
AFRL-RH-WP-TR-2008-0059

Investigation of Means of Mitigating
Congestion in Complex, Distributed
Network Systems by Optimization

Means and Information Theoretic Proceedures

Frank Mufalli
Rakesh Nagi
Jim Llinas

Sumita Mishra

SUNY at Buffalo—CUBRC
4455 Genessee Street

Buffalo NY 14225

W.F. Lawless

Paine College
1235 15th Street

Augusta GA 30901-3182

February 2008

Final Report for the period August 2006 to November 2007

Air Force Research Laboratory
Human Effectiveness Directorate
Warfighter Interface Division
Battlespace Visualization Branch
Approved for public release;

 distribution is unlimited.
Wright-Patterson AFB OH 45433

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or corporation;
or convey any rights or permission to manufacture, use, or sell any patented invention that
may relate to them.

This report was cleared for public release by the 88th Air Base Wing Public Affairs Office and
is available to the general public, including foreign nationals. Copies may be obtained from the
Defense Technical Information Center (DTIC) (http://www.dtic.mil).

TECHNICAL REVIEW AND APPROVAL

AFRL-RH-WP-TR-2008-0059

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION.

FOR THE DIRECTOR

//signed// //signed//
Daniel Repperger DANIEL G. GODDARD
Program Manager Chief, Warfighter Interface Division
Battlespace Visualization Branch Air Force Research Laboratory

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

 Standard Form 298 (Rev. 8-98)
 Prescribed by ANSI-Std Z39-18

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
1 Feb 2008

2. REPORT TYPE
Final

3. DATES COVERED (From - To)
August 2006 – November 2007

5a. CONTRACT NUMBER
FA8650-06-1-6745

5b. GRANT NUMBER

4. TITLE AND SUBTITLE
Investigation of Means of Mitigating Congestion in Complex,
Distributed Network Systems by Optimization Means and
Information Theoretic Proceedures

5c. PROGRAM ELEMENT NUMBER
62202F
5d. PROJECT NUMBER
7184

5e. TASK NUMBER
08

6. AUTHOR(S)
Frank Mufalli *
Rakesh Nagi *
Jim Llinas *
Sumita Mishra *
W.F. Lawless ** 5f. WORK UNIT NUMBER

NY
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
SUNY at Buffalo—CUBRC * Paine College **
4455 Genessee Street 1235 15th Street
Buffalo NY 14225 Augusta GA 30901-3182

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)
AFRL/RHCV

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Materiel Command
Air Force Research Laboratory
Human Effectiveness Directorate
Warfighter Interface Division
Battlespace Visualization Branch
Wright Patterson AFB OH 45433-7022

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RH-WP-TR-2008-0059

12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES

88th ABW/PA Cleared 5/16/2008 WPAFB 08-3296.
14. ABSTRACT
This work investigates how the values of network metrics affect congestion in wireless ad-hoc networks. The metrics
considered in this work are average path length, average degree, clustering coefficient, and offdiagonal complexity.
Based on the levels of these metrics, insight is provided on the clustering algorithm to choose what will minimize
congestion. Congestion is evaluated using a node betweenness measure and the candidate clustering algorithms are
lowest ID, highest degree, and MOBIC. To obtain data for analysis, a network simulator was developed using Microsoft
Visual C++ 2005. The simulator is capable of creating networks of varying complexity, clustering these networks using
the aforementioned algorithms, and evaluating each of the five metrics. Analysis of the results confirmed that congestion
levels increase with complexity. This was evidenced by evaluation of all five network metrics. Also, networks with
relatively low levels of complexity will have minimal congestion, regardless of the clustering method used.
15. SUBJECT TERMS
 Wireless ad-hoc network, Lowest ID Clustering, Highest Degree Clustering, MOBIC, Visualization
16. SECURITY CLASSIFICATION OF:
Unclassified

19a. NAME OF RESPONSIBLE PERSON
Daniel Repperger

a. REPORT
U

b BSTRACT . A
U

c. THIS PAGE
U

17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER
OF PAGES

 97

19b. TELEPONE NUMBER (Include area code)

ii

This page blank intentionally.

Contents

Summary 1

1 Introduction and Research Objectives 2

 1.1 Introduction………………………………………………... 2

 1.2 Research Objectives………………………………………... 3

 1.3 Outline of the Thesis………………………………….......... 4

2 Literature Review 6

 2.1 Network Topology…………………………………………. 6

 2.1.1 Hierarchical Topology……………………………... 6

 2.1.2 Flat Topology………………………………………. 8

 2.2 Clustering Algorithms……………………………………… 9

 2.2.1 Highest Degree Clustering…………………………. 10

 2.2.2 Lowest ID Clustering………………………………. 10

 2.2.3 MOBIC……………………………………………. 11

 2.3 Complexity Metrics………………………………………... 12

 2.3.1 Average Path Length………………………………. 12

 2.3.2 Network Diameter…………………………………. 13

 2.3.3 Average Degree……………………………………. 13

 2.3.4 Network Clustering Coefficient…………………… 14
2.3.5 Offdiagonal Complexity…………………………… 15

iii

3 Technical Approach 17

 3.1 User Definitions……………………………………………. 18

 3.2 Software Calculations……………………………………… 20

 3.2.1 Average Path Length………………………………. 22

 3.2.2 Network Diameter…………………………………. 23

 3.2.3 Average Degree……………………………………. 23

 3.2.4 Clustering Coefficient……………………………… 24

 3.2.5 Offdiagonal Complexity…………………………… 25

 3.2.6 Clustering Algorithms……………………………… 26

 3.2.7 Betweenness……………………………………….. 26

 3.2.8 Node Movement…………………………………… 27

 3.3 Simulation Output and Summary………………………….. 28

4 Experimental Design and Results 29

 4.1 Experimental Design………………………………………. 29

 4.2 Results……………………………………………………... 31

 4.2.1 Average Path Length Results……………………… 31

 4.2.2 Average Degree Results…………………………… 34

 4.2.3 Clustering Coefficient Results…………………….. 36

 4.2.4 Network Diameter Results………………………… 38

 4.2.5 Offdiagonal Complexity Results……………………40

5 Conclusions and Future Work 42

 5.1 Conclusions………………………………………………… 42

Appendices 45

 A C++ Code for Network Simulator…………………………. 45

 B Sample Data File Output………………………………….. 88

Bibliography 89

iv

List of Figures

2.1 Example of a hierarchical topology……………………………….. 7

2.2 Example of a flat topology………………………………………… 8

2.3 Depiction of example network 1…………………………………... 12

2.4 Depiction of example network 2…………………………………… 12

2.5 Method for determining the network clustering coefficient metric... 14

2.6 Layout of the node-node link correlation matrix…………………... 15

2.7 A numerical example for computing offdiagonal complexity……... 16

3.1 An overview of the simulation environment………………………. 18

3.2 C++ code for determining the distance between two nodes……….. 20

3.3 C++ code for the Floyd-Warshall shortest path algorithm………… 22

3.4 C++ code for node movement……………………………………... 27

4.1 Bar graph showing congestion level by average path length……… 32

4.2 Bar graph showing clustering algorithm which minimizes

 congestion by average path length.. 33

4.3 Bar graph showing congestion level by average degree…………… 34

4.4 Bar graph showing clustering algorithm which minimizes

 congestion by average degree.. 35

v

4.5 Bar graph showing congestion level by clustering coefficient…….. 36

4.6 Bar graph showing clustering algorithm which minimizes

 congestion by clustering coefficient.. 37

4.7 Bar graph showing congestion level by network diameter………… 38

4.8 Bar graph showing clustering algorithm which minimizes

 congestion by network diameter.. 39

4.9 Bar graph showing congestion level by offdiagonal complexity…...40

4.10 Bar graph showing clustering algorithm which minimizes

 congestion by offdiagonal complexity... 41

vi

List of Tables

3.1 Sample distance matrix……..……………………………………… 21

3.2 Sample edge matrix…………………………………………………21

4.1 Levels of experimental design parameters…………………………. 30

5.1 Summary of clustering algorithm which minimizes congestion

given a specific level of average path length, average degree, or

clustering coefficient………………………………………………. 43

5.2 Summary of clustering algorithm which minimizes congestion

given a specific level of network diameter or offdiagonal

complexity…………………………………………………………. 43

vii

Author's Acknowledgment

I would like to express sincere gratitude to my advisor Dr. Rakesh Nagi, who not only guided me

through my thesis, but also challenged me to put forth my best effort in all aspects of my academic

career. Along with Dr. Nagi, Dr. Sumita Mishra, Dr. James Llinas, and Jim Scandale have been a

constant source of encouragement and guidance during my graduate studies. This work would not

have been possible without their patience and support.

viii

1

Summary

There are two key findings. First, complexity and congestion have a strong

positive correlation. Second, for non-complex networks, the choice of a clustering

algorithm is irrelevant. Each of the five metrics showed little or no congestion with

low values. The clustering algorithm selected can minimize congestion given the

level of a complexity metric.

Much time and effort was spent to develop the network simulation software.

 It is a versatile tool that can be utilized for other purposes. It was coded in a manner

that makes it scalable for other network analyses. Additional network metrics and

clustering methods can be integrated with little modification to the existing code

But for analysis of networks larger than 150 nodes, the code must be optimized for

more efficient run times. In its current state, analyzing networks exceeding 150

nodes is not feasible.

The network simulator is a console application that provides the means for

user input and simulation status while results are exported for analysis. This

method works well as long as the user is relatively “computer literate”. However, it

can cause confusion for large-scale projects. As a fix, a graphical user interface could

provide a clean interface. Visualization could then be incorporated into the

software to graphically show node movement, congestion levels, and more.

2

1 Introduction and Research Objectives

1.1 Introduction

Traditionally, networks have operated in an infrastructure mode where designated

hardware (routers, hubs, switches, etc.) is responsible for forwarding and

maintaining the flow of data. With the advent of advanced warfare requirements,

traditional networking methods were not adequate as they do not allow for the

rapid deployment of resources (land vehicles, air vehicles, etc). This requirement

led to the development of wireless ad-hoc networks.

A wireless ad-hoc network does not rely on fixed infrastructure or predetermined

connectivity. It is a self organizing multi-hop wireless network in which all of the

nodes can be mobile. Data is exchanged between nodes via wireless

communication. Aside from the ability to be rapidly deployed, wireless ad-hoc

networks have the ability to exist in highly volatile environments. Unlike

traditional networks, if one node is destroyed it will not impact the data exchange

between the remaining nodes within the network.

3

Given the dynamic characteristics of a wireless ad-hoc network, the way in which

data is exchanged must be efficient to avoid congestion. This is necessary to

ensure data transfers are quick and reliable. The primary factors affecting

communication between nodes is the network topology and the routing method.

Network topology and its impact on congestion is the focus of this work and an

overview is provided in the literature review.

1.2 Research Objectives

There are two main objectives of this work. Primarily, the following network

metrics will be analyzed to determine how they impact congestion in wireless ad-

hoc networks:

• Average Path Length

• Average Degree

• Network Diameter

• Clustering Coefficient

• Offdiagonal Complexity

The values of these metrics will be studied for various random networks in an

effort to link the metric levels to congestion levels. Furthermore, the secondary

objective is to select the best clustering algorithm that will minimize congestion

4

given a particular metric level. For example, if we know the average path length is

high, a clustering technique that minimizes congestion when the average path

length is high should be selected. Our list of candidate clustering techniques is as

follows:

• Lowest ID Clustering

• Highest Degree Clustering

• MOBIC

In order to complete these objectives, a network simulator was developed using

Microsoft Visual C++ 2005. The network simulator has the ability to generate

networks of various types and size, compute the five metrics as previously

discussed, apply each of the clustering techniques, and evaluate congestion.

Betweenness was selected to measure congestion. This, along with the network

metrics and clustering techniques will be discussed in Chapter 2 and Chapter 3.

1.3 Outline of the Thesis

The rest of this work is outlined as follows. Chapter 2 provides a literature review

of network topologies, clustering algorithms, and complexity metrics used in this

work. Chapter 3 defines our technical approach and includes a detailed overview

of the network simulation software. This leads into Chapter 4 which lays out the

5

experimental design and provides an analysis of the results obtained from

simulation. Finally, Chapter 5 offers conclusions on these results and provides

insight into future work.

6

2 Literature Review

2.1 Network Topology

The network simulation software developed in this work begins with a flat

network and uses clustering techniques to convert the network into hierarchical

form where congestion is evaluated. The decision to evaluate congestion in

hierarchical networks was made as they are used in the vast majority of real world

applications (i.e. environmental sensors, intelligence, etc.) Despite their increased

overhead costs and vulnerability, exceptional communication efficiency makes

hierarchical networks a more desirable choice. Both hierarchical and flat

topologies will be discussed in detail.

2.1.1 Hierarchical Topology

The selection of the correct network topology given the network characteristics is

extremely important to ensure reliable and efficient communication between nodes.

The topology of a network can be either hierarchical or flat.

7

In a hierarchical topology nodes are divided into clusters. Within each cluster, a

cluster head is selected via a mathematical formulation or heuristic method.

Cluster heads are responsible for keeping track of which nodes are maintained in

their respective cluster. Furthermore, they are responsible for transmitting data

between clusters. The figure above is an example of a hierarchical topology. Each

of the five ovals represents a cluster, and the black circles within each cluster

represent the cluster heads. The white dots are regular nodes.

Each of the cluster heads maintains a continuously updated routing table. This

table contains specific information detailing which cluster each node belongs to. If

a node desires to transfer information to another node, the information is sent to

the sending node’s cluster head. This cluster head scans its routing table to

determine which cluster the recipient is in. If the recipient is in the same cluster,

Figure 2.1: Example of a hierarchical topology

8

the data is immediately forwarded to the receiving node. If not, the cluster head

scans its routing table to determine which cluster the recipient is in and forwards

the data to the appropriate cluster head where it is again forwarded to the recipient.

2.1.2 Flat Topology

Unlike hierarchical networks, flat networks do not contain cluster heads. All nodes

are equal in terms of communication capabilities and each maintains its own

routing information. The direct one-hop connections between nodes are generally

based on proximity. Nodes communicate with each other via an infinitely variable

number of hops between other nodes in the network. Haas and Tabrizi [5] favor a

flat topology over a hierarchical topology for several reasons:

In hierarchical networks there is often times a single path between a pair of nodes.

In a high threat environment, the elimination of a single node in that path would

cause a communication failure between the nodes. This is avoided in flat networks as

there are often a number of paths between a pair of nodes.

Figure 2.2: Example of a flat topology

9

Nodes in a flat environment operate using much less power than nodes in a

hierarchical environment. The additional power consumed in a hierarchical

topology is due the constant change of clusters and cluster heads. When cluster

heads change, the routing information among all cluster heads must update. This

process requires a significant amount of energy. Lower power consumption will

allow nodes with constrained energy resources to exist longer in the network.

More importantly, lower energy use will give nodes a lower probability of being

detected. Thus, the overall threat of attack to a network will be reduced.

In summary, hierarchical networks are advantageous to implement as they allow

for more efficient communication among nodes. However, these networks have

greater overhead costs and are more susceptible to attacks.

2.2 Clustering Algorithms

As stated in Section 2.1.1, clusterheads are a requirement of hierarchical networks.

They are the channel of communication among all nodes in the network, making

their selection key to successful data transfer throughout the entire network. The

clustering algorithms selected for this work are highest degree, lowest id, and

MOBIC. Each of these will be discussed in detail.

10

Typically, the degree of a node is defined as the number of direct one-hop

connections it has with other nodes. For this heuristic, the degree of a node is

defined as the number of nodes within its transmission range. The highest degree

clustering method assigns clusterheads using the following procedure [7]:

1. All of the nodes in the network are scanned and the node with the highest

degree is selected as a cluster head.

2. All of the nodes in the transmission range of the selected cluster head are

assigned to a cluster.

3. The remaining nodes that are not in a cluster are once again scanned and

the process repeats until all nodes are assigned to a cluster.

This heuristic provides excellent stability within the clusters but lacks proper load

balancing.

2.2.2 Lowest ID Clustering

The lowest ID clustering method [4, 6] is similar to the highest degree heuristic,

but the selection method is based on a ID assigned to each node. The network is

scanned and the node with the lowest ID is selected. As with the highest degree

method, all nodes within the transmission range of the selected node form a cluster

head. The process is repeated with the remaining nodes until all nodes are assigned

to a cluster head.

2.2.1 Highest Degree Clustering

11

2.2.3 MOBIC

Basu et al. [1] proposed this clustering algorithm which elects clusterheads based

on relative mobility. This algorithm assumes that the position and speed of each

node is unknown and uses transmission and signal strength to determine relative

mobility. For the work, the exact position and speed of all nodes in the network is

known at all times. Thus, slight modifications to the clusterhead election procedure

were made. The procedure is as follows:

1. Calculate the pair wise relative mobility of each node:

2. Calculate aggregate relative mobility of each node:

3. Select node with lowest aggregate relative mobility among its

neighbors as a cluster head

At this point, the clusterhead and all of the nodes connected to the clusterhead are

considered to be covered. The steps of selecting a clusterhead repeat but only

consider uncovered nodes. The algorithm is completed when all nodes are covered.

12

The two example networks below will be referred to during the discussion of the

complexity metrics.

2.3.1 Average Path Length

The path length between two nodes can be defined as the smallest number of edges

connecting them. This assumes that all of the edges have an equal length. The path

B A

C

B

A

Figure 2.3: Depiction of example network 1

Figure 2.4: Depiction of example network 2

2.3 Complexity Metrics

13

length between nodes A and B in the Example Network is 2. This can be formally

written as follows:

l(A,B) = min l(A,B)

The average path length of a network is simply the average of all the path lengths

between nodes. This is formally defined as:

!">==<
BA

BAlNNBAlL
,

),()1(/2),(

2.3.2 Network Diameter

The network diameter is defined as the maximum path length between any pair of

nodes in the network. This is formally written as:

),(max BAlD =

For Example Network 2, the diameter of the network is 4. This is the maximum

distance between any two pairs of nodes in the network.

2.3.3 Average Degree

The degree of a node (k) is the sum of the edges it shares with other nodes. The

degree of Node A in Example Network 1 has a degree of 5. The average degree of

a network is simply the sum of the degrees of each node divided by the total

number of nodes. This is formally written as:

!>=<
A AkNk /1

14

2.3.4 Network Clustering Coefficient

The clustering coefficient [8] can be explained through an example. Consider the

network below:

Thus, the clustering coefficient of a node is the actual one hop connections

between the neighbors of the node divided by all possible connections between

neighbors of a node. The clustering coefficient of the entire network is simply the

average of the clustering coefficients of all the nodes.

Detail of Node

6

Complete Network

Clustering Coefficient for Node 6 = A / B

C = Number of One Hop Connections

B = Number of Potential Connections Between Pairs of Connected

Nodes

B = C (C-1) / 2 = 3 (3 – 1) / 2 = 3

A = Actual Connections Between These Pairs of Nodes = 2

Clustering Coefficient for Node 6 = 2 / 3

Figure 2.5: Method for determining the network clustering coefficient metric

15

The offdiagonal complexity [2] is computed by first calculating the node-node link

correlation matrix. The matrix appears as follows:

Figure 2.6: Layout of the node-node link correlation matrix

Each box in the square matrix above represents the number of connections

between pairs of nodes with degrees corresponding to those indicated on the left

and upper portions of the chart. The notation kmax simply represents the maximum

degree of any node in the network. After this matrix is determined, the following

formula is used to determine an:

After all an values are computed, the offdiagonal complexity is calculated as follows:

2.3.5 Offdiagonal Complexity

16

The example in Figure 2.7 helps clarify this computational procedure.

Node-Node Link Correlation

Matrix

1

2

3

4

5

6

8

7

1 2 3 5

1

2

3

5

1 1 3

1 1 1

1

1

1

3

1

0

0

 (1) +

(1)
8

 (1) + (1) + (1)

a1 = 3/8

3/8

a1

= 8

a2 = 2/8

3/8

a2

=

 (3)

8

a3 = 3/8

3/8

a3

=

OdC = .46999

0 1

0

Figure 2.7: A numerical example for computing offdiagonal complexity
complexity

17

3 Technical Approach

The first step in analyzing the metrics and clustering techniques was to obtain data

via simulation output. Since the data required for this work is relatively unique,

existing software capable of outputting the needed information was not

commercially available. Thus, a customized network simulator specifically

tailored to the objectives of this work was developed.

The simulation environment was designed in Microsoft Visual C++ 2005. The

simulator is capable of generating a network based on several user defined

characteristics, calculating five metrics to characterize the network, and cluster the

network using three different techniques. The figure below represents an overview

of the simulator. Each component of the figure will be discussed in detail.

18

Figure 3.1: An overview of the simulation environment

3.1 User Definitions

The program begins with a user defining several network parameters. These

parameters include the number of nodes in the network, the area of the field, the

number of mobile iterations, the communication range for each node, the speed of

each node, the number of replications, and the time interval for each instance of

the network. The number of nodes is input at compile time. Thus, to enter the

number of nodes the user must modify the header file named NetGenDefs.h and

recompile the program. Clearly, this is not efficient programming and is something

that could be worked out in a future build. After the user modifies the header file

to include the desired number of nodes, the program is compiled and executed.

19

The user will be prompted to enter the square length of the field and press the enter

key. Given that a user enters an integer P, this would indicate that the simulation

area would have an area of P
2

meters. Next, the user is prompted to enter the

maximum distance for communication and press enter. This value tells the

program the farthest distance apart (in meters) two nodes may be to have

communication with each other. Following this definition, the user must define the

velocity of nodes (this is constant for all nodes in the network) and the time

interval by which simulation calculations are made. Also, the user is prompted to

specify the number of mobile iterations, or time steps, to include in the simulation

run. To illustrate, assume the user enters 100, 20, and 10 for velocity, time

interval, and iterations, respectively. This would indicate that all nodes are moving

at 100 m/s, the time between each iteration is 20 seconds, and a total of 10

iterations will be considered. Finally, the user must define the number of

replications. Each replication will begin with the same set of user defined

parameters (i.e. number of nodes, field area, etc.) but the random number seed will

be different (thus changing the random placement of nodes in the field). It should

be noted that the program also allows these values to be “streamed in” instead of

requiring a user to sit down and manually enter values for each simulation trial.

This saves a substantial amount of time when running the simulation for multiple

combinations of the parameters.

20

3.2 Software Calculations

Following the user definitions of network parameters, numerous software

calculations are performed. First, the distance between each node in the matrix is

calculated and stored in a square matrix called distancematrix. The elementary

equation to determine the distance between two points is used and its

implementation in C++ is shown below.

Each value in distancematrix is compared with the maximum distance allowed for

communication as previously discussed. If the distancematrix value is less than the

maximum communication distance clearly there is a link between the

corresponding nodes and thus an edge is created in the network. The square matrix

//Calculate distance between all nodes and store values in distancematrix

for (int counter1 = 0; counter1 < NUMBER_OF_NODES; counter1++)

{

for (int counter2 = 0; counter2 < NUMBER_OF_NODES; counter2++)

{

distancematrix[counter1][counter2] = sqrt((pow(nodexCurrent[counter1]-

nodexCurrent[counter2],2)) + (pow(nodeyCurrent[counter1]-

nodeyCurrent[counter2],2)));

}

}

Figure 3.2: C++ code for determining the distance between two nodes

21

named edgematrix preserves all of these edges. A value of 1 in the edge matrix

indicates that a connection exists, while a value of 0 indicates no connection. For

clarification, consider the distancematrix and edgematrix below. Assume that the

user defined the maximum distance for communication to be 40.

Distance Matrix

 Node 1 Node 2 Node 3

Node 1 - 35 67

Node 2 35 - 50

Node 3 67 50 -

 Table 3.1: Sample distance matrix

Edge Matrix

 Node 1 Node 2 Node 3

Node 1 - 1 0

Node 2 1 - 0

Node 3 0 0 -

 Table 3.2: Sample edge matrix

Since the distance between Node 1 and Node 2 is less than 40, a 1 has been placed

in edgematrix to indicate that a connection (or edge) between these two nodes

exists. At this stage, all of the preliminary definitions and calculations have been

performed enabling the calculation of network metrics to begin.

The five network metrics are recomputed at each mobile instance of the simulation

run. At the end of the simulation, the average of each metric is computed and

outputted to a text file. The implementation of each metric is briefly discussed

below.

22

3.2.1 Average Path Length

The calculation of this metric begins by determining the shortest path between

each pair of nodes in the network. To do this, the Floyd-Warshall Algorithm [3]

was implemented. The shortest paths are stored in a matrix named shortestpath.

Below is the implementation of the Floyd-Warshall shortest path algorithm in

C++.

3

It should be noted that zero values (indicating a lack of connection between nodes)

in the edgematrix are temporarily converted to a large integer value (999).

Otherwise, the algorithm would not work as zero would incorrectly be assigned as

for (int k = 0; k < NUMBER_OF_NODES; k++)

{

for (int i = 0; i < NUMBER_OF_NODES; i++)

{

for (int j = 0; j < NUMBER_OF_NODES; j++)

{

shortestpath[i][j] = min(shortestpath[i][j], shortestpath[i][k] + shortestpath[k][j]) ;

}

}

}

Figure 3.3: C++ code for the Floyd-Warshall shortest path algorithm

23

the shortest path between many pairs of nodes in the network. After the shortest

paths are calculated and stored for every pair of nodes in the network, the average

value of the numbers in the matrix is calculated. The result of this calculation is

the average path length. This algorithm is computed in AvgPathLength.cpp.

3.2.2 Network Diameter

The network diameter is defined as the longest shortest path. Thus, the Floyd-

Warshall algorithm is again used to determine the shortest path between each pair

of nodes in the network and a simple algorithm is used to determine maximum

value in the shortestpath matrix. This value is returned as maxpath and is

computed in NetworkDiameter.cpp.

3.2.3 Average Degree

The degree of a node is sum of edges connecting it to other nodes. Thus, the

maximum possible degree of any node in the network is equal to the total number

of nodes minus one. Furthermore, the degree of any node in a network is simply

the sum of its corresponding row in edgematrix. Thus, summing all of the values

in edgematrix and dividing by the total number of nodes gives us the average

degree. This metric is computed in AvgDegree.cpp.

24

3.2.4 Clustering Coefficient

As discussed earlier, the clustering coefficient of a node is the number of actual

connections between the neighbors of a node divided by the potential connections

between the neighbors of a node.

Clustering Coefficient of a Node = A / B

A = Actual Connections Between Neighbors of a Node

B = Potential Connections Between Neighbors of a Node

The number of potential connections for each node (the denominator) is relatively

simple to calculate. We mentioned earlier that the degree of a node could be

computed by taking the sum of the corresponding row in edgematrix. The sum of

each row (degree of each node) can then be stored in an array named degreearray.

Thus, the denominator, B, can be computed as:

coeffdenom[i] = (degreearray[i] * (degreearray[i] - 1)) / 2

The numerator is a bit more challenging to compute. The details of the code used

to compute the numerator can be found in the appendix. After the numerator is

computed for each node it is stored in array named coeffnum. Coeffnum is then

divided by coeffdenom and the result is stored in an array named clusteringcoeff.

This array represents the clustering coefficient of each node in the network. The

25

average of all the values of this array is the network clustering coefficient. This

metric is computed in ClusteringCoeff.cpp.

3.2.5 Offdiagonal Complexity

The offdiagonal complexity is the most difficult and demanding metric in the

network simulation. Due to the complexity of this metric, the C++ implemenation

will not be discussed in detail. The implementation follows the calculation steps as

detailed earlier:

1. Develop Node-Node Link Correlation Matrix

2. Determine an values using appropriate formula

3. Determine offdiagonal complexity using appropriate formula

If interested in the detailed C++ implementation of offdiagonal complexity, the

reader may compare the above steps with the code in the appendix. This metric is

computed in ODComplexity.cpp.

The preceding metrics are computed for every time step of the network. Thus, if

there are ten time steps, each of the metrics will be computed 10 times and only

the average of these will be output to the user. After all of the network metrics are

calculated at each time step, the network is clustered using three techniques.

26

3.2.6 Clustering Algorithms

The simulator utilizes the Lowest ID, Highest Degree, and MOBIC clustering

algorithms at each time step in the simulation. These are discussed in detail in an

earlier section. Similar to offdiagonal complexity, their C++ implementation is

relatively complex for discussion. Once again, a reader interested in the detailed

implementation is asked to compare the steps outlined in the prior section and

compare them with the C++ code attached in the appendix. Lowest ID, Highest

Degree, and MOBIC are computed in LowestIDClustering.cpp,

HighestDegreeClustering.cpp, and MOBICClustering.cpp, respectively.

3.2.7 Betweenness

Following the clustering of the network using the aforementioned algorithms, the

betweenness measure is calculated for all three cases. The betweenness of a node

is the number of shortest paths passing through it. It is computed using a modified

version of the Floyd-Warshall algorithm. This code is included in the appendix.

The betweenness of each node is stored in an array named betweenness. Each

value of the betweenness array is then compared with the user defined node

capacity. Finally, the percentage of nodes in the betweenness array that exceed the

27

node capacity is calculated. This is our output measure. It is stored as a variable

named percentExceedingCapacity. The betweenness measure is computed in

betweenness.cpp.

3.2.8 Node Movement

Once the metrics have been calculated, clustering has been performed, and the

betweenness is determined, we have successfully performed all of the

requirements for a single time step in the network. The next task is to move the

nodes based on the user defined velocity and time interval and prepare the next

iteration of the network. The nodes move according to the following code.

The array nodexPrevious and nodeyPrevious store the x-coordinates for every

node in network before any movement takes place. The sincosvalueforiteration

for (i = 0; i < NUMBER_OF_NODES; i++)

{

 sincosvalueforiterations = (-15 + rand() % 15);

nodexCurrent[i] = nodexPrevious[i] + (cos(sincosvalueforiterations) * (nodespeed *

60)) ;

if (sincosvalueforiterations > 0)

nodeyCurrent[i] = nodeyPrevious[i] + (sin(sincosvalueforiterations) * (nodespeed *

60)) ;

else

nodeyCurrent[i] = nodeyPrevious[i] - (sin(sincosvalueforiterations) * (nodespeed *

60)) ;

}
Figure 3.4: C++ code for node movement

28

variable indicates that the nodes in the network may move in a straight line

anywhere between -15 and +15 degrees. The nodespeed variable is the user

defined velocity of each node and the 60 indicates that there is 60 seconds between

each time step. Finally, nodexCurrent and nodeyCurrent represent the new x and y

coordinates for the subsequent iteration of the simulation. It should be noted that it

is necessary to preserve the prior coordinates of the nodes as the MOBIC

clustering algorithm elects clusterheads by examining the relative mobility.

3.3 Simulation Output and Summary

After the node movement has completed, we are ready to start the cycle over by

recalculating all of the network metrics, determine clustering using each of the

three techniques, determining betweenness, and once again move the nodes. The

process continues until all of the time steps have completed. At the end of each

time step, numerous pieces of data were sent to a comma separated file. The

contents of this file include the values of all the user defined input, the random

number seed used to generate the results, the average values of the metrics for all

time steps, and the average percentage of nodes that exceeded capacity for each

clustering algorithm over all time steps. The comma separated file was imported

into excel where the data could be easily manipulated and results could developed.

29

4 Experimental Design and Results

4.1 Experimental Design

There was a significant limitation to consider when developing the experiments.

As a result of the complexity and number of algorithms that must be performed for

one time step of a simulation, the program took a substantial amount of time to

produce results for simulations having more than 150 nodes. Thus, this was the

maximum number of nodes considered for our experimental design. Further

optimizations of the code and the algorithms within the code would allow for

quicker computational times and a more robust analysis. The table on the

following page represents the levels of variables that were tested.

30

20 20 10 20

63 60 30 50

106 100 50 100

150 150 75 150

 200 100 200

Table 4.1: Levels of experimental design parameters

Five replications of every combination of metrics were tested. Thus, there were (4

X 5 X 5 X 5) X 5 replications = 2500 data points. Twenty-five of these data points

were discarded because they did not have any node-node connection during the

entire simulation. This was caused because too few nodes were distributed through

too big of an area. Thus, a total of 2475 data points were used in the analysis. As a

result of the large number of data points that were considered, the entire data sheet

could not be included. However, a sample of the excel table used to determine the

results is given in the appendix.

Using the results, comparisons were made between each metric and the impact that

it had on congestion for each of the three clustering algorithms. This approach was

selected so an individual could select the best clustering algorithm given a

particular metric level. To develop each graph, all of the data was sorted for a

given metric in ascending order. Furthermore, the data was equally divided into

five groups containing 495 data points (2475 / 5 = 495). The range of values for

Number Of

Nodes

Node

Capacity

Communication

Range

Square Length Of

Field

31

each group was simply determined by where the data points fell with respect to the

value of the metric.

Two graphs were developed for each network metric. The first graph returns the

average congestion levels for each type of clustering for different ranges of a

metric. Given that a network metric falls within one of these ranges, this graph

indicates how much congestion to expect for each type of clustering. The second

graph details how many times a clustering algorithm resulted in the least amount

of congestion given a specific range of a metric. In this graph, it should be noted

that if two or more algorithms provided the least amount of congestion, they were

both included in the graph. Thus, the theoretical sum of the values in each block of

a graph is (495 X 3 = 1485). This would mean that for all 495 cases, the three

clustering algorithms all provided the same average level of congestion.

4.2 Results

As discussed in the previous section, a total of ten graphs were developed (two for

each complexity metric). Each of the graphs will be reviewed and conclusions

with respect to the impact these metrics have on congestion. Also, insight will be

provided on how varying levels of these metrics impact congestion. Analysis will

begin with the average path length metric.

4.2.1 Average Path Length Results

32

Figure 4.1: Bar graph showing congestion level by average path length

The first thing that can be noted about this graph is the overall increase in

congestion as the average path length increases. This makes sense considering that

as the average path length increases, the density, size, and connections among

nodes also increases. When the average path length is very close to 1, it is evident

that each of the clustering algorithms will equally provide minimal congestion.

Interestingly, as the average path length increases to values between 1.0058 and

1.27, the highest degree clustering algorithm clearly provide the lowest level of

congestion. As the average path length increases once again to values between

1.27 and 1.62 we can see that there is little difference in the clustering algorithms

with respect to congestion, with Lowest ID having a slight advantage. When the

33

average path length is between 1.62 and 9.35 we can see that both the Lowest ID

and MOBIC clustering methods perform better than the Highest Degree Method.

Figure 4.2: Bar graph showing clustering algorithm which minimizes congestion by

average path length

The above graph validates what was previously stated. It is evident that when the

path length is near 1, all three algorithms equally provide the best level of

congestion. When the path length is between 1.0058 and 1.27, we can see that the

Highest Degree method provided the lowest level of congestion for significantly

more cases than the other two methods combined. When the average path length is

greater than 1.27, it is clear that the Lowest ID method provides the least amount

of congestion the majority of the time with MOBIC not too far behind. Clearly, as

the average path length increases beyond a value of 1.27, the Highest Degree

34

method provides greater and greater levels of congestion making it a less desirable

choice.

 4.2.2 Average Degree Results

Next, we will look at the average degree metric.

Figure 4.3: Bar graph showing congestion level by average degree

This graph shows that when a network has a low average degree, any clustering

algorithm will provide minimal levels of congestion. Similar to average path

length, a low average degree represents a small network with few edges between

nodes. A low average degree could also be present with a large number of nodes,

given they are spread out with little to no connectivity among each other (low

density). Thus, it makes sense that congestion will be minimal regardless of the

35

clustering algorithm selected. When the average degree is between 5.71 and

40.116, congestion is relatively similar, with Lowest ID and MOBIC performing

slightly better. However, when the average degree is between 77.69 and 149, the

use of Highest Degree clustering provides networks with significantly less

congestion. The lack of trend for the last block (77.69 – 149) is most likely a result

of an inadequate sample size. The inadequate sample size was a result of the

network simulators limitations, as previously stated in Chapter 4. The chart below

validates these points.

Figure 4.4: Bar graph showing clustering algorithm which minimizes congestion by

average degree

36

4.2.3 Clustering Coefficient Results

Moving on, we will consider the network clustering coefficient.

Figure 4.5: Bar graph showing congestion level by clustering coefficient

Once again, we see the same trend as in the previous two metrics. While the

network is small and less complex (this corresponds to a relatively low clustering

coefficient), the choice of clustering technique is irrelevant as all three produce

low congestion levels. When the clustering coefficient is between .604 and .821

Lowest ID and MOBIC appear to be better choices to reduce congestion compared

to Highest Degree. When the clustering coefficient is between .821 and .991,

Highest Degree produced on average much lower levels of congestion compared to

Lowest ID and MOBIC. Interestingly, for networks with high network clustering

37

coefficients all three of the algorithms produced very low levels of congestion.

These results coincide with the results on the graph below.

Figure 4.6: Bar graph showing clustering algorithm which minimizes congestion by

clustering coefficient

Further analysis was performed to determine the cause of the results for network

clustering coefficients between .991 and 1. The value of the clustering coefficient

suggests that each node’s neighbors are highly connected. This corresponds to a

network with many edges. Since there are many edges and connections between

nodes, it can be concluded that the average path length is relatively low. Going

back to the results from average path length, we saw that networks with a low

average path length had minimal congestion regardless of the clustering algorithm

38

selection. Thus, this explains the results for network clustering coefficients

between .991 and 1.

4.2.4 Network Diameter Results

The network diameter metric will be discussed next.

Figure 4.7: Bar graph showing congestion level by network diameter

The first thing that stands out about this graph is that the overall congestion

increases as the network diameter increases. This is a validated since a higher

network diameter typically corresponds to a more complex network, and thus, a

more congested network. Recurring for the fourth time, we see that when the

network diameter is low (i.e. network is small/simple) the choice of clustering

algorithm is negligible. When the network diameter is between 1.7 and 2.4 the

39

benefit of selecting the highest degree algorithm is quite significant. Networks

with diameters between 2.4 and 3.6 produce similar congestion levels despite the

clustering technique used with Lowest ID having a slight advantage. When the

network diameter is between 3.6 and 25.3, Highest Degree produces congestion

levels that are relatively higher than both Lowest ID and MOBIC. Once again, this

information is validated on the subsequent graph below.

Figure 4.8: Bar graph showing clustering algorithm which minimizes congestion by

network diameter

40

4.2.5 Offdiagonal Complexity Results

Finally, we will look at offdiagonal complexity.

Figure 4.9: Bar graph showing congestion level by offdiagonal complexity

As the offdiagonal complexity increases, there is a steady increase in the overall

congestion. Interestingly, for networks with offdiagonal complexities between 0

and 1.97, there does not appear to be a significant difference between clustering

algorithms in terms of congestion. This may indicate that offdiagonal complexity

is not as important as the other metrics when it is used to determine congestion.

However, it should be noted that when the offdiagonal complexity is between

1.907 and 2.384, Highest Degree outperforms both Lowest ID and MOBIC. Once

again, this is validated in the figure below.

41

Figure 4.10: Bar graph showing clustering algorithm which minimizes congestion by

offdiagonal complexity

42

5 Conclusions and Future Work

5.1 Conclusions

The results in the previous section conclude two key findings. First, it was shown

that complexity and congestion have a strong positive correlation. Hence,

congestion levels increase with complexity. This was revealed in all five of the

complexity metrics that were analyzed. Secondly, for non-complex networks, the

choice of clustering algorithm is irrelevant. Each of the five metrics showed little

to no congestion when their values were low. Furthermore, all three clustering

techniques provided congestion free networks in all five of these cases. The tables

on the following page recap the clustering algorithm that should be selected to

minimize congestion given the level of a complexity metric.

43

1 – 1.006 ANY 0.14 – 5.71 LID, MOBIC 0.00 – 0.60 LID, MOBIC

1.006 – 1.27 HD 5.71 – 17.44 LID, MOBIC 0.60 – 0.71 LID, MOBIC

1.27 – 1.62 LID 17.44 – 40.17 LID, MOBIC 0.71 – 0.82 LID

1.62 – 2.39 LID 40.17 – 77.69 HD 0.82 – 0.99 HD

2.39 – 9.35 LID, MOBIC 77.69 - 149 HD 0.99 – 1.00 ANY

Table 5.1: Summary of clustering algorithm which minimizes congestion given a

specific level of average path length, average degree, or clustering coefficient

Network Diameter Offdiagonal Complexity

Metric Level Clustering

Algorithm
Metric Level Clustering

Algorithm

1.00 – 1.70 ANY 0.00 – 0.52 ANY

1.70 – 2.40 HD 0.52 – 1.16 ANY

2.40 – 3.60 LID 1.16 – 1.51 LID, MOBIC

3.60 – 6.00 LID 1.51 – 1.91 MOBIC

6.00 – 25.30 LID, MOBIC 1.91 – 2.38 HD

Table 5.2: Summary of clustering algorithm which minimizes congestion given a

specific level of network diameter or offdiagonal complexity

Average Path Length Average Degree Clustering Coefficient

Metric Level Clustering

Algorithm
Metric Level Clustering

Algorithm
Metric Level Clustering

Algorithm

44

A great deal of time and effort was put forth in developing the network simulation

software discussed in Chapter 3. This is a versatile tool that can be utilized for

purposes outside of this work. The program was coded in a manner that makes it

scalable for other network analyses. Additional network metrics and clustering

methods can be integrated with little modification to the existing code. For

analysis of networks larger than 150 nodes, the code must be optimized for more

efficient run times. In its current state, analysis of networks exceeding 150 nodes is

not feasible.

Currently, the network simulator is a console application. The console provides the

means for user input and simulation status while results are exported to comma

separated file. From here they can be opened in Microsoft Excel for analysis. This

method works well as long as the user is relatively “computer literate”. For large

scale projects with multiple team members involved this may not work as some

individuals may get confused. To remedy this, a graphical user interface should

run on top of the software to provide a clean interface that will reduce confusion.

Finally, for presentation purposes, visualization could be incorporated into the

software to graphically show node movement, congestion levels, and more.

5.2 Future Work

45

Appendix A

C++ Code for Network Simulator

The following is the C++ code for each file of the Network Simulator.

Main.cpp

#include <iostream>

#include <cstdlib>

#include <iomanip>

#include <cmath>

#include <ctime>

#include <vector>

#include <fstream>

#include "NetGenDefs.h"

using namespace std;

int main()

{

 ofstream outputFileDB;

// constant definitions

 const int iterationCount = 30;

//Variable Def

 int degreeofeachnode[NUMBER_OF_NODES] ;

// function prototypes

 double APL(int nn, int edgematrix[NUMBER_OF_NODES][NUMBER_OF_NODES]);

 double AD(int nn, int edgematrix[NUMBER_OF_NODES][NUMBER_OF_NODES]);

 double LDC(int nn, int edgematrix[NUMBER_OF_NODES][NUMBER_OF_NODES],

double nodeCapacity);

 double ND(int nn, int edgematrix[NUMBER_OF_NODES][NUMBER_OF_NODES]);

 int DD(int nn, int edgematrix[NUMBER_OF_NODES][NUMBER_OF_NODES], int

degreeofeachnode[NUMBER_OF_NODES], char outputFilename);

 double HDC(int nn, int edgematrix[NUMBER_OF_NODES][NUMBER_OF_NODES],

double nodeCapacity) ;

 double BW(int nn, int edgematrix[NUMBER_OF_NODES][NUMBER_OF_NODES],

double nodeCapacity);

46

 double Clustering(int nn, int

edgematrix[NUMBER_OF_NODES][NUMBER_OF_NODES]) ;

 double ODC(int nn, int edgematrix[NUMBER_OF_NODES][NUMBER_OF_NODES],

int degreeofeachnode[NUMBER_OF_NODES]) ;

 double MOBIC(int nn, int

edgematrix[NUMBER_OF_NODES][NUMBER_OF_NODES], double

nodexPrevious[NUMBER_OF_NODES], double nodexCurrent[NUMBER_OF_NODES], double

nodeyPrevious[NUMBER_OF_NODES], double nodeyCurrent[NUMBER_OF_NODES], double

nodeCapacity);

 typedef vector<double> VectorMOBIC;

 VectorMOBIC storageTankMOBIC;

 typedef vector<double> VectorHD;

 VectorHD storageTankHD;

 typedef vector<double> VectorLD;

 VectorLD storageTankLD;

 typedef vector<double> VectorAPL;

 VectorLD storageTankAPL;

 typedef vector<double> VectorAD;

 VectorLD storageTankAD;

 typedef vector<double> VectorND;

 VectorLD storageTankND;

 typedef vector<double> VectorClustering;

 VectorLD storageTankClustering;

 typedef vector<double> VectorODC;

 VectorLD storageTankODC;

/*

//Seed The Generator

 int generatorseed ;

 cout << "\n\nPlease enter the random number seed and press enter.\n";

 cin >> generatorseed ;

 srand(generatorseed);

// get user parameters

 int iterationMAX;

 cout << "\n\nPlease enter the desired number of iterations and press enter.\n";

 cin >> iterationMAX ;

//Get Communication Distance

47

 int distanceThreshold;

 cout << "\n\nPlease enter the maximum internode distance and press enter.\n";

 cin >> distanceThreshold ;

//Get Square Length Of Field

 int fieldLengthandWidth ;

 cout << "\n\nPlease enter the field length.\n" ;

 cin >> fieldLengthandWidth ;

//Get Node Capacity For Network

 double nodeCapacity;

 cout << "\n\nPlease enter the node capacity and press enter.\n" ;

 cin >> nodeCapacity ;

//Get Filename For Output File

 char outputFilename;

 cout << "\n\nPlease enter the filename for the output data and press enter.\n";

 cin >> outputFilename;

*/

// Program initialization

 int iterationMAX;

 cout << "\n\nPlease enter the desired number of iterations and press enter.\n";

 cin >> iterationMAX ;

 double nodexPrevious[NUMBER_OF_NODES];

 double nodeyPrevious[NUMBER_OF_NODES];

 double nodexCurrent[NUMBER_OF_NODES];

 double nodeyCurrent[NUMBER_OF_NODES];

 double distancematrix[NUMBER_OF_NODES][NUMBER_OF_NODES] = {0};

 double averagepathlength = 0;

 double averagedegree = 0 ;

 double sumofdegrees = 0 ;

 double ODComplexity = 0 ;

 double maxpath = 0 ;

 double percentExceedingCapacity = 0 ;

 double LDpercentExceedingCapacity = 0 ;

 double MOBICpercentExceedingCapacity = 0 ;

 double HDpercentExceedingCapacity = 0 ;

 double networkclusteringcoeff = 0 ;

 int lowestdegreematrix[NUMBER_OF_NODES][NUMBER_OF_NODES] = {0} ;

 vector <int> savedvaluesforlowestdegree ;

 double metricCalculationDecisicion = 0 ;

 double MOBICSum = 0 ;

 double HDSum = 0 ;

48

 double LDSum = 0 ;

 double MOBICOutput = 0 ;

 double HDOutput = 0 ;

 double LDOutput = 0 ;

 double APLSum = 0 ;

 double APLOutput = 0 ;

 double ADOutput = 0 ;

 double ADSum = 0 ;

 double ODCOutput = 0 ;

 double ODCSum = 0 ;

 double NDOutput = 0 ;

 double NDSum = 0 ;

 double ClusteringSum = 0 ;

 double ClusteringOutput = 0 ;

 int generatorseed = 0 ;

 int distanceThreshold = 0 ;

 int fieldLengthandWidth = 0 ;

 double nodeCapacity = 0 ;

 char outputFilename = 0 ;

 int distanceThresholdCounter[5] = {10, 30, 50, 75, 100} ;

 double nodeCapacityCounter[5] = {20, 60, 100, 150, 193} ;

 int fieldLengthandWidthCounter[5] = {20, 50, 100, 150, 200} ;

 int generatorseedCounter[10] = {1, 5, 10, 20, 30, 40, 50, 60, 70, 80} ;

 //Enter node speed in km/second

 double nodespeed = .332 ;

 int edgematrix[NUMBER_OF_NODES][NUMBER_OF_NODES] = {0};

 double sincosvalueforiterations ;

// Generate initial network node locations

for (int iterationCounter = 0; iterationCounter < iterationMAX; ++iterationCounter)

{

 for (int j=0; j < 5; j++)

 {

 for (int k=0; k < 5; k++)

 {

 for (int l=0; l < 5; l++)

 {

 outputFileDB.open ("N:\\ResultsForFinalMeeting\\FinalMeetingResults150.txt", ios::app);

 fieldLengthandWidth = fieldLengthandWidthCounter[j] ;

 nodeCapacity = nodeCapacityCounter[k] ;

 distanceThreshold = distanceThresholdCounter[l] ;

 generatorseed = generatorseedCounter[iterationCounter] ;

49

 //Set Initial X and Y Coordinates For All Nodes

 for (int i = 0; i < NUMBER_OF_NODES; i++)

 {

 nodexCurrent[i] = rand() % fieldLengthandWidth;

 nodeyCurrent[i] = rand() % fieldLengthandWidth;

 }

 metricCalculationDecisicion = 0 ;

 HDOutput = 0 ;

 HDSum = 0 ;

 MOBICOutput = 0 ;

 MOBICSum = 0 ;

 LDOutput = 0 ;

 LDSum = 0 ;

 APLSum = 0 ;

 APLOutput = 0 ;

 ADOutput = 0 ;

 ADSum = 0 ;

 ODCOutput = 0 ;

 ODCSum = 0 ;

 NDOutput = 0 ;

 NDSum = 0 ;

 ClusteringSum = 0 ;

 ClusteringOutput = 0 ;

 storageTankMOBIC.clear() ;

 storageTankHD.clear() ;

 storageTankLD.clear();

 storageTankAPL.clear() ;

 storageTankND.clear() ;

 storageTankODC.clear();

 storageTankClustering.clear() ;

 storageTankAD.clear();

for (int i = 0 ; i < 10 ; i++)

{

50

//Allows metric calculations to be performed only on the first instance of the network

 metricCalculationDecisicion++ ;

//Calculate Distance Between All Nodes And Store Values In distancematrix

 for (int i = 0; i < NUMBER_OF_NODES; i++)

 {

 for (int j = 0; j < NUMBER_OF_NODES; j++)

 {

 distancematrix[i][j] = sqrt((pow(nodexCurrent[i]-

nodexCurrent[j],2)) + (pow(nodeyCurrent[i]-nodeyCurrent[j],2)));

 }

 }

/*Determine Edges Between Nodes (If Distance Between Two Points Is Less Than Or Equal To

distanceThreshold) And

Store Values In edgematrix*/

 for (int i = 0; i < NUMBER_OF_NODES; i++)

 {

 for (int j = 0; j < NUMBER_OF_NODES; j++)

 {

 if (distancematrix[i][j] <= distanceThreshold)

 {

 edgematrix[i][j] = 1;

 }

 if (distancematrix[i][j] > distanceThreshold)

 {

 edgematrix[i][j] = 999 ;

 }

 if (i == j)

 {

 edgematrix[i][j] = 0 ;

 }

 }

 }

//Calculate Network Characteristics (Metrics) On INITIAL NODE COORDINATES ONLY

//if (metricCalculationDecisicion = 1)

//{

// averagepathlength = APL(NUMBER_OF_NODES, edgematrix);

// averagedegree = AD(NUMBER_OF_NODES, edgematrix);

51

// maxpath = ND(NUMBER_OF_NODES, edgematrix);

// percentExceedingCapacity = BW(NUMBER_OF_NODES, edgematrix,

nodeCapacity);

// networkclusteringcoeff = Clustering(NUMBER_OF_NODES, edgematrix);

// ODComplexity = ODC(NUMBER_OF_NODES, edgematrix,

degreeofeachnode);

//}

// Prepare to do the next iteration of the network positions

 for (int i = 0; i < NUMBER_OF_NODES; ++i)

 {

 nodexPrevious[i] = nodexCurrent[i];

 nodeyPrevious[i] = nodeyCurrent[i];

 }

 for (int i = 0; i < NUMBER_OF_NODES; i++)

 {

 sincosvalueforiterations = (-15 + rand() % 15);

 nodexCurrent[i] = nodexPrevious[i] + (cos(sincosvalueforiterations) *

(nodespeed * 15)) ;

 if (sincosvalueforiterations > 0)

 nodeyCurrent[i] = nodeyPrevious[i] +

(sin(sincosvalueforiterations) * (nodespeed * 15)) ;

 else

 nodeyCurrent[i] = nodeyPrevious[i] -

(sin(sincosvalueforiterations) * (nodespeed * 15)) ;

 }

 int rval = DD(NUMBER_OF_NODES, edgematrix, degreeofeachnode,

outputFilename);

 HDpercentExceedingCapacity = HDC(NUMBER_OF_NODES, edgematrix,

nodeCapacity) ;

 LDpercentExceedingCapacity = LDC(NUMBER_OF_NODES, edgematrix,

nodeCapacity);

 MOBICpercentExceedingCapacity = MOBIC(NUMBER_OF_NODES,

edgematrix,nodexPrevious,nodexCurrent, nodeyPrevious, nodeyCurrent, nodeCapacity) ;

 averagepathlength = APL(NUMBER_OF_NODES, edgematrix);

 averagedegree = AD(NUMBER_OF_NODES, edgematrix);

 maxpath = ND(NUMBER_OF_NODES, edgematrix);

 networkclusteringcoeff = Clustering(NUMBER_OF_NODES, edgematrix);

52

 ODComplexity = ODC(NUMBER_OF_NODES, edgematrix,

degreeofeachnode);

 storageTankAPL.push_back(averagepathlength) ;

 storageTankAD.push_back(averagedegree) ;

 storageTankND.push_back(maxpath) ;

 storageTankClustering.push_back(networkclusteringcoeff) ;

 storageTankODC.push_back(ODComplexity) ;

 storageTankMOBIC.push_back(MOBICpercentExceedingCapacity) ;

 storageTankHD.push_back(HDpercentExceedingCapacity) ;

 storageTankLD.push_back(LDpercentExceedingCapacity) ;

}

//Calculate APL Average Over Time Steps

 for (unsigned int i = 0; i < storageTankAPL.size() ; i++)

 {

 APLSum = APLSum + storageTankAPL[i] ;

 }

 APLOutput = APLSum / storageTankAPL.size() ;

//Calculate AD Average Over Time Steps

 for (unsigned int i = 0; i < storageTankAD.size() ; i++)

 {

 ADSum = ADSum + storageTankAD[i] ;

 }

 ADOutput = ADSum / storageTankAD.size() ;

//Calculate ND Average Over Time Steps

 for (unsigned int i = 0; i < storageTankND.size() ; i++)

 {

 NDSum = NDSum + storageTankND[i] ;

 }

 NDOutput = NDSum / storageTankND.size() ;

//Calculate Clustering Coefficient Average Over Time Steps

 for (unsigned int i = 0; i < storageTankClustering.size() ; i++)

 {

 ClusteringSum = ClusteringSum + storageTankClustering[i] ;

 }

 ClusteringOutput = ClusteringSum / storageTankClustering.size() ;

//Calculate ODC Average Over Time Steps

 for (unsigned int i = 0; i < storageTankODC.size() ; i++)

 {

53

 ODCSum = ODCSum + storageTankODC[i] ;

 }

 ODCOutput = ODCSum / storageTankODC.size() ;

//Calculate MOBIC Betweenness Average Over Time Steps

 for (unsigned int i = 0; i < storageTankMOBIC.size() ; i++)

 {

 MOBICSum = MOBICSum + storageTankMOBIC[i] ;

 }

 MOBICOutput = MOBICSum / storageTankMOBIC.size() ;

//Calculate Lowest Degree Betweenness Average Over Time Steps

 for (unsigned int i = 0; i < storageTankLD.size() ; i++)

 {

 LDSum = LDSum + storageTankLD[i] ;

 }

 LDOutput = LDSum / storageTankLD.size() ;

//Calculate Highest Degree Betweenness Average Over Time Steps

 for (unsigned int i = 0; i < storageTankHD.size() ; i++)

 {

 HDSum = HDSum + storageTankHD[i] ;

 }

 HDOutput = HDSum / storageTankHD.size() ;

 outputFileDB << endl << NUMBER_OF_NODES << "," << nodeCapacity << "," <<

distanceThreshold << "," << generatorseed << "," << fieldLengthandWidth << "," << APLOutput

<< "," << ADOutput << "," << ClusteringOutput << "," << NDOutput << "," << ODCOutput <<

"," << percentExceedingCapacity << "," << LDOutput << "," << HDOutput << "," <<

MOBICOutput ;

 outputFileDB.close();

//After Each Iteration Of The Program The Following Will Be Printed To The Screen

 cout << "\n\n\n\n\n\n\n**********RETURNED VALUES**********\n\n\n" ;

 cout << "\n\nThe average path length is " << averagepathlength ;

 cout << "\n\nThe clustering coefficient is " << networkclusteringcoeff ;

 cout << "\n\nThe Offdiagonal Complexity is " << ODComplexity ;

 cout << "\n\nThe average degree is " << averagedegree ;

 cout << "\n\nThe network diameter is " << maxpath ;

 cout << "\n\nThe seed used to generate these results was " << generatorseed ;

 cout << "\n\nThe percentage of nodes that exceed capacity for the initial instance is " <<

percentExceedingCapacity ;

54

 cout << "\n\nThe average percentage of nodes that exceed capacity using MOBIC for all

instance is " << MOBICOutput ;

 cout << "\n\nThe average percentage of nodes that exceed capacity using Highest Degree

for all instance is " << HDOutput ;

 cout << "\n\nThe average percentage of nodes that exceed capacity using Lowest Degree

for all instance is " << LDOutput ;

 cout << endl << endl ;

 }

/*cout << "\n\nTHE EDGE MATRIX IS\n\n" ;

 for (int i=0; i < NUMBER_OF_NODES; ++i)

 {

 for (int j = 0; j < NUMBER_OF_NODES; j++)

 {

 if (edgematrix[i][j] == 999)

 edgematrix[i][j] = 0 ;

 }

 }*/

 /*for (int i=0; i < NUMBER_OF_NODES; ++i)

 {

 for (int j = 0; j < NUMBER_OF_NODES; j++)

 {

 printf("%d ",edgematrix[i][j]);

 }

 printf("\n");

 }*/

 //cout << "\n\nITERATION ENDS HERE" ;

 }

 }

 }

 return 0;

}

55

NetGenDefs.h
#ifndef h_DEFINITIONSFORTHENETWORKGENERATOR_0001

 #define h_DEFINITIONSFORTHENETWORKGENERATOR_0001

 #define NUMBER_OF_NODES 150

#endif

56

AvgDegree.cpp
#include <iostream>

#include <cstdlib>

#include <iomanip>

#include <cmath>

#include <ctime>

#include "NetGenDefs.h"

using namespace std;

double sumofdegrees ;

double averagedegree ;

double AD(int nn, int edgematrix[NUMBER_OF_NODES][NUMBER_OF_NODES])

{

 sumofdegrees = 0 ;

 for (int i=0; i < NUMBER_OF_NODES; i++)

 {

 for (int j=0; j < NUMBER_OF_NODES; j++)

 {

 if(edgematrix[i][j] == 1 && i != j && edgematrix[i][j] != 999)

 {

 sumofdegrees++ ;

 }

 }

 }

 averagedegree = (sumofdegrees / NUMBER_OF_NODES);

 return averagedegree;

}

57

AvgPathLength.cpp
#include <iostream>

#include <cstdlib>

#include <iomanip>

#include <cmath>

#include <ctime>

#include "NetGenDefs.h"

using namespace std;

double averagepathlength ;

double APL(int nn, int edgematrix[NUMBER_OF_NODES][NUMBER_OF_NODES])

{

 double sumofshortestpaths = 0 ;

 double numberofpaths = 0 ;

 double shortestpath[NUMBER_OF_NODES][NUMBER_OF_NODES] = {0} ;

 for(int i = 0; i < NUMBER_OF_NODES; i++)

 {

 for(int j = 0; j < NUMBER_OF_NODES; j++)

 {

 shortestpath[i][j] = edgematrix[i][j];

 }

 }

 for (int k = 0; k < NUMBER_OF_NODES; k++)

 {

 for (int i = 0; i < NUMBER_OF_NODES; i++)

 {

 for (int j = 0; j < NUMBER_OF_NODES; j++)

 {

 shortestpath[i][j] = min(shortestpath[i][j],

shortestpath[i][k] + shortestpath[k][j]) ;

 }

 }

 }

 for (int i=0; i < NUMBER_OF_NODES; i++)

 {

 for (int j=0; j < NUMBER_OF_NODES; j++)

 {

 if(shortestpath[i][j] > 0 && i!=j && shortestpath[i][j] != 999)

 {

 numberofpaths++;

 }

 }

 }

58

 for (int i=0; i < NUMBER_OF_NODES; i++)

 {

 for (int j=0; j < NUMBER_OF_NODES; j++)

 {

 if(i != j && shortestpath[i][j] != 999)

 {

 sumofshortestpaths = sumofshortestpaths +

shortestpath[i][j];

 }

 }

 }

 sumofshortestpaths = sumofshortestpaths / 2 ;

 numberofpaths = numberofpaths / 2 ;

 averagepathlength = (sumofshortestpaths / numberofpaths) ;

 return averagepathlength ;

}

59

Betweenness.cpp
#include <iostream>

#include <cstdlib>

#include <iomanip>

#include <cmath>

#include <ctime>

#include "NetGenDefs.h"

using namespace std;

double BW(int nn, int edgematrix[NUMBER_OF_NODES][NUMBER_OF_NODES], double

nodeCapacity)

{

 double btwtemp = 0 ;

 double betweenness[NUMBER_OF_NODES];

 double btwshortestpath[NUMBER_OF_NODES][NUMBER_OF_NODES] ;

 double Number_Of_Nodes_That_Exceed_Capacity = 0 ;

 double percentExceedingCapacity;

 for(int i = 0; i < NUMBER_OF_NODES; i++)

 {

 betweenness[i] = 0;

 }

 for(int i = 0; i < NUMBER_OF_NODES; i++)

 {

 for(int j = 0; j < NUMBER_OF_NODES; j++)

 {

 btwshortestpath[i][j] = edgematrix[i][j];

 }

 }

 for (int k = 0; k < NUMBER_OF_NODES; k++)

 {

 for (int i = 0; i < NUMBER_OF_NODES; i++)

 {

 for (int j = 0; j < NUMBER_OF_NODES; j++)

 {

 btwshortestpath[i][j] = min(btwshortestpath[i][j],

btwshortestpath[i][k] + btwshortestpath[k][j]) ;

 }

 }

 }

 for (int i = 0; i < NUMBER_OF_NODES; i++)

 {

 for (int j = 0; j < NUMBER_OF_NODES; j++)

60

 {

 if (btwshortestpath[i][j] >= 2)

 {

 for (int k = 0; k < NUMBER_OF_NODES;

k++)

 {

 if (i != j && i != k && j != k &&

((btwshortestpath[i][k] + btwshortestpath[k][j]) == btwshortestpath[i][j]))

 {

 betweenness[k]++;

 }

 }

 }

 }

 }

 for (int i = 0; i < NUMBER_OF_NODES; i++)

 {

 betweenness[i] = (betweenness[i] / 2) ;

 }

 for (int i = 0; i < NUMBER_OF_NODES; i++)

 {

 if (nodeCapacity < betweenness[i])

 {

 Number_Of_Nodes_That_Exceed_Capacity++ ;

 }

 }

 percentExceedingCapacity = Number_Of_Nodes_That_Exceed_Capacity /

NUMBER_OF_NODES ;

 /*cout << "\n\nThe percentage of nodes that exceed capacity is " <<

percentExceedingCapacity ;

 cout << endl << endl ;*/

 //cout << endl << endl ;

 /*cout << "\n\nThe betweenness of each node in the network is...\n\n" ;

 for (int i = 0; i < NUMBER_OF_NODES; i++)

 {

 cout << "Node " << i + 1 << " " << betweenness[i] ;

 cout << "\n" ;

 }*/

 return percentExceedingCapacity ; }

61

ClusteringCoef.cpp
#include <iostream>

#include <cstdlib>

#include <iomanip>

#include <cmath>

#include <ctime>

#include <vector>

#include "NetGenDefs.h"

using namespace std;

typedef vector<int> integerArray;

typedef integerArray::iterator arrayPtr;

integerArray savedvaluesfordegree ;

double networkclusteringcoeff ;

double Clustering(int nn, int edgematrix[NUMBER_OF_NODES][NUMBER_OF_NODES])

{

double degreearray[NUMBER_OF_NODES] = {0};

double coeffdenom[NUMBER_OF_NODES] = {0} ;

double coeffnum[NUMBER_OF_NODES] = {0} ;

double clusteringcoeff[NUMBER_OF_NODES] = {0} ;

savedvaluesfordegree.clear();

double numsum = 0 ;

networkclusteringcoeff = 0 ;

for (int i = 0; i < NUMBER_OF_NODES; i++)

{

 savedvaluesfordegree.clear();

 for (int j = 0; j < NUMBER_OF_NODES; j++)

 {

 if (i != j && edgematrix[i][j] == 1)

 {

 savedvaluesfordegree.push_back(j) ;

 }

 unsigned int k = 0;

 for (; k < savedvaluesfordegree.size(); k++)

 {

 if (j == savedvaluesfordegree[k])

 {

62

 degreearray[i]++ ;

 }

 }

 }

}

for (int i = 0; i < NUMBER_OF_NODES; i++)

{

 coeffdenom[i] = (degreearray[i] * (degreearray[i] - 1)) / 2 ;

}

for (int i = 0; i < NUMBER_OF_NODES; i++)

{

 for (int j=0; j < NUMBER_OF_NODES; j++)

 {

 if (edgematrix[i][j] == 1)

 {

 for (int k=0; k < NUMBER_OF_NODES; k++)

 {

 if ((edgematrix[i][k] == 1) && (edgematrix[j][k] == 1))

 {

 coeffnum[j]++ ;

 }

 }

 }

 }

}

for (int i = 0; i < NUMBER_OF_NODES; i++)

{

 coeffnum[i] = coeffnum[i] / 2 ;

}

for (int i = 0; i < NUMBER_OF_NODES; i++)

{

 if (coeffdenom[i] != 0)

 {

 clusteringcoeff[i] = coeffnum[i] / coeffdenom[i] ;

 }

}

for (int i = 0; i < NUMBER_OF_NODES; i++)

{

 numsum = numsum + clusteringcoeff[i] ;

}

63

networkclusteringcoeff = (numsum / NUMBER_OF_NODES) ;

//cout << "\n\nThe network clustering coefficient is " << networkclusteringcoeff << endl ;

return networkclusteringcoeff ;

}

64

HighestDegreeClustering.cpp
#include <iostream>

#include <cstdlib>

#include <iomanip>

#include <cmath>

#include <ctime>

#include <vector>

#include "NetGenDefs.h"

using namespace std;

typedef vector<int> integerArray;

typedef integerArray::iterator arrayPtr;

integerArray savedvaluesforhighestdegree ;

double HDC(int nn, int edgematrix[NUMBER_OF_NODES][NUMBER_OF_NODES], double

nodeCapacity)

{

savedvaluesforhighestdegree.clear();

int degreeArray[NUMBER_OF_NODES] = {0} ;

int sortedDegreeArray[NUMBER_OF_NODES] = {0} ;

int originalPositionArray[NUMBER_OF_NODES] = {0} ;

double highestdegreematrix[NUMBER_OF_NODES][NUMBER_OF_NODES] = {0} ;

int temp = 0 ;

int temp1 = 0 ;

for (int i=0; i < NUMBER_OF_NODES; ++i)

 {

 degreeArray[i] = 0;

 }

//Compute Degree For Each Node

for (int i=0; i < NUMBER_OF_NODES; i++)

{

 for (int j=0; j < NUMBER_OF_NODES; j++)

 {

 if (i != j && edgematrix[i][j] == 1)

 {

 degreeArray[i]++ ;

 }

 }

}

//Copy Contents Of degreeArray To sortedDegreeArray

for (int i = 0; i < NUMBER_OF_NODES; i++)

 {

65

 sortedDegreeArray[i] = degreeArray[i] ;

 originalPositionArray[i] = i ;

 }

//Sort Contents Of sortedDegreeArray In Descending Order

 for (int i = 0; i < NUMBER_OF_NODES ; i++)

 {

 for(int j=0; j < NUMBER_OF_NODES; j++)

 {

 if(sortedDegreeArray[i] > sortedDegreeArray[j])

 {

 temp = sortedDegreeArray[i] ;

 sortedDegreeArray[i] = sortedDegreeArray[j] ;

 sortedDegreeArray[j] = temp ;

 temp1 = originalPositionArray[i] ;

 originalPositionArray[i] = originalPositionArray[j] ;

 originalPositionArray[j] = temp1 ;

 }

 }

 }

 for (int i=0; i < NUMBER_OF_NODES; i++)

 {

 unsigned int p = 0;

 for (;p < savedvaluesforhighestdegree.size(); ++p)

 {

 if ((originalPositionArray[i] ==

savedvaluesforhighestdegree[p]))

 {

 break;

 }

 }

 if (p == savedvaluesforhighestdegree.size())

 {

 for (int j=0; j < NUMBER_OF_NODES; j++)

 {

 if (edgematrix[originalPositionArray[i]][j] != 999 &&

originalPositionArray[i] != j)

 {

 highestdegreematrix[originalPositionArray[i]][j] =

edgematrix[originalPositionArray[i]][j];

 savedvaluesforhighestdegree.push_back(j) ;

 }

 }

66

 }

 }

/*cout << "\n\n\n" ;

cout << "Highest Degree Clustering.....\n\n" ;

for (int i=0; i < NUMBER_OF_NODES; ++i)

 {

 cout << endl ;

 for (int j = 0; j < NUMBER_OF_NODES; j++)

 {

 cout << highestdegreematrix[i][j] << " " ;

 }

}*/

//Betweenness Test Starts Here

 double HDbtwtemp = 0 ;

 double HDbetweenness[NUMBER_OF_NODES];

 double HDbtwshortestpath[NUMBER_OF_NODES][NUMBER_OF_NODES] ;

 double HDNumber_Of_Nodes_That_Exceed_Capacity = 0 ;

 double HDpercentExceedingCapacity = 0;

 for(int i = 0; i < NUMBER_OF_NODES; i++)

 {

 HDbetweenness[i] = 0;

 }

 for(int i = 0; i < NUMBER_OF_NODES; i++)

 {

 for(int j = 0; j < NUMBER_OF_NODES; j++)

 {

 HDbtwshortestpath[i][j] = highestdegreematrix[i][j];

 }

 }

 for(int i = 0; i < NUMBER_OF_NODES; i++)

 {

 for(int j = 0; j < NUMBER_OF_NODES; j++)

 {

 if (HDbtwshortestpath[i][j] == 0)

 HDbtwshortestpath[i][j] = 999;

 }

 }

 for(int i = 0; i < NUMBER_OF_NODES; i++)

 {

 for(int j = 0; j < NUMBER_OF_NODES; j++)

 {

67

 if (HDbtwshortestpath[i][j] == 1)

 HDbtwshortestpath[j][i] = 1;

 }

 }

 for (int k = 0; k < NUMBER_OF_NODES; k++)

 {

 for (int i = 0; i < NUMBER_OF_NODES; i++)

 {

 for (int j = 0; j < NUMBER_OF_NODES; j++)

 {

 HDbtwshortestpath[i][j] =

min(HDbtwshortestpath[i][j], HDbtwshortestpath[i][k] + HDbtwshortestpath[k][j]) ;

 }

 }

 }

 /*cout << "\n\n\n" ;

 cout << "Shortest Path.....\n\n" ;

 for (int i=0; i < NUMBER_OF_NODES; ++i)

 {

 cout << endl ;

 for (int j = 0; j < NUMBER_OF_NODES; j++)

 {

 cout << HDbtwshortestpath[i][j] << " " ;

 }

 }*/

 for (int i = 0; i < NUMBER_OF_NODES; i++)

 {

 for (int j = 0; j < NUMBER_OF_NODES; j++)

 {

 if (HDbtwshortestpath[i][j] >= 2)

 {

 for (int k = 0; k < NUMBER_OF_NODES;

k++)

 {

 if (i != j && i != k && j != k &&

((HDbtwshortestpath[i][k] + HDbtwshortestpath[k][j]) == HDbtwshortestpath[i][j]))

 {

 HDbetweenness[k]++;

 }

 }

 }

 }

 }

68

 for (int i = 0; i < NUMBER_OF_NODES; i++)

 {

 HDbetweenness[i] = (HDbetweenness[i] / 2) ;

 }

 for (int i = 0; i < NUMBER_OF_NODES; i++)

 {

 if (nodeCapacity < HDbetweenness[i])

 {

 HDNumber_Of_Nodes_That_Exceed_Capacity++ ;

 }

 }

 HDpercentExceedingCapacity = HDNumber_Of_Nodes_That_Exceed_Capacity

/ NUMBER_OF_NODES ;

 /*cout << "\n\nThe percentage of nodes that exceed capacity is " <<

HDpercentExceedingCapacity ;

 cout << endl << endl ;

 cout << endl << endl ;

 cout << "\n\nThe betweenness of each node in the network is...\n\n" ;

 for (int i = 0; i < NUMBER_OF_NODES; i++)

 {

 cout << "Node " << i + 1 << " " << HDbetweenness[i] ;

 cout << "\n" ;

 } */

 return HDpercentExceedingCapacity ;

return 0;

}

69

LowestIDClustering.cpp
#include <iostream>

#include <cstdlib>

#include <iomanip>

#include <cmath>

#include <ctime>

#include <vector>

#include "NetGenDefs.h"

using namespace std;

typedef vector<int> integerArray;

typedef integerArray::iterator arrayPtr;

integerArray savedvaluesforlowestdegree ;

double LDC(int nn, int edgematrix[NUMBER_OF_NODES][NUMBER_OF_NODES], double

nodeCapacity)

{

int lowestdegreematrix[NUMBER_OF_NODES][NUMBER_OF_NODES] = {0};

savedvaluesforlowestdegree.clear();

for (int i=0; i < NUMBER_OF_NODES; i++)

 {

 unsigned int p = 0;

 for (;p < savedvaluesforlowestdegree.size(); ++p)

 {

 if (i == savedvaluesforlowestdegree[p])

 {

 break;

 }

 }

 if (p == savedvaluesforlowestdegree.size())

 {

 for (int j=0; j < NUMBER_OF_NODES; j++)

 {

 if(i != j && edgematrix[i][j] == 1)

 {

 lowestdegreematrix[i][j] = 1 ;

 savedvaluesforlowestdegree.push_back(j) ;

 }

 }

 }

 }

/*cout << "\n\n\n" ;

cout << "Lowest ID Clustering.....\n\n" ;

for (int i=0; i < NUMBER_OF_NODES; ++i)

70

 {

 for (int j = 0; j < NUMBER_OF_NODES; j++)

 {

 printf("%d ",lowestdegreematrix[i][j]);

 }

 printf("\n");

 }*/

//Betweenness Test Starts Here

double btwtemp = 0 ;

 double LDbetweenness[NUMBER_OF_NODES];

 double LDbtwshortestpath[NUMBER_OF_NODES][NUMBER_OF_NODES] ;

 double LDNumber_Of_Nodes_That_Exceed_Capacity = 0 ;

 double LDpercentExceedingCapacity;

 for(int i = 0; i < NUMBER_OF_NODES; i++)

 {

 LDbetweenness[i] = 0;

 }

 for(int i = 0; i < NUMBER_OF_NODES; i++)

 {

 for(int j = 0; j < NUMBER_OF_NODES; j++)

 {

 LDbtwshortestpath[i][j] = lowestdegreematrix[i][j];

 }

 }

 for(int i = 0; i < NUMBER_OF_NODES; i++)

 {

 for(int j = 0; j < NUMBER_OF_NODES; j++)

 {

 if (LDbtwshortestpath[i][j] == 0)

 LDbtwshortestpath[i][j] = 999;

 }

 }

 for(int i = 0; i < NUMBER_OF_NODES; i++)

 {

 for(int j = 0; j < NUMBER_OF_NODES; j++)

 {

 if (LDbtwshortestpath[i][j] == 1)

 LDbtwshortestpath[j][i] = 1;

 }

 }

 for (int k = 0; k < NUMBER_OF_NODES; k++)

 {

71

 for (int i = 0; i < NUMBER_OF_NODES; i++)

 {

 for (int j = 0; j < NUMBER_OF_NODES; j++)

 {

 LDbtwshortestpath[i][j] =

min(LDbtwshortestpath[i][j], LDbtwshortestpath[i][k] + LDbtwshortestpath[k][j]) ;

 }

 }

 }

 for (int i = 0; i < NUMBER_OF_NODES; i++)

 {

 for (int j = 0; j < NUMBER_OF_NODES; j++)

 {

 if (LDbtwshortestpath[i][j] >= 2)

 {

 for (int k = 0; k < NUMBER_OF_NODES;

k++)

 {

 if (i != j && i != k && j != k &&

((LDbtwshortestpath[i][k] + LDbtwshortestpath[k][j]) == LDbtwshortestpath[i][j]))

 {

 LDbetweenness[k]++;

 }

 }

 }

 }

 }

 for (int i = 0; i < NUMBER_OF_NODES; i++)

 {

 LDbetweenness[i] = (LDbetweenness[i] / 2) ;

 }

 for (int i = 0; i < NUMBER_OF_NODES; i++)

 {

 if (nodeCapacity < LDbetweenness[i])

 {

 LDNumber_Of_Nodes_That_Exceed_Capacity++ ;

 }

 }

 LDpercentExceedingCapacity = LDNumber_Of_Nodes_That_Exceed_Capacity /

NUMBER_OF_NODES ;

 /* cout << "\n\nThe percentage of nodes that exceed capacity is " <<

LDpercentExceedingCapacity ;

 cout << endl << endl ;

72

 cout << endl << endl ;

 cout << "\n\nThe betweenness of each node in the network is...\n\n" ;

 for (int i = 0; i < NUMBER_OF_NODES; i++)

 {

 cout << "Node " << i + 1 << " " << LDbetweenness[i] ;

 cout << "\n" ;

 }*/

 return LDpercentExceedingCapacity ;

return 0;

}

73

MobicClustering.cpp
#include <iostream>

#include <cstdlib>

#include <iomanip>

#include <cmath>

#include <ctime>

#include <vector>

#include "NetGenDefs.h"

using namespace std;

double distancematrixcurrent[NUMBER_OF_NODES][NUMBER_OF_NODES] = {0} ;

double distancematrixprevious[NUMBER_OF_NODES][NUMBER_OF_NODES] = {0} ;

double distancematrixMOBIC[NUMBER_OF_NODES][NUMBER_OF_NODES] = {0} ;

double MOBICArray[NUMBER_OF_NODES] = {0} ;

double MOBICMean[NUMBER_OF_NODES] = {0} ;

double MOBICVarianceMatrix[NUMBER_OF_NODES][NUMBER_OF_NODES] = {0} ;

double MOBICMyMatrix[NUMBER_OF_NODES] = {0} ;

double MOBICClusteringMatrix[NUMBER_OF_NODES][NUMBER_OF_NODES] = {0} ;

int originalPositionArrayMOBIC[NUMBER_OF_NODES] = {0} ;

double sortedMOBICArray[NUMBER_OF_NODES] = {0} ;

double temp = 0 ;

int temp1 = 0 ;

typedef vector<int> integerArrayMOBIC;

typedef integerArrayMOBIC::iterator arrayPtr;

integerArrayMOBIC savedvaluesforMOBIC ;

double MOBIC(int nn, int edgematrix[NUMBER_OF_NODES][NUMBER_OF_NODES], double

nodexPrevious[NUMBER_OF_NODES], double nodexCurrent[NUMBER_OF_NODES], double

nodeyPrevious[NUMBER_OF_NODES], double nodeyCurrent[NUMBER_OF_NODES], double

nodeCapacity)

{

savedvaluesforMOBIC.clear() ;

//Clear contents of all arrays

for (int i = 0; i < NUMBER_OF_NODES; i++)

{

 for (int j = 0; j < NUMBER_OF_NODES; j++)

 {

 distancematrixcurrent[i][j] = 0 ;

 }

}

for (int i = 0; i < NUMBER_OF_NODES; i++)

{

 for (int j = 0; j < NUMBER_OF_NODES; j++)

74

 {

 distancematrixprevious[i][j] = 0 ;

 }

}

for (int i = 0; i < NUMBER_OF_NODES; i++)

{

 for (int j = 0; j < NUMBER_OF_NODES; j++)

 {

 distancematrixMOBIC[i][j] = 0 ;

 }

}

for (int i = 0; i < NUMBER_OF_NODES; i++)

{

 MOBICArray[i] = 0 ;

}

for (int i = 0; i < NUMBER_OF_NODES; i++)

{

 MOBICMean[i] = 0 ;

}

for (int i = 0; i < NUMBER_OF_NODES; i++)

{

 for (int j = 0; j < NUMBER_OF_NODES; j++)

 {

 MOBICVarianceMatrix[i][j] = 0 ;

 }

}

for (int i = 0; i < NUMBER_OF_NODES; i++)

{

 MOBICMyMatrix[i] = 0 ;

}

for (int i = 0; i < NUMBER_OF_NODES; i++)

{

 for (int j = 0; j < NUMBER_OF_NODES; j++)

 {

 MOBICClusteringMatrix[i][j] = 0 ;

 }

}

//Calculate Distance Matrix For Previous Node Locations

75

 for (int i = 0; i < NUMBER_OF_NODES; i++)

 {

 for (int j = 0; j < NUMBER_OF_NODES; j++)

 {

 distancematrixcurrent[i][j] = sqrt((pow(nodexCurrent[i]-

nodexCurrent[j],2)) + (pow(nodeyCurrent[i]-nodeyCurrent[j],2)));

 }

 }

 //Calculate Distance Matrix For Current Node Locations

 for (int i = 0; i < NUMBER_OF_NODES; i++)

 {

 for (int j = 0; j < NUMBER_OF_NODES; j++)

 {

 distancematrixprevious[i][j] = sqrt((pow(nodexPrevious[i]-

nodexPrevious[j],2)) + (pow(nodeyPrevious[i]-nodeyPrevious[j],2)));

 }

 }

 //Calculate MOBIC Matrix

 for (int i = 0; i < NUMBER_OF_NODES; i++)

 {

 for (int j = 0; j < NUMBER_OF_NODES; j++)

 {

 if (i == j)

 {

 distancematrixMOBIC[i][j] = 0 ;

 }

 else

 {

 distancematrixMOBIC[i][j] = distancematrixcurrent[i][j] /

distancematrixprevious[i][j] ;

 }

 }

 }

 //***Variance calculation (My) for each row of MOBIC matrix begins here

 //The next two loops compute the mean for each row of the matrix

 for (int i = 0; i < NUMBER_OF_NODES; i++)

 {

76

 for (int j = 0; j < NUMBER_OF_NODES; j++)

 {

 MOBICArray[i] = MOBICArray[i] +

distancematrixMOBIC[i][j] ;

 }

 }

 //cout << "\n\n\nThis is the mobic section" ;

 for (int i = 0; i < NUMBER_OF_NODES; i++)

 {

 MOBICMean[i] = MOBICArray[i] / (NUMBER_OF_NODES - 1) ;

 }

 //Calculate (Value - Mean)^2 For each node

 for (int i = 0; i < NUMBER_OF_NODES; i++)

 {

 for (int j = 0; j < NUMBER_OF_NODES; j++)

 {

 MOBICVarianceMatrix[i][j] = pow(distancematrixMOBIC[i][j] -

MOBICMean[i],2) ;

 }

 }

 //Final calculations for My of each node

 for (int i = 0; i < NUMBER_OF_NODES; i++)

 {

 for (int j = 0; j < NUMBER_OF_NODES; j++)

 {

 MOBICMyMatrix[i] = MOBICMyMatrix[i] +

MOBICVarianceMatrix[i][j] ;

 }

 }

 for (int i = 0; i < NUMBER_OF_NODES; i++)

 {

 MOBICMyMatrix[i] = MOBICMyMatrix[i] / (NUMBER_OF_NODES - 1);

 }

 /*for (int i = 0; i < NUMBER_OF_NODES; i++)

 {

 cout << MOBICMyMatrix[i] << endl ;

 }*/

//Clustering Begins Here

for (int i = 0; i < NUMBER_OF_NODES; i++)

 {

 sortedMOBICArray[i] = MOBICMyMatrix[i] ;

77

 originalPositionArrayMOBIC[i] = i ;

 }

for (int i = 0; i < NUMBER_OF_NODES ; i++)

 {

 for(int j=0; j < NUMBER_OF_NODES; j++)

 {

 if(sortedMOBICArray[i] > sortedMOBICArray[j])

 {

 temp = sortedMOBICArray[i] ;

 sortedMOBICArray[i] = sortedMOBICArray[j] ;

 sortedMOBICArray[j] = temp ;

 temp1 = originalPositionArrayMOBIC[i] ;

 originalPositionArrayMOBIC[i] =

originalPositionArrayMOBIC[j] ;

 originalPositionArrayMOBIC[j] = temp1 ;

 }

 }

 }

 for (int i=0; i < NUMBER_OF_NODES; i++)

 {

 unsigned int p = 0;

 for (;p < savedvaluesforMOBIC.size(); ++p)

 {

 if ((originalPositionArrayMOBIC[i] ==

savedvaluesforMOBIC[p]))

 {

 break;

 }

 }

 if (p == savedvaluesforMOBIC.size())

 {

 for (int j=0; j < NUMBER_OF_NODES; j++)

 {

 if (edgematrix[originalPositionArrayMOBIC[i]][j] !=

999 && originalPositionArrayMOBIC[i] != j)

 {

 MOBICClusteringMatrix[originalPositionArrayMOBIC[i]][j] =

edgematrix[originalPositionArrayMOBIC[i]][j];

 savedvaluesforMOBIC.push_back(j) ;

 }

 }

 }

 }

78

/*cout << "\n\n\n" ;

cout << "MOBIC CLUSTERING.....\n\n" ;

for (int i=0; i < NUMBER_OF_NODES; ++i)

 {

 cout << endl ;

 for (int j = 0; j < NUMBER_OF_NODES; j++)

 {

 cout << MOBICClusteringMatrix[i][j] << " " ;

 }

}*/

//Betweenness Test Starts Here

 double MOBICbtwtemp = 0 ;

 double MOBICbetweenness[NUMBER_OF_NODES];

 double

MOBICbtwshortestpath[NUMBER_OF_NODES][NUMBER_OF_NODES] ;

 double MOBICNumber_Of_Nodes_That_Exceed_Capacity = 0 ;

 double MOBICpercentExceedingCapacity = 0;

 for(int i = 0; i < NUMBER_OF_NODES; i++)

 {

 MOBICbetweenness[i] = 0;

 }

 for(int i = 0; i < NUMBER_OF_NODES; i++)

 {

 for(int j = 0; j < NUMBER_OF_NODES; j++)

 {

 MOBICbtwshortestpath[i][j] = MOBICClusteringMatrix[i][j];

 }

 }

 for(int i = 0; i < NUMBER_OF_NODES; i++)

 {

 for(int j = 0; j < NUMBER_OF_NODES; j++)

 {

 if (MOBICbtwshortestpath[i][j] == 0)

 MOBICbtwshortestpath[i][j] = 999;

 }

 }

 for(int i = 0; i < NUMBER_OF_NODES; i++)

 {

 for(int j = 0; j < NUMBER_OF_NODES; j++)

 {

 if (MOBICbtwshortestpath[i][j] == 1)

79

 MOBICbtwshortestpath[j][i] = 1;

 }

 }

 for (int k = 0; k < NUMBER_OF_NODES; k++)

 {

 for (int i = 0; i < NUMBER_OF_NODES; i++)

 {

 for (int j = 0; j < NUMBER_OF_NODES; j++)

 {

 MOBICbtwshortestpath[i][j] =

min(MOBICbtwshortestpath[i][j], MOBICbtwshortestpath[i][k] + MOBICbtwshortestpath[k][j]) ;

 }

 }

 }

 /*cout << "\n\n\n" ;

 cout << "Shortest Path.....\n\n" ;

 for (int i=0; i < NUMBER_OF_NODES; ++i)

 {

 cout << endl ;

 for (int j = 0; j < NUMBER_OF_NODES; j++)

 {

 cout << MOBICbtwshortestpath[i][j] << " " ;

 }

 }*/

 for (int i = 0; i < NUMBER_OF_NODES; i++)

 {

 for (int j = 0; j < NUMBER_OF_NODES; j++)

 {

 if (MOBICbtwshortestpath[i][j] >= 2)

 {

 for (int k = 0; k < NUMBER_OF_NODES;

k++)

 {

 if (i != j && i != k && j != k &&

((MOBICbtwshortestpath[i][k] + MOBICbtwshortestpath[k][j]) == MOBICbtwshortestpath[i][j]))

 {

 MOBICbetweenness[k]++;

 }

 }

 }

 }

 }

80

 for (int i = 0; i < NUMBER_OF_NODES; i++)

 {

 MOBICbetweenness[i] = (MOBICbetweenness[i] / 2) ;

 }

 for (int i = 0; i < NUMBER_OF_NODES; i++)

 {

 if (nodeCapacity < MOBICbetweenness[i])

 {

 MOBICNumber_Of_Nodes_That_Exceed_Capacity++ ;

 }

 }

 MOBICpercentExceedingCapacity =

MOBICNumber_Of_Nodes_That_Exceed_Capacity / NUMBER_OF_NODES ;

 /*cout << "\n\nThe percentage of nodes that exceed capacity is " <<

MOBICpercentExceedingCapacity ;

 cout << endl << endl ;

 cout << endl << endl ;

 cout << "\n\nThe betweenness of each node in the network is...\n\n" ;

 for (int i = 0; i < NUMBER_OF_NODES; i++)

 {

 cout << "Node " << i + 1 << " " << MOBICbetweenness[i] ;

 cout << "\n" ;

 } */

 return MOBICpercentExceedingCapacity ;

 return 0;

}

81

NetworkDiameter.cpp
#include <iostream>

#include <cstdlib>

#include <iomanip>

#include <cmath>

#include <ctime>

#include "NetGenDefs.h"

using namespace std;

double ND(int nn, int edgematrix[NUMBER_OF_NODES][NUMBER_OF_NODES])

{

double maxpath = 0 ;

maxpath = 0;

double shortestpath[NUMBER_OF_NODES][NUMBER_OF_NODES] = {0} ;

 for(int i = 0; i < NUMBER_OF_NODES; i++)

 {

 for(int j = 0; j < NUMBER_OF_NODES; j++)

 {

 shortestpath[i][j] = edgematrix[i][j];

 }

 }

 for (int k = 0; k < NUMBER_OF_NODES; k++)

 {

 for (int i = 0; i < NUMBER_OF_NODES; i++)

 {

 for (int j = 0; j < NUMBER_OF_NODES; j++)

 {

 shortestpath[i][j] = min(shortestpath[i][j],

shortestpath[i][k] + shortestpath[k][j]) ;

 }

 }

 }

 for (int i=0; i < nn; i++)

 {

 for (int j=0; j < nn; j++)

 {

 if(shortestpath[i][j] < 999 && shortestpath[i][j] > 0 && i!=j

&& shortestpath[i][j] > maxpath)

 {

 maxpath = shortestpath[i][j];

 }

 }

 }

 return maxpath ; } }

82

ODComplexity.cpp
#include <iostream>

#include <cstdlib>

#include <iomanip>

#include <cmath>

#include <ctime>

#include <vector>

#include <algorithm>

#include "NetGenDefs.h"

using namespace std;

typedef vector<double> integerArray;

typedef integerArray::iterator arrayPtr;

typedef vector<double> integerArray2;

typedef vector<double> multiDimensionalVector1;

typedef vector<multiDimensionalVector1> multiDimensionalVector2;

integerArray ODCVector ;

integerArray2 ODCNumeratorVector ;

multiDimensionalVector2 ODCArray ;

double ODCDenom = 0 ;

int ODCIncrementor ;

double ODCNumElement ;

double insideincrementor ;

double ODCNumeratorTotal ;

double ODComplexity ;

double ODC(int nn, int edgematrix[NUMBER_OF_NODES][NUMBER_OF_NODES], int

degreeofeachnode[NUMBER_OF_NODES])

{

 //This section clears all the variables within the function

 ODCDenom = 0 ;

 ODCIncrementor = 0 ;

 ODCNumElement = 0 ;

 insideincrementor = 0 ;

 ODCNumeratorTotal = 0 ;

 ODComplexity = 0 ;

 //This loop sets the degree for each node equal to zero

83

 for (int i=0; i < NUMBER_OF_NODES; i++)

 {

 for (int j=0; j < NUMBER_OF_NODES; j++)

 {

 if(edgematrix[i][j] == 1 && i != j && edgematrix[i][j] != 999)

