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1 Introduction

An application of hybrid optimization techniques to airfoil design with Navier-Stokes equations is here pre-
sented and discussed. The greatest obstacle in the use of Navier-Stokes equations with evolutionary optimiza-
tion proceduresisthe huge computational effort required. To overcomethislimit, several approaches have been
suggested, that range form parallel genetic algorithms[1, 2] to approximated fitness evaluation [3, 4] to hybrid
techniques[5].

These three approaches can be profitably combined and an example will be here given related to transonic
arfoil design.

Thelectureis organized asfollows: an outline of hybrid optimization techniqueswill be given then the par-
alel hybrid genetic algorithm will be presented. Thereafter an application example will be reported, and finally
some ongoing devel opments about the hybrid approach based on gradient computation through the adjoint to
Navier-Stokes equationswill be described.

2 Hybrid genetic algorithms

Hyhbridization has been one of the first techniques adopted for improving genetic algorithm performance, while
keeping the desirable flexibility features of genetic algorithms[6].

In the optimization context, hybridization can be defined as the mixing of two or more search techniques
with, possibly, complementary features.

Thegenetic algorithmitself, even initssimplest implementation, can be considered as a hybrid optimization
technique, where selection, mutation and crossover cooperate in the same optimization process.

Figures 1 and 2 show how the genetic agorithm can be extended through the addition of a hill climbing
operator. In the first scheme the hill climber receives in input the whole population belonging to the current
generation, while in the second one an intermedi ate sel ection process chooses a subset of elements that will be
refined through hill-climbing.

A hybrid algorithm requires care in balancing the various components of the search procedure. Indeed, if
high-rated solutionsare injected in the population at an early evolution stage, this may adversely affect popu-
lation diversity and force the evolution in wrong directions. The way to avoid this depends, in general, on the
particular optimization technique introduced. If agradient based techniqueis used as a sol ution refinement op-
erator, it may be useful to balance the improvement rate of both techniques by stopping the hill climber after
afew iterations. However, the iteration number choice is mostly a question of practice and experience, and it
should take into account both optimization a gorithm and problem features.

Another point that requires specia care when using hybrid techniquesis encoding. Often, indeed, aspecial-
ized optimization technique relies on a particul ar encoding of the problem variablesthat may play akey rolein
the efficiency of the method. Therefore, whenever possible, it is worthwhileto extend to the genetic algorithm
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Figure 1. A simple hybridization scheme between a genetic algorithm and a hill climber.
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Figure 2: A more complex genetic-hill climber coupling scheme.

the encoding of the specialized technique. On the other hand, the simple binary encoding used by many genetic
algorithms may cause problemsto the specialized algorithmsif the conversion of datais not carefully handled.
For example, if a binary genetic agorithm does not use enough bits for variable encoding, the improvement
obtained using a gradient based hill climber may be lost when re-encoding the variables in binary form.

Thehill climber operator adopted here is agradient search based on BFGS algorithm[7]. Indeed, thefitness
functions of the presented applications are differentiable, for which gradient based technigques are much more
efficient to locally improve a given solution. The genetic algorithm devel oped adopts a bit string codification
of the design variables; anyway, this does not prevent the use of operators requiring real number list encoding,
such as extended intermediate crossover and word level mutation [8]. In this cases, the binary string is decoded
into areal numberslist, the operator is applied and the modified variables set is encoded back into a bit string.
Thisscheme alowstheuse of afree mix of different type of operators. The hybrid genetic algorithm operatesas
follows: through the application of the selection, crossover and mutation operators, an intermediate generation
is created from the current one; afterwards, if the hybrid optionis activated, some randomly chosen individua's
are fed into the BFGS based operator to be improved, and then introduced into the new generation.
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3 Parallel geneticalgorithm

The hybrid genetic algorithm here described has two points that can be executed in parald: the evaluation
of the new popul ation members after the mutation and recombination phase and the eva uation of the gradient
through finite differencesin the gradient based hybrid operator. The parallel programming model adopted relies
on shared memory multiprocessing and the paralelism is implemented at the thread level using the standard
POSIX thread interface.

