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INTRODUCTION

SERDP relevance and project initiative

The Strategic Environmental Research and Development Program (SERDP) was initiated in
1990 to harness the resources of the defense establishment to minimize or remove any
negative environmental impacts associated with Department of Defense’s (DoD) primary
mission of maintaining military readiness for national defense. SERDP is a cooperative
program under the DoD in full partnership with the Department of Energy and the
Environmental Protection Agency, and with participation by numerous other Federal and
non-Federal organizations. SERDP consists of environmental compliance, cleanup, pollution
reduction, and conservation programs. Its objectives are to accelerate cost-effective clean up
of contaminated defense sites, facilitate full compliance with environmental laws and
regulations, enhance training, testing, and operational readiness through prudent conservation
measures, and reduce defense industrial waste streams through aggressive pollution
prevention. Application of the innovative environmental technologies developed by SERDP
should reduce the costs of sustainable environmental and resource management, save the time
required to resolve environmental problems, and enhance safety and health.

The conservation program of SERDP focuses on research and development that helps to
manage natural and cultural resources for sustained access and uses of land, water, and
airspace while protecting wildlife, endangered and threatened species. The objectives are to
provide new methods, techniques, and tools to efficiently and effectively inventory, map and
manage these resources, including assessment of impacts from military testing and training,

design of plans to restore the resources, etc.

Many models have been developed and are being widely used to predict the state of natural
and cultural resources. These models are used to formally describe and scientifically
understand the underlying mechanisms and spatial relationships that produce the state of a
resource and, therefore, provide a basis for extrapolation. Thus, it is possible to use these
models to predict the behavior of a system under a wide range of scenarios including
scenarios that have never occurred. This characteristic allows us to analyze the potential
effect of individual as well as the cumulative effects of a combination of factors on the
behavior of the systems under consideration. Natural and cultural resource models are also
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being extensively used to provide management guidelines, and thus, are becoming powerful
decision-making tools as well.

Additionally in the past ten years, Geographic Information Systems (GIS) have become
powerful tools for natural resource management. Using GIS, decisions can be made from
digital maps on which spatial patterns, distributions, processes and relationships are clearly
visualized and easily updated. (This contrasts with the more traditional approach in which
decisions are made from spatially aggregated and infrequently updated information.)
Likewise, remotely sensed data such as aerial photos and satellite images has become more
important as a method of generating and updating natural resource maps.

If these maps are considered to be results of interpolation from sample data and prediction by
traditional models, the maps can be regarded as site-specific spatial models with the
traditional models as their core. For example, a map of soil erosion can be generated by
interpolation from soil loss estimates at sample field plots with estimates calculated as a
product of empirical models related to rainfall-runoff, soil properties, slope steepness, slope
length, vegetation cover and management, and management practice factor. Thus, the
empirical (traditional) models are essential to the spatial model of soil erosion.

Model and map users often implicitly assume that the values that characterize model entities
are true or error-free. This is usually known as the deterministic assumption. However, most
values employed in traditional and spatial simulation modeling are estimates of the true
parameters and, therefore, have an associated uncertainty. This uncertainty can be due to non-
sampling errors such as measurement errors, sampling errors, prediction errors, expert
knowledge uncertainty, etc. Obviously, when there is uncertainty in the inputs to a system
there must be uncertainty in the predictions as well (Figure 1). Moreover, the sensitivity of
predictions to these uncertainties can vary considerable in both time and space.



Ul NRES White Paper (Final Report) 10

Models and Error Budgets
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’ ; ; Error sensitivity
Exact data

Figure 1. An example of a modeling system with error.

Assessing the quality of simulation systems is a difficult task. This is particularly true for
multi-component systems, whose prediction quality is determined not only by its
components, but also by the interactions of those components and by the inputs from the
monitoring system. Because the components are linked together, interactions between them
will produce properties that did not previously exist. In the simulation system, the outputs
from one component are used as the inputs for other components. Errors from individual
components propagate and accumulate throughout the entire simulation system. The effects
of such errors will be evident in the final outputs.

Moreover, the use of digital maps in management expands the sources of errors, while
assessing errors has become more complicated. For example, position errors need to be
identified and quantified, and their effects on attribute errors have to be assessed. Secondly,
errors occur when interpolating sample observations to unknown locations. Because
appropriate map unit sizes or spatial resolutions may differ greatly for different system

variables, thirdly, the maps of different natural resources have to be inferred from one

10
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resolution to another, which is scaling that results in uncertainty. Additionally, the use of
remotely sensed data to improve the accuracy of maps may also lead to new errors due to
sensor systems, platforms, weather, geometric errors, etc. Finally, spatial information from
nearby locations is usually used to improve predictions at unknown locations, therefore, the
data configuration effect needs to be assessed. All these error sources will lead to spatial
variability of accuracy and uncertainty. That is, accuracy of a map will vary over space and
the main error source will differ from place to place. Therefore, spatial uncertainty analysis
has become necessary, which has made it very complicated to assess the quality of simulation
systems.

Error budgets can be used to assess the quality of the overall simulation system (Gertner and
Guan 1991). An error budget can be considered as a catalog of the different error sources
(Gelb et al. 1974) that allows the partitioning of the projection variance and bias according to
their origins (Table 1). As a specialized form of sensitivity analysis, an error budget shows
the effects of individual errors and groups of errors on the quality of a multi-component
model's predictions. The goal in developing the error budget is to account for all major
sources of errors that can be expected in a system. By doing this, the sources of errors can be
examined and partitioned in different ways. Additionally, an error budget can be generated
for different time steps and spatial scales.

Because of the way an error budget is generated, the components that cause the most
uncertainty can be readily identified. These components will be the ones that contribute the
most toward final prediction variance and/or bias. Additionally, if the model is modified, the
newly created uncertainty contributions can be assessed quickly. More important is that
accounting for uncertainty has management implications. For example, management
decisions can be made after taking into account the uncertainty of the information on which
the decision is based.

Taking into account the growing importance of simulation modeling in resource assessment
and management, the need for a comprehensive framework for analyzing uncertainty of
simulation results is apparent. Although progress has been made in the areas of uncertainty
analysis (e.g., Dale et al. 1988; Gardner and O’Neill 1981; Gertner and Guan 1991; Gertner
et al. 1995; Hanes et al. 1991; Kremer 1981; McCarthy et al. 1995; O’Neill and Gardner
1979; O’Neill et al. 1980; Rossing et al. 1994a,b; Summers et al. 1993) and error budgets
(Gelb et al. 1974; Gertner and Guan 1991; Gertner et al. 1995), it is necessary to develop the
statistical and computational tools that will enable model users to jointly assess and quantify
the sources and magnitude of input error, develop error budgets, and optimize data collection,
modeling and simulation, and management decisions in terms of errors, expense and risks for

the array of large scale simulation models employed in resource assessment and management.

11
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Furthermore, the need for spatial error budgets requires maps of estimates for natural
resources and their variance maps as well. Traditional methods of creating maps by
interpolating sample data to unknown locations, for example supervised and unsupervised
classification (Campbell, 1996, Wang et al., 1997) and even various kriging methods
(Goovaerts, 1997), may not produce the information necessary for spatial uncertainty
analysis. New methods need to be developed that provide population and local unbiased
estimates and their variances and co-variances as uncertainty and spatial correlation measures
when interest variables are spatially correlated with each other. Therefore, there is a very
strong need to develop a systematic methodology and tool to generate unbiased maps with
uncertainty measures, and further to make spatial error budgets. Therefore, in 1998 this
project ‘Error and Uncertainty Analysis for Ecological Modeling and Simulation’ was

initiated.

12
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Table 1. A schematic representation of an error budget for final prediction variance and bias

of a hypothetical multi-component monitoring-simulation system. Both final variance and

bias are partitioned according to the sources of errors.

Sources of Errors

Variance of Final Prediction

Bias of Final Prediction

Input Measurement Error
variable 1
variable 2
variable n

Subtotal

Sampling Error

Subtotal

Component Model Error
Component 1
equation 1
equation 2

Component 2
Component n
equation 1

equation 2

Subtotal

Digitizing errors

Data conversion error
Remotely sensed error
Interpolation error

Scaling error

Subtotal

Temporal Error

Subtotal

Grand Total

13
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Project objectives

This project intends to overcome current significant gaps in the generation and use of models
and maps for the assessment and management of natural and cultural resources. Specifically,
this study will account for spatial effect of different sources of error on uncertainty of
predictions and maps generated through models, and also provide the rationale for efficiently
reducing uncertainty and error for data collection and spatial prediction, and further reducing
risks of poor management decisions being made. This methodology will be relevant to all
users of natural, ecological and environmental modeling systems. The proposed analytical
framework will be made available as a user-friendly interactive software package. This
package will be fully compatible with the computational environments employed by SERDP
members. It is expected that this project will provide users with the means not only to assess
but also to exert control over the quality of simulation results. This, in turn, will provide the
necessary quality control/quality assurance mechanisms to support decision-making
regarding natural and cultural resources. The technical objectives thus include:

a) Providing a rationale to account for spatial effect of different sources of uncertainty in
temporal-spatial models and maps employed in the assessment and management of natural

and cultural resources.

b) Presenting a theoretical and methodological framework for optimizing sampling design,
data collection, spatially modeling, and management in terms of precision (errors) and/or

expense as an integral part of the continuous monitoring-simulation process.

c) Developing user-friendly portable software (tool kit) that can be used for spatial

uncertainty analysis of simulation modeling systems in general.

d) [lustrating this methodology through a case study in which a soil erosion modeling system
is being applied by the military for assessment and/or management of resources at one

military installation.

Project methodology summary

The methodology proposed in this work is a continuation and improvement of a research
program initiated by George Gertner more than a decade ago (e.g., Gertner 1987, 1991; and
Gertner et al. 1996). The overall goal of this study is to account for the sources and the effect
of spatial uncertainty in simulation modeling. Thus, we plan to employ some of the analytical

14
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tools developed so far, and also build upon the previous work to meet the goals established in
this proposal.

We have developed a GIS-based methodology to make spatial and temporal predictions,
analyze uncertainty, and build error budgets. This methodology is based on modeling spatial
variability of variables and spatial cross variability between them. The geostatistical methods
— various sequential simulation and co-simulation algorithms are developed and used for
generating prediction, variance and co-variance maps from sample data sets. Various and co-
located available auxiliary data including digital elevation models and remotely sensed
images are introduced into the algorithms to improve spatial simulation accuracy. The
algorithms result in a grid-based database containing various maps of natural resources and
their uncertainty measures. The spatial and temporal predictions are made at different optimal
operational scales. Based on the maps of estimates, variances and co-variances, spatial
uncertainty analyses and error budgets can be produced using the uncertainty analysis
methods obtained by improvement of the existing methods that include Taylor series, Fourier
Amplitude Sensitivity Test (FAST), regression modeling, etc. That is, the error budget is
developed on the basis of pixel by pixel in addition to populations and homogeneous areas.
Moreover, the variables themselves, the interactions between these variables, and the effect of
spatial information from neighbors are taken into account in the error budgets.

As a case study, we applied the proposed methodology to a soil erosion prediction system —
Revised Universal Soil Loss Equation (RUSLE) (Renard et al., 1997) employed by the
military for assessment and/or management of land capacity with training activities at one
military installation — Fort Hood, Texas. The case study was done in parallel with the
methodology development above.

Project performance and achievement summary
This project started in Jan. 1998 and ended in Dec. 2001. The project performance can be
divided into four stages corresponding to four research years. The performance stages,

research years, and corresponding tasks follow:

The first stage - Year 1998:

SELECTED A MONITORING-MODELING SYSTEM - THE REVISED UNIVERSAL
SOIL LOSS EQUATION (RUSLE) AS A CASE STUDY, AND THE INSTALLATION -
FORT HOOD, TEXAS, AS THE CASE STUDY AREA.

15
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a)

b)

Carried out relevant literature and study review, and started development of
methodological and theoretical foundation for sampling design, spatial modeling
and simulation, identification and definition of errors, uncertainty assessment,
and rational of reducing errors by evaluating existing methods and developing
new approaches.

Reviewed the existing database for the case study and complemented sampling

and ground data collection.

The second stage - Year 1999:

a)

b)

d)

Finished the calibration and improvement of existing models for the case study,
and completed new models.

Completed the design of methodological framework for sampling design, spatial
modeling and simulation, identification and definition of errors, uncertainty

assessment, and rational of reducing errors.

Applied the methods to the case study for generating soil erosion factor maps
including rainfall-runoff erosivity, soil erodibility, slope steepness, slope length,
vegetation cover and management, and support practice (These factors will be
described in the next chapter).

Identified and defined all possible source errors, and started spatial and temporal
uncertainty analysis in the case study area.

The third stage - Year 2000:

a)

b)

Completed the methodological framework and its details, and continued the
applications of the methods to the case study for spatial and temporal modeling,
map generation, and error budgets of soil erosion at different scales in both space
and time.

Started designing the computer software for realizing and generalizing the
methodology.

