
Language Issues in Mobile Program Security�

Dennis Volpano� and Geo�rey Smith�

� Department of Computer Science� Naval Postgraduate School� Monterey� CA
������ USA� email� volpano�cs�nps�navy�mil

� School of Computer Science� Florida International University� Miami� FL ������
USA� email� smithg�cs��u�edu

Abstract� Many programming languages have been developed and im	
plemented for mobile code environments� They are typically quite ex	
pressive� But while security is an important aspect of any mobile code
technology� it is often treated after the fundamental design is complete�
in ad hoc ways� In the end� it is unclear what security guarantees can
be made for the system� We argue that mobile programming languages
should be designed around certain security properties that hold for all
well	formed programs� This requires a better understanding of the rela	
tionship between programming language design and security� Appropri	
ate security properties must be identi�ed� Some of these properties and
related issues are explored�

An assortment of languages and environments have been proposed for mobile
code� Some have been designed for use in executable content and others for use
in agents ���� ���� Parallel e�orts in extensible networks and operating systems
have also focused attention on language design for mobility� These e�orts include
work on active networks ���� �	�� the SPIN kernel �
� ��� and Exokernel �	�� What
these e�orts have in common is a need for security�

We can roughly separate security concerns in this setting into code security

and host security� The former is concerned with protecting mobile code from un�
trusted hosts while the latter is concerned with protecting hosts from untrusted
mobile code� This may seem a bit arti
cial since one might like to model security
more symmetrically�� Nonetheless� it is a useful distinction for now� The code
security problem seems quite intractable� given that mobile code is under the
control of a host� For some proposals and a discussion� see �
��
�� ���� In the
remainder of this paper� we treat only the host security problem�

� Host Security

Our view of the problem is that mobile code is executed on a host which must
be protected from privacy and integrity violations� As far as privacy goes� the

� This material is based upon activities supported by DARPA and the National Science
Foundation under Agreement Nos� CCR	�
����
 and CCR	�
����
� To appear in a
special issue of LNCS on Mobile Agents and Security�

� One can imagine a model that does not distinguish mobile code from a host� treating
both as mutually suspicious parties�

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1998 2. REPORT TYPE

3. DATES COVERED
 00-00-1998 to 00-00-1998

4. TITLE AND SUBTITLE
Language Issues in Mobile Program Security

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School ,Center for Information Systems Security
Studies and Research (NPS CISR),Department of Computer
Science,Monterey,CA,93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Mobile Agents and Security, G. Vigna (Ed.), volume 1419 of Lecture Notes in Computer Science, pp. 25-43.
Springer Verag, 199

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

19

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

host has private data that the code may need to perform some expected task�
The host wants assurance that it can trust the code not to leak the private
data� This is the classical view of privacy �
��
��� As for integrity� the host has
information that should not be corrupted� Integrity� in general� demands total
code correctness� After all� corrupt data can simply be the result of incorrect
code� There are� however� weaker forms of integrity ����

We believe that an important characteristic of the mobile code setting is
that the only observable events are those that can be observed from within a
mobile program using language primitives and any host utilities� There are no
meta�level observers of a mobile program�s behavior such as a person observing
its execution behavior online� Still� depending on the language� leaks can occur
in many di�erent ways� some being much more di�cult to detect than others�

��� Security Architectures

A common approach to host security is to monitor the execution of mobile
code� You build an interpreter �or virtual machine� and slap the hands of any
code that tries to touch something sensitive� The interpreter obviously needs
to know whether hand slapping is in order so it might appeal to some sort of
trust framework to decide� This arrangement is often called a �security archi�
tecture�� Architectures are growing quite elaborate as the demand for less hand
slapping rises� An example is the security architecture of the Java Developer�s
Kit JDK��
 ����� It blends some proven concepts� such as protection domains�
access control� permissions� and code signing� to allow applets more room to
maneuver� Netscape�s �Object Signing Architecture� takes a similar approach�

One begins to wonder how much of these security architectures is really
necessary� Are they a response to a need for host security given mobile programs
written in a poorly�designed mobile programming language� Perhaps they can
be simpli
ed� It would seem that this is possible if mobile code is written in a
language that ensures certain security properties statically�

For example� suppose that all well�typed programs have a secure �ow prop�
erty and that you know a certain program� needing your personal identi
cation
number �PIN�� is indeed well typed� Then that program respects the privacy of
your PIN and there is no need to check at runtime whether the program has
permission to read it�

Our claim is not that security architectures will no longer have a role in
the future� We feel their role will simply change and be more formally justi
ed�
For example� they might carry out certain static analyses or proof checking�
perhaps along the lines of proof�carrying code �
��� It should be possible� for
a given language� to more clearly identify the role of the security architecture�
Certain desirable properties might be provable for all well�formed programs in
the language� in which case some security checks can go away�

There are many di�erent facets of mobile language design that in�uence
security in some way� For example� access control mechanisms �encapsulation�
visibility rules� etc�� are important� We will limit our attention to some of the
issues that impact host privacy and integrity� On the integrity side� we look at

type safety � Type safety is often said to be a key ingredient for security in Java
and for safe kernel extensions written in Modula�� �
�� Today� some languages like
Standard ML evolve with formal treatments of the type system and semantics
developed along the way� This allows one to give formal accounts of type safety
that evolve as well� Other languages� like Java� lack this sort of formal treatment�
Java has grown so rapidly that one quickly loses grasp of the impact of certain
features on key properties like type safety�

Then we explore the relationship between privacy and language design� There
are many ways mobile code can leak secrets� We start by examining information
channels in a deterministic language� We look at how they are in�uenced by
timing� synchrony� and nontermination� Then we consider channels in a simple
concurrent language with shared variables� Some of these channels arise in very
subtle ways� For example� they can arise from contention among processes for
shared resources� like CPU cycles�

� Type Safety

What is type safety� Consider the following description from a Java perspective�

The Java language itself is designed to enforce security in the form of
type safety� This means the compiler ensures that methods and programs
do not access memory in ways that are inappropriate �i�e� dangerous�� In
e�ect� this is the most essential part of the Java security model in that
it fundamentally protects the integrity of the memory map�

Secure Computing with Java� Now and the Future�

���� JavaOne Conference�

In Java� for example� code should not somehow be able to coerce a reference of a
user�de
ned class to one of a system class like SecurityManager which the run�
time system �Java Virtual Machine� consults for access permissions� Obviously�
this leads to trouble�

So at the heart of type safety is a guarantee against misinterpretation of
data�some sequence of bits being misinterpreted by an operation� This has
long been recognized as a serious computer security problem� In a well�known
report published twenty�
ve years ago� Anderson describes a way to penetrate a
time�sharing system �HIS ����GCOS III� based on the ability to execute a user�s
array contents with an assigned GOTO statement in Fortran ���� The statement
can misinterpret its target� the contents of an arbitrary integer variable� as an
instruction� Today we see the same sort of problem in a di�erent context �
���

��� Type Preservation

An important property related to type safety is the idea of type preservation�
Type preservation is frequently confused with type soundness in the literature�
Soundness is a statement about the progress a program�s execution can make if

�

the program is well typed� Type preservation� on the other hand� merely asserts
that if a well�typed program evaluates successfully� then it produces a value of
the correct type� It is usually needed to prove soundness� For instance� you may
know that an expression� with some type� evaluates to a value� but the value
must have a speci
c form in order for evaluation to proceed� Type preservation
gives you that the value has the same type as the expression� and with some
correct forms typing lemma� you know that only values of the form needed have
that type�

The following is a typical type preservation theorem� If � is a memory� map�
ping locations to values� and � is a location typing� mapping locations to types�
then type preservation is stated as follows �����

Theorem� �Type Preservation�� If � � e � v� ��� � � e � � � and � � �� then
there exists �� such that � � ��� �� � ��� and �� � v � � �

The
rst hypothesis of the theorem states that under memory �� a closed expres�
sion e evaluates to a value v and a memory ��� Now e may contain free locations�
hence e is typed with respect to a location typing � which must be consistent
with �� that is� � � �� Evaluation of e can produce new locations that wind up
in v� so v is typed with respect to an extension �� of ��

As one can clearly see from the theorem� whether a language exhibits this
property depends on the type system and the semantics� In some cases� we might
expect that the type system needs to change if the property does not hold� But
the semantics itself may be to blame� For instance� consider the C program in
Figure �� When compiled and executed� �c evaluates to a signed integer quantity�

char �c�

f�� �char cc � �a�� c � �cc��

g�� �int i � 	

��

main�� �f��� g��� printf���c�
�c���

Fig� �� Dereferencing a dangling pointer

yet it has type char� If a C semantics prescribes this behavior� then we cannot
prove type preservation with respect to that semantics� the C language says this
program is unpredictable� This is one place where type preservation and C col�
lide�� A formal C semantics should be clear about the outcome of dereferencing
a dangling pointer� if this is considered �normal� execution� so that type preser�
vation can be proved� Otherwise� it should specify that execution gets stuck in
this situation� again so that type preservation holds� In the latter case� an imple�
mentation of C would be required to detect such an erroneous execution point if
that implementation were safe� A safe �faithful� implementation guarantees that
every execution is prescribed by the semantics� so that programs cannot run in

� Thus� perhaps� it is not surprising that the SPIN group abandoned its attempts to
de�ne a �safe subset of C�� adopting Modula	� instead ����

�

ways not accounted for by the semantics� This usually requires that an imple�
mentation do some runtime type checking unless it can be proved unnecessary
by a type soundness result�

Remark� Although a lack of pointer expressiveness is in general a good thing
from a safety viewpoint� manifest pointers �references� are still a substantial
security risk� A runtime system might accidentally provide an application a ref�
erence to a system security object that must remain invariant� This was demon�
strated in Java for JDK���� Its entire trust framework� based on digitally�signed
code� was undermined when it was discovered that applications could obtain a
reference to a code signers array��

��� Type Soundness

Type preservation theorems usually talk about successful evaluations� Their hy�
potheses involve an assumption about an evaluation proceeding in some number
of steps to a canonical form� But this may not adequately address a type sys�
tem�s intentions� An objective of a system might be to guarantee termination or
to ensure that programs terminate only in speci
ed ways �e�g� no segmentation
violations��� What is needed is a precise account of how a well�typed program
can behave when executed� In other words� we want a type soundness theorem
that speci
es all the possible behaviors that a well�typed program can exhibit�

Traditional type soundness arguments based on showing that a well�typed
program does not evaluate to some special untypable value are inadequate for
languages like C and Java� There are many reasons why programs written in
languages like Java and C may produce runtime errors� Invalid class formats
in Java and invalid pointer arithmetic in C are examples� A type soundness
theorem should enumerate all the errors that cause a well�typed program to
get stuck �abort� according to the semantics� These are the errors that every

safe implementation must detect� One regards the type system as sound if none
of these errors is an error that we expect the type system to detect� This is
essentially the traditional view of type soundness as a binary property� But a
key point to keep in mind is that whether a given type system is sound really
depends on our expectations of the type system� Though it may be clear what we
expect for languages like Standard ML� it is less clear for lower�level languages
like C and assembler�

For example� we give a type system for a polymorphic dialect of C in ���� �
��
The type soundness theorem basically says that executing a well�typed program
either succeeds� producing a value of the appropriate type� fails to terminate� or
gets stuck because of an attempt to

� It is interesting to consider what sort of proof would have revealed the problem� One
strategy would be to try �nding a P	time reduction from compromising the private
key used in a digital signature to executing untrusted code� It would also establish
a computational lower bound on executing untrusted code using JDK����

� Such properties are important in situations where you need guarantees against cer	
tain faults� An example is isolating execution behind trust boundaries �����

�

� access a dead address�
� access an address with an invalid o�set�
� read an uninitialized address� or
� declare an empty or negative�sized array�

The
rst two errors are due to pointers in the language� Now one may expect the
type system to detect the
rst error in which case our type system is unsound�
However� if one believes it is beyond the scope of a type system for C� then our
type system is sound� Clearly if the list included an error such as an attempt to
apply an integer to an integer� then the type system would generally be regarded
as unsound�

A better way to look at type soundness is merely as a property about the
executions of programs that the type system says are acceptable� This allows us
to compare type systems for a language by comparing their soundness properties�
Some may be weaker than others in that they require implementations to check
types at run time in order to remain safe� It is also useful for determining whether
a particular language is suitable for some application� Some of the errors listed
in a formulation of soundness may be among those that an application cannot
tolerate� Further� and perhaps most importantly� it identi
es those errors that
an implementation must detect in order to safely implement the semantics� For
instance� a safe implementation of C should trap any attempt to dereference a
dangling pointer� Most C implementations are unsafe in this regard� One expects
Java implementations to be safer� but despite all the attention to typing and
bytecode veri
cation� the current situation is unfortunately not as good as one
might imagine�

Consider the Java class in Figure
�� The class modi
es itself by putting
a CONSTANT Utf� type tag for x in that part of the constant pool where a
CONSTANT String type tag for x is expected by the ldc �load from constant
pool� instruction� Method exec gets a copy of itself in the form of a bytecode
array� The class is well typed� yet it aborts with a �segmentation violation� �core
dump� in JDK������ even when Java is run in �verify� mode� Veri
cation of the
modi
ed bytecodes does fail using the verify option of the Java class disassembler
javap� One would expect it to also fail for the bytecodes dynamically constructed
in exec� leading to a VerifyError when class SelfRef is run� Instead we get a
core dump� So the JDK����� implementation of Java is unsafe�

Perhaps making class representations available in bytecode form needs to
be reconsidered� It becomes quite easy to dynamically construct classes that
are di�cult to analyze statically for security guarantees� Self�modifying code� in
general� makes enforcement of protection constraints di�cult� if not impossible�
Channel command programs in the M�I�T� Compatible Time�Sharing System
�CTSS�� for instance� were years ago prohibited from being self�modifying for
this reason �
	��

� A bit of history� The class stems from an attempt to implement an active network in
Java� Active programs migrate among servers that invoke their exec methods� An
active program maintains state by modifying its own bytecode representation prior
to being forwarded� Yes� it�s a hack�

�

public class SelfRef implements ActiveProgram �

final String x � �aaba��

public void exec�byte�� b
 MyLoader loader� throws Exception �

if �b���� �� �x��� � �� CONSTANT�String

b���� � �x��� �� set CONSTANT�Utf�

b���� � �x���

b���� � �x���

Class classOf � loader�defineClass�b
 �
 b�length��

ActiveProgram p � �ActiveProgram� classOf�newInstance���

p�exec�b
 loader��

�

else System�out�println�x��

�

public static void main�String�� argv� throws Exception �

FileInputStream f � new FileInputStream��SelfRef�class���

byte�� data � new byte�f�available����

int c � f�read�data��

MyLoader loader � new MyLoader���

new SelfRef���exec�data
 loader��

�

�

Fig� �� Type mismatch leading to segmentation violation in Java

� Privacy in a Deterministic Language

Suppose we begin by considering a very simple deterministic programming lan�
guage with just variables� integer�valued expressions� assignment� conditionals�
while loops� and sequential composition� Programs are executed relative to a
memory that maps variables to integers� If a program needs I�O� then it simply
reads from or writes to some speci
c variables of the memory� Further� suppose
that some variables of the memory are considered private while others are public�
Every program is free to use all variables of the memory and also knows which
variables are public and which are private�

What concerns us is whether some program� in this rather anemic language�
can always produce� in a public variable� the contents of a private variable� There
are many such programs� some more complicated than others�

For instance� one can simply assign a private variable to a public one� not a
terribly clever strategy for a hacker� This is an example of an explicit channel�
Or one might try to do it more indirectly� one bit at a time� as in Figure � where
PIN is private� y is public� and the value of mask is a power of two� This is an
example of an implicit channel � It illustrates the kind of program we wish to
reject because it does not respect the privacy of PIN� We need to formalize the
security property it violates�

�

while �mask �� �� �

if �PIN � mask �� �� � �� bitwise �and�

y �� y � mask �� bitwise �or�

�

mask �� mask � �

�

Fig� �� Implicit channel

��� Privacy Properties

We give a more formal statement of the privacy property we want programs to
have in this simple deterministic language�

De�nition� �Termination Security�� Suppose that c is a command and � and
� are memories that agree on all public variables� If � � c� �� and � � c� ���
then �� and �� agree on all public variables�

�The judgment � � c � �� asserts that executing command c in initial mem�
ory � terminates successfully� yielding
nal memory ���� Intuitively� Termination
Security says that we can change the contents of private variables without in�
�uencing the outcome of public variables� In other words� these changes cannot
interfere with the
nal contents of public variables� The above program does not
have this property� Any change in the private PIN will result in a di�erent
nal
value for the public variable y�

Is the Termination Security property an acceptable privacy property for pro�
grams in our simple deterministic language� That depends on what is observable�
Consider the similar program in Figure �� If one can repeatedly run this program

while �PIN � mask �� �� � �

y �� y � mask

Fig� �� Channel from nontermination

with a di�erent mask� one for each bit of PIN� then assuming y is initially zero�
the runs will copy PIN to y� One PIN bit is leaked to y in a single run� We assume
that� after a speci
c period of time� if a run has not terminated then it never
will� and we move on to the next bit��

But although the program seems insecure� it satis
es Termination Security�
Changes to PIN cannot in�uence the outcome of y in a single run of the program�
After changing the PIN� the program may no longer terminate� but this does not
violate Termination Security since it only applies to successful termination�

Consider another property�

� The task obviously becomes much easier when we enrich the language with threads
and a clock� Now each bit can be examined by an asynchronously	running thread�
and after some timeout we can be fairly con�dent that all nonzero bits have been
properly set in y�

	

De�nition� �O�ine Security�� Suppose that c is a command and � and � are
memories that agree on all public variables� If � � c � ��� then there is a ��

such that � � c� ��� and �� and �� agree on all public variables�

Notice that we have removed one of the two successful evaluation hypotheses
from Termination Security� The property basically says that changing private
variables cannot interfere with the
nal contents of public variables� nor can
it interfere with whether a program terminates� We call the property O�ine
Security because it addresses only what one can observe about a program�s
behavior if it is executed o�ine� or in batch mode �one either sees the results of
a successful execution or is noti
ed of some timeout that was reached�� The time
it takes for a program to terminate is not observed� In a deterministic language�
O�ine Security implies Termination Security� Actually� the formulation of O�ine
Security is suitable for treating nondeterminism as we shall see� The program in
Figure � does not satisfy O�ine Security�

Unfortunately� there are other sources of channels� Consider the program
in Figure �� Again suppose we can repeatedly execute it with di�erent masks�

if �� � �PIN � mask�� � �

y �� y � mask

Fig� �� Channel from partial operation

It always terminates� sometimes abnormally from division by zero� The e�ect�
however� will be the same� to copy PIN to y one bit at a time�

Hence if we include partial operations like division� we have a situation where
a program might either get stuck �terminate abnormally� or run forever� depend�
ing on a private variable� So we need yet a stronger o�ine security property� Ba�
sically it needs to extend O�ine Security with the condition that if c terminates
abnormally under �� then it does so under � as well �����

None of the preceding properties addresses any di�erence in the time required
to run a program under two memories that can disagree on private variables�
These di�erences can be used to deduce values of private variables in timing
attacks on cryptographic algorithms� For example� a private key used in RSA
modular exponentiation has been deduced in this fashion �
��� Di�erences in tim�
ing under two memories can be ruled out by requiring that executions under the
two memories proceed in lock step� a form of strong bisimilarity� This property�
which might be called Online Security� is the most restrictive thus far� But is it
really necessary for mobile programs� That depends on what is observable�

��� What is Observable�

Key to judging whether any of the preceding properties is necessary is deter�
mining what is observable in the model� Whether a privacy property is suitable
depends on how it treats observable events� Notice that there is an observation

�

being exploited in the preceding examples� even within a single run� that allows
one PIN bit to be leaked to y� It arises due to the synchrony of sequential compo�
sition� Termination Security does not take this kind of observation into account�
which makes O�ine Security a better choice� Recall that O�ine Security does
not account for timing di�erences� but does this matter with mobile code� The
key question is who observes the clock�

One can imagine examples in languages like Java where a downloaded applet
begins by sending a startup message back to a server on the originating machine
and then ends with a
nish message� Each message is timestamped by the server
which observes a clock external to the applet� We can model this sort of behav�
ior in our simple deterministic language by adding a clock in order to record
�timestamps� on values output to memory� Then� clock observation is internal
to mobile code� This is how UDP�TCP ports should really be modeled because
a UDP or TCP server�s clock is observed by a client �applet� when it sends a
TCP segment or UDP message� This brings us to our o�ine assumption�

In a mobile code setting� the only observable events are those that can be

observed internally� that is� from within a mobile program using primi�

tives of the language�

So the Online Security property may be overly restrictive for mobile programs
written in our simple deterministic� sequential language�

Generally� the more a program can observe� the more opportunity there is
for leaking secrets� As we have seen� opportunities can arise with the most basic
primitives� for instance� synchronous operations�

� Nondeterminism and Privacy

Now suppose we introduce nondeterminism via a simple concurrent language� It
is a multi�threaded imperative language based on the �o�� model of concurrency
����� As before� we have commands and their sequential composition� A thread

is a command that belongs to a thread pool �called an object pool in �o����
A thread pool O maps thread identi
ers to threads� Threads communicate via
shared variables of a global memory� A thread pool executes in one step to
a new thread pool by nondeterministically selecting a thread and executing it
sequentially in one step� More precisely� thread pool transitions are governed by
the following two rules�

O��� � c

�c� ��
s
����

�O� ��
g

���O � �� ���

O��� � c

�c� ��
s
���c�� ���

�O� ��
g

���O�� �� c��� ���

Thread pool transitions are denoted
g

�� �global transitions� and sequential tran�

sitions
s
��� The
rst rule treats thread completion and the second treats thread

continuation� Intuitively� the
rst rule says that if we can pick some thread �com�
mand� � from pool O� and execute it sequentially for one step in the shared

��

memory �� leaving a memory ��� then the entire thread pool O can execute in
one step to a pool where � is gone and the shared memory is now ��� The second
rule treats the case where � does not complete but rather is transformed into
a continuation �command� c� that represents what remains of c to be executed
after it executes for only one step� Note that no thread scheduling policy is
speci
ed in these rules�

With threads come new ways to cleverly leak secrets� Programs that appear
harmless can contain subtle channels for transmitting secrets� even in this very
basic concurrent language� To illustrate� we consider a system introduced by
Fine ����� It is analyzed in ��� where it is concluded that the system is secure in
the sense that �it is not possible for a high�level subject to pass information to a
low�level subject�� The system consists of two private variables� A and B� whose
di�erence is public and stored in Y� As a multi�threaded program� the system
is given in Figure ��� Thread � corresponds to a high�level user updating the

Thread � �
B �� B 	 A � v�

A �� v

Thread � �
Y �� B 	 A

Fig� �� The AB system

system with some value v that can be recovered through A� Thread � corresponds
to a low�level user reading public information from the system� The threads share
variables A and B� Imagine each of these threads being executed repeatedly and
that v is a constant input parameter� The claim is that � cannot transmit any
information to � since � always sees only B � A� But this requires that � be
atomic� for suppose A and B have initial values a and b respectively� If we execute
the
rst assignment of � followed by the assignment in �� then Y becomes B � a�
which is b � a � v � a� Since Y is initially b � a� we know v � a� the di�erence
between two successive values input by �� So � can observe a di�erence controlled
by �� The interleaving might be frequent in a real implementation if v is large�

What kind of privacy property would rule out this sort of threaded program�
First� we have to rule out any analog to the Termination Security property be�
cause it applies to deterministic programs only� Instead� suppose we ask whether
the outcomes of public variables can be �preserved� under changes to private
variables� So in the example above� we consider an execution that leaves Y equal
to b � a � v � a� say for v � a� Now we ask whether this outcome is possible
when v is changed to a di�erent value� say w� No matter how we interleave� Y
ends up being b � a or b � a � w � a� The outcome is no longer possible� We
have then the following property �����

� We ignore a third thread for low	level writing to the system�

��

De�nition� �Possibilistic NI�� Suppose � and � are memories that agree on

all public variables and that �O� ��
g

��
�

�fg� ���� Then there is a �� such that

�O� ��
g

��
�

�fg� ��� and �� and �� agree on all public variables�

It is a kind of noninterference �NI� property that closely resembles Suther�
land�s notion of Nondeducibility on inputs ����� Also notice the similarity between
this property and O�ine Security�

The program in Figure � does not satisfy Possibilistic NI� Another interesting
example that does not satisfy Possibilistic NI is given in ����� It uses a main
thread and two triggered threads� each with a busy�wait loop implementing a
semaphore� to copy every bit of a private PIN to a public variable� In fact� the
program always produces a copy of the PIN in a public variable whenever thread
scheduling is fair �every thread is scheduled in
nitely often��

Practical extensions of our simple concurrent language make it easy to con�
struct multi�threaded programs that violate Possibilistic NI� For example� simple
programs have the property until a scheduling policy� like round�robin time slic�
ing� is introduced ����� Adding a clock� even without threading� leads to simple
programs that fail to have the property� The same is true in the presence of
thread priorities and preemption� So the outlook for guaranteeing this property
in practical programs written in languages like Java appears bleak�

If a multi�threaded program satis
es Possibilistic NI then changes to private
variables cannot interfere with the possibility of public variables having a certain
outcome� But the changes may interfere with the probability of that outcome�
If so� there is a probabilistic channel� Consider� for instance� the program in
Figure �� Suppose that X stores one bit and is private� Y is public� and all threads

Thread � �
Y �� X

Thread � �
Y �� �

Thread � �
Y �� �

Fig� �� A probabilistic channel

have an equal probability of being scheduled� Is the program secure� Well� it
satis
es Possibilistic NI so it cannot reveal X with certainty� But it is likely to
reveal X� Suppose X is �� Then the probability that Y has
nal value � is
���
When X is �� however� the probability that Y has
nal value � drops to ���� In
e�ect� the private variable interferes with the probability that Y has
nal value ��
This kind of interference Gray calls probabilistic interference ��
�� He describes a
property called P�restrictiveness that aims to rule it out in systems� The property
can be viewed as a form of probabilistic noninterference ���� ����

� Logics and Static Analyses for Privacy

From the discussion thus far� it would appear that a privacy property is de�
veloped independently of any logic for reasoning about it� While this has been

�

generally true of security properties studied for computer systems� it is usually
not so for programming languages� Typically one starts with an intuitive idea of
secure code and gives some sort of logic to capture the notion� The next step is to
make the intuition precise so that the logic can be proved sound�� To illustrate�
we sketch a logic for reasoning about privacy below� It is actually a type system
utilizing subtypes� A complete description can be found in ���� where it is proved
that every well�typed deterministic program satis
es Termination Security�

We take security classes� like L �low or public� and H �high or private�� as
our basic types which we denote by � � Some typing rules treat explicit channels
and others implicit channels� Below is the typing rule for an assignment x �� e�

	 � x � � acc� 	 � e � �
	 � x �� e � � cmd

���

In order for the assignment to be well typed� it must be that

� x is a variable of type � acc�eptor�� meaning x is capable of storing informa�
tion at security level � � and

� expression e has type � � meaning every variable in e has type � ��

Information about x is provided by 	 which maps identi
ers to types� So� the
rule states that in order for the assignment x �� e to be judged secure� x must
be a variable that stores information at the same security level as e� If this is
true� then the rule allows us to ascribe type � cmd to the entire assignment
command� The command type � cmd tells us that every variable assigned to by
the command �here only x� can accept information of security level � or higher�

These command types are needed to control implicit channels like the one in
Figure �� For example� here is the typing rule for conditionals�

	 � e � �
	 � c� � � cmd

	 � c� � � cmd

	 � if e then c� else c� � � cmd

�
�

The idea is that c� and c� execute in a context where information about the
value of e is implicitly available�when c� executes� the value of e was true and
when c� executes� the value of e was false� Hence if e � � � then c� and c� must
not transmit any information to variables of security level lower than � � This is
enforced by requiring c� and c� to have type � cmd �

Here is the typing rule for while loops�

	 � e � �
	 � c � � cmd

	 � while e do c � � cmd

���

� Unfortunately� it is quite common to see either the logic skipped entirely� in favor of
an algorithm that implements one�s intuition� or soundness not treated adequately�
if at all� It is important to make intuitions about security precise�

� Keep in mind that unlike type preservation� an expression of type � here does not
mean one that evaluates to a value of type � � Values �in our case integers� have no
intrinsic security levels�

��

and the typing rule for sequential composition�

	 � c� � � cmd

	 � c� � � cmd

	 � c�� c� � � cmd

���

The typing rules for expressions and commands simply require all subexpres�
sions and subcommands to be typed at the same security level� For example� we
require in rule ��� that the left and right sides of an assignment be typed at
the same level� A similar requirement is imposed in rule �
�� Yet we do want to
allow upward information �ows� such as from public to private� But the typing
rules can remain simple because upward �ows can be accommodated naturally
through subtyping� For example� we would have L � H � but not H � L� The
subtype relation can naturally be extended with subtype inclusions among types
of the form � cmd and � acc� The type constructors cmd and acc are antimono�

tonic� meaning that if �� � ��� then the relation is extended with

�� cmd � �� cmd and �� acc � �� acc

Intuitively� antimonotonicity merely re�ects the fact that a reader capable of
reading at one security level is capable of reading at a lower level�

Also� there are two coercions associated with variables� If x � � var � then x � �
and also x � � acc� That is� variables are both expressions and acceptors� So if

	�x� � H var and 	�y� � L var

then there is an explicit upward �ow from y to x in x �� y� The assignment can
be typed in two ways� We can type the assignment with x � H acc by coercing
the type of y to H � or we can type the assignment with y � L by coercing the
type of x to L acc through the antimonotonicity of acceptor types�

Now properties of the type system can be proved� For example� there are
type�theoretic analogs of the well�known simple security property and ��property
�Con
nement� of the Bell and LaPadula model �

�
���

Lemma� �Type Analog of Simple Security� If 	 � e � � � then for every variable
x in expression e� 	 � x � � �

Lemma� �Type Analog of Con
nement� If 	 � c � � cmd � then for every variable
x assigned to in command c� 	 � x � � acc�

Intuitively� Simple Security guarantees no �read up� in expressions� whereas
Con
nement ensures no �write down� in commands� For example� Simple Se�
curity ensures that if an expression has type L� then it contains no variables
of type H var � Likewise� Con
nement guarantees that if a command has type
H cmd � then it contains no assignments to variables of type L var �

With these two properties� one can now prove that every well�typed program
in our simple deterministic language satis
es Termination Security ����� The
type system is not limited to privacy� One can also introduce integrity classes T

��

�trusted� and U �untrusted�� such that T � U � Now if a program satis
es Ter�
mination Security� then no trusted variable can be �contaminated� by untrusted
variables ����

To achieve stronger security properties� such as O�ine Security it is necessary
to restrict the typing of while loops� Intuitively� a while loop can transmit
information not only by assigning to variables� but also by terminating or failing
to terminate� This idea was exploited by the program in Figure �� To prevent
such �ows� one can restrict rule ��� to the following�

	 � e � L
	 � c � L cmd

	 � while e do c � L cmd

���

With this stricter rule� one can show that every well�typed program satis
es
O�ine Security ����� By restricting the typing of partial operations like division�
it is also shown in ���� that well�typed programs satisfy a stronger o�ine security
property that addresses aborted executions as well as nontermination� Finally�
under rule ��� it can be shown that every well�typed concurrent program satis
es
Possibilistic NI �����

An advantage of the type system is that it a�ords type inference� Procedures
are polymorphic with respect to security classes� Principal types are constrained
type schemes that convey how code can be used without violating privacy �����
Notice that type checking here is not merely an optimization in that it replaces
run�time checks� as in traditional type checking� Denning�s early work on pro�
gram certi
cation and the lattice model over
� years ago ����� showed that one
cannot rely only on run�time mechanisms to enforce secure information �ow� a
direction that had been pursued by Fenton ���� Static analysis is needed to reveal
implicit channels like the one in Figure ��

There is still some question about how the type system should be deployed in
a mobile code setting� Currently we are exploring its use in a code certi
cation
pipeline aimed at certifying the security of e�commerce applications written in
Java� But we can also imagine the need for analyzing some lower�level inter�
mediate language like Java virtual machine instructions� The loss of program
structure at this level would likely make it more di�cult to specify a simple type
system for privacy�

��� Decidability

The type system above is decidable� A type inference algorithm is given for it in
����� A desirable property of any logic for reasoning about privacy is that it be
decidable� However� there is often tension between decidability� soundness and
completeness in such logics� One is naturally unwilling to compromise soundness
so that can mean having to give up completeness for decidability�

For instance� the problem of deciding whether a program� written in our
simple deterministic language of Section �� has the Termination Security prop�
erty is not recursively enumerable� This means that any sound and recursively

��

enumerable logic for reasoning about Termination Security must be incomplete�
Now the question is how much have we lost by conceding incompleteness� There
must be examples of code that have some desired security property� but which
cannot be proved in the logic� For example� here is a snippet of code in our
sequential language that satis
es Termination Security� yet is untypable in the
system above if X is private and Y is public�

X �� Y�

Y �� X

Further� thread � in the program of Figure � is also untypable� The question of
how much has been lost often depends on whether such examples arise frequently
in practice� If they do� then the logic may yield too many �false positives� for it
to be practical� This has been a primary criticism of information��ow checkers
for some time ����

� Conclusion

We have explored the relationship between some aspects of language design and
security issues� The issues we considered in this paper� namely type safety and
privacy� are really independent of code mobility� Nonetheless� the prospect of
migrating code that executes
nancial transactions� or extends the functionality
of a network switch� makes them relevant�

So what sort of advice can we o�er designers of secure languages� First�
security should not be viewed as a programming language graft� The literature
is
lled with attempts that treat security this way� Languages have a fundamental
role in secure computation and should be designed with this in mind� A designer
might begin by establishing the security properties of interest for a language and
then attempt to introduce functionality while preserving them� This seems more
promising than treating security afterward� Also� one cannot overemphasize the
need for a formal semantics� It is essential for proving soundness and basic safety
properties like those in �
���

We strongly believe that secure languages should have simple� compositional
logics for reasoning about the security properties of interest� Compilers should
be able to incorporate decision procedures for these logics as static analyses that
programmers can easily understand� For instance� the type system of Section �
is simple and has an e�cient type inference algorithm for inferring type schemes
that convey how programs can be used securely�

As far as privacy properties go� one has to know what is observable� and
how it can be observed� There are some known pitfalls� In a concurrent set�
ting� beware of any ability to modulate one thread with another� for instance�
through a semaphore ����� Time�sliced thread scheduling is also problematic� It
does not preserve the Possibilistic NI security property in languages like Java�
Java threading and its many features make it easy to build covert timing chan�
nels� This suggests that it is unsuitable for secure e�commerce applications� The
subset� Java Card
��� proposed for smartcards� may be better since it has no

��

threading and supports the notion of a transaction ��	�� Designing a secure con�
current language that is �exible and admits simple and accurate static analyses
is the subject of current research�

References

�� James P� Anderson� Computer security technology planning study� Technical
Report ESD	TR	��	
�� Electronic Systems Division� Hanscom Field� Bedford� MA�
�����

�� Brian Bershad� et al� Extensibility� safety and performance in the SPIN operating
system� In Proc� ��th Symposium on Operating Systems Principles� pages �
������
December ���
�

�� K� Biba� Integrity considerations for secure computer systems� Technical Report
ESD	TR	�
	���� MITRE Corp�� �����

�� Dorothy Denning� Secure Information Flow in Computer Systems� PhD thesis�
Purdue University� West Lafayette� IN� May ���
�

� Dorothy Denning� A lattice model of secure information �ow� Communications of
the ACM� ���
����
����� ���
�

� Dorothy Denning and Peter Denning� Certi�cation of programs for secure infor	
mation �ow� Communications of the ACM� ������
���
��� �����

�� Steven T� Eckmann� Eliminating formal �ows in automated information �ow anal	
ysis� In Proceedings ���� IEEE Symposium on Security and Privacy� Oakland�
CA� May �����

�� D�R� Engler� et al� Exokernel� An operating system architecture for application	
level resource management� In Proc� ��th Symposium on Operating Systems Prin�

ciples� December ���
�
�� J� Fenton� Information Protection Systems� PhD thesis� University of Cambridge�

�����
��� Todd Fine� A foundation for covert channel analysis� In Proc� ��th National

Computer Security Conference� Baltimore� MD� October �����
��� Li Gong� Marianne Mueller� Hemma Prafullchandra� and Roland Schemers� Going

beyond the sandbox� An overview of the new security architecture in the Java
Development Kit ���� In Proceedings USENIX Symposium on Internet Technologies

and Systems� Monterey� CA� December �����
��� James W� Gray� III� Probabilistic interference� In Proceedings ���� IEEE Sympo�

sium on Security and Privacy� pages �������� Oakland� CA� May �����
��� James W� Gray� III� Toward a mathematical foundation for information �ow secu	

rity� In Proceedings ���� IEEE Symposium on Security and Privacy� pages ������
Oakland� CA� May �����

��� James W� Gray� III and Paul F� Syverson� A logical approach to multilevel security
of probabilistic systems� In Proceedings ���� IEEE Symposium on Security and

Privacy� pages �
����
� Oakland� CA� May �����
�
� David Halls� John Bates� and Jean Bacon� Flexible distributed programming using

mobile code� In Proc� �th ACM SIGOPS European Workshop	 Systems Support

for Worldwide Applications� Connemara� Ireland� September ���
�
�
� Robert Harper� A simpli�ed account of polymorphic references� Information Pro�

cessing Letters�
��������
� �����
��� Wilson C� Hsieh� et al� Language support for extensible operating systems� Un	

published manuscript� Available at www	spin�cs�washington�edu�� ���
�

��

��� Java Card ��� Language Subset and Virtual Machine Speci
cation� Sun Microsys	
tems� October �����

��� Cli� B� Jones� Some practical problems and their in�uence on semantics� In Pro�

ceedings of the �th European Symposium on Programming� volume ��
� of Lecture
Notes in Computer Science� pages ����� April ���
�

��� Paul Kocher� Timing attacks on implementations of Di�e	Hellman� RSA� DSS
and other systems� In Proceedings ��th Annual Crypto Conference� August ���
�

��� Butler W� Lampson� A note on the con�nement problem� Communications of the
ACM� �
�����
���
�
� �����

��� Carl E� Landwehr� Formal models for computer security� Computing Surveys�
�������������� �����

��� Leonard J� LaPadula and D� Elliot Bell� MITRE Technical Report �
��� Volume
II� Journal of Computer Security� ������������
�� ���
�

��� X� Leroy and F� Rouaix� Security properties of typed applets� In Proceedings ��th

Symposium on Principles of Programming Languages� pages �������� San Diego�
CA� January �����

�
� Catherine Meadows� Detecting attacks on mobile agents� In Proc� ���� Founda�

tions for Secure Mobile Code Workshop� pages
��

� Monterey� CA� March �����

�
� Yaron Minsky� Robbert van Renesse� Fred B� Schneider� and Scott Stoller� Cryp	
tographic support for fault	tolerant distributed computing� In Proc� �th ACM

SIGOPS European Workshop	 Systems Support for Worldwide Applications� Con	
nemara� Ireland� September ���
�

��� George Necula and Peter Lee� Proof	carrying code� In Proceedings ��th Symposium
on Principles of Programming Languages� Paris� France� �����

��� J�H� Saltzer� Case studies of protection system failures� Appendix
	A� unpublished
course notes on The Protection of Information in Computer Systems�� ���
�

��� Vijay Saraswat� Java is not type	safe� Unpublished manuscript� Available at
www�research�att�com��vj�bug�html�� �����

��� Geo�rey Smith and Dennis Volpano� Towards an ML	style polymorphic type sys	
tem for C� In Proceedings of the �th European Symposium on Programming� volume
��
� of Lecture Notes in Computer Science� pages �����

� April ���
�

��� Geo�rey Smith and Dennis Volpano� Secure information �ow in a multi	threaded
imperative language� In Proceedings ��th Symposium on Principles of Program�

ming Languages� pages �

��
�� San Diego� CA� January �����

��� Geo�rey Smith and Dennis Volpano� A sound polymorphic type system for a
dialect of C� Science of Computer Programming� ����	��� �����

��� D�L� Tennenhouse� J�M� Smith� W�D� Sincoskie� D�J� Wetherall� and G�J� Minden�
A survey of active network research� IEEE Communications� �
��������
� January
�����

��� Tommy Thorn� Programming languages for mobile code� Computing Surveys�
�������������� �����

�
� Dennis Volpano and Geo�rey Smith� Eliminating covert �ows with minimum typ	
ings� In Proc� ��th IEEE Computer Security Foundations Workshop� pages �

�
�
�� June �����

�
� Dennis Volpano and Geo�rey Smith� A type	based approach to program security�
In Proc� Theory and Practice of Software Development� volume ���� of Lecture
Notes in Computer Science� pages
���
��� April �����

��� Dennis Volpano� Geo�rey Smith� and Cynthia Irvine� A sound type system for
secure �ow analysis� Journal of Computer Security� ��������
������ ���
�

�	

��� David J� Wetherall and David L� Tennenhouse� The ACTIVE IP option� In
Proc� �th ACM SIGOPS European Workshop	 Systems Support for Worldwide Ap�

plications� Connemara� Ireland� September ���
�
��� J� Todd Wittbold and Dale M� Johnson� Information �ow in nondeterministic

systems� In Proceedings ���� IEEE Symposium on Security and Privacy� pages
�����
�� Oakland� CA� May �����

��� Bennet S� Yee� A sanctuary for mobile agents� In Proc� ���� Foundations for

Secure Mobile Code Workshop� pages ������ Monterey� CA� March �����

��

