

10H.-H. S. Lee: Secure Processing on-Chip (ARO ESNS’07)

B1

B2

B3

Control Flow Graph Address Sequence

Addr(B1), Addr(B2)

Control Flow Leakage  Example 1

TAEC Employee

Title goes here 6

11H.-H. S. Lee: Secure Processing on-Chip (ARO ESNS’07)

B1

B2

B3

Control Flow Graph Address Sequence

Addr(B1), Addr(B2), Addr(B3)

Control Flow Leakage  Example 1

12H.-H. S. Lee: Secure Processing on-Chip (ARO ESNS’07)

B1

B2

B3

Control Flow Graph Address Sequence

Addr(B1), Addr(B2), Addr(B3)

Addr(B1)

Control Flow Leakage  Example 1

TAEC Employee

Title goes here 7

13H.-H. S. Lee: Secure Processing on-Chip (ARO ESNS’07)

B1

B2

B3

Control Flow Graph Address Sequence

Addr(B1), Addr(B2), Addr(B3)

Addr(B1), Addr(B2)

Control Flow Leakage  Example 1

14H.-H. S. Lee: Secure Processing on-Chip (ARO ESNS’07)

B1

B2

B3

Control Flow Graph Address Sequence

Addr(B1), Addr(B2), Addr(B3)

Addr(B1), Addr(B2), Addr(B3)….

Control Flow Leakage  Example 1

TAEC Employee

Title goes here 8

15H.-H. S. Lee: Secure Processing on-Chip (ARO ESNS’07)

B1

B2

B3

Control Flow Graph Address Sequence

Addr(B1), Addr(B2), Addr(B3)

Addr(B1), Addr(B2), Addr(B3)….

repeated addresses loop

Control Flow Leakage  Example 1

16H.-H. S. Lee: Secure Processing on-Chip (ARO ESNS’07)

B1

B2

B4

Control Flow Graph Address Sequence

B3

Addr(B1)

Control Flow Leakage  Example 2

TAEC Employee

Title goes here 9

17H.-H. S. Lee: Secure Processing on-Chip (ARO ESNS’07)

Control Flow Graph Address Sequence

Addr(B1), Addr(B2)B1

B2

B4

B3

Control Flow Leakage  Example 2

18H.-H. S. Lee: Secure Processing on-Chip (ARO ESNS’07)

B1

B2

B4

Addr(B1), Addr(B2), Addr(B4)

B3

Control Flow Graph Address Sequence

Control Flow Leakage  Example 2

TAEC Employee

Title goes here 10

19H.-H. S. Lee: Secure Processing on-Chip (ARO ESNS’07)

B1

B2

B4

Addr(B1), Addr(B2), Addr(B4)

B3
Addr(B1)

Control Flow Graph Address Sequence

Control Flow Leakage  Example 2

20H.-H. S. Lee: Secure Processing on-Chip (ARO ESNS’07)

B1

B2

B4

Addr(B1), Addr(B2), Addr(B4)

Addr(B1), Addr(B3)
B3

Control Flow Graph Address Sequence

Control Flow Leakage  Example 2

TAEC Employee

Title goes here 11

21H.-H. S. Lee: Secure Processing on-Chip (ARO ESNS’07)

Control Flow Leakage  Example 2

B1

B2

B4

Addr(B1), Addr(B2), Addr(B4)

Addr(B1), Addr(B3), Addr(B4)….
B3

Control Flow Graph Address Sequence

22H.-H. S. Lee: Secure Processing on-Chip (ARO ESNS’07)

Control Flow Leakage  Example 2

B1

B2

B4

Addr(B1), Addr(B2), Addr(B4)

Addr(B1), Addr(B3), Addr(B4)….
B3

either B2 or B3 follows B1 conditional branch

Control Flow Graph Address Sequence

TAEC Employee

Title goes here 12

23H.-H. S. Lee: Secure Processing on-Chip (ARO ESNS’07)

Critical Data Leakage via
Value-Dependent Conditional Branches

• Hacker’s interest : to find K (the secret)
• Only 2 possibilities: key K or K

Let S0 = 1
For i = 0 to w-1 Do
 If (bit i of k) is 1 then
 Let Ti = (Si*C) mod N
 Else
 Let Ti = Si
 Let Si+1 = T2

i mod N
EndFor
Return (Rw-1)

Initialize

i=0 to w-1

Else-branchIf-branch

Loop End

Return

bit i of k = 1?
Y N

Modular Exponentiation Algorithm
(Diffie-Hellman, RSA)

T = Ck mod N

24H.-H. S. Lee: Secure Processing on-Chip (ARO ESNS’07)

Consequences of Control Flow Side-channel
• Leak critical information of the application

• By graph matching the CFG, reused code
can be ID-ed

• Critical data can be leaked as well

• Even partial knowledge can help
competitors

TAEC Employee

Title goes here 13

25H.-H. S. Lee: Secure Processing on-Chip (ARO ESNS’07)

Side-Channel Countermeasure
• Randomization

• Design trade-off between
– power saving
– execution time (RT constraint)
– security level

26H.-H. S. Lee: Secure Processing on-Chip (ARO ESNS’07)

Solution Example:
Dynamic Control Flow Obfuscation
• A Hardware Approach

• To map address differently every time it appears
on the bus

• Relocate blocks to new location each time it is
evicted from the processor

• Should not write out immediately after access to
avoid correlation being exposed

TAEC Employee

Title goes here 14

27H.-H. S. Lee: Secure Processing on-Chip (ARO ESNS’07)

Dynamic Obfuscation Example
shuffle buffer

1 2 3 4 5 6 7 8 9
memoryaccesses

1 2 3 4 5 6 7 8 9Start—after fill
up the buffer

5 1 5 3 4 2 6 7 8 9

Random Replacement Algorithm

Security
Boundary

28H.-H. S. Lee: Secure Processing on-Chip (ARO ESNS’07)

Dynamic Obfuscation Example
shuffle buffer

1 2 3 4 5 6 7 8 9
memoryaccesses

5 1 5 3 4 2 6 7 8 9

1 2 3 4 5 6 7 8 9Start—after fill
up the buffer

Shuffle buffer Memory

Addr1 map(Addr1)
Addr2 map(Addr2)
Addr3 map(Addr3)

AddrX map(AddrX)

Block Address Table

TAEC Employee

Title goes here 15

29H.-H. S. Lee: Secure Processing on-Chip (ARO ESNS’07)

Dynamic Obfuscation Example
shuffle buffer

1 2 3 4 5 6 7 8 9
memoryaccesses

5 1 5 3 4 2 6 7 8 9

1 2 3 4 5 6 7 8 9Start—after fill
up the buffer

8 5 3 4 2 6 7 1 98

6 8 6 3 4 2 5 7 1 9

8 8 6 3 4 2 5 7 1 9

finish 8 6 3 4 2 5 7 1 9

Addr1map(Addr1)
Addr2map(Addr2)
Addr3map(Addr3)

AddrXmap(AddrX)

Block Address Table

30H.-H. S. Lee: Secure Processing on-Chip (ARO ESNS’07)

Challenges in Embedded Design
• From a processor architect’s perspective

• How to design a tamper-proof embedded
processor

• Software solutions may be slow and limited

• Encryption/decryption
– A natural given
– But is insufficient due to side-channel attacks
– Need to educate next-gen processor designers

• Need a well-thought-out Security-aware
hardware design

TAEC Employee

Title goes here 16

31H.-H. S. Lee: Secure Processing on-Chip (ARO ESNS’07)

Challenges in Embedded Design
• Physical Tampering

– Tamper-resistance and tamper-evidence
– Side-channel attacks

• Digital Right Management
– Protect Virtual properties with encryption and right

licenses
– Need a DRM-enabled graphics processor

• Implications on FPGA platform
– Use FPGA for cryptographic algorithms
– Protect FPGA-based IP
– Vulnerabilities yet to be understood

Thank You!

http://http://arch.ece.gatech.eduarch.ece.gatech.edu

1

A Case for Tamper-Resistant
and Tamper-Evident
Computer Systems

Yan Solihin
solihin@ncsu.edu

Center for Efficient, Secure and Reliable Computing (CESR)
Electrical and Computer Engineering

North Carolina State University

 2Brian Rogers Efficient Data Protection for DSM PACT 2006

Motivation
 Why data protection?