16
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The fourth stage - Year 2001:

a)

b)

d)

Completed the case study for applications of the methodology, and generated
declaration of quality for the monitoring-modeling system.

Defined general quality control/quality assurance standards for data collection,
spatial modeling and simulation, and resource management, and suggested
guidelines for error management.

Finished the software programming.

Documented the methodology, its application results to the case study, and
computer software.

Main achievements:

a)

b)

d)

A general methodology consisting of the methods to optimize sampling design
and data collection, to spatially and temporally model and predict natural
resources, that is, to generate maps and their time series, to define and identify
various errors, and to do spatial error budgets.

A user-friendly software consisting of programs that can be used to carry out
error budgets at different levels such as populations, homogeneous areas, and
pixel by pixel.

A rational to account for spatial effect of different sources of uncertainty in
temporal-spatial models and maps employed in the assessment and management

of natural resources.

One project report, a software user manual, more than 20 peer-reviewed journal
articles, and more than 15 conference and technique reports.

Many technical breakthroughs, and interesting and important findings, for
example, development of new methods and improvement of existing methods to
determine appropriate plot size and spatial resolution, model loss of spatial
information due to scaling, jointly map multiple variables that are spatially
correlated with each other, generate error budgets considering interactions among
multiple variables and effect of spatial information from neighbors.

17
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CASE STUDY

ATTACC and ELVS

We applied the proposed methodology to the Army Training and Testing Area Carrying
Capacity model (ATTACC) (Anderson et al., 1996) at one military installation as a case
study. The military uses this model for the assessment and management of natural and
cultural resources. Specifically, ATTACC is an analytical tool used to determine training
carrying capacity and evaluate the impact of alternative training exercise scenarios based on
the Evaluation of Land Value Study (ELVS) methodology (Siegel et al., 1996). The case
study was done in parallel with the uncertainty analysis methodology development.

The ELVS was designed to develop and demonstrate a methodology to estimate and analyze
resource requirements for training land management, and to provide operation and support
costs of land rehabilitation and management (LRAM) accounting for environmental, training,
and economic factors. In the ELVS methodology, soil erosion status is used as a quantitative
measure of land condition and training land carrying capacity. Training land carrying capacity
refers to the ability of specific land parcels to accommodate training and mission activities.
Since soil erosion is the primary effect of using land for training, soil erosion status is
assumed to be a good indicator of land condition. Erosion incorporates most of the factors
that influence land condition and is directly related to vegetation cover, indirectly to habitat
for threatened and endangered species and therefore ultimately, to biodiversity. The ELVS
methodology is realized by building relationships between soil erosion status and training
land carrying capacity. The model used to predict soil erosion status is the Universal Soil
Loss Equation (USLE) (Wischmeier and Smith, 1978) and Revised USLE (RUSLE) (Renard
et al., 1997). The monitoring system employed is the Army Land Condition Trend Analysis
(LCTA) (Tazik et al., 1992).

USLE or RUSLE and uncertainty

In the USA, soil erosion is usually predicted using the Universal Soil Loss Equation (USLE)
(Wischmeier and Smith, 1978) or the Revised USLE (RUSLE) (Renard et al., 1997). In both
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equations, soil loss (A) is a function of six input factors including rainfall-runoff erosivity
(R), soil erodibility (K), slope length (L), slope steepness (S), vegetation cover and
management (C), and support practice (P):

A=RxKxLxSxCxP (2.1)

Soil loss (A) is a computed spatial-temporal average soil loss per unit of area and can be
expressed in the units selected for factors R and K, for example, in a unit of ton / ha, year.

The SI metric unit can be converted to US customary unit, i.e., ton / (acre e year) by

1
multiplying by m . Generally, soil loss is most sensitive to the topographical factor LS (a

product of slope steepness S and slope length L), and then C factor (Benkobi et al., 1994;
Biesemans et al., 2000; Renard and Ferreira 1993; Risse et al. 1993). Erosion increases as
slope length and steepness increases, and it increases more rapidly with slope steepness than
slope length. The higher the ground and vegetation cover, the less the potential soil loss. Soil

loss is also proportional to the R factor when other factors are held constant.

For each specific soil, furthermore, a tolerance value indicating a maximum soil erosion level
for sustainable soil productivity has been derived for agricultural management. The ratio of
estimated soil loss (A) to its tolerance (T) is called the erosion status (ES) (dimensionless) of
the soil.

ES = % 2.2)

Four levels of erosion status are defined: ES <1.0; 1.0 t ES<1.5; 1.5 t ES<2; and ES A
2.0. Higher ES values reflect a poorer land condition (e.g., ES greater than 2.0), whereas
lower ES values reflect a better land condition (e.g., ES less than 1.0).

Since training results in vegetative cover disturbance that increases soil loss, training carrying
capacity is limited by soil loss tolerance according to the following relationship:

. Change in Change in
Predicted Current land 3 land 3
land 3 = land + condition - condition
condition condition dug _to due to land

training load recovery
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This relationship can be expressed in the notation of Egs. 2.1 and 2.2 as:
ES=A/T=(R*K*LS*P*((C-C,)*IA/TA-(C-C,)/M+C))/T (2.3)

where
C, = vegetation cover and management factor after disturbance
C, = vegetation cover and management factor before disturbance
IA = Impact area
TA = total area suitable for training.
M = time required for the land to naturally recover.

Once the relationship between intensity of military training and disturbance of vegetation
cover is derived, Eq. 2.3 is used to predict spatial and temporal average soil erosion status for
a given area after military training. Additionally by selecting a maximum allowable soil loss
(e.g. ES = 1), the maximum allowable disturbance of vegetation cover and thus, the
maximum allowable intensity of training, can be calculated.

Rainfall-runoff factor R

The rainfall-runoff erosivity factor R is the rainfall erosion index plus a factor for any
significant runoff from snowmelt. Rainfall and runoff normally lead to soil loss. This factor is
highly correlated with the product of the total storm energy and the maximum 30-minute
intensity. A rainfall erosion index was derived from data by Wischmeier (1959), and
Wischmeier and Smith (1958). The annual R is a sum of erosivity index values for all rain-
showers in one year and is usually expressed in unit MI £ mm /ha £ h £ vy, converted to

1
US customary unit - hundreds of foot e tonf e inch / acre ® h e y by multiplying by m

The larger the R factor, the higher the potential annual soil loss.

Isoerodent maps have been developed by Wischmeier (1959), and Wischmeier and Smith
(1958, 1978), and widely used to obtain the R factor for a specific area by linear
interpolation. This method implies the rainfall-runoff erosivity R factor is linear over space
and constant over time. As suggested by McGregor et al. (1980), however, these assumptions
may not be true. Although a variable R factor over space can be derived by linear
interpolation, a constant value for a specific area is usually implied. This may result in a
smoothed spatial prediction and leave this source of uncertainty unaccounted. The
uncertainty of the R factor values estimated from the isoerodent maps is unknown. Therefore,
new maps with uncertainty measures were developed as part of this project.
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Where rain gauge data are available, the values of the rainfall-runoff erosivity R factor can be
calculated for each rainfall station. If a rainstorm implies that there is a period of 6 hours with
less than 1.27 cm of rain, a rainfall erosion index (El;() of the rainstorm is obtained by
multiplying total storm energy (E) with the maximum 30-minute intensity (I5o) (Wischmeier,
1959; Wischmeier and Smith, 1958, 1978). Different empirical equations have been
developed and used to calculate the unit energy contained in the volume of rain (brown and
Foster, 1987; Foster et al., 1981). In this project, we used the following equation developed
by a research team headed by Steven Hollinger at the Illinois State Water Survey,

Atmospheric Environmental Section.

e= 0.291- 0.72 exp(-0.082i)] 2.4)

where e is the kinetic energy (MJ ha' mm™') and i is the shower intensity
(mm h™). The annual R factor is the sum of the erosion index values for all rainstorms in one

year. In an N year period, the R factor (MJ mm ha'h™'y™") is calculated as follows:

ZJ:(EI 30)i

N

R (2.5)

where (El5); is the erosion index Els for storm i, and j is the number of storms in the N year
period. In addition to the annual R factor, seasonal and half-month average values of the
rainfall-runoff erosivity R factor can be computed.

Soil erodibility factor K

The soil erodibility factor (K) is the soil loss rate per erosion index unit for a specific soil as
measured on a standard plot defined as a 22.1 m or 72.6 ft length of uniform 9 % slope in
continuous clean-tilled fallow. It is expressed in SI metric unitt, ha, h/ha, MJ, mm, and

can be converted to US customary unit ton e acre e hour / hundreds of acre e foot e tonf e

inch by multiplying b .
Y P YIE oY 01317

The soil erodibility factor (K) measures the contribution of soil intrinsic properties to soil
erosion. For major soil types and soil texture classes in the United States, the values of soil
erodibility factor (K) have been published and can be obtained from the USDA- Natural
Resources Conservation Service (NRCS) (SWCS, 1995; Wischmeier and Smith, 1978). Each
soil type corresponds with a published soil erodibility value. The published values from
USDA-NRCS are the average values within the soil types when the data were collected and

are assumed to be constant over time. However, heterogeneity of soil in time and in space
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tends to support the concept that soil erodibility depends dynamically and spatially on the
properties of a specific soil.

The main factors considered in the practical calculation of soil erodibility include soil sand
%, silt %, organic matter %, structure, and permeability. By sampling, collecting and
measuring soil samples, the soil erodibility factor (K) values of soil samples can be
calculated using the following formula (Wischmeier and Smith, 1978):

_ 2.1 010" (12-OM) e« M"™ + 3.25¢ (S-2)+2.5¢ (P-3)
7.59100

K (2.6)

where OM is soil organic matter, M is (%silt + %very fine sand) (100 -%clay), S is soil
structure code and P is permeability class. If soil organic matter content is greater or equal to
4%, OM is considered constant at 4%. Moreover, the influence of rock fragments on soil loss
is accounted for by a subsurface component in the soil erodibility K factor (Renard et al.
1997). The soil profile descriptions with permeability classes for all the soil samples in this
study included the effect of rock fragments on permeability. The soil erodibility (K) factor
and the subsurface component for effect of rock fragments were explained via an adjustment

for permeability classes.

Because of the underlying forces shaping soils, soil properties vary with time and space and
are affected by climate, organisms, topography and parent materials interacting with time
(Jenny, 1941). Climate factors (temperature and rainfall) affect soils as well as the plants
growing on those soils. Plant community succession due to the change of the soil physical
environment is well observed and change in plant composition in turn affects the soil
properties. The soil properties vary also in space because of the variation of soil formation
factors. Thus, a soil erodibility value for a specific soil may vary temporally and spatially.
Using the soil erodibility values obtained previously from an extensive database for a specific
area may lead to uncertainty. Therefore, it is necessary to include the uncertainty associated
with soil erodibility into the overall uncertainty analysis of soil loss and to improve methods

for mapping the soil loss.

Topographical factor LS

Slope length factor (L) is the ratio between soil loss from the field slope length and soil loss
from a slope that has a length of 22.13 meters or 72.6 ft, where all other conditions are the
same. Slope steepness factor (S) is the ratio of soil loss from the field slope gradient to soil
loss from a 9% slope under otherwise identical conditions. The product of slope length (L)
and steepness (S), called topographical factor (LS) (dimensionless), accounts for the effect of
topography on erosion in both USLE and RUSLE. Among all input factors, soil erosion is
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most sensitive to the topographical factor (LS), and more sensitive to slope steepness than
slope length (Benkobi et al. 1994, Renard and Ferreira 1993, Risse et al. 1993).

The slope steepness factor (S) is defined as a function of the slope angle measured in degrees
and the slope length factor (L) as the function of slope length value in meters. A lot of studies
have been done to derive equations for calculating factors S and L. Table 2.1 lists two sets of
empirical models involved in the USLE and RUSLE, respectively, which can be used to
calculate the slope length factor (L) and steepness factor (S) with the field measurements of
slope length A in meters and slope angle B in degrees (Foster et al. 1977, Moore and Wilson
1992, Renard et al. 1997, Wischmeier and Smith 1978).
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Table 2.1 Empirical models for calculation of slope steepness factor (S) and slope length

factor (L).
Model S L
USLE S=65.4Sin’B+4.56Sinf+0.0654 L>(m/2213)*°  when TanB>0.05

L>(m/2213)%*  0.03<Tanp<=0.05
L>(m/2213)%  0.01<Tanp<=0.03
L > (m/2213)**  TanB<0.01

RUSLE S=10.8Sinp+0.03 when Tanf<0.09 [ > (m/22_13)(F/(1.F))

S=16.8SinB-0.50  Tanf>=0.09 where  F=(SinP/0.0896)/(3Sin **B+0.56)

S=3Sin **#+0.56 A<=4m (assuming a moderate rill / interrill ratio);

S=(Sinp/0.0896)*® Thawing  soils or F=0 when there is deposition
with Tanf3>=0.09 when A=4m to A<=4m.

