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ABSTRACT

Presented here are the main techniques necessary to understand rotations in
three dimensions, for use with global visualisation and aerospace simulations.
Relevant techniques can be extremely difficult to find in textbooks, so some
useful examples are collected here to highlight these techniques.

The three standard aerospace coordinate systems are described and built
using rotations. The mathematics of rotations is described, using both matrices
and quaternions. The necessary calculations are given for analysing standard
scenarios that involve the Global Positioning Satellite system for finding line-
of-sight directions on Earth, as well as for visualising the world from a cockpit,
and for converting to and from the standard software protocol for distributed
interactive simulation environments.

Appendices then discuss combining rotations, conversions with a particular
type of Euler angle convention, the dangers of confusing Euler angles with
incremental rotations for software writers, and finally there is a short dicussion
of interpolation of rotations in computing.
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Using Rotations to Build Aerospace Coordinate Systems

EXECUTIVE SUMMARY

This paper presents the main techniques necessary to understand three-dimensional ro-
tations. The subject is not new, but can be very difficult to sort out and to explore in
textbooks. Mathematics and physics texts that discuss the subject generally do so only in
passing, and probably never cover any standard software protocols. The main literature
on the subject seems to be that generated by the graphics computing community, since
programmers need to use rotations when writing three-dimensional visualisation code.
Nevertheless, code ease-of-use and ability to be passed on means that although there are
many internet sites that talk about rotations, their information content is often biased
towards whatever system or code their authors have become familiar with.

We begin by describing the three standard coordinate systems that are used for sim-
ulation of aerospace scenarios and the Global Positioning Satellite system, and how their
defining axes can be built from rotations alone. We then describe the mathematics of
rotations using both matrices and quaternions, defining Euler angles, and concentrating
on the important matrix (or equivalently, quaternion) that allows any rotation about any
axis to be made.

As examples of the techniques, we give the necessary calculations for dealing with
standard scenarios involving the Global Positioning Satellite system, for finding line-of-
sight directions on Earth, for visualising the world from a cockpit, and for converting to and
from the standard software protocol for distributed interactive simulation environments.

Appendices then discuss combining rotations, conversions with a particular type of
Euler angle convention, the dangers of confusing Euler angles with incremental rotations
for software writers, and finally there is a short dicussion of interpolation of rotations in
computing.
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Glossary, Conventions, and Constants

α Latitude of a point in the ECEF frame.

ω Longitude of a point in the ECEF frame.

Aircraft’s own axes x, y, z.

Aircraft’s own axes as vectors in ECEF x,y, z.

Earth’s elliptical cross-section This is defined by the following numbers:

Semi-major: a = 6,378,137 m ; semi-minor: b = 6,356,752.3142 m.

ECEF Earth-Centred, Earth-Fixed Frame. A rotating frame fixed to Earth; the global
frame of this report within which all computations are done.

ECEF Cartesian Axes X,Y, Z.

Three Euler rotations act on a set of orthonormal vectors x0,y0, z0 to give, in order,
x1,y1, z1, then x2,y2, z2, and finally x3,y3, z3.

GPS Global Positioning Satellite System.

Local Geographic Frame A frame based at our current position, usually on or near
Earth’s surface. Two common choices for its axes are:

NED North-East-Down set of axes.

ENU East-North-Up set of axes.

n A unit vector pointing along an axis of rotation. A column when used with matrices,
and a row when used with quaternions. This might seem potentially confusing, but
there’s no ambiguity in practice; on the contrary, to continually write n and nt (the
transpose) just to emphasise a column or row would be tedious.

North, East, Down axes N,E,D.

North, East, Down axes as vectors in ECEF N ,E,D.

Rotation matrix Rn(θ) rotates by angle θ around unit vector n using the right-hand
convention.

Rotation quaternion Qn(θ) rotates by angle θ around unit vector n using the right-
hand convention.

r
A←B

Position of point A relative to point B; i.e., a vector pointing from B to A.

SLERP Spherical Linear Interpolation. Used for interpolating orientations using quater-
nions.

WGS-84 World Geodetic System 1984 standard for maps. This standard defines the
oblate spheroid typically used to model Earth’s shape, as used in this report.
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1 Introduction

Simulating air scenarios often involves the ability to implement changes in orientation.
The researcher might need to visualise changes in orientation, or describe the departure
from flying“straight and level” for an aircraft flying at an arbitrary orientation, undergoing
various heading changes, pitches, and rolls. Furthermore, these calculations are dependent
on the aircraft’s position on an ellipsoidal Earth, so that the modeller has a potential
problem with various rotations that need to be performed.

Add to this the choice of different ways to rotate, and it’s not surprising that rotations
in three dimensions tend to be seen as overly difficult. To complicate the situation further,
there are any number of internet graphics software sites that attempt to give information
and explanations about rotations, but these are not always consistent in their notation,
and are also not always trustworthy. There can be a gap between the explanations of
those who understand the mathematics but who might not have any “on the ground”
programming experience, and those who might not understand the mathematics but who
do appreciate the practical or numerical problems involved with writing computer code
that performs rotations. But wrongly interpreting the behaviour of rotated objects can
lead to difficulties, as can be seen in a later section.

This paper attempts to explain some of the basics behind rotations. It is not intended to
give lots of formulæ for doing all manner of rotations, since these are complicated enough to
be unusable if the reader has no knowledge of just what is happening underneath. Instead,
the plan is to make use of a minimum number of techniques in order to reinforce the main
ideas. If some basic strategies applicable to solving common orientation scenarios can be
outlined, then it’s hoped that the reader can calculate some things from first principles.
If a software package is used, or even just snippets of code, some knowledge of what
is really happening goes a long way to helping the user validate or debug such code.
Software documentation is not above using axes labels such as x, y, z and X,Y, Z, and
then subsequently mixing up the correct cases; so a first-principles knowledge is sometimes
necessary just to read that documentation.

2 Important Coordinate Systems

Understanding aerospace simulations usually assumes knowledge of three frames of refer-
ence:

The Earth-Centred, Earth-Fixed Frame is global, attached to Earth itself, and al-
ways uses both cartesian and polar coordinates.

The Local Geographic Frame is attached to Earth but based at where the aircraft
currently is. It uses either of two different cartesian coordinate systems.

The Aircraft Frame is fixed to the aircraft and uses three cartesian axes, but tends to
describe measurements by angles about these axes.

1
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Figure 1: The Earth-Centred, Earth-Fixed frame can take a set of cartesian
axes X,Y, Z with their origin at Earth’s centre. The X-axis points to the
0 ◦ latitude, 0 ◦ longitude point. The Y -axis points to 0 ◦ latitude, 90 ◦ lon-
gitude. The Z-axis points to 90 ◦ latitude, along Earth’s axis of rotation.
Earth’s surface is taken to be an oblate spheroid, i.e. having circular cross
section at all latitudes, and a constant elliptical cross section through any
meridian

There is plenty of scope here for difficulties and obscurity. In this section we describe each
of these frames and coordinate choices in turn, before discussing how to go from one to
another.

2.1 ECEF: the Earth-Centred, Earth-Fixed Frame

For most situations, and certainly all in this report, the Earth-Centred, Earth-Fixed Frame
(ECEF) is a very useful stage on which to play out all scenarios, from the point of view
of calculating orientations and directions for aircraft with global movements. All ma-
nipulations of numbers are done by using cartesian coordinate axes that are fixed in the
ECEF.

The axes of the ECEF are right handed and have their origin at the centre of Earth,
being fixed to its body: they rotate with it. They are quite adequate for describing
situations on Earth, but are not so useful for describing satellite motion, such as scenarios
that involve the GPS satellite system. The reason is because the ECEF frame is not quite
inertial: because of its rotation, Newton’s laws don’t quite hold in it (unless we introduce
complicated centrifugal and Coriolis forces), which means that satellite motion can be very
complicated in the ECEF’s coordinates. For such motion, a more encompassing frame tied
to the fixed stars is used, but we won’t need such a one in this report.

