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1 Workshop Description

The workshop venue was Breckenridge Resort, Breckenridge, Colorado. This
was an ideal environment in which to exchange ideas, debate new and impor-
tant research trends, and discuss avenues of attack on problems of fundamen-
tal importance to the analysis of complex data sets. For two and a half days,
the participants presented overviews of compelling problems and speculated
on future directions. Each of the four main sessions consisted of a thematic
set of lectures followed by a small group breakout session for focussed dis-
cussion resulting in reports to the main group. These reports summarized
connections between the presentations and opportunities for future work.
Many interesting ideas arose from these discussions and they are summa-
rized in this report. A common theme that emerged was the significance
of geometry (algebraic, computational and differential) for aiding knowledge
discovery from data sets that are both massive and high dimensional. Two
main thought procedures formed the basis for meeting the challenge of the
highly complex and data-intensive applied problems researchers now face.
One line of thought advocates the collection of all data followed by a re-
duction step and then a processing step while the other prefers to combine
the pruning with the collection stage (compressed sensing, ensure the sensor
measurement only relays reduced data, so that no redundant information is
taken into account further up the line). The mathematics driving these ap-
proaches are, at times, distinct in fundamental ways. One can contrast these
ideas with approaches that seek massive non-compressed data collection with
the hope that simultaneous and parallel processing of such data will afford
the extraction of yet more discriminating information. The participants as a
whole spoke to the increasing importance of mathematical theory for making
progress in these data processing problems and the importance of collabo-
rations involving practitioners and theoreticians. Specific opportunities for
such collaborations are detailed in this report.

The importance of algebraic, computational and differential geometry and
the potential for these areas to contribute new data processing algorithms was
evident at the workshop. Curves for instance, over the last couple decades,
have been of crucial importance in investigating localization and tracking
issues for tumors in medical imagery, or for detecting and tracing the spatial
evolution of holes in the ozone layer in environmental sciences. Statistical or
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other characteristics shared by a fraction of the data which translate into a
coherent geometrical entity afford a simpler and perhaps more direct means
to ”divide and conquer” and to interpret otherwise complex and daunting
data. While such a curve based approaches have proven to be very successful,
their application to higher dimensional data with more complex geometry is
very limited. Such difficulty arises in many applications where the curse of
dimensionality very quickly becomes an issue, starting with 3D bodies to
other processes lying in higher dimensions but yet associated with common
characteristics which may be used to some advantage. One such example,
relevant in security applications, is the characteristic space where human
face data lie. Such data measurably lie in thousands of dimensions, while
the information-bearing submanifold dimension is in reality a small fraction
of that. Such embedding clearly has a significant impact on the subsequent
computational load as may be rigorously understood through the Whitney
Embedding theorem in Algebraic geometry. Such a theoretical framework
could be used to guide the construction and optimal implementation of prac-
tical algorithms to address practical problems. Other connections which arise
in the course of further exploring high dimensional data may arise in con-
nection with various group invariants such as curvature (the fundamental
Euclidean invariant for curves). Other invariants, including topological in-
variants, may be constructed for manifolds. These may in turn play a crucial
role in characterizing high dimensional data and in determining the most
appropriate data structures with which to represent and compare them. Al-
gebraic structure-preserving morphing, formalized in category theory, could
lead to additional insights into how to best compare data which are typically
subjected to transformations.

In what follows we describe the organization of the workshop, give an
overview of some problems in complex data analysis, and provide a summary
of new directions and opportunities.

2 Workshop Organization

The workshop was organized into four thematic sessions including interdisci-
plinary trends, algebraic geometry, differential geometry and statistics, and
topological and geometric features of data. The invited speakers were di-
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rected to consider the workshop as a visionary forum. The presentations
were all limited to ten minutes with an emphasis on new directions, open
problems, and provocative speculation. These were followed by breakout
sessions where the presented material was further discussed in small groups.
The charge to the participants was to provide concrete and coherent rec-
ommendations for new research directions. Below is a list of the speakers
organized according to the thematic areas.