When soil loss is estimated using a geographic information system (GIS) for large areas with
converging and diverging terrain, the empirical models above cannot differentiate between
those areas experiencing net erosion and net deposition. A physically based topographical
factor (LS) equation has thus been developed based on a digital elevation model (DEM)
(Moore and Burch, 1986; Moore and Wilson, 1992) as follows:

S:[Up_area} { sinf3 } (2.7)

22.13 0.0896

where m and n are constants equal to 0.6 and 1.3 respectively. B is the land surface slope in
degrees, Up_area is the up-slope contributing area per unit width of cell spacing [m’m™] from
which the water flows into a given grid cell. The area Up area for a given grid cell is
calculated as follows (MitaSova et al., 1996):

nxuxa

; (2.8)

Up area =

where a is the area of a grid cell; n is the number of cells draining into the cell; u is a weight
depending on the runoff generation mechanism and infiltration rates; and b is the spatial
resolution. If rainfall and infiltration are assumed to be uniform across the study area, the
weight p can be assumed to be one (MitaSova et al., 1996). Because a is constant for a
specific resolution, a=bxb. Thus Up area=nxb. In practice, Up area can be
approximated by multiplying the down-slope flow-line density with the DEM spatial
resolution. However, the precision for predicting the LS factor is related to the DEM
accuracy, spatial and vertical resolution, and the methods to derive topographical variables
related to LS. For example, Mitasova et al. (1996) investigated this approach by interpolating
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DEMs to finer spatial resolutions and suggested that the commonly used 30m-spacing USGS
DEMs are insufficient.

Vegetation cover and management factor C

The vegetation cover and management factor (C) is the ratio between soil loss from an area
with specified cover and management and soil loss from an identical area in tilled continuous
fallow. The C factor represents the effect of cropping and management practices in
agricultural management, and the effect of ground, tree and grass covers on reducing soil loss
in non-agricultural situations. Higher ground and vegetation covers result in less potential
soil erosion, and vice versa. According to Benkobi et al. (1994) and Biesemans et al. (2000),
the vegetation cover factor is one of the three factors (the others being slope steepness and
length) to which soil loss is most sensitive.

In RUSLE (Renard et al., 1997), the C factor value for an area where conditions change
rapidly over time is derived by weighting the soil loss ratio values for a given conditions by
rainfall erosion index values. That is, an entire time period is divided into n time periods and
for each of the n periods a soil loss ratio is calculated. Then, the soil loss ratio values are
weighted by corresponding rainfall erosion index values. The soil loss ratio for the given
conditions is a product of five sub-factors including the prior land use sub-factor, canopy
cover sub-factor, surface cover sub-factor, surface roughness sub-factor, and soil moisture
sub-factor. Each of the sub-factors contains cropping and management variables that affect
soil erosion. Each sub-factor is an empirical function of one or more variables such as residue
cover, canopy cover, canopy height, surface roughness, below ground biomass, prior
cropping, soil moisture and time. The calculation of the C factor, thus, is very complicated.

In this project, we used the USLE method to calculate C factor. That is, the vegetation cover
C factor is derived based on empirical diagrams that explain the relationship of the C factor
with measurements of ground cover, aerial cover and minimum drip height (Wischmeier and
Smith, 1978). Often the measurements of these variables are obtained by sampling subplots
along transect lines. The average ground cover, aerial cover and minimum drip vegetation
height are calculated for each plot (transect). However, because it would be difficult to
perform automatic calculations with these empirical diagrams, we used the empirical
equations developed by Bill Seybold of the U.S. Army Construction Engineering Research
Laboratory (USACERL) to calculate C factor. These empirical equations (Table 2.2) describe
the C factor as a function of ground cover, aerial cover and minimum drip height
measurements under different ground and canopy cover conditions.
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Table 2.2 Empirical models for calculating vegetation cover factor C (GC — ground cover, CC —
canopy cover, VH — minimum drip vegetation height, EVH — effect of vegetation height, ECC —
effect of canopy cover, C1 — effect of vegetation height and canopy cover, C2 — effect of ground

cover).
Empirical equation Conditions
Vegetation height and canopy effect
EVH = exp(4.574 — (0.056*In(VH)) + (0.366*VH)) VH>=0.1
EVH = exp(4.574 — (0.056*In(0.1)) + (0.366*0.1)) 0<VH<0.1
EVH = exp(0.000001) VH<0
EVH=-1 VH=0
ECC=CC-(CC*GC/100) GC>0and CC=>0
ECC=CC GC=0and CC=>0
ECC=-1 Otherwise
Cl=1-(ECC/EVH) ECC >=0 and EVH >0
Cl=-1 Otherwise
Ground cover effect
C2=0.734 - (0.0139*GC) + (0.0000665*(GC"2)) GC=90
C2 =0.625—(0.0124*GC) + (0.0000635*(GC"2)) 80 <=GC <90
C2=0.312 - (0.0049*GC) + (0.0000187*(GC"2)) 51<=GC <80
C2=10.362 - (0.00745*GC) + (0.0000492*(GC"2)) 41 <=GC <51
C2=0.313 - (0.00431*GC) 30 <= GC <41
C2=10.358 - (0.0058*GC) 20<=GC <30
C2=0.45-(0.0151*GC) + (0.000234*(GC"2)) 0<=GC<20
C2=0 Otherwise
C factor
C=C1*C2 Cl>=0and C2>=0
C=-1 Otherwise

The values of the C factor at the non-sample locations are usually estimated by spatial
interpolation of the C factor values at the sampling locations. In order to provide accurate
maps of soil loss, it is important to create a reliable map of vegetation cover and management
factor C. The traditional method widely used for the spatial interpolation of the C factor is the
so called point-in-polygon or point-in-stratum (Warren and Bagley, 1992). Within each
polygon or stratum the cells are assumed to be homogeneous and an average is calculated and
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assigned to each cell. The polygons or strata are derived by supervised or unsupervised
classification of all pixels using remote sensing data and the C factor values at measured
locations. Siegel (1996) and Wheeler (1990) used the procedure to map C factor for the
USLE. This method is based on correlation of the C factor and remote sensing data. The
shortcomings, however, are that the C factor is indirectly mapped through vegetation
classification, and the classification errors are thus introduced into the C factor map. Using
average C factor value for each vegetation type leads to smoothing of estimates and
disappearance of spatial heterogeneity and variability.

Support practice

The support practice factor P is the ratio between soil loss with a support practice such as
contouring, strip cropping, terracing, etc. and soil loss with straight row farming up and down
the slope. Here P is assumed to be one unit because no support practices are being applied to
the study area. Vegetation restoration plans are not considered in this study.

LCTA plot inventory field methods

The U.S. Army Land Condition Trend Analysis (LCTA) program was developed at the U.S.
Army Construction Engineering Research Laboratory (USACERL) under the sponsorship of
the U.S. Army Engineering and Housing Support Center (USAEHSC) as a means to
inventory and monitor natural resources on military installations. LCTA uses standard
methods to collect, analyze and report natural resources data (Anderson et al., 1995a, 1995b,
1996; Diersing et al., 1992; Tazik et al., 1992), and is the Army's standard for land inventory
and monitoring (Technical Note 420-74-3 1990). Over 50 military installations and training
areas in the United States and Germany have begun or plan to implement LCTA. LCTA data
is available for over three-quarters of the Army’s 12 million acre land base (Shaw and
Kowalski, 1996).

The LCTA standard methods are designed to sample, collect, and maintain a permanent
database on the condition of Army land resources. The methods include the required data
collection equipment and detailed procedures (sampling and establishing permanent field
plots, measuring topographical variables, collecting soil samples and plant specimens,
recording ground and canopy cover, inventorying wildlife populations, and maintaining the
data bases) for periodic short- and long-term monitoring of the field plots.

Plots were located using a stratified random sampling scheme based on soil and land cover

types (derived from satellite imagery). Stratified random sampling allows statistical
inferences to be made, while ensuring that all of the largest strata are represented in the
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sample. Within the Geographic Resources Analysis Support System (GRASS) (GRASS,
1993), satellite images in green, red and near infrared wavelength bands are first used to
perform an unsupervised classification allowing the selection of up to 20 land cover
categories. The resulting land cover data layer is superimposed on a digital soil survey of the
area. The occurrence of each land cover / soil combination of more than 2 ha (called a
polygon or stratum) is identified. Then plot locations are selected by randomly assigning
plots within polygons with the number of plots in each polygon proportional to it’s area,
which resulted in a random stratification by soil and land cover type. The total number of
plots is calculated based on one plot per 200 ha and with a maximum of 200 plots.

Each field plot is 100 m in length by 6 m in width (600 m?). A 100 m line transect is oriented
lengthwise down the center of each plot. The plot data obtained can be used to analyze land
use, ground cover, surface disturbance, allowable use and carrying capacity, tactical
concealment, soil erosion, land rehabilitation effectiveness, plant community composition,
wildlife habitats, etc. Because the field plots are located with Global Position System (GPS),
the data can be readily used with a geographic information system and with satellite imagery
data.

Slope length in meters and gradient (steepness) in percent are measured at the zero, 50, and
100m points along the 100 m line transect. Slope length is defined as the straight-line
distance runoff travels across each sample point and estimated by pacing the distance
between point of origin and point of deposition. Slope gradient is measured with a clinometer
to the nearest half percent. Aspect is determined by standing at the 50 m point and estimating
the general direction that water would flow across the site. Using a compass, aspect is
estimated to the nearest octant. If the average slope is less than 5 percent, aspect is considered

unimportant and ‘level’ is recorded.

Soil depth is estimated for each LCTA plot by driving steel rods into the soil. A composite
soil sample and five small samples are taken approximately 1 m from the line transect at the
zero, 25, 50, 75, and 100 m points at each plot. The soil samples are analyzed at labs for soil
properties related to soil erodibility factor, productivity, and botanical composition.

Land use is recorded for each plot. Surface disturbance, ground cover, and canopy cover are
estimated by the point intercept method as described by Diersing et al. (1992). Along the
100m line transect along the center of each plot, surface disturbance, ground and canopy
cover data are collected at Im intervals (that is, 0.5m, 1.5m, 2.5m, ..., 99.5 m). The
categories for disturbance include: no disturbance; road; trail (semi-permanent traffic route
receiving no maintenance); pass (random vehicle track that does not follow an established
traffic pattern); and other disturbance. Ground categories are bare ground (no cover), rock,
litter, and basal cover. Canopy cover is recorded by species at 0.1m height intervals up to 2m
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and at 0.5m intervals up to 8m in height. For each transect, the cover percentage for a
particular vegetation type can be obtained by dividing the total number of the covered points
by the total points measured (x 100%). With this plot configuration, it is possible to map the
covered points within and between transects across the entire area. Moreover, percent cover
could be determined for different plot sizes by sub-sampling within each transect. In addition,
species composition, density, and height distribution of woody and succulent vegetation are
investigated for each plot. The standard area is 100 m by 6 m. However, the width can be
reduced for high density species.

Three different types of monitoring are performed at LCTA field plots: initial inventory,
short-tern monitoring, and long-term monitoring. Above is the procedure of the initial
inventory that provides detailed information of land use and site conditions. Subsequent
short-tern monitoring is conducted annually to detect changes of land use, disturbance,
ground cover, canopy cover, and other natural resources at short time-scales. Long-term
monitoring is carried out every 3 to 5 years using the same detailed procedure as the initial
inventory. The short-term monitoring procedure yields much the same information as those in
long-term monitoring, but lesser detail, particularly with regard to species composition.

Case study area - Fort Hood

This study took place at Fort Hood, Texas (Figure 2.1). This 87,890 ha installation is located
in Central Texas in Bell and Coryell Counties approximately 160 miles southwest of Dallas,
TX. This region has long, hot summers and short mild winters. Average temperatures range
from a low of about 8 °C in January to a high of 29 °C in July. Average annual precipitation is
81 cm. The month of peak precipitation is May with a secondary peak in September. There
are 230-280 frost-free days per year. Elevation at Fort Hood ranges from 180 to 375 m above
sea level with 90 percent of Fort Hood below 260 meters. Most slopes are in the 2 to 5
percent range though slopes in excess of 45 percent occur as bluffs along the flood plain and
as the sides of slopes of the mesa-hills. Soil cover is generally shallow to moderately deep
and clayey and underlain by limestone bedrock. Fort Hood consists of four distinct regions
that have different military training activities, general vegetation types and topography.
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Figure 2.1. Case study area — Fort Hood, Texas.

Fort Hood lies in the Cross Timbers and Prairies vegetation area. The area is normally
composed of oak woodlands with grass undergrowth. Traditionally the predominant woody
vegetation consisted of ashe juniper (Junmiperus ashei), live oak (Quercus fusiformis) and
Texas oak (Quercus texana). Under climax conditions the predominant grasses consisted of
little bluestem (Schizachyrium scoparium) and Indian grass (Sorghastrum nutans). East Fort
Hood is dominated by oak-juniper woodlands, on high mesa-like hills with geologic cuts and
slopes up to 45%. West and South Fort Hood are savannah type and dominated by mid-
grasses, little bluestem (Schizachyrium scoparium) tall dropseed (Sporobolus asper) and
Texas wintergrass (Stipa leucotricha) with scattered motts of live oak (Quercus fusiformis) on
rolling topography and oak-juniper on hills and steep slopes along the major drainages.
Central Fort Hood has a mixture of the savannah type on rolling topography and oak-juniper
woodlands on mesa tops and along steep slopes of drainages.