The ECEF has two common coordinate systems: a polar-type “latitude–longitude–
height” called geodetic coordinates, and the simpler three cartesian axes X,Y,Z that are
shown in Figure 1. Global positions are often given in lat–long–height coordinates, but
since X,Y,Z are far easier to work with, we’ll convert all lat–long–height to X,Y,Z. A shape
for Earth commonly used in calculations is the oblate spheroid specified by the World

2
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Geodetic System 1984 standard (WGS-84), which has a circular cross section at any given
latitude, and whose cross section through any meridian is an ellipse, having identical axes
lengths for all longitudes. These axes lengths are, by definition,

Semi-major: a = 6,378,137 m

Semi-minor: b = 6,356,752.3142 m. (2.1)

These numbers—especially b with its extra decimal places—might appear to be specifying
a completely over-optimistic accuracy; but they are simply a combination of measurement
and best fit to an ellipse, and so they just define WGS-84.

Any point has latitude α, longitude ω, and height h in this report. (There is no
standard convention for latitude and longitude angles, so we have used the second letter of
each word [“a” and “o”] and written them with Greek letters.) The latitude and longitude
are shown in Figure 2, while the height of the point is the distance above the reference
spheroid, i.e. along a line normal to it, not along a line extending from Earth’s centre.

The reason the latitude is defined with reference to the local normal and not Earth’s
centre, is because by using the local normal, we can be sure that if two points on the same
meridian have latitudes of say 10◦ and 50◦, then the normal line (i.e. the local vertical) is
guaranteed to rotate through 40◦ when passing from one to the other. So it’s very easy to
compute how the vertical changes over Earth’s surface, and this would not be the case if
latitude was measured relative to Earth’s centre.

Given lat-long-height values for any point, the corresponding X,Y, Z values are given
in terms of a and b by:

X =





a
√

cos2 α+ b2

a2 sin2 α
+ h



 cosα cosω ,

Y =





a
√

cos2 α+ b2

a2 sin2 α
+ h



 cosα sinω ,

Z =





b
√

a2

b2
cos2 α+ sin2 α

+ h



 sinα . (2.2)

The inverse transformation process is lengthier. Finding the longitude is the easiest part:

cosω =
X√

X2 + Y 2
, sinω =

Y√
X2 + Y 2

, (2.3)

so that for example in C and Matlab, ω can be found by using the single command
omega = atan2(Y,X). (Note that in Excel, the same function atan2 has its arguments
reversed, so would be atan2(X,Y) here.)

Latitude is more difficult, but can be calculated iteratively with reasonable ease. Begin
with a first estimate

α ≃ tan−1

(

a2

b2
Z√

X2 + Y 2

)

, (2.4)

3
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where e.g. Matlab’s atan function will suffice (atan2 is not necessary), and then iterate
to refine this estimate using

α = tan−1





a2 sin2 α

b2 sinα cosα+
(√

X2 + Y 2 sinα− Z cosα
)
√

a2 cos2 α+ b2 sin2 α



 . (2.5)

(This will fail if Z = 0, but then α = 0 trivially anyway.) This expression for α converges
very quickly; in fact about five decimal places of precision is obtained by only using the
first estimate (2.4) and not even iterating at all. Finally, after an acceptable estimate of α
has been obtained, the height is calculated:

h =

√
X2 + Y 2

cosα
− a2

√

a2 cos2 α+ b2 sin2 α
. (2.6)

2.2 The Local Geographic Frame

At any point on Earth’s surface, the local geographic frame is defined by the almost flat
ground and the vertical direction, and is relevant because it is the basic reference the
aircraft flies against, defining straight and level flight and of course the direction of down.
This is an intuitive frame for any scenario whose total extent is no more than some tens
of kilometres.

Two coordinate systems are used: both cartesian with their origins at the point in
question. In the North–East–Down or NED frame, shown in Figure 2, the local directions
of north, east, and down define a right-handed set of three axes. An alternative choice
of cartesian axes is the local East–North–Up set (ENU). In both axes sets, the north and
east directions define a plane tangent to Earth’s surface. At any point, north points along
the local meridian, while east points along the local small circle of constant latitude.

The up/down or vertical direction is perpendicular to this plane. In general, the vertical
direction does not intersect Earth’s centre. Rather, it makes an angle of the latitude with
the equatorial plane, shown as the angle α in Figure 2.

2.3 An Aircraft’s Own Frame

The aircraft itself has its own frame described by a set of axes at rest relative to it, as
shown in Figure 3. Conventionally the x-axis points forward along the nose, the y-axis
points out along the starboard wing, and the z-axis points down. The x, y, z axes of an
aircraft flying straight and level due north will match the local NED axes (i.e. x = north,
y = east, z = down).

3 The Basic Tool: Vector Rotations

Switching between frames involves rotating vectors about specified axes, and just how
to rotate vectors forms one of the core tools described in this report. In this section we

4
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Figure 2: A plane tangent to Earth’s hypothetical spheroidal surface contains
the local East and North directions, which set those axes for the North–East–
Down frame. The Down axis is normal to this plane. The latitude α of
the point at the origin of the NED frame is set by the angle at which the
Down axis intercepts Earth’s equatorial plane. Because Earth is modelled
as an oblate spheroid, the Down axis only points toward its centre when the
NED origin is on the equator or at the poles. An alternative set of axes is
East–North–Up

present the main formula for doing this. Surprisingly, this matrix formula for a general
rotation in three dimensions can be hard to find in textbooks. Before giving the general
expression, we’ll start from more basic ideas.

3.1 Matrix Representation of an Orientation

How can we represent the orientation of a body in three dimensions? We can only do
it in a relative way, by specifying how the body has been moved from some initial, or
base, position. Suppose that the body is not translated, but its orientation is changed in
some arbitrary way from this base position. Locate the body relative to the unmoving
basis vectors, and imagine the body taking a copy of each basis vector along with it as it
changes orientation. What are these new vectors? If the old ones are

i ≡





1
0
0



 , j ≡





0
1
0



 , k ≡





0
0
1



 , (3.1)

then suppose they are transformed into column vectors i′, j′,k′. In that case, the change
in orientation can be described by the matrix

A =
[

i′ j′ k′] . (3.2)

in the sense that this multiplies i to give i′, and similarly j,k. This expression is useful in
that it gives the matrix that transforms an initial orientation to a final one immediately,
without our needing to work out how the final orientation was produced.

5
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Figure 3: The x, y, z axes of the aircraft’s own frame. These are axes about
which the aircraft rolls (x), pitches (y), and yaws (z), where the direction of
positive rotation for each is given by the right hand rule

If the body is rigid, then the linearity of matrix multiplication ensures that this matrix
will describe the orientation of the whole body. That is, any other point in the base-
positioned body that’s described by a certain linear combination of the basis vectors i, j,k,
will be described by the same linear combination of the new basis vectors i′, j′,k′ in the
new orientation. So the matrix A multiplies any vector to produce its orientated form.

The same result holds for the more trivial two dimensional case, where we rotate all
vectors through θ in the xy plane, positively about the z-axis. The basis vectors then
map as:

i =

[

1
0

]

−→
[

cos θ
sin θ

]

= i′ , j =

[

0
1

]

−→
[

− sin θ
cos θ

]

= j′ , (3.3)

giving the familiar rotation matrix

A =
[

i′ j′
]

=

[

cos θ − sin θ
sin θ cos θ

]

. (3.4)

3.2 Euler Angles

In two dimensions the above transformation cannot help but be a rotation, but in three
dimensions it’s not explicitly so; it simply produces a final orientation given some initial
orientation. Nevertheless, it can be shown to be producible by just one rotation around
some axis, where that axis needn’t be any of the x, y, or z axes (and in general won’t be).
This is known as Euler’s theorem.

The literature actually spends more time on the fact that the final orientation can
be produced by successive rotations around the space-fixed x, y, z axes, through what are
known as Euler angles. There are many different conventions for specifying Euler angles,
but in any of them, three angles are required to describe a general change in orientation.
Some authors leave one axis out and repeat another, so that the orientations are performed
around, for example, the x-axis, then y-axis, then x-axis again (and all similar choices of

6
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three distinct rotations will also work, such as z, y, z etc.—but not e.g. z, y, y, since this
is really only two distinct rotations). Some rotate around the x-axis, then the new y-axis
(better called y′), then the new x-axis (now called x′), although this can be shown to
reduce to a similar expression involving the same angles but in a different order, around
the space-fixed x, y, x axes. The possibilities are many and confusing.

