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1 Introduction

An application of hybrid optimization techniques to airfoil design with Navier-Stokes equations is here pre-
sented and discussed. The greatest obstacle in the use of Navier-Stokes equations with evolutionary optimiza-
tion procedures is the huge computational effort required. To overcome this limit, several approaches have been
suggested, that range form parallel genetic algorithms [1, 2] to approximated fitness evaluation [3, 4] to hybrid
techniques [5].

These three approaches can be profitably combined and an example will be here given related to transonic
airfoil design.

The lecture is organized as follows: an outline of hybrid optimization techniques will be given then the par-
allel hybrid genetic algorithm will be presented. Thereafter an application example will be reported, and finally
some ongoing developments about the hybrid approach based on gradient computation through the adjoint to
Navier-Stokes equations will be described.

2 Hybrid genetic algorithms

Hybridization has been one of the first techniques adopted for improving genetic algorithm performance, while
keeping the desirable flexibility features of genetic algorithms [6].

In the optimization context, hybridization can be defined as the mixing of two or more search techniques
with, possibly, complementary features.

The genetic algorithm itself, even in its simplest implementation, can be considered as a hybrid optimization
technique, where selection, mutation and crossover cooperate in the same optimization process.

Figures 1 and 2 show how the genetic algorithm can be extended through the addition of a hill climbing
operator. In the first scheme the hill climber receives in input the whole population belonging to the current
generation, while in the second one an intermediate selection process chooses a subset of elements that will be
refined through hill-climbing.

A hybrid algorithm requires care in balancing the various components of the search procedure. Indeed, if
high-rated solutions are injected in the population at an early evolution stage, this may adversely affect popu-
lation diversity and force the evolution in wrong directions. The way to avoid this depends, in general, on the
particular optimization technique introduced. If a gradient based technique is used as a solution refinement op-
erator, it may be useful to balance the improvement rate of both techniques by stopping the hill climber after
a few iterations. However, the iteration number choice is mostly a question of practice and experience, and it
should take into account both optimization algorithm and problem features.

Another point that requires special care when using hybrid techniques is encoding. Often, indeed, a special-
ized optimization technique relies on a particular encoding of the problem variables that may play a key role in
the efficiency of the method. Therefore, whenever possible, it is worthwhile to extend to the genetic algorithm
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Figure 1: A simple hybridization scheme between a genetic algorithm and a hill climber.
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Figure 2: A more complex genetic-hill climber coupling scheme.

the encoding of the specialized technique. On the other hand, the simple binary encoding used by many genetic
algorithms may cause problems to the specialized algorithms if the conversion of data is not carefully handled.
For example, if a binary genetic algorithm does not use enough bits for variable encoding, the improvement
obtained using a gradient based hill climber may be lost when re-encoding the variables in binary form.

The hill climber operator adopted here is a gradient search based on BFGS algorithm [7]. Indeed, the fitness
functions of the presented applications are differentiable, for which gradient based techniques are much more
efficient to locally improve a given solution. The genetic algorithm developed adopts a bit string codification
of the design variables; anyway, this does not prevent the use of operators requiring real number list encoding,
such as extended intermediate crossover and word level mutation [8]. In this cases, the binary string is decoded
into a real numbers list, the operator is applied and the modified variables set is encoded back into a bit string.
This scheme allows the use of a free mix of different type of operators. The hybrid genetic algorithm operates as
follows: through the application of the selection, crossover and mutation operators, an intermediate generation
is created from the current one; afterwards, if the hybrid option is activated, some randomly chosen individuals
are fed into the BFGS based operator to be improved, and then introduced into the new generation.
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3 Parallel genetic algorithm

The hybrid genetic algorithm here described has two points that can be executed in parallel: the evaluation
of the new population members after the mutation and recombination phase and the evaluation of the gradient
through finite differences in the gradient based hybrid operator. The parallel programming model adopted relies
on shared memory multiprocessing and the parallelism is implemented at the thread level using the standard
POSIX thread interface.

The same code base works on a SGI POWER CHALLENGE system with 16 R-10000 processors and on a
Linux PC-cluster with eight processors and the MOSIX clustering software [9].

execute objective
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Figure 3: Parallel evaluation loop.

The algorithm is organized following the master-slave paradigm. Figure 3 shows the architecture of the
parallel evaluation loop.

In the initialization phase that precedes the first execution of the evaluation loop, the master process creates
a pool containing a number of processes, equal to the maximum number of threads available for the computation
(NPROC). The child threads are immediately put in a wait state, and they will remain in such a state until they
receive a “go ahead” signal from the master to start the computation. This choice avoids the inefficiency of
creating a child process every time a computation is needed and killing it at the end.
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When the master process enters the evaluation loop, it splits the population, of size NPOP, in slices of maxi-
mum NPOP/NPROC+1 elements and then each slice is assigned to one of the child threads. Afterwards, a signal
is sent to the child, through a standard POSIX semaphore, so that it begin to evaluate its slice. When the child
terminates its computation, it sends a completion signal to the master (using another POSIX semaphore). The
master waits for the completion of all child processes in a synchronization point. The child processes are ter-
minated at the very end of the program, when all the evaluation loops related to each generation and gradient
evaluation loop have been completed.