• Inter-disciplinary Trends (Monday afternoon, 1:00-4:30)

– Doug Cochran (session chair)

– Davi Geiger

– Louis Scharf

– Yoshihisa Shinagawa

– Peter Schroeder

– Rina Tannenbaum

• Algebraic geometry (Monday evening, 6:30-9:30)

– Chris Peterson

– Jayant Shah

– Jon Sjogren (session chair)

– Andrew Sommese

– Peter Stiller

– Allen Tannenbaum

• Differential Geometry and Statistics (Tuesday Morning, 8:30-11:45)

– Y. Baryshnikov

– Huiling Le

– Stacey Levine

– Peter Olver

– Tony Yezzi (session chair)
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– Laurent Younes

• Topological Geometric Features of Data (Tuesday Evening, 6:30-9:30)

– Emmanuel Candes

– David Dreisigmeyer

– Peter Giblin

– Michael Kirby (session chair)

– Hamid Krim

The workshop had the following organizational committee:

Co-General Chairs:

Hamid Krim, Professor, Department of Electrical Engineering, North Car-
olina State University, Raleigh, NC

Michael Kirby, Professor, Dept. of Mathematics, Colorado State University,
Fort Collins, CO

Anthony Yezzi, Professor, School of Electrical and Computer Engineering,
Georgia Tech, Atlanta, GA

Local Arrangements:

Michael Kirby, Professor, Mathematics Department, Colorado State Uni-
versity,Fort Collins, CO

All speakers were invited by the organizers. In addition to presenting
talks all speakers participated in small group and large group discussions
and also provided material for this workshop report.

3 Problems in Complex Data Analysis

Complex data come in a variety of forms: it may be the surface of an object,
or a field of sensor measurements, or a temporal sequence of images. Given
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such data, gleaning embedded information and exploiting it remain the prin-
cipal goals of the data analysis. Such analysis entails the discovery of the
intrinsic structure of the data which would in turn constitute its character-
ization and hence its parsimonious representation. An example, is that of a
2D surface of an object being captured by a simple graphical model whose
weights represent detailed geometric information. While preserving the in-
formation (topological as well as geometric) of a given object, this simpler
representation clearly yields a reduced form with significant computational
advantages, and a very useful statistical framework for classification and
recognition applications. Dimension reduction of a data set is often based on
information that is characteristic but does not necessarily require the whole
space to be expressed or summarized. An example of that is the represen-
tation of a surface by a set of sampled curves on the surface. This may be
accomplished by defining an intrinsic characteristic function, referred to as a
Morse function, which by its denseness nature, provides a good measure of
the surface. Sampling such a function, in effect is tantamount to sampling
a surface along a ”curve” dimension. Modeling these samples will effectively
yield a significant reduction in data while preserving the intrinsic geometric
information.

Such problems arise not only in 3D data in Data-Base archival/retrieval
and homeland security, but are predominant in video data in surveillance
and entertainment industry, remote sensing/atmospheric data in weather
forecasting, medical and genomic research where MASSIVE AMOUNTS OF
DATA are collected, analyzed and exploited. In security applications, daunt-
ing amounts of video data, chemical sensor data, temperature data and au-
dio may all be simultaneously collected, which if not properly processed and
mined for the important information, would be a waste and a security risk.

The staggering and increasing number of IED’s used in military and civil
wars is one of the most deadly threats faced by our national forces and
careful and persistent surveillance of likely neighborhoods for such events
are among the crucial applications we may explore. Human silhouettes, for
example lie in a very reduced dimensional space (e.g. human silhouettes
under different postures) which needs to be discovered and used as a guideline
in understanding the environment.

In medicine and biology the exploration of processes spans orders of mag-
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nitude in scale (meters to nanometers) starting with tissue to proteins and
molecules. At each level a great deal of geometrical and topological structure
appears and gives rise to the wonders of biological life as we know it.

4 New Directions in Geometry

In the meeting, there was a clear sense that differential geometry, algebraic
geometry, topology, group theory, statistics and functional analysis are each
of fundamental importance in the analysis of large data sets. It is too much
to ask for one person to be an expert in all of these fields. At the same time,
there were a number themes and ideas that cut across disciplinary bound-
aries. This solidified the feeling of many that teams of pure mathematicians,
applied mathematicians, statisticians and engineers must work together to
understand the strengths (and language) of each of the others in the group,
to understand how to phrase problems in the setting of others in the group
and to understand how the collection of individual expertise within the group
can be combined to exceed the results obtainable by individuals. Within the
meeting it felt apparent that a team approach will provide the best chances
to solve the fundamental challenges we now face in synthesizing, compre-
hending, extracting the information contained in massive, high dimensional
data sets for these problems are, by their very nature, interdisciplinary in
scope. It is exciting for an algebraic geometer to see that Schubert vari-
eties, Stiefel manifolds, Lie groups, Flag varieties, families of metrics, etc.,
have an important role to play in the analysis of data. One can only imag-
ine that the topologists, functional analysts and differential geometers feel
much the same with the application of Morse theory, shape spaces, energy
minimization techniques, compressed sensing and homological methods all
yielding new results and insights. Parameter spaces arose many times in dif-
ferent contexts. Sometimes, a non-obvious metric on the parameter space or
a novel application of a dimension reduction procedure yielded surprisingly
strong results. For instance, we saw new functionals applied to shape spaces,
novel metrics on Grassmann varieties and projections of data at the level
of data collection all leading to advances. Some ideas from differential and
algebraic geometry which the meeting attendees strongly suspected would
play a useful role in the near future include:
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(1) Maps of parameter spaces into vector spaces: Place an object at the
center of a sphere. Consider the set of all digital pictures that can be
obtained by pointing the camera at the object while requiring the lens
of the camera to lie on the sphere. This is equivalent to the set of
all digital images that can be obtained by fixing a camera so that it
points at a defined center of the object then allowing the object itself to
rotate in any possible manner about the center. The set of all possible
digital images of the object (obtained in this manner) corresponds to
the image of a map of SO(3) into the vector space generated by all
possible digital images. This image is sometimes referred to as a pose
manifold (for a fixed illumination condition).

(2) Maps of vector spaces into parameter spaces: Fix a camera and an
object then consider the collection of all digital images obtainable by
varying the illumination conditions of the object. It is not difficult
to see that the weighted average of two different images is again an
obtainable image thus the collection forms a convex set. It has been
shown that the vast majority of the energy of such a data set can be
captured by a relatively low dimensional linear space. By fixing the
dimension of this linear space (call this dimension L) we can associate
a vector space to each object, pose pair. This linear space corresponds
to a point on the Grassmann variety of L dimensional subspaces of the
vector space generated by all possible images.

(3) Vector bundles: Now consider the collection of all possible digital im-
ages obtainable by allowing variations in both pose and illumination
conditions. For each fixed pose we have an L dimensional vector space.
We can think of the entire data set as a vector bundle over the pose
manifold. Fixing an illumination condition corresponds to taking a sec-
tion of this bundle. Varying over the entire data set yields a map of
SO(3) into the Grassmann variety.

(4) Fiber bundles: When data is collected over two variations of state one
can consider the sub data obtained by fixing one state and varying
the other state. As in the case of vector bundles, this yields a map of
one state space into the moduli space of possible fibers with each fiber
corresponding to the other state space.
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(5) Schubert varieties: For many parameter spaces there are fundamen-
tal sub-objects (playing a role similar to that of subspaces of a vector
space). For instance, consider the Grassmannian of all rank two sub-
spaces of a four dimensional vector space. Let L be a fixed one dimen-
sional vector space. The subvariety of the Grassmannian consisting
of all the two dimensional spaces which contain L is an example of a
Schubert variety. The Algebro-Geometric tools that have been devel-
oped in the context of Schubert varieties are likely to be useful in data
problems.

(6) Riemannian Manifolds for Continuous Curves and Surfaces: While fam-
ilies of curves with a fixed and finite number of landmark points have
been extensively studied in finite dimensional vector spaces, only re-
cently has attention begun to branch toward infinite dimensional Rie-
mannain manifolds for continuous curves where the metric on the man-
ifold is formulated to be independent of the parametric or implicit rep-
resentation of the curves. This type of formulation is relevant,for exam-
ple, if one wishes to compute an optimal morphing between two curves
or the average of two curves in cases where there are no easy ways to
sample the curves or extract a finite number of prominent geometric
feature points. While valid Riemannian metric spaces for continuous
curves has received modest levels of attention recently, nothing has been
done yet for surfaces and higher dimensional geometric datasets(3-folds,
4-folds, etc...). Such study is important as a precursor to the dimension
reduction step. When considering infinite dimensional geometric enti-
ties, it is crucial to understand the larger manifold where these objects
live in order to properly understand the finite dimensional submanifolds
which may help us analyze the geometric data with computationally
reasonable algorithms.