The same code base works on a SGI POWER CHALLENGE system with 16 R-10000 processors and on a
Linux PC-cluster with eight processors and the MOSIX clustering software [9].

MASTER process

l

l

split population in subsets
of max. NPOP/NPROC+1 elements

Thread i

for each

population

subset START
write input data in a shared memory wait for unlock
areareserved to PROCESS(i) input signa from MASTER

7 process
send an unlock signal to L
the PROCESS(i) e{ grrrﬁei(t:ri]n
the sub:

execute objective
evaluation program
and
write resultsin a shared
memory area accessible
to MASTER process

wait for
completion signal from -
all the PROCESS(i) RN

S~ send completion
signal to MASTER

Figure 3: Parallel evaluation |oop.

The agorithm is organized following the master-slave paradigm. Figure 3 shows the architecture of the
parallel evaluation loop.

In the initialization phase that precedes the first execution of the evaluation loop, the master process creates
apool containing anumber of processes, equal to the maximum number of threads availablefor the computation
(NPROC). The child threads are immediately put in await state, and they will remain in such a state until they
receive a “go ahead” signal from the master to start the computation. This choice avoids the inefficiency of
creating a child process every time a computation is needed and killing it at the end.
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When the master process enters the evaluation loop, it splitsthe population, of size NPOP, in slices of maxi-
mum NPOP/NPROC+1 elements and then each sliceis assigned to one of the child threads. Afterwards, asigna
is sent to the child, through a standard POSI X semaphore, so that it begin to evaluateits slice. When the child
terminates its computation, it sends a completion signal to the master (using another POSIX semaphore). The
master waits for the completion of all child processesin a synchronization point. The child processes are ter-
minated at the very end of the program, when all the evaluation loops related to each generation and gradient
evaluation loop have been compl eted.

This architecture has maximum efficiency when each thread has an even computationa charge. If thisis
not the case, the computation process can loose efficiency because the master hasto wait at the synchronization
point for the completion of the slowest process. A partia solution to this problem consistsin activating more
threads than available processors (e.g. 8 threads on a four processor machine). If thisis not possible, then the
algorithm should be modified in order to redistribute dynamically the computational charge to the child threads.

4 Aerodynamic flow solvers

Two flow solvers with different level of accuracy have been adopted for the objective function computation of
the presented design exercises. The first one is the in-home developed ZEN Navier-Stokes solver [10] with
Baldwin Lomax turbulence model [11]. The second oneis Dreld's MSES code [12] that is based on a finite-
volume discretization of the Euler equations on a streamlined grid. The viscous region is computed using an
integral boundary layer based on amulti-layer velocity profile representation. Theinviscid and viscous regions
are coupled using displacement thickness.

The boundary layer code is used both as alow-fidelity solver, and as a helper for ZEN code. Indeed, when
constant lift coefficient (¢;) is required, a suitable angle of attack for ZEN is guessed using MSES; after afirst
computation with ZEN, the angle of attack is corrected using the d¢; /o computed with MSES.

5 RAE 2822 airfoil optimization

The optimization problem requires the minimization of the drag coefficient obj = ¢4, with control on lift co-
efficient and maximum thickness. The design point isfixed at: M = 0.68, Re = 5.7 x 10%, ¢; = 0.56. The
starting geometry isthe RAE 2822 airfoil. Transitionisfixed to z/c = 0.01.

Theairfoil shapeisdefined asalinear combination of an initial geometry yo () and some modification func-
tions, fi(x),i=1,...,n:

y(x) = yo(z) + sz‘fz‘(%) 1)

where w; arethe design variables.
The modification functions used here are reported in Table 1 with¢ = x/c € [0, 1].