This architecture has maximum efficiency when each thread has an even computational charge. If this is
not the case, the computation process can loose efficiency because the master has to wait at the synchronization
point for the completion of the slowest process. A partial solution to this problem consists in activating more
threads than available processors (e.g. 8 threads on a four processor machine). If this is not possible, then the
algorithm should be modified in order to redistribute dynamically the computational charge to the child threads.

4 Aerodynamic flow solvers

Two flow solvers with different level of accuracy have been adopted for the objective function computation of
the presented design exercises. The first one is the in-home developed ZEN Navier-Stokes solver [10] with
Baldwin Lomax turbulence model [11]. The second one is Drela’s MSES code [12] that is based on a finite-
volume discretization of the Euler equations on a streamlined grid. The viscous region is computed using an
integral boundary layer based on a multi-layer velocity profile representation. The inviscid and viscous regions
are coupled using displacement thickness.

The boundary layer code is used both as a low-fidelity solver, and as a helper for ZEN code. Indeed, when
constant lift coefficient (cl) is required, a suitable angle of attack for ZEN is guessed using MSES; after a first
computation with ZEN, the angle of attack is corrected using the ∂cl/∂α computed with MSES.

5 RAE 2822 airfoil optimization

The optimization problem requires the minimization of the drag coefficient obj = cd, with control on lift co-
efficient and maximum thickness. The design point is fixed at: M = 0.68, Re = 5.7 × 106, cl = 0.56. The
starting geometry is the RAE 2822 airfoil. Transition is fixed to x/c = 0.01.

The airfoil shape is defined as a linear combination of an initial geometry y0(x) and some modification func-
tions, fi(x), i = 1, . . . , n:

y(x) = y0(x) +
n∑

i=1

wifi(x) (1)

where wi are the design variables.
The modification functions used here are reported in Table 1 with ξ = x/c ∈ [0, 1].

5.1 Optimization using simple GA and Euler+BL

A first optimization run has been performed using the genetic algorithm without hybrid operators, and the MSES
solver only. The geometry was represented using 20 design variables (10 for the upper surface and 10 for the
lower) chosen among the polynomial, Hicks-Henne and Wagner functions. Three subsequent runs of the parallel
GA were performed, and 10 threads were active in each run. The GA parameters are reported below:

Variables encoding 32 bit
Selection 3 step R. W.
Crossover one-point, pc = 1
Mutation bit level, pm = 0.01
Population size 40
Generations 40
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Hicks-Henne Legendre

0.888 (1− ξ)√ξe−13.28ξ 0.42 (1− ξ)3√ξ
0.57 (1− ξ)√ξe−5ξ 0.946 (1− ξ)3 ξ

0.1 sin3
(
πξ0.431

)
0.136 (1− ξ)3 (12ξ − 10ξ2

)

0.1 sin3
(
πξ0.757

)
(1− ξ)3 (225ξ5 − 630ξ4 + 560ξ3 − 220ξ2 + 30ξ

)

0.1 sin3
(
πξ1.357

)

0.1 sin3
(
πξ3.106

)

Linear Wagner

0.2ξ 0.87

(
2 arcsin(

√
ξ)+sin(2 arcsin(

√
ξ))

π − ξ
)

0.24

(
sin(2k arcsin(

√
ξ))

kπ +
sin(2(k−1) arcsin(

√
ξ))

π

)
k = 2, . . . , 6

Polynomial Rear loading

0.52
(
0.5ξ3 − 1.5ξ2 + ξ

)
6625000(1−ξ) ξ15e1/5−20ξ

0.4
(
ξ − ξ2

)
17500000(1−ξ) ξ18e1/4−20ξ

0.52
(
0.5ξ − 0.5ξ3

)
44440000(1−ξ) ξ22.66e7/20−20ξ

90000000(1−ξ) ξ30e1/2−20ξ

Table 1: Modification functions used in the design examples.
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Figure 4: Optimization history and obtained shapes in the Euler+Bl optimization runs.
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The optimization history, and the initial and final shapes are reported in figure 4. The initial drag coefficient
was cd = 0.009070 at α = 1.9216◦, while the final one resulted to be cd = 0.008645 at α = 1.5619◦. A
subsequent analysis with the ZEN NS flow solver on the same configurations, however, showed different trends,
and there was no appreciable difference between the drag coefficients of the two configurations. Therefore, it
was decided to use the initial RAE 2822 as starting point for the subsequent optimization pass with the Navier-
Stokes solver.

5.2 Optimization using hybrid GA and NS

The result of the previous run were used to select the design variables that had the strongest effect on the objective
function.