The general themes in the six points listed above are Parameter Spaces,
Maps, Fibers of Maps, Incidences, Relations between Incidences, Riemannian
metrics for infinite dimensional shape manifolds. It is expected that in the
more distant future, further tools from algebraic and differential geometry
will come into play but for the near future these seem like sure bets.
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5 Open Research Problems

5.1 Set-to-set Pattern Recognition

High dimensional data contains patterns that hold valuable information about
a physical process, human activity or a battlefield situation. We view a set of
such patterns, such as sets of images generated by video, as a family if it has
a common feature or set of features. Families of patterns have best bases, i.e.,
they live in spaces of reduced dimension. There are additional subspaces of
reduced dimension that intersect these spaces known as Schubert Varieties.
Algorithmically exploiting the idea of a family of patterns and the induced
geometry may lead to new algorithms. In particular, we note that it appears
very promising to compare sets of images to sets of images rather than to
simple compare still images to prototypes of interest.

Families of patterns may live in subspaces, submanifolds or subsets in
high ambient dimensions. We need fast(er) algorithms to characterize these
distinctions. Understanding the way data sits in space is important for se-
lecting algorithms for data understanding. For example, digital images of
faces do not form a subspace as it is not closed under addition. Can this
observation be used to guide our data processing?

As evidenced by these examples and others in this conference report, the
themes of differential and algebraic geometry as applied to the characteriza-
tion of information in large data sets clearly emerged over the course of the
workshop. Animated discussions indicated that this is an exciting new area
with many open questions concerning such topics as sampling theory, geo-
metric invariants and issues as fundamental as correct measures of distance
or similarity in this geometric framework. We observe that characterizing
things through geometry is not simply doing the same things with a new vo-
cabulary. For example, as will be described below, certain questions in data
processing find their natural language in geometry and outside this setting
are seemingly intractable. Though while we can create a Rosetta stone to
compare working in flat and curved spaces the questions that can be an-
swered in the latter domain extend what we can conclude about the origin
and nature of large data sets.

As an example of the power of geometry, consider the recognition of ob-
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jects over a variation in state. For instance, the face recognition problem
with variations in illumination may be viewed in this way. This is widely
considered to be one of the most challenging aspects of the face recogni-
tion problem. It is natural to remove, or normalize away such complicating
variations and to reduce the problem to normalized prototype comparison.
However, this approach fails to exploit an intrinsic feature of the problem,
namely, the way that illumination varies over an object actually contains dis-
criminating information that should be retained at all costs. Further, rather
than remove this variation, one should seek to collect such information when
it is available.

Geometrically such a variation can be quantified as a mapping a of set of
images associated with a face under different lighting conditions to a point
on a nonlinear parameter space, e.g., the Grassmannian. The power of
this encoding is that now a point in a parameter space (really represent-
ing megabytes of pixel data) can be compared with other points (images
of other subjects) in a natural way using one of the many metrics that are
widely known in differential geometry.

This framework can be referred to as the image set-to-set paradigm which
can be summarized as follows:

• An instance of a representation of a pattern is a set of observations.

• The characterization of a single class is a collection of such sets.

• Our objective is to match an unlabeled set of images with a class.

We may now pose many fundamental open problems.

How separated can P k dimensional planes be in n-dimensions? How does
this separation depend on the resolution n, population size P and represen-
tation dimension k? This is a data packing problem for points generated by
real data on the Grassmannian.

Given a cloud of data how does one identify the independent variables?
Random projection works in linear setting but is not optimal for nonlinear
setting or if the data is not sparse.

What geometric characteristics of the data can be quantified (e.g., sym-
metry, curvature, dimension) and used as a guide to algorithm selection?
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What geometric invariants do objects possess that are invisible in stan-
dard vector space representations in high dimensions but appear like flashing
red lights in the correct parameter spaces?

5.2 Statistical Signal Processing (SSP)

Geometry and SSP may offer interesting opportunities for future work. A
challenging problem in SSP remains robust methods for solving multi-modal
optimization problems in radar, sonar, and communication, and perhaps
geometry has something to say. Another tough problem is to solve large
inverse problems for equalization, inverse imaging, and so on, at very high
rates for very nonstationary problems. One may speculate that SSP could
be re-worked along geometric lines, rather than subspace lines, to produce
a theory more general and more powerful than what we have. A caution-
ary note is that the SVD seems to be a powerful bridge between geometry
and linear algebra. Perhaps we could understand more clearly why it is so
powerful.