Two Euler angles are also used in the field of aircraft tracking, where for example a
radar might be used to follow the motion of an aircraft. At any moment, the aircraft’s
position can be specified by azimuthal and elevation angles, as if we were using a telescope
with a standard tripod to sight the aircraft. When the aircraft is nearly overhead, the
telescope becomes difficult to move easily, because the closer we come to pointing it at
the zenith, the more its azimuthal motion (motion about the vertical axis) constricts its
tube to making smaller movements. This means that small movements around the zenith
translate to large changes in the azimuthal angle, which can be difficult to achieve evenly.
Mechanically this constricted movement is called gimbal lock. In using these two angles
to track an aircraft, rapid changes in azimuth can be difficult to model in any numerical
algorithm, and the term gimbal lock has also come to be applied to numerical difficulties.
The result is that it has given Euler angles a bad name. But the problem is purely one of
numerical stability; there’s nothing wrong with using the two Euler angles in principle.

This constriction of motion about one axis also causes mechanical problems with some
gyroscopes. To picture why this might be, imagine a very simple (and not very useful)
example of an inertial navigation system: a horizontal spinning flywheel carried on a yoke
attached to hinges at the end of each wingtip, and held underneath the aircraft while it
flies straight and level. The flywheel’s axis determines the up/down direction used by
the autopilot to help keep the aircraft on course. The aircraft can pitch up and down
and yaw in the local north–east plane without affecting the flywheel’s motion. But if the
human pilot tries to roll, the flywheel will be forced out of its spin plane. In such an event,
the inertial navigation system will be fooled into believing that the aircraft has begun
to develop some serious instabilities which it will try to correct, with perhaps disastrous
consequences. While this is a big simplification of a real system, it does encapsulate the
problem that can happen with a real gyroscope when the plane’s attitude reaches some
extreme position.

One way of avoiding numerical instabilities in tracking algorithms is to use Euler’s
theorem, which does away with having to use three angles around the three fixed axes. So
it is that our matrix A in (3.2) describes this rotation. In principle it should be sufficient
for all purposes, although in practice its nine entries can require a powerful ability for
number crunching, especially when used to describe motions where the orientation angles
are changing with time.

3.3 The Workhorse: Rotating in Three Dimensions

The matrix A in (3.2) describes the rotation that changes a body’s orientation, provided
we know how the basis vectors change. But usually we are not given the final position
of those vectors. In general, we need to be able to rotate an arbitrary vector around an
arbitrary axis, and this is a slightly different task to be done.

7
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n

x

x′

θ

Figure 4: The matrix Rn(θ) rotates x in a right-handed sense around the
unit vector n by an angle θ to produce x′. That is, x′ = Rn(θ) x

This rotation can be done by multiplying the vector by a matrix Rn(θ) that we write
down in this section. Rn(θ) specifies a right-handed rotation through some angle θ about
an axis aligned with a unit vector n. (Requiring n to have unit length makes the expres-
sions simpler.) It rotates the vector x to give x′, as shown in Figure 4:

x′ = Rn(θ) x . (3.5)

Write the unit vector that points along the axis of rotation as

n =





n1

n2

n3



 , (3.6)

where n can point in either direction along the axis, but changing the choice of that direc-
tion will change the sign required for the rotation angle θ, since the rotation matrix Rn(θ)
obeys the right hand rule for rotation. The rotation matrix can be written in the following
way, which is the main equation of this report:

Rn(θ) = (1 − cos θ)





n2
1 n1n2 n1n3

n2n1 n2
2 n2n3

n3n1 n3n2 n2
3



+ cos θ I3 + sin θ





0 −n3 n2

n3 0 −n1

−n2 n1 0





= (1 − cos θ) nnt + cos θ I3 + sin θ n× , (3.7)

where nt is the transpose of n, I3 is the 3 × 3 identity matrix, and

n× ≡





0 −n3 n2

n3 0 −n1

−n2 n1 0



 , (3.8)

so-named because

n×x = n × x , (3.9)

(with the n written nonbold to emphasise its matrix form). The rotation matrix Rn(θ)
is called orthogonal, by which is meant RRt = RtR = 1, and as well its determinant is
always 1. Equations (3.5) and (3.7) will be used repeatedly in this report to break more
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complicated procedures up into single rotations that are easy to visualise and easy to code.
They are, in fact, the central equations of the whole of rotation theory.

Example of the use of (3.7): Rotate the vector (2, 0, 0) by 90◦ about the y-axis.
What vector results? The required rotation matrix is Ry(90◦) (where by the subscript y
is meant n = (0, 1, 0)t). Equation (3.7) gives it as

Ry(90◦) = nnt + n× =





0
1
0





[

0 1 0
]

+





0 0 1
0 0 0

−1 0 0



 =





0 0 1
0 1 0

−1 0 0



 . (3.10)

(Actually, in this simple example we can calculateRy(90◦) alternatively using (3.2). Simply
note that the basis vectors rotate as





1
0
0



 −→





0
0

−1



 ,





0
1
0



 −→





0
1
0



 ,





0
0
1



 −→





1
0
0



 , (3.11)

so that (3.2) yields Ry(90◦) trivially.) The required rotated vector is then

Ry(90◦)





2
0
0



 =





0 0 1
0 1 0

−1 0 0









2
0
0



 =





0
0

−2



 , (3.12)

as expected.

An example of combining two rotations is given in Appendix A. As stated by Euler’s
theorem, the effect of these is just one rotation, although the values of the resulting
equivalent axis and angle turned through are not obvious at all from the original two axes
and angles.

The rows of a rotation matrix will gradually lose their mutual orthonormality because
of rounding errors under repeated iterations in a computer programme. This wandering
can be kept in check by periodically re-orthogonalising, accomplished by

R→ R
(

RtR
)−1/2

. (3.13)

Rotation Order and its Possible Blind Application

Since matrix multiplication is not commutative, two rotations are also not in general com-
mutative: the result depends on the order in which they are done. However, infinitesimal
rotations are commutative. This fact can be used to our advantage when writing com-
puter code that takes inputs from a joystick, in order to rotate a scene (say, in a flight
simulator). The pilot might induce both a pitch and a roll, but only by applying each of
these in tiny increments will the software successfully reproduce the effect that the pilot
wants.

Nevertheless, it’s possible to go to an extreme of demanding a set rotation order that
does not mimic what the user of a software package wants, but that does do something
highly misleading. In fact, a search through the internet shows that this mistake seems to
be a classic of computer graphics programming, and has caused some in that community to
distrust the mathematics of rotation. An example of this incorrect application of rotations
is discussed in Appendix C.
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3.4 Rotating using Quaternions

Although the rotation matrix Rn(θ) has nine entries, it’s really only built from three num-
bers: the angle θ turned through, and any two components of n; the third component of n

is then implied, since n has unit length. Using Rn(θ) can be computationally inefficient,
since not only do all nine components need to be manipulated, but if the matrix is ap-
plied within a loop, perhaps thousands of times, numerical inaccuracies can degrade its
orthogonality. That is, its rows (or equivalently columns) will slowly lose their mutual
orthonormality. It can certainly be periodically re-orthogonalised after an appropriate
number of iterations, as shown in (3.13). Nevertheless, the question arises as to whether
any way exists of rendering the matrix down to its basic three numbers, and perhaps
eliminating some of the numerical complexity in the process.

We are always free to construct any quantity from those three numbers. For instance we
could specify a rotation through θ around (n1, n2, n3) by a new object written as (θ, n1, n2).
This is very concise, but the catch is that we would also have to define how this object
acts on a vector to rotate it. The result is not anything simple, so we gain nothing by
doing this.

But all is not lost. If we allow a little more complexity, and construct a new ob-
ject Qn(θ) from θ, n1, n2, n3 along with a sine and cosine, then this turns out to be simple
enough to offset the more complicated way it has to interact with vectors. Here n is taken
to be the unit row vector (n1, n2, n3):

Qn(θ) ≡
(

cos
θ

2
,n sin

θ

2

)

. (3.14)

This new object Qn(θ) is called a rotation quaternion. More general quaternions (not for
rotating) are composed of a number and a vector: (a0,a). Two quaternions multiply in
the following way:

(a0,a) (b0, b) ≡ (a0b0 − a·b, a0b + b0a + a×b) , (3.15)

so that the squared length of a quaternion is defined to be (in analogy to the length of a
vector):

∣

∣(a0,a)
∣

∣

2 ≡ a2
0 + |a|2 . (3.16)

We can see straight away that a rotation quaternion Qn(θ) has unit length, which is the
equivalent property of rotation quaternions as orthogonality and a unit determinant is of
rotation matrices.