 DRM, SW Piracy, Reverse Engineering

 Data Theft & Tampering

 Why architectural mechanisms?
 Hardware attacks emerging: Mod-chips, Bus snoopers,

keystroke loggers, etc.

 SW-only protection vulnerable to HW attacks

 SW protects communication between multiple
computers, but not within a computer

2

 3Yan Solihin <solihin@ncsu.edu>

Architecture and Assumptions

P
L1

L2

Security
Boundary

SNC

Mem. Ctrl. Dir.

Memory

P
L1

L2

Security
Boundary

SNC

Mem. Ctrl. Dir.

Memory

Interconnect Network

I/O

 4Yan Solihin <solihin@ncsu.edu>

Attack Scenarios
 Scenario 1:attackers have physical access to the

systems
 Game Consoles
 Computers confiscated by enemies
 Voting Machines

 Scenario 2: attackers are trusted users
 ATM Fraud
 On-demand/Utility Computing

 Scenario 2 should not be underestimated. 80%
of ATM fraud involves employees

3

 5Yan Solihin <solihin@ncsu.edu>

Why Hardware Protection is Necessary

 4GB storage for under $70!
 In 1Gbit/sec interconnect, can
 Record 32 seconds of communication

+ =

 6Yan Solihin <solihin@ncsu.edu>

Cable Clutter Hides the Snooper

Snoops and logs
Ethernet Communication

Even Data Center or
Utility Computing Servers

(e.g. HP Superdome)

4

 7Yan Solihin <solihin@ncsu.edu>

Key Questions
 How can computer system components (processors,

memory, cards, keyboard, monitor) communicate with
each other securely but also efficiently?

 Security Requirements:
 Privacy: snooped communication cannot be used to infer data
 Tamper-Resistant: altered communication is detected or

avoided
 Tamper-Evident: attempts to snoop or alter communication are

logged
 Authenticated: each knows who it’s talking to

 Efficiency Requirements:
 Time and space overheads must be negligible

 8Yan Solihin <solihin@ncsu.edu>

Research Challenges
 Performance:

 Data Communication must not be noticeably delayed
by cryptographic process

 Cryptographic process should not consume much
space overheads

 Inter-operability
 How to communicate with outside world securely?
 How to boot the system securely?

5

 9Yan Solihin <solihin@ncsu.edu>

Our Work in This Area
 Brian Rogers, Milos Prvulovic and Yan Solihin, Effective

Data Protection for Distributed Shared Memory
Multiprocessors, PACT 2006.

 Chenyu Yan, Brian Rogers, Daniel Englender, Yan
Solihin and Milos Prvulovic, Improving Cost,
Performance, and Security of Memory Encryption
and Authentication, ISCA 2006.

 Other work
 Secure heap memory management (ASPLOS 2006)
 HeapMon: low-overhead memory safety check (IBM Journal of

R&D 2006)

 10Yan Solihin <solihin@ncsu.edu>

Current Approach
 Security Assumptions:

 Assume chip boundary defines the secure boundary
 Cryptographic unit integrated into processor chip
 Secure storage of keys in the processor chip
 Off-chip communication encrypted and authenticated

 Attack model:
 Snooping communication to steal data
 Man-in-the-middle attacks to inject, remove, and alter

data

6

 11Yan Solihin <solihin@ncsu.edu>

Gen pad

Choice of Encryption Mode Matters

Best Case Read Operation Worst Case Read Operation

ECB

Counter-Mode

Miss Decrypt

Miss

XOR

Miss (data)

Miss (SN)

XOR

Miss Decrypt

Decrypt (SN)

Gen pad

 12Yan Solihin <solihin@ncsu.edu>

Experimental Setup
 System Configuration

 SPLASH-2 applications

Cntr-mode enc & GCM-based auth, 64b countersProc-proc protection
MESI protocol, Reply-forwardingCoherence

16 / 32 / 64 Processors

16-stage pipeline w/ 80 cycle latencyAES Engine

Hypercube, 50ns link latencyNetwork
200 cycle RT memory latencyMemory

Unified, 256KB, 8-way, 64B line, 10 cycle accessL2 Cache

7

 13Yan Solihin <solihin@ncsu.edu>

DSM Data Protection Overhead

0%

10%

20%

30%

40%

50%

b
a

rn
e

s

c
h

o
le

s
k

y

ff
t

fm
m lu

o
c

e
a

n

ra
d

io
s

it
y

ra
d

ix

ra
y

tr
a

c
e

v
o

lr
e

n
d

w
a

te
r-

n
2

w
a

te
r-

s
p

a
v

e
ra

g
e E

x
e

c
u

ti
o

n
 T

im
e

 O
v

e
rh

e
a

d
P2M Only Direct Private Shared Cached4

 Private: performance better than Shared or Cached
 Cached: good tradeoff between performance, storage, and scalability
 DSM protection adds only 1% to 3% overhead on average compared

to CPU-Mem protection; total overhead is only 6% to 8%

 14Yan Solihin <solihin@ncsu.edu>

Conclusions
 Hardware Attacks feasible in certain scenarios
 Secure off-chip communication possible with low

overheads
 There are many remaining challenges

Session V – Robust Distributed Services
Session Chair: Cliff Wang

�����������	�
��
�����
���������������������������������������
��

�
������������
� ���

!�� ����������"��	�����
��������#$%�#&&$�

�
�
�������������	
	���
�

���������������������
��'
���(����������������� ���	������������������������������������	%�
��������	%� ���� ������������	� �� ������)����� �� ����� �������� ��� ������*� ���� ������
�� �����������)��������� ���� ���������� ������� ��������� ���� �������������)��� �������������
�����������������������������������	�����������������������	���	������������������������ ����������
������������� ������ ���������������������	����������������������������
����������������������������
���������%� ���+������� ��������� ��������� ��	�
���
�
�� �� ��	
�
��� �
���	� �
���	�� �

���
�� ���
	
���
� 	
������ ��� �
�
��� ������������� ��	�
��� �������
� 	
��
	
�� ���

	����
���� ��	����� �
��	����
�������������

��	
��������	
���	
�
����������������
����
�����������
�����

	��
�����������	�������
��
�
	
�
��
� ���� ���� ��� 	
���
	�
��
����
��� �	���� �
��	���� ��������� �
�
	�
��
� ����� ���
� �
��
�
�������������
���
����	���	����	
��������	�����
��
	����

	�������������������
�����

	��
�����
�
�� �
��������
�
	
�
��
���������	
�������
��	��������������
�
������������	
���
��
�����
����
�

��� ����� ��		
��� �
��	
��� �����
���� �	
� �
����

����� �
����

���� �
	�
���� ��� ��		
���
�����
��������
��
	
����
��������
����

���������
�����	
�	
��
	
����	�������

��� ����� ��		
��� �����
���� �	
� ���� 	
���
�
�� ��
�� ���
� �� ��� 	��
�
� �
��	
��� ���!��
!�
�
��
"�
��
�� ���
�� ���� 	���
������
� 	
��
	
� �
�� �	��
�
���	
�� ���� ����
��� ����� ���� �� �	��
�����
��	
���
�����������#���

$�� %
�
��
��������#��
�����
	
���� 	���
��
��������
����
������
��
�
�
��	
���	�
�����������
�
����
��
������
�
��
��������
����
������
��
	����
���������
��	
� 	��
��
�
�
�����#
���

����	
��
��
���������
��
���
����
��

��������������
��	
��������#���"�
��
�����
����
������
�
�
�������
	�
�
������#���"�
������
��
�
���������
���
�
� 	���
����
����
����	���	
�����
������	
������
�����

�
��	����
���

	����	
��
�
"�
� ������
��
� ��� ���	� �
�������

��
�� �	
��
��� ��� � �	���
��� ��	� �� ��&�	� �
�� � 	����� ���
����
������
���
���������
��
��	
��� 	���
�����	��
	
�
����
���	��
���	#������
�������
�
��
���
�����#��
���������	
��
��
����
�� ��
�
�������
�
�����
�������#����� ��
��
�
'
	���� ����� ���
� ����
����
�� ��� ��
	
� ��
	
� �	
� ��	�
� ����
	�� ��� �
�
��	��
(
�� 	��������

��
�	��
��
���� �����
��
��� ����
����)��
�
	�� ��
�
� 	�������� ���
� ���� ��
������ ���	
��
��
�
��	
������	�
�����
	������������
���	����
��
����
*
���
����
�
��	��
(
������	��� 	������������
 	��
�
� �����
�� ��	��
�������
���� ����� ������ �
	��
���
�� ��
� 	
�
��
� ��� �����#���'�	�
*�� �
��
+
�
��
��� ��
�����
���
��
�
��
�����
	� ��
�%�	 ���,�"�����	���������
��� ��
	��-� 	��������
�
	��
���
�����
�
��	��
(
������
	�����������	����
����
����	�.
�
�
����/����#
����
��	
�����	
�����
����
��
���������
���������
 ����
��	
�
���
������		� �
��������	�������	
���� ��
�����	
��
��!
�
��
��� 0�� ���
	� ��	����
�� �
�
��
�� �
��� �
��	
���
���
���� �
�
��	��
(
�� 	�������� ���� 	
�
���
�����#��
����
� �	�� ��� ��
� �
���	#� �	������
��
��� ��
�
��
	
� ����
����
�����
�
	� ��
� ���	
���
�

��������� 	��
������ ���
����� �������� ��� �����
��
����� ��
�
���� �� ���
���
�
�����
����� ��
� �
� ����
������
�������		
�����
��������
��	���
�����
�
����������
�����
����
�����
��������	�������������
�������������������
����
����
���
�����������
��������������
������������������������
��
������� ���!��
�
���������������
���"�����
����
�#���
��
�����
����	�����������������������"����������	�������������
���

��"������������
������������
�$
��������
����
�����
����
�����
����
��
������
���� ���
�����
�����
������
�������������� ����
�����

��������
�������
���#��������
��������	
�������
�������
��%�������
����������
�������������"����
��
�
�������� ��
����
������� ���	����
��
�����
�	���
�������������� ������
�� �

��"�����
�� ��&������
������
��� ��
����
������ ��
���������&�������
���'�"������

����� ���
�� �������
��
�
�����
�����
����
�
��
���������
���
�����������������
����
������
�
����������"���
��������
���

��"�
������
����
�
%������ ��������� �����	
�� ��� ��������� ��	��
������
��� 	������� ������� 	�������
�� �

��� ���� ��
��	���
����������	����
�����	����
���
����
�����������
������������������
�������������
��
�����

����� ���� ����
�� ��	��
��
� ��	���
�
���� ����
��� ��	�����
�� ������� ���� �������� ���	
�
���� ���
������ (������� ��
����
���� ���� ��������������
�
�� ����
��� ��	���
�� ����
�����
���� ���
��������

�� ��
����������
�� ������
�� ����������� ���� 	�
���� ��	
����
�
����� ���� "����
��
����
���� �����
���� �������� ���� ��
����	����� ��� 	��
���
���� ��	��
������
��� ��	���
���� ��� ������
��
��
�
��� ����� ���
�� ����
�
�
��
��� ���
����� ��������
����� ���� �	��
���� ��� ������
�� ����� �����
�����
�

������������
������
�����������
�����
������
��������������
�����
����
����
�
)���
��� ��

����	� ����
���� ����
���� ���� ���� ��		��
� �� ���
�
���� ���	
���� �������
�� �����
���
������%������������
���������
�� ����
��������������	����
�#�������	���� ����
�����������
�

����
�� ��
����
���� �������
���#��
��� �����	
�� �����
� ���� ����������� ������
�� �

��"���
(�������

�� ����
������� ���� ��
����
���� �	��
��� ������
�� ���	����
�� ��� �� "��� ����
��� ����
������������
�������
����������������	����������������
���

��"���
�
�����������
�

��� �����������	

	���
����������������
��� ���	
�� ���
	�������� ����
�����
�������
������
��������� ���
����� ���	���	
������������������

���������
���
��� �� ������	���	���������
�����	���	����
�����������
�����������
!�� �������	�����"��	������������
�����������	����
��
�����
#�� $
���
��
�	���� 	��	
������
����������
���
�����
�
�������	���
����� ����
��
���

�
	
���
��
�
������������������
�������	 ��
	������������
���
���
	����������
�����	����� ������� ����	�������
���
����	��	����	����������
��
�
���
	������
	��	
������	����	��������
���%	���	��	���	�
� �
�����&���
��
��
�	�������%��������'������
������	�	%���
���������%��(���	���������
���
�%���
"���������	%���
��
	���������
���	�	%���
�����&������������	��
�����	������� ��
���������
�����%��
�	������	

	���������
	��	��� %�� ������ ������� ��)����� ����
�����
�� ��	%��������
�� *�+� ����	
�� ���
��� ��������� ���
	

	����� 	��� *��+� � �� ��
�� ������
� ������
�� ��	����� ������� � ���
��� ����
�
�� ��� 	� ���
�
��&���
��
��
�	�� ����
�����
��
������ ����� �	�� �����
� �� ����� ���
� %������ 	�����	
����� 	���
�� ����
��
��
���������	�����	���
������
�
��
�	
��	��	���� ��
�����
������
��
�	���
�

Some Issues in WSN, MANET and Cellular Security
(Position Paper)

Gene Tsudik1

ABSTRACT

In this position paper, we address some current limitations and challenges as well as emerging
directions in three related areas of secure communication: (1) security in Wireless Sensor Net-
works – WSNs, (2) security in Mobile Ad Hoc Networks – MANETs, and, (3) security in Cellular
Phone Networks.

WSN Security

Survivability and Intrusion Resilience: Sensors that obtain information by sensing the environment
might not be able to propagate in real time. One basic reason is that, a batch of deployed sensors could
form not a network per se, but, a collection of devices each responsible for its own sensed data. Some sensor
settings do not involve sensors ”talking” to each other; instead, a sensor waits for a mobile collector/sink
to pass by in order to off-load sensed data. Such an environment obviates certain network security issues
but opens others. Notably, a sensor needs to minimize the amount of overall collected information while
preserving its security. At the same time, it needs to cope with the risk of compromise. Neither issue comes
up in typical WSNs considered in the literature. We envisage a need for new techniques that combine the
cryptographic features of cryptographic forward security with aggregation (of MACs and signatures) in order
to satisfy security requirements of such ”disconnected” sensor networks.

Secure Initialization: sensors are typically mass-produced and deployed simultaneously in batches. Un-
like personal ubiquitous devices (such as cell-phones), sensors are not usually ”personal” and lack traditional
means of input and output. (In particular, since a sensor is not a computer, in a traditional sense, it lacks an
HCI.) A collection of sensors that needs to be deployed may need to be initialized to share a common secret
key. Much work has been done in developing a plethora of key (pre-)distribution techniques, based on both
public key and/or conventional cryptography. However, all such techniques are inapplicable in scenarios
where sensors are not obtained in well-defined groups that can be initialized by the manufacturer.
If no secret keys are pre-distributed, security initialization must be done in an ad hoc fashion. It cannot be
done via some wireless broadcast medium since doing so would be subject to trivial eavesdropping. Doing it
with wires or other direct physical connection is awkward and unscalable. Consequently, new techniques are
needed that address both security and scalability. One recent proposal called ”Shake-Them-Up” addresses
the security issue to an extent, however, scalability remains to be tackled.