Are there avenues open to integrate existing approaches? It seems that
many of the intuitions from SSP and communications might be integrated
into geometry to get at the question of complexity, modelling, compression,
and processing. Information theory seems to be missing, even though we are
talking about measurements. (In fairness it is missing in much of SSP as
well.) We would argue that even in 3 years a more profound understanding
of the limits of subspace modelling might be gained.

Are there opportunities to advance basic mathematics by considering ap-
plications in this regime? Mathematicians in geometry and topology should
collaborate with mathematical engineers to explore a new set of ideas related
to concepts like bandwidth, power, capacity, rate-distortion, rank reduction,
and so on.

5.3 Algebraic Geometry and Control

Families of dynamical systems present key problems which arise in trying
describe their algebro-geometric properties. Families of dynamical systems
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appear in all aspects of systems and control theory. Indeed, the essential need
for feedback in control systems is the fact that the plant model is only an
approximation, and so we must in reality design for a whole family of plants.
Of course, the appropriate notion of family depends upon the type of problem
in which we are interested. For example, in robust control, families are
modelled by certain natural norm bounded perturbations of a given nominal
plant. This is a local analytic point of view.

In the early 1970’s, R.E. Kalman undertook a global algebraic approach
to the problem of system parametrization when he constructed a universal
parameter space of linear time invariant systems of fixed state space and
input/output dimensions. In doing this, he initiated a powerful algebro-
geometric framework for studying families of linear time invariant dynamical
systems. This approach has had major ramifications in algebraic systems
theory and basically opened up a new branch of study. Indeed, a whole
conference was dedicated at Harvard in 1979 just to consider this research
area. Even today more than 25 years later, f prominent researchers are
continuing along this research stream.

Besides the introduction of algebraic geometry into control, Kalman’s
work illuminated the deep connection between invariant theory and a number
of control problems. Given the introduction of invariant theory and algebraic
geometry into control, it was only a small step to bring geometric invariant
theory into the picture. Indeed, geometric invariant theory may be regarded
as an algebro-geometric manifestation of classical invariant theory. It was
devised by David Mumford precisely in the context of universal families (or
moduli spaces) of algebraic varieties.

The purpose of our briefing was to give a geometric-invariant theoretic
construction of the Kalman space and using this construction to derive some
of its key geometric properties and to describe possible new research direc-
tions in systems and signal processing using these type of techniques. Such
methods appear in many applications including image processing and the sta-
tistical analysis of data (e.g., GPCA) all of which impacts the information
sciences.

Where is the field going? It has been now more than thirty-five years
since, Kalman initiated the geometric approach to families of systems out-
lined above. Of course, even today the concept of family remains fundamental
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in systems and control, and is really the underlying object of study in both
adaptive and robust control. Especially relevant is adaptive control with its
emphasis on the notion of identification, since much of the interest in the
the topology and geometry of the moduli spaces of systems was precisely for
identification theoretic reasons. However it is important to note that despite
the uses of very high powered techniques from topology, complex analysis,
Lie groups, algebras, differential and algebraic geometry, the precise global
structure of these universal families and parameter spaces still remains an
open problem to this day, and one of active research interest.

There has also been an extensive program of research using a local an-
alytic approach in both adaptive and robust control. It turned out to be
highly profitable both from the theoretical and practical standpoints to con-
sider families defined in weighted H∞ balls using techniques from operator
and interpolation theory. There is also much work being carried out on the
melding of the robust and adaptive control approaches to system uncertainty
and families of systems. In short, the study of families of systems whether
from the algebraic or analytic, local or global point of view lies at the heart
of feedback control theory. Certainly, the Kalman construction of the moduli
space of dynamical systems is one of the major achievements in this area.
Algebraic geometry allows one to investigate the internal parameters on fam-
ilies of systems in a completely principled way which makes it a powerful tool
in the information sciences.