Using rotation quaternions, a row vector x can be rotated through an angle θ around
a unit vector n by applying a double multiplication:

(0,x′) = Qn(θ) (0,x)Q−n(θ) , (3.17)

where quaternion multiplication is associative, so either product can be done first. As
an example, in (3.12) we used a matrix to rotate (2, 0, 0) by 90◦ about the y-axis to
give (0, 0,−2). Contrast the matrix approach with the quaternion approach:

(0,x′) =

(

1√
2
,

1√
2
(0, 1, 0)

)

(0, 2, 0, 0)

(

1√
2
,
−1√

2
(0, 1, 0)

)
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= (1, 0, 1, 0) (0, 1, 0, 0) (1, 0,−1, 0)

= (0, 0, 0,−2) , (3.18)

so that the result is (0, 0,−2) as expected.

Combining two rotations using quaternions is straightforward. Just as a matrix ro-
tation R1 followed by R2 is equivalent to a single matrix rotation R2R1, a quaternion
rotation Q1 followed by Q2 is equivalent to a single quaternion rotation Q2Q1.

Finally, just as a rotation matrix will slowly lose orthogonality under repeated iterations
in a software routine, so a rotation quaternion’s length will slowly wander from one in the
same circumstances. It can be periodically reset by dividing each of the quaternion’s four
elements by the length calculated from (3.16), which is a very much simpler task than
re-orthogonalising a matrix in (3.13).

Matrix Cost versus Quaternion Cost

How expensive is using matrices as opposed to using quaternions? While (3.18) might
look succinct, it does hide some effort, especially in the two cross products that have been
done. In Table 1 we give simple counts of operations required to rotate a vector, if done
with pen and paper. No allowance for numerical optimisation is made since that forms a
field in itself. It can be seen that quaternions are easier to build, while matrices are easier
to use; thus, depending on the application, it can be useful to convert between the two
subject to how much of each process needs to be done.

Table 1: First-principles computation costs of matrices and quaternions, for
the build and one use of each. The numbers shown are not optimised

Matrix Quaternion

Build 2 trigonometric functions, 2 trigonometric functions,
using (3.7) and (3.14): 10 additions, no additions,

21 multiplications. 4 multiplications.

One rotation 6 additions, 24 additions,
using (3.5) and (3.15, 3.17): 9 multiplications. 30 multiplications.

Multiplication 27 multiplications, 16 multiplications,
18 additions. 12 additions.

The benefit of using quaternions for iterative calculations is that the resetting of a
quaternion’s length to 1 requires a simple division by its length, calculated from (3.16).
On the other hand, re-orthogonalising a matrix from (3.13) is a much more complicated
affair that involves the lengthy procedure of matrix diagonalisation. Although there is
room for optimisation in this process, it cannot compete with quaternion normalisation for
simplicity. How often such a resetting or re-orthogonalising needs to be done is presumably
a function of the numerical complexity of the problem being tackled.
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In fact, it might be thought that rather than use the expensive (3.13) to re-orthogonalise
the matrix, that a better approach would be to convert the matrix to a quaternion, nor-
malise that, and then convert back to a matrix. This can be done using the analysis of
Appendix A, by applying (A1) to produce the angle and axis from the matrix, that are
then used to build the quaternion via (3.14), which is then normalised and converted back
to a matrix using (3.7). But whether this is really viable might depend on the numerical
accuracy of the software. As it is, (A1) only samples the matrix’s three diagonal elements
to calculate the angle θ, perhaps producing too inaccurate a result to be used in building
the quaternion. The quaternion could be produced by using all of the matrix elements; but
it’s not clear what work has been done in this area for doing this efficiently and accurately.

4 Rotating Axes to Change Coordinates

The building block that allows all manner of aerospace re-orientations to be done, for
various pitches, rolls, yaws, changes of latitude/longitude, and local geographic frames, is
the act of rotating each of the vectors that represent the axes of some frame.

There are two basic tasks to consider in this type of aerospace calculation. First, given
a place on Earth (usually in lat–long–height coordinates), we need to construct the local
geographic frame’s axes, such as NED. Second, an aircraft can be introduced into this
NED frame, and its orientation found relative to that frame.

4.1 Constructing NED Axes for the Local Geographic Frame

Given the lat–long–height of a place on or near Earth, the first thing we wish to do is find
the local NED axes. The technique used is the primary one of this report. We build an
initial set of NED axes in a place where it’s simple to determine them, and then we rotate
these around to the required place.

The simplest place to construct an initial set of NED axes is on the junction of the
Equator and the prime meridian, since this has a latitude and longitude of α = ω = 0◦.
Represent each axis by a unit vector in the ECEF frame, which all calculations are being
done within:

N0 =





0
0
1



 , E0 =





0
1
0



 , D0 =





−1
0
0



 . (4.1)

The scenario is shown in Figure 5. Now rotate each of the N0,E0,D0 vectors in two steps.
The first rotation is about the N0 vector by the longitude ω, taking care to realise that
the rotation matrix will obey the right hand rule. This rotation creates an intermediate
triplet of vectors, taking N0 →N1, E0 →E1, D0 →D1. (Of course, N1 = N0, but for
clarity we keep each triplet together notationally.)

Now rotate each of the intermediate set by the latitude α about −E1; again we’ve been
careful to note the use of the right hand rule, so need to specify the axis of rotation as −E1.
(We can certainly use +E1, but will have to rotate by −α about this. The rotation matrix
or quaternion will be unchanged.) Because the original N0,E0,D0 vectors each have
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X

Y

Z

ω
αN0

E0

D0 N1

E1
D1

N

E

D

Figure 5: Constructing local north–east–down axes N ,E,D at a given point
of known latitude and longitude. Start with the three vectors N0,E0,D0.
Construct the intermediate set N1,E1,D1 by rotating the original set
through the longitude ω about N0. Then rotate N1,E1,D1 about −E1 by the
latitude α, according to the right hand rule, to give the final set N ,E,D. Or
equivalently, rotate the intermediate set about E1 through minus the latitude.
The resulting vectors are the local north–east–down axes

unit length, they automatically satisfy the requirement for the axis vector n to be of unit
length in (3.7). Notice that the clever way that latitude has been defined means we needn’t
worry that Earth’s shape is not spherical; two places separated by say 50◦ latitude on the
same meridian will certainly have a 50◦ angle between their North vectors, and a 50◦ angle
between their Down vectors.

The sequence of steps is:

N1 = R
N 0

(ω)N0 = N0

E1 = R
N 0

(ω)E0

D1 = R
N 0

(ω)D0

N = R
−E1

(α)N1

E = R
−E1

(α)E1 = E1

D = R
−E1

(α)D1 . (4.2)

The resulting vectors N ,E,D are the local north–east–down axes, and can be used for
further calculations. In the interest of pedagogy, we have made the steps as alike as
possible, but in practice they can be heavily reduced to

E = R
N 0

(ω)E0
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N = R
−E

(α)N0

D = N × E . (4.3)

This reduction is purely a question of pedagogy versus computational speed. Equa-
tions (4.2) allow for a step by step follow-through of the process, which is useful for
writing transparent computer code or debugging in more complicated situations where
more than two rotations need to be performed. In this two-rotation case, it’s certainly not
difficult to use (4.3) without having to think along the lines of (4.2) at all. But situations
requiring more than two rotations will not be so easily abbreviated.

The following example draws many of these ideas together.

Example: If we are in Adelaide and Earth is transparent, what is the compass bearing of
Brussels if we are looking straight at it through Earth?

We’ll calculate ECEF position vectors of both Adelaide and Brussels, subtracting one
from the other to find the position vector of Brussels relative to Adelaide, and then express
this in the local NED axes at Adelaide using dot products. It’s helpful to write the vectors
in the following way, where A = Adelaide, B = Brussels, and C = some other useful point.
The vector giving the position of B relative to A can be written rB←A, and the following
are all true in general, as well as being useful for writing down vector relationships without
needing to draw pictures:

rB←A = −rA←B

r
B←A

= r
B←C

− r
A←C

rB←A = rB←C + rC←A (4.4)

The cities’ positions are:

Adelaide: latitude α = −34.9◦, longitude ω = 138.5◦,
Brussels: latitude α = 50.8◦, longitude ω = 4.3◦.