A 256×56 C-shaped grid was used for each Navier-Stokes run. A three level multigrid acceleration strategy
was used.
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0.01042

0.01043

0 5 10 15 20 25
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BFGS - 4 design var.
average

Figure 5: Optimization history with BFGS algorithm, Navier-Stokes equations for drag evaluation and four de-
sign variables.

A first set of 4 design variables was identified and a simple BFGS run was performed. The maximum num-
ber of BFGS steps was fixed to 10. The optimization history is reported in figure 5. The optimization process
terminated when the convergence criteria were meet, after three gradient evaluations and a total of 23 objec-
tive function evaluations. As can be observed, a small drag reduction was obtained (0.7%). It is worth to note
that in figure 5, as well as in all the following evolution histories reported, all the objective function evalua-
tions required by the optimization algorithm are reported, including those used to compute the gradient by finite
differences.

The number of design variables was then extended to eight. Here three different run were performed, The
first one was a simple GA with 8 population members that ran for 15 generations. The second one was a hybrid
GA that ran for 4 generation, with a population size of two elements. The BFGS was applied to each element,
and the number of BFGS steps was fixed to 10. This produced a total of 62 objective function evaluations. The
last hybrid GA was instead characterized by a population of eight elements and the BFGS activation probability
was set to 6% with three descent steps allowed. After 7 generation the optimizer required 82 objective calcu-
lations. The evolution history for these three runs is reported in figure 6. In run 3 the best solution had a drag

12-6



coefficient equal to 0.010295 while the starting one was cd = 0.010415. The cp distribution of the original and
the optimized airfoil are reported in figure 7, the cf comparison is reported in figure 8, and, finally, the Mach
field around the airfoil is reported in figure 9.
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0 20 40 60 80 100 120 140

c d
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RUN 1
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Figure 6: Evolution history of the three runs with eight design variables and Navier-Sokes solver.

6 Use of the adjoint method for gradient computation

A planned improvement of the hybrid genetic algorithm is the introduction of the adjoint method in gradient
computation. The major advantage of this approach is that there a higher computational efficiency is obtained.
Indeed, by solving the adjoint equations, one obtains all of the gradient components.

A multi-block continuousNavier-Stokes adjoint equation solver for two-dimensionalfields was implemented.
The numerical solutionof the adjoint equations is obtained by using a first-order time-dependent technique based
on a finite volume discretization. The solver computes the fluxes at cell interfaces using a flux-vector splitting
technique. In a similar way, the boundary conditions are imposed on the numerical fluxes at the computational
field edges.

At the moment the adjoint based procedure is being developed as a stand-alone code, whose scheme is re-
ported in figure 10. The gradient computed using the adjoint equation set is then used by a conjugate gradient
optimization routine. After the validation phase, the developed solver will be used as core of a new hybrid op-
erator of the genetic algorithm.

The functional to be minimized is:

L = ω1D + ω2
(L− L∗)2

2

where D is the drag L is the lift, L∗ is the desired lift and the ωi are weights.
The first case considereds corresponds to the the case of fixed lift without constraints on the geometry. The

absence of constraints on shape will lead, as will be evident in the first example reported, to a clear tendency to
thickness reduction and to rear loading the airfoil.

Figure 11 reports some results related to the design problem previously defined (RAE2822, M = 0.68,
Re = 5.7 × 106, cl = 0.56) when no control on maximum thickness is imposed. In particular, drag, penalty
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Figure 7: Comparison between initial and final cp distributions in NS run 3.
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Figure 8: Skin friction coefficient comparison in NS run 3.

on lift, and initial and final airfoil shapes are reported. The gradient is computed point-wise, i.e. each grid point
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Figure 9: Mach field around the optimized airfoil of run 3.

on the airfoil boundary is a design variable. The gradient analytic expression involves second as well as third
derivatives of the flow variables. As the flow field is only second order accurate in space, it can occur that the
computation of such derivatives is not reliable in regions of abrupt flow changes, as for example near the front
stagnation and close to the rear separation. For this reason the point-wise gradient was smoothed using a Fourier
filter. After such filtering the conjugate gradient method is able to nicely decrease the functional L.

Figure 12, instead, reports the result obtained when an a-posteriori control on maximum thickness is im-
posed. This is obtained projecting, at each iteration, the airfoil modification vector along a direction in which
the modification in the maximum thickness section is zero. It is worth to note that while in the first run over 400
field computations were allowed, in this second one only about 160 evaluations were allowed in order to save
computational resources.

7 Conclusions

Navier-Stokes flow solvers can be profitably used for aerodynamic shape design with evolutionary optimizers,
provided that attention is paid to computational efficiency. In particular, a pre-analysis of the design space with
lower fidelity tools is highly recommended to avoid waste of computational resources.

Furthermore, parallel computing and advanced approaches like gradient computation through adjoint, pave
the way for challenging industrial applications.
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