5.4 Geometry and Shape Theory

We can sometimes characterize manifolds of invariants of general objects
such as Kendall shape spaces for Euclidean shapes, Grassmannian manifolds
as a model for affine shapes and the infinite dimensional manifold of curves
in 2D. However, invariants of a set of sample data, e.g. the curves, shapes
or affine shapes of surfaces of a collection of aeroplanes or human faces,
usually lie in very low dimensional submanifolds of such large manifolds.
One possible way to represent the common feature of the invariants of the
data is by using the exponential map and a modified PCA method, described
as follows, to determine the submanifolds in which the invariants of the data
lie. If we can express the exponential map ‘exp’ at points of the manifolds,
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we can use the inverse of the map ‘exp’ to map the invariants of the data
to a relevant tangent space, for example, that at the ‘mean’ of the data,
and perform modified PCA, to take into account the metric structure of
the tangent space, there to determine a lower dimensional subspace of the
tangent space which then gives an appropriate submanifold. When the data
set is rich enough, such submanifolds will give a very good approximation of
those in which the invariants of, say, aeroplanes or human faces lie. This can
certainly be achieved for Kendall shape spaces and Grassmannian manifolds.
The Grassmannian manifold of affine shapes may be an attractive object to
explore.

Kendall shape space and infinite-dimensional manifolds of curves in 2D.
To use an infinite-dimensional manifold of curves in 2D in practice, one needs
to use finite-dimensional approximations. Hence it is important to under-
stand its finite-dimensional equivalents. One possibility is to investigate its
relationship with Kendall shape spaces and to explore the limit of some kind
of subspaces of Kendall shape spaces as the number of vertices of configura-
tions tends to infinity. There are many different possible embedding struc-
tures for Kendall shape spaces when the number of vertices increases, which
make it possible to consider various possible limit schemes when the number
of vertices tends to infinity. However, the resulting limits are very likely to
be too big for practical applications and so one might consider restricting to
the limits of sequences of submanifolds of Kendall shape spaces.

5.5 Algebro-Geometric Tools for Shape Theory

A very interesting topic for future research would be to explore the role that
algebraic geometry might play to reconcile two different approaches to shape
analysis, i.e., differential Riemannian geometry and the calculus of variations
versus the Kendall approach to shape analysis using landmarks.

Severe pathologies associated with the metric structure that has been
implicitly utilized in gradient descent methods for geometric active contours
have been observed. By geometric active contours, we refer to those active
contour models which are not dependent upon the representation of the curve
(either its parameterization or its implicit formulation). The underlying norm
assumed by these geometric gradient techniques is a geometric version of L2
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in which the arclength measure is used when integrating along the curve. A
surprising result is that the associated inner product does not produce a well-
behaved Riemannian metric on the manifold of curves. The resulting space is
incomplete, the resulting energy on homotopies is not lower semi-continuous,
and the relaxation of this energy yields a distance of zero between any two
curves in the space. PDE flows to reduce this energy are ill-posed and the
simplest attempts to repair this problem through the use of conformal factors
in the metric still do not guarantee the existence of geodesics between any
two given curves in the space. This has been the primary reason behind the
exploration of Sobolev metrics for shape analysis and for the design of new
active contour models.

The Kendall theory does not suffer from any of the above problems. This,
however, is not surprising since the resulting spaces are finite dimensional.
The price one pays for using the Kendall theory is the need to select seman-
tically meaningful landmark points on the shape and to fix the number of
landmarks used when comparing multiple shapes. In the limit, as the num-
ber of landmarks goes to infinity, one obtains a specific parameterization
of the shape. One could consider a sort of geometric limit by considering
equally spaced landmarks according to arclength, and then let the number
increase to infinity. In this case, the only remaining degree of freedom in
this sampled geometric representation would be a cyclic permutation of the
landmarks. For any finite number of equally spaced landmarks, the resulting
quotient space to represent the curve would consist of n-dimensional Eu-
clidean space with equivalence classes given by both the similarity group and
cyclic permutations.