Use (2.2) to find the position of each city relative to Earth’s centre (which is exactly what
the ECEF coordinates specify): set C = Earth’s centre.

rA←C =





−3.92
3.47

−3.63



× 106 metres, rB←C =





4.03
0.30
4.92



× 106 metres. (4.5)

The position of Brussels relative to Adelaide is then

r
B←A

= r
B←C

− r
A←C

=





7.95
−3.17

8.55



× 106 metres. (4.6)

This vector is still an ECEF vector, although we can consider it to start at Adelaide and
point to Brussels. To calculate the bearing of Brussels as seen from Adelaide, we need
to get the local north and east components of rB←A. To do this, we’ll first calculate
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Adelaide’s local north, east, and down axis vectors, labelled N ,E,D in Figure 5, all in
ECEF coordinates, using (4.2). For this we need RN0

(ω), constructed from (3.7):

N0 =





0
0
1



 , ω = 138.5◦ , R
N 0

(ω) ≃





−0.74896 −0.66262 0
0.66262 −0.74896 0

0 0 1



 . (4.7)

This R
N 0

(ω) then acts in (4.2) to produce N1,E1,D1. We then use −E1 to construct the

next rotation matrix R
−E1

(α), which finally produces the N ,E,D. The steps are easy to
programme and are omitted; the resulting axes are

N =





−0.429
0.379
0.820



 , E =





−0.663
−0.749

0



 , D =





0.614
−0.543

0.572



 . (4.8)

The bearing of Brussels is calculated by projecting r
B←A

into the local north–east
plane. The projection can be visualised as an arrow drawn on the ground, so that its
angle from north is the required bearing. The projection in the local north–east plane is
simply given by the components of rB←A on the local north and east axes. These are dot
products:

North component = r
B←A

·N = 2.4035 × 106 metres,

East component = rB←A ·E = −2.8958 × 106 metres. (4.9)

(Note that these equations assume the axis vectors N ,E have unit length; another reason
to prefer unit length axis vectors from the start.) The units here are immaterial; the only
thing that matters is the ratio of the components, so that Brussels’ bearing is

360◦ − tan−1 2.8958

2.4035
≃ 310◦ , (4.10)

or roughly north-west. Apart from the initial change of variables in (2.2), this whole
calculation has been accomplished using just rotations and dot products. We could of
course have streamlined it using (4.3) as well as omitting the calculation of the local Down
vector D, but the point here is pedagogy, not efficiency.

4.2 The World as Seen by a Pilot

Sometimes we wish to know the appearance of a scenario as seen by the pilot. For example
if an aircraft is flying straight and level, and then executes a series of yaws, pitches, and
rolls, where will the compass directions lie, and where will “up/down” be? If an aircraft is
alongside but 200 m higher, where will this aircraft be seen to lie from the confines of the
cockpit?

These questions are answered by rotating vectors. To determine where the compass
directions are, we need to know where the aircraft is headed before it turns. These direc-
tions are only really well defined near Earth’s surface, and in this case, each of them
can be considered as vectors emanating from the cockpit itself, described in the air-
craft’s frame. For example, Fig. 3 shows that if the aircraft is flying straight and level
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north-east, then the north direction vector will have coordinates in the aircraft’s frame
of (x, y, z) = (1/

√
2,−1/

√
2, 0).

Example: This involves large distances just to ensure the method is well understood. Sup-
pose we are flying north-east over Adelaide, pitched up at 20 ◦ at an altitude of 30,000m.
We sight an aircraft flying over Sydney at the same altitude. In which direction in the
cockpit must we look to see that aircraft?

As usual, work in the ECEF. Call the other aircraft “them”, and construct a vector
pointing from our location to them. This is the vector of them relative to us, or rthem←us.
We require the components of this vector in the aircraft frame. These components are
given by dotting rthem←us with the three vectors describing each of the aircraft’s axes.
The axes are x, y, z in Fig. 3, and we’ll call the vectors along each one x,y, z, respectively.
So we need to find

r
them←us

·x , r
them←us

·y , r
them←us

·z . (4.11)

The vector rthem←us is found simply by referring everything to the centre C of Earth,
which implies using the ECEF:

rthem←us = rthem←C − rus←C . (4.12)

The vector rthem←C is just their position in the ECEF, and rus←C is our own position in
the ECEF. These positions are given by applying (2.2) to Adelaide’s and Sydney’s latitude
and longitude, together with the given heights both of 30,000 m. The two cities lie at:

Adelaide: latitude α = −34.9◦, longitude ω = 138.5◦,
Sydney: latitude α = −33.9◦, longitude ω = 151.2◦.

Equation (2.2) together with the appropriate heights then gives approximately:

r
them←C

=





−4.67
2.57

−3.55



× 106 metres, r
us←C

=





−3.94
3.49

−3.65



× 106 metres. (4.13)

Hence

r
them←us

= r
them←C

− r
us←C

=





−7.25
−9.21

0.92



× 105 metres. (4.14)

Now we need to find x,y, z at our location. First we find the local north, east, and
down vectors N ,E,D by (4.2) or (4.3), where the heights play no part in the calculation.
These were given in (4.8). These vectors must be rotated to produce our own aircraft
axes. First, place our aircraft in the local NED frame flying north, straight and level. Its
aircraft axes then match the local NED axes:

x0 = N , y0 = E , z0 = D . (4.15)

Next rotate the aircraft axes around z0 by 45◦, and then rotate 20◦ around the new y-
axis y1, taking care to get the angle signs right by way of the right hand rule for rotation.
The sequence is:

x1 = Rz0
(45◦)x0
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y1 = Rz0
(45◦)y0

z1 = Rz0
(45◦)z0 = z0

x = Ry1
(20◦)x1

y = Ry1
(20◦)y1 = y1

z = Ry1
(20◦)z1 . (4.16)

The final vectors are approximately

x =





−0.94
−0.06

0.35



 , y =





−0.17
−0.80
−0.58



 , z =





0.31
−0.60

0.74



 . (4.17)

Dotting these with rthem←us in (4.11) gives the set of components we require, so that the
other aircraft turns out to have coordinates (765, 802, 393) km in the frame of our aircraft.
(Note that these numbers result from keeping more significant figures than are shown in
the numbers above.) As a simple check, the length of this vector should be the distance
of the aircraft:

distance of aircraft =
√

7652 + 8022 + 3932 km ≃ 1176 km, (4.18)

which is reasonable. To actually sight the aircraft, we first need to turn our head to our
right by approximately tan−1 802

765 , or 46◦. Again this makes sense, since the aircraft is
approximately due east and we are already flying north-east. After having turned our
head through 46◦, we need to turn it downwards by tan−1 393√

7652+8022
, or about 20◦.

4.3 ECEF Coordinates and Heading-Pitch-Roll Conversion

Typically, simulation software will store object locations in lat–long–height, as well as
orientations in a heading–pitch–roll format: three Euler angles with respect to its local
NED frame. “Heading” here means where the aircraft’s x-axis points, not the direction in
which it’s actually travelling over the ground, which is called its track. Note that heading
is not the same as yaw. Yaw is the angle between an aircraft’s heading (into wind, not over
ground), and the direction in which its nose points. An aircraft usually flies with no yaw,
meaning that it’s pointing exactly into the oncoming air flow; the air flow is approaching
directly over its nose. We, together with software packages, are really assuming the aircraft
is not yawed, which is a very normal way to fly. Only some extreme fliers will hold a yaw
after finishing their turn.

Despite lat–long–height and heading–pitch–roll formats, an IEEE standard specifies
that in order to communicate location–orientation between different machines in a dis-
tributed interactive simulation (DIS) environment, XYZ coordinates be used, along with
a different set of Euler rotations. The DIS standard says that three Euler rotations are
implemented by first rotating around the z-axis, then around the new y-axis, and finally
around the newest x-axis. This order is useful because it corresponds to physical situations;
for example, ones in which an aircraft might manoeuvre by changing its heading (about its
z-axis), then pitching (about its new y-axis), and finally rolling (about its newest x-axis).
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Proprietary software might well include routines to convert to and from these coordinates,
but this software tends to be provided without source code and so generally is not portable.
To aid in developing routines that use the DIS standard, this section describes how such
conversions can be done.

The first set of DIS coordinates is the aircraft’s location in the XYZ coordinates of the
ECEF frame. The second set of coordinates is the set of three Euler angles that specify
the aircraft’s orientation by starting with its own axes coincident with the ECEF’s XYZ
axes, and then rotating. The three rotations are by angle ψ around Z, then by θ around
the rotated Y , and finally by φ around the latest rotated X.

After distribution, these numbers (X,Y, Z, ψ, θ, φ) might need to be converted back to
a lat–long–height and an orientation with respect to the local NED axes.

Converting the aircraft’s location to and fro between XYZ and lat–long–height was
done in (2.2)–(2.6). The next task we’ll address is calculating the Euler angles ψ, θ, φ. As
we’ll see in (4.30) ahead, it’s necessary to solve the problem for a general set of starting
vectors, as opposed to X,Y ,Z, so we’ll restate it using more general vectors. Suppose
we have an orthonormal set of vectors (i.e. mutually orthogonal and all of unit length)
x0,y0, z0. These are rotated by ψ about z0 to give x1,y1, z1. These new are now rotated
by θ about y1 to give x2,y2, z2. Finally, these latest are rotated by φ about x2 to give
x3,y3, z3:

x0,y0, z0
Rz

0
(ψ)

x1,y1, z1
Ry

1
(θ)

x2,y2, z2
Rx

2
(φ)

x3,y3, z3 . (4.19)

The question is: given x0,y0, z0 and x3,y3, z3, what are ψ, θ, φ? These angles are as
follows. The angle ψ is given by projecting x3 onto the x0y0 plane, and is the angle of
this projection from x0 in the y0 direction:

sinψ =
x3 ·y0

√

(x3 ·x0)
2 + (x3 ·y0)

2
, cosψ =

x3 ·x0
√

(x3 ·x0)
2 + (x3 ·y0)

2
. (4.20)

Next, θ is the angle between x3 and the projection just mentioned:

sin θ = −x3 ·z0 , cos θ =
√

(x3 ·x0)
2 + (x3 ·y0)

2 . (4.21)

Finally, φ is the angle from y2 to y3 in the z2 direction:

sinφ = y3 ·z2 , cosφ = y3 ·y2 . (4.22)

Matlab code to calculate the first two of these angles would be

psi = atan2( dot(x3,y0), dot(x3,x0) );

theta = atan2( -dot(x3,z0), sqrt( (dot(x3,x0))^2 + (dot(x3,y0))^2) );

For the last angle φ, we need y2 and z2. These are given by

y2 = y1 = Rz0
(ψ)y0 , z2 = Ry1

(θ)z1 = Ry2
(θ)z0 . (4.23)

Appropriate Matlab code is then
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phi = atan2( dot(y3,z2), dot(y3,y2) );

The sequence of steps to convert to the six DIS numbers from a lat–long–height and
heading–pitch–roll is as follows:

1. Use (2.2) to convert lat–long–height (α, ω, h) to (X,Y, Z).

2. Find the local NED axes as we did in Section 4.1. That is, start with X,Y ,Z in the
ECEF frame and rotate, first through the longitude and then through the latitude,
to give −D,E,N , respectively.

3. Rotate the N ,E,D vectors, first by the heading around D, then by the pitch around
the rotated E, and finally by the roll around the latest rotated N . The resulting
vectors are, respectively, the aircraft’s local x,y, z axes (all in the ECEF frame).

4. The angles ψ, θ, φ are calculated from (4.20, 4.21, 4.22), where we make the identi-
fications

x0 = X , y0 = Y , z0 = Z ,

x3 = x , y3 = y , z3 = z . (4.24)

Example 1: An aircraft is flying 10,000m above Adelaide, heading south-east (with no
wind component: the heading is taken as the direction in which the nose points), climbing
at a 20 ◦ pitch, and holding a 30 ◦ roll. What are the two sets of triplets that the DIS
standard requires to specify the aircraft’s location and orientation?

The location is found easily, by converting the aircraft’s lat–long–height at Adelaide
to XYZ using (2.2):

(X,Y, Z) = (−3.93, 3.48, −3.63) × 106 m. (4.25)

The orientation vectors x,y, z are found by first calculating the local NED axes as
vectors in the ECEF, and then rotating these by the relevant heading, pitch and roll.
Some of this calculation has been done already in Section 4.1; the local NED axis vectors
are given there in (4.8). Using these, place the aircraft into the NED frame so that initially
its x, y, z axes (i.e. x,y, z vectors) coincide with the N ,E,D axes respectively, and now
rotate it as needed. So first set

x0 = N , y0 = E , z0 = D . (4.26)

Now rotate x0,y0, z0 each by 135◦ around z0 (implementing the south-east heading),
calling the result x1,y1, z1. Then rotate each of these by 20◦ around y1 (implementing the
pitch) to produce x2,y2, z2. Finally rotate each of these by 30◦ around x2 (implementing
the roll) to produce x,y, z. Each of these rotations is easy to work out using the basic
formula (3.7). The result is

x =





−0.366
−0.564
−0.741



 , y =





0.928
−0.165
−0.333



 , z =





0.065
−0.809

0.584



 . (4.27)
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Now calculate ψ, θ, φ from (4.20, 4.21, 4.22). To do this, set

x0 =





1
0
0



 , y0 =





0
1
0



 , z0 =





0
0
1



 ,

x3 = x , y3 = y , z3 = z . (4.28)

The resulting angles are

ψ = −123.0◦ , θ = 47.8◦ , φ = −29.7◦ . (4.29)

These, together with (X,Y, Z) given in (4.25), are the six numbers that the DIS standard
uses to encode the aircraft’s position and orientation.

Example 2: Convert back from X,Y, Z, ψ, θ, φ to lat–long–height/heading–pitch–roll.

Again the location is found easily by applying (2.3)–(2.6). These equations return the
latitude α = −34.9◦, longitude ω = 138.5◦, and height 10,000m, as expected.

To calculate the heading, pitch, and roll, realise that these are just the ψ, θ, φ, respec-
tively, that are returned by step 4 above (4.24) when we make the following identifications:

x0 = N , y0 = E , z0 = D ,

x3 = x , y3 = y , z3 = z . (4.30)

So we need to calculate N ,E,D, which can be done as in Section 4.1, since we have just
calculated the latitude and longitude of the aircraft. These are given in (4.8).

Next, the x,y, z are found by applying the three Euler rotations of ψ, θ, φ in the
appropriate order, i.e. (4.19), to the ECEF’s basis vectors X,Y ,Z. In other words, set
x0,y0, z0 in (4.19) to X,Y ,Z. The three resulting vectors x3,y3, z3 will be the required
x,y, z.

Finally, make the identifications of (4.30) to calculate ψ, θ, φ using (4.20, 4.21, 4.22),
where the heading is ψ, the pitch is θ, and the roll is φ. As expected, we obtain

heading = 135◦ , pitch = 20◦ , roll = 30◦ . (4.31)

5 Concluding Remarks

All of the commonly-needed techniques in three-dimensional rotations rely on our ability
to do two basic procedures:

1. Rotate a vector about any axis whatsoever, and

2. calculate components using dot products.

These calculations need to be done in just one frame. The usual one is the ECEF, which
is good for all of the usual motions we associate with moving around Earth. (If we need
to deal with satellites, a nonrotating frame is needed, such as one fixed to the stars.)
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Rotating about arbitrary axes and taking dot products within the ECEF is all that has
been done for the examples in this report.

Rotations themselves can be carried out using matrices or quaternions. Both of these
are simply ways of writing down the three numbers needed to encode a rotation (an
angle, and two numbers for the axis). The extra redundancy that matrices have over
quaternions allows for simpler algebra when using matrices to analyse rotation on paper,
but quaternions, being essentially pared-down versions of the rotation matrix, can be easier
to prevent from degrading numerically inside a computer routine (but see the comment at
the end of Sect. 3.4). Performance questions like this are critical in that three-dimensional
models can have 10,000+ points to rotate at e.g. 30 frames per second.

When solving a problem involving three-dimensional rotations, a good approach is to
break the scenario down into its building block rotations and to handle each one separately,
all within the ECEF. This step-by-step approach lends itself well to being modularised in
software, and is what we have used repeatedly in this report.
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Appendix A Combining Two Rotations

Earlier we said that two rotations will always combine to give a new rotation. This is of
course equivalent to multiplying the two rotation matrices or quaternions. But what is
the axis and angle of the new rotation? For example, suppose we rotate a vector twice:

1. First rotate it by 90◦ around the x-axis (call the matrix Rx and the quaternion Qx).

2. Then rotate it by 90◦ around the y-axis (call the matrix Ry and the quaternion Qy).

What is the corresponding axis and angle of the combined rotation? We do this first using
matrices and then with quaternions. It will be quite evident from the answer that two
rotations generally don’t combine to give an obvious resulting angle and axis.

Using Matrices

The combined matrix rotation is Ry Rx:

1. Rx : θ = 90◦,n =





1
0
0



 , so Rx =





1 0 0
0 0 −1
0 1 0





2. Ry : θ = 90◦,n =





0
1
0



 , so Ry =





0 0 1
0 1 0

−1 0 0





3. Ry Rx =





0 1 0
0 0 −1

−1 0 0





To find the single angle and axis of rotation that Ry Rx is equivalent to, we could compare
each element of Ry Rx with the general expression (3.7), but this is arduous. Much easier
is to use (3.7) to write down two properties of the general rotation matrix, using its trace
and its transpose:

trR = 1 + 2 cos θ

R−Rt = 2 sin θ n× . (A1)

In that case, the combined rotation is around some unit vector n through angle θ, where

1 + 2 cos θ = 0 , 2 sin θ n× =





0 1 1
−1 0 −1
−1 1 0



 . (A2)

There appear to be two solutions for n and θ here, but they both represent the same
rotation, so that we can always choose the unique positive value of θ together with its
corresponding n. In this case:

θ = 120◦ , n = (1, 1,−1)/
√

3 . (A3)
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Using Quaternions

The necessary quaternions are

Qx =
(

cos 45◦, sin 45◦(1, 0, 0)
)

=
1√
2
(1, 1, 0, 0) ,

Qy =
(

cos 45◦, sin 45◦(0, 1, 0)
)

=
1√
2
(1, 0, 1, 0) . (A4)

The combined quaternion rotation is Qy Qx:

Qy Qx =
1

2
(1, 0, 1, 0) (1, 1, 0, 0) =

1

2
(1, 1, 1,−1)

=

(

1

2
,

√
3

2

(1, 1,−1)√
3

)

=

(

cos 60◦,
(1, 1,−1)√

3
sin 60◦

)

, (A5)

which is a rotation of 120◦ around (1, 1,−1)/
√

3, just as we found in (A3).
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Appendix B xyz Eulers to Angle–Axis and Vice

Versa

In this appendix we explain how to switch between an xyz Euler angle representation of a
rotation and the angle–axis representation characterised by a single rotation matrix Rn(θ)
or quaternion Qn(θ). This fixed-axis Euler representation differs to the DIS standard
discussed in Section 4.3 because in this appendix, the axes rotated around are fixed in
space. Even so, the fixed-axis convention is also very commonly used.

xyz Eulers to Angle–Axis

Suppose a rotation is built of three Euler rotations: first by an angle α around the x-axis,
then by β around y, then by γ around z. These join to give a single rotation of θ around n,
given by

Rn(θ) = Rz(γ)Ry(β)Rx(α) , (B1)

where the matrix Rn(θ) encodes the whole rotation. If it’s necessary to know n and θ
explicitly, they can be found by applying (A1).

If the rotations are performed around new axes, then the calculation of the rotation
matrix is only a little more difficult. For example, suppose the second rotation is around
the new y-axis (called y′), while the third is around the newest x, called x′:

Rn(θ) = Rx′(γ)Ry′(β)Rx(α) . (B2)

The first rotation is done as usual: Rx(α) rotates by α around (1, 0, 0). The second rotation
is about the new y-axis, whose vector is

n1 ≡ Rx(α)





0
1
0



 . (B3)

The last rotation, by γ, needs to be done around the new x-axis. This axis is represented
by the vector

n2 ≡ Rn1
(β)





1
0
0



 , (B4)

so that the final rotation is

Rn(θ) = Rn2
(γ)Rn1

(β)Rx(α) . (B5)

These calculations can of course also be done using quaternions, as detailed in Appendix A.
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xyz Angle–Axis to Eulers

If the xyz rotation order of (B1) is used, a single rotation matrix R can be converted to
three rotations using the Euler angles α, β, γ, where s can be chosen as either +1 or −1:

sinα =
sR32

√

1 −R2
31

, cosα =
sR33

√

1 −R2
31

sinβ = −R31 , cosβ = s
√

1 −R2
31

sin γ =
sR21

√

1 −R2
31

, cos γ =
sR11

√

1 −R2
31

. (B6)

The value of s is immaterial in the sense that either choice will give three angles that
have the same effect as the original rotation. Care is needed to avoid oversimplifying these
equations: we must remember that (B6) does not imply that e.g. α = tan−1(R32/R33),
since the tan−1 function only gives angles in the range −90◦→ +90◦. Nor does it imply
that β must equal − sin−1R31, because of a similar restriction on the sin−1 function.

These equations can be implemented in Matlab using the code:

alpha = atan2(s*R(3,2), s*R(3,3));

beta = atan2(-R(3,1), s*sqrt(1-R(3,1)^2));

gamma = atan2(s*R(2,1), s*R(1,1));
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Appendix C Confusing Euler Angle Orientation

with Incremental Rotation

As we saw in Sect. 3.2, an object’s orientation can be specified by giving three Euler angles:
angles through which the object can be turned in some preset order from a base position,
which will result in the required orientation. This is useful and unambiguous, but it can
lead to some confusion when implemented in an overly rigid way.

The problem can be shown as follows. Suppose we have written computer code that
draws some object, and supplies three graphical sliders that allow us to specify Euler angles
to change its orientation. We can alter any of the angles at any time, and the software will
read the current values of the three angles, interpret them as Euler angles, and use them
to rotate a preset base orientation of the object, first around the x-axis, then around y,
and finally around z. The result is then displayed on the computer screen.

When we start the programme, this graphical interface is always drawn with the three
sliders each set to zero, and the object in its base position. If we alter the x-slider to
read 10◦ and leave the other two sliders at zero, then the three angles are read by the soft-
ware, and a rotation of Rz(0)Ry(0)Rx(10◦) is applied. The object duly rotates around x
by 10◦. If we increase the x-slider to 15◦, the software reads all the sliders again and
applies a rotation of Rz(0)Ry(0)Rx(15◦) to the base orientation. The effect is that the
object is seen to rotate around x through a further 5◦. We then set the x-slider back to
zero, the three angles are again read, and the result is that the base orientation is rotated
by Rz(0)Ry(0)Rx(0), or nothing at all. So changing the x-slider by itself rotates the
object about the x-axis, which is perfectly reasonable and expected.

Similarly if we change only the y-slider, or only the z-slider, the same sort of intuitive
effects happen. Setting the y-slider to 10◦ with the others at zero means that the software
reads the three angles and applies a rotation of Rz(0)Ry(10◦)Rx(0) to the base orientation,
so that the object rotates around y by 10◦, and similarly it will revert to the base position
if we set the y-slider back to zero.

Suppose we now change two of the angles; we’ll ignore the z-slider as it’s not needed to
make the following point. Start with all sliders at zero so that the object is drawn in the
base orientation. Then set the x-slider to 10◦. The rotation is Ry(0)Rx(10◦), so the object
rotates around x by 10◦. Now set the y-slider to 10◦. The new rotation is Ry(10◦)Rx(10◦)
from the base orientation, with the result that the object is first rotated around x by 10◦

and then around y by 10◦. So far, the behaviour matches our intuition.