5.1 Optimization using smple GA and Euler+BL

A first optimization run has been performed using the genetic a gorithm without hybrid operators, and the MSES
solver only. The geometry was represented using 20 design variables (10 for the upper surface and 10 for the
lower) chosen among the polynomial, Hicks-Henneand Wagner functions. Three subsequent runsof the parallel
GA were performed, and 10 threads were active in each run. The GA parameters are reported below:

Variables encoding | 32 bit

Selection 3stepR. W.
Crossover one-point, p. = 1
Mutation bit level, p,, = 0.01

Population size 40
Generations 40




Hicks-Henne \ Legendre

0.888 (1 — &) /Ee~13:28¢
0.57 (1 — &) /Ee5¢
0.1sin? (7750'431)
0.1sin® (w£%-757)
0.1sin? (wg!-357)
0.1sin® (7&310%)

0.42(1—¢&)° ¢
0.946 (1 — £)3¢
0.136 (1 — £)* (12€ — 10€2)

(1—€)* (2255 — 6306* + 560£3 — 220€2 + 30¢)

\ Linear \ Wagner
0.2¢ 0.87 (2arcsin(\/g)—l—sin(Qarcsin(\/g)) _¢
™
sin(2k arcsin(\/f)) sin(Z(k—l) arcsin(\/g)) .
0.24( = + — k=2,...,6
\ Polynomial \ Rear loading
0.52 (0.5¢° — 1.56% +¢) 6625000 (1—¢) £10e1/520¢
0.4 (¢ —¢€7) 17500000 (1—€) £18¢1/4-20¢
0.52 (0.5¢ — 0.5¢6%) 44440000 (1—¢) £22:66¢7/20-20¢
90000000 (1—¢) £30e1/2-20¢
Table 1: Modification functions used in the design examples.
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Figure 4: Optimization history and obtained shapesin the Euler+BI optimization runs.
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The optimization history, and the initial and final shapesarereported infigure4. Theinitia drag coefficient
was cg = 0.009070 at o = 1.9216°, while the final one resulted to be ¢; = 0.008645 at o« = 1.5619°. A
subseguent analysiswiththe ZEN NSflow solver on the same configurations, however, showed different trends,
and there was no appreciable difference between the drag coefficients of the two configurations. Therefore, it
was decided to use theinitial RAE 2822 as starting point for the subsequent optimization pass with the Navier-
Stokes solver.

5.2 Optimization using hybrid GA and NS

Theresult of thepreviousrunwere used to sel ect the desi gn vari ablesthat had the strongest effect on the objective
function.

A 256 x 56 C-shaped grid was used for each Navier-Stokesrun. A threelevel multigrid accel eration strategy
was used.
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0.01042 |t s e -
001041 - + """""" Tt T """" T
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Figure 5: Optimization history with BFGS a gorithm, Navier-Stokes equations for drag eval uation and four de-
sign variables.

A first set of 4 design variables was identified and asimple BFGS run was performed. The maximum num-
ber of BFGS steps was fixed to 10. The optimization history is reported in figure 5. The optimization process
terminated when the convergence criteria were meet, after three gradient evaluations and a total of 23 objec-
tive function eva uations. As can be observed, a small drag reduction was obtained (0.7%). It isworth to note
that in figure 5, as well asin al the following evolution histories reported, all the objective function evalua
tionsrequired by the optimization algorithm are reported, including those used to compute the gradient by finite
differences.

The number of design variables was then extended to eight. Here three different run were performed, The
first one was asimple GA with 8 population members that ran for 15 generations. The second one was ahybrid
GA that ran for 4 generation, with a population size of two e ements. The BFGS was applied to each element,
and the number of BFGS stepswas fixed to 10. Thisproduced atota of 62 objectivefunction evaluations. The
last hybrid GA wasinstead characterized by a population of eight el ements and the BFGS activation probability
was set to 6% with three descent steps allowed. After 7 generation the optimizer required 82 objective calcu-
lations. The evolution history for these three runs isreported in figure 6. In run 3 the best solution had adrag



12-7

coefficient equal to 0.010295 whilethe starting onewas ¢4 = 0.010415. The ¢, distribution of the original and
the optimized airfoil are reported in figure 7, the ¢, comparison is reported in figure 8, and, finally, the Mach
field around the airfoil is reported in figure 9.
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Figure 6: Evolution history of the three runswith eight design variables and Navier-Sokes solver.