MANET Security

Anonymous Routing: we consider hostile MANET scenarios where network topology undergoes constant
changes and current topology represents sensitive information which must be kept confidential even from
MANET nodes themselves. (Troops on the battlefield is one prominent example.) In such cases, existing
routing protocols are unsuitable and new packet forwarding methods must be developed.

Location-Based Addressing: in a MANET environments where nodes are mutually suspicious (e.g.,
because capture/compromise are possible) addressing and packet forwarding based on long-term identities
is unsafe. This is because identities tend to reveal current locations of nodes and allow tracking of nodes as
the network topology changes. At the same addressing based on location only (without knowing whether
anyone is there) is not optimal since a picked location might be empty and effort expended in discovering this
is essentially wasted. Thus, it makes more sense to periodically announce each node’s location, thus making
it possible to use location as a reliable current address of the destination. We claim that, if a sufficient

1Department of Computer Science, University of California, Irvine. gts AT ics.uci.edu

1

fraction of all nodes change locations between successive updates, tracking of nodes becomes infeasible.
Moreover, if nodes have a way to authenticate their routing updates in an anonymous and un-linkable
fashion, the network becomes more secure than is possible with current secure MANET routing techniques.
The biggest challenge is to come up with a MANET architecture that allows this kind of operation in an
efficient manner.

Cellular/Mobile Phone Security

Security in cellular phone networks has been studied extensively since early 90-s and there is a large body
of literature on the subject. However, two prominent problems remain, as we highlight below.

Secure Pairing: sometimes referred to as Secure First Connect, this issue has to do with establishing a
secure means of communication between two devices, at least one of which is a cell phone. The problem is
exacerbated by three factors:
- heterogeneous devices (both phones and others) varying widely in terms of features (means of input/output)
- lack of any standard security infrastructure such as a common PKI
- inability to rely solely upon human-imperceptible means of communication due to man-in-the-middle at-
tacks
- consequent reliance on the human user, which requires minimizing user burden while offering sufficient
security
Notable secure pairing techniques proposed to-date involve using so-called location-limited side-channels.
Each requires some direct involvement of the human user but they differ in the type and degree thereof. It
has been widely accepted that involving the human user is unavoidable. At the same time, no technique
is universal, even when it comes to pairing two similar cellphones. On the one hand, the design space of
possible secure pairing techniques has not been thoroughly explored. (Methods like ”Resurrecting Duck-
ling”, ”Talking-to-Strangers”, ”Seeing-is-Believing”, ”Loud-and-Clear” and ”HAPADEP” notwithstanding.)
Moreover, usability studies have been undertaken only recently and much more work is remains to be done
to adequately assess usability factors of already proposed techniques.

Anonymous Roaming: This issue refers to the ability to use one’s cellular phone without exposing the
phone’s long-term identifier (e.g. IMSI in GSM) to the roaming network/provider. While most, if not
all, cellular networks in operation today require the notion of ”home” for each subscriber (SIM or phone
unit, depending on the underlying standard), there is no inherent need to disclose the long-term identifier
(There is, however, a legitimate need to disclose the ”home” provider, however, that is a far cry from
disclosing the actual phone identifier.) The need for roaming anonymously has been recognized for quite
some time. However, despite the fact that the technology (protocols, designs, cryptographic primitives) is
readily available, anonymous roaming is not available on any current cellular network.
The research challenge in anonymous roaming is not great; it boils down to coming up with concrete set
of secure cryptographic protocols that support roaming anonymity and convincing the providers as well as
manufacturers to offer anonymity as a service.

2

1

1
Carnegie Mellon

Robust Distributed Services
in Embedded Networks

Michael Reiter

2
Carnegie Mellon

Take-Away Message

An analogy

 Users on the Internet are not satisfied with only connectivity
 Higher-level services attract users and applications

 Same theme is arising in mobile handheld applications

 Similarly, we believe that ensuring connectivity is only part of
the picture for embedded / ad-hoc / … networks

 Users and applications will require services, databases, and
other “pull-style” information backplanes

2

3
Carnegie Mellon

What Makes This Difficult?

 If your embedded / ad-hoc network is autonomous, it may have
no servers!
 At least not in the typical sense of that word

 A server is typically
 Well provisioned and maintained
 Reliably connected
 Relatively trustworthy

 Embedded / ad hoc networks may lack any such nodes

4
Carnegie Mellon

Survivable Distributed Services

 Service, or object, abstraction  Implementation

push pop sort

inv
oc

at
ion

re
sp

on
se

3

5
Carnegie Mellon

inv
inv

inv
inv
inv

inv
inv
inv

inv
inv
inv

inv
inv
inv

inv

Traditional Approach: State Machine Replication

 Offers no load dispersion, and degrades as system scales

Servers

inv inv inv

6
Carnegie Mellon

Quorum Systems

 Quorum systems:
 Basic tool for synchronization in distributed systems
 A set of subsets (quorums) of a universe U of logical elements, having

intersection property (any pair of quorums intersect)

Majority Grid

4

7
Carnegie Mellon

Byzantine Quorum Systems

 A quorum system is a data redundancy technique that supports
load dispersion among servers

 Only a subset of servers are accessed in each operation
 Good servers in intersection must be enough to “out vote” bad servers

Ex: Grid with n=49, b=3
Construction Resilience Quorum size

Threshold

4/nb <

 3n/4

M-Grid
2/nb <

()bnO

BoostFPP

4/nb <

()bnO

Probabilistic

2/nb <

 { }()nbO ,max

8
Carnegie Mellon

Protocols for Survivable Services
[w/ Abd-El-Malek, Ganger, Goodson, and Wylie]

 New protocols for
 Read/write objects
 Arbitrary services (Q/U)

combining
 Quorum systems
 Optimistic execution
 Fast cryptographic primitives

 Graphs on right show that quorum
protocols can scale better than
SMR in real systems
 But these were well-connected

settings

5

9
Carnegie Mellon

Dealing with Network Effects

 Network effects are likely to be just as important in embedded /
ad hoc networks as load dispersion

 Even worse, minimizing network delays for accessing quorums
can be in conflict with load dispersion
 May have to bypass a close but heavily-loaded quorum in favor of a

less-loaded but more distant quorum

 Can we balance this tradeoff?

10
Carnegie Mellon

Quorum Placement Problems

 Place “good” quorum systems on network
 to minimize network-specific measures
 preserve “goodness”

 Goodness = load
 Assume each quorum Q is accessed with probability p(Q)
 loadp(u) = ∑Q: u∈Q p(Q)

 Network measures:
 Average delay observed by clients when accessing quorum system
 Network congestion induced by clients accessing quorum system

6

11
Carnegie Mellon

Network Measures

 quorum system Q over U
 access strategy p: Q → [0, 1]
 placement f : U →V

 Given
 network G = (V, E)
 delay d : E → R+

 edge_cap: E → R+

 Average max-delay:
 d(v, f(Q)) = maxu∈Q d(v, f(u))
 d(v, f(Q)) = Ep[d(v, f(Q))] = Δf

(v)
 avg_delayf = Avgv∈V [Δf (v)]

 Network congestion:
 flow gv,f(u): E → R+

 traffe(v, f(Q)) = ∑u∈Q gv,f(u)(e)
 traffe = Avgv∈V Ep[traffice(v, f(Q))]
 congf = maxe∈E traffe/edge_cap(e)

3

1 2

1

12
Carnegie Mellon

Quorum Placement Problem for Delay (QPPD)

 Given
 graph G = (V, E),

 with distances d: E → R+

 and capacity node_cap(v) for all v ∈ V
 a quorum system Q

 with a distribution p s.t. each Qi is accessed with prob. p(Qi)

 find placement f
 minimizing average max-delay, Avgv∈V [Δf (v)]
 subject to load constraints: loadf(v) ≤ node_cap(v) , for all v ∈ V

4

5

5
1/3

1/3

1/3
 f = ?