Now increase the x-slider to read 15◦. The rotation is now Ry(10◦)Rx(15◦) from the
base orientation, so that the object is first rotated around x by 15◦ and then around y
by 10◦. The procedure is shown as follows:

x-slider y-slider Resulting rotation
setting setting of base orientation

0 0 Ry(0) Rx(0)
10◦ 0 Ry(0) Rx(10◦)
10◦ 10◦ Ry(10◦) Rx(10◦)
15◦ 10◦ Ry(10◦) Rx(15◦)
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But the effect of this latest rotation is not what we might have expected. It is reasonable
to believe, based on trying each slider in turn on its own, that each slider rotates about its
respective axis. When we increased the x-slider from 10◦ to 15◦, most users would expect
the object to rotate by a further 5◦ about x. But this is not what happens. The software
does what it was designed to do: it rotates the base orientation using

Ry(10◦) Rx(15◦) . (C1)

The rotation suggested by our intuition is an increment of 5◦ about x on the last orientation—
which was represented by Ry(10◦) Rx(10◦) acting on the base orientation—or

Rx(5
◦) Ry(10◦) Rx(10◦) . (C2)

Expressions (C1) and (C2) are not the same. In fact (C1) could have been written

Ry(10◦) Rx(5
◦) Rx(10◦) , (C3)

which differs from (C2) in that two rotations are swapped. Because rotation is noncom-
mutative, these two different matrices (C2) and (C3) produce different orientations when
multiplying the base orientation. To reiterate, our intuition expected that by making three
slider adjustments, first incrementing the x-slider (from zero) by 10◦, then incrementing
the y-slider (from zero) by 10◦, then incrementing the x-slider by 5◦, that (C2) would
result. In fact, (C1) or equivalently (C3) resulted. That might be unintuitive, but the
mathematics and the computer software have done exactly what was asked of them.

Our confusion over the effects of the sliders seems to reach its worst if the y-slider is
first set to rotate through −90◦, and then the x- and z-sliders are changed arbitrarily.
Because the following identity holds for all angles α, β,

Rz(α) Ry(−90◦) Rx(β) =





0 − sin(α+ β) − cos(α+ β)
0 cos(α+ β) − sin(α+ β)
1 0 0



 , (C4)

the total rotation—being a function only of the sum of the x- and z-slider angles—does
not distinguish between the x- and z-sliders. Thus the x- and z-sliders have the same
effect, making it appear that we have lost one rotation axis somewhere, as if, to use an
oft-quoted phrase, “the x-axis has been rotated onto the z-axis” (!) But axes are not set
on hinges; there is no such thing as a flexible axis, and axes cannot be rotated onto each
other. The software is doing exactly what it was designed to do. Whether our intuition
would prefer a different behaviour is another matter entirely.

This apparent loss of one axis is erroneously labelled gimbal lock by some graphics
programmers, who confuse it with the real numerical Euler angle problem described earlier
on page 7. But there is no such problem with Euler angles in software rotations such as
described above, and this use of the term is a misnomer. Unfortunately, historically these
misinterpretations went hand in hand with using matrices to perform rotations, with the
result that matrices and Euler angles are sometimes seen as not up to the task. This is
definitely wrong; both matrices and Euler angles can handle any rotation asked of them.
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Restoring an Intuitive Feel to the Sliders If we wish the sliders to act in an intuitive
way, then each time we adjust any slider, we must not have the software read the three
slider values and rotate the base orientation through them all in some preset order. Rather,
if we adjust the x-slider by 2◦, the software should read the values, note what has changed,
and rotate the current orientation about the x-axis through the increment of 2◦. Not
only does this make the sliders and rotations behave as our intuition suggests, but it also
makes for faster processing, since only one rotation is ever performed per slider interaction,
instead of three.
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Appendix D Quaternions Used in Computing:

slerp

Rotation theory is important when creating a smooth fly through of a scene in which
certain way points have been specified along with camera orientations at those points. A
camera’s orientation can be specified by a rotation matrix or quaternion that generates
that orientation by rotating the initial orientation. So the question arises as to how best
to interpolate the matrices or quaternions, in order to generate rotations that act on the
initial orientation to give visually acceptable intermediate orientations.

For example, if two way-point orientations specified by rotation matrices R0 and R1

are specified, then we might suppose that linear combinations of these with appropriate
weightings will suffice to rotate the initial orientation to create intermediate orientations.
But such is not the case; the intermediate rotation matrices are not simply given by linear
interpolations between R0 and R1. For example in the simpler case of rotations in the
xy plane, if the rotation matrix for 30◦ is Rz(30◦) using (3.4), and that for 40◦ is Rz(40◦),
then the matrix

0.9Rz(30◦) + 0.1Rz(40◦) (D1)

is not equal to Rz(31◦); being not orthogonal, it’s not a rotation matrix at all. Even
when orthogonalised using (3.13), what results still does not equal Rz(31◦). So a more
sophisticated matrix interpolation is needed.

Whatever results are applicable to matrices, quaternions seem to be easier to use;
and certainly most of the research into interpolating orientations seems to revolve around
quaternions. This seems to be mostly due to the fact that because of its numerically
intensive nature, rotation research tends to be mainly the domain of computer animation
programmers; but unfortunately once various quaternion routines had been worked out
and coded, the code got copied, understood, and used extensively; and quaternions became
the de facto way to solve problems of this sort. Nonetheless, as we’ll show in this appendix,
quaternions are very easily interpolated to give more acceptable interpolation results than
are traditionally obtained using matrices.

The fact that quaternions have a unit length given by a simple sum of squares of their
components means they can be treated as vectors in Euclidean four dimensions, so are
able to be visualised as points on the surface of a “sphere”, as shown in Figure D1. In this
figure, the initial orientation is represented by the quaternion (1, 0, 0, 0), because this is
the identity quaternion that doesn’t rotate at all, shown by applying (3.17):

(0,x′) = (1, 0, 0, 0) (0,x) (1, 0, 0, 0) = (0,x) . (D2)

We wish to generate a whole series of quaternions, each of which multiplies the initial
orientation to produce some intermediate one. We must pass through the way-point
quaternion (0.9, 0.1, 0.1, 0.4) and finish at the final quaternion (0.7, 0.6, 0.2, 0.3). The very
simplest way is to make a linear interpolation, in angle, between way points on the sphere’s
surface, and so is called spherical linear interpolation, or slerp. To see how slerp is used
to interpolate between two quaternions, draw them as vectors q1 and q2 lying in a plane
in Figure D2. (Previously we used e.g. Q to denote a quaternion. Here we use bold face
vector notation to reinforce our treatment of quaternions as vectors, since that’s what
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Initial orientation

(1, 0, 0, 0)

Way point
(0.9, 0.1, 0.1, 0.4)

Final orientation
(0.7, 0.6, 0.2, 0.3)

Figure D1: Schematic of a four-dimensional sphere, each surface point of
which represents a quaternion. Any orientation of some system is given by
a quaternion that rotates the initial orientation. Given way-point orienta-
tions, the task is to find a path connecting them that then picks out the set
of interpolating quaternions that each generate an acceptable intermediate
orientation of the system

picturing them as points on the surface of a four-dimensional sphere allows us to do.) The
angle θ between them is given by the usual dot product:

cos θ =
q1 ·q2

|q1| |q2|
= q1 ·q2 , (D3)

where the dot product is the usual sum of pairwise products of components. Use a param-
eter t running from zero to one, values of which generate intermediate quaternions such
as the q shown in Figure D2. Straightforward two-dimensional vector analysis gives

q =
sin (1 − t)θ

sin θ
q1 +

sin tθ

sin θ
q2 . (D4)

This is the standard slerp formula for generating intermediate quaternions. In Figure D1
we first interpolate for various values of t between the initial orientation and the way point,
and then do the same for the way point and the final orientation. Remember that each
quaternion generated does not multiply the orientation just produced; rather, it multiplies
the initial orientation.

q1

q2

q

θ

tθ

Figure D2: The quaternion q is interpolated between quaternions q1 and q2
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slerp is popular among graphics programmers, but there is some recognition that
this is partly by default because of the way routines get shared around. slerp is not the
only quaternion tool used, and it has even been argued as generally not desirable to use,
partly because of its high processing demands, and partly because other algorithms (such
as normalised quaternion linear interpolation) bring other benefits to the programmer in
terms of the“look and feel”of the resulting rotations. Nevertheless, the above description of
slerp shows the general idea of the current approach to interpolation within the computer
graphics community.
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