The primary mission of Fort Hood is the training, housing and support of the III Corps and its
two divisions (1st Calvary Division and 2nd Armored Division). Support is also provided to
other assigned and tenant organizations such as the U.S. Army Reserve, the National Guard,

the Reserve Officer Training Corps, and reservists from other services. Central Fort Hood
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contains a 22,700 ha live-fire and artillery impact area and an additional 8,700 acre multi-
purpose maneuver live-fire range. The range areas serve as familiarization and qualification
firing ranges for all individual weapons, crew-served weapons, and the major weapons
systems of active units assigned or attached to the III Corps and Fort Hood. Maneuver areas
comprise 52,400 ha not including the multi-purpose live-fire area. Maneuver areas are used
for armored and mechanized infantry forces in the conduct of task force and battalion-level
operations, and for company and platoon level dismounted training, along with engineer,
amphibious, combat support and combat services support training. West Fort Hood is used
primarily for tracked and wheeled maneuver exercises at the Battalion level while South Fort
Hood is used primarily for tracked and wheeled maneuver exercises at the smaller Platoon
level. East Fort Hood is used primarily for small unit exercises, bivouac and foot soldier
training because the terrain and dominant oak-juniper woodlands prevent large cross country

exercises.

Case study data sets
LCTA database

At the Fort Hood case study area, a total of 219 field plots were established of which 163
were permanent field plots and the other 56 were special use plots. Special use plots were
used for special issues that could not be addressed by core plots. These special issues
included determining the success of land rehabilitation efforts, documenting the effects of
burning, assessing natural recovery of degraded lands, etc. Special use plots were also used as
control plots if they were placed in areas with little or no impact from military activities.

In the spring and summer of 1989, permanent field plots were established in a stratified
random fashion using on LCTA methods based on an automated method of randomly selected
plot locations using satellite imagery, soil surveys, and a computerized geographic
information system (Warren et al., 1990). The number of plots allocated to each stratum was
proportional to the percent of the land area occupied by the stratum. Each plot was 100 m by
6 m (600 m®). The plots were measured in the initial inventory in 1989 for topographical
information, land use, soil properties, disturbance, ground cover, canopy cover, botanical
composition, etc., and annually re-measured through 1997. The inventory for long-term
monitoring was carried out in 1992 and 1997. Because of missing plot markers, fire or other
reasons, the number of the re-measured field plots generally decreased from 1989 to 1997
(Table 2.3).
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Table 2.3. Number of the field plots in Fort Hood

Year 1989 1990 1991 1992 1993 1994 1995 1996 1997

Number | 215 214 220 220 200 166 178 0 0
of plots

The field plots were measured and re-measured using LCTA methods described above. A
LCTA database for Fort Hood was established (Sprouse and Anderson, 1995) based on SQL
commands. The database contains all the information measured and derived from the field
plots and can be divided into nine distinct components including plot information, land use,
vegetation, wildlife, climate, soil, supplementary information, summary, and validation
tables. The input factors (soil erodibility, slope steepness, slope length, vegetation cover and
management factor) related to soil erosion were calculated for all plots and included in the
summary data.

Because not all the field plots were located using GPS when they were established in 1989,
the coordinates of the field plots were re-measured using GPS in 1999. It was found that the
root mean square error between the original and re-measured coordinates of the plots was
124.55m for the East direction, and 238.69 for the North direction. Because of the big
differences in coordinates, the case study area was projected on the Universal Transverse
Mercator (UTM) based on the coordinates re-measured by GPS.

Because the information from the original soil samples collected in 1989 was not enough to
calculate plot soil erodibility factor values related to soil erosion, moreover, soil samples
were re-collected from the field plots in 1999 (Wang et al., 2001c). The soil samples were
analyzed in a soil lab for soil organic matter, sand and silt percentage, and classes of soil
structure and permeability. The values of soil erodibility factor for the field plots were

calculated using Eq. 2.6.

Rainfall data

No rainfall observation stations are located within the study area. Thus, it was necessary to
use data from rainfall observation stations surrounding the study area to evaluate spatial
variability in R factor estimates and their associated uncertainty. A total of 247 rainfall
stations, located in Texas and surrounding states (Arkansas, Colorado, Kansas, Louisiana,
New Mexico and Oklahoma) were used (Wang et al., 2001g). The data set of the maximum
26-year rainfall records came from the NCDC (National Climatic Data Center) Hourly and
15-minute Precipitation Database (provided by Steven Hollinger at the Illinois State Water

Survey, Atmospheric Environmental Section). The value of rainfall-runoff erosivity factor (R)
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was calculated for each rainfall station by the method developed by a research team headed
by Hollinger. That is, Eq. 2.4 was used to calculate the energy contained in the volume of
rain, and in an N year period, Eq. 2.5 was employed to calculate the annual R factor. In
addition, the values of seasonal and half-month average rainfall-runoff erosivity (R) factors
were computed using this data set. Based on traditional isoerodent map, annual R factor for
Fort Hood is a constant 270 (Renard et al., 1997).

High-density soil sample data

In order to validate different mapping methods and to assess spatial uncertainty of soil
erodibility in the National Cooperative Soil Survey (NCSS), a high-density soil sampling
scheme was designed. A specific study area within Fort Hood was selected based on
constraints imposed by Army training, and our desire to collect information from Fort Hood
consisting of both Coryell and Bell counties. Thus, the center point of the sampling area was
randomly selected from a larger area that would meet those requirements. Soil samples were
collected in late summer of 1998, under the assumption that data collected during that time of
the year would provide an approximate annual average based on the expected seasonal
variability of the K factor (highest values in spring and lowest values in mid-fall and winter,
Renard and Ferreira 1993).

We collected 576 soil samples on a grid whose points were located approximately 10m apart
from each other. We obtained the real-time differentially corrected GPS location of some
reference points, and completed the grid measuring distances with a tape. The end result was
an approximate grid (as shown in Figure 1, Parysow et al., 2001a). The soil samples were
obtained with a double-cylinder hammer-driven core soil sampler, which takes a solid
cylinder of soil 76mm high by 76mm diameter, as described in Blake and Hartge (1986).
Samples that fell on roads, edge of roads, and other highly disturbed areas were discarded,
resulting in 524 usable samples for this study. Soil samples were stored in cardboard
containers and transported to the soil laboratory at the University of Illinois at Urbana-
Champaign, where they were analyzed to obtain all the necessary information to estimate K
employing Eq. 2.6.

Ground control points and Digital Elevation Model (DEM)

A total of 24 road intersections were selected, measured for coordinates and elevation and
used to assess accuracy of relevant topographical maps in position and elevation. For each of
the intersections, two to four points controlling the intersection locations were measured for
elevations and coordinates using a Trimble Pro XRS global position system (GPS). A total of
79 points across the whole area were obtained. The minimum and maximum elevation from

the points was 183m and 333m with average of 262m and variance of 1403.
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A 7-minute digital elevation model (DEM) at spatial and vertical resolution of 30m and 1m
respectively for this area was acquired from the U.S. Geological Survey (USGS) (Figure 1 of
Gertner et al., 2001d; or Figure 1 of Wang et al., 2001d). This DEM was classified into
Level-2. The minimum and maximum elevation was 136m and 377m with average of 249.3m
and variance of 1665.5. The root mean square error in elevation was 5.13 m.

Landsat TM images

For the case study area, multi-temporal Landsat TM images for the years 1989, 1990, 1991,
1992, 1993, 1994, 1995, and 1996 were obtained. The spatial resolution for all the images
was 30m by 30m. These images consisted of band 1: 0.45-0.53 pum, band 2: 0.52-0.60 um,
band 3: 0.63-0.69 um, band 4: 0.76-0.90 um, band 5: 1.55-1.75 pum, and band 7: 2.08-2.35
um and were geo-referenced to the UTM projection. The method used is as follows: 1) a set
of digital orthophoto quads were acquired for AUG 1997 that were geo-referenced to UTM,
WGS84; 2) these 113 DOQQ images were re-sampled to approximately 4 m resolution and
mosaiced together to cover the case study area; 3) the first Landsat TM image was rectified to
the map resulting from step 2; and 4) the remaining TM images were rectified to this first TM

image.
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METHODOLOGY

The important objective of this project is to develop a theoretical and methodological
framework for optimizing sampling design, data collection, spatial modeling, mapping,
uncertainty analysis, and management in terms of precision (errors) and/or expense as an
integral part of the continuous monitoring-simulation process. By reviewing existing methods
in these areas and assessing their advantages and disadvantages, we developed and presented
a general methodology and its details for this purpose.

Existing methods and limitations

Traditional methods for sampling design, classification and mapping, accuracy assessment,
and uncertainty analysis include the approaches used to determine plot size and shape,
sampling pattern, and sample size, to perform image-aided spatial modeling, to calculate
accuracy of spatial modeling, and to model uncertainty (i.e. variance) propagation from
inputs to results. These methods are based on classical statistics theories and assume that
sample data of a variable are spatially independent. However, sample data trend to be
spatially correlated (i.e. samples from locations that are closer together tend to be more
similar than samples from locations that are farther apart). The simplification of
independence by traditional methods will lead to uncertainty far from the truth and
limitations in application. The uncertainty and limitations vary depending on different
methods and their applications. In recent years new methods have been applied to natural
resources and ecosystems. Most of them were developed based on a theory of regionalized
variables and geostatistics, and have shown good promise.

Sampling design

Sampling design is a cost-efficient procedure for collecting ground data about a variable to be
estimated including determining plot size, plot shape, sample size, and sample patterns. The
choice of plot shape depends on the variables to be investigated and can be readily
determined from the published scientific literature. Generally, systematic sampling provides a
better representation of a variable’s spatial variability and is better used to collect data for
mapping than stratified, random, and clustered sampling. Because the LCTA data have been
made available for this project, and the data were obtained by a stratified random sampling
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allows us to use different plot size and sample size in studies, the discussion for sampling
design will thus be limited to determining plot size and sample size.

When designing an inventory program using traditional field sampling, it is usually desired to
maximize the amount of information per unit cost. If there were a fixed budget for inventory,
the objective would be to minimize the sampling variance. If there were a specified desired
precision level for the sample estimate, the aim would be to minimize the cost of the
inventory program. Based on either objective, plot size is related to both sampling variance
and cost.

The traditional methods for determining appropriate plot size are optimization techniques that
provide the optimal plot size given a budget (Smith, 1938; Freese, 1961; Zeide, 1980;
Gambill et al., 1985; Reich and Arvanitis, 1992). These methods are based on the relationship
between plot size and the coefficient of variation of a variable to be investigated. In a
tropical forest inventory, for example, as the plot size increase, the number of tree species
increases rapidly at the beginning, then slow and gradually becomes stable, and the plot size
at which the number of tree species stabilizes can be considered to be appropriate. When the
plot is very small, more generally, coefficient of variation of a variable decreases rapidly as
the plot size increases, the decrease of coefficient becomes slow and eventually stable.

Estimation of population mean requires pre-calculation of sample size before sampling.
Based on classical statistics theory, the sample size (n) for typical simple random sampling
can be calculated:

n=-= 3.1

where ¢, is the value of student’s t-statistics at a significant level of a, CV the coefficient of

variation for the variable to be estimated, and E the maximum relative error. The
corresponding equations for other sampling patterns can be derived. When auxiliary data sets
such as remotely sensed images are used to help the estimation, the sample size can be
reduced by a factor of (1 - r*) where r is the coefficient of correlation between the observed
and estimated values using the auxiliary data sets. On the other hand, the sample size
corresponds with coefficient of variation and thus with plot size based on the relationship of
plot size with coefficient of variation. Furthermore, introducing costs such as travel and
measurement time needed into Eq. 3.1 makes it possible to determine optimal plot size and
sample size based on cost using traditional statistical theory.

However, these methods assume that sample data are independent and do not deal with
spatial dependence of a variable and cross spatial variability between variables. The
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similarity of data and interaction among variables should allow for a reduction of sample
plots or uncertainty. Conversely, neglecting the spatial dependencies will require more
sample plots or more cost. Moreover, the objective of traditional sampling design focuses
more on unbiased estimation of population averages and less on local estimation. Therefore,
the sample data obtained by traditional methods may not be suitable for generating spatial
models (e.g. maps).

The theory of regionalized variables in geostatistics has been applied to sampling design
(McBratney, et al., 1981; McBratney and Webster, 1981 * 1983; and Olea, 1984). Generally,
the information representation obtained by systematic sampling is better than that by random
sampling because variables are spatially dependent. The theory of regionalized variables
enables the spatial dependence of a variable to be estimated from data under reasonable
assumptions and then to be used to estimate means with minimum variance. The estimation
variance depends only on the degree of spatial dependence. Given a known spatial
dependence - semivariogram, the sampling variance of any regular scheme can be forecast
before it is put into effect. If the desired precision is specified, the size of sample (in fact,
sampling distance) required to achieve it can be determined.

Most of the applications focus on minimization of the estimation variance to find the
minimum number of samples needed to attain a specific maximum level of error. For
example, McBratney described a method of optimal sampling based on kriging and proposed
two assumptions for the method. First, the maximum standard error of kriged estimates is a
reasonable measure of the goodness of a sampling scheme. And second, the spatial
dependence is expressed quantitatively in terms of the semivariogram. Arvanitis and Reich
(1991) studied the effect of spatial pattern of trees on the accuracy and precision of sample
estimates as well as taking the spatial factor into account.

Additionally, Englund and Heravi (1993) presented a practical application for sampling
design optimization by conditional simulation, and generated detailed spatial model for case-
specific optimization of sampling design. The entire process of the sampling estimation and
decision is simulated by a Monte-Carlo approach. The optimization is realized through
economic functions or on decision constraints, such as, unit sample cost, number of samples,
total sampling cost, remediation cost and non-remediation cost, rather than minimization of

estimation variance.
Scale and resolution
In addition to sampling design, another aspect that has to be clarified for spatial modeling and

mapping is scale and resolution. In ecological modeling and management, scale is considered

to be an attribute that affects spatial features, patterns, and processes of ecological variables
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and resources in both space and time (Wu and Qi, 2000). The scale related issues include
determining appropriate spatial and temporal scales or resolutions used to conduct the
studies, interpolating or extrapolating results from one scale to another, including scaling up
(from fine resolution to coarser - data aggregation) and vice versa (called scaling down), and
modeling the change of spatial information change due to scaling.

Because of the scale dependency, choosing optimal spatial and temporal resolution is critical
to capture spatial and temporal patterns, features, and processes of ecological and resource
systems. The widely used methods are variance-based, texture analysis, fractal, and
semivariogram. The variance-based methods include geographical variance (Moellering and
Tobler, 1972) and local variance (Woodcock and Strahler, 1987). The geographical variance
method works well for hierarchical structures such as landscape ecology (Wu et al., 2000).
However, the hierarchical structure and assumption of data aggregation limit its application
because the values of digital maps and images at a coarser resolution are usually not simple
aggregation of the values at a finer resolution and pixels at different resolutions may be not
nested. A local variance method is based on the relationship between spatial resolution and
spatial dependence. The local variance is defined as the average value of the variances
within a 3 by 3 moving window passing through the entire image. The local variance varies
over spatial resolution and its maximum value is an indication of the appropriate resolution to
capture spatial variability of the objects. Its disadvantage is that simple average of pixel
values at a finer resolution may lead to quick disappearance of significant features at a
coarser resolution.

Texture analysis is widely used in image processing, classification, and mapping, and varies
depending on different measure indices such as variance, standard deviation (Holopainen and
Wang, 1998), and Haralick textures (Haralick et al., 1973), etc. Similar to local variance, the
spatial variability of image data in terms of textures varies with spatial resolution. The
resolution with maximum variability can be considered to be optimal. A relative new
alternative is the fractal method for determining optimal spatial resolution. Mandelbrot
(1983) presented the fractal geometry and a key concept — statistical self-similar property that
any portion of an object is similar in shape to the whole of the object at reduced scale. The
similarity or dissimilarity can be measured by fractal dimensions of real world such as curves
and surfaces as indices of roughness or complexity (Wang et al., 1997). The fractal dimension
of an image decreases as the resolution becomes coarser. The scale at which the highest
fractal dimension occurs may be the spatial resolution at which most of the interesting
processes operate (Goodchild and Mark, 1987; Lam and Quattrochi, 1992). The method is
very promising (Cao and Lam, 1997; Xia and Clarke, 1997), however, so far its development
has not directly led to techniques that can be used to infer results across scales.
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The semivariogram in geostatistics measures spatial variability of a variable, that is, the
change of average dissimilarity between data over a lag distance /4 separating the data given
a direction. When the lag distance is equal to a pixel size, the value of the semivariogram
function is the semivariance at a lag of one pixel. The relationship between the pixel size and
the semivariance at a lag of one pixel is similar to that between the spatial resolution and
local variance mentioned above. The maximum semivariance is an indication of the
appropriate spatial resolution to capture the desired spatial variability of the variable
(Atkinson and Danson, 1988). Compared to the methods above, the semivariogram based
method is more promising because it is based on capturing and modeling the spatial
variability of a variable, it is the basis of all goestatistical methods used for spatial modeling
and mapping, and it is expected that the corresponding methods for inferring results across
scales can be derived.

Inferring the underlying spatial processes and results across scales is another difficult task in
understanding ecological and resource systems and obtaining accurate and useful information
for management decision-making. The existing methods for this purpose include moving
average window, filtering, nearest neighbor, area-weighting average, expected-weighting
average, explicit integration, spatial data aggregation (Moellering and Tobler, 1972; Jarvis,
1995; King, 1991; Wang et al. 1997; Wu, 1999). Some of them are related to the methods for
determining optimal resolution. For example, using a moving average window local variance
method results in digital values and variances of pixels at a coarser resolution from a finer,
and the pixel variances decrease very quickly as the resolution increases (i.e. heterogeneity
rapidly disappears). The nearest neighbor method can improve this, but may lead to
misunderstanding of spatial patterns and processes because dominant values may be missed
when going from a finer to coarser resolution. Other methods attempt to overcome the
shortcomings, however, being very much subject to knowledge scientists have had in the
areas. Furthermore, inferring uncertainties (variances of estimates) across scales in addition

to obtaining estimates is problematic.

Modeling the change of spatial information due to scaling is a scale-related issue noted
recently by scientists (De Cola, 1997; Vieux, 1995). It is important because scaling will result
in changes of spatial patterns and processes, and modelers and managers need to know
whether incorrect methods or different scales cause the changes. At the same time, the
changes also mean uncertainties and managers need information on the uncertainties. De
Cola (1997) suggested a measure by calculating global variance change across scales. Vieux,
(1995) used the theory of entropy (Shannon and Weaver, 1964) to measure loss of spatial
information content. The loss of entropy from finer to a coarser resolution can be represented
as the difference of entropy between two scales. However, these are global measures and
cannot be used to explain local changes of spatial information, for example, anisotropy of
spatial variability in different directions. Another problem is how to link them with the
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methods used to determine appropriate scales and infer results across scales. Therefore, there
is a strong need to develop a systematic methodology for these purposes.

Mapping, accuracy and uncertainty assessment

In natural resource, ecological and environmental management, managers need accurate
information in order to make the correct decisions. Accurately mapping the natural resources
and ecosystems is very important. This is true especially when multiple variables are spatially
correlated with each other and needs to be mapped jointly by aid of remotely sensed data.
Separately mapping each of the variables and then overlapping them will lead to significant
errors and loss of the correlation between the variables. However, jointly and accurately
mapping multiple variables is usually very difficult mainly because of interactions among the
variables and imperfection of existing methods.

The widely used methods for mapping are supervised and unsupervised classification or
stratification, and methods that integrate both of the previous methods (Campbell, 1996;
Holopainen and Wang, 1998; Lillesand and Kiefer, 2000; Wang, 1996; Wang et al., 1998).
These methods result in homogeneous polygons or strata of pixels and, therefore, smoothing
of estimates and the disappearance of spatial heterogeneity. This shortcoming can be
improved by a regression method (Peng, 1987) and a k-nearest neighbors method (Tomppo,
1996). However, the regression can lead to illogical or extreme estimates, while it is not clear
whether k-nearest neighbors can lead to unbiased population estimates. Moreover, a common
assumption behind these methods is that sample data are not spatially correlated. This
assumption makes it possible to provide unbiased estimates for populations. However, it is
problematic in that reliable local estimates that reproduce the spatial variability of variables
and interactions among them cannot be obtained. As detailed precision management planning

becomes more common, the need for reliable local estimates will become essential.

In order to improve local estimates, Wang (1996) introduced a knowledge-based approach
into remote sensing based estimation system of forest resources. Recent developments
include spectral mixing analysis, uses of hyper-spectral remote sensing and fine resolution
images (Campbell, 1996), and data fusion from different sensors (Wang, et al., 1998).
However, real breakthroughs in methodology and accuracy have not been realized.

Using the methods described above, the uncertainty of resulting maps for unknown locations
is not provided. Traditionally, accuracy is typically assessed by calculating correlation or root
mean square error between estimated and observed values of a continuous variable, or an
error matrix for a categorical variable. These traditional measures are for the global accuracy
of a map. However, map accuracy often varies spatially depending on the complexity of
landscape, soil properties, topographical features, density of sample data, and the accuracy of
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remotely sensed data used (Congalton, 1988; Steele et al., 1998). The traditional methods
lacks in the capability to measure spatial uncertainty. Moreover, errors from sampling,
measuring, image processing, and models can propagate to the product maps. This error
propagation is not accounted for by the traditional methods.

Another group of approaches used for spatial modeling and mapping are geo-statistical
methods consisting of interpolation and simulation techniques (Chiles and Delfiner, 1999;
Goovaerts, 1997; Journel and Huijbregts, 1978). These methods are based on the spatial
variability theory, that is, spatial dissimilarity of the ground characteristics that varies
depending on the separation vector of data or separation distance given a direction. They
provide prediction maps of variables with their variance maps as uncertainty measure of
estimates at any locations. These methods have been widely used in geology and recently
expanded to applications in natural resource and environmental sciences. For example,
Rogowski and Wolf (1994) investigated the variability in soil map unit delineation using
kriging. Barata et al. (1996), Hunner et al. (2000), Wallerman (2000), and Xu et al. (1992)
used cokriging and co-located cokriging methods to map forest variables with remotely
sensed images and other auxiliary data, and a significant improvement was found. Mowrer
(1997) used a Monte Carlo technique of sequential Gaussian simulation and studied
propagation of uncertainty through spatial estimation processes for old-growth subalpine
forests.

Various kriging and cokriging approaches are generalized least squares regression algorithms
that interpolate variable values at unknown locations given a data set. Kriging estimates are
best in terms of local minimum error variances in local areas. However, kriging estimates are
smoothed, which leads to overestimation in the areas with small values and underestimation
in the areas with large values. At the same time, the smoothing differs from place to place.
The spatial variability of the estimated variable is higher in the areas with dense samples than
in sparsely sampled areas. More importantly, kriging variances depend only on the data
configuration and not on the actual observed data, and thus do not adequately reflect
uncertainty. Indicator kriging methods have improved capabilities in this regard and provide
a local uncertainty analysis by calculating conditional variances and probability maps of
values larger than a given threshold (Goovaerts 1997). In this way, the conditional variance
depends on not only data configuration but also, the data values.

In general when spatial simulation techniques are used, conditional distributions based on the
collected data set are developed first, and then from these distributions the values of the
stochastic variable at unknown locations are drawn at random. Once values at all the
unknown locations are simulated, a realization of the stochastic variable is developed. After
many realizations, the set of alternative realizations provides a visual and quantitative

measure (actually a model) of spatial uncertainty (Deutsch and Journel 1998, Goovaerts
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1997). The expected estimates and various uncertainty measures such as conditional
variances and probability maps can be derived from these realizations. There are several
spatial simulation approaches with the most widely used method being sequential Gaussian
simulation. Sequential Gaussian simulation, however, requires the assumption of normality
and may create underestimates or overestimates when there are extremely large or small
values. As an alternative to Gaussian simulation, sequential indicator simulation can be used
for the purpose of spatial uncertainty analysis by reproducing indicator covariance models.
This method is especially useful when extreme values are very important to natural resource,

ecological and environmental management.

When multiple variables are spatially correlated with each other, Gomez-Hernandez and
Journel (1992), Almeida (1993), Almeida and Journel (1994) presented a joint sequential
simulation for mapping. In addition to prediction and variance maps, this method outputs co-
variance maps indicating interactions among the variables and thus reproduces spatial cross
variability between any two variables. Furthermore, remotely sensed data can be considered
to be models of ground characteristic variables. The spatial variability of each variable and
spatial cross variability between two variables are coded in the auxiliary data. The auto
semivariogram and cross-semivariograms used in the method can capture the spatial
dissimilarity and correlation between the ground characteristics and auxiliary data. Using the
auxiliary data in the joint sequential simulation leads to a co-simulation, which can improve
spatial modeling of variables and their correlation. This is very promising approach for
spatial modeling and mapping of complex and multiple ecosystems.

An error budget is a comprehensive catalog of the different error sources in both surveys and
models. In an error budget, the relative variance contributions of all uncertainty sources are
calculated and main sources of the uncertainties are identified. This method is similar to an
ANOVA table listing the contribution of each uncertainty source.