The tools available in algebraic geometry used to consider such spaces
may provide transformative insights to this problem. Since we know that in
the infinite continuous limit, the resulting L2 metric structure breaks down,
algebraic geometry may shed more light and lead to a better understanding of
this phenomenon by studying the behavior of these finite dimensional spaces
modulo the group of cyclic permutations and as the dimension increases. Not
only could this lead to a better understanding of the continuous limit, which
is where much recent research into shape spaces is concerned, but it could also
lead to a better understanding of the finite dimensional Kendall approach to
shape and how one should go about choosing an optimal number of landmarks
given the constraints and parameters of their particular application.
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5.6 Detection, Comparison and Analysis of Sampled
Manifolds

Of all the problems research directions mentioned in the Breckenridge meet-
ing maybe the most challenging relate to the detection, comparison and anal-
ysis of sampled manifolds. Suppose one has a point cloud that comes from
a noisily sampled submanifold in a high dimensional space. There is a sig-
nificant need, motivated by a broad range of applications, to develop robust
algorithms for reconstructing basic geometrical properties — dimension of the
submanifold, topology, curvatures and other invariants, metrics and geodesic
distances, etc. — from the point cloud samples. Methods requiring a prelim-
inary triangulation appear to be inadequate and indirect to handle densely
and noisily sampled objects. Invariant signature recognition, particularly
noise reduced signatures based on joint invariants, integral invariants, and
semi-differential invariants, requires new statistical sampling methods and
comparison of the resulting invariant signature submanifolds. For example,
how often does one need to sample two submanifolds (using some proba-
bilistic distribution) to be 99% sure they are the same or different? Can
techniques from compressed sampling be applied, i.e. how can one formulate
a theory of compressed sampling of submanifolds? How can one effectively
apply learning algorithms to objects with non-flat intrinsic geometry?

A range of shape and submanifold metrics have already been proposed.
However, despite much work in this area, many key issues, both intrinsic and
extrinsic, remain underdeveloped and properly tested. An even more basic
question is whether metrics are the correct mathematical construct required
to compare shapes and submanifolds. Further analysis of the pros and cons
of metric geometry versus more general geometries is required.

Classification and detection of symmetries extends the domain of inter-
est to ”currents”, representing multiply parameterized submanifolds. For
example, the number of discrete symmetries of an object can be found by
determining the index of the signature — how many times the signature is
covered by the original. Further development of distance and other joint
invariant histograms appears promising, but needs testing and comparison
with other approaches.

A better understanding of image and signature statistics would be of
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importance in comparing, classifying and analyzing scenes and objects in
images. For example, can one develop natural curvature (or torsion, or ..)
statistics to enable classification of objects? Recognition and reconstruction
of scenes from stereo, video, etc. requires understanding how the differ-
ential invariants and other invariant quantities behave under projection to
the screen, with only preliminary results available to date. Applications in-
clude object & target recognition, tracking, motion, scene reconstruction,
etc. Extensions to more general transformation groups, including infinite-
dimensional pseudo-groups, should be pursued.

Invariant numerical algorithms are just beginning to be developed and
applied to systems arising in applications — image processing, fluid mechan-
ics, invariant flows, and so on. This fall under the general area now known
as ”Geometric Integration”, which has received much attention and develop-
ment in other parts of the world, but where the US seems lagging at present.
Combining methods from the discrete variational calculus and moving frames
seems a very promising way to develop symmetry-preserving codes with po-
tential benefits. Use of the underlying geometry, e.g. circles in the case of
conformal geometry or conic sections in affine geometry, is promising, but re-
quires a more extensive development of techniques and testing on real world
problems.

5.7 Alegbraic Geometry for Image Processing

Efficiently recognizing three dimensional arrangements of features on an ob-
ject from a single two dimensional view requires an approach that is view
and pose invariant. Existing methods often rely on computationally expen-
sive template matching. Those methods use comparisons against templates
created for all possible views; with the infinite number of possibilities being
approximated by some finite number of views. To carry out an invariant ap-
proach to target recognition, we need to exploit properties and relationships
that are geometrically intrinsic to the objects and/or images being com-
pared. Our approach to view and pose independence (as well as coordinate
independence) starts with a characterization of a configuration of features
by its geometric invariants. The specific group to which things should be
invariant is a function of the sensor type. We then derive a fundamental

18



set of equations that express, in an invariant way, the relationship between
the 3D geometry and its ”residual” in a 2D (or 1D) image. These equations
completely and invariantly describe the mutual 3D/2D constraints. Once de-
rived, they can be exploited in a number of ways. For example, from a given
2D configuration, we are able to determine a set of nonlinear constraints on
the geometric invariants of the 3D configurations capable of producing that
given 2D configuration, and thereby arrive at a test for determining the ob-
ject being viewed. Conversely, given a 3D geometric configuration (features
on an object), we are able to find a set of equations that constrain the invari-
ants of the images of that object; helping to determine if that object appears
in selected images. With these results in hand, future work includes three
major problems:

• object/image metrics on shape spaces to provide a distance (difference)
between two object configurations, two image configurations, or an
object and an image pair in pose invariant, coordinate free terms,

• reconstruction of an object’s 3D shape from 2D sensed information,
either from multiple sensors or multiple images of a moving object,

• statistical issues surrounding random shapes, distributions of shapes,
and noise in object recognition.

Dealing with data on certain manifolds, most notably Grassmann mani-
folds appears to be a fruitful new direction in the analysis of complex data.
Appropriate metrics and also procedures for fitting subvarieties to such data
need to be developed. The general question of invariant features of high
dimensional data under projections to lower dimensions is also an interest-
ing one. It appears that some aspects of our techniques could be applied
to such high dimensional problems. Finally, problems in signal processing
may have nice geometric formulations in terms of secant varieties of rational
normal curves, where the same sort of metrics on Grassmannians play a role
in finding the optimal answer.
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5.8 Representation and Reconstruction

Representation: One of the most challenging problems in visual inference is
that of representing objects, scenes, categories etc. in ways that trade off
invariance/insensitivity to nuisances of image-formation (viewpoint, illumi-
nation, occlusion), and at the same time retain discriminative power. In
particular, it can be easily shown that any viewpoint invariant statistic is
not shape discriminant. However, that is true for ”worst-case” invariants,
that is image statistics that are invariant to any possible viewpoint, for ob-
jects of any possible scene. Because scenes are not generic (the shapes of
objects are highly non-generic), we must find ways to embed natural ”scene”
statistics (typical shapes, typical illumination, typical camera motions) into
the design of local feature descriptors that can support decision tasks such
as classification or recognition.

3-D reconstruction: Reconstructing the 3-D structure (shape) and ap-
pearance (reflectance) of complex surfaces hinges on assumptions about il-
lumination and reflectance properties of the scene. The most common as-
sumptions (Lambertian reflection, diffuse illumination) have worked well so
far in laboratory environments, but have failed the test of real scenes, such as
outdoors, or complex objects such as vegetation, human skin, shiny indoor
materials such as polished surfaces. Formalizing the reconstruction problem
in ways that takes into account complex reflectance models requires devising
models that have generative power, that is models that can synthesize im-
ages that exhibit the non-Lambertian phenomena that we want to capture.
Because both shape and reflectance are unknown, reconstruction typically
boils down to solving infinite-dimensional optimization problem, and it is
important to devise multi-grid, multi-resolution methods that can produce
results in useful computational time (order of minutes, not hours or days),
to impact applications in cartography, navigation, surveillance etc.

5.9 Low-Dimensional Embeddings

One of the central ideas when dealing with high-dimensional data is the con-
cept of a manifold. Specifically, one often assumes that the data is sampled
from some underlying manifold that one wants to process in some way. This
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concept allows for the use of various analytic theorems, e.g., Whitney’s em-
bedding theorem, for reducing the dimensionality and/or complexity of the
data.

When dealing with a high-ambient dimensional embedding, a common
theme is to define a function over the underlying manifold that is in some
sense optimized for a specific characteristic that one finds desirable. Exam-
ples of this are the Karcher mean of a set of points on a manifold and, the
optimal Whitney projection direction for manifold-valued data. Now one has
to deal with high-ambient dimensional optimization in order to improve the
representation of the raw data.

This interplay between working with high-dimensional data and dealing
with large-scale optimization problems is a two-way street. One can employ
techniques for dimensionality reduction in order to make the optimization
problem practical. Alternately, large-scale optimization problems are ubiq-
uitous in dimensionality reduction routines.

It so happens that a significant portion of what goes by the name ’non-
linear programming’ can be viewed as applied Morse theory. So now one
is examining the level sets of some function defined over a manifold. Here,
however, the manifold corresponds to the constraints that are present in the
problem formulation. One can, in principle, reconstruct the topology of the
underlying manifold by solving the optimization problem.

This shift in viewpoint is significant because again we see that the concept
of a manifold reappears. So learning how to deal with (potentially low-
dimensional) manifolds embedded in a high ambient dimension has important
implications beyond the obvious applications to dimensionality reduction.
We have the curious situation where the techniques used to solve a problem
themselves can be improved by the solution to the problem itself
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