7

13
Carnegie Mellon

Results for QPPD
[w/ Gupta, Maggs, Oprea]

 QPPD is NP-hard

 For any α > 1, there is a (5α/(α−1), α+1) approximation:
 If we allow capacities to be exceeded by a factor of α+1, then we can

achieve average max-delay within a factor of 5α/(α−1) of optimal for all
capacity-respecting solutions

 For Majority and Grid, if node capacities equal the optimal load of
the quorum system, there is a (5, 1)-approximation.

14
Carnegie Mellon

Quorum Placement for Congestion (QPPC)

Two routing models:
 Fixed paths (given as input)
 Arbitrary paths (chosen probabilistically)

Given:
 graph G = (V, E),

 node capacities node_cap(v) for all v ∈ V,
 and edge capacities edge_cap(e) for all e ∈ E

 a quorum system Q
 with a distribution p s.t. each Qi is accessed with prob. p(Qi)

 find placement f
 minimizing max relative-congestion, Maxe∈E [congf (e)]
 subject to load constraints: loadf(v) ≤ node_cap(v) , for all v ∈ V

8

15
Carnegie Mellon

Results for QPPC
[w/ Golovin, Gupta, Maggs, Oprea]

 QPPC is NP-hard in either model
 Even finding any node-capacity-respecting solution is NP-hard

 Arbitrary paths:
There is an (O(log2 n log log n), 2)-approximation.
 If we allow node capacities to be exceeded by a factor of 2, then we can achieve

max relative-congestion to within a factor of O(log2 n log log n) of optimal for
all node-capacity-respecting solutions

If G is a tree, there is a (5, 2)-approximation.

 Fixed paths:
 There is an (O(η log n / log log n), 2) –approximation, where η

is the size of the set { log2(load(u)) | u ∈ U }

16
Carnegie Mellon

Theory vs. Practice

 We have some initial theory results
 But many theoretical questions remain unanswered

 But how does the theory correspond to practice?
 Example: Network delay is only one component of client response

time, the other being server load
 So, network delay and server load are not easily separable for this

measure

 These problems still need to be explored even in fixed-
infrastructure networks

9

17
Carnegie Mellon

Embedded / Ad Hoc Networks

 Importance of addressing faults
 Not only due to disabling quorum elements, but also due to impinging

on quorum reachability

 If population is dynamic
 Need to consider migrating quorum elements

 If mobility is involved
 Continually need to re-evaluate quorum placements

1

Adaptable and Reactive
Security for

Wireless Sensor Networks

John A. Stankovic
Department of Computer Science

University of Virginia

Outline

• Brief Motivation
• Adaptable Self-Healing Architecture

– Components
– AOP
– Robust Decentralized Control
– Lightweight Security Components

• Systems of Systems
• Summary

2

1. An unmanned plane (UAV) deploys motes

2. Motes establish an sensor network
with power management

3.Sensor network detects
vehicles and wakes up
the sensor nodes

Zzz...

VigilNet: Surveillance System

Sentry

VigilNet Architecture

3

Security Issues

• Every one of the 30 services can be
attacked

• Too expensive to make each service
attack proof

• Attacks will evolve anyway

Security Approach

• Operate in the presence security
attacks
– Robust decentralized control

• Self-Heal
– AOP

• Evolve to new, unanticipated attacks
– AOP and Wireless Downloads

• Lightweight solutions required due to
severe constraints

4

Components

Aspect Oriented
Programming (AOP)

Functional Modules

Aspects

Logging Encrypt Power Control

5

Unanticipated Attacks

• What if advice was not available on the
nodes
– Typical for an unanticipated attack

– Report event to base station
– Find/Write new aspects
– Disseminate to nodes

Decentralized Control

• Large Numbers of Nodes
– Aggregate Behavior Emerges
– Control/Guarantee Behavior

• Redundancy
• Mask faults/ attacks
• Uniformity a problem/diversity

6

Lightweight Components

• Secure (reactive/adaptive) routing

• Localization

SIGF
• The SIGF family provides incremental steps between

stateless and shared-state protocols.

• SIGF allows efficient operation when no attacks are
present, and good enough security when they are.

7

Adaptive, Configurable

• Security level can be adaptive based on the
resource constraints and security
requirements.

• Each level can be configured based on
parameters.

Localization - Spotlight
• Run time-sync protocol
• Generate (invisible) light events
• Sensor nodes detect the events and report the timestamps
• The Spotlight device computes the location of the sensor nodes

8

Localization Robustness

• Execute combination of protocols

StarDust

Spotlight

Centroid DV-Hop

Timer Expired

Localized

Neighbors
No Neighbors

are localized

Timer

Expired

Zzz...

System of Systems

Sentry

9

Systems of Systems

• Inter-system security

• How to program and debug to ensure
– Behavior
– Robustness

System Architecture

Internet

Local
Transport
Protocol

Local
Transport
Protocol

Programming
Station

Server Server

Nodes Nodes

10

System Architecture

Internet

Local
Transport
Protocol

Local
Transport
Protocol

Programming
Station

Server Server

Nodes Nodes
Information about

Services, Interfaces
Location

System Architecture

Internet

Programming
Station

Server Server

Nodes Nodes

Local
Transport
Protocol

Local
Transport
Protocol

High level
Programming

Language
EXE

High Level
Virtual Machine

High Level
Virtual Machine

Low Level
Virtual Machine

Low Level
Virtual Machine

11

System Architecture

Internet

Local
Transport
Protocol

Local
Transport
Protocol

Programming
Station

Server Server

Nodes Nodes

Responsible for
Resource management

User access rights

Security Attacks

Summary
• Security in WSN

– Lightweight
– Attack resilience
– Evolve for unexpected attacks

• Security in Systems of Systems

• Self-Healing Architecture
– AOP extensions
– Adaptive and lightweight protocols

12

Acknowledgements

• Anthony Wood
• Hua Cao
• Radu Stoleru

1

1

Some Issues in MANET,
Wireless & Cellular

Security/Privacy

Gene Tsudik
UC Irvine

gts_AT_ics.uci.edu

2

Outline
• WSNs:

– Survivability & Intrusion Resilience
– Secure Scalable Initialization
– Graceful Degradation

• MANETs:
– Oblivious Routing
– Location-based Addressing

• Cellular:
– Secure Association
– Anonymous Mobility

2

3

WSNs
• Survivability & Intrusion Resilience

– Not all sensors network; many don’t
– Collect data, wait for pickup
– Irregular pickups + possibly long intervals
– Hostile environment -- intrusion/compromise possible
– How to protect collected data?

• Storage, Computation and Bandwidth constraints
• Secure Scalable Initialization

– Sensors manufactured in large quantities
– Key pre-distribution not always viable
– How to quickly and securely “pair” groups of sensors?

• Scalability? Usability?
• Graceful Degradation

– Strong security can kill sensors
– When death is near, is strong security important?
– How to gracefully degrade/relax security services?
– What metrics to use when degrading?

• Whither RFID/Sensor hybrid?

4

MANETs
• Oblivious Routing

– Fixed node population
– Nodes move, topology changes
– Hostile environment
– How to protect topology (even from insiders)

• But keep security

• Location-based Addressing
– Nodes don’t have identities
– Node instances known by current location
– Node instances must be authentic
– How to keep node behavior (movements) private?

• Most routing protocols can’t hack it..

3

5

Cellular (Wireless Devices)
• Secure Association/Pairing

– Heterogeneous devices
– No PKI, no history
– Insecure wireless medium
– How to establish a secure channel?

• Human-as-a-limited-side-channel
• Many techniques proposed, usability uncertain!