There are several methods for assessing the sources of uncertainty in models. They include
Monte Carlo methods (Heuvelink, 1998), Fourier Amplitude Sensitivity Test (FAST) (Cukier
et al., 1973), Taylor series (Gertner et al., 1995), Polynomial regression (Gertner et al., 1996),
Sobol’s method (Sobol, 1993), etc. All these methods have their advantages and
disadvantages. For example, the Monte Carlo method and Sobol is computationally intensive
when the number of input parameters increases, although they can be used to deal with
interactions among the input parameters. The FAST method is computationally efficient, but
assumes that all the input parameters are independent. The Taylor series expansion based
methods can handle interactions among input parameters but, require the model functions can
be continuously differentiable. The most important disadvantage is that all the methods were
originally developed for an error budget of mean estimates for a population and cannot be
directly applied to spatial uncertainty analysis.
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As more attention is paid to detailed precision management planning, spatial uncertainty
analysis becomes increasingly necessary. Additionally, there is a need to spatially assess
major error sources because the relative uncertainty contributions vary over space (i.e. an
error source is important to the output at a location, but may be not at another). Therefore, the
error budget has to be done on a pixel-by-pixel basis to account for spatial variation of
uncertainties. When multiple variables are highly correlated with each other, furthermore,
considering interactions among the variables in mapping may result in an increase of
accuracy. At the same time, there is abundant evidence to support that use of spatial
information from neighboring locations can improve estimation at an unknown location.
However, there are no existing methods available to assess the effect of the interactions and
spatial information from neighbors on mapping.

When prediction is made using a Geographical Information System (GIS), the spatial error
budget can become very complicated and difficult. Veregin (1992) proposed a hierarchy for
modeling error in GIS operations. The hierarchy consists of five classes: error source
identification, error detection and measurement, error propagation modeling, strategies for
error management, and strategies for error reduction. The error sources are divided into
several phases: data acquisition, data processing, data conversion, and data analysis and
modeling. Within each phase, errors are further partitioned. For example, data analysis and
modeling errors are divided into quantitative modeling and classification. Moreover, the
errors can be due to incorrect position and/or measurements of variables. If remotely sensed
data are used for mapping, various errors related to climate, sensor systems, image pre-
processing, image rectification etc., will be included (Lunetta et al., 1991).

The errors in GIS propagate and accumulate to the outputs through operations such as data
conversion, scaling up, data layer overlapping, and so on. Clarke (1985) examined the error
involved in the conversion of polygonal data to a pixel-based format and found that the error
was related to the complexity of the surface and the characteristics of the polygons. When the
data are aggregated from finer resolution to coarser resolution, the errors are propagated. For
example, the error propagation by scaling up in land surface process models was studied by
Friedl (1997). Veregin (1992) summarized the methods used for modeling the error
propagation and accumulation by data layer overlay. The methods are different from
positional error to thematic error, from numerical data to categorical data, and also due to
different operations such as “AND” and “OR”.

The errors in GIS operations are not always easy to identify and often very difficult to model
their propagation. A general procedure for handling errors in GIS has been proposed by
Openshaw (1992) based on Monte Carlo simulation (recommended method). As we
mentioned above, however, this method is computationally very expensive and may be not
practical especially if the spatial error budget is for a large grid (a large number of the
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product of rows and columns). A very promising method may be polynomial regression
(Gertner et al., 1996). This method can handle various source errors including interactions
and effect of spatial information, but improvements to are needed. In a word, new methods
need to be developed or existing methods have to be improved so that these methods can
have the capacity to jointly map multiple variables, analyze spatial uncertainty and identify

and quantify various resource errors.

Methodological framework

We developed a general GIS-based methodology to make spatial and temporal predictions,
analyze uncertainty, and build error budgets (Figure 3.1). The methodology has been applied
to a spatial and temporal version of models. The methodological framework (Gertner et al.,
2001c; Wang et al., 2001a) integrated a map generation procedure — spatial modeling and
simulation (in the right of Figure 3.1) and spatial uncertainty analysis procedure for resulting
maps (in the left of Figure 3.1). The objective of spatial modeling and simulation is to create
accurate maps with unbiased and reliable estimates for populations, sub-areas, and any
specific location, and to provide spatial uncertainty measures of the estimates, including
variance, covariance, and probability maps for each of input variables and interactions among
them, in addition to the global accuracy measures. The aim of spatial uncertainty analysis is
to identify various error and uncertainty sources and to derive relative uncertainty

contribution maps for these error sources.
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In general, the steps taken for the spatial modeling and simulation are as follows:
e Generating a grid of the study area;
Sampling and collecting data;
Data processing and analysis;
Generating maps by simulation algorithm;
Calculating prediction and variance maps of dependent variable by
model or function y = f(x,,x,,...,x,).

A grid for the study area should be created and used for sampling and collecting ground and
auxiliary data. The auxiliary data are co-located for the grid and include digital elevation
models, soil type maps, and various remotely sensed images. Appropriate plot size should be
determined for collecting data and mapping (Wang et al., 2001e). Data processing and
analyzing include ground data grouping, transformation, statistical analysis, auxiliary data
rectification, conversion, transformation, and scaling. The scaling means determining
appropriate spatial and temporal resolution (pixel or cell size) for mapping and inferring
results cross scales (Gertner et al., 2001d; Wang et al., 2001d). Selecting appropriate

resolution should be integrated with determining optimal plot size (Wang et al., 2001e).

The methodology for map generation is based on simulation algorithms and spatial variability
theory of variables in geostatistics. The simulation methods include sequential Gaussian
simulation (Gertner et al., 2000; Wang et al., 2001f), sequential indicator simulation (Wang et
al., 2001h; Wang et al., 2000b), and joint sequential simulation (Gertner et al., 2001a and
2001c; Wang et al., 2001b). These methods can be used for one or more than one variable.
The auxiliary data such as remotely sensed images or other digital maps such as digital
elevation models can be introduced into the simulation algorithms, which lead to co-
simulation. When extreme values are not important, Gaussian simulation is a good choice. If
the attention is paid to extreme values, indicator simulation should be taken into account.
When multiple variables that are spatially correlated with each other are jointly mapped, joint
sequential simulation or co-simulation with co-located auxiliary data. These methods can
provide unbiased estimates of populations and reliable estimates of any sub-areas, and also
reproduce the inherent spatial variability of the variables, and provide their spatial statistics in
term of uncertainty. The prediction maps of the variables are employed to derive prediction

and variance map of the dependent variable by relevant model or function.

The spatial uncertainty analysis procedure in the left of Figure 3.1 consists of error and
uncertainty identification and assessment, modeling error and uncertainty propagation, error
and uncertainty budget, and suggesting guidelines for error management. Various source
errors and uncertainties in the GIS-based prediction system are assessed and shown in the
middle of Figure 3.1 and their detailed classification is presented in Figure 3.2. There are
many spatial and temporal errors in the subcomponents of models such as equations related
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to soil erosion listed in Chapter 2. To obtain the input subcomponents, many different steps
are taken and there are obviously many factors that cause uncertainties in the prediction of
erosion both in small areas and large areas. These errors arise mainly from data, material,
operations, modeling, and the inherent fuzziness of the real world. The errors and
uncertainties are divided into three groups: sampling and data errors, data process and
operation errors, and modeling and simulation errors. Within each of these groups, the error
sources are further divided into sub-groups. The error sources, propagation, and
accumulation are depicted in Figure 3.2. This figure is a very broad and general
representation of some of the main errors that occur in the prediction of a natural resource

and ecological system.

The error budget and partitioning into various sources of errors are generated (in the bottom
of Figure 3.1). Error budgets can be used to assess the quality of the overall simulation
system. An error budget can be considered as a catalog of the different error sources that
allows the partitioning of the prediction variance and according to their origins. In table form,
Table 3.1 displays how the error budget partitions error of a population prediction by sources
based on Figure 3.2. As a specialized form of sensitivity analysis, an error budget shows the
effects of individual errors and groups of errors on the quality of a multi-component model's
predictions. The goal in developing the error budget is to account for all major sources of
errors that can be expected in a system. By doing this, the sources of errors can be examined
and partitioned in different ways. Additionally, an error budget can be generated for different
time steps and spatial scales. The error budgets have been generated for both large and small
areas.
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Fig. 3.2. Error sources and propagation of spatial modeling and simulation system.
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When a spatial uncertainty budget is done, results will be relative variance contribution maps.
As an example for spatial uncertainty budget, Figure 3.3 presents total variance maps of
predicted ground cover, canopy cover, vegetation height, and vegetation cover and
management factor C related to soil erosion, and relative variance contributions of the input
variables to uncertainty of predicted C factor values for pixel at a transect line. The relative
variance contribution varies over space and main uncertainty source differs from place to

place.

Different approaches have been developed to generate the error budgets: deterministic and
stochastic approaches. The approaches used depend on the structure of subcomponent models
and the characteristics of errors. The deterministic approaches are based on analytical
statistical estimators (expected mean square error models) and Taylor series approximations
based on subcomponent models that are mathematically differentiable (Fang et al., 2001b;
Parysow et al.,, 2001b). In terms of the stochastic approaches, they are Monte Carlo
techniques based on simple random and Latin Hypercube sampling; and on Fourier analyses
techniques (Fourier amplitude sensitivity test (FAST)) (Fang et al., 2001a; Gertner et al.,
2001d; Wang et al., 2000a). Moreover, we have developed regression modeling for variance
partitioning (Gertner et al., 2001a and 2001c). In addition, we are developing approaches that
are a hybrid of both approaches based on surrogate models. These surrogate models are the
simplification of the overall system that are computationally efficient and can be easily
assessed in terms of their statistical properties. These will be the basis for our composite error
variances and the partitioning of the error variances.

We will apply the GIS-based methodology to the case study — prediction and uncertainty
analysis of soil loss using RUSLE. The flow of data and operations for this application is
depicted in Figure 3.4. The study area — Fort hood is first sampled and ground data are
collected for the primary variables related to soil erosion. The primary variables include soil
properties, topographical features, vegetation cover variables, and rainfall. In addition,
auxiliary data such as digital elevation model and remotely sensed data are acquired. A
number of simulation algorithms with and without the auxiliary data are carried out to
generate maps for each primary variable. The prediction maps of the primary variables
together with empirical equations listed in Chapter 2 are then used to calculate the input
factors including rainfall-runoff erosivity factor R, soil erodibility factor K, topographical
factor LS, vegetation cover and management factor C, and support practice factor P. Finally,
soil erosion is derived using Egs. 2.1 and 2.2. The expected maps and their variance maps of
the input factors and soil erosion status are obtained.

Using the prediction and variance maps above, a spatial uncertainty budget is first carried out
for prediction of each input factor from its primary variables. The overall spatial uncertainty
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budget is then made from the input factor to prediction of soil erosion. Finally, we will
suggest guidelines of error management for prediction of soil erosion.

Table 3.1. A partition of final prediction variances and errors based on Figure 1.

Error sources Prediction Prediction
variances % errors %

Data errors

Sampling error

Measurement error

Geometric error

Digitized error

Sub-total

Data process errors

Rounding

Transformation

Geometric rectification

Image overlapping

Sub-total

Experimental design error

Sub-total

Model parameter errors

Component 1

Component n

Sub-total

Modeling and  simulation
uncertainties

Variation of variables

Interactions

Neighboring information

Sun-total

Prediction value error

Spatial error

Human error

Total
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Fig. 3.3. Variance maps of predicted ground cover, canopy cover, vegetation height, and
vegetation cover and management factor C related to soil erosion of Fort Hood, and
relative variance contributions of the input variables to uncertainty of predicted C factor
values for pixels at a transect line marked at the C factor variance.
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Fig. 3.4. Flow of spatial modeling, simulation, and uncertainty analysis for the case study —

prediction of soil erosion using the Revised Universal Soil Loss Equation.

52



Ul NRES White Paper (Final Report) 53

Spatial variability and cross variability

The GIS-based methodology mentioned above was developed based on spatial variability and
cross variability of variables. Generally, a sample datum of a variable is similar with another
sample datum separated by a distance h within a distance range given a direction, and the
similarity becomes weaker and finally disappears as the separation distance h increases. That
is, sample data separated by a distance h are only slightly dissimilar when they are close to
each other, and the dissimilarity becomes stronger as the separation distance h increases, and
finally the data get independent out of a certain distance range. The dissimilarity of data
varies over space is called spatial variability of a variable.

Furthermore, the value of a variable at one location is related to the value of another variable
a vector h apart. If both variables are positively related, an increase (decrease) in value of a
variable from one location to another tends to be associated with an increase (decrease) in
value of another variable. Conversely, a negative spatial correlation between two variables
means that the increase (decrease) of a variable tends to be associated with the decrease
(increase) of another variable. This is called spatial cross variability between two variables.