6 Useof theadjoint method for gradient computation

A planned improvement of the hybrid genetic algorithm is the introduction of the adjoint method in gradient
computation. The major advantage of this approach is that there a higher computational efficiency is obtained.
Indeed, by solving the adjoint equations, one obtains al of the gradient components.

A multi-block continuousNavi er-Stokes adj oi nt equation sol ver for two-dimensional fiel dswasimplemented.
Thenumerical solutionof theadjoint equationsisobtai ned by using afirst-order time-dependent technique based
on afinite volume discretization. The solver computes the fluxes at cell interfaces using a flux-vector splitting
technique. In asimilar way, the boundary conditions are imposed on the numerical fluxes at the computational
field edges.

At the moment the adjoint based procedure is being devel oped as a stand-al one code, whose scheme is re-
ported in figure 10. The gradient computed using the adjoint equation set is then used by a conjugate gradient
optimization routine. After the validation phase, the devel oped solver will be used as core of anew hybrid op-
erator of the genetic algorithm.

The functional to be minimizedis:

(L—L*)?
2
where D isthedrag L isthelift, L* isthe desired lift and the w; are weights.

Thefirst case considereds correspondsto the the case of fixed lift without constraints on the geometry. The
absence of constraints on shape will lead, aswill be evident in the first exampl e reported, to a clear tendency to
thickness reduction and to rear loading the airfoil.

Figure 11 reports some results related to the design problem previously defined (RAE2822, M = 0.68,
Re = 5.7 x 10, ¢; = 0.56) when no control on maximum thicknessisimposed. In particular, drag, penalty

L=w1D+wsy
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Figure 7: Comparison between initial and final c,, distributionsin NS run 3.
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Figure 8: Skin friction coefficient comparisonin NS run 3.

onlift, andinitia and final airfoil shapesare reported. The gradient is computed point-wise, i.e. each grid point
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Figure 9: Mach field around the optimized airfoil of run 3.

on the airfoil boundary is a design variable. The gradient analytic expression involves second as well as third
derivatives of the flow variables. Asthe flow field is only second order accurate in space, it can occur that the
computation of such derivativesis not reliablein regions of abrupt flow changes, as for example near the front
stagnation and closeto therear separation. For thisreason the point-wise gradient was smoothed using a Fourier
filter. After such filtering the conjugate gradient method is able to nicely decrease the functional L.

Figure 12, instead, reports the result obtained when an a-posteriori control on maximum thicknessisim-
posed. Thisis obtained projecting, at each iteration, the airfoil modification vector along a direction in which
the modification in the maximum thickness sectionis zero. It isworth to notethat whilein thefirst run over 400
field computations were allowed, in this second one only about 160 eval uations were alowed in order to save
computational resources.

7 Conclusions

Navier-Stokes flow solvers can be profitably used for aerodynamic shape design with evolutionary optimizers,
provided that attention is paid to computational efficiency. In particular, a pre-anaysis of the design space with
lower fiddlity toolsis highly recommended to avoid waste of computational resources.

Furthermore, parallel computing and advanced approaches like gradient computation through adjoint, pave
theway for challenging industrial applications.
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CFD mesh and boundary conditions
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Navier-Stokes equations + Spalart Allmaras turb. mod.
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) contribute to the computation of the gradient, whose
computatior] formulation partly depends on the imposed constraints

L
new geometry
M EE_ A new mesh is created using the new geometry
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AP
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Figure 10: Adjoint optimizer scheme.
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