• Roaming with Privacy
– Not a research challenge, just an annoying

problem

Session VI – Wireless Sensor Networks, MANET,
and Cellular Security
Session Chair: Peng Ning

Diversify Sensor Nodes to Improve Security of Sensor Networks

Wenliang Du
Department of Electrical Engineering and Computer Science

Syracuse University, Syracuse, NY 13244-1240 USA

A fundamental challenge in securing sensor networks is that sensor nodes can be physically compro-
mised. Most of the security mechanisms relies on the secrecy of some importantdata that is stored on sensor
nodes. For example, for encryption, the security depends on the secrecy of keys. Because of the lack of
physical security and memory protection, sensors can be captured by adversaries, and secret keys stored in
memories can be compromised. Once those secrets are disclosed, a sensoris completely compromised, i.e.,
adversaries can command the sensor to behave maliciously. It is important to protect those sensitive data
even if sensor nodes are compromised.

Our goal is not restricted to protect each node, but instead, to protect asignificant number of sensors from
being compromised. To avoid failure caused by a few malfunctioned or malicious sensors, sensor-network
applications often adopt fault-tolerance technologies, so the compromise ofa small number of sensor nodes
does not compromise the entire mission. However, when a significant numberof sensors are compromised,
the trusted computing infrastructure depended upon by sensor networkscan be compromised.

Challenges

Challenge 1: Disguising Sensitive Data. Secret data are normally stored in memories, so once adver-
saries have understood the memory layout, they can easily retrieve the sensitive data by dumping the entire
memory. To defeat such naive memory-dumping attacks, these data need to be disguised, so knowing the
memory layout alone cannot find the data. Adversaries must also understand the program in order to find
out where each the data are stored. The challenges is how to automate suchdata disguising process.

Challenge 2: Obfuscating Code With the modern code analysis, debugging, and reverse engineering
tools, adversaries can understand the program and then find the sensitive data. It is essential to make code
understanding difficult. Code obfuscation has been extensively studiedfor traditional systems; its main goal
is to increase the complexity of code to defeat reverse engineering efforts. During the past, a number of
interesting techniques have been developed in the literature. However, these techniques were developed for
traditional systems with abundant power and resources. It is quite challenging to directly adopt them for
sensor networks and embedded systems.

Challenge 3: Diversifying Code Code obfuscation is not foolproof; dedicated adversaries can eventually
get the confidential data from a captured node. Although it might take adversaries quite a significant amount
of time to succeed, if the programs running on different sensors are the same or similar, once a node is
compromised, compromising another node takes much less time. We need to usediversity techniques to
turn the same piece of software into many diversified versions, such that acomparative study of an already-
compromised node and a newly-captured node is still difficult. A great challenge is how to diversity code to
defeat both static and dynamic matching attacks, without consuming too much resources.

1

Innovations

Due to the energy constraints of sensor networks, any viable disguising,obfuscation, and diversification
method should be energy efficient. This will lead to studies and innovations that are significantly different
from the traditional code obfuscation. Moreover, sensor networks and embedded systems have their own
unique properties, some of which might benefit code obfuscation.

Code diversification has been used extensively to provide robustnessto systems; however there is not
much study in using it to enhance security. Robustness mostly deals with accidental fault, but for security,
we face intelligent adversaries with sophisticated tools. Therefore, this research can lead to innovative
technologies that can be applied to not only sensor networks, but also embedded systems.

2

Detection of Abnormalities in MANETs

Wenye Wang, ECE Department, NC State University

1 Fundamental Limitations of Today’s Solutions

Abnormalities in MANETs can be malicious attacks or selfish nodes which can affect network architecture and
network operation significantly.

1.1 No Detection of Abnormalities

Without detection of abnormalities, secure routing can be considered as a proactive solution. Recently many
secure routing protocols, such as ARAN, Adriadne, SAODV, SRP, SEAD, have been proposed to protect
multihop wireless networks from malicious attacks that interrupt routing or [1, 2]. Clearly, there are two
distinct objectives:

• Security is a goal: In this category, the idea is to show how attacks against ad-hoc and sensor networks,
and analyze the security of all routing protocols. The objective is to design/examine attacks and develop
countermeasures [3].

• Routing is a goal: The objective of these works is to design/modify current routing protocols, but adding
new security features to prevent the routing from attacks and interruption.

For both directions, security analysis has been addressed along with peer-to-peer networking architecture for
MANETs and sensor networks. In short, there are 10 attacks addressed by most of these works, except each work
discusses one or more specific attacks that are not covered by others: spoofing of IP address, forging of route
request, forging of route reply, injecting route reply without receiving a route request, replay attack, rushing
attacks, generating false errors, jamming, man-in-the-middle attack, modifying node list on a route request.
Almost all of these works are based on simulations and qualitative explanation without implementations in
MANETs. An intuitive question is whether these solutions, or at least one solution is feasible to MANETs. To
the best of our knowledge, NIST (National Institute of Standard and Technology) and UMBC developed the
open source code of SAODV, which is also called SecAODV with IPv6. We found a technical report of their
implementation with very few testing results [4]. In order to understand the functionalities of SecAODV, we
used the open source code available at NIST and implemented on our testbed. Surprising, we found that the
packet looses are in between 90%-100%! This simply tells us: a protocol could be very secure (from analysis),
but might not be able to delivery data. The reasons for such a result are not fully explored which maybe one
or combined factors, such as bugs in the code, optimization problem, or protocol design. However, it advises us
how to make a secure protocol feasible in real systems.

1.2 With Detection of Abnormalities

On the other hand, there are many solutions that aim to design networks and networking protocols based upon
the detection of abnormalities, which is more or less a reactive approach. In general, these solutions are designed
to be adaptive to any threats or abnormalities in the network. The solutions to this end can be classified as

• Statistical methods: The main idea is to let each node (e.g., sensor nodes) to compute a statistical digest of
the monitored phenomenon over a moving window of recent readings. By utilizing the statistical digests
to aid in decision making and data aggregation. Wireless nodes may be set in promiscuous mode by
overhearing others’ broadcast message. The results of statistical digests are then used as a trust measure
for path selection or topology control.

1

For example, to measure the node’s cooperativeness, it is possible to study the characteristics of misbe-
having nodes on the network layer. Selfish nodes, for the sake of saving energy, usually refuse to forward
data packets for other nodes. Malicious nodes may intentionally drop partial data packets in a random
or periodic manner. A malicious node may also pretend to be adjacent to a node actually faraway from
it, thus trap all packets destined to that node afterward. Thus, dropping “transient” packets is one of the
most common characteristics of misbehaviors.

• Empirical benchmark: The main idea is to use empirical benchmark, represented by stochastic models
or trace files. Currently, there is almost nothing existed for mobile ad hoc networks, even small-scale
experiments [5]. Although many new attacks are proposed, the security effectiveness against these attacks
remain at the level of discussions and security analysis, even not present in simulations for most of the
work. This brings a lot of arguments in the course of justification.

2 Research Challenges

• Threat models: Wireless or sensor nodes may be compromised or physically captured. Adversaries can
control the compromised nodes and gain access to secret information stored in them. Thus, they can launch
multiple attacks like dropping or altering the message contents going through them, so as to prevent the
sink from receiving authentic sensor readings. Also, there may be colluded attacks where two or more
nodes collaborate to let the false reports escape detection in the downstream path to the sink.

• Measurements and computation: Once threats models are defined, the subsequent issue is how to measure
or detect threats according to the threats models and the cost at which these measurements are collected
and processed.

• Performance: While in the design of security solutions (network) performance might not be a focus, it is
necessary to ensure that a security-oriented algorithm or protocol can be incorporated into a networking
protocol without making severe performance degradation. This is a very challenging issue for detection of
abnormalities which often time relies on a long-term observation.

Ideally, a powerful detection tool, similar to intrusion detection for the Internet, is expected.

References

[1] P. Lee, V. Misra, and D. Rubenstein, “Distributed Algorithm for Secure Multipath Routing,” in Proc. of
IEEE INFOCOM’05, March 2005.

[2] K. Sanzgir, D. LaFlamme, B. Dahill, B. N. Levine, C. Shields, and E. M. Belding-Royer, “Authenticated
Routing for Ad Hoc Networks,” To Appear in IEEE Journal on Selected Areas of Communications (JSAC),
2005.

[3] C. Karlof and D. Wagner, “Secure Routing in Sensor Networks: Attacks and Countermeasures,” To Appear
in Elsevier’s AdHoc Networks Journal, Special Issue on Sensor Network Applications and Protocols., 2006.

[4] A. Patwardhan, J. Parker, A. Joshi, M. Iorga, and T. Karygiannis, “Secure Routing and Intrusion Detection
in Ad Hoc Networks,” tech. rep., UMBC and NIST, 2003.

[5] D. M. Nicol, W. H. Sanders, and K. S. Trivedi, “Model-Based Evaluation: From Dependability to Security,”
IEEE Transactions on Dependable and Secure Computing, vol. 1, no. 1, pp. 48–65, 2004.

2

1

1

Diversifying Sensors to Improve
Network Resilience

Wenliang (Kevin) Du
Electrical Engineering & Computer Science

Syracuse University

Diversifying Sensors 2

Hiding Secrets

• Secrets are essential for sensor networks
• Pre-distributed keys
• Pair-wise keys
• Private keys
• Other secrets

• Fundamental Challenge: hiding secrets is
difficult

2

Diversifying Sensors 3

Existing Approaches

• Physical security is difficult to achieve
• Hardware approaches are expensive
• Software approaches

• Code obfuscation: extensively studied in
traditional systems

• Bad news: adversaries eventually win

Diversifying Sensors 4

Rethinking of Software Approaches

• Observation: fault tolerance of sensor networks
• Should be able to tolerate a small # of bad sensors

• Ideal Goals
• Hiding secrets in sensor nodes
• Make it difficult to derive secrets from each sensor
• Make it N times difficult to derive secrets from N

sensors

3

5

Threat Model:
Physical Compromise

Memory Dumping

Static Analysis

Dynamic AnalysisR
ev

er
se

E
ng

in
ee

rin
g

6

Proposed Approach

• Data Obfuscation (Secret Hiding)
• Memory dump: difficult to find secrets
• Adversaries must understand the program

• Code Obfuscation
• Make it difficult to understand one program

• Code Diversification (Randomization)
• Make adversary’s effort non-repeatable

4

7

Data/Code Obfuscation

• Existing Techniques
• Code flattening
• Self-modification code
• White-box encryption algorithms
• Various techniques against reverse engineering

• Challenges
• Achieving obfuscation with limited Memory
• Computation can’t be too expensive
• Tradeoff needs to be made (optimization)
• Quantify code complexity

8

Diversifying Code

• Turn the same piece of software into many
diversified versions

• Difference from traditional diversity
• Diversity for fault tolerance
• Diversity for attack tolerance (vulnerabilities)

• Attacks are quite fragile

• Diversity for code-analysis tolerance
• Attacks are adaptive and intelligent (human involved)

5

9

Diversifying Code: Challenges

• Quantify diversity and manageability
• Manageability prefers uniformity
• Diversity destroys uniformity
• Manageability is application dependent
• Optimal tradeoff

• Comparative study: already compromised node
and newly-captured node

• Static matching attacks
• Dynamic matching attacks

10

Difference from Protecting
Intellectual Right

• Intellectual Right
• Success = breaking one copy

• Sensor Networks
• Success = breaking more than k copies

6

11

Unique Properties of Sensor
Networks

• Code usually has small size
• Some applications has static configurations

• The OS can be obfuscated too
• Hardware specific code obfuscation

12

Preliminary Results: SASN’06

7

13

Complexity: Line of Code

14

Cyclomatic Complexity

8

15

Running Time

16

Summary

• Diversified code obfuscation is quite
unique for sensor networks

• Require understanding from both
engineering and theory perspectives

1

Detection of Detection of AbnormaliesAbnormalies in in MANETsMANETs

WenyeWenye Wang Wang

Department of Electrical and Computer Engineering
North Carolina State University

Feb 22-23 ARO Planning Workshop --- W.Wang/ ECE, NCSU 2

From Problems To SolutionsFrom Problems To Solutions

No

Use secure protocols

e.g., Secure routing protocols

Are these resultsAre these results
acceptable?acceptable?

Yes

Yes

No

Detection ofDetection of

abnormaliesabnormalies

Short-termShort-term
challengeschallenges

Long-termLong-term
milestonesmilestones

ENDEND

Is detection ofIs detection of
abnormaliesabnormalies necessary? necessary?

2

Feb 22-23 ARO Planning Workshop --- W.Wang/ ECE, NCSU 3

Secure Routing in Secure Routing in MANETsMANETs

Security is a goal:
 Show how attacks against ad-hoc and sensor networksShow how attacks against ad-hoc and sensor networks

and analyze the security of routing protocols.and analyze the security of routing protocols.

Design/examine attacks and countermeasures.Design/examine attacks and countermeasures.

Routing is a goal:
 design or modify current routing protocolsdesign or modify current routing protocols

 add new security features to prevent routing fromadd new security features to prevent routing from
attacks and interruption.attacks and interruption.

Question: Are these solutions feasibleQuestion: Are these solutions feasible
(useful) for (useful) for MANETsMANETs??

Feb 22-23 ARO Planning Workshop --- W.Wang/ ECE, NCSU 4

SecAODVSecAODV: An Example: An Example

16.9821.2999.39299.3129796100

16.2418.9949.17049.162969450

24.789.0099.0099010010

200 B500 B200 B500 B200 B500 B

RTT(avg) (ms)Total Time sec.% Packet Loss Number of
 Packets

Why? May be the results of one or more factors
Bugs in the code (open-source)Bugs in the code (open-source)

OptimizationOptimization

 Protocol designProtocol design

Implications

3

Feb 22-23 ARO Planning Workshop --- W.Wang/ ECE, NCSU 5

Detection TechniquesDetection Techniques
Statistical methods

Compute statistical digests of trust values: e.g., selfishCompute statistical digests of trust values: e.g., selfish
behaviorsbehaviors

Configure wireless nodes in promiscuous modesConfigure wireless nodes in promiscuous modes

 Snoop transmissions of neighborsSnoop transmissions of neighbors

Model-based methods
Empirical benchmarkEmpirical benchmark

Stochastic modelsStochastic models

Trace filesTrace files

Feb 22-23 ARO Planning Workshop --- W.Wang/ ECE, NCSU 6

Short-Term ChallengesShort-Term Challenges
 Threats models

 Basic functions: dropping/altering/injecting messagesBasic functions: dropping/altering/injecting messages
 Wireless or sensor nodes may be compromised or physicallyWireless or sensor nodes may be compromised or physically

captures, what are the differences? As bad as malicious nodes?captures, what are the differences? As bad as malicious nodes?

 Measurements and computation

 Performance
 Need to ensure that a security-oriented algorithm or protocol isNeed to ensure that a security-oriented algorithm or protocol is

applicable to a real system without severe performance degradation.applicable to a real system without severe performance degradation.

 GOAL: Tunable protection
 Application- orientedApplication- oriented
 User preferenceUser preference

4

Feb 22-23 ARO Planning Workshop --- W.Wang/ ECE, NCSU 7

Take An Example in Wireless LANsTake An Example in Wireless LANs

 Better PerformanceBetter Performance
 High efficiency with low overhead

 Strong protectionStrong protection
 Better security solutions

 Secure services with low overhead

 Accounting network conditionsAccounting network conditions
 Need to consider delay, throughput

and packet losses in networks

ObjectivesObjectives SolutionsSolutions

 To achieve tradeoff
between
performance and
protection

 To apply different
security policies
upon applications
requirements

 To adjust protection
strength based upon
network dynamics

Feb 22-23 ARO Planning Workshop --- W.Wang/ ECE, NCSU 8

Security PoliciesSecurity Policies

Hybrid
Policies

Individual
Policies

Type

Involve IPSEC (3DES, MD5, SHA).IPSEC Policies

Involve 802.1x, Radius, EAP
(MD5,TLS), IPSEC and WEP.

802.1x Policies

Involve IPSEC (3DES, MD5, SHA)
and WEP.

IPSEC Policies

Involve only WEP (40 bit key,128 bit
key).

WEP Policies

When no security protocol is
configured in test-bed.

No Security

DescriptionPolicies

5

Feb 22-23 ARO Planning Workshop --- W.Wang/ ECE, NCSU 9

Experimental ResultsExperimental Results - Authentication Time - Authentication Time

3.144s3.117s802.1x-EAP(TLS) with
IPSEC

3.144s1.822s802.1x-EAP(TLS)
without IPSEC

1.749s1.722s802.1x-EAP(MD5) with
IPSEC

1.749s0.427s802.1x-EAP(MD5)
without IPSEC

1.432s1.405sIPSEC

With RoamingWithout
Roaming

Policy
(Hybrid Protocols)

802.1x-EAP(MD5)
results in the lowest
authentication time

802.1x-EAP(TLS) causes the
longest authentication time and
higher data loss during handoff

IPsec provides a good
tradeoff between

security and overhead.

Feb 22-23 ARO Planning Workshop --- W.Wang/ ECE, NCSU 10

Experimental ResultsExperimental Results –– Delay with IPSec Delay with IPSec

804.41359.9153.0049.6971.023DES-MD5

530.23182.6161.1948.3554.623DES-SHA1

1012.06150.02105.1163.5552.21AES-MD5
(20 times)

715.75408.1267.1161.6390.718AES-SHA1
(>10 times)

28.8094.9628.1411.8317.72No Security
(> 5 times)

102451225612864

 Packet Size (bytes)End-to-
End Delay

(msec)

 Best network scenario: indoor, one-hop, single node
 Worst case delay

6

Feb 22-23 ARO Planning Workshop --- W.Wang/ ECE, NCSU 11

STEP2STEP2 -- Self-Tuned Protection and -- Self-Tuned Protection and
Performance ArchitecturePerformance Architecture

MonitorMonitor
ModuleModule

Decision MakerDecision Maker
ModuleModule

SwitchingSwitching
ModuleModule

 Observes wireless channel
conditions at regular intervals

 Measures delay, throughput and
packet losses

 Decides sampling intervals
based on network requirements.

 Obtains feedback from the monitor
module.

 Determines whether security policy is
to be switched or not

 If decision is yes, then decides which
should be the new security policy.

Obtains feedback from
the decision maker
module, and carries out
the actual switching
process

Feb 22-23 ARO Planning Workshop --- W.Wang/ ECE, NCSU 12

Long-Term MilestonesLong-Term Milestones
 Benchmark of threats models

10 most commonly threats : spoofing of IP
address, forging of route request, forging of
route reply, injecting route reply without
receiving a route request, replay attack, rushing
attacks, generating false errors, jamming, man-
in-the-middle attack, modifying node list on a
route request.

Database with more threats
Selection of distributions

 Dynamic defense strategy upon detection of threats!

7

Feb 22-23 ARO Planning Workshop --- W.Wang/ ECE, NCSU 13

Summary and Outlook – Research Challenges

1

Computer Science

Open Research Questions

• Adversary models
– Define/Formalize adversary models

• Need to incorporate characteristics of new technologies
and applications

• Need to consider the threats to the defense mechanisms
– Define performance/security metrics
– Develop process/methodology for developing

adversary models

Computer Science

Languages and Software Engineering (1)
• Embedded constraints affect security

– Quantify capabilities, limit scope, target 8-bit & larger
– beyond sensor nodes --> deeply embedded systems
– Issues: critical, non-recoverable, special netw., no sys admin

• Design for security (not retrofit)  formalize
• Need for metrics & models (some differ for embedded)

– e.g. higher reliability probability for safety crit. affects
security

• Need for diversity (e.g., via dynamic adaptation)
– Self-modifying apps (e.g., via dyn. Transformation of pgm)
– Self-protecting/self-checking apps?
– Dynamic updates (in 24/7 operation)
– Classification in terms of threat models

2

Computer Science

Languages and Software Engineering (2)

• Need to limit overhead, retain predictability, low cost
• Incorporate real-time requirements

– Hard timing constraints limit security options
– may undermine existing network protocols, add overhead…
– Interface b/w RT and non-RT components problematic
– Embedded clients + server need protection of both

• Need hardware assistance

Computer Science

Software Security
• Can light-weight, effective, semantics-based, compiler-level reasoning

systems to characterize program behavior, mal-ware, etc be built?
• Can effective hybrid reasoning systems be built by combining static

analysis and runtime monitoring systems?
• Can evaluation contexts be characterized to simplify and reduce efforts in

reasoning about software artifacts?
• How can binaries be reasoned about without too many false alarms?
• Can binaries be instrumented to discover security threats and to degrade

gracefully in the event of a security fault?
• How to characterize threats, vulnerabilities,…?
• How to build provably correct core components of OS against specific

threat definitions?
• Code integrity to leverage to achieve system security.
• Secure and scalable software update on deployed systems.
• Tool support for code obfuscation.

3

Computer Science

Hardware Security (1)

Problems
• Interactions/problems across all levels
• Types of attacks:

– HW-layer attacks
– Upper-layer attacks with HW solutions (to reduce cost)

• What adversary/threat models for HW?
– New ones like those on FPGA

• What channels possibly under attacks in HW?
– bus, power/current, timing, keystrokes, …

• Types of attacks from another perspective:
– Malicious observation/privacy attacks (e.g., digital rights management)
– Malicious tempering/integrity attacks

Computer Science

Hardware Security (2)
Approaches
• What defending HW features like obfuscation/ randomization,

encryption, authentication, …?
– solutions at HW layer  HW-layer attacks
– solutions at HW layer  upper-layer attacks

• Software solutions vs. hardware solutions
• What types of protection at the upper layer (e.g., soft guards)

may (not) be sufficient against certain types of HW-layer
attacks?
– solutions at upper layers  HW-level attacks

• Classification of solutions in terms of threat models
• How to develop holistic/hybrid solutions across layers?
• How effective are solutions in addressing/alleviating the

problems (e.g., metrics)?
• How to address cost constraints (e.g., in time, space, power,

…)?

4

Computer Science

Security of Embedded Networks (1)
• How to provide efficient, secure and reliable distributed services in

embedded networks?
– Challenges: faults, dynamic population, mobility, resource constraints, node

compromises, real-time requirement
• How to detect and recover from attacks?

– Self-healing
• Strong security v.s. probabilistic and adaptive security
• How to provide secure and reliable architecture and interaction between

embedded networks?
– System of systems (or hybrid embedded networks?)
– Decentralized v.s. centralized views

• How to achieve survivability and intrusion resilience?
• How to protect collected data?

– Resource constraints

Computer Science

Security of Embedded Networks (2)
• How to provide secure initialization?

– Quickly and securely “pair” groups of sensors (scalability, usability)
• How to make tradeoff between performance, security, and fault tolerance?

– E.g., degrade/relax security services?
– Metrics? New vulnerabilities? Degrees of security?

• How to reason about design principles?
• How to accommodate different vulnerability stages and emerging properties, and

prevent unwanted side effects when systems evolve?
• Whither RFID/Sensor hybrid?
• How to protect network topology (even from the insiders)?
• How to keep node behavior (movements) private?
• What are the best way to provide diversity in embedded networks?

– Analysis techniques, metrics, management issues, …
• How to detect attacks/anomalies in embedded networks?

– Sensor networks, MANET, mesh networks, …

• Database of threat models?

	Text24: Approved for public release; Federal purpose rights
	Text25: U
	Text26: UU