The spatial variability of a variable and cross variability between two variables can be
modeled as realizations of random functions and by sampling. A study area can be divided

into N pixels of a grid and P variables are estimated. In this area, a sample is drawn and the
sample data set {z (u,),u,=1,2,...,n,p=1,2, ..., P} is obtained for P variables, and n is

the number of sample data. The data of a variable p at location u, is z, (u,,) . The expectation
and variance for the variable p are m, and O';, respectively. The cross covariance measuring

the spatial cross variability between two variables is computed as:

1 N(h)
()= (u, 2, +h)—m,, T, (3.1)
PP N(h) ~ P P P-h Pin
with
RG]
m = u
ERNYOP- R

1 N(h)

m, = NG & Z z (u, +h)
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where N(h) is the number of pairs of data locations a vector h apart, h is called lag given a
direction, m,. and m, are the means of the tail values of variable p and head values of

variable p’ respectively. When p = p’, Eq. 3.1 means covariance between data values of the
same variable separated by a vector h, measuring spatial variability of the variable. On the
other hand, cross semi-variograms, }/pp.(h) measures spatial cross variability between two

variables and can be derived:

1 A»
7o 0= 5y 200 =2, V) 2, + ) (32)

When p = p’, Eq. 3.2 indicates semivariogram measuring spatial variability of a variable.
When auxiliary data x, (u) (q=1,2, ..., Q) for Q auxiliary variables are available at each

location to be estimated, the spatial correlation between an estimated variable and an
auxiliary variable can be obtained by Eqgs. 3.1 and 3.2.

Egs. 3.1 and 3.2 cannot be used to measure spatial variability of a categorical variable such as
land use and cover. Various indicator methods have been developed so that probabilities of
categories can be derived from sample data and used to obtain estimates at unknown
locations. In the other word, the pattern of spatial variability for a continuous variable may
differ depending on whether the variable values are small, medium, or large, and should be
modeled separately. Thus, indicator approaches are also needed. The continuous variable z
has to be subdivided into K+1 discrete intervals and K threshold values z, are defined (k =
1,2,...,K). These threshold values are referred to as cutoff values. The indicator coding of the

measurement data is then carried out as follows:

For continuous variables :

1 if zu,)<z, k=1,.,K
i(u,;z,)=+For categorical variables: (3.3)
1 if z(u,)=z, k=1..K

0  otherwise

The spatial variability of the variable is estimated for each cutoff value using the indicator
data and indicator semi-variograms. The indicator semi-variograms imply spatial similarity
of indicator variables depending on the separation vector of data, that is:

._lN(h)-._- Y
71(h,2k)—2N(h);[l(umZk) i(u, +h;z,)”  (3.4)
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where i(u,;z,) and i(u, + h;z,) are the indicator data of the variable at spatial locations o

and o + h, respectively.

As the separation distance of data given a direction increase, generally, semivariograms
increase rapidly at the beginning, then slowly, and eventually become stable. Semivariogram
or covariance inference provides a set of experimental values for a finite number of lags and
directions. The spatial modeling and mapping by geostatistical methods such as simulation
require semivariogram or covariance values at any separation distance h. Thus, continuous
functions need to be fitted to the experimental values. In geostatistical methods, on the other
hand, the semivariogram or covariance function will be used to derive weights A, of sample

data given a neighborhood. In order to obtain non-negative variance of an estimate Z (u)* at

any location u:

Var{Z(u)'} = Var{zn: A,z(u,)} = Zn:ilalﬂ(f(ua —u,)20 (3.5)

a=1 p=1

the covariance function C(h) must be positive definite. Eq. 3.5 can be also repressed with

semivariogram by following relationship:

y(h) =C(0)=C(h) (3.6)

Thus, semivariogram models must be conditionally negative definite, the condition being that
the sum of the weights A, is zero. Therefore, the experimental semivariograms are usually

fitted using only linear combinations of permissible models. The models include spherical,

exponential, Gaussian and power models with nugget effects:

A C +cl[1.5(£) —0.5(£)3] 0<h<a,

j/sph (h) = aO aO (37)
¢, +¢ h2a,

3h

A c, +c[l—exp(—— 0<h<a

- (h) = o tal p( a )] 0 (3.8)
¢, +¢ h=a,

2

A ¢, +¢[l—exp(—— 0<h<a

7gau(h): o tal p( ag )] 0 (3.9)
¢, +¢ h=a,
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AN

Y pow (W) =y +c, 1 O<w<2 (3.10)

where ¢, and c, are the nugget variance and structure variance, respectively, and ¢ =c¢, +¢,
is the sill variance. a, is the actual range parameter for the spherical model and the effective
range parameter for the exponential and Gaussian models. The effective range is defined as
the distance at which 7A/(a0) =0.95-c. o is a power of this power model. When c¢,= 0, the

equations above represent pure spherical, exponential, Gaussian and power model.

The nugget variance ¢, of a semivariogram can be inferred by the intercept of the fitted

model and arises from measurement error and micro-scale variance (Atkinson, 1997;
Goovaerts, 1997). When the experimental semivariograms are calculated using raster data,
the nugget variance implies a noise term, that is, measurement error variance and within-cell
variability (Wang et al., 2001d). For spherical, exponential and Gaussian models, the

semivariogram values increase as the lag h increases and gradually reach to the maximum,
that is, sill variance as h reaches to the range parameter a, (Figure 3.5). This implies that out

of the range parameter, the spatial similarity disappears. For power model, the semivariogram
continuously increases and does not reach a sill value.
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Fig. 3.5. Examples of Spherical (left) and Gaussian (right) models with their parameters.

In addition, different directions should be taken into account to determine whether the spatial
variability is isotropic or anisotropic. Anisotropy means that semivariograms have different
range or sill parameters in different directions. A method to detect the anisotropy is to
calculate a semivariogram map centered at the origin of the semi-variogram and to derive a
contour map of semivariogram values. The elliptical contour lines indicate anisotropy, while
concentric contour imply isotropy. This method requires a data set of dense samples. Another
alternative is to calculate experimental semivariograms in different directions and visually
interpret the similarity. Semivariograms in different directions should be developed
separately if anisotropy exists.

Sampling design

Sampling designing deals mainly with determining appropriate plots size and sample size.
The average semivariance value at a lag of one pixel has been used to determine appropriate
plot size and spatial resolution (Atkinson and Danson, 1988; Atkinson and Curran, 1997). In

fact, its application is limited because of requiring a high dense sample. In this project
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research, we improved this method by modeling the within plot spatial variability and
regional spatial variability (Wang et al., 2001¢). A plot size at which the within plot (micro)
spatial variability and regional (macro) spatial variability of a variable is accurately captured
simultaneously should be determined. The plot size should be an appropriate measurement
unit for data collection and mapping. A semivariogram y,(h) on plot size v can be derived
from the punctual semivariogram by Journel and Huijbrets (1978):

rv(h) =y (v, vn) =7 (v,v) (3.11)

where the first term at the right of the equality is the average punctual semivariance between
two plots separated by a distance of h, that is, regional spatial variability; the second term is
the average punctual semivariance within a plot, that is, within plot spatial variability. In
practice, both semivariograms on the right of the equality in Eq. 3.11 are unknown. By
sampling, these semivariograms can be obtained using experimental semivariogram Eq. 3.2.
If spatial variability converges, the range parameter of spherical, exponential and Gaussian
model provides the range of spatial dependence of the variable. Within the range,
observations can be considered spatially dependent, and beyond the range, observations can
be considered essentially independent.

The semivariogram models can be developed to describe the spatial variability within and
between plots (Wang et al., 2001¢). Within plot semi-variograms describes the within plot
spatial variability over plot size, i.e., the length of transect line for LCTA plots. When using
the spherical, exponential and Gaussian models, the within plot semivariance increases as
plot size increases. The range parameter at which within plot semivariance reaches its
maximum can be considered to be the maximum measure of appropriate plot size because the
information beyond the range is independent (Wang et al., 2001¢). This would correspond to
maximizing the second term after the equality in Eq. 3.11.

Semivariograms can also be developed over the whole area by changing plot size. For each
plot size, a regional experimental semivariogram is calculated and fitted using the permissible
models mentioned previously. When the plot size increases, the modeled regional
semivariograms vary in shape and parameters. For a specific variable, the structure variance
increases and nugget variance decreases, and both gradually stabilize as the plot size arises.
In remote sensing, this process implies enhancing structured variance and reducing noise -
measurement error and micro variability, and this results in an improvement of correlation
between field and remote sensing data. The plot size is considered appropriate when the ratio
of the nugget variance to structure variance becomes stable (Wang et al, 2001e). This would
correspond to stabilizing the first term after the equality in Eq. 3.11, that is, stabilize the
estimate of regional variability. If there is a high correlation between field and image data,
the appropriate plot size obtained using the field data will be consistent with the appropriate
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spatial resolution using the images. This method is available for application of field data and
remotely sensed data. When image data are employed, plot size means pixel or cell size, that
is, spatial resolution. Thus, this method can be used to simultaneously determine plot size for
ground data collection and spatial resolution for mapping.

Compared to traditional methods, the sampling design based on the theory of regionalized
variables in geostatistics significantly reduced the number of samples with the same accuracy
requirement because of considering spatial dependence of data of a variable (McBratney, et
al., 1981; McBratney and Webster, 1981 * 1983). We have done the further improvement by
introducing plot size and cost of data collection into the sampling design (Xiao et al., 2001).
Kriging in geostatistics estimates localized unknown locations based on spatial variability of
a variable and the estimates are unbiased with the sum of weights equal to one and

minimizing local error variance. From Eq. 3.5, the estimation variance depends only on the
separation distance (u, —u ﬂ) of data, and not data themselves. If the semivariogram is

known, the kriging variances for any sampling schemes, that is, sampling distances, can be
determined before sampling. Given a maximum error, the sampling distance can be

determined and the sample size can be calculated with the interest area.

Moreover, a regional estimate obtained theoretically by kriging over the whole region is
equal to the average of local estimates made for small neighborhoods (Journel and Huijbregts
1978). But the corresponding global estimation variance cannot be calculated simply by
summing variances of local estimates because the neighboring locations are not independent.
By an approximation, when S is a square with the observation point u at its center and side
equal sampling interval, the variance of estimating its average value O'S2 equals to 2 times the

average semivariance between the central point u and all other points in the square and minus

the within square variance:
02 =2y(,5)-y(5.5) (3.12)

If the area consists of n squares, the regional estimation variance o, can be calculated

(McBratney and Webster, 1983):

2

1
o, =—o.  (3.13)
n

If semivariogram is known, the equations above can be solved for a range of sizes of square.
The estimation variance is plotted against the sample size n and given a particular error, a
sample size n can be determined. However, semivariogram function is usually estimated
using experimental semivariogram that varies depending on plot size, as described above. If
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the relationship between plot size and each parameter of the empirical semivariogram
function obtained is established, on the other hand, plot size and sample size can be
determined simultaneously (Xiao et al., 2001). Additionally, cost can be introduced into the
analysis in terms of time for traveling between plots and measuring plots, and optimal plot

size and sample size can be found.

Scale and resolution

Scale and resolution affects spatial features, patterns, and processes of ecological variables
and resources in both space and time. Before conducting studies, we have to determine
appropriate spatial and temporal scales or resolutions to be used. When multiple variables are
mapped and overlapped and if the appropriate scales differ, interpolating or extrapolating
results cross scales, that is, scaling up or down, is needed. Furthermore, the change of spatial
information due to scaling has to be modeled and its effect on management decisions being
made based on the changed characteristics of ecosystems and natural resources has to be
studied.

The scale-related issues are complicated and a lot of studies are needed. In this project, we
have had a good start by developing the methods that can be used to determine appropriate
spatial resolution for mapping and to model loss of spatial information due to scaling
(Gertner et al., 2001d; Wang et al., 2001e and 2001c). We have also suggested the possibility
to develop a systematical methodology to account for the effect of scale and resolution in
ecological modeling and resource management. Explicitly modeling the spatial variability of
variables and processes is critical to systematical methodology. These spatial variability
models will provide a basis to derive the methods that can be used to detect optimal spatial
resolution, to infer spatial information cross scales, to measure change of the information due

to scaling, and further to analyze the effect of scaling on management decisions.

We have developed a method that can be used to determine appropriate spatial resolution for
mapping multiple vegetation types (Wang et al., 2001e). This method is the same as that used
to determine appropriate plot size. An appropriate plot size means a measure or support unit
used to collect ground data so that spatial variability of an interest variable can be captured.
This implies that if the support size is employed as spatial resolution to map the variable, its
spatial statistics can be well reproduced. Additionally, we have suggested a method to model
change of spatial information due to scaling, including information loss from a finer
resolution to a coarser and information increase by interpolation from a coarser resolution to
a finer (Wang et al., 2001c). The method consists of deriving and fitting the semivariograms
of the interest variable at different scales, then calculating changes of spatial information by
differentiation and integration of the semivariogram models. This method can not only lead to
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the change of spatial information but also detect differences of the changes at different
directions because of anisotropy in spatial variability of the variable.

Spatial modeling and simulation

The shortcomings in smoothing of estimates and kriging variances limits the applications of
kriging methods in spatial modeling and mapping for natural resources and ecosystems.
Especially, kriging variances cannot be employed for spatial uncertainty budgets (Gertner et
al., 2000; Wang 2000a). The methodology we developed for spatial modeling and mapping is
based on various simulation algorithms (Gertner et al., 2001a and 2001c; Wang et al., 2000b,
2001a, 2001b, 2001f and 2001h). However, simple and ordinary kriging, indicator kriging,
and co-located cokriging will be used to determine conditional cumulative density function
(CDF) in various simulation algorithms. Before we present simulation algorithms, the kriging
methods are introduced.

