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Abstract

Round trip engineering of software from source code and reverse engineering of

software from binary files have both been extensively studied and the state-of-practice

have documented tools and techniques. Forward engineering of protocols has also

been extensively studied and there are firmly established techniques for generating

correct protocols. While observation of protocol behavior for performance testing has

been studied and techniques established, reverse engineering of protocol control flow

from observations of protocol behavior has not received the same level of attention.

State-of-practice in reverse engineering the control flow of computer network proto-

cols is comprised of mostly ad hoc approaches. We examine state-of-practice tools

and techniques used in three open source projects: Pidgin, Samba, and rdesktop. We

examine techniques proposed by computational learning researchers for grammatical

inference. We propose to extend the state-of-art by inferring protocol control flow

using grammatical inference inspired techniques to reverse engineer automata repre-

sentations from captured data flows. We present evidence that grammatical inference

is applicable to the problem domain under consideration.
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Dynamic Protocol Reverse Engineering

A Grammatical Inference Approach

I. Introduction

As the United States Air Force (USAF) extends into the Cyberspace domain,

the ease of breaking into computer networks and misusing distributed systems has

become increasingly problematic [163, 172, 173, 242, 280]. Deep understanding of the

protocols which traverse computer networks and enable distributed systems is increas-

ingly important to securing our computer networks and putting opponent’s networked

operations at risk.

1.1 Operations in Cyberspace

The DOD defines Cyberspace as a domain characterized by the use of electronics

and the electromagnetic spectrum to store, modify, and exchange data via networked

systems and associated infrastructures. Operations in Cyberspace have both strategic

and tactical requirements. Tactics, Techniques and Procedures coupled with weapons

systems that produce reliable and predictable battle effects are essential. Freedom

of Cyberspace much like Freedom of the Seas and Freedom of the Skies has become

essential to our way of life. As such, our current inability to operate in Cyberspace

as a domain of military operations, governed by mathematical and electromagnetic

principles, requires us to develop, train and equip cyber forces that can guarantee

Freedom of Cyberspace. In the words of Secretary Wynne [280]:

Cyberspace is a domain for projecting and protecting national power, for
both strategic and tactical operations [212].

Vulnerabilities in technical standards and concrete implementations of technical

standards are cyber warriors fighting positions. Freedom of Cyberspace will require

tactical cyber power: the ability to degrade, disrupt, deny and destroy adversaries
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fighting positions while defending our own. Deep understanding of distributed system

is a critical enabler to developing cyber power in network centric cyber spaces.

In this thesis we focus on protocol reverse engineering as a method that enables

the generation of instruments of tactical cyber power in digital computer networks.

We do not discuss the broader topics of computer network exploitation/protection or

electronic warfare. In fact, we view protocol reverse engineering as only one facet of

the larger topic of tactical cyber power. Also, we will concentrate on technical means

that enable creation of tactical cyber weapons over doctrine, organization, and policy.

At the outset of performing the preliminary literature review it was apparent

that the volume of academic information concerning protocol forward engineering

greatly exceeded the volume of academic information on protocol reverse engineering.

It is our contention that the state-of-the-art in protocol reverse engineering methods

and tools remains largely shrouded from the view of the general public.

Due, in part, to the underground nature of the subject, effective application of

protocol reverse engineering to generate effective instruments of tactical cyber power

is a challenging problem.

Generation of tactical cyber weapons requires a deep undertanding of the tech-

nical architecture of the systems under consideration. A cyber weapon must provide

effective, reliable, and repeatable, battlespace effects.

A first step is to recover models of protocols that increase analyst understanding

and support formal analysis to verify the effects of network centric cyber weapons.

1.2 Problem Domain

Correct protocol design is a difficult engineering task. Gerard Holzmann offers

the following:

It is the unexpected sequences of events that lead to protocol failures, and
the hardest problem in protocol design is precisely that we must try to
expect the unexpected [109].
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Protocol model recovery from network traffic is a challenging problem.

! While the algorithm domain under consideration is proveably NPC we
do not provide proof that the problem domain is NPC. We only conjecture
the problem domain is NPC.

Given the complexity of correctly designing a protocol specification and then

accurately engineering a protocol implementation it is not surprising that protocols

exhibit vulnerabilities. Causes of unexpected conditions that expose vulnerabilities

range from accidental oversight [220] to deliberate attack [12, Section 7.2].

The problem domain under consideration is design recovery of protocol models

from captured data flows. Ultimately, the recovered designs should support formal

analysis that identifies implementation issues that allow deliberate attack or acciden-

tal failure. In essence, can we discover protocol implementation issues that allow

deliberately crafted packets which lead a protocol parser to unexpected conditions?

1.3 Related Problem Domains

Network traffic classification and deep packet inspection are related to proto-

col reverse engineering. Both domains require understanding of protocols that might

not be documented in open specifications [76, 126, 127, 185, 193, 200, 264]. Likewise,

signature based intrusion detection requires deep knowledge of protocols’ inner work-

ings [178]. We conjecture that behavioral based intrusion detection could also benefit

from models recovered via protocol reverse engineering. Finally, protocol reverse engi-

neering can draw practical methods from the domain of protocol conformance testing.

While we concentrated on a subset of application level protocols on IPv4 net-

works similar experimental analysis could be conducted against other classes of pro-

tocols, such as SCADA 1 or SS7 2, for vulnerability assessment and potentially gen-

eration of targeted effects.

1Supervisory Control and Data Acquisition - [47, 79, 134] introduce the subject. [47, Section 6.7,
Chap 12] covers TCP/IP encapsulated SCADA communications.

2Signaling System 7 - a set of telephony signaling protocols
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1.4 Related Application Domains

Automated specification generation, automated test generation and automated

conformance testing provide architectures that are useful for protocol reverse engi-

neering. Dssouli et al presents a test automation architecture for distributed systems

in [68]. Ammons examines automated specification generation from program execu-

tion traces [6]. Automated test generation for white-box and black-box testing is well

studied for software testing. Random boundary testing methods for network protocols

are covered by [249, Chapter 14] and for software testing in [175,188].

Tretmans covers OSI protocol conformance testing in [257] while Berg examines

the similarities between regular inference and conformance testing in “On the Corre-

spondence Between Conformance Testing and Regular Inference” [22]. Conformance

testing as an Angluin query styled learning problem is also examined by Lai in [136]

which presents a genetic algorithm approach to adaptive model checking.

1.5 Investigative Questions

The focus of this research is the evaluation of existing Grammatical Inference

(GI) algorithms for the dynamic protocol reverse engineering domain. GI is a branch

of artificial intelligence that concentrates on the inference of grammatical structures

from samples of a language. In particular, we ask the following questions:

IQ1 What information is necessary to reverse engineer the control portion of appli-

cation layer protocols from data flows?

IQ2 Given the proven [7,95] difficulty of inferring finite automata from positive sam-

ples only, are there GI approaches that are appropriate for reverse engineering

automata representations of the control portion of application layer protocols

from data flows?

We propose to apply GI algorithms to recover structure from the protocol stream

that is not immediately obvious from observation of individual packets. We hope to

advance the state-of-art in protocol reverse engineering by automatically revealing
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structural relationships much like an oscilloscope displays waveforms from an electric

signal. We will concentrate on a posteriori analysis instead of online analysis of live

execution traces.

While we discuss computer science oriented theoretical aspects of GI we are

more interested in the engineering oriented pragmatic recovery of structure and the

presentation of experimental evidence that establishes the applicability of GI to the

problem of protocol model recovery.

Finally, we recognize that the approach presented is only a partial solution to

the problem domain under consideration. Human analysts must continue to apply

common heuristics (e.g. identifying signpost values, block structure inference, or

windowed entropy).

1.6 Document Overview

In Chapter II we present the problem domain under consideration. Next, in

Chapter III we introduce the Chomsky Hierarchy as a framework for discussing

computational learnability and overview several existing grammatical inference al-

gorithms. In Chapter IV we describe the experimental architecture used to evaluate

two selected gramatical inference algorithms against POP3 and SMTP traffic from

the IDEVAL data set. Finally, in Chapter V we provide the results of our evaluation

and propose areas that can be refined in future work.
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II. Problem Domain

This chapter provides background regarding the problem domain. First, we describe

the problem domain under consideration with with an English description. We dis-

cuss distributed systems and issues related to protocol design recovery. Finally, we

introduce protocol reverse engineering and overview state-of-practice and state-of-art

reverse engineering tools and techniques.

2.1 Distributed Systems

A distributed system in the most abstract sense is comprised of three elements:

nodes the processes executing on servers, desktops, or sensors; links cable plant,

air, or other physical transmission medium; and protocols. A protocol is a kind of

agreement about the exchange of messages in a distributed system [49, 109, 250]. A

complete protocol definition is very similar to a language description: it defines a

strict syntactical format for valid messages; it defines data exchange procedure rules;

and it defines semantics, a vocabulary of valid messages and their meaning [109]. The

protocols grammar must be logically consistent and complete. The procedure rules

should explicitly specify what is permitted or forbidden [109]. Finally, the sender and

receiver must implement compatible rules for communication to succeed [109].

A distributed system can be abstracted by dividing it into application stacks,

the components that make up the nodes; and protocol stacks, the layered architecture

that implements the rules of communication. The application stacks are the oper-

ating systems and application software on any given node. To avoid combinatorial

state explosion, protocols for distributed systems are often designed, developed, and

implemented in layered architectures [49,150,252]. Each layer of the communications

architecture implements services that are presented to the more abstract layers above

it.

Figure 2.1 shows the Open Systems Interconnect (OSI) reference model proposed

by International Organization for Standards (ISO) in 1982 [236].
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Figure 2.1: OSI Reference Model [236].

The protocol stack is the composite of the layers that are utilized by a distributed

system. A protocol stack implements a protocol reference model. The Transmission

Control Protocol (TCP) / Internet Protocol (IP) protocol family concentrates on the

transport and network layers of the OSI reference model [49,243]. The protocol stack

that supports a distributed system is completed by adding a data link and physical

link implementation, such as Ethernet over fiber optic cable. Vulnerabilities in a

protocol stack can be leveraged as a propagation vector for attacks on an application

stack [12, Section 7.2]. Methods to exploit known vulnerabilities are readily available

in pre-packaged frameworks such as Cain & Abel1 [176] and Metasploit2 [83].

To limit the scope of our research, we have selected to focus on application layer

protocols and concentrate on the protocol stack over the application stack. Specifi-

cally, we will concentrate on application layer protocols that use the TCP/IP protocol

family version 4 (IPv4) which defines much of the modern Internet [49,243]. We con-

sider TCP/IP exchanges of TCP packets that encapsulate application layer protocols.

1Cain & Abel - http://www.oxid.it/cain.html
2Metasploit - http://www.metasploit.com
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Figure 2.2: Internet from TCP Perspective [78].

Constraining the OSI reference model to just TCP connections leads to Figure 2.2.

TCP, the dominant transport protocol on the Internet [119], uses the communications

system at the layers below it as a simple black box and does not concern itself with

the layers in the model above it.

Likewise distributed systems which implement application level protocols use

TCP and the lower levels as a black box.

A Finite State Machine (FSM) is used to model any device that reacts to its

environment and changes its state according to the inputs. The FSM model is often

extended, to include outputs, as a Mealy-Machine. A well formed TCP packet has a

source TCP/IP implementation (Host A) that uses an automaton to keep track of the

state of a particular connection to a destination TCP automata (Host B) [33,49,78].

A client application communicates with a server application through a TCP

client that connects to a TCP server through the network [33]. While a TCP con-

nection is identified by Source Address/Port and Destination Address/Port pair; the

temporal relationship is actually determined by the state of the TCP Server/TCP

Client pair at the source and TCP Server/TCP Client pair at the destination. The

distributed systems client application and server application also maintain separate

state automata which transition states depending on the operators received. As shown

in Figure 2.3, when a distributed system uses connection oriented TCP as a transport

we are really dealing with at least four automata in each direction.
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Figure 2.3: TCP Client/Server Topology [33].

Figure 2.4: IP Packet Structure - 32-bit wide IPv4 IP packet
structure [93].

Because we are considering application level protocols transported over IPv4

connections, this naturally gives rise to data structures embodied in protocol au-

tomata, formats of protocol operations, and data relationships from state transitions.

2.1.1 Data Structures. The three primary data structures in our selected

problem domain are the IP packet structure, shown in Figure 2.4, the User Datagram

Protocol (UDP) packet structure, shown in Figure 2.5, and TCP packet structure

shown in Figure 2.6. Figure 2.4, Figure 2.5, and Figure 2.6 are laid out so they are

32-bits wide.

The UDP and TCP packets are encapsulated into IP packets at the network

transport layer so their source and destination IP numbers are derived from the 32-

bit IP Source Address and 32-bit IP Destination Address. The 16-bit wide source and

destination ports are included in the packet structure (UDP or TCP) that makes up

the IP payload [49].
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Figure 2.5: UDP Packet Structure - 32-bit wide IPv4 UDP
packet structure [93].

The UDP packet structure is rather simple because the protocol does not pro-

vide connection oriented features. Distributed systems that use UDP for transport

can be considered connectionless in the transport layer and must provide their own

mechanism for re-transmission of failed communication [49]. Example uses for UDP

are Domain Name Service (DNS) and games such as World of Warcraft.

The TCP packet structure requires more information to support reliable commu-

nications service. The TCP protocol provides for reliability, flow control, multiplexing,

precedence, security, and connection oriented transfers [49, 243]

2.1.2 Data Relationships. Data relationships between packets occur at dif-

ferent levels of granularity: packet, connection or session. Another relationship is the

temporal ordering of packet arrivals which can be disturbed by packet fragmentation.

And a third is the possible causality of connection and session arrivals. Understand-

ing these relationships is vital to choosing the parameters for clustering packets from

traces into unique conversations between application level protocol endpoints.

2.1.2.1 Granularity. At the transport level TCP maintains a com-

munication channel by using counters and synchronization flags. Application level

protocols might also exhibit causal session structures. Communications at the ap-

plication level also often have a logical session structure that associate packets and
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Figure 2.6: TCP Packet Structure - 32-bit wide IPv4 TCP
packet structure [93].

connections. The level of granularity (packet, connection, or session) must be consid-

ered:

Packet Granularity - IP, UDP, and Internet Control Message Protocol (ICMP)

[208] are all connectionless IPv4 protocols. That is, communications can be sent

without prior arrangement. IP, ICMP, Address Resolution Protocol (ARP),

Routing Information Protocol (RIP), and Open Shortest Path First (OSPF)

routing protocol can be placed at the network layer (Figure 2.1). UDP, on the

other hand, is a connectionless transport mechanism at the network transport

layer (Figure 2.1).

Connection Granularity - At the transport level (Figure 2.1) the most fundamen-

tal relationship between the packet structures is a socket identified by the IP

Source Address/Port pair and the associated IP Destination Address/Port pair.

At an arbitrary point in time a TCP connection between a server and client

can be identified by the IP Source Address/Port pair and the associated IP

Destination Address/Port pair. Much TCP behavior is driven by timers and
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timeouts. TCP inherently embodies greater temporal causality that is encoded

in sequence and acknowledgment numbers in a specific TCP connection. This

level of granularity, especially for TCP connections, has been widely studied

(e.g. [42, 100,119]).

Session Granularity - The IPv4 suite provides for sessions using Session Initiation

Protocol (SIP) [221] which is a transport independent application layer control

protocol. SIP supports session setup, maintenance, and teardown with one or

more participants. SIP is used in voice, video, and instant messaging appli-

cations. Another alternative is International Telecommunications Union Stan-

dardization Sector (ITU-T) X.225 connection-oriented session protocol3 While

session specifications are available application level protocols often use custom

session level management.

2.1.2.2 Packet and Connection Fragmentation. Fragmentation is a

feature of IP to support transport of packets across networks with different Maxi-

mum Transfer Units (MTU). Shannon [240] presents a detailed study of packet level

fragmentation. The majority of fragmented traffic in the study was UDP. While

ICMP, IP security (IPsec) [129], and Virtual Private Network (VPN) tunneled traffic

were also commonly fragmented. Fragmentation occurred in 0.5 percent of the to-

tal traffic observed [240]. Reconstruction of connections from packet traces has the

following issues [260]:

1. The IP datagrams may be fragmented.

2. IP fragments may arrive out of order.

3. Packets may be missing in the network trace because they were dropped during

capture.

4. Adversaries might intentionally create non-deterministic situations with tools

like fragrouter [1].

3ITU-T Recommendations are available at http://www.itu.int/rec/T-REC/en.
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Connection oriented TCP also suffers from fragmentation effects when TCP

segments are interleaved because the encapsulating IP fragments arrive out of order

[20].

There is no direct algorithmic means for reconstructing a connections content

from a trace of network packets. Correcting IP packet fragmentation and reassembling

TCP connection stream requires a significant portion of the IPv4 protocol stack [260].

Turner [260] proposed the following possibilities: pre-process data with libnids which

partially implements a Linux 2.0 TCP/IP protocol stack in user-space [275]; use packet

reassembly code from Wireshark [281]; port a TCP/IP stack from open sources; or

write a custom protocol stack from scratch.

2.1.2.3 Data Representation. Application layer protocols can be clas-

sified into binary and human readable ASCII text protocols. Text protocols restrict

their operators and payload to printable ASCII text characters. Binary protocol op-

erators are comprised of data fields that can be mapped to standard data types such

as integers or strings. For example, SMTP uses an ASCII text representation for the

operators while protocols like RPC and SMB/CIFS use binary representations. This

means that Σ, the set of protocol operators, can be structured text or structured

binary data.

2.1.3 Other Data Characteristics. User behavior also exhibits higher order

structure. The problem is examined by Kannan [125] who defines a session as a group

of network connections related to a network task. A network task is activity that

emanates from an external event (the causal origin) [125]. We do not examine higher

order session structures such as aggregate user session structures for web traffic.

Finally, protocols which use encryption (e.g. SSL, SSH, RDP) or are tunneled

through encryption mechanisms offer additional challenges. Wright [277] presents an

exploratory look at identification of packets in encrypted tunnels. Gebski [91] also

conducts an experimental evaluation of a model to detect and identify TCP protocols
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Figure 2.7: Trace Collection Architecture - proposed by Saleh
[231].

in encrypted tunnels. We will not examine design recovery from encrypted or tunneled

traces.

2.2 Network Trace Collection

Placement of the probe points for trace data collection must be considered,

we should rationalize the observation points used. International Standard 9646 (IS-

9646) defines four test architectures for OSI protocol conformance testing [68]. The

four types are local, distributed, coordinated and remotes test architectures [257].

We can use the ISO test architecture descriptions to classify where a protocol reverse

engineering effort collects trace data. The level of analysis can alternatively be clas-

sified according to the fidelity of observation described by Bhargavan in [24] which is

partially determined by the placement of a monitor for a device under test.

Saleh also discusses placement of data collection points, shown in Figure 2.7

as the Upper Service Access Point (USAP) and Lower Service Access Point (LSAP)

[230]. Like Saleh [230] we will refer to trace collections above the protocol under

observation as Upper Service Access Points and trace collections below the protocol

under observation as Lower Service Access Points. Saleh considers data collected at

the LSAP to provide protocol primitives and data collected at an USAP to provide

service primitives to layers above.
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Figure 2.8: Bro deployment with network tap - the network
tap duplicates the physical layer signaling for in-line full-duplex
traffic analysis by the Bro Intrusion Detection System [141].

In a TCP/IP network port mirroring and hubbing out are two techniques for

trace collection that do not require instrumenting the protocol under investigation.

Port mirroring, or port spanning, is supported by some Layer-3 switching devices.

The switching device copies all traffic on a user specified port to another physical

port on the switch [233]. Hubbing out is a technique in which a target device and

analyzer are located on the same Ethernet network segment by plugging them in to

the same hub [233].

Packets dropped from the sample data by the capture mechanism will be an

issue for high bandwidth traffic. Solutions include using custom high-speed collection

hardware, such as [200], implementing hardware to duplicate network traffic at the

physical layer, or limiting the study to low-speed protocols that can be captured with

a high degree of confidence. Bhargavan used a modified Linux system to sniff TCP

network traffic by hubbing out on a 100 Mbps connection, describing this configuration

as a co-networked monitor [24]. The implementers of the Bro intrusion detection

system recommend the use of a physical layer network tap, shown in Figure 2.8, that

exactly duplicates the physical layer signaling for in-line full-duplex traffic analysis

[141].
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2.3 Application Level Protocol Data Flow Recovery

We differentate data flows from the usage of network flows that is commonly

used in graph theory [65]. This is because we are not interested in modeling the net-

work as a graph but instead modeling the actual flow of data, thus data flow, which

is captured in a trace file. Others have characterized packet data flows as: packet

trains [118]; streams and torrents [35]; or flights [239]. As discussed in Section 2.1.2.2,

we can define a data flow as a quintuple 〈 source IP, source port, destination IP, desti-

nation port, protocol〉 [264]. An advantage of using tuples is that they support formal

definitions of the operators that apply. Also, defining the mathematical symbology

allows us to discuss the problem domain domain in a more compact form.

2.3.1 Näıve Flow Membership. In the case of TCP/IP, at the packet level

of granularity, we can use the TCP setup (three-way handshake) to recognize the

beginning of a partial flow and TCP teardown to recognize the end of a partial flow.

Several studies have used TCP flows defined by the SYN/FIN control mechanism in

TCP to denote flows [42]. This representation is adequate if we consider network

traffic as bi-directional flows comprised of arbitrary groupings of packets defined by

the attributes of their endpoints. Our näıve definition of flow membership does not

address the temporal nature of application protocol communications at the session

level. Also, it does not account for timeout or connection loss.

2.3.2 Accurate Flow Membership. In reality, we will not get enough infor-

mation from the five-tuple 〈source IP, source port, destination IP, destination port,

protocol〉 to accurately determine a packets flow membership. The traditional use of

well known port numbers4 to identify application level protocols is in question. In

contemporary network traces port numbers no longer provide reliable recognition of

application protocol traffic types. Current Internet traffic often ignores established

port number conventions [154]. Statistical techniques have been proposed to accu-

4The Internet Assigned Numbers Authority Port Numbers provides a list of well known ports
[116].
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Figure 2.9: Wireshark Following SMTP Conversation - Wire-
shark can reconstruct the conversation between the server and
client using internal knowledge of the SMTP protocol.

rately identify the type of application protocol encapsulated in connections. Ma [154]

presents a Markov process model technique and a longest common subsequence ap-

proach. Both techniques provide statistical recognition of the application level con-

tents encapsulated in transport level connections.

Figure 2.9 shows an application level SMTP data flow reconstructed by follow-

ing the underlying transport level TCP connection using Wireshark. Wireshark can

reconstruct the conversation between the server and client because it uses internal

knowledge of the structure of the SMTP protocol.

2.3.3 Stateful vs. Stateless. Application data flow membership will also be

impacted by the state characteristics of the protocol under consideration. A stateful

server maintains persistent information about its clients while a stateless server does

not. SMTP and POP3 are stateful while HTTP is stateless. State information is

added to web applications that use HTTP by the use of cookies that encode the

session id and/or session state. If the server is stateless but maintains soft-state, data

that is maintained for the client on the server for a limited time [253, p.91], then we
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must have a method that detects early session termination or incomplete sessions. As

is the case when a user navigates away from an HTTP based web application without

actively terminating the session. This is difficult without a construct that handles

timeout events.

Paxson and Floyd’s study of wide-area TCP arrival processes found that session

arrivals were well modeled by Poisson processes with hourly rates even though individ-

ual connection arrivals were not [195]. Nuzman [186] found that the arrival of HTTP

connections aggregated into sessions also reflect a Poisson process. Kannan [125] used

this observation as a key part to discovering and characterizing causality in network

traffic. Meent [264] uses a 20 second interval for membership in a flow at the packet

level. This means TCP/IP packets identified by the quintuple must be within 20

seconds of each other to be classified as members of the same flow. McGregor also

provides some clustering techniques for classifying flows in [165].

2.3.4 Single-connection vs. Multi-connection. Data flow membership will

also be impacted by how the protocol uses the underlying transport. SMTP and

POP3 session boundaries are easily detected because each session is encapsulated in a

single TCP connection [112,113]. This means the connection and session granularity

are equivalent for SMTP and POP3. On the other hand, version 1.1 of the HTTP

specification allows for re-use of open TCP connections for multiple requests [80].

HTTP based web applications use session identifiers to associate sessionless HTTP

requests into a logical application session.

To determine the start and end of a complete flow or session of an application

level protocol we must understand the operators that support session setup and tear-

down. Another possibility is to detect session identifiers encoded in the packet traces

of the application layer protocol under consideration.

2.3.5 Single-channel vs. Multi-channel. Another concern is the number of

connection level channels that make up the communication. Session detection for
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Figure 2.10: Flow level breakdown of a simple FTP transfer
- the control channel is on port 1291 and the out-of-band data
channel on port 1292 [15].

single-connection, single-channel protocols, like SMTP or POP3, can be determined

from TCP socket connection status. For more complex multi-channel protocols we

must understand the internal structure of the protocols (e.g. FTP and RPC) to

properly group the packets and connections that make up the application level data

flows [15, 260]. A notional multi-channel FTP flow is shown in Figure 2.10 which

shows the control channel and an out-of-band data channel.

2.4 Application Level Network Traces into Automata

We must address the following four issues:

• Network trace collection.

• Application level protocol data flow recovery.

• Protocol format (Σ) recovery.

• Protocol transition function (δ) recovery.
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We discussed the issues of trace collection in Section 2.2 and data flow recovery

in Section 2.3. Here we concentrate on format (Σ) recovery and transition function

(δ) recovery from existing traces.

Protocol format recognition is coupled with the data portion of a protocol. As

discussed by Lee in [142] the data portion specifies functions that involve parameter

values associated with messages.

Protocol transition function recognition focuses on the control portion of a pro-

tocol over the data portion [142]. Given two endpoints of a distributed communica-

tions system, a sender S = 〈Qs,Σ, δs, qs0, Fs〉 and receiver R = 〈Qr,Σ, δr, qr0, Fr〉, how

can we go about recovering a model of δs and δr? What is the minimum knowledge

we need a priori to recover the design using only a captured data flow of the finite

members of Σ?

While, we can recover the expected Q,Σ,δ,q0, and F from protocol specifica-

tions, by analysis of source code, or even reverse engineering binary code, what if

specifications or source code are not available?

2.5 Protocol Design Recovery

We must determine operator formats (data portion) and determine automata

(control portion). This means we must know or infer the states, operators, transitions,

initial state(s), and final state(s) which define the behavior of the protocol under

consideration. To frame the discussion we present an overview of forward engineering

and re-engineering practices. Figure 2.11 shows the inter-relationship of re-engineering

practices.

2.5.1 Forward Engineering. Forward engineering is the traditional engineer-

ing process of moving from high-level abstractions to the physical implementation of a

system [40,214]. Protocol engineering is an interdisciplinary approach which empha-

sizes the use of sound engineering principles and formal methods to develop reliable

communication software [230]. Protocol forward engineering efforts can utilize formal
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Figure 2.11: Relationship of Re-engineering Practices - Re-
verse engineering attempts to recover higher levels of abstrac-
tion, restructuring modifies system artifacts at the same level of
abstraction and re-engineering uses reverse engineered artifacts
to generate a new physical implementation [214].

techniques for analysis and modeling but many protocols are designed and imple-

mented using informal approaches [109,231]. Even widely used protocols like HTTP,

SMTP, and POP3 rely on English language descriptions of correct control flow.

2.5.2 Reverse Engineering. Reverse engineering is the practice of discovering

the technological principles of a device/object or system through analysis of its struc-

ture, function, and operation [40,108,214]. Software reverse engineering concentrates

on analysis of software through disassembly and debugging of a software program.

In some sense the inverse of forward engineering software reverse engineering is also

referred to as reverse code engineering (RCE).

2.5.3 Protocol Reverse Engineering. Protocol reverse engineering is the ap-

plication of reverse engineering, often including RCE, to recover the automata and

operators which define the protocol. Protocol reverse engineering can be tightly cou-

pled with RCE. If the protocol specification is not available, RCE of source code can

provide many clues to the structure of the protocol. RCE can also be applied to the

binary programs that implement a protocol to approximate the original design/engi-
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neering decisions. Protocol reverse engineering without access to specifications or

source code can be significantly more challenging.

2.5.3.1 Static vs. Dynamic. Static vs. Dynamic protocol reverse en-

gineering (see Saleh [230]) are differentiated by information source. Static protocol

reverse engineering is the recovery of protocol information from specification docu-

ments and implementation artifacts including system documentation, source code, or

even reverse engineered binary code. The process is static from the perspective of the

protocol under inspection. RCE of binary code will likely involve dynamic runtime

analysis at the local level. Lie proposed creating models from protocol code using

an extensible compiler system and applied the system to analyze cache coherence

protocols in multi-processor systems [149].

Dynamic protocol reverse engineering is the recovery of protocol information

from observations of the system in action. If the protocol is part of a layered architec-

ture (such as the TCP/IP protocol suite which implements in part the OSI reference

model) the traces may be collected at an observation point established at a layer

below the protocol or a layer above the protocol. An observation point above the

protocols layer should collect events that are caused by service requests from layers

above the protocol under observation.

Much like putting a multi-meter or oscilloscope at the inputs (lower service

access point) and outputs (upper service access point) of an electronic circuit to

determine its internal operation by collecting traces of inputs and outputs we will

collect packets from the lower service access point (LSAP) and upper service access

point (USAP) of the protocol automaton under consideration. Then we can attempt

to infer the internal operation of the protocol automaton or construct an equivalent

automaton.

2.5.3.2 Who needs it? Distributed systems rely on the correctness

of both open and proprietary protocols to provide functionality. As an example,
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Microsoft’s proprietary Server Message Block/Common Internet File System (SMB/-

CIFS) is often encapsulated in TCP connections [105]. Deep understanding of the

protocols which underpin distributed systems is increasingly important to computer

security efforts [100, 135, 250]. Protocol reverse engineering is often the only option

available to develop an understanding of proprietary protocols that allows us to vali-

date that the protocol implementation is correct, reliable and secure.

Protocol reverse engineering has been proposed for a range of purposes including:

conformance testing [143]; design recovery [231]; to develop interoperable interfaces

between incompatible protocols [194, 248]; as a means to enhance network security

analysis [100]; and to develop signatures for network intrusion detection systems [178].

Despite these practical uses the practice is hindered by legal obstacles designed to

thwart theft of trade secrets and, a perhaps deserved, perceived lack of legitimacy

[111,199].

2.6 State-of-practice

State-of-practice reverse engineering tools and techniques for file formats and

binary executables are presented through several hacker oriented books and websites

(e.g. [72, 75, 87, 98, 132]). Collection and observation of TCP/IP network traffic is

also well covered (e.g. [48, 84, 98, 190, 242, 251, 279]). There are a few studies (e.g.

[82, 100, 143, 229]) and web articles [210] that discuss protocol reverse engineering.

The topic, possibly due to its somewhat underground nature, has not received broad

academic treatment.

Fortunately, the state-of-practice is documented by open source projects that

apply protocol reverse engineering to re-implement proprietary protocols. Three se-

lected open source projects that use protocol reverse engineering methods are Pidgin,

Samba, and Rdesktop [38, 50, 258]. Because the protocol specifications are not com-

pletely available all three projects rely on reverse engineering.
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2.6.1 Tools. The basic toolset capabilities required for TCP/IP protocol

reverse engineering is the ability to capture/record, manipulate, and analyze TCP/IP

packets. There is a wide range of open source, public domain, and commercial tools

that provide capabilites that are useful for protocol reverse engineering efforts 5. Son-

nenburg et al [245] argue that open source machine learning is key to supporting

experimental reproducibility. Joyner and Stein also argue the value of open source

software to mathematical studies in an opinion piece [122]. In the interests of repro-

ducibility we examined tools that are openly available either as open source or public

domain. Below we discuss several open source tools that can assist with TCP/IP pro-

tocol reverse engineering within the context of our four reverse engineering problems:

trace collection, data flow recovery, format recovery, and transition function recovery

2.6.1.1 Trace Collection. One commonly referred-to tool is Wireshark

shown in Figure 2.12 [48]. Wireshark, formerly called Ethereal, is an open source

packet capture program. It includes dissector algorithms which recognize and parse

many text and binary application level protocols [190, p.79]. Another often-mentioned

tool for packet capture is tcpdump [51]. Packet data flows are stored in several file

formats. Because Wireshark and tcpdump both use pcap, libpcap under UNIX and

WinPcap library under Windows, their file formats are compatible. WinPcap on

Windows and libpcap on UNIX provide similar application programming interfaces

(API) and are commonly referred to as the pcap API. The tcpdump website that

hosts libpcap provides links to several related utilities and projects built with the

pcap API.

In the assessment of Kreibich, author of NetDude, the trifecta of Pcap, tcpdump,

and Wireshark form the de facto standard tool set for TCP/IP protocol reverse en-

gineering [133].

5List of tools (e.g. [56] and [51, Related tools]) are readily available via the Internet.
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2.6.1.2 Data Flow Recovery. There are tools that can reconstruct

connection level traces from packet traces. For example, NetDude [133] includes a

demux (de-multiplexer) plugin that breaks packet traces into sub-traces along the

TCP connection boundaries. The sub-traces are stored in pcap compatible trace files.

Regrettably, the sub-traces do not contain the complete communication between the

server and client. Bhargavan proposes the development of Network Event Recognition

Language (NERL) [26, 27] to reconstruct application level protocols for monitoring

purposes. A NERL implementation is described in [25], including analysis of SMTP,

but a reference implementation is not made publicly available.

There are some tools to reconstruct session level traces from packet traces.

Chaosreader [34] and tcpflow [73] both recreate session flows from packet traces. Un-

fortunately, the output from both tools is formatted for human review not automated

processing.

2.6.1.3 Format and Transition Recovery. We discovered no publicly

available tools that provide automated format or transition function recovery from

network traces. This is further discussed in Section 2.8

2.6.1.4 Miscellaneous Tools. The pcap API is used by a wide range of

utilities and tools to generate statistics from packet traces. Automated support for

packet level analysis is available from Tstat [223] and tcptrace [191]. Several tools add

features to support online and live packet manipulation and replay of captured data.

Flowreplay [260], based on Turner’s earlier work on tcpreplay for datalink replay,

was designed to replay TCP/IP traffic at the transport and application layer. Scapy

is an interactive packet manipulation program [29]. Paxson created tcpanaly [195]

to automatically analyze TCP implementations at the packet level of granularity.

The tool is not publicly available. Other tools are focused on filtering traffic from

real time collections for direct observation by a human operator. Examples include:

Trafshow [272], Ngrep [217] and Ntop [64].
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Figure 2.12: Wireshark - Ready for “test, capture, and stare”.

2.6.1.5 Programming Toolkits. Finally, there are several toolkits, be-

sides Pcap, which provide APIs to ease the development of network tools. The libnet

library [234] is a toolkit allowing the construction and injection of packets. Another

toolkit is libdnet which supports low level network operations for several languages (C,

C++, Python, Perl and Ruby) on many UNIX variants and Microsoft Windows [244].

The libevent toolkit provides an event oriented API. The event abstraction allows de-

velopers a design alternative to polling loops and threads when processing network

traces [160]. Libevent supports per event timers with callbacks on timeout. Another

library is libnids which provides a Linux version 2.0 TCP/IP protocol stack in user

space [275]. The libnids toolkit uses libpcap and libnet internally to provide IP frag-

ment reassembly and IP stream reconstruction [275]. The libnet, libdnet, libevent,

and libnids toolkits are accessible from scripting languages allowing rapid adhoc pro-

totyping.
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2.6.2 Techniques. Although protocol reverse engineering involves tools, the

key is the reversers ability to understand the assumptions and design decisions of

the people who created the protocol specification or implemented the protocol, and

then undermine them. Reverse engineering requires in-depth knowledge of myriad

technical specifications and specific implementations coupled with an understanding

of the engineering decisions of the original designers.

! It should be noted that the projects used both online and offline tech-
niques.

One protocol reverse engineering technique used by all three projects contrib-

utors is described, somewhat lightheartedly, as test, capture, and stare [258]. The

technique is an adhoc approach that depends on fast turnaround of simple tests that

involve capturing network traffic resulting from varying parameters in operators. Test,

capture, and stare informally defines the state-of-practice for protocol model reverse

engineering from captured data flows.

Two other prominent techniques are protocol filters and protocol specific scan-

ners. A protocol filter is a Man in the Middle (MITM) proxy server that can make

changes to protocol data before it is passed on to a target server. MITM proxy

servers, as shown in Figure 2.13, use session hijacking techniques such as ARP poi-

soning [98, p.215] or DNS poisoning [98, p.216] to re-direct traffic from the original

communication between a client and server on network path A. When the MITM

proxy server is active the client communicates with the MITM proxy on path B

and the server communicates with the MITM proxy on network path C. Filters in

the MITM proxy allow specific or global substitutions of packet contents. A MITM

proxy server based protocol filter can be essential in online (or live) reverse engineer-

ing [82, p.9].

A protocol scanner uses known signpost values, such as error codes, to guide

exploration of protocol structure. Scanners can be used to find new parts of a protocol

or to determine some properties of a protocol operation [258]. One challenge of
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Figure 2.13: MITM Attack Topology [82, Figure 2.1].

developing protocol scanners is recognizing the exact meaning of known signpost

values and how the proprietary parser responds to those values [258].

2.7 Case Studies

Here we present an overview of protocol reverse engineering as used in three

selected open source projects that rely on protocol reverse engineering methods: Pid-

gin [50], Samba [258], and Rdesktop [38]. While there are other projects that apply

protocol reverse engineering we find that the selected projects are significant because

they are concentrated community driven efforts that openly present the tools and

techniques used. In fact, the results of each project are available as open source.

2.7.1 Pidgin. Pidgin is a multi-protocol Instant Messaging (IM) client that

supports the use of proprietary IM servers [50]. Pidgins plug-in architecture allows

independent efforts towards reverse engineering and re-implementing proprietary IM

protocols. It is difficult to characterize the overall protocol reverse engineering ap-
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proach used by Pidgin contributors. In part, because IM protocol specific plug-ins

are developed independently. Although protocol filters are available for IM protocols

it is not clear if they were used by plug-in authors [2]. In an E-mail conversation

the implementer of one protocol mentioned that Wireshark was critical. While the

client fully implements open IM standards such as Extensible Messaging and Pres-

ence Protocol (XMMP) there are still communications issues between the proprietary

IM clients and proprietary servers. One example is that file transfers using the Win-

dows Live Messenger compatible 6 .NET protocol have not yet implemented faster

peer-to-peer functionality [241]. Pidgin plug-ins for proprietary IM protocols, such as

Windows Live and Yahoo, must be patched when the protocol is changed. The delay

between protocol changes and working client software caused by reverse engineering

can be months.

2.7.2 Samba. Samba is an open source implementation of the closed source

proprietary Microsoft Windows SMB/CIFS implementation. The Samba project, un-

like Pidgin, must support several different session and application level protocols to

implement SMB/CIFS functionality. The project has taken over 12 years to man-

ually reverse engineer SMB/CIFS [58, 258]. The effort has successfully achieved in-

teroperability with Microsoft Windows file and print sharing services. It has also

implemented Windows NT domain controller services and the project plans to imple-

ment active directory cababilities [105,258]. Samba is the basis of Microsoft Windows

network interoperability for many UNIX based systems including Apples Mac OS X

since version 10.1 (Shown in Figure 2.14) [63]. Recently, the project established the

Protocol Freedom Information Foundation (PFIF) to acquire protocol documentation

Microsoft made available due to European Union court decisions [259].

Samba is unique in that the effort has been guided by consistent leadership.

Andrew Tridgell the initiator of the project, much like the Linus Torvalds for the Linux

kernel or Richard Stallman for GNU projects, serves as the public representative of

6Windows Live Messenger – http://get.live.com/messenger/overview
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Figure 2.14: SAMBA on Macintosh OS X 10 [63].

Samba. Tridgell proposed The French Café Technique, also called network analysis, as

the projects overarching approach to reversing the SMB/CIFS protocol family [258].

Samba contributors use a range of techniques and tools beyond test, capture and

stare to support their reverse engineering efforts. Samba contributors developed a

SMB protocol scanner called trans2. It includes dozens of sub-commands, what we

term operators, which implement various types of file and file system queries. The

scanner tries different information levels, data sizes, and object types to determine

what operations exist and what sizes of data are involved [258]. The project also

documents informal protocol reverse engineering techniques that are not detailed in

the other projects. Two of the techniques are trial and error analysis and dual server

and backtracking

2.7.2.1 Trial and Error Analysis. Complex protocols tend to have

many error values [258]. To determine what each error code means Tridgell recom-

mends writing an error driven protocol scanner [258]. Tridgell also recommends an

error mapping approach. As an example, when targeting a file sharing protocol he rec-

ommend modifying the server to return error XXX for filename ’test XXX.dat’, then

asking the proprietary client to access filenames from test 001.dat to test 999.dat.

Finally, the message returned to the client must be collected for analysis. Proxy error

mapping is a technique invented by Andrew Bartlett to discover the correct mapping
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between Microsoft Disk Operating System (MS-DOS) error codes and Windows NT

status codes [258]. Proxy error mapping extends trial and error analysis by inserting

a protocol proxy between the server and client. The proxy contains error codes that

were known from MS-DOS clients (signpost values), performed the same operations

that returned the MS-DOS error codes against reference Windows NT servers. Proxy

error mapping works in this case due to a priori knowledge of the MS-DOS error

codes.

2.7.2.2 Dual Server and Backtracking. The dual server technique

can be used to fine tune understanding of a protocol. The basic concept is to write a

client that connects to a reference server in parallel with the reverse engineered server,

then to systematically generate protocol operations and finally compare the results

from both servers [258]. One problem with this technique is the protocol may have

temporal dependencies between current and past operations. It is possible that both

servers will process several, maybe even thousands, of operations before generating

an error condition. For this reason the operators sent to the dual servers should be

recorded for replay. Suspected erroneous operations can be removed from the replay

and flagged for further consideration if the error condition is not returned by the

reference server. The process of removing suspect operators and replaying is also

referred to as differential analysis [258].

2.7.3 Rdesktop. The rdesktop project, initiated by Matthew Chapman,

implemented an open source client for Windows NT Terminal Server and Windows

2000/2003 Terminal Services [38]. It supports the Microsoft Remote Desktop Protocol

(RDP) on several UNIX based platforms with the X Window System (See Figure 2.15).

The RDP protocol is an extension of International Telecommunications Union Stan-

dardization Sector (ITU-T) T.128 multipoint application sharing protocol [38, 170].

This project, unlike Pidgin and Samba, was focused on a single protocol. Even though

Microsoft’s proprietary implementation of the RDP protocol is partially specified in

ITU-T T.128 the project required significant effort because the protocol traffic is en-
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Figure 2.15: Rdesktop Connection.

crypted. Like Samba the project utilized the test, capture, and stare approach to in-

crementally build a working RDP implementation [52,103]. Also, like Samba, project

contributors used protocol filters to conduct MITM attacks that revealed specifics of

Microsofts RDP protocol [82]. The project implemented rdpproxy, an RDP specific

protocol filter, to perform advanced processing of RDP data flows [82].

2.8 State-of-Art

The contributors to the projects discussed in Section 2.7 were highly dependent

on variations of test, capture, and stare. While the Samba project presents additional

adhoc methods such as specialized protocol scanners, proxy servers and partial imple-

mentations of reference servers each method depends on the knowledge incrementally

encoded in their re-implementation of SMB/CIFS. Even after multi-year efforts, the

state-of-practice for protocol reverse engineering has not advanced beyond painstak-

ing, time-intensive, manual scrutiny of packet captures using tools like tcpdump and

Wireshark.
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As discussed in Sections 2.1.1 and 2.1.2, the key data structures and data rela-

tionships we must understand are the protocol automata and operator formats. At its

heart, protocol reverse engineering involves inferring the packet format of operators

and the structure of the protocol automata. The most obvious approach is of course

to access the protocol specification if it is available. Another alternative is to re-

view the source code for the protocol implementation. Unfortunately, many protocols

implementations do not release specifications or source code for public review.

While it is possible to apply RCE techniques to recover an approximation of the

protocol source design we choose not to examine this alternative, instead concentrating

on model recovery from network traces. Regardless, we acknowledge that a robust

protocol reverse engineering effort has much to gain from RCE of the programs that

implement the protocol under consideration. In fact, RCE of source code or binary

code may be the only option if a specification or other documentation is not available.

Furthermore it should be kept in mind that recovery of operators or automata is

limited by the completeness of the captured data flows. If the captured data does not

include a complete sample of the operators used by the protocol we will not be able

to completely construct all the operators or an accurate automaton. Lets examine

current research efforts for protocol format recovery and protocol automata recovery

separately.

2.8.1 Protocol Format Recovery. Building a dictionary of the operators an

application protocol implements requires us to understand the format of the payload

data encapsulated in TCP traffic.

An approach drawing from bio-informatics research is proposed by the PROTOS

protocol genome project [104]. The project intends to utilize automated structure

inference techniques for the purpose of developing automated testing tools. To date

the project has provided only notional results.

A similar concept that crops up when searching on protocol structure inference

is a concept called Protocol Informatics. Protocol Informatics was introduced by a
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security analyst named Marshall Beddoe in 2004. The only remaining evidence of the

effort is a Python7 implementation of some of the concepts available on the Internet

at [18].

Another initiative called Discoverer, from Microsoft Research, uses machine

learning techniques including clustering to infer protocol packet format idioms [58].

The authors evaluated their approach over HTTP, Remote Procedure Call (RPC)

and SMB/CIFS. The authors focused on the correctness, conciseness and coverage of

their format inference leaving automata inference for future work. The inferred packet

formats covered over 95 percent of their captured data flow traffic [58]. Unfortunately,

the algorithms and data sets used in their analysis have not been released to the public.

Borisov et al describe their Generic Application-Level Protocol Analyzer (GAPA)

in [32]. The program implements a protocol specification language (GAPAL) using a

syntax format similar to Augmented BNF. GAPAL is used to prototype application

protocols and supports modeling of the underlying protocol state machine. While

the authors mention that the tool can potentially enable the automatic generation

of vulnerability signatures they do not implement any automated inference of the

underlying protocol format or protocol automata. Also, the GAPA implementation

and GAPAL specification are not publicly available.

Recently, Fisher et al propose automated inference from ad hoc data to generate

PADS data description language [81]. A generic structure discovery algorithm is

presented in Pseudo-ML in [81, Figure 5]. While source for the inference algorithm is

not publicly released an implementation is available through the PADS project web

site8.

2.8.2 Recovering Automata. Automated recovery of protocol models as

different types of automaton has been proposed in various forms through out the last

decade. Message Sequence Charts and Communicating Finite State Machines are two

7Python Programming Language – http://www.python.org/
8PADS project – http://www.padsproj.org
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representations that have been proposed for model recovery by automata synthesis and

automata inference from protocol execution traces. Synthesis differs from inference

in that synthesis uses a complete sample to construct the target automaton. An

inference procedure might not have a complete, or even characteristic, sample to

generate hypothesis automaton.

2.8.2.1 Message Sequence Charts. The use of Message Sequence

Charts (MSC) for communications systems is discussed in detail in ITU-T Z.120 [117].

Alur provides an algorithm for synthesis of MSC and establishes the foundational the-

ory for MSC inference. In Design Recovery from Observations [261]. Ural et al propose

recovery of protocol designs by analysis to build MSC. Their approach recovers a lat-

tice of repetitive sub-functions from a series of observations [121]. After recovery the

lattice is manipulated to synthesize an MSC model. While Ural et al implemented the

synthesis algorithm in C++ they did not implement a trace collection or processing

architecture, instead using generated text files as input to their system [261, Section

4]. If we choose MSC to model recovered protocol designs then the algorithms pre-

sented could serve as an analytical backend for protocol performance properties. The

source code and executables to their implementation are not available to the public.

Another effort that partially solves the problem of protocol model recovery is

Synthesizing Models by Learning from Examples (Smyle)9. MSC inference is applied to

conformance testing by [31] in the Smyle system. MSC are used as inputs to the model

synthesis system. Smyle uses inference learning from MSC to develop a message-

passing automata (MPA) model [31, Definition 3]. Smyle can synthesize a model

from a given labeled scenario (MSC samples marked as positive or negative). The

system uses an extension of Angluin’s L∗ algorithm to support MSC using a LearnLib

(See Section B.3.1) based inference mechanism [31, Section 4]. Unfortunately, Smyle

requires manual creation and labeling of the positive and negative samples. Like

Ural et al, Smyle does not incorporate a trace collection or processing architecture

9Smyle - http://smyle.in.tum.de/
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but could also serve as analytical backend to check performance properties. Smyle

executables are available for research purposes by request. Source code is not made

available at this time due to third party involvement.

Finally, the company Event Helix provides a modified version of Wireshark

to synthesize MSC like graphs from packet traffic at the packet level of granularity

[77]. The product does not support synthesis or inference of application level session

models.

2.8.2.2 Communicating Finite State Machines. While synthesis of

Communicating Finite State Machine (CFSM) from execution traces has been studied

we did not find any attempts at CFSM inference from traces. Saleh [231] proposes

a semi-automatic approach to reverse engineering a communications protocol that

can synthesize a CFSM model of a protocols automata from execution traces. A

network of CFSM consists of a set of FSM which communicate asynchronously over

FIFO channels by sending and receiving typed messages [39, 196]. Each protocol

entity is represented by a CFSM with error-free simplex channels represented by

unbounded FIFO queue [39]. CFSM representation is useful for our problem domain

because they can be checked for non-progress properties by reachability analysis and

reverse reachability analysis [196]. Although CFSM synthesis algorithms are presented

by [231] we did not discover any systems that implement CFSM synthesis or inference.

2.8.2.3 n-Gram and Word Models. The n-gram and word models tech-

niques presented by Rieck and Konrad are focused on anomaly detection for intrusion

detection purposes [216]. In [216] an incoming connection payload x corresponds to

consecutive sequence of symbols from an alphabet Σ. The content of x can be mod-

eled as a set of subsequences w taken from the language L ⊆ Σ∗. The length of w

is denoted by n. The model on n-grams can be derived by defining L = Σn. L is

the language containing all sequences of fixed length n. Provided a set of delimiter

symbols D ⊂ Σ, the model of words defined as L = (Σ \ D)∗ where every w ∈ L
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subsequence of x is delimited by symbols from D. The chosen language L constitutes

the basis for calculating similarity between network connections.

This could be a useful means of converting an input stream into a vector of

values which can be used as a basis of comparison in machine learning techniques

such as kernel methods used by Clark [45,46] (See Section 3.3.2.2).

The n-gram approach strongly parallels grammatical inference techniques. In

fact, stochastic k-TS models are equivalent to n-grams, with n = k [271, Fact 1]. Fur-

thermore, n-gram models have been combined with GI techniques such as MGGI [271]

using k-TS representation and restricted k-TSS automata [268] (See Section 3.10.4.1).

2.8.2.4 Other Approaches. Communicating-X machines [16, 17, 128]

are another possible formal representation but they have not received wide treatment

in respect to formal performance analysis. We did not discover any attempts at

recovery of models as Communicating-X machines. Another formal representation,

Event-Driven Extended Finite State Machine (EEFSM), is presented in [142]. Lee

formally associates the data portion in EEFSM as variables and parameters [142].

The EEFSM construct is used to develop passive testing algorithms for the OSPF

and TCP state machines [142].

One practical application is ScriptGen which is an automated script generation

tool for the Honeyd virtual honeypot 10 [147]. It is designed to monitor, capture, and

analyze packets used by unknown protocols then generate scripts for replay in a hon-

eyd honey pot environment. Unfortunately, the authors do not reveal the particulars

of their implementation.

2.9 Chapter Summary

In this chapter we provided an English languages description of the problem

domain under consideration. Next we discussed distributed systems and issues related

10Honeyd Virtual Honeypot – http://www.honeyd.org/
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to protocol design recovery. Finally, we introduced protocol reverse engineering and

overviewed state-of-practice and state-of-art reverse engineering tools and techniques.
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III. Algorithm Domain

This chapter relates the problem domain of dynamic protocol reverse engineering

from network traces to the algorithm domain of grammatical inference. We intro-

duce Chomsky Hierarchy as a framework for discussing computational learnability.

Next, we develop the symbolic model and mathematical notation that succinctly de-

fines the characteristics of the algorithm domain. Finally, we discuss several existing

algorithmic and heuristic approaches to grammatical inference.

3.1 Design Recovery from Samples of Behavior

Design recovery from samples of behavior has been studied for several purposes:

automated specification mining of instrumented software executables [6] and Java

object behavior mining [59]. Process discovery from samples of behavior (in event logs)

is also studied for discovery of software process models [53] and workflow discovery

[202,235].

3.2 A Language Recognition Problem?

We refer back to our investigative questions presented in Section 1.5:

IQ1 What information is necessary to reverse engineer the control portion of appli-

cation layer protocols from data flows?

IQ2 Given the proven [7,95] difficulty of inferring finite automata from positive sam-

ples only, are there GI approaches that are appropriate for reverse engineering

automata representations of the control portion of application layer protocols

from data flows?

Bhargavan [24] formulates the problem of monitoring interactive devices like

network protocols as a language recognition problem. The authors propose that

given a specification that accepts a certain language of input-output sequences we can

define another language that corresponds to the externally observable input-output

sequences [24]. In essence, can we recover the model of a protocol given examples
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of its behavior? Or more specifically, can we algorithmically turn application level

network traces into automata?

With this background in mind we present aspects of formal language theory

that frame the discussion of the algorithm domain under consideration.

3.3 Formal Languages

While protocol forward engineering efforts can utilize a range of formal models

to represent the protocol under design they often do not [231]. We present aspects

of formal languages to frame the discussion of model recovery for reverse engineering

purposes.

3.3.1 Chomsky Hierarchy. The Chomsky Hierarchy, devised by Noam

Chomsky, as presented in Table 3.1 and Figure 3.1 is a widely accepted framework

for the discussion of formal representation of grammars and their expressive power.

Informally, a sentence is a string of symbols, a language is a set of sentences, and a

grammar is a (finite) list of rules defining the language [184].

Three basic decision problems for the representations are the questions of [3,110]:

membership - is a given sample sentence a member of a language?

equivalence - are two grammars able to recognize the same language?

emptiness - is the representation empty?

Angluin further expands this list to include the decision problems of [11, Section 1]:

subset - are all elements of a given language also members of another language?

superset - does a given language contain all elements of another language?

disjointness - do two languages have no element in common?

exhaustiveness - is there a member of a given sample that is disjoint from the

possible languages?
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The membership problem for Type-0 is undecidable, Type-1 is decidable, Type-

2 can be determined in polynomial time, and Type-3 in linear time. The equivalence

of Type-0, Type-1, and Type-2 are undecidable. Type-3 can be calculated in poly-

nomial time only when the representation is a DFA1. Even with these restrictions

grammars are useful for studying languages. Grammars give a compact represen-

tation that supports recursivity. Also, grammars support graphical representations

such as automata and parse trees (see Figure 3.2). Finally, even the “easiest” class,

Type-3, contains SAT, boolean functions and parity functions [254].

The representational power of the Chomsky Hierarchy is Type-3 ⊂ Type-2 ⊂

Type-1 ⊂ Type-0. While Type-0, Type-1, and Type-2 based models have higher

representational power they are are more challenging to evaluate for performance

characteristics. There are no efficient means known for generating parsers for Type-

0 or Type-1 languages. Type-2 grammars can be parsed using Earley’s algorithm

with O(n3) time for ambiguous gramamrs, O(n2) for unambiguous, and O(n) for

subcategories [71]. Subcategories of Type-2 grammars that are extensively studied

include k symbol look-ahead parsers like the bottom-up LR(k); and top-down, recur-

sive descent and LL(k) parsers. Where the expressive power is: LL(k) ⊂ LR(k) ⊂

Type-2 [224, Vol 1, Chap 3, Sec 6.8].

Real data, such as network traces, often directly correspond to more complex

languages. Application level protocols, like HTTP [80] and SMTP [113], are frequently

specified in Baukus-Naur Form (BNF) 2 or Augmented BNF [57].

Even so, it is possible to approximate a protocols language with simpler formal

languages. Context-free languages can be approximated by algorithmically generated

DFA [174, 181, 182]. DFA have low representational power but can be analyzed for

performance characteristics within combinatorial limits.

1 For example, the equivalence problem for a Type-3 finite-state transducers is undecidable.
2Backus normal form or Backus-Naur form [130] is a widely used alternative representation for

context-free grammars.
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Figure 3.1: Chomsky Hierarchy [184].

Table 3.1: Chomsky Hierarchy. [159]

Chomsky Hierarchy
Type Languages Automaton Production rules
Type-0 Recursively enu-

merable
Turing Machine (unrestricted or phrase
structure)

α → β (α, β ∈ (V ∪ Σ)∗, α contains a
variable )

Type-1 Context-sensitive Linear-bounded non-deterministic
Turning Machine

α → β (α, β ∈ (V ∪ Σ)∗,|β| ≥ |α|, α
contains a variable )

Type-2 Context-free Non-deterministic pushdown automa-
ton

A→ α (A ∈ V, α ∈ (V ∪ Σ)∗)

Type-3 Regular Finite state automaton A→ αB,A→ a (A,B ∈ V, a ∈ Σ)
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Table 3.2: SMTP Sender Transitions.

States (Q)
Operators (Σ) INITIAL (q0) CONN ESTABLISHED TRANSACTION STARTED DATA TRANSFER

DATA - - DATA TRANSFER -
HELO - CONN ESTABLISHED TRANSACTION STARTED -
MAIL - TRANSACTION STARTED - -
NOOP - CONN ESTABLISHED TRANSACTION STARTED -
QUIT - INITIAL INITIAL -
RCPT - - TRANSACTION STARTED -
RSET - - CONN ESTABLISHED -
end-of-data∗ - - - CONN ESTABLISHED
more-data∗ - - - DATA TRANSFER
open∗ CONN ESTABLISHED - - -

Protocol state can be represented by grammars, such as context-free or finite

state automata, drawn from the Chomsky Hierarchy. If we select Type-3, in effect,

each endpoint of the communication is a tuple A = 〈Q,Σ, δ, q0, F 〉. Q is a finite set

of states. Σ is a finite set of symbols to label the transitions, known as the alphabet.

Σ is the finite set of verbs or operators in the protocol vocabulary that lead to state

transitions. Protocol operators must follow the syntactical format of the protocol.

The results of protocol operators are the transitions represented by δ. Where δ, the

partial mapping from Q× Σ into Q, represents all transitions.

For a simple finite automaton representation of a protocol we define the two

endpoints of a protocol as the sender represented by tuple S = 〈Qs,Σ, δs, qs0, Fs〉 and

receiver represented by R = 〈Qr,Σ, δr, qr0, Fr〉. Note that S and R share the same set

of operators Σ. The structure of a distributed systems communication is determined

by the syntactic format of the protocol operators that make up the finite set Σ.

As an example Figure 3.2 shows the states and operators for the sender of a

Simple Mail Transfer Protocol (SMTP). The figure depicts four states, the operators

and resulting state transitions.

Mapping Figure 3.2 to a DFA results in the following:

Q = {INITIAL,DATA TRANSFER,CONN ESTQABLISHED, TRANSACTION STARTED}

Σ = {HELO,NOOP,QUIT,MAIL,RSET,END OF DATA,RCPT}

q0 = {INITIAL}

F = {INITIAL}

The transition function represented by δ is shown in Table 3.2.
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Figure 3.2: State Diagram for SMTP Sender.

It must be noted that the operators marked with ∗ in Table 3.2 indicate tran-

sitions that must be inferred from the TCP transport service level even though they

are shown in Figure 3.2. Also, the DFA representation does not have to account for

issues such as connection loss or timeout relegating these issues to the underlying

TCP transport layer.

3.3.2 Other Formal Reperesentations. Alternative frameworks for language

representation include pattern languages [8] [224, Chapter 6] and categorial grammars

[124]. Various other constructs have been proposed that parallel and cross-cut the

Chomsky hierarchy. Two examples are Petri nets and planar languages.

3.3.2.1 Petri nets. Petri nets are another mechanism for representing

communicating systems that have analogy to the Chomsky hierarchy. Petri nets have

high representational power but formal performance analysis can be more difficult.

Petri net variations were used by van der Aalst [266] for workflow mining and dis-
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covering social networks [265]. Mayo [162] proposes a hill-climbing technique to learn

Petri net models of gene interactions.

3.3.2.2 Planar languages. Clark presents grammatical inference of

planar languages using string kernel methods in [45,46]. Planar languages cut across

the Chomsky Hierarchy for simple-subsequence kernels [46]. The method was able to

learn some context-sensitive and mildly context-sensitive languages. Artificial data

sets and Matlabr source code are available at the Grammatical Inference with String

Kernels project web site [43].

3.4 Learning Automata Representation of a Language

The process of learning an automata can be expressed as a decision problem:

Given an integer n and two disjoint sets of words S+ and S− over a finite alphabet Σ,

does there exist a DFA consistent with S+ and S− with a number of states less than

or equal to n. The learning process is defined formally in Definition 3.4.1.

Definition 3.4.1 (Grammar Induction [41] ). A general definition of grammar in-

duction is given sets of labeled example string S+ and S− such that S+ ⊂ L(G) and

S− ⊂ L′(G) infer a DFA (A) such that the language of A denoted L(A) = L(G) is a

language generated from an unknown Type-3 grammar (G). Its complement, L′(G),

is defined as L′(G) = Σ∗ − L(G) where Σ∗ is the set of all strings over the alphabet

(Σ) of L(G).

Learning automata representation of languages by grammar induction is a widely

researched topic. Miclet provides an introduction in [36, Chapter 9]. A survey to 1994

is presented by Vidal in [270]. A contemporary (2005) bibliographic survey of the field

is presented by de la Higuera in [61].

3.5 Computational Learnability Models

There are three major formal models established in the computational learning

community for learning grammar structure from examples or grammatical inference:
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Figure 3.3: Gold’s Enumeration Procedure - the decision la-
beled Consistent determines if the current grammar is consistent
with the sample presented so far. Once the learner enters loop
A it converges to the target language in the limit [201, Figure
1].

Gold’s identification in the limit, Angluin’s query learning model, and Valiant’s prob-

ably approximately correct (PAC) learning model.

3.5.1 Identification in the Limit. Gold [95] proposed his identification in

the limit model in the late 1960’s. Gold’s model describes a learning process where

an infinite sequence of examples from a grammar G is presented to the inference

algorithm M . Figure 3.3 outlines Gold’s enumeration procedure. The decision labeled

Consistent determines if the current grammar is consistent with the sample presented

so far. Once the learner enters the loop, denoted A, it converges to the target language

in the limit. The eventual limiting behavior of the algorithm is used as the criterion

of its success. Gold also shows that there is no general method of language inference

from positive samples that will do better than enumeration [95]. Although Gold

establishes the theoretical tractability of grammar induction from positive samples he

does not provide algorithmic methods other than exhaustive enumeration.
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3.5.2 Query Learning Model. Angluin developed the L∗ algorithm to learn

regular languages based on queries and counterexamples [10]. The inference algorithm

is assumed to have access to an expert teacher, like an oracle. The teacher can answer

specific queries, membership and equivalence, asked about an unknown grammar G.

The teacher answers a membership query with an input string w ∈ Σ∗ with an output

of “yes” if w is generated by G and “no” otherwise. An equivalence query takes an

input grammar G′ and the output is “yes” if the G′ generates the same language as G

and “no” otherwise. In the case where the answer is “no” a string w in the symmetric

difference of the language L(G) generated by G and the language L(G′) generated by

G′ is returned. The returned w is a counterexample.

In the inference from a protocol trace the equivalence test can at best be ap-

proximated while membership queries can be answered by testing the protocol under

inspection [101,247].

Angluin’s query learning method is extensively studied. Tradeoff of equivalence

and membership queries is discussed by Balcázar et al [14]. A proof technique for

demonstrating the hardness of learning by queries regardless of representation is es-

tablished by Aizenstein, Hegedűs, Hellerstein and Pitt in [4]. Raffelt [211] further

extends the L∗ algorithm to deal with Mealy machines. The problem of identifying

a value ε > 0, where 1 − ε is the probability that the oracle answers correctly (or

if already asked, consistently) is left as an open question in the field of grammatical

inference [62].

3.5.3 PAC Learning Model. Valiant [263] introduced probably approxi-

mately correct learning which is a distribution independent probabilistic model of

learning from random examples. The inference algorithm takes a sample as input

and produces a grammar as output. A successful inference algorithm is one that with

high probability (at least 1 − δ) finds a grammar whose error is small (less than ε).

Haussler provides an introduction to PAC learning in [102]. Furthermore, Angluin

has shown that an equivalence query algorithm can be translated into a PAC learning
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model [11, Section 2.4]. In fact, DFA are not PAC learnable unless we are allowed to

ask membership queries on an oracle [11].

3.6 Tractability

Gold [95] and Angluin [7] proved that when using passive learning the problem of

finding the smallest automaton consistent with a set of accepted and rejected strings is

NPC. Golds Theorem states that inference on all regular languages is impossible with

only positive samples. Gold further showed that exact identification from sparsely

labeled samples is NPC. The difficulty of the problem was further established by Pitt

and Warmuth [203,205] as well as Pitt and Valiant [204]. While this does not prevent

a solution it does mean the solution will likely require approximation or heuristic

techniques. In fact, Lang [137] demonstrated experimental evidence that the average

case is tractable and Freund et al [88] proved the average case is polynomial.

3.7 Search Approaches for Grammar Induction

Given the tractability of grammar induction from positive samples regardless of

representation Vidal proposes three classes of search for grammar induction: meth-

ods that use additional information, characterizeable methods, and heuristic meth-

ods [271]. We re-define Vidal’s first class as extrinsic methods. For extrinsic methods

the additional information extrinsic to the target model includes negative samples,

equivalence queries or probabilistic information. While characterizeable methods con-

centrate on subclasses of regular languages that are shown to be learnable from posi-

tive samples. And, finally, heuristic methods which make direct use of a priori intrinsic

knowledge of the target model such as the syntactic constraints of the language.

Muggleton also discusses the use of additional information (i.e. negative sam-

ples, limiting the number of states in target automata, or assigning statistical val-

ues to rank target automata [177, p.121].) Muggleton proposes the use of semantic

information, similar to what we term intrinsic information, from the positive sam-

ples [177, Section 6.7].
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The selection of search approach methodology is driven by what is known about

the language under consideration. A composition of the three approaches might be

appropriate if we have more than one type of knowledge (extrinsic, characterizeable,

or intrinsic) available.

3.8 Notations and Definitions

Before we discuss specific algorithms we present the formal notation and defini-

tions that will be used3. The definitions provided are derived from [9], [177, Appendix

B], [271], [131], [37], [55], [41], and [62]. In general we favor the format used by [9]

and [55]. Formally defining the mathematical symbology allows us to discuss the

selected algorithm domain in a more compact form.

Definition 3.8.1 (Strings [62]). A string w over Σ is a finite sequence w = a1a2a3 . . . an

of letters. Let |w| denote the length of w. Letters of Σ will be indicated by a, b, c, . . .,

strings over Σ by u, v, . . . , z, and the empty string by λ. Let Σ∗ be the set of all finite

strings over alphabet Σ

Definition 3.8.2 (Languages [62]). A language L is any set of strings, so therefore

L ⊆ Σ∗. Operations over languages include: set operations (union, intersection,

complement); product L1 · L2 = {uv : u ∈ L1, v ∈ L2}; powerset L0 = λLn1 = Ln · L;

and star L∗ = ∪i∈NL
i. We denote by L or A a class of languages.

Algebraic laws for languages are discussed in texts on formal languages (e.g.

[3, 110,159,224]).

Definition 3.8.3 (Learning Sample of a Language [55] ). A learning sample S of a

language L is a finite multi-set of words from L. That is ∀w ∈ S,w ∈ L.

Definition 3.8.4 (Finite State Automaton). A finite state automaton (FSA), A is

a quintuple A = 〈Q,Σ, δ, I, F 〉, where Q is a finite set of states,Σ is a finite set of

3The reader is referred to texts on formal languages (e.g. [3, 110, 159, 224]) if they require back-
ground detail.

49



symbols to label the transitions, known as the alphabet, δ is a partial mapping from

S × Σ→ S, I ⊂ Q is the set of start states, and F ⊂ Q is the set of final states.

The size of the automaton is defined as the total number of states in Q denoted

by |Q|, that is |A| = |Q|.

PrefA(q) will denote the prefix language of a state q defined by PrefA(q) =

{w ∈ Σ∗|q ∈ (q0, w)} [55, Definition 1].

SuffA(q) will denote the suffix language of a state q defined by PrefA(q) =

{w ∈ Σ∗|δ(q, w) ∩ F 6= ∅} [55, Definition 1].

The FSA is minimized if no pair of states are equivalent. Given qi, qj ∈ Q, i 6= j,

there is an input word x that distinguishes them such that δ(qi, x) 6= δ(qj, x).

Definition 3.8.5 (Deterministic Finite State Automaton). A FSA is deterministic

or a deterministic finite state automaton (DFA) ∀q ∈ Q,∀a ∈ Σ, δ(q, a) has at most

one element otherwise the FSA is non-deterministic. Additionally, |I| = 1 with the

start state denoted by q0 where q0 is the single element of I.

Definition 3.8.6 (Acceptance [55]). An acceptance for a word w ∈ Σ∗, where w =

a1a2a3 . . . a|w|, in an automaton A = 〈Q,Σ, δ, q0, F 〉 is a sequence (q0, . . . , q|w|)w of

|w| + 1 states such that q0 ∈ Q,∀i ∈ [1, |w|], qi ∈ δ(qi−1, ai),q|w| ∈ F . q0 is said to be

the initial state and q|w| is said to be the final state of the acceptance. Transitions

qi−1, ai, qi are said reached by the acceptance. The set of acceptances of a word w in

automaton A is denoted by AccA(w).

Definition 3.8.7 (Regular Grammar). A regular grammar is a grammar in which

all of the productions are of the form A → aB or A → λ. Given a finite automaton

A = 〈Q,Σ, δ, q0, F 〉, it is possible to construct a regular grammar G = 〈N, T, P, S〉

such that L(A) = L(G) as follows. For each state in Q add a non-terminal of the

same name to N . For each symbol in Σ add an equivalent symbol to T . Let S be the

non-terminal named q0. For each q ∈ F add a production to P of the form q → λ. For

each transition of the form δ(q1, a) = q2 add a production to P of the form q1 → aq2.
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Definition 3.8.8 (Regular Languages). The transition function δ of a DFA can be

extended to Σ∗ : δ(q, λ) = q and δ(q, a.w) = δ(δ(q, a), w) for all q ∈ Q, a ∈ Σ,

w ∈ Σ∗. Let L(A) denote the language recognized by the automaton A : L(A) =

{w ∈ Σ∗|δ(q0, w) ∈ F} By definition the language L(A) accepted by a DFA A is a

regular language. That is the class of regular languages can be defined as the class of

languages accepted by a finite automata.

Definition 3.8.9 (Type-3 Grammar [41] ). A Type-3 Grammar is a four-tuple G =

〈T,N, P, S〉 where:

• T ⊆ N is a finite non-empty set called the terminal alphabet of G,

• N is a finite non-empty set called the total vocabulary of G,

• P is a finite set of production rules,

• S ∈ (N − T ) is referred to as the start state, and the rules in P are of the form

A→ aB or A→ a, where A,B ∈ (N − T ) and a ∈ T

Definition 3.8.10 (Canonical Automaton [55] ). A Canonical Automaton (CA) of a

language L, denoted by CA(L) is the sole minimal DFA accepting L.

Definition 3.8.11 (Universal Automaton [55] ). A Universal Automaton (UA) of a

language L, denoted by UA(L) is the canonical automaton A(Σ∗) accepting all words

w ∈ Σ.

Definition 3.8.12 (Maximal Canonical Automaton [55]). A Maximal Canonical Au-

tomaton (MCA) related to a learning sample S, denoted by MCA(S) or more simply

MCA, is the union for each word w of learning sample S from a canonical automata

A ({w}). A MCA is a star-like automaton that exactly recognizes data from sample

S.

Definition 3.8.13 (Partition of set S [177]). A partition of set S, denoted by πS, is

a set of pairwise disjoint non-empty subsets of set S s.t. the union of all πS is equal

to S.
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Definition 3.8.14 (Block [177]). The unique block of πS containing s, where s ∈ S

is denoted B(s, πS).

Definition 3.8.15 (Refines [177]). Given two partitions, π and π
′
π refines π

′
iff

every block of π
′

is a union of blocks of π.

Definition 3.8.16 (Prefix Tree Acceptor [55]). A Prefix Tree Acceptor (PTA) on a

sample S, PTA(S) or PTA, is the deterministic automaton obtained when merging

every state of MCA(S) with identical prefix languages.

A PTA is a FSA that can be constructed by laying out the strings in a language

using a state to represent each unique prefix of one of the strings. A language accepted

by a PTA is regular and exactly accepts all strings in a given language.

Figure 3.4 shows the PTA for POP3 client commands sent to servers from week

1 day 1 inside IDEVAL traffic.

Definition 3.8.17 (Augmented Prefix Tree Acceptor [41] ). A Augmented Prefix Tree

Acceptor (APTA) is a six-tuple G = 〈Q,Σ, δ, s, F+, F−〉 where:

• Q is a finite non-empty set of nodes,

• Σ is a finite non-empty set of input symbols or input alphabet,

• δ : Q× Σ→ Q the transition function,

• s ∈ Q the start or root node,

• F+ ⊆ Q identifies final nodes of strings in S+,

• F− ⊆ Q identifies final nodes of strings in S−,

The size of an APTA is defined as the total number of elements in Q denoted |Q|.

Definition 3.8.18 (APTA node equivalence [41]). Two nodes qi and qj in an APTA

are considered not equivalent if and only if:

• (qi ∈ F+ ∧ qj ∈ F−) ∨ (qi ∈ F− ∧ qj ∈ F+), or
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Figure 3.4: Example PTA - Command PTA for POP3 from
Week 1 Day 1 inside IDEVAL traffic.
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• ∃s ∈ Σ such that if (qi, s, qi′) ∈ δ,(qj, s, qj′) ∈ δ then qi′ is not equivalent to qj′ .

Definition 3.8.19 (Strictly locally testable languages [37]). Let k be a positive inte-

ger. For w ∈ Σ+ of length ≥ k, let Lk(w),Rk(w), and Ik(w) be respectively the prefix

length k, the suffix length k and the set of interior factors of length k of the word w.

L ⊆ Σ∗ is strictly k-testable if and only if there exist three sets X, Y, Z of words on Σ

such that for all w ∈ Σ+, |w| ≥ k, w ∈ L iff Lk(w) ∈ X,Rk(w) ∈ Y , and Ik(w) ⊆ Z.

A language is strictly locally testable if it is strictly k-testable for some k > 0. We

denote the class of strictly locally testable languages as sLT .

Definition 3.8.20 (Left Quotient [9, 131, 177]). Let L be any language. Pre(L) The

set of all prefixes of elements of language L.

For any w ∈ Σ∗, we denote the left-quotient of language L and word w by w \L.

That is w \ L = {x ∈ Σ∗|wx ∈ L}. Angluin introduced the equivalence relation ∼=L

over Σ∗ defined as: w1
∼=L w2 iff w1 \ L = w2 \ L. A language L is regular iff the

number of equivalence classes of ∼=L is finite.

Definition 3.8.21 (k-tails [177]). The k-tails of word w in language L denoted by

w \k L is the set {v : v ∈ w \ L, |v| ≤ k}. That is, the k-tail is the set of all words in

the language that are members of the left quotient with a depth of no more than k.

Definition 3.8.22 (k-reversible Languages [9, 131]). A language L is pseudo k-

reversible iff whenever u1uw and u2uw are in L and |v| = k , u1
∼=L u2v holds.

A language L is k-reversible iff L is regular and pseudo-k-reversible. For any non-

negative integer k, we denote the class of k-reversible languages by Revk. It is known

that for any non-negative integer k, the class Revk is properly contained in the class

Revk+1.

3.9 Grammatical Inference Algorithms

Several algorithms exist for inferring grammars for language understanding.

The algorithms have been used in a range of GI tasks including machine learning, for-
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Table 3.3: Regular Inference Algorithms.

Regular Inference Algorithms
Algorithm Negative Samples

Required
Target Automaton

Trakhtenbrot and Barzdin Yes DFA
ECGI No DFA, PFSA [269, Section 2.2]
k-TSSI No k-testable DFA
k-RI Angluin Optional k-reversible DFA
k-RI Muggleton Optional uniquely τ-terminated k-reversible DFA
MGGI No DFA
RIG and BRIG Yes DFA
RPNI Yes DFA
EDSM Yes DFA

mal language theory, structural recognition, natural language processing, and speech

recognition [61].

Algorithms can be classified according to their target language/grammar: Type-

3, regular; Type-2, context-free; Type-1, context-sensitive; or Type-0, phrase struc-

ture (see Figure 3.1). Algorithms can also be characterized according to the classes

discussed in Section 3.7, that is: extrinsic, characterizable, or heuristic. The main

types of extrinsic information we are concerned with are negative samples, and queries.

3.10 Inference of Regular Languages (Type-3)

Inference of regular languages is well studied. Muggleton provides an intro-

duction to regular inference in [177, Chap 6]. Gronfors [99] conducts experimental

analysis of several of algorithms for generality. Dupont presents an early look at the

search space of regular inference in [70]. Hingston describes various approaches to

develop a family of regular inference algorithms [106]. Coste and Fredouille provide a

discussion of the search space of inference of DFA, NFA, and unambiguous finite au-

tomaton in [55]. While Coste et al [54] discuss the importance of domain and typing

background knowledge to tune inference algorithms.

The limitations on inference of the union of multiple languages from intermixed

samples is discussed by [278] who refines Angluin’s necessary and sufficient conditions

for inference. Given that we do not know if application protocol languages meet

the conditions defined by [278] we will not further consider intermixed samples for

bilingual inference.

55



Table 3.4: Regular Inference Algorithm Performance.

Regular Inference Algorithm Performance
Algorithm O() Notes

Trakhtenbrot and Barzdin O(mn2) where m = |initial APTA|, n = number
of states in the final hypothesis automa-
ton.

ECGI not characterized experimental evidence from [227].
k-TSSI O(kn logn) where n is the sum of the lengths of all

the strings in S+ [89].

k-RI Angluin O((k + 1)2n3) [9, Theorem 35] where n is the sum of the lengths of all
strings in the sample.

k-RI Muggleton O(n2) [177, Section 6.5] where n is the sum of the lengths of all
strings in the sample.

MGGI not characterized
RIG and BRIG non-polynomial experimental evidence from [169, Sec-

tion 3.5]

RPNI O((m +m′)m2) where m is the sum of the length of all
strings in S+ and m′ is the sum of the
length of all strings in S−

EDSM not characterized

Table 3.3 summarizes the characteristics of several algorithms used for inference

of regular languages. Table 3.4 summarizes the performance characteristics of several

of the algorithms discussed.

3.10.1 Statistical Extrinsic Methods. Muggleton provides a framework to

represent several statistical extrinsic methods to determine state merges by defining

a generalized algorithm using a predicate function χ(u, v) [177, Appendix C]. The

generalized algorithm is shown in Algorithm 1, where χ(u, v) takes values shown in

Table 3.5 for some k-tails algorithms.

Input: S+ non-empty set of positive sample strings
Output: The acceptor A0/πPr(S+)

/*Initialization */
/*A0 is a DFA represented by 〈Q0,Σ, δ0, I0, F0〉 */
Let A0 = FormPTA(S+);1.1
Let π0 be the trivial partition of Q0;1.2
Let i = 0;1.3
/*Merging */
for ∀(u, v) ∈ Q0 do1.4

if χ(u, v) then1.5
Let B1 = B(u, πi);1.6
Let B2 = B(v, πi);1.7
Let πi+1 be πi with B1 and B2 merged;1.8
Increment i by 1;1.9

end1.10
end1.11
/*Termination */
Let f = i;1.12

return The acceptor A0/πf1.13

Algorithm 1: Muggleton Algorithm IM1 [177, p.100]
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Table 3.5: Muggleton Predicate Functions χ(u, v) for k-tails. [177, Appendix C]

Muggleton Predicate Functions for k-tails
Source χ(u, v)
Biermann and Feldman [28]

χ(u, v) =


true u \k S+ = v \k S+

false otherwise

ff

Levine [148]

χ(u, v) =


true Stren(u, v) > Strn
false otherwise

ff
, where

Stren(u, v) =
max
i

"
2|u \i S+ ∩ v \i S+|
|u \i S+| + |v \i S+|

#
, i ∈ Z+

, and
Stren[0, 1] ∈ R

Miclet [168]

χ(u, v) =


true u \ S+ ∩ v \ S+ 6= ∅
false otherwise

ff

Another statistical extrinsic method, Minimal Descriptor Length (MDL) as pre-

sented by [146], also fits into the Muggleton predicate form but does not use k-tails.

Instead

χ(u, v) =

 true {|DFA′|+ |DFA′(S+)|} ≤ {|DFA|+ |DFA(S+)|}

false otherwise


, where DFA is initially the PTA of S+ and DFA′ is the hypothesis DFA. DFA‘

replaces DFA for each successful iteration.

3.10.2 Extrinsic Negative Sample Support Methods. Several algorithms exist

that require extrinsic negative sample support including: Trakhtenbrot and Barzdin’s

algorithm; Miclet’s Regular Inference of Grammars, and Regular Positive and Nega-

tive Inference.

3.10.2.1 Trakhtenbrot and Barzdin. One of the earliest algorithms

was proposed by Trakhtenbrot and Barzdin4 [41]. We classify the algorithm as an

4We were unable locate a copy of the original presentation by Trakhtenbrot and Barzdin in [256].
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extrinsic method because it was designed for completely labeled data sets containing

both positive and negative examples. According to Cicchello [41, Section 10.1.3]:

The upper bound on the runtime is mn2, where m is the total number of
nodes in the initial APTA and n is the total number of states in the final
hypothesis.

Cicchello presents a modification that supports use of the algorithm with incomplete

training sets in [41].

3.10.2.2 Regular Inference of Grammars. Regular Inference of Gram-

mars (RIG) requires extrinsic negative sample support [169]. Miclet also presents

Boosted beam-search Regular Inference of Grammars (BRIG). BRIG also requires

extrinsic negative sample support [169]. Miclet describes both RIG and BRIG as in-

efficient [169, Section 3.5] and concludes from experimental results that the algorithms

are non-polynomial [169, Section 5].

3.10.2.3 Regular Positive and Negative Inference. Regular Positive

and Negative Inference (RPNI) requires extrinsic negative sample support. The al-

gorithm was proposed by Lang [137] and independently by Oncina and Garćia [189].

The RPNI algorithm has been shown to identify in the limit regular languages. The

complexity is a function of the positive and negative sample sizes. RPNI has an up-

date time of O((m + m′)m2) where m is the sum of the length of all positive data

(S+) and m′ is the sum of the length of all negative data (S−).

RPNI works by starting with the PTA, and merging pairs of states if possible,

using a fixed depth-first ordering of state pairs. The algorithm runs in polynomial

time and is guaranteed to identify the target FSA given complete sample data.

One limiting factor of the RPNI algorithm is that it requires presentation of the

entire positive and negative sample data. If new data is available the inference process

must be restarted. A modification to allow for incremental inference was proposed

by Dupont [69]. The algorithm is modified to support noisy samples and presented

as RPNI∗ by [237]. More recently, Hoffman provides experimental evidence that
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prohibiting some of the merges performed by the original RPNI algorithm improved

performance against artificial random data sets [107].

3.10.2.4 Evidence Driven State Merging. Evidence Driven State Merg-

ing (EDSM) requires extrinsic negative sample support. The basic algorithm is de-

scribed by Lang in [138]. EDSM performs merges in arbitrary order such that both

nodes in a merge might be the roots of arbitrary subgraphs of the hypothesis automa-

ton [138]. To overcome this a modification to EDSM called the blue-fringe algorithm

restricts the merge order [138] using a policy described by [123]. The algorithm is

further modified to support noisy samples and presented as BLUE∗ by [237] as part

of the Learning DFA form Noisy Samples competition [153] for the GECCO2004

conference [262].

3.10.3 Characterizeable Methods. Given Gold’s result that regular languages

cannot be inferred in the limit from only positive data [95] the search for character-

izable subclasses that can be inferred with only positive data has become a kind of

“holy-grail” of grammatical inference. Many subclasses of regular languages have

been proposed: strictly regular languages [284], k-reversible [9], locally testable lan-

guages in the strict sense [89], code regular languages [74], and Szilard languages of

regular grammars [156,282].

Figure 3.5 shows some of the families of languages that are classified within

regular languages. Two well studied characterizable methods are k-Testable in the

Strict Sense Inference and k-Reversible Inference.

3.10.3.1 k-Testable in the Strict Sense Inference. The inductive infer-

ence of the class of k-Testable languages in the strict sense was proposed by Garcia

and Vidal in 1990 [89]. A language that is k-Testable in the Strict Sense of Inference

(k-TSSI) is defined by a finite set of substrings of length k that are permitted in the

target language [89]. This algorithm is a characterizable method that limits the target

model to k-testable languages.
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Figure 3.5: Some Families of Regular Languages [271].

A k-testable languages in the strict sense (k-TSSL) a subclass of k-testable

languages. It is essentially defined by a finite set of substrings of length k that are

permitted to appear in the strings of the language. Given a positive learning sample

S+ of strings of an unknown language, a deterministic finite-state automaton that

recognizes the smallest k-TSSL containing S+ is obtained.

The the number of transitions in the inferred automaton is bounded by O(m)

where m is the number of substrings defining the k-TSSL, and the inference algorithm

works in O(kn log n) where n is the sum of the lengths of all the strings in S+ [89,

Theorem 6.1].

Torres and Varona [255] presents a low-level representation of k-TSS structures

proposed for use in continuous speech recognition. Varona and Torres also conducted

experimental analysis with k values of 4 and 5 on smoothed stochastic FSA for con-

tinuous speech recognition [268].
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Experiments by [89, Section VIII] show the ability of (stochastic) k-TSSLs to

approach other classes of regular languages. An algorithm for k-TSSI is outlined

in [89, Figure 1].

3.10.3.2 k-Reversible Inference. k-Reversible Inference (k-RI), intro-

duced by Angluin, does not require negative sample support [9]. Like, k-TSSI, k-RI

is a characterizable method restricting the target automaton to k-reversible regular

languages [9].

The class of k-reversible regular languages is a subset of the regular languages

with the properties explained in Definition 3.8.22. The target language must be k-

reversible for some k ≥ 0. The k-RI algorithm identifies the minimum k-reversible

language containing any finite positive sample in O((k + 1)2n3) time, where n is the

summation of the lengths of the strings in the sample [9, Theorem 35].

This was later reduced by Muggleton to O(n2) time with the added restriction

that the target automaton is uniquely terminated, that is the automaton is a uniquely

τ -terminated acceptor [177, Section 6.5]. A uniquely τ -terminated acceptor is a FSA

with the property that any transition arc is labled with the termination symbol τ if

it leads to an acceptor state and that the acceptor state has no outgoing arcs [177,

Section 6.5.1].

3.10.4 Heuristic Methods. Heuristic methods leverage intrinsic knowledge of

the target automata. Heuristic methods concentrate on producing a target model that

is useful for a problem domain not necessarily considering the automata’s membership

in a language theoretic characterizable class. Algorithms in this category include:

Morphic Generator Grammatical Inference, the Burge algorithm, Continuous Time

Markov Chain models, and kBehavior.

3.10.4.1 Morphic Generator Grammatical Inference. Morphic Gen-

erator Grammatical Inference (MGGI) does not require extrinsic negative sample

support. The inference procedure was introduced by Garcia as the “Local Language
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Inference Algorithm” [90]. Sanchis discusses the use of MCGI for inferring phonetic

units [232]. Vidal outlines the learning approach for MGGI regular inference in [271]

but does not provide an algorithmic implementation.

MGGI works with two finite alphabets, Σ and Σ
′

and a set of positive sample

strings S+ ⊂ Σ∗ [271]. A function g is used to rename the words in S+ resulting in

S
′
+ = g(S+) where S

′
+ ⊂ Σ∗ [271]. The corresponding 2−TS language is obtained from

S
′
+ and another renaming function h is applied [271]. The MGGI inferred language

is L = h(l(g(S
′
+))). The renaming function is the morphic generator which allows for

generalization of the language under consideration. The renaming function relies on

extrinsic knowledge of the model under consideration.

We did not discover a formal analysis of the performance characteristics of

MGGI. We did discover experimental empirical results specific to speech recognition

in [232, 271]. Local language learning, similar to MGGI, is applied to DNA sequence

analysis by [283].

3.10.4.2 Burge. The Burge algorithm5, which does not require nega-

tive samples, is presented by Ingham in [114, 115]. The algorithm is O(nm) where n

is the number of samples in the training set and m is the average number of tokens

in a sample [114, Section 3.9]. Ingham presents modification to the algorithm to sup-

port incremental learning of DFA models from tokenized HTTP requests. While [115]

does generate a notional model of the HTTP request the focus is on approximation

of HTTP for intrusion detection not model recovery.

3.10.4.3 Continuous Time Markov Chains. Sen et al examine the use

of grammatical inference inspired algorithms to learn edge labled Continuous Time

Markov Chains [238]. Java source code for their implementation is available.

5John Burge is a co-author of [115].
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3.10.4.4 kBehavior. The k-tails approach is modified by Mariani

and Pezzé and presented as kBehavior which is an incremental approach designed

for limited storage capacity [158, Section 2]. The technique uses a heuristic to merge

multiple states that are recognized as a common behavior instead of individual states.

This is in part to improve branch and loop detection from execution traces.

3.10.5 Hybrid Methods. There are several randomized and heuristic ap-

proaches to regular language inference that do not neatly fit into our categories of

extrinsic, characterizeable, or heuristic. If we have both intrinsic and extrinsic infor-

mation hybrid methods are possible. One such method is Angluin’s L∗ algorithm,

another is Error Correcting Grammatical Inference.

3.10.5.1 Angluin’s L∗ Algorithm. Angluin also presents a modification

to the k-RI algorithm using both extrinsic negative samples and queries [9, Section 7].

An overview of Angluin’s L∗ algorithm is presented by Berg in [23]. Berg discusses

evaluation of L∗ (as presented by Angluin 1987 [10]) for prefix-closed DFA6 against

random samples and real world examples drawn from the Edinburgh Concurrency

Workbench7 [23].

3.10.5.2 Error Correcting Grammatical Inference. Error Correcting

Grammatical Inference (ECGI) proposed by Rulot and Vidal is a GI heuristic that

incrementally infers the target automata model [226]. ECGI combines statistical

extrinsic methods and heuristic methods.

The approach, which does not require negative sample support, is based on error

correcting parsing. The ECGI algorithm builds a hypothesis automaton by initially

creating a trivial automaton from the first presented sample word [226]. States and

transitions are added to the hypothesis automaton for every new unrecognized sample

[226]. Error correcting parsing is used to determine what states and transitions to add

6A languages L is prefix-closed if ∀w ∈ L, then ∀PrefL(w) ∈ L [136, Definition 3.2].
7Edinburgh Concurrency Workbench – http://homepages.inf.ed.ac.uk/perdita/cwb/.

63

http://homepages.inf.ed.ac.uk/perdita/cwb/


by searching for the best path for the input sample in the hypothesis automaton [226].

A statistical extrinsic method, such as Hamming or Levenshtein distance, can be used

to measure which path is best. Heuristic restrictions eliminate loops and circuits in

the inferred hypothesis automaton.

We did not discover a formal analysis of the performance characteristics of

ECGI. We did discover experimental empirical results specific to speech recognition

in [232].

The ECGI algorithm has also been applied in language modeling [209] and

parts-of-speech tagging [206,207]. Sanchis also discusses the use of ECGI for inferring

phonetic units [232]. Rulot also proposes an extension to the ECGI algorithm [226]

to support stochastic target automata. The stochastic extension is expanded by [269,

Section 2.2].

3.10.5.3 Other Approaches. Graine [97] introduces a method for learn-

ing regular languages with constant alphabet sizes using neural networks. The method

is O(n2) time complexity for k-reversible regular languages. Giordano examines in-

ference of regular languages by a tabu search that requires both positive and negative

examples [92]. Belz proposes a genetic algorithm for automata inference [21]. Ni-

parnan [183] and Lai [136] also examine genetic algorithm approaches to inference of

finite automata.

3.11 Inference of Higher Order Languages

Gramatical inference of context-free languages (Type-2) has received some at-

tention. Early work was conducted by [228] and [60]. Lee [145] provides a circa

1994 survey of literature to that point. The 2004 Omphalos Context-Free Language

Learning Competition held in conjunction with the 7th International Colloquium on

Grammatical Inference [246] generated experimental results for artificially generated

data. More recently Oates [187] studied k-reversible CFG, Nakamura presented an
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incremental CFG learning algorithm [179], while Petasis [197] and Javed [120] both

propose genetic algorithm approaches.

Non-terminally separated languages (NTS) a subclass of deterministic context-

free languages (where Type-3 ⊂ NTS ⊂ Type-2) have also received some attention.

Clark [44] recently examined PAC-learning of NTS languages. Another languages

class that cross-cuts the Chomsky hierarchy is the class of very simple grammars

proposed by Yokomori which contains elements of 0-reversible, left Szilard of linear,

regular (Type-3), and NTS languages. [282].

We did not discover attempts to directly infer context-sensitive (Type-1) or

recursively enumerable (Type-0) languages.

3.12 Chapter Summary

In this chapter we related the problem domain of dynamic protocol reverse

engineering from network traces to the algorithm domain of grammatical inference.

We introduced the Chomsky Hierarchy as a framework for discussing computational

learnability. Next, we developed the symbolic model and mathematical notation that

defines the characteristics of the algorithm domain. Finally, we discussed several

existing algorithmic and heuristic approaches to grammatical inference.
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IV. Experimental Design

The purpose of this chapter is to establish the methodology we will use to evaluate

existing algorithms for effectiveness and efficiency in the dynamic protocol reverse

engineering discipline to establish empirical evidence for the applicability of gram-

matical inference. A hybrid application of state-of-practice format recognition and

grammatical inference is presented which could support the use of formal techniques

to identify vulnerabilities in the specification, implementation, and deployed configu-

ration of network protocols. We outline the approaches we implement in our experi-

mental design and detail the results of format recovery and control flow recovery. The

main emphasis is on techniques useful for protocol control flow (δ) recovery.

4.1 Application Level Network Traces into Automata

Once again, we must address the following four issues:

• Network trace collection.

• Application level protocol data flow recovery.

• Protocol format (Σ) recovery.

• Protocol transition function (δ) recovery.

None of the methods discussed in Chapter II or Chapter III provide an au-

tomated means of naming or uniquely identifying the operators that make up the

vocabulary of an arbitrary protocol. For this reason we propose mining the protocols

operator packet formats from existing open sources and algorithmically generating an

automata representation. The choice of development tools and supporting toolkits

are explained in Appendix B.

4.2 Protocol Selection

Specifications for open protocols, such as SMTP and POP3 are available in

online specification documents. Using open protocols may seem counter-intuitive

but it allows us to establish benchmarks for comparison. For closed or proprietary
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protocols, open source projects such as Bro, jNetStream, and Wireshark embody

the collective reverse engineering efforts of their contributors [19, 48, 140]. We select

POP3 and SMTP because they are textually represented, synchronous, and the session

boundaries are easily detected.

An additional reason we selected POP3 is that with only 10,960 TCP connection

attempts on port 110 it is relatively low volume in relation to SMTP traffic with

126,545 TCP connection attempts. This allowed us to evaluate the proof of concept

software on a lower volume, but similarly structured, protocol during incremental

development.

4.3 Algorithm Selection

The problem domain we are considering has the following characteristics: we

do not know if a sample is positive or negative, we do not have access to an ora-

cle and we do not know if the languages under consideration are characterizable by

regular languages or subclasses of regular languages. By constraining the scope of

the problem to textually represented single-channel protocols using TCP transport

on IPv4 networks (specifically SMTP and POP3) we know that the grammars for the

protocol languages are specified English language and in a context-free format (Aug-

mented BNF). We select k-RI, a characterizable method, and k-TSSI, an incremental

characterizeable method for our proof of concept implementation.

4.4 Experimental Architecture

Our experimental architecture is simplified by the use of an existing data set and

limiting the study to POP3 and SMTP. Because we are using an existing data set the

network trace collection is already determined. Also, both POP3 and SMTP encapsu-

late a complete session within a single transport level TCP connection. This reduces

our overall experimental architecture to protocol format (Σ) recovery and transition

function (δ) recovery. Figure 4.1 shows the two components that we implemented.
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Figure 4.1: Experimental Architecture Overview - protocol
format (Σ) recovery is implemented in the “Sample and Alpha-
bet Construction” process. The low level implementation, called
flowtool, uses hand coded POP3 and SMTP command and reply
parsers to generate an alphabet and sample strings. Transition
function (δ) recovery is implemented in the “Automata Infer-
ence” process. The low level implementation, called flowinfer,
executes the inference algorithm on the alphabet and sample
strings to generate an automata representation of the protocols
control flow.
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4.4.1 Network Trace Collection. Network trace collection for IPv4 protocols

is well covered by others. For our experimental architecture we are using existing

network traces so the collection architecture was pre-determined by the data set under

investigation. The data set used is the IDEVAL data set discussed in Appendix A.

The trace collection architecture used to build the IDEVAL data set is described

in [151].

4.4.2 Application Level Protocol Data Flow Recovery. Both of the selected

protocol’s session structures are encapsulated in single TCP connections. This makes

extraction of application level session data flows equivalent to extracting TCP con-

nections. Using the assumption that protocol ports are accurate for the IDEVAL

data set we de-multiplex the raw data to extract TCP traffic on port 25 (SMTP)

and port 110 (POP3). Finally, we merge the trace files for SMTP and POP3 traffic

into a cumulative data file. The pre-processing workflow is detailed in Appendix A

Section A.4.2.

4.4.3 Protocol Format Recovery. After the traces were extracted we used

a tool we developed called flowtool to create alphabet and sample strings from the

cumulative protocol traces and weekly protocol traces.

We implemented hand coded operator parsers for our proof of concept imple-

mentation. Since we are examining open protocols we were able to use the speci-

fication documents and heuristics from Wireshark and Bro to implement operator

oriented parsers. We processed the network trace files data with our flowtool to ex-

tract the alphabet and sample strings. A low level description of flowtool is provided

in Appendix B Section B.5.1.

4.4.4 Protocol Transition Function Recovery. The selected inference algo-

rithm is executed against the alphabet and sample strings created by flowtool. Be-

cause, we are using linear string models to represent samples of behavior we can select

from a range of existing GI algorithm implementations. We select simple DFA for
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our target automata representation. Future efforts that conduct performance analysis

must further consider the choice of target automata representation so it is appropriate

for performance analysis. A low level description of flowinfer processing is provided

in Appendix B Section B.5.2.

4.5 Limiting Factors

There are practical and theoretical limitations to what we can expect to achieve.

Limiting factors include our session detection technique, choice of offline analysis, and

completeness of the IDEVAL data set.

4.5.1 Session Detection. Because we are attempting to recover the control

flow from only samples of protocol behavior we can not exactly replicate the state

transitions caused by the application stack of the distributed system. For example

the state transition of the SMTP sender from INITIAL to CONN ESTABLISHED

can be inferred by the TCP connection attempt but it is not part of the application

level protocol (see Figure 3.2). In fact, the initial state must be inferred by the state

of the underlying TCP connection and the final state determined by understanding

both the operators used internally and the state of the TCP connection.

To overcome this limitation flowtool adds TCP state operators to the alphabet

and sample strings. The operators added are: TCPopen, TCPclose, TCPreset, TCP-

timeout, and NIDSexit. Where TCPopen denotes the initiation of a TCP connection

and TCPclose the normal termination. The TCPreset operator denotes termination of

the TCP connection by a TCP RST while TCPtimeout denotes the TCP connection

has timed out. Finally, the NIDSexit operator denotes that libnids has encountered

the end of the trace file before the TCP connection terminated. This indicates that

data capture was terminated before the data flow was completely recorded in the

trace file. In other words, the trace file is incomplete.
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4.5.2 Online vs. Offline Analysis. Online analysis for traffic and protocol

characterization was conducted by [195,200,223]. Because we are using existing data

sets we will concentrate on a posteriori offline analysis instead of online analysis of

live execution traces. A summary of the capture file characteristics is provided in

Appendix A. The weekly file characteristics are in Section A.4.2. The characteristics

of the individual daily network capture are described in Section A.4.1.

4.5.3 Target Automata Representation. There are several representations

that we can consider for target automata representation. Two that already pro-

vide a basis for analytical backends are CFSM and MSC as previously discussed

in Section 2.8.2.2 and Section 2.8.2.1. Both the CFSM and MSC representations

have characteristics which must be considered before choosing one over the other.

CFSM have verification techniques including reachability and reverse reachability

analysis [196]. Deadlock detection techniques are also available [96]. MSC can also be

verified through process of realizability but only for bounded sizes [5]. Verifying an

unbounded MSC using LTL model checking is in general undecidable [5]. While MSC

might be useful for simple protocol automata the constraints on verifiability cause us

to favor CFSM representations for future efforts.

Although both CFSM and MSC models provide more powerful representation

we select DFA for simplicities sake in our proof of concept implementation.

4.5.4 Incomplete Data. Training data density will impact analysis [41]. We

can expect only partial correctness (approximate) inference results if the input does

not contain a representative sample of the protocol commands and replies. If the

data set does not contain a representative sample of the protocol under investigation

(i.e. the data is sparse or noisy) then the accuracy of the inference will be low.

Unfortunately, the SMTP and POP3 traffic in the IDEVAL data set does not fully

cover the allowed operators (Σ) in their respective specifications.
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Table 4.1: POP3 Command Alphabet Weekly Overview - The IDEVAL data set
does not exercise all operators allowed by the POP3 specification.

POP3 Command Alphabet Weekly Overview
Command Week 1 Week 2 Week 3 Week 4 Week 5 Total

STAT 255 236 395 303 321 1,510
DELE 402 400 752 409 455 2,418
USER 255 236 395 303 323 1,513
UIDL 0 0 0 0 0 0
QUIT 255 237 395 303 323 1,513
TOP 0 0 0 0 0 0

RETR 402 400 752 409 455 2,418
RSET 0 0 0 0 0 0
APOP 0 0 0 0 0 0
LIST 0 0 0 0 0 0
PASS 255 236 395 303 321 1,510
NOOP 0 0 0 0 0 0

4.5.4.1 POP3 Alphabet (Σ) Overview. For POP3 we discovered no

occurrences of the following operators in the cumulative data: APOP, LIST, NOOP,

RSET, TOP, UIDL. Table 4.1 summarizes the command/operator types observed in

the IDEVAL data set. The POP3 specification, unlike SMTP, requires all command

verbs be encoded in upper case [112]. The POP3 specification only describes two

reply codes +OK and -ERR of which we observed 20,559 +OK and 60 -ERR replies.

We did not parse the replies for information beyond the reply code.

4.5.4.2 SMTP Alphabet (Σ) Overview. For SMTP we discovered no

occurrences of the following operators in the cumulative data: EXPN, NOOP, SEND,

SOML, SAML, VRFY. The cumulative counts for discovered SMTP operators are

shown in Table 4.2. It must be noted that although the SMTP has a rigid syntax

the specification allows for all commands and replies to be in upper case, mixed case,

or lower case [113, Section 2.4]. As shown in Table 4.2 we observed occurrences of

lower case commands used by the mailbomb attack but no occurrences of mixed case

commands. The SMTP Reply alphabet occurrences are summarized in Table 4.4.
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Table 4.2: SMTP Cumulative Command Alphabet - The IDEVAL data set does
not exercise all operators allowed by the SMTP specification.

SMTP Cumulative Command Alphabet
Command Count Note

MAIL 118,029 Initiate a mail transaction
mail 1,672 Lower case MAIL

RSET 22 Abort current mail transaction.
DATA 117,899 Treat all lines as message body until data

is terminated by <CR><LF>.<CR><LF>

QUIT 114,986 Server must send an OK reply and close
the transmission channel

EHLO 112,131 Initiate session (extended format)
HELO 112,956 Initiate session
RCPT 186,548 Identifies an individual recipient; multiple

recipients are specified by multiple occur-
rences

rcpt 1,670 lower case RCPT
HELP 3 Server sends helpful information to the

client

4.5.5 Noisy Data. Our näıve assumption that the port used by TCP connec-

tion level traffic would indicate the type of encapsulated application level data proved

wrong. Because the IDEVAL data set is designed for intrusion detection system per-

formance evaluation it contains intentionally generated attack traffic. We consider

the intentional attack traffic to be noise for our purposes. The specific types of noise

that impact the alphabet and sample string creation are generated by mailbomb, tcp-

reset, and SYN flood attacks. To overcome noise generated by intentional misuse we

developed extrinsic filtering heuristics discussed in Section 4.6. The reader is referred

to [286] for detailed descriptions of the attacks. Figure 4.2 shows the command and

reply flow for an attack.

Accurate recognition of the protocol in the trace is essential to the accuracy of

the k-RI and k-TSSI inference. Both algorithms are sensitive to noise if we treat all

input samples as positive data. Because we are able to recognize the control flow of

non-compliant traffic for SMTP and POP3 we can automatically label each sample
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Table 4.3: SMTP Command Alphabet Weekly Overview - The IDEVAL data set
does not exercise all operators allowed by the SMTP specification. Note that the
Total column does not sum the Week columns due to incomplete TCP connection
traces in the weekly pcap files.

SMTP Command Alphabet Weekly Overview
Command Week 1 Week 2 Week 3 Week 4 Week 5 Total

HELO 18,602 20,044 30,957 21,318 22,896 112,956
. 19,391 20,765 32,152 22,365 23,961 117,777

HELP 0 0 0 2 1 3
SAML 0 0 0 0 0 0
MAIL 19,424 20,858 32,167 22,391 24,050 118,029
mail 0 753 0 905 0 1,672

SOML 0 0 0 0 0 0
EHLO 18,244 19,701 30,420 21,263 22,570 112,131
QUIT 18,666 20,155 31,206 21774 23,124 114,900
EXPN 0 0 0 0 0 0
RSET 0 6 0 15 1 22
VRFY 0 0 0 0 0 0
SEND 0 0 0 0 0 0
RCPT 27,812 31,688 50,543 36,882 40,484 186,548
rcpt 0 753 0 905 0 1,670

DATA 19,424 20,801 32,167 22,383 23,985 117,899
NOOP 0 0 0 0 0 0
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Table 4.4: SMTP Reply Alphabet Summary.

SMTP Reply Alphabet Summary
Reply Count Note

220 126,266 Indicates beginning of session
250 565,331 Indicates last operation completed success-

fully
221 104,798 Service closing transmission channel
354 122,396 Start mail input; end with

<CR><LF>.<CR><LF>

421 416 Service not available, closing transmission
channel

451 209 Requested action aborted: local error in
processing

500 107,073 Syntax error, command unrecognized
503 3 Bad sequence of commands
551 346 User not local; please try forward-path
552 2 Requested mail action aborted: exceeded

storage allocation

Table 4.5: SMTP Reply Alphabet Weekly Overview.

SMTP Reply Alphabet Weekly Overview
Reply Week 1 Week 2 Week 3 Week 4 Week 5 Total

551 0 58 0 63 225 346
503 0 0 0 2 1 3
552 0 0 0 1 1 2
421 0 0 0 215 201 416
220 19,424 22,865 32,170 25,096 27,573 126,266
221 15,931 19,828 27,345 21,607 20,087 104,798
354 19,424 22,800 32,167 24,881 23,985 122,396
451 0 0 0 106 103 209
500 17,422 18,887 29,208 20,207 21,416 107,073
250 88,118 101,824 149,971 113,555 114,504 565,331
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Figure 4.2: Wireshark Following Bad SMTP Session - the
session transcript contains asynchronous commands and replies
caused by a buffer overflow injection attack.
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as positive or negative. This allows us to ignore the negative samples during control

flow inference.

4.5.6 Connection Level Protocol Stack. The libnids library which we use to

handle TCP connection level packet reassembly and defragmentation is an additional

limiting factor. The library interprets TCP connection communication using a mod-

ified TCP/IP protocol stack from the Linux version 2.0.x kernel [275]. This means

that the application level data presented to our flowtool will be ordered in the same

manner. This problem is partially exposed by non-SMTP traffic on the SMTP port

during Weeks 4 and Weeks 5 of the IDEVAL data set.

4.6 Extrinsic Heuristics for Noise Filtering

We concentrated first on direct näıve implementation of our format extraction

algorithms followed by incremental refinement. Initial pre-processing runs contained

noise caused by intentional misuse of the protocols under consideration. We used the

output of the early runs to develop the filtering mechanism that automatically labeled

noise sample strings as negative samples. The following criteria are used to label a

sample as negative (noise):

Early Termination If the TCP connection terminates without application level pro-

tocol session termination the sample is marked negative. This means any sample

ending with TCPreset, TCPtimeout, or NIDSexit is marked negative.

No Application Data An empty TCP connection without application level traffic,

that is, a TCPopen followed immediately by TCPclose.

Asynchronous Command/Reply If the composite sample indicates asynchronous

communication the sample is marked negative. Asynchronous communication

is detected when a command follows a command, a reply follows a reply, or the

sample contains only replies or commands.
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Table 4.6: Buffer overflow attacks on SMTP server at 172.16.114.50 - The victim
server is described as an internal host named marx.eyrie.af.mil running Redhat 4.2
kernel 2.0.27 [286]. Details for the attacking hosts, 152.204.232 and 202.49.244.10,
are not provided with the IDEVAL data set.

Type Source IP:port Start End Sample

6 152.204.232.193:1941 923693227.228408 923693238.320118 TCPopen 220 250 250 250 503 HELP 500 221
TCPclose

32 202.49.244.10:1027 922715292.597701 922715294.666466 TCPopen 220 250 250 503 HELP 500 221
TCPclose

32 202.49.244.10.1027 922715290.284924 922715292.352719 TCPopen 220 250 250 503 HELP 500 221
TCPclose

Early termination was observed in 6,754 of 126,545 samples for SMTP traffic

and 8,192 of 10,960 samples in POP3 traffic. As shown in Table A.5 4,432 of the 6,754

SMTP early terminations were observed during week 5 of the IDEVAL data set. A

significant portion, 8,090, of the 8,192 POP3 early terminations are caused by TCP

resets during week 5 (See Table A.10 in Appendix A).

An asynchronous sample is generated by the mailbomb attack (sample Type-41

in Table A.9): TCPopen 220 mail 250 250 354 250 221 TCPclose. The mailbomb

SMTP communications are recognized as asynchronous because it terminates com-

mands with <CR> instead of a standards compliant <CR><LF>. The SMTP servers are

able to parse the non-compliant communication and pass back compliant replies that

are detected by flowtool.

Another example of asynchronous behavior is generate by a buffer overflow

attack, shown in Figure 4.2. Wireshark shows more detail than our flowtool because it

interprets <CR> terminated commands. The protocol parsers in flowtool only recognize

specification compliant <CR><LF> terminated commands. The attack generates one

sample of Type-6 and two samples of Type-32 during Week 4. The three samples are

summarized in Table 4.6.

While the SMTP specification does not require synchronous operation it does re-

quire synchronous communication. Reply codes indicate that processing is underway

and every command must generate exactly one reply [113, Section 4.2]. Asynchronous
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operation is specifically permitted during session termination where the server can

send a 421 reply asynchronously after receiving a QUIT [113, Section 3.9].

Like SMTP, the POP3 specification requires synchronous communication. The

POP3 specification requires an -ERR response to any unrecognized or invalid com-

mand and allows the server to automatically terminate a session after 10 minutes of

inactivity [112].

4.7 Inference Accuracy

The hypothesis automata might over-restrict or over-generalize the actual target

automaton of the system under consideration. If the hypothesis automata is over-

restrictive it will not contain states and transitions that are necessary to accurately

represent the target automaton. If the hypothesis automata over-generalizes it will

contain states and transitions that are not necessary to minimally represent the target

automaton. To accurately quantify the over-restrictiveness or over-generalization of

the inference algorithm we must know a priori the actual automaton of the protocol

under consideration. This is without regard to the performance characteristics of the

target automaton and language class membership.

One option is to synthesize an approximate target automaton directly from the

protocol specification. Unfortunately, the specifications for the specific protocols we

are considering, SMTP and POP3, are provided in Request For Comment (RFC)

documents as English language descriptions of the control flow and Augmented BNF

descriptions of the operator formats. This is problematic because the English language

descriptions of control flow are open to interpretation. Additionally, in general it is

undecidable if a context-free grammar is regular [180, Section 4]. While a regular

language (Type-3) is represetable as a context-free language (Type-2) the inverse does

not hold. Furthermore, transforming a context-free grammar that generates a regular

language into a FSA accepting the same language is, in general, unsolvable [180,

Section 4].
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Figure 4.3: SMTP Session Initiation - SMTP session initiation
starts with the TCP connection from the client to the server.
The server replies with 220 then the client attempts a EHLO
and if it fails HELO.

Because the protocols we are considering are described in English language

(control portion) and context-free Augmented BNF (data portion) we manually gen-

erate a specification “compliant” DFA representation of the subset of the specification

commands exercised by the IDEVAL data set for comparison purposes. The choice of

compliance instead of conformance is intentional. The widely accepted Internet proto-

cols described in RFC documents, unlike ISO OSI protocols, do not have a standards

body that provides test suites or other conformance measurement methodologies. We

limit our manually generated automata to the happy path of each protocol. That

is, we do not include all possible error conditions from each state only the results of

successful commands.

While the complete session for both protocols is encapsulated in a single TCP

connection they do provide for session initiation, transaction, and session termination

stages. The separate stages for SMTP are shown in Figure 4.3, Figure 4.4 and Fig-

ure 4.5. Our target automaton for SMTP has 19 states, 21 edges, 1 initial state, and

1 final state. The separate stages for POP3 are shown in Figure 4.6, Figure 4.7 and

Figure 4.8. Our target automaton for POP3 has 15 states, 15 edges, 1 initial state,

and 1 final state.

4.7.1 Inferred POP3 Control Flow. Figures for the automaton generated

for POP3 by k-RI and k-TSSI inference for k values of 1, 2 and 3 are shown in

Appendix C.
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Figure 4.4: SMTP Session Transaction - A transaction stage
is started when the client sends a MAIL command followed by
one or more RCPT and then a DATA command terminated with
a period on a line by itself.

Figure 4.5: SMTP Session Termination - Session termination
is initiated when the client sends a QUIT command to which the
server replies with a 250 or 221 then finally the TCP connection
should be closed.

Figure 4.6: POP3 Session Initiation - POP3 session initiation
starts with the TCP connection from the client to the server.
The server replies with +OK then the client attempts authenti-
cation with USER then PASS commands.

Figure 4.7: POP3 Session Transaction - After authentication
the transaction stage starts which allows LIST, RECV followed
by DELT, and STAT commands.
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Figure 4.8: POP3 Session Termination - The session ends
when the client sends a QUIT command and the server replies
with +OK and finally the TCP connection is closed.

Table 4.7: k-RI POP3 Composite Automaton Filtered.

k-RI POP3 Composite Automaton Filtered
k States Edges Initial Terminal

Target 15 15 1 1
PTA 163 162 1 18

1 15 15 1 1
2 16 17 1 1
3 18 19 1 1
4 20 21 1 1
5 22 22 1 2
6 23 24 1 2
7 25 26 1 2
8 27 28 1 2
9 29 29 1 3
10 30 31 1 3

The k-RI, with k = 1, inference produced an automaton that exactly matches

the target automaton for the subset of the protocol exercised in the IDEVAL data

set for both POP3. The k-RI inference over-generalized the target automaton at k

values of 2, 3, 4, and 5. The k-TSSI inference over-restricted the inference at k = 1,

and was equivalent to the k-RI inference for k values of 2, 3, 4, and 5. The number of

states and edges for POP3 k-RI inference is shown in Table 4.7 and k-TSSI inference

in Table 4.8.

4.7.2 Inferred SMTP Control Flow. Ambiguities in the specification are

exhibited in the inferred control flow. The SMTP RFC allows two different replies

to a QUIT command. In [113, Section 4.1.1.10] the specification states: “This com-
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Table 4.8: k-TSSI POP3 Composite Automaton Filtered.

k-TSSI POP3 Composite Automaton Filtered
k States Edges Initial Terminal

Target 15 15 1 1
1 10 15 1 1
2 16 17 1 1
3 18 19 1 1
4 20 21 1 1
5 22 22 1 2
6 23 24 1 2
7 25 26 1 2
8 27 28 1 2
9 29 29 1 3
10 30 31 1 3

Table 4.9: k-RI POP3 Composite Automaton Unfiltered.

k-RI POP3 Composite Automaton Unfiltered
k States Edges Initial Terminal

Target 15 15 1 1
PTA 205 204 1 30

1 47 55 1 4
2 56 59 1 11
3 60 61 1 13
4 62 63 1 13
5 64 64 1 14
6 65 66 1 14
7 67 68 1 14
8 69 70 1 14
9 71 71 1 15
10 72 73 1 15
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Table 4.10: k-TSSI POP3 Composite Automaton Unfiltered.

k-TSSI POP3 Composite Automaton Unfiltered
k States Edges Initial Terminal

Target 15 15 1 1
1 14 31 1 4
2 32 38 1 11
3 39 41 1 13
4 42 44 1 13
5 45 46 1 14
6 47 49 1 14
7 50 52 1 14
8 53 55 1 14
9 56 57 1 15
10 58 60 1 15

mand specifies that the receiver MUST send an OK reply, and then close the trans-

mission channel“. In [113, Section 4.2.2] 221 is defined as: 221 <domain> Service

closing transmission channel. A three digit reply starting with 2 indicates pos-

itive complete, the second digit 2 indicates a transmission channel and 5 indicates

status of the receiver mail system, and the third digit is used to indicate finer grain

answers [113, Section 4.2.1]. The lack of clarity in the specification is reflected in the

data set. The server named hume with IP number 172.16.112.100 replies to QUIT

commands with 250 while others reply with 221.

The number of states and edges for SMTP k-RI inference is shown in Table 4.11

and k-TSSI inference in Table 4.12.

4.8 Sensitivity to Noise

The selected inference algorithms are directly sensitive to noise. Any sample

string created by our format recognition that is not a member of the protocol under

consideration will cause over-generalization of the target automaton.

One SMTP composite sample type is of particular interest because of its impact

result of k-RI inference. Type-41, with 3 occurrences contains a series of valid com-
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Table 4.11: k-RI SMTP Composite Automaton Filtered.

k-RI SMTP Composite Automaton Filtered
k States Edges Initial Terminal

Target 19 21 1 1
PTA 454 453 1 36

1 60 68 1 1
2 69 76 1 2
3 77 84 1 3
4 85 92 1 4
5 93 101 1 5
6 102 111 1 6
7 112 123 1 6
8 124 136 1 7
9 137 150 1 8
10 151 165 1 9

Table 4.12: k-TSSI SMTP Composite Automaton Filtered.

k-TSSI SMTP Composite Automaton Filtered
k States Edges Initial Terminal

Target 19 21 1 1
1 11 18 1 1
2 19 26 1 2
3 27 36 1 4
4 37 49 1 5
5 50 65 1 7
6 66 82 1 9
7 83 97 1 13
8 98 111 1 16
9 112 124 1 19
10 125 134 1 22
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Table 4.13: k-RI SMTP Composite Automaton Unfiltered.

k-RI SMTP Composite Automaton Unfiltered
k States Edges Initial Terminal

Target 19 21 1 1
PTA 587 586 1 99

1 85 131 1 4
2 133 155 1 30
3 157 172 1 40
4 175 187 1 45
5 188 198 1 49
6 199 210 1 51
7 211 226 1 51
8 227 244 1 55
9 245 261 1 58
10 262 286 1 60

Table 4.14: k-TSSI SMTP Composite Automaton Unfiltered.

k-TSSI SMTP Composite Automaton Unfiltered
k States Edges Initial Terminal

Target 19 21 1 1
1 28 90 1 4
2 91 115 1 30
3 116 132 1 40
4 133 146 1 45
5 147 158 1 49
6 159 170 1 51
7 171 186 1 51
8 187 204 1 55
9 205 221 1 58
10 222 247 1 60
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Table 4.15: k-RI SMTP Composite Automaton Type-41 removed - k-RI inference
results improve when 3 occurrences of sample Type-41 are removed.

k-RI SMTP Composite Automaton Type-41 removed
k States Edges Initial Terminal

Target 19 21 1 1
1 19 26 1 1
2 27 33 1 2
3 34 40 1 3
4 41 47 1 4
5 48 55 1 5
6 56 64 1 6
7 65 75 1 6
8 76 87 1 7
9 88 100 1 8
10 101 114 1 9

mand/reply pairs that are reset by the RSET command (See Appendix A Table A.9).

The k-RI algorithm is unable to reduce the sequence resulting in over-generalization.

If we remove the 3 samples marking them as negative samples k-RI inference results

improve (See Table 4.15 and Table 4.11. On the other hand, k-TSSI inference is not

impacted by Type-41 samples.

4.9 Algorithm Runtimes

We executed the k-RI and k-TSSI algorithms agains the composite samples

to develop an approximate understanding of the runtime. The runtimes presented

are specific to the IDEVAL data set and the execution environment used for analysis.

They should NOT be interpreted as a general performance indicator. Both algorithms

were executed 250 times against the composite samples for k values 1 to 5. The

executables were compiled with GCC version 3.3.6 with optimizations enabled (-O3).

The environment used was openSUSE version 10.3 running on a Intel Core 2 Duo

T2500 operating at 2.0 GHz based computer. The runtimes reported are the average

of 250 executions.
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Table 4.16: POP3 Composite Runtimes - runtimes are in seconds.

POP3 Composite Runtimes
k k-RI k-TSSI
1 0.43084 0.0258
2 0.4074 0.01652
3 0.38852 0.01792
4 0.1558 0.01828
5 0.49132 0.0196

Table 4.17: SMTP Composite Runtimes - runtimes are in seconds.

SMTP Composite Runtimes
k k-RI k-TSSI
1 2.73996 0.02196
2 3.02336 0.019
3 4.20492 0.0204
4 4.52704 0.02156
5 4.7618 0.0226

4.10 Chapter Summary

We presented a hybrid application of state-of-practice format recognition and

grammatical inference of protocol control flow which could support the use of for-

mal techniques to identify vulnerabilities in the specification, implementation, and

deployed configuration of network protocols. We outlined our experimental design

and detailed the results of format recovery and control flow recovery for POP3 and

SMTP protocol traffic from the IDEVAL 1999 data set.
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V. Analysis and Results

Dynamic protocol reverse engineering is a challenging problem that is unlikely to yield

significant progress without research across a broad multi-disciplinary range of topics.

Here we present experimental results of our proof of concept implementation and our

conclusions. Finally we propose areas for future research.

5.1 Conclusions

While we have demonstrated the applicability of two grammatical inference al-

gorithms for two specific protocols we have not established generality of the approach.

5.1.1 Experimental Results. The k-RI algorithm provided accurate inference

of POP3 control flow with k = 1 on filtered data. The k-RI algorithm approximated

our target automaton for SMTP with k = 1 when we removed samples that contained

operators not included in our target automaton. k-TSSI over-restricted POP3 traffic

with k = 1 and overgeneralized for other values of k. k-TSSI also over-restricted

SMTP traffic for k = 1 and overgeneralized for other values of k.

5.1.2 Investigative Questions Answered. The focus of this research was the

evaluation of existing Grammatical Inference algorithms for the dynamic protocol

reverse engineering domain. We examined the following questions with the following

results:

[IQ1] What information is necessary to reverse engineer the control portion of

application layer protocols from data flows?

A network trace collection architecture must be constructed that is able to

accurately record traces of the protocol traffic with out loosing samples. Next, we

must have a means to reconstruct the application session. Finally, we must have

access to the format of protocol operators or be able to derive the operator format.

[IQ2] Given the proven [7,95] difficulty of inferring finite automata from positive

samples only, are there GI approaches that are appropriate for reverse engineering
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automata representations of the control portion of application layer protocols from

data flows?

For the specific protocols we examined the answer is yes within limits of data

completeness. Both k-RI and k-TSSI inference were able to infer control flow that

fit the target automata for POP3 and closely approximated the target automata for

SMTP data observed in the IDEVAL data set. Unfortunately, the IDEVAL data

set does not completely exercise either protocol resulting in incomplete automata.

Finally, we have not established the generality of the approach and must leave this

as an open question.

5.2 Future Work

This thesis presented a grammatical inference approach to reverse engineering

models of protocol control flow from network traces. This is an initial step in gener-

ating tactical cyber weapons that target computer network systems. Future research

could evaluate the following areas:

1. Model recovery of other classes of protocols such as: asynchronous, binary rep-

resented, multi-connection and multi-channel protocols from network traces.

2. Model recovery of higher order automata such as context-free grammars, context-

sensitive grammars.

3. Model recovery from other families of protocols. While we concentrated on

a subset of application level protocols on IPv4 networks similar experimental

analysis could be conducted against other classes of protocols, such as SCADA

or SS7, for vulnerability assessment and generation of targeted effects.

4. Online, live, and incremental model recovery. The experimental structure evalu-

ated in this thesis requires the full (non-incremental) construction of the sample

space. The k-RI and k-TSSI algorithms evaluated could support incremental

modifications.
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5. Formal analysis of automatically generated models 1. Ammons presents formal

analysis of specifications automatically generated from observations of instru-

mented applications [6]. Dallmeier examines the discovery of normal program

behavior [59]. Bishop [30] studied automated specification discovery at the

packet level of granularity. It could be beneficial to examine automatically cre-

ated protocol specifications for implementation issues that allow deliberately

crafted packets that lead a protocol parser to conditions that are unexpected.

6. Consoldiation of the well known grammatical inference algorithms into an open

source analysis framework like Weka [274] or Rapidminer [171], or modeling

framework like Ptolemy [144] might benefit the machine learning community.

The Mical [213] and Learnlib [211] projects present frameworks which implement

several GI algorithms. Algorithms could be gleaned from other research efforts

(e.g. [46, 169]).

7. Examine other automated or semi-automated approaches to discovering protocol

defects such as RCE or randomized boundary testing 2.

8. Examine cryptographic protocol verification methodologies for formalisms that

can be adopted to protocol reverse engineering in general. Dongxi [66], for exam-

ple, proposes an automatic attack construction algorithm to discover potential

attacks on cryptographic security protocols.

9. Further examine meta-heuristic techniques such as tabu search or randomized

techniques like genetic algorithms for their applicability to inference of protocol

control flow.

10. Construction of a publicly releaseable research data set containing contempo-

rary network traffic. Limitations of the IDEVAL data set used in this research

are discussed in Appendix A. It would be beneficial to the network research com-

1 [67, 273] provide overviews of formal analysis.
2Commonly referred to as fuzzing [249, Chapter 14] and [175,188].
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munity as a whole to develop a data set which addresses the concerns presented

by [166].

11. Formalize results of inference mechanisms. While we presented limited empirical

evidence that grammatical inference algorithms could be applied to the problem

domain under consideration we did not provide formal proof of the performance

characteristics.

12. Examine other language models besides linear systems built from strings. [224]

presents extensions of formal languages for multi-dimensional objects such as

trees and graphs or Clark’s planar languages [45,46].

5.3 Summary

Ultimately, the grammatical inference approach presented only provides infor-

mation that can assist an informed human analyst in protocol reverse engineering. The

analyst will still have to apply common heuristics (e.g. identifying signpost values,

block structure inference, or windowed entropy). We have provided limited empir-

ical evidence that our grammatical inference approach to dynamic protocol reverse

engineering is applicable to the protocol reverse engineering problem domain. This

approach to control flow recovery should be further developed to support automated

analysis of inferred control flow for performance characteristics.
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Appendix A. Data

This appendix describes the data set used in this thesis and provides samples of the

application level protocol traces under consideration.

A.1 Natural Data Sets

The Internet Traffic Archive (ITA) is a moderated repository to support widespread

access to traces of Internet network traffic, sponsored by ACM SIGCOMM [139]. A

data set was previously offered by the Passive Measurement and Anallysis (PMA)

project of NLANR and now by CADIA provides header traces from OC3 through

OC48 speeds [167]. Unfortunately, the ITA and NLANR/PAM data sets were to nar-

rowly focused for our research efforts and did not contain application level protocol

traces.

A.2 Artificial Data Sets

While the ITA and NLANR/PAM data sets draw from real world traffic we

also considered the use of artificial data sets. Various authors have proposed or

constructed data sets of network traces appropriate for their area of studies [58,215].

The LARIAT system [222] was considered for generation of application level protocol

traces. Regrettably, we were not able to gain access to a working LARIAT system

early enough to generate appropriate data sets.

A.3 DARPA Intrusion Detection Evaluation data set

The DARPA Intrusion Detection Evaluation data set is available from the Mas-

sachusetts Institute of Technology (MIT) Lincoln Laboratory. The data set was pro-

duced by the Information Systems Technology (IST) Group of MIT Lincoln Labo-

ratory under Defense Advanced Research Projects Agency (DARPA) and Air Force

Research Laboratory (AFRL) sponsorship [286]. The data set provides examples of

attacks and background traffic. More importantly for this research it provides sim-

ulation of user generated traffic of ASCII text represented single-channel POP3 and
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SMTP protocol traffic. POP3 traffic involved internal users accessing external mail

servers [151]. SMTP traffic was comprised of individual, group and global email mes-

sages to and from all simulated users [151]. Like Mahoney we will refer to the data

set as IDEVAL [155]. IDEVAL is both publicly available and widely used in research

efforts.

A.3.1 IDEVAL Data Quality. While the IDEVAL is widely used for evalu-

ation of intrusion detection algorithms and systems there has been some concern ex-

pressed about how accurately the data set represents more contemporary TCP/IP net-

work activity [155]. In his assessment McHugh even questions the collection method-

ology, attack taxonomy and low traffic rates (among other characteristics) [166]. Ma-

honey and Chan analyzed the data set for simulation artifacts concluding that the

data set lacked real-world ranges in the packet parameters (i.e. TTL, TCP flags, TCP

windows size) [155]. Furthermore the data set lacks real-world traffic crud caused by

incorrect implementations of the TCP/IP protocols [119,155].

A.3.2 IDEVAL Data Relevance. The IDEVAL network configuration does

not reflect contemporary hardware, software, or operating systems. Operating sys-

tems used include MacOS, Redhat 5.0 kernel 2.0.32, Redhat 5.2 kernel 2.0.36, Solaris

2.5.1, Solaris 2.6, SunOS 4.1.4, Windows 3.1, Windows 95, and Windows NT 4.0 build

1381 Service Pack 1 [286]. None of these operating systems are currently authorized

for use in DOD networks. Dialects of network protocols are manifested in implemen-

tation specific interpretations and extensions of protocol specifications. Given, the

dated OS protocol stacks used to generate traffic the IDEVAL data set might not

precisely reflect current network traffic. Additionally, the topology of the network,

shown in Figure A.1, is not representative of contemporary networks.

A.4 Data Files

The characteristics of the data files used are summarized in A.1 and A.2. The

characteristics merged data are summarized in Table A.3 and Table A.4. The infor-
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Figure A.1: IDEVAL1999 Network Topology [286].

mation was generated using the capinfos utility that accompanies Wireshark. The

capinfo utility reported errors for the following files:

wk5.day2.outside.pcap An error occurred after reading 2,558,481 packets. Less

data was read than expected.

wk5.day3.outside.pcap An error occurred after reading 1,385,130 packets. Less

data was read than expected.

wk5.day4.outside.pcap An error occurred after reading 2,308,273 packets. Less

data was read than expected.

wk5.day5.outside.pcap An error occurred after reading 2,651,589 packets. Less

data was read than expected.

Additionally, the file wk2.day4.inside.pcap was not included in the data set we

used.

A.4.1 Complete Data File set.
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Table A.1: IDEVAL Data Files Size - Size columns are measured in bytes. The Data Rate

is measured in bytes/second.

IDEVAL Data Files Size

Name Packets File Size Data Size Data Rate (bytes/s) Avg Size

Week 1

wk1.day1.inside.pcap 1,492,331 341,027,537 317,150,217 4003.90 212.52

wk1.day1.outside.pcap 1,362,869 323,832,360 302,026,432 3813.47 221.61

wk1.day2.inside.pcap 1,237,119 341,401,548 321,607,620 4060.92 259.96

wk1.day2.ouside.pcap 1,157,328 325,395,277 306,878,005 3874.78 265.16

wk1.day3.inside.pcap 1,726,319 385,142,370 357,521,242 4514.33 207.10

wk1.day3.outside.pcap 1,616,713 368,776,477 342,909,045 4329.76 212.10

wk1.day4.inside.pcap 1,947,815 552,903,806 521,738,742 6588.39 267.86

wk1.day4.outside.pcap 1,807,060 517,042,040 488,129,056 6163.26 270.12

wk1.day5.inside.pcap 1,483,419 308,604,831 284,870,103 3596.96 192.04

wk1.day5.outside.pcap 1,349,635 284,774,805 263,180,621 3323.00 195.00

Week 2

wk2.day1.inside.pcap 1,753,377 401,046,958 372,992,902 4709.84 212.73

wk2.day1.outside.pcap 1,337,777 329,322,084 307,917,628 3885.50 230.17

wk2.day2.inside.pcap 1,585,120 400,104,805 374,742,861 5462.75 236.41

wk2.day2.outside.pcap 1,454,035 375,798,588 352,534,004 5154.17 242.45

wk2.day3.inside.pcap 1,011,149 169,156,383 152,977,975 1931.66 151.29

wk2.day3.outside.pcap 888,139 145,698,730 131,488,482 1660.24 148.05

wk2.day4.outside.pcap 1,412,645 330,867,682 308,285,665 3892.62 218.23

wk2.day5.inside.pcap 1,362,422 291,511,690 269,712,914 3405.61 197.97

wk2.day5.outside.pcap 1,252,412 273,295,370 253,256,754 3197.75 202.22

Week 3

wk3.day1.inside.extra.pcap 1,679,048 233,849,898 206,985,106 2709.36 123.28

wk3.day1.inside.pcap 2,106,744 468,024,334 434,316,406 5484.02 206.16

wk3.day1.outside.extra.pcap 1,191,358 150,014,497 130,952,745 1712.91 109.92

wk3.day1.outside.pcap 1,542,614 371,123,625 346,441,777 4374.34 224.58

wk3.day2.inside.extra.pcap 2,152,964 460,059,143 425,611,695 5387.50 197.69

wk3.day2.inside.pcap 1,831,648 414,885,615 385,579,223 4868.70 210.51

wk3.day2.outside.extra.pcap 1,822,764 403,648,042 374,483,794 4728.46 205.45

wk3.day2.outside.pcap 1,374,431 334,280,722 312,289,802 3943.11 227.21

wk3.day3.inside.pcap 1,849,753 558,991,635 529,395,563 6684.58 286.20

wk3.day3.ouside.pcap 1,760,859 540,109,859 511,936,091 6464.05 290.73

wk3.day3.outside.extra.pcap 2,453,966 766,843,295 727,579,815 9186.76 296.49

wk3.day4.inside.pcap 1,559,156 260,180,866 235,234,346 3235.69 150.87

wk3.day4.outside.pcap 1,096,660 183,158,763 165,612,179 2277.96 151.02

wk3.day5.inside.pcap 1,635,425 513,197,145 487,030,321 7939.98 297.80

Week 4

wk4.day1.inside.pcap 1,647,573 285,359,948 258,998,756 3270.39 157.20

wk4.day1.outside.pcap 1,279,543 216,724,852 196,252,140 2478.00 153.38

wk4.day2.outside.pcap 1,309,242 301,682,860 280,734,964 3544.68 214.43

wk4.day3.inside.pcap 1,766,074 399,300,104 371,042,896 4685.55 210.09

wk4.day3.outside.pcap 1,315,032 319,141,540 298,101,004 3764.00 226.69

wk4.day4.inside.pcap 2,356,503 519,183,790 481,479,718 6080.20 204.32

wk4.day4.outside.pcap 1,635,267 399,619,424 373,455,128 4715.46 228.38

wk4.day5.inside.pcap 1,945,538 368,018,512 336,889,880 4254.06 173.16

wk4.day5.outside.pcap 1,318,345 262,141,472 241,047,928 3043.60 182.84

Week 5

wk5.day1.inside.pcap 2,291,319 477,303,765 440,642,637 5564.14 192.31

wk5.day1.outside.pcap 1,376,598 344,257,810 322,232,218 4068.72 234.08

wk5.day2.inside.pcap 3,404,824 524,283,553 469,806,345 5932.00 137.98

wk5.day3.inside.pcap 2,087,942 491,350,468 457,943,372 5782.72 219.33

Continued on next page
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Table A.1 – continued from previous page

Name Packets File Size (bytes) Data Size (bytes) Data Rate (bytes/s) Avg Size

wk5.day4.inside.pcap 3,201,381 826,909,800 775,687,680 9794.98 242.30

wk5.day5.inside.pcap 3,393,918 1,093,706,789 1,039,404,077 13124.91 306.25

Table A.2: IDEVAL Data Files Time - Duration is in seconds. Start and End are specified

in Unix epoch time format. That is, they are specified in seconds since 00:00:00 UTC on

January 1, 1970.

IDEVAL Data Files Time

Name Duration Start Time Start End Time End

Week 1

wk1.day1.inside.pcap 79210.265570 Mon Mar 1 08:00:05 1999 920293205 Tue Mar 2 06:00:16 1999 920372416

wk1.day1.outside.pcap 79199.855007 Mon Mar 1 08:00:02 1999 920293202 Tue Mar 2 06:00:02 1999 920372402

wk1.day2.inside.pcap 79195.839551 Tue Mar 2 08:00:01 1999 920379601 Wed Mar 3 05:59:57 1999 920458797

wk1.day2.ouside.pcap 79198.903380 Tue Mar 2 08:00:02 1999 920379602 Wed Mar 3 06:00:01 1999 920458801

wk1.day3.inside.pcap 79196.915752 Wed Mar 3 08:00:01 1999 920466001 Thu Mar 4 05:59:58 1999 920545198

wk1.day3.outside.pcap 79198.122434 Wed Mar 3 08:00:03 1999 920466003 Thu Mar 4 06:00:01 1999 920545201

wk1.day4.inside.pcap 79190.607508 Thu Mar 4 08:00:01 1999 920552401 Fri Mar 5 05:59:52 1999 920631592

wk1.day4.outside.pcap 79199.798770 Thu Mar 4 08:00:03 1999 920552403 Fri Mar 5 06:00:02 1999 920631602

wk1.day5.inside.pcap 79197.368381 Fri Mar 5 08:00:01 1999 920638801 Sat Mar 6 05:59:58 1999 920717998

wk1.day5.outside.pcap 79199.788688 Fri Mar 5 08:00:02 1999 920638802 Sat Mar 6 06:00:02 1999 920718002

Week 2

wk2.day1.inside.pcap 79194.416159 Mon Mar 8 08:00:00 1999 920898000 Tue Mar 9 05:59:54 1999 920977194

wk2.day1.outside.pcap 79247.843302 Mon Mar 8 08:00:01 1999 920898001 Tue Mar 9 06:00:49 1999 920977249

wk2.day2.inside.pcap 68599.660226 Tue Mar 9 08:00:01 1999 920984401 Wed Mar 10 03:03:21 1999 921053001

wk2.day2.outside.pcap 68397.777830 Tue Mar 9 08:00:01 1999 920984401 Wed Mar 10 02:59:59 1999 921052799

wk2.day3.inside.pcap 79194.939151 Wed Mar 10 08:00:02 1999 921070802 Thu Mar 11 05:59:57 1999 921149997

wk2.day3.outside.pcap 79198.605427 Wed Mar 10 08:00:03 1999 921070803 Thu Mar 11 06:00:01 1999 921150001

wk2.day4.outside.pcap 79197.414198 Thu Mar 11 08:00:03 1999 921157203 Fri Mar 12 06:00:00 1999 921236400

wk2.day5.inside.pcap 79196.548757 Fri Mar 12 08:00:01 1999 921243601 Sat Mar 13 05:59:58 1999 921322798

wk2.day5.outside.pcap 79198.411013 Fri Mar 12 08:00:02 1999 921243602 Sat Mar 13 06:00:00 1999 921322800

Week 3

wk3.day1.inside.extra.pcap 76396.316028 Mon Mar 22 08:00:02 1999 922107602 Tue Mar 23 05:13:19 1999 922183999

wk3.day1.inside.pcap 79196.697590 Mon Mar 15 08:00:01 1999 921502801 Tue Mar 16 05:59:58 1999 921581998

wk3.day1.outside.extra.pcap 76450.306697 Mon Mar 22 08:00:03 1999 922107603 Tue Mar 23 05:14:14 1999 922184054

wk3.day1.outside.pcap 79198.682477 Mon Mar 15 08:00:02 1999 921502802 Tue Mar 16 06:00:00 1999 921582000

wk3.day2.inside.extra.pcap 78999.815637 Tue Mar 23 08:00:02 1999 922194002 Wed Mar 24 05:56:42 1999 922273002

wk3.day2.inside.pcap 79195.474873 Tue Mar 16 08:00:00 1999 921589200 Wed Mar 17 05:59:55 1999 921668395

wk3.day2.outside.extra.pcap 79197.824660 Tue Mar 23 08:00:00 1999 922194000 Wed Mar 24 05:59:58 1999 922273198

wk3.day2.outside.pcap 79198.800883 Tue Mar 16 08:00:01 1999 921589201 Wed Mar 17 06:00:00 1999 921668400

wk3.day3.inside.pcap 79196.540665 Wed Mar 17 08:00:01 1999 921675601 Thu Mar 18 05:59:58 1999 921754798

wk3.day3.ouside.pcap 79197.391311 Wed Mar 17 08:00:03 1999 921675603 Thu Mar 18 06:00:00 1999 921754800

wk3.day3.outside.extra.pcap 79198.759438 Wed Mar 24 08:00:01 1999 922280401 Thu Mar 25 06:00:00 1999 922359600

wk3.day4.inside.pcap 72699.913792 Thu Mar 18 08:00:03 1999 921762003 Fri Mar 19 04:11:42 1999 921834702

wk3.day4.outside.pcap 72702.007896 Thu Mar 18 08:00:02 1999 921762002 Fri Mar 19 04:11:44 1999 921834704

wk3.day5.inside.pcap 61338.967582 Fri Mar 19 08:00:02 1999 921848402 Sat Mar 20 01:02:21 1999 921909741

Week 4

wk4.day1.inside.pcap 79195.171194 Mon Mar 29 08:00:02 1999 922712402 Tue Mar 30 05:59:57 1999 922791597

wk4.day1.outside.pcap 79197.929511 Mon Mar 29 08:00:03 1999 922712403 Tue Mar 30 06:00:01 1999 922791601

wk4.day2.outside.pcap 79198.923458 Tue Mar 30 08:00:02 1999 922798802 Wed Mar 31 06:00:01 1999 922878001

wk4.day3.inside.pcap 79188.757556 Wed Mar 31 08:00:09 1999 922885209 Thu Apr 1 05:59:57 1999 922964397

Continued on next page
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Table A.2 – continued from previous page

Name Duration Start Time Start End Time End

wk4.day3.outside.pcap 79197.915230 Wed Mar 31 08:00:02 1999 922885202 Thu Apr 1 06:00:00 1999 922964400

wk4.day4.inside.pcap 79188.179768 Thu Apr 1 08:00:01 1999 922971601 Fri Apr 2 05:59:49 1999 923050789

wk4.day4.outside.pcap 79198.095408 Thu Apr 1 08:00:03 1999 922971603 Fri Apr 2 06:00:01 1999 923050801

wk4.day5.inside.pcap 79192.491900 Fri Apr 2 08:00:00 1999 923058000 Sat Apr 3 05:59:53 1999 923137193

wk4.day5.outside.pcap 79198.366773 Fri Apr 2 08:00:01 1999 923058001 Sat Apr 3 06:00:00 1999 923137200

Week 5

wk5.day1.inside.pcap 79193.374094 Mon Apr 5 08:00:02 1999 923313602 Tue Apr 6 05:59:56 1999 923392796

wk5.day1.outside.pcap 79197.375906 Mon Apr 5 08:00:03 1999 923313603 Tue Apr 6 06:00:00 1999 923392800

wk5.day2.inside.pcap 79198.608846 Tue Apr 6 08:00:00 1999 923400000 Wed Apr 7 05:59:58 1999 923479198

wk5.day3.inside.pcap 79191.650256 Wed Apr 7 08:00:00 1999 923486400 Thu Apr 8 05:59:52 1999 923565592

wk5.day4.inside.pcap 79192.349066 Thu Apr 8 08:00:00 1999 923572800 Fri Apr 9 05:59:53 1999 923651993

wk5.day5.inside.pcap 79193.248408 Fri Apr 9 08:00:04 1999 923659204 Sat Apr 10 05:59:58 1999 923738398

A.4.2 Merged Data File set. The choice of offline analysis allowed us to

filter the raw IDEVAL data set to include only the POP3 and SMTP protocol traffic.

We used the command line interface to Wireshark, called tshark, to filter out the

protocols under consideration from each of the daily capture files. For example:

tshark -R "tcp.port eq 25 or tcp.port eq 110"

-r <input file name>

-w <output file name>

extracts SMTP and POP3 traffic from the <input file name> and writes it to the

<output file name>.

Next we used mergecap, a command line utility also distributed with Wireshark,

to merge the filtered data into weekly summary files.

mergecap -F libpcap -w wk1.pcap ‘find . -iname "wk1.*.filtered.pcap"‘

Finally, we merged the weekly files into a cumulative trace file named total.pcap.

The characteristics merged data are summarized in Table A.3 and Table A.4.

The pre-processing workflow is shown in Figure A.2. Note that the cumulative alpha-

bet is input into weekly sample extractions to ensure that the sample strings produced

use a common alphabet.
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Figure A.2: Experimental Architecture Pre-Processing.
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Table A.3: Merged Data Files Size - Size columns are measured in bytes. The Data Rate

is measured in bytes/second.

Merged Data Files Size

Name Packets File Size Data Size Data Rate (bytes/s) Avg Size

wk1.pcap 619,215 107,546,006 97,638,542 230.02 157.68

wk2.pcap 640,110 107,405,071 97,163,287 228.85 151.79

wk3.pcap 899,064 156,829,234 142,444,186 170.55 158.44

wk4.pcap 708,272 124,405,656 113,073,280 266.94 159.65

wk5.pcap 897,033 150,206,030 135,853,478 328.73 151.45

Table A.4: Merged Data Files Time - Duration is in seconds. Start and End are specified

in Unix epoch time format. That is, they are specified in seconds since 00:00:00 UTC on

January 1, 1970.

Merged Data Files Time

Name Duration Start Time Start End Time End

wk1.pcap 424481.648063 Mon Mar 1 08:00:40 1999 920293240 Sat Mar 6 05:55:22 1999 920717722

wk2.pcap 424565.061365 Mon Mar 8 08:00:04 1999 920898004 Sat Mar 13 05:56:09 1999 921322569

wk3.pcap 835181.388736 Mon Mar 15 08:00:18 1999 921502818 Wed Mar 24 23:59:59 1999 922337999

wk4.pcap 423583.955343 Mon Mar 29 08:00:02 1999 922712402 Sat Apr 3 05:39:46 1999 923135986

wk5.pcap 413264.972580 Mon Apr 5 08:00:31 1999 923313631 Sat Apr 10 02:48:16 1999 923726896
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Table A.5: SMTP TCP Connection Summary - Note that like POP3 the weekly
pcap files do not correctly contain the entire TCP connection for several of the SMTP
connections. The Total column is NOT the sum of the row.

SMTP TCP Connection Summary
TCP Operation Week 1 Week 2 Week 3 Week 4 Week 5 Total Percent

TCPopen 19,424 22,868 32,180 25,155 27,783 126,545 100
TCPclose 18,687 22,172 31,212 24,398 23,351 119,791 25.25
TCPreset 5 9 60 253 3,730 3,957 73.81

TCPtimeout 0 0 146 0 424 2,519 0.07
NIDSexit 732 687 762 504 278 278 0.85

Total termination conditions: 126,545

A.5 SMTP Sample Data

Table A.7: Data Summary: SMTP Command Alphabet total.pcap

Data Summary: SMTP Command Alphabet total.pcap

Type Count Percent Label Sample

1 1 0.000790233 + TCPopen EHLO MAIL RCPT DATA . TCPclose

2 1 0.000790233 + TCPopen EHLO MAIL RCPT(31) QUIT TCPclose

3 1 0.000790233 + TCPopen HELO MAIL RCPT QUIT TCPclose

4 1 0.000790233 + TCPopen HELO MAIL RCPT(6) DATA . QUIT TCPclose

5 1 0.000790233 + TCPopen HELO MAIL RCPT(7) DATA . QUIT TCPclose

6 1 0.000790233 - TCPopen EHLO HELO MAIL RCPT TCPtimeout

7 1 0.000790233 - TCPopen EHLO HELO MAIL RCPT(11) DATA TCPtimeout

8 1 0.000790233 - TCPopen EHLO HELO MAIL RCPT(2) DATA . NIDSexit

9 1 0.000790233 - TCPopen EHLO HELO MAIL RCPT(20) TCPtimeout

10 1 0.000790233 - TCPopen EHLO HELO TCPtimeout

11 1 0.000790233 - TCPopen EHLO MAIL RCPT DATA . TCPreset

12 1 0.000790233 - TCPopen EHLO MAIL RCPT DATA . TCPtimeout

13 1 0.000790233 - TCPopen EHLO MAIL RCPT DATA NIDSexit

14 1 0.000790233 - TCPopen EHLO MAIL TCPtimeout

15 1 0.000790233 - TCPopen EHLO TCPtimeout

16 1 0.000790233 - TCPopen HELO MAIL RCPT DATA . QUIT NIDSexit

17 1 0.000790233 - TCPopen HELO MAIL TCPtimeout

18 1 0.000790233 - TCPopen HELO TCPtimeout

19 2 0.00158047 + TCPopen EHLO HELO MAIL RCPT(7) DATA . QUIT TCPclose

20 2 0.00158047 + TCPopen EHLO MAIL RCPT(2) QUIT TCPclose

21 2 0.00158047 + TCPopen EHLO MAIL RCPT(4) QUIT TCPclose

22 2 0.00158047 - TCPopen EHLO HELO MAIL RCPT DATA . QUIT TCPtimeout

23 2 0.00158047 - TCPopen EHLO HELO MAIL RCPT DATA TCPreset

24 2 0.00158047 - TCPopen EHLO HELO MAIL RCPT(5) DATA TCPclose

25 2 0.00158047 - TCPopen EHLO MAIL RCPT(7) DATA TCPclose

26 2 0.00158047 - TCPopen HELO MAIL RCPT DATA . QUIT TCPtimeout

27 2 0.00158047 - TCPopen mail TCPclose

28 3 0.0023707 + TCPopen EHLO HELO MAIL RCPT DATA . RSET MAIL RCPT DATA .

RSET MAIL RCPT DATA . RSET MAIL RCPT DATA . RSET MAIL RCPT

DATA . RSET MAIL RCPT DATA . QUIT TCPclose

29 3 0.0023707 - TCPopen EHLO HELO MAIL RCPT DATA NIDSexit

30 3 0.0023707 - TCPopen EHLO HELO MAIL RCPT(2) DATA . TCPtimeout

31 3 0.0023707 - TCPopen EHLO HELO MAIL RCPT(30) DATA . TCPtimeout

32 3 0.0023707 - TCPopen HELP TCPclose

Continued on next page
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Table A.7 – continued from previous page

Type Count Percent Label Sample

33 4 0.00316093 + TCPopen EHLO MAIL RCPT(3) QUIT TCPclose

34 4 0.00316093 + TCPopen HELO MAIL RCPT(4) DATA . QUIT TCPclose

35 4 0.00316093 - TCPopen EHLO HELO MAIL RCPT(3) DATA TCPclose

36 4 0.00316093 - TCPopen EHLO MAIL RCPT DATA TCPclose

37 5 0.00395116 + TCPopen HELO MAIL RCPT(5) DATA . QUIT TCPclose

38 6 0.0047414 + TCPopen EHLO MAIL RCPT(30) QUIT TCPclose

39 6 0.0047414 - TCPopen EHLO HELO MAIL RCPT DATA . NIDSexit

40 6 0.0047414 - TCPopen EHLO HELO MAIL RCPT(30) DATA TCPtimeout

41 6 0.0047414 - TCPopen QUIT TCPclose

42 7 0.00553163 + TCPopen EHLO MAIL RCPT RSET QUIT TCPclose

43 10 0.00790233 - TCPopen EHLO HELO MAIL RCPT(2) DATA TCPclose

44 20 0.0158047 + TCPopen EHLO HELO MAIL RCPT(31) DATA . QUIT TCPclose

45 21 0.0165949 - TCPopen EHLO HELO MAIL RCPT DATA . QUIT TCPreset

46 23 0.0181754 - TCPopen EHLO HELO MAIL RCPT DATA TCPtimeout

47 26 0.0205461 - TCPopen TCPtimeout

48 33 0.0260777 - TCPopen NIDSexit

49 36 0.0284484 + TCPopen HELO MAIL RCPT(3) DATA . QUIT TCPclose

50 57 0.0450433 + TCPopen EHLO MAIL RCPT(4) DATA . QUIT TCPclose

51 58 0.0458335 - TCPopen EHLO HELO MAIL RCPT DATA . TCPreset

52 64 0.0505749 - TCPopen EHLO HELO MAIL RCPT DATA TCPclose

53 65 0.0513651 + TCPopen EHLO MAIL RCPT(3) DATA . QUIT TCPclose

54 93 0.0734916 + TCPopen EHLO MAIL RCPT(7) DATA . QUIT TCPclose

55 103 0.081394 + TCPopen EHLO MAIL RCPT QUIT TCPclose

56 112 0.0885061 + TCPopen EHLO HELO MAIL RCPT(6) DATA . QUIT TCPclose

57 185 0.146193 + TCPopen EHLO HELO MAIL RCPT(5) DATA . QUIT TCPclose

58 189 0.149354 + TCPopen EHLO HELO MAIL RCPT(11) DATA . QUIT TCPclose

59 190 0.150144 + TCPopen EHLO MAIL RCPT(10) DATA . QUIT TCPclose

60 199 0.157256 + TCPopen EHLO MAIL RCPT(24) DATA . QUIT TCPclose

61 212 0.167529 + TCPopen HELO MAIL RCPT(2) DATA . QUIT TCPclose

62 233 0.184124 - TCPopen HELO MAIL RCPT DATA . NIDSexit

63 242 0.191236 - TCPopen HELO MAIL RCPT DATA . TCPreset

64 433 0.342171 + TCPopen EHLO MAIL RCPT(2) DATA . QUIT TCPclose

65 449 0.354814 - TCPopen EHLO HELO MAIL RCPT DATA . TCPtimeout

66 560 0.44253 + TCPopen EHLO HELO MAIL RCPT(4) DATA . QUIT TCPclose

67 1494 1.18061 + TCPopen EHLO HELO MAIL RCPT(30) DATA . QUIT TCPclose

68 1670 1.31969 - TCPopen mail rcpt TCPclose

69 1933 1.52752 + TCPopen EHLO HELO MAIL RCPT(3) DATA . QUIT TCPclose

70 1996 1.5773 - TCPopen HELO MAIL RCPT DATA . TCPtimeout

71 3150 2.48923 + TCPopen HELO MAIL RCPT DATA . QUIT TCPclose

72 3155 2.49318 - TCPopen TCPclose

73 3633 2.87092 - TCPopen TCPreset

74 3887 3.07163 + TCPopen EHLO MAIL RCPT DATA . QUIT TCPclose

75 7389 5.83903 + TCPopen EHLO HELO MAIL RCPT(2) DATA . QUIT TCPclose

76 94522 74.6944 + TCPopen EHLO HELO MAIL RCPT DATA . QUIT TCPclose

76 Start with: TCPopen

45 End with: TCPclose (119,791 samples)

6 End with: TCPreset (3,957 samples)

18 End with: TCPtimeout (2,519 samples )

7 End with: NIDSexit (278 samples )

34 Positive sample Types. 114,869 Positive samples.

42 Negative sample Types. 11,676 Negative samples.

126,545 Total Samples

76 Unique Types
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Table A.8: Data Summary: SMTP Reply Alphabet total.pcap

Data Summary: SMTP Reply Alphabet total.pcap

Type Count Percent Label Sample

1 1 0.000790233 + TCPopen 220 250(2) 551(31) 221 TCPclose

2 1 0.000790233 + TCPopen 220 250(3) 354 250 TCPclose

3 1 0.000790233 + TCPopen 220 250(8) 354 250 221 TCPclose

4 1 0.000790233 - TCPopen 220 250(3) 354 250 221 NIDSexit

5 1 0.000790233 - TCPopen 220 250(3) 354 250 TCPreset

6 1 0.000790233 - TCPopen 220 250(3) 354 552 NIDSexit

7 1 0.000790233 - TCPopen 220 250(3) 354 552 TCPtimeout

8 1 0.000790233 - TCPopen 220 250(3) 503 500 221 TCPclose

9 1 0.000790233 - TCPopen 220 500 250 TCPtimeout

10 1 0.000790233 - TCPopen 220 500 250(13) 354 250 221 TCPtimeout

11 1 0.000790233 - TCPopen 220 500 250(2) TCPtimeout

12 1 0.000790233 - TCPopen 220 500 250(21) TCPtimeout

13 1 0.000790233 - TCPopen 220 500 250(3) 354 250(2) NIDSexit

14 1 0.000790233 - TCPopen 220 500 250(3) TCPtimeout

15 1 0.000790233 - TCPopen 220 500 250(32) 354 TCPtimeout

16 1 0.000790233 - TCPopen 220 500 250(4) 354 NIDSexit

17 2 0.00158047 + TCPopen 220 250(2) 551(2) 221 TCPclose

18 2 0.00158047 + TCPopen 220 250(2) 551(4) 221 TCPclose

19 2 0.00158047 + TCPopen 220 500 250(9) 354 250 221 TCPclose

20 2 0.00158047 - TCPopen 220 250 TCPtimeout

21 2 0.00158047 - TCPopen 220 250(2) 503 500 221 TCPclose

22 2 0.00158047 - TCPopen 220 250(3) 354 250 221 TCPtimeout

23 2 0.00158047 - TCPopen 220 451 TCPreset

24 2 0.00158047 - TCPopen 220 500 250(3) 354 250 221 NIDSexit

25 3 0.0023707 + TCPopen 220 500 250(3) 354 250(4) 354 250(4) 354 250(4) 354 250(4) 354 250(4)

354 250 221 TCPclose

26 3 0.0023707 - TCPopen 220 500 250(3) 354 250 TCPtimeout

27 3 0.0023707 - TCPopen 220 500 250(4) 354 250 221 TCPtimeout

28 4 0.00316093 + TCPopen 220 250(2) 551(3) 221 TCPclose

29 5 0.00395116 + TCPopen 220 250(7) 354 250 221 TCPclose

30 6 0.0047414 + TCPopen 220 250(2) 551(30) 221 TCPclose

31 6 0.0047414 - TCPopen 220 221 TCPclose

32 6 0.0047414 - TCPopen 220 500 250(3) 354 NIDSexit

33 6 0.0047414 - TCPopen 220 TCPclose

34 7 0.00553163 + TCPopen 220 250(2) 551 250 221 TCPclose

35 8 0.00632186 - TCPopen 220 500 250(32) 354 250 221 TCPtimeout

36 10 0.00790233 - TCPopen 220 TCPtimeout

37 11 0.00869256 - TCPopen 220 500 250(3) 354 250 221 TCPtimeout

38 18 0.0142242 - TCPopen TCPtimeout

39 20 0.0158047 + TCPopen 220 500 250(33) 354 250 221 TCPclose

40 22 0.0173851 - TCPopen 220 500 250(3) 354 250 TCPreset

41 25 0.0197558 - TCPopen 220 250(2) 354 250 TCPclose

42 33 0.0260777 + TCPopen 220 250(3) 354 250(2) TCPclose

43 33 0.0260777 - TCPopen NIDSexit

44 37 0.0292386 - TCPopen 220 451 421 TCPreset

45 59 0.0466237 - TCPopen 220 500 250(3) 354 TCPreset

46 61 0.0482042 + TCPopen 220 250(6) 354 250 221 TCPclose

47 75 0.0592675 - TCPopen TCPreset

48 96 0.0758623 + TCPopen 220 250(9) 354 250 221 TCPclose

49 101 0.0798135 + TCPopen 220 250(5) 354 250 221 TCPclose

Continued on next page
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Table A.8 – continued from previous page

Type Count Percent Label Sample

50 104 0.0821842 + TCPopen 220 250(2) 551 221 TCPclose

51 112 0.0885061 + TCPopen 220 500 250(8) 354 250 221 TCPclose

52 153 0.120906 - TCPopen TCPclose

53 170 0.13434 - TCPopen 220 451 421 TCPclose

54 187 0.147774 + TCPopen 220 500 250(7) 354 250 221 TCPclose

55 189 0.149354 + TCPopen 220 500 250(13) 354 250 221 TCPclose

56 190 0.150144 + TCPopen 220 250(12) 354 250 221 TCPclose

57 199 0.157256 + TCPopen 220 250(26) 354 250 221 TCPclose

58 209 0.165159 - TCPopen 220 421 TCPreset

59 233 0.184124 - TCPopen 220 250(3) 354 NIDSexit

60 242 0.191236 - TCPopen 220 250(3) 354 TCPreset

61 459 0.362717 - TCPopen 220 500 250(3) 354 TCPtimeout

62 560 0.44253 + TCPopen 220 500 250(6) 354 250 221 TCPclose

63 645 0.5097 + TCPopen 220 250(4) 354 250 221 TCPclose

64 1494 1.18061 + TCPopen 220 500 250(32) 354 250 221 TCPclose

65 1937 1.53068 + TCPopen 220 500 250(5) 354 250 221 TCPclose

66 1996 1.5773 - TCPopen 220 250(3) 354 TCPtimeout

67 3310 2.61567 - TCPopen 220 TCPreset

68 4473 3.53471 - TCPopen 220 250(2) 354 250 221 TCPclose

69 7008 5.53795 + TCPopen 220 250(3) 354 250 221 TCPclose

70 7399 5.84693 + TCPopen 220 500 250(4) 354 250 221 TCPclose

71 14633 11.5635 + TCPopen 220 500 250(3) 354 250(2) TCPclose

72 79953 63.1815 + TCPopen 220 500 250(3) 354 250 221 TCPclose

72 Start with: TCPopen

38 End with: TCPclose (119,791 samples)

9 End with: TCPreset (3,957 samples)

17 End with: TCPtimeout (2,519 samples )

8 End with: NIDSexit (278 samples )

30 Positive sample Types. 114,955 Positive samples.

42 Negative sample Types. 11,590 Negative samples.

126,545 Total Samples

72 Unique Types

Table A.9: Data Summary: SMTP Composite Alphabet total.pcap

Data Summary: SMTP Composite Alphabet total.pcap

Type Count Percent Label Sample

1 1 0.000790233 + TCPopen 220 EHLO 250 MAIL 250 RCPT 250 DATA 354 . 250 TCPclose

2 1 0.000790233 + TCPopen 220 EHLO 250 MAIL 250 RCPT 551 RCPT 551 RCPT 551 RCPT

551 RCPT 551 RCPT 551 RCPT 551 RCPT 551 RCPT 551 RCPT 551 RCPT

551 RCPT 551 RCPT 551 RCPT 551 RCPT 551 RCPT 551 RCPT 551 RCPT

551 RCPT 551 RCPT 551 RCPT 551 RCPT 551 RCPT 551 RCPT 551 RCPT

551 RCPT 551 RCPT 551 RCPT 551 RCPT 551 RCPT 551 RCPT 551 QUIT

221 TCPclose

3 1 0.000790233 + TCPopen 220 HELO 250 MAIL 250 RCPT 250 RCPT 250 RCPT 250 RCPT

250 RCPT 250 RCPT 250 DATA 354 . 250 QUIT 221 TCPclose

4 1 0.000790233 + TCPopen 220 HELO 250 MAIL 250 RCPT 250 RCPT 250 RCPT 250 RCPT

250 RCPT 250 RCPT 250 RCPT 250 DATA 354 . 250 QUIT 221 TCPclose

5 1 0.000790233 + TCPopen 220 HELO 250 MAIL 250 RCPT 551 QUIT 221 TCPclose

6 1 0.000790233 - TCPopen 220 250(3) 503 HELP 500 221 TCPclose

Continued on next page
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Table A.9 – continued from previous page

Type Count Percent Label Sample

7 1 0.000790233 - TCPopen 220 500 250(3) 354 250 221 TCPtimeout

8 1 0.000790233 - TCPopen 220 EHLO 250 MAIL 250 RCPT 250 DATA 354 . 250 221 TCPtime-

out

9 1 0.000790233 - TCPopen 220 EHLO 250 MAIL 250 RCPT 250 DATA 354 . 250 TCPreset

10 1 0.000790233 - TCPopen 220 EHLO 250 MAIL 250 RCPT 250 DATA 354 250 221 NIDSexit

11 1 0.000790233 - TCPopen 220 EHLO 250 MAIL TCPtimeout

12 1 0.000790233 - TCPopen 220 EHLO 500 HELO 250 MAIL 250 RCPT 250 DATA 354 . 250

QUIT TCPtimeout

13 1 0.000790233 - TCPopen 220 EHLO 500 HELO 250 MAIL 250 RCPT 250 DATA 354 . 250

TCPreset

14 1 0.000790233 - TCPopen 220 EHLO 500 HELO 250 MAIL 250 RCPT 250 DATA 354 250(2)

NIDSexit

15 1 0.000790233 - TCPopen 220 EHLO 500 HELO 250 MAIL 250 RCPT 250 DATA TCPtimeout

16 1 0.000790233 - TCPopen 220 EHLO 500 HELO 250 MAIL 250 RCPT 250 RCPT 250 DATA

354 . NIDSexit

17 1 0.000790233 - TCPopen 220 EHLO 500 HELO 250 MAIL 250 RCPT 250 RCPT 250 RCPT

250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT

250 RCPT 250 DATA 354 250 221 TCPtimeout

18 1 0.000790233 - TCPopen 220 EHLO 500 HELO 250 MAIL 250 RCPT 250 RCPT 250 RCPT

250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT

250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT

250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT

250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 DATA

354 . TCPtimeout

19 1 0.000790233 - TCPopen 220 EHLO 500 HELO 250 MAIL 250 RCPT 250 RCPT 250 RCPT

250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT

250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT

250 RCPT 250 RCPT 250 RCPT TCPtimeout

20 1 0.000790233 - TCPopen 220 EHLO 500 HELO 250 MAIL 250 RCPT TCPtimeout

21 1 0.000790233 - TCPopen 220 EHLO 500 HELO 250 TCPtimeout

22 1 0.000790233 - TCPopen 220 EHLO HELO MAIL RCPT DATA . QUIT TCPtimeout

23 1 0.000790233 - TCPopen 220 EHLO TCPtimeout

24 1 0.000790233 - TCPopen 220 HELO 250 MAIL 250 RCPT 250 DATA 354 . 250 QUIT 221

TCPtimeout

25 1 0.000790233 - TCPopen 220 HELO 250 MAIL 250 RCPT 250 DATA 354 . 552 QUIT NIDSexit

26 1 0.000790233 - TCPopen 220 HELO 250 MAIL 250 RCPT 250 DATA 354 552 . QUIT TCPti-

meout

27 1 0.000790233 - TCPopen 220 HELO 250 MAIL TCPtimeout

28 1 0.000790233 - TCPopen 220 HELO TCPtimeout

29 2 0.00158047 + TCPopen 220 EHLO 250 MAIL 250 RCPT 551 RCPT 551 QUIT 221 TCPclose

30 2 0.00158047 + TCPopen 220 EHLO 250 MAIL 250 RCPT 551 RCPT 551 RCPT 551 RCPT

551 QUIT 221 TCPclose

31 2 0.00158047 + TCPopen 220 EHLO 500 HELO 250 MAIL 250 RCPT 250 RCPT 250 RCPT

250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 DATA 354 . 250 QUIT 221

TCPclose

32 2 0.00158047 - TCPopen 220 250(2) 503 HELP 500 221 TCPclose

33 2 0.00158047 - TCPopen 220 451 TCPreset

34 2 0.00158047 - TCPopen 220 EHLO 250 MAIL 250 RCPT 250 RCPT 250 RCPT 250 RCPT

250 RCPT 250 RCPT 250 RCPT 250 DATA 354 250 221 TCPclose

35 2 0.00158047 - TCPopen 220 EHLO 500 HELO 250 MAIL 250 RCPT 250 DATA 354 . 250

TCPtimeout

36 2 0.00158047 - TCPopen 220 EHLO 500 HELO 250 MAIL 250 RCPT 250 DATA 354 250 221

NIDSexit

37 2 0.00158047 - TCPopen 220 EHLO 500 HELO 250 MAIL 250 RCPT 250 DATA 354 TCPreset
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38 2 0.00158047 - TCPopen 220 EHLO 500 HELO 250 MAIL 250 RCPT 250 RCPT 250 RCPT

250 RCPT 250 RCPT 250 DATA 354 250 221 TCPclose

39 2 0.00158047 - TCPopen 220 EHLO 500 HELO 250 MAIL 250 RCPT 250 RCPT 250 RCPT

250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT

250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT

250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT

250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 DATA

354 . 250 221 TCPtimeout

40 2 0.00158047 - TCPopen 220 mail 250(2) 354 250 221 TCPclose

41 3 0.0023707 + TCPopen 220 EHLO 500 HELO 250 MAIL 250 RCPT 250 DATA 354 . 250

RSET 250 MAIL 250 RCPT 250 DATA 354 . 250 RSET 250 MAIL 250 RCPT

250 DATA 354 . 250 RSET 250 MAIL 250 RCPT 250 DATA 354 . 250 RSET

250 MAIL 250 RCPT 250 DATA 354 . 250 RSET 250 MAIL 250 RCPT 250

DATA 354 . 250 QUIT 221 TCPclose

42 3 0.0023707 - TCPopen 220 EHLO 500 HELO 250 MAIL 250 RCPT 250 RCPT 250 DATA

354 . 250 221 TCPtimeout

43 4 0.00316093 + TCPopen 220 EHLO 250 MAIL 250 RCPT 551 RCPT 551 RCPT 551 QUIT

221 TCPclose

44 4 0.00316093 + TCPopen 220 HELO 250 MAIL 250 RCPT 250 RCPT 250 RCPT 250 RCPT

250 DATA 354 . 250 QUIT 221 TCPclose

45 4 0.00316093 - TCPopen 220 EHLO 250 MAIL 250 RCPT 250 DATA 354 250 221 TCPclose

46 4 0.00316093 - TCPopen 220 EHLO 500 HELO 250 MAIL 250 RCPT 250 DATA 354 . 250 221

TCPtimeout

47 4 0.00316093 - TCPopen 220 EHLO 500 HELO 250 MAIL 250 RCPT 250 RCPT 250 RCPT

250 DATA 354 250 221 TCPclose

48 5 0.00395116 + TCPopen 220 HELO 250 MAIL 250 RCPT 250 RCPT 250 RCPT 250 RCPT

250 RCPT 250 DATA 354 . 250 QUIT 221 TCPclose

49 6 0.0047414 + TCPopen 220 EHLO 250 MAIL 250 RCPT 551 RCPT 551 RCPT 551 RCPT 551

RCPT 551 RCPT 551 RCPT 551 RCPT 551 RCPT 551 RCPT 551 RCPT 551

RCPT 551 RCPT 551 RCPT 551 RCPT 551 RCPT 551 RCPT 551 RCPT 551

RCPT 551 RCPT 551 RCPT 551 RCPT 551 RCPT 551 RCPT 551 RCPT 551

RCPT 551 RCPT 551 RCPT 551 RCPT 551 RCPT 551 QUIT 221 TCPclose

50 6 0.0047414 - TCPopen 220 EHLO 500 HELO 250 MAIL 250 RCPT 250 DATA 354 . NIDSexit

51 6 0.0047414 - TCPopen 220 EHLO 500 HELO 250 MAIL 250 RCPT 250 DATA 354 250 221

TCPtimeout

52 6 0.0047414 - TCPopen 220 EHLO 500 HELO 250 MAIL 250 RCPT 250 RCPT 250 RCPT

250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT

250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT

250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT

250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 DATA

354 250 221 TCPtimeout

53 6 0.0047414 - TCPopen 220 TCPclose

54 6 0.0047414 - TCPopen QUIT 220 221 TCPclose

55 7 0.00553163 + TCPopen 220 EHLO 250 MAIL 250 RCPT 551 RSET 250 QUIT 221 TCPclose

56 7 0.00553163 - TCPopen 220 TCPtimeout

57 10 0.00790233 - TCPopen 220 EHLO 500 HELO 250 MAIL 250 RCPT 250 RCPT 250 DATA

354 250 221 TCPclose

58 12 0.00948279 - TCPopen 220 250(2) 354 250 TCPclose

59 13 0.010273 - TCPopen 220 mail 250 rcpt 250 354 250 TCPclose

60 16 0.0126437 - TCPopen 220 EHLO 500 HELO 250 MAIL 250 RCPT 250 DATA 354 TCPti-

meout

61 18 0.0142242 - TCPopen TCPtimeout
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62 20 0.0158047 + TCPopen 220 EHLO 500 HELO 250 MAIL 250 RCPT 250 RCPT 250 RCPT

250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT

250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT

250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT

250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT

250 DATA 354 . 250 QUIT 221 TCPclose

63 21 0.0165949 - TCPopen 220 EHLO 500 HELO 250 MAIL 250 RCPT 250 DATA 354 . 250

QUIT TCPreset

64 33 0.0260777 + TCPopen 220 HELO 250 MAIL 250 RCPT 250 DATA 354 . 250 QUIT 250

TCPclose

65 33 0.0260777 - TCPopen NIDSexit

66 36 0.0284484 + TCPopen 220 HELO 250 MAIL 250 RCPT 250 RCPT 250 RCPT 250 DATA

354 . 250 QUIT 221 TCPclose

67 37 0.0292386 - TCPopen 220 451 421 TCPreset

68 57 0.0450433 + TCPopen 220 EHLO 250 MAIL 250 RCPT 250 RCPT 250 RCPT 250 RCPT

250 DATA 354 . 250 QUIT 221 TCPclose

69 57 0.0450433 - TCPopen 220 EHLO 500 HELO 250 MAIL 250 RCPT 250 DATA 354 . TCP-

reset

70 64 0.0505749 - TCPopen 220 EHLO 500 HELO 250 MAIL 250 RCPT 250 DATA 354 250 221

TCPclose

71 65 0.0513651 + TCPopen 220 EHLO 250 MAIL 250 RCPT 250 RCPT 250 RCPT 250 DATA

354 . 250 QUIT 221 TCPclose

72 75 0.0592675 - TCPopen TCPreset

73 93 0.0734916 + TCPopen 220 EHLO 250 MAIL 250 RCPT 250 RCPT 250 RCPT 250 RCPT

250 RCPT 250 RCPT 250 RCPT 250 DATA 354 . 250 QUIT 221 TCPclose

74 103 0.081394 + TCPopen 220 EHLO 250 MAIL 250 RCPT 551 QUIT 221 TCPclose

75 112 0.0885061 + TCPopen 220 EHLO 500 HELO 250 MAIL 250 RCPT 250 RCPT 250 RCPT

250 RCPT 250 RCPT 250 RCPT 250 DATA 354 . 250 QUIT 221 TCPclose

76 153 0.120906 - TCPopen TCPclose

77 170 0.13434 - TCPopen 220 451 421 TCPclose

78 185 0.146193 + TCPopen 220 EHLO 500 HELO 250 MAIL 250 RCPT 250 RCPT 250 RCPT

250 RCPT 250 RCPT 250 DATA 354 . 250 QUIT 221 TCPclose

79 189 0.149354 + TCPopen 220 EHLO 500 HELO 250 MAIL 250 RCPT 250 RCPT 250 RCPT

250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT

250 RCPT 250 DATA 354 . 250 QUIT 221 TCPclose

80 190 0.150144 + TCPopen 220 EHLO 250 MAIL 250 RCPT 250 RCPT 250 RCPT 250 RCPT

250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 DATA

354 . 250 QUIT 221 TCPclose

81 199 0.157256 + TCPopen 220 EHLO 250 MAIL 250 RCPT 250 RCPT 250 RCPT 250 RCPT

250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT

250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT

250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 DATA

354 . 250 QUIT 221 TCPclose

82 209 0.165159 - TCPopen 220 421 TCPreset

83 212 0.167529 + TCPopen 220 HELO 250 MAIL 250 RCPT 250 RCPT 250 DATA 354 . 250

QUIT 221 TCPclose

84 233 0.184124 - TCPopen 220 HELO 250 MAIL 250 RCPT 250 DATA 354 . NIDSexit

85 242 0.191236 - TCPopen 220 HELO 250 MAIL 250 RCPT 250 DATA 354 . TCPreset

86 433 0.342171 + TCPopen 220 EHLO 250 MAIL 250 RCPT 250 RCPT 250 DATA 354 . 250

QUIT 221 TCPclose

87 443 0.350073 - TCPopen 220 EHLO 500 HELO 250 MAIL 250 RCPT 250 DATA 354 . TCP-

timeout

88 560 0.44253 + TCPopen 220 EHLO 500 HELO 250 MAIL 250 RCPT 250 RCPT 250 RCPT

250 RCPT 250 DATA 354 . 250 QUIT 221 TCPclose
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89 1494 1.18061 + TCPopen 220 EHLO 500 HELO 250 MAIL 250 RCPT 250 RCPT 250 RCPT

250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT

250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT

250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT

250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 RCPT 250 DATA

354 . 250 QUIT 221 TCPclose

90 1657 1.30942 - TCPopen 220 mail 250 rcpt 250 354 250 221 TCPclose

91 1933 1.52752 + TCPopen 220 EHLO 500 HELO 250 MAIL 250 RCPT 250 RCPT 250 RCPT

250 DATA 354 . 250 QUIT 221 TCPclose

92 1996 1.5773 - TCPopen 220 HELO 250 MAIL 250 RCPT 250 DATA 354 . TCPtimeout

93 2814 2.22371 - TCPopen 220 250(2) 354 250 221 TCPclose

94 3117 2.46316 + TCPopen 220 HELO 250 MAIL 250 RCPT 250 DATA 354 . 250 QUIT 221

TCPclose

95 3310 2.61567 - TCPopen 220 TCPreset

96 3887 3.07163 + TCPopen 220 EHLO 250 MAIL 250 RCPT 250 DATA 354 . 250 QUIT 221

TCPclose

97 7389 5.83903 + TCPopen 220 EHLO 500 HELO 250 MAIL 250 RCPT 250 RCPT 250 DATA

354 . 250 QUIT 221 TCPclose

98 14633 11.5635 + TCPopen 220 EHLO 500 HELO 250 MAIL 250 RCPT 250 DATA 354 . 250

QUIT 250 TCPclose

99 79889 63.1309 + TCPopen 220 EHLO 500 HELO 250 MAIL 250 RCPT 250 DATA 354 . 250

QUIT 221 TCPclose

99 Start with: TCPopen

53 End with: TCPclose (119,791 samples)

11 End with: TCPreset (3,957 samples)

27 End with: TCPtimeout (2,519 samples )

8 End with: NIDSexit (278 samples )

36 Positive sample Types. 114,869 Positive samples.

63 Negative sample Types. 11,676 Negative samples.

126,545 Total Samples

99 Unique Types
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Table A.10: POP3 TCP Connection Summary - Note that the weekly trace files do
not include the complete TCP connection for all POP3 sessions. The Total column
does NOT sum the row.

POP3 TCP Connection Summary
TCP Operation Week 1 Week 2 Week 3 Week 4 Week 5 Total Percent

TCPopen 255 238 395 363 9,709 10,960 100
TCPclose 254 236 395 363 1,520 2,768 25.25
TCPreset 0 1 0 0 8,089 8,090 73.81

TCPtimeout 0 0 0 0 6 8 0.07
NIDSexit 1 1 0 0 94 94 0.85

Total termination conditions: 10,960

A.6 POP3 Sample Data

Table A.12: Data Summary: POP3 Command Alphabet total.pcap

Data Summary: POP3 Command Alphabet total.pcap

Type Count Percent Label Sample

1 1 0.00912409 + TCPopen USER PASS STAT RETR DELE RETR DELE RETR DELE RETR

DELE RETR DELE RETR DELE RETR DELE RETR DELE RETR DELE

RETR DELE RETR DELE RETR DELE RETR DELE RETR DELE RETR

DELE RETR DELE RETR DELE RETR DELE QUIT TCPclose

2 1 0.00912409 - TCPopen QUIT TCPtimeout

3 1 0.00912409 - TCPopen USER PASS STAT RETR DELE RETR DELE RETR DELE RETR

DELE RETR DELE QUIT TCPtimeout

4 1 0.00912409 - TCPopen USER PASS STAT RETR DELE RETR DELE RETR DELE RETR

DELE RETR DELE RETR DELE RETR DELE RETR DELE RETR DELE

RETR DELE RETR DELE RETR DELE RETR DELE RETR DELE RETR

DELE RETR DELE RETR DELE RETR DELE QUIT TCPtimeout

5 2 0.0182482 + TCPopen USER PASS STAT RETR DELE RETR DELE RETR DELE RETR

DELE RETR DELE RETR DELE RETR DELE RETR DELE RETR DELE

RETR DELE RETR DELE QUIT TCPclose

6 2 0.0182482 + TCPopen USER PASS STAT RETR DELE RETR DELE RETR DELE RETR

DELE RETR DELE RETR DELE RETR DELE RETR DELE RETR DELE

RETR DELE RETR DELE RETR DELE QUIT TCPclose

7 2 0.0182482 + TCPopen USER PASS STAT RETR DELE RETR DELE RETR DELE RETR

DELE RETR DELE RETR DELE RETR DELE RETR DELE RETR DELE

RETR DELE RETR DELE RETR DELE RETR DELE RETR DELE QUIT

TCPclose

8 2 0.0182482 + TCPopen USER PASS STAT RETR DELE RETR DELE RETR DELE RETR

DELE RETR DELE RETR DELE RETR DELE RETR DELE RETR DELE

RETR DELE RETR DELE RETR DELE RETR DELE RETR DELE RETR

DELE RETR DELE QUIT TCPclose

9 2 0.0182482 + TCPopen USER PASS STAT RETR DELE RETR DELE RETR DELE RETR

DELE RETR DELE RETR DELE RETR DELE RETR DELE RETR DELE

RETR DELE RETR DELE RETR DELE RETR DELE RETR DELE RETR

DELE RETR DELE RETR DELE RETR DELE RETR DELE QUIT TCPclose

10 2 0.0182482 + TCPopen USER PASS STAT RETR DELE RETR DELE RETR DELE RETR

DELE RETR DELE RETR DELE RETR DELE RETR DELE RETR DELE

RETR DELE RETR DELE RETR DELE RETR DELE RETR DELE RETR

DELE RETR DELE RETR DELE RETR DELE RETR DELE RETR DELE

RETR DELE RETR DELE QUIT TCPclose
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Type Count Percent Label Sample

11 2 0.0182482 + TCPopen USER PASS STAT RETR DELE RETR DELE RETR DELE RETR

DELE RETR DELE RETR DELE RETR DELE RETR DELE RETR DELE

RETR DELE RETR DELE RETR DELE RETR DELE RETR DELE RETR

DELE RETR DELE RETR DELE RETR DELE RETR DELE RETR DELE

RETR DELE RETR DELE RETR DELE RETR DELE RETR DELE QUIT

TCPclose

12 2 0.0182482 - TCPopen QUIT TCPclose

13 2 0.0182482 - TCPopen USER TCPreset

14 5 0.0456204 + TCPopen USER PASS STAT RETR DELE RETR DELE RETR DELE RETR

DELE RETR DELE RETR DELE RETR DELE RETR DELE RETR DELE

QUIT TCPclose

15 5 0.0456204 - TCPopen TCPtimeout

16 9 0.0821168 + TCPopen USER PASS STAT RETR DELE RETR DELE RETR DELE RETR

DELE RETR DELE RETR DELE RETR DELE RETR DELE QUIT TCPclose

17 25 0.228102 + TCPopen USER PASS STAT RETR DELE RETR DELE RETR DELE RETR

DELE RETR DELE RETR DELE RETR DELE QUIT TCPclose

18 32 0.291971 + TCPopen USER PASS STAT RETR DELE RETR DELE RETR DELE RETR

DELE RETR DELE RETR DELE QUIT TCPclose

19 47 0.428832 + TCPopen USER PASS STAT RETR DELE RETR DELE RETR DELE RETR

DELE RETR DELE QUIT TCPclose

20 69 0.629562 + TCPopen USER PASS STAT RETR DELE RETR DELE RETR DELE RETR

DELE QUIT TCPclose

21 94 0.857664 - TCPopen NIDSexit

22 136 1.24088 + TCPopen USER PASS STAT RETR DELE RETR DELE RETR DELE QUIT

TCPclose

23 197 1.79745 + TCPopen USER PASS STAT RETR DELE RETR DELE QUIT TCPclose

24 342 3.12044 + TCPopen USER PASS STAT RETR DELE QUIT TCPclose

25 631 5.7573 + TCPopen USER PASS STAT QUIT TCPclose

26 1258 11.4781 - TCPopen TCPclose

27 8088 73.7956 - TCPopen TCPreset

27 Start with: TCPopen

20 End with: TCPclose (2,768 samples)

2 End with: TCPreset (8,090 samples)

4 End with: TCPtimeout (8 samples )

1 End with: NIDSexit (94 samples )

18 Positive sample Types. 1,508 Positive samples.

9 Negative sample Types. 9,452 Negative samples.

10,960 Total Samples

27 Unique Types

Table A.13: Data Summary: POP3 Reply Alphabet total.pcap

Data Summary: POP3 Reply Alphabet total.pcap

Type Count Percent Label Sample

1 1 0.00912409 + TCPopen OK(41) TCPclose

2 1 0.00912409 - TCPopen OK(2) TCPclose

3 1 0.00912409 - TCPopen OK(2) TCPtimeout

4 2 0.0182482 + TCPopen OK(27) TCPclose

5 2 0.0182482 + TCPopen OK(29) TCPclose

6 2 0.0182482 + TCPopen OK(33) TCPclose

7 2 0.0182482 + TCPopen OK(37) TCPclose
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8 2 0.0182482 + TCPopen OK(43) TCPclose

9 2 0.0182482 + TCPopen OK(49) TCPclose

10 2 0.0182482 + TCPopen OK(55) TCPclose

11 2 0.0182482 - TCPopen OK(15) TCPtimeout

12 5 0.0456204 + TCPopen OK(23) TCPclose

13 5 0.0456204 - TCPopen TCPtimeout

14 9 0.0821168 + TCPopen OK(21) TCPclose

15 15 0.136861 - TCPopen TCPreset

16 25 0.228102 + TCPopen OK(19) TCPclose

17 32 0.291971 + TCPopen OK(17) TCPclose

18 47 0.428832 + TCPopen OK(15) TCPclose

19 60 0.547445 - TCPopen OK(2) ERR TCPclose

20 69 0.629562 + TCPopen OK(13) TCPclose

21 94 0.857664 - TCPopen NIDSexit

22 136 1.24088 + TCPopen OK(11) TCPclose

23 197 1.79745 + TCPopen OK(9) TCPclose

24 342 3.12044 + TCPopen OK(7) TCPclose

25 631 5.7573 + TCPopen OK(5) TCPclose

26 1199 10.9398 - TCPopen TCPclose

27 8075 73.677 - TCPopen OK TCPreset

27 Start with: TCPopen

21 End with: TCPclose (2,768 samples)

2 End with: TCPreset (8,090 samples)

3 End with: TCPtimeout (8 samples )

1 End with: NIDSexit (94 samples )

18 Positive sample Types. 1,508 Positive samples.

9 Negative sample Types. 9,452 Negative samples.

10,960 Total Samples

27 Unique Types

Table A.14: Data Summary: POP3 Composite Alphabet total.pcap

Data Summary: POP3 Composite Alphabet total.pcap

Type Count Percent Label Sample

1 1 0.00912409 + TCPopen OK USER OK PASS OK STAT OK RETR OK DELE OK RETR OK

DELE OK RETR OK DELE OK RETR OK DELE OK RETR OK DELE OK

RETR OK DELE OK RETR OK DELE OK RETR OK DELE OK RETR OK

DELE OK RETR OK DELE OK RETR OK DELE OK RETR OK DELE OK

RETR OK DELE OK RETR OK DELE OK RETR OK DELE OK RETR OK

DELE OK RETR OK DELE OK RETR OK DELE OK QUIT OK TCPclose

2 1 0.00912409 - TCPopen OK USER OK PASS OK STAT OK RETR OK DELE OK RETR OK

DELE OK RETR OK DELE OK RETR OK DELE OK RETR OK DELE OK

QUIT OK TCPtimeout

3 1 0.00912409 - TCPopen OK USER OK PASS OK STAT OK RETR OK DELE OK RETR

OK DELE OK RETR OK DELE OK RETR OK DELE OK RETR OK DELE

OK RETR OK DELE RETR DELE RETR DELE RETR DELE RETR DELE

RETR DELE RETR DELE RETR DELE RETR DELE RETR DELE RETR

DELE RETR DELE RETR DELE QUIT TCPtimeout

4 1 0.00912409 - TCPopen QUIT OK(2) TCPclose

5 1 0.00912409 - TCPopen QUIT OK(2) TCPtimeout
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6 1 0.00912409 - TCPopen QUIT TCPclose

7 2 0.0182482 + TCPopen OK USER OK PASS OK STAT OK RETR OK DELE OK RETR OK

DELE OK RETR OK DELE OK RETR OK DELE OK RETR OK DELE OK

RETR OK DELE OK RETR OK DELE OK RETR OK DELE OK RETR OK

DELE OK RETR OK DELE OK RETR OK DELE OK QUIT OK TCPclose

8 2 0.0182482 + TCPopen OK USER OK PASS OK STAT OK RETR OK DELE OK RETR OK

DELE OK RETR OK DELE OK RETR OK DELE OK RETR OK DELE OK

RETR OK DELE OK RETR OK DELE OK RETR OK DELE OK RETR OK

DELE OK RETR OK DELE OK RETR OK DELE OK RETR OK DELE OK

QUIT OK TCPclose

9 2 0.0182482 + TCPopen OK USER OK PASS OK STAT OK RETR OK DELE OK RETR OK

DELE OK RETR OK DELE OK RETR OK DELE OK RETR OK DELE OK

RETR OK DELE OK RETR OK DELE OK RETR OK DELE OK RETR OK

DELE OK RETR OK DELE OK RETR OK DELE OK RETR OK DELE OK

RETR OK DELE OK RETR OK DELE OK QUIT OK TCPclose

10 2 0.0182482 + TCPopen OK USER OK PASS OK STAT OK RETR OK DELE OK RETR OK

DELE OK RETR OK DELE OK RETR OK DELE OK RETR OK DELE OK

RETR OK DELE OK RETR OK DELE OK RETR OK DELE OK RETR OK

DELE OK RETR OK DELE OK RETR OK DELE OK RETR OK DELE OK

RETR OK DELE OK RETR OK DELE OK RETR OK DELE OK RETR OK

DELE OK QUIT OK TCPclose

11 2 0.0182482 + TCPopen OK USER OK PASS OK STAT OK RETR OK DELE OK RETR OK

DELE OK RETR OK DELE OK RETR OK DELE OK RETR OK DELE OK

RETR OK DELE OK RETR OK DELE OK RETR OK DELE OK RETR OK

DELE OK RETR OK DELE OK RETR OK DELE OK RETR OK DELE OK

RETR OK DELE OK RETR OK DELE OK RETR OK DELE OK RETR OK

DELE OK RETR OK DELE OK RETR OK DELE OK RETR OK DELE OK

QUIT OK TCPclose

12 2 0.0182482 + TCPopen OK USER OK PASS OK STAT OK RETR OK DELE OK RETR OK

DELE OK RETR OK DELE OK RETR OK DELE OK RETR OK DELE OK

RETR OK DELE OK RETR OK DELE OK RETR OK DELE OK RETR OK

DELE OK RETR OK DELE OK RETR OK DELE OK RETR OK DELE OK

RETR OK DELE OK RETR OK DELE OK RETR OK DELE OK RETR OK

DELE OK RETR OK DELE OK RETR OK DELE OK RETR OK DELE OK

RETR OK DELE OK RETR OK DELE OK RETR OK DELE OK QUIT OK

TCPclose

13 2 0.0182482 + TCPopen OK USER OK PASS OK STAT OK RETR OK DELE OK RETR OK

DELE OK RETR OK DELE OK RETR OK DELE OK RETR OK DELE OK

RETR OK DELE OK RETR OK DELE OK RETR OK DELE OK RETR OK

DELE OK RETR OK DELE OK RETR OK DELE OK RETR OK DELE OK

RETR OK DELE OK RETR OK DELE OK RETR OK DELE OK RETR OK

DELE OK RETR OK DELE OK RETR OK DELE OK RETR OK DELE OK

RETR OK DELE OK RETR OK DELE OK RETR OK DELE OK RETR OK

DELE OK RETR OK DELE OK RETR OK DELE OK QUIT OK TCPclose

14 2 0.0182482 - TCPopen OK USER TCPreset

15 5 0.0456204 + TCPopen OK USER OK PASS OK STAT OK RETR OK DELE OK RETR OK

DELE OK RETR OK DELE OK RETR OK DELE OK RETR OK DELE OK

RETR OK DELE OK RETR OK DELE OK RETR OK DELE OK RETR OK

DELE OK QUIT OK TCPclose

16 5 0.0456204 - TCPopen TCPtimeout

17 9 0.0821168 + TCPopen OK USER OK PASS OK STAT OK RETR OK DELE OK RETR OK

DELE OK RETR OK DELE OK RETR OK DELE OK RETR OK DELE OK

RETR OK DELE OK RETR OK DELE OK RETR OK DELE OK QUIT OK

TCPclose

18 15 0.136861 - TCPopen TCPreset

Continued on next page
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Table A.14 – continued from previous page

Type Count Percent Label Sample

19 25 0.228102 + TCPopen OK USER OK PASS OK STAT OK RETR OK DELE OK RETR OK

DELE OK RETR OK DELE OK RETR OK DELE OK RETR OK DELE OK

RETR OK DELE OK RETR OK DELE OK QUIT OK TCPclose

20 32 0.291971 + TCPopen OK USER OK PASS OK STAT OK RETR OK DELE OK RETR OK

DELE OK RETR OK DELE OK RETR OK DELE OK RETR OK DELE OK

RETR OK DELE OK QUIT OK TCPclose

21 47 0.428832 + TCPopen OK USER OK PASS OK STAT OK RETR OK DELE OK RETR OK

DELE OK RETR OK DELE OK RETR OK DELE OK RETR OK DELE OK

QUIT OK TCPclose

22 60 0.547445 - TCPopen OK(2) ERR TCPclose

23 69 0.629562 + TCPopen OK USER OK PASS OK STAT OK RETR OK DELE OK RETR OK

DELE OK RETR OK DELE OK RETR OK DELE OK QUIT OK TCPclose

24 94 0.857664 - TCPopen NIDSexit

25 136 1.24088 + TCPopen OK USER OK PASS OK STAT OK RETR OK DELE OK RETR OK

DELE OK RETR OK DELE OK QUIT OK TCPclose

26 197 1.79745 + TCPopen OK USER OK PASS OK STAT OK RETR OK DELE OK RETR OK

DELE OK QUIT OK TCPclose

27 342 3.12044 + TCPopen OK USER OK PASS OK STAT OK RETR OK DELE OK QUIT OK

TCPclose

28 631 5.7573 + TCPopen OK USER OK PASS OK STAT OK QUIT OK TCPclose

29 1198 10.9307 - TCPopen TCPclose

30 8073 73.6588 - TCPopen OK TCPreset

30 Start with: TCPopen

22 End with: TCPclose (2,768 samples)

3 End with: TCPreset (8,090 samples)

4 End with: TCPtimeout (8 samples )

1 End with: NIDSexit (94 samples )

18 Positive sample Types. 1,508 Positive samples.

12 Negative sample Types. 9,452 Negative samples.

10,960 Total Samples

30 Unique Types
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Appendix B. Low Level Implementation

This appendix introduces supporting toolkits we reviewed, as well as the environment

and tools used in the development process. Finally, we briefly introduce a low level

look at flowtool and flowinfer.

B.1 Sources for Protocol Formats

There are rich repositories we can mine for protocol format information. Several

open source projects for trace collection and intrusion detection provide source code.

Wireshark contains a large body of protocol formats (approximately 700 at this

time) that have been gleaned from open specifications, source code, and community

reverse engineering efforts [48]. JNetStream specifies network protocol formats in a

description language called Network Protocol Language (NPL) [19]. The NPL speci-

fications are compiled to Java class files by the included nplc compiler [19]. Netdude

supports protocol formats that are hardcoded in c source and PHDL, a packet header

description language [133]. Both Wireshark and jNetStream are protocol analyzers

while Netdude concentrates on packet trace manipulation and presentation over anal-

ysis.

Bro is a research oriented Intrusion Detection System [140]. Bro provides the

protocol description language binpac, a binpac language compiler, and protocol de-

scriptions with it source code [140, 192]. The binpac protocol descriptions cover a

range of ASCII text and binary protocols. Snort is another popular open source IDS

that embodies hand coded application layer protocol parsers [98].

There are also several data description languages that are potentially useful for

describing ad hoc mixed binary and text data such as protocol formats. Fisher et

al propose automated inference of ad hoc data to generate PADS data description

language [81]. PacketTypes is another data description language specifically designed

for specifying network protocol messages [164]. DataScript is a specification language

for binary data formats [13]. Other options include direct use of Augmented BNF or

Abstract Syntax Notation number One (ASN.1).
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B.2 Automata Toolkits

There are several frameworks that contain foundational language theoretic ele-

ments but do not include GI algorithms.

B.2.1 AMoRE. AMoRE [161] is used by Berg [23, Section 4] as the basis for

both a direct implementation and domain optimized version of Angluin’s learner. The

AMoRE library is implemented as a library in portable C. While the AMoRE source

code is available the build system was not compatible with the build system on our

development system. For testing purposes we ported the build system to autoconf1.

AMoRE was also used by the MERLin Project [267].

B.2.2 Vaucanson. Vaucanson2 is a C++ based automata library maintained

by the EPITA Research and Development Laboratory (the same research group also

maintains the Mical GI package) [86]. The version available to the public at the time of

writing is 1.1.1. Lombardy [152] explains Vaucanson in detail and provides comparison

to the AMoRE library. An early version of Vaucanson provides the automata engine

for the Mical GI package [213].

B.2.3 JFLAP. JFLAP is an automata learning tool implemented in Java

that supports many of the core operations required for grammatical inference [218,

219]. Source code for version 4 is available for download but source code for newer

versions 5 and 6 must be requested from the author [219]. JFLAP 4 is used in the

kBehavior algorithm implementation [158,198].

B.2.4 Grail. Grail [276] and it’s more recent incarnation as Grail+ [285]

provide a range of useful automata operations. Unfortunately, the C++ source code

is rather dated and the build system does not support our development platform. A

modified version of Grail version 2.5 was created by the MERLin Project to study

1Autoconf – http://www.gnu.org/software/autoconf/
2Vaucanson < Project – http://www.lrde.epita.fr/cgi-bin/twiki/view/Projects/

Vaucanson
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generalized NFA [267]. The modified version provides build targets for Linux but not

for contemporary versions of GCC.

B.3 Grammatical Inference Implementations

While there is no single definitive collection of GI algorithms source code for

several of the algorithms discussed above are available. Also, LearnLib and Mical

frameworks each provide a subset of the GI algorithms.

B.3.1 LearnLib. LearnLib3 is a C++ library [211] that provides an architec-

ture for GI algorithm testing. Because the library is designed using Common Object

Request Broker Architecture (CORBA)4 interfaces it can be used from any language

with CORBA support. At this time it only implements Angluin’s L∗ and a mod-

ified L∗. LearnLib is incorporated into the Formal Methods for Industrial Critical

Systems-Java Electronic Tool Integration (FMICS-jETI5) platform to support model

design recovery with Smyle [157]. While the CORBA interface is currently exposed

on the Internet and sample uses are available in example source code; the source code

for the library does not appear to be available to the public.

B.3.2 Mical. Mical is a C++ library of grammatical inference algorithms

including k-TSSI, k-RI, MGGI, and RPNI [213]. The library extensively utilizes C++

template mechanisms that are compatible with GCC6 version 3.2 and version 3.3 but

not newer versions of the GCC toolchain (currently version 4.2.2). The only publicly

released version of the software is version 0.1 from 10 July 2003 [213]. The library

also implements a range of functions internally including: creation of MCA, creation

of PTA, and conversion of MCA to PTA [213]. We attempted, unsuccessfully, to

build the library with relaxed C++ dialect options 7 available in GCC version 4.2.2.

3LearnLib – http://faelis.cs.uni-dortmund.de/
4CORBA FAQ – http://www.omg.org/gettingstarted/corbafaq.htm
5FMICS-jETI – http://jeti.cs.uni-dortmund.de/fmics/
6GCC, the GNU Compiler Collection - http://gcc.gnu.org
7-fpermissive, etc. . ., see [85, Section 3.5]
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We were able to build and evaluate the library by creating a parallel installation

of GCC version 3.3.6. Mical uses a modified version of the Vaucanson automata

library included with its source code and is not compatible with current versions of

Vaucanson [86].

B.3.3 Other Implementations. Implementations of several other algorithms

publicly available. Ammons provides C source code for k-tails and sk-strings for PFSA

inference [6]. C source code for Algeria, a stochastic automata inference algorithm [94],

RPNI, and k-tails is available from [225]. Mariani and Pezzé provide source for

kBehavior and kTails8. Their algorithms are implemented in Java [158, 198] and use

JFLAP version 4 for automata support [219].

B.4 Implementation Language

The choice of implementation language was driven by the selection of support

packages and our familiarity with C and C++. The choice of development environ-

ment was driven by the implementation language. We primarily used Eclipse9 version

3.2, KDevelop10 version 3.5.0, and various text editors on an openSUSE 11 version 10.3

Linux computer. We used Concurrent Versions System (CVS) for revision control.

B.5 Low Level Implementation

Our proof of concept low level implementation is comprised for two programs,

flowtool and flowinfer, and associated driver scripts. Flowtool process raw pcap trace

files and produces alphabet and sample string files for input into flowinfer.

B.5.1 flowtool. Flowtool is a C language program using GLib version 2.1412

standard data structures for dynamic storage and libnids for TCP connection re-

8k-tails is also covered by [99]
9Eclipse – http://www.eclipse.org

10KDevelop – http://www.kdevelop.org/
11openSUSE – http://www.opensuse.org
12GLib Reference Manual - http://library.gnome.org/devel/glib/2.14/
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Figure B.1: Flowtool verbose sample output.

# Sample Type-6

# Protocol: 25 Server 172.16.114.50 Client 152.204.242.193.1941

# Key = 172.16.114.50:25,152.204.242.193:1941: 923693227.228408

# Start: 923693227.228408

# End: 923693238.320118

# Wireshark filter:(ip.addr eq 172.16.114.50 and ip.addr eq 152.204.242.193) and (tcp.port eq 25 and tcp.port eq 1941)

- TCPopen 220 250 250 250 503 HELP 500 221 TCPclose

# Sample Type-32

# Protocol: 25 Server 172.16.114.50 Client 202.49.244.10.1027

# Key = 172.16.114.50:25,202.49.244.10:1027: 922715292.597701

# Start: 922715292.597701

# End: 922715294.666466

# Wireshark filter:(ip.addr eq 172.16.114.50 and ip.addr eq 202.49.244.10) and (tcp.port eq 25 and tcp.port eq 1027)

- TCPopen 220 250 250 503 HELP 500 221 TCPclose

# Sample Type-32

# Protocol: 25 Server 172.16.114.50 Client 202.49.244.10.1027

# Key = 172.16.114.50:25,202.49.244.10:1027: 922715290.284924

# Start: 922715290.284924

# End: 922715292.352719

# Wireshark filter:(ip.addr eq 172.16.114.50 and ip.addr eq 202.49.244.10) and (tcp.port eq 25 and tcp.port eq 1027)

- TCPopen 220 250 250 503 HELP 500 221 TCPclose

.

assembly and defragmentation. An elided call graph from main of flowtool is shown

in Figure B.2.

As the libnids library creates the connection level flow the application session

samples are incrementally created by parsing the application data flow. As previously

mentioned, because the code is a proof of concept we chose to implement hand-coded

operator parsers derived from specification documents and heuristics from Wireshark

and Bro. Once the application level traffic is parsed we write out the alphabet of

the protocol under consideration and the sample strings of operators, replies, and the

composite of operators intermixed with replies. The different sample types are written

to separate flat text files. Flowtool verbose sample output is shown in Figure B.1

Flowtool was developed using the KDevelop IDE and autoconf build system.

The C source code supports the Doxygen documentation system.

B.5.2 flowinfer. We developed the C++ language program called flowinfer

for automata inference. We chose the mical GI toolkit as the basis of flowinfer. Our

choice of mical was driven by the fact that it was the only GI toolkit that supported

multi-letter alphabets. Additionally, mical was the only toolkit with an integrated

automata toolkit. The program processes the output flat text files from flowinfer using
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Figure B.2: Flowtool call graph (elided) - libnids creates a
packet processing event loop that dispatches events to registered
callback functions. The callback function named detect edge is
registered for TCP connection events. The detect edge callback
determines if the connection is on a port of interest and calls
the appropriate protocol data format parser in either do smtp
or do pop3.
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micals k-RI and k-TSSI algorithm implementations to generate Vaucanson automata.

The automata are output as GraphViz13 dot files and post-processed to graphics

by a driver script called flowtool data. The driver script builds the command line

parameters and invokes flowinfer for the selected algorithms for k values 1 to 5. A

summary of the automata states, edges, initial states, and terminal/final states is

generated from the output of flowinfer for analysis purposes. Low-level data structures

in mical and the integrated version of Vaucanson are implemented using the C++

standard template library.

Flowinfer was developed using the KDevelop IDE and autoconf build system.

The C++ source code supports the Doxygen documentation system.

13GraphViz - http://www.graphviz.org
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Appendix C. Inferred Automaton

This appendix presents the automaton inferred by the k-RI and k-TSSI algorithms

for the subset of the POP3 protocols exercised by the IDEVAL data set. Inferred

SMTP automaton are not presented here because the graphs were not legible if we

scaled the figures to fit on a single page.
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Figure C.1: k-TSSI POP3 Composite Final Automaton k = 1.
k-TSSI with k = 1 over-restricts the target automaton. Session
initiation and session termination are not inferred as separate
states.
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Figure C.2: k-RI POP3 Composite Final Automaton k = 1.
k-RI inference exactly matches the target automaton for the
subset of POP3 specification exercised by the IDEVAL data set.
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Figure C.3: k-RI POP3 Composite Final Automaton k = 2.
k-RI inference over-generalizes the target automaton.
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Figure C.4: k-TSSI POP3 Composite Final Automaton k = 2.
k-TSSI with k = 2 exactly matches the k-RI inference with
k = 2. The hypothesis automaton over-generalizes the target
automaton.
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Figure C.5: k-RI POP3 Composite Final Automaton k = 3.
k-RI inference continues to over-generalizes the target automa-
ton.
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Figure C.6: k-TSSI POP3 Composite Final Automaton k = 3.
k-TSSI with k = 3 exactly matches the k-RI inference with
k = 3. It also over-generalizes the target automaton.
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