Kriging
Simple and ordinary estimators

Given n data {z(ug), o = 1, 2,...,n} of a continuous variable z, sampled and measured over a
study area, the value of the variable at any un-sampled location u can be estimated. The basic

kriging estimator is:

n(u)

Z'(u) . m(u) > 3 m,(w)[Z(uy) . m(uy)] (3.14)
b>1

where Z (1) is a kriging estimate at a unknown location u, A,(u) the weight assigned to

datum z(ug), m(u) and m(u,) are the expected values of the variables Z(u) and Z(u,). Given a
neighborhood centered on u being estimated, the number of data involved and weights
derived in the estimation differ from one location to another. Based on this equation, various
kriging methods can be derived (Goovaerts, 1997).

When the mean m(u) is considered to be known and constant throughout the study area,
simple kriging (SK) is obtained. When the mean m(u) varies depending on the local
neighborhood, and is filtered from the linear estimator by forcing the kriging weights to sum
to 1, ordinary kriging (OK) is derived. The simple and ordinary kriging estimators
respectively become:
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n(u) n(u)

Z's(w) > 1 m(wZ(u,), [1. 1 m¥(wim (3.15)
b>1 b>1
n(u) n(u)

Z'ok(u) > 1 m¥(w)Z(u,) with J p2(u)>1 (3.16)
b>1 b>1

To derive the weights, a linear equation system is created. The system for simple kriging and
its minimum error variances are:

n(u)

Z/lzk(u)C(ua—uﬁ):C(ua—u) a=1,..,n(u) (3.17)
B=I

n(u)
ou(w)=C0)- > 2 (W)C(u, —u) (3.18)

The kriging estimators are exact interpolators in that they honor data values at their locations.
For the other notations and kriging estimators, readers should refer to Cressie (1991) and
Goovaerts (1997).

If P variables are jointly estimated conditioning to the sample data of the P primary variables
and the data of Q auxiliary variables available at each location to be estimated, a hierarchy of
the primary variables can be defined according to their importance and the estimation starts
from the most important variable. A simple co-located cokriging estimator can be selected
with its estimate Z;Ck (u) for the pth variable at a location u (Almeida, 1993):

n(u)

0 p-1
ZyH ) = 2, A2, () + V%, )+ 2 7/ 2] (w) (3.19)
a=1 q=1 i=1

where n(u) is the number of the sample data for the primary variables given a neighborhood.

Z**(u) (i=1, ..., p-1) is the previously estimated value for the primary variable i. A Loy

and 7/ are weights of the data of the primary variable p, auxiliary variable q and previously
estimated variable i. The weights for the variable p are the solutions of a linear equation
system consisting of n + Q + p-1 equations containing the auto and cross co-variances.
Instead of directly modeling, the cross co-variances are derived by a Markov model:
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C, x (0)

C hyl ———
Zp’Xq() Czp,zp (0)

C, , (h) (3.20)

Indicator kriging

Indicator approaches do not assume any particular shape or analytical expression for
conditional distributions. As a first step in using the indicator approach, indicator coding of

original data is carried out. The probability function F(u; z|(n)) is then modeled through a
series of K threshold values z, :

Prob{z(u)=z, |(n)}  for categorical variable
F(u;z, |(n))=4Prob{z(u)<z, |(n)}  for continuous variable (3.21)
k=1,.,K

where |(n) means the condition of n sample data. The K conditional CDF values are
interpolated within each class (zx, zi+1] and extrapolated beyond the two extreme threshold
values z; and z, for a continuous variable. The indicator approach is based on the
interpretation of the conditional probability Eq. 3.21 as the conditional expectation of an
indicator random variable I(u;z) given the information (n): F(u;z|(n)) = E{I(u;zy)|(n)} with
Eq. 3.3 for indicator coding. The conditional CDF value F(u;z(n)) can be obtained by
kriging the unknown indicator i(u;zc) using indicator transforms of the neighboring
information. Different kriging methods lead to the respective indicator krigings. For
example, simple indicator kriging is given as follows:

% * n(u)
[F(u;zk|(n))]sik > [I(UQZk)]Sk > ] mﬂ( (wz ) [(uyszy) mfrll( (w;z, ) F(zy) (3.22)
b>1

" ngu)
where E{I(u;zk)} = F(Zk) and mjn (wz)>1. 1 m%k(u;zk)
b>1

When the data of an auxiliary variable such as image data are available at all locations to be
estimated, a co-located indicator cokriging estimator can be used to introduce image
information into the estimation process of statistical parameters of conditional CDF in
simulation algorithms. The co-located indicator cokriging estimator is:

* n{u) oc . oc
sz ek = % A0 (w32 )iy 2 )+ AFE (s 20 ) x(us 2,) (3.23)

a=l1

63



Ul NRES White Paper (Final Report) 64

where [I(u;z,)],,cx is a co-located indicator cokriging estimate of a primary variable,
i(u,;z,) the indicator value of the primary variable, x(u;z,) the datum of the auxiliary

variable at the location u to be estimated. A2%(u;z,) and A3*(u;z,) are weights for the

primary and auxiliary variable.

The linear equation system for the solutions of the weights includes n(u)+2 equations. The
equations depend on not only the co-variance functions (C,(h;z,) and C, (k;z,)) of the

primary and auxiliary variables at a separation distance h, but also the cross co-variance
function between the two variables, that is, C,,(h;z,). The co-variance function of the
primary variable is derived by the modeled semi-variogram. The co-variance of the auxiliary
variable and the cross co-variance can be approximated by the co-variance of the primary
variable based on a Markov model:

{CX (hiz) = B(z,)C; (hiz)
Cx(h;zy) = B(z,)C; (h;2;)
B(z)=m'(z,)—m"(z;) (3.24)
m'(z;) = E[X (u;24) | i(u; ;) = 1]
m®(z,) = E[X (u;2,) | i(u; z;,) = 0]

Each coefficient B(z,) is determined by the difference between the two conditional
expectations. The difference to derive the coefficients B(z,) for a categorical and continuous
variable is that the condition i(u;z,) =1 for indicator coding of a categorical variable is z(u,)

= z, and the corresponding condition for a continuous variable is z(u,) < z, . For the details

of the linear equation system, readers can refer to Goovaerts (1997).

Simulation

Simulation algorithms provide not only estimates but also estimation variances and co-
variance at any locations. The estimation variances and co-variances vary space depending on
sample data themselves in addition to data configuration (sample density and distance of an
estimated location from sample data). These methods can thus be integrated with uncertainty
budget methods for spatial modeling, mapping, and uncertainty analysis (Gertner et al.,
2001c; Wang et al., 2000a and 2001a). Several simulation algorithms have been developed
and used in the research project. An important alternative is joint sequential co-simulation
with auxiliary data such as remotely sensed images and digital elevation models (Gertner et
al., 2001c; Wang et al., 2001b). This method can be used for jointly mapping one or multiple
variables with more than one auxiliary variable. The time required to run the co-simulations

mainly depends on the number of variables to be estimated and the number of co-simulation
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runs. Sequential Gaussian simulation is the basis of joint co-simulation algorithm and can be
used for the simplest case of one variable with and without auxiliary data (Gertner et al.,
2000; Wang et al., 2001f, 20011).

The Gaussian simulation algorithms assume normal distribution of variables to be estimated.
When multiple variables are simulated, multiGaussian model is assumed for the multivariate
distribution, which also implies univariate normality. When the data of the variables are not
normally distributed, a normal score transform (Goovaerts, 1997) should be performed so
that the transformed data have means of zero with unit variances. These methods usually lead
to underestimation in the areas with large values and overestimation in the areas with small
values. In the cases at which extreme values are important, another alternative is needed, that
is, sequential indicator simulation that can improve estimation of extreme values and at the
same time does not require normal distribution of variables (Wang et al., 2000a, 2000b,
2001a). Mapping a categorical variable also needs this method (Wang et al., 2001h). Because
a semivariogram for each class of categorical variable or each of several cutoff values of a
continuous variable has to be developed, the simulation thus becomes complicated and
uncertainty from modeling semivariograms will be propagated into predictions. When
multiple variables that are spatially correlated with each other are considered, using this
method is very difficult. Therefore, choosing correct method for an application is very
important.

Sequential Gaussian simulation

Suppose that a study area consists of N pixels in a grid and that {Z(u'j), i=1 2, 3 .., N}
is a set of random variables defined at N locations, ulj . Conditional to sample data, L joint

realizations (1 = 1, 2, ..., L) for these N random variables can be generated with the
sequential Gaussian simulation. A realization implies that each of N pixels of the grid is
provided with an estimate, that is, a prediction map is obtained. In each simulation, the N-
point conditional cumulative dense function (CDF) is expressed as the product of N one-
point conditional CDFs given the sample data values and estimates obtained previously
(Goovaerts, 1997).

In a simulation (Figure 3.6), a random path to visit each pixel of the grid only once in the
area is first defined. We suppose that an estimate of the ith pixel to be visited has a Gaussian
conditional CDF that can be determined by a mean and variance. The mean and variance are
estimated using a kriging estimator and the modeled semivariogram given normal score
transformed values of n sample data and all simulated values at the locations previously
visited. From the conditional distribution, a value is drawn and transformed back to the
original distribution data, and that value is further added to the conditional data set. The
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process is repeated until all N pixels have been visited and provided with estimates. Running
L times, each time with a possible different path to visit the N pixels, will lead to L
realizations, that is, L maps, from which an expected map and prediction variance map for the

estimated variable can be derived.

-

The pixel i+1 to be estimated

Sample plot

7 7

The pixel i to be estimated

vV v vy Y

The pixel i-1 that has been
estimated

» A pixel with estimate

Fig. 3.6. One simulation run.

This method has been applied to generate prediction maps of rainfall-runoff erosivity factor
(Wang et al., 2001f and 2001g), and soil erodibility factor (Gertner et al., 2000) for the case
study of this project. Wang et al. (20011) improved this simulation algorithm for mapping
vegetation cover and management factor related to soil erosion by introducing Landsat TM
images, which has become sequential Gaussian co-simulation. The co-simulation process is
the same as above. However, the spatial cross variability between the variable and each
auxiliary variable has to be modeled using Markov model described in kriging. In addition to
sample data and previously simulated values, the co-simulation will also be conditional to the

co-located auxiliary data. The co-located cokriging estimator is needed.

The conditional variances generated with the Gaussian simulation depend not on only data
configuration but also data values, and in theory provide a more realistic assessment of
uncertainty across space than the error variances obtained with kriging estimations (Gertner
et al., 2000). As the number of L realizations increases, the variances decrease rapidly at the
beginning, then slowly and gradually become stable. The number L, at which the estimation
variances tend to become stable, can be chosen as the final number of realizations. For more
details of mathematics on the sequential Gaussian simulation, the reader is referred to Chiles
and Delfiner (1999) and Goovaerts (1997).
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Sequential indicator simulation

The shortcoming of Gaussian simulation is that it may create under- and over-estimates when
there are extremely large or small values. The advantages of sequential indicator simulation
are that it does not require normal distribution of data and can handle different structures of
the spatial variability. Moreover, indicator simulation is also needed for mapping categorical
variables. With indicator simulation, the range of a continuous variable has to be discretized
into several intervals and indicator transformation of original data must be done, which is
called indicator coding. For a categorical variable, the indicator coding can be directly carried
out according to categories. The indicator covariance or semivariogram models for these
intervals are then developed and used for simulation. The sequential indicator simulation
maintains the values of sample data at the sample locations and results in estimates of a

variable at any non-sample locations of the study area using the sample data.

The sequential indicator simulation is similar to sequential Gaussian simulation (Goovaerts,
1997). The difference lies at that instead of deriving a mean value and variance of a normal
distribution at each pixel to be estimated, K conditional CDF values [F(u;z, | (n))] (k= 1,

..., K) are determined given the indicator transforms of original data and all previously
simulated values using an indicator kriging. Because the probability estimates must lie in the
interval [0,1] and their series has to be a non-decreasing function, the order relation
deviations may be corrected to obtain a complete conditional CDF model using some
interpolation or extrapolation algorithms. From the distribution function, a value is drawn

and it becomes a conditional datum.

This method has been applied to map the topographical factor LS for prediction of soil
erosion (Wang et al., 2000a, 2000b and 2001a). Wang et al. (2001h) further improved and
used the method for mapping vegetation types at the case study of this project. At the case,
the conditional CDF values determined are probabilities of occurrence of all categories at an
estimated pixel. Landsat TM images are used to improve the simulation for classification,
which becomes sequential indicator co-simulation. The spatial cross variability between the
categorical variable and each auxiliary variable is modeled using Markov model described in
indicator kriging. In addition to the sample data and previously simulated values, the
conditional data include the co-located image data. Furthermore, an indicator co-located
cokriging is needed to determine the conditional CDF values. A random number uniformly
distributed in [0,1] is drawn and the estimated category at the location is derived based on the

principle that if the random number is larger than the CDF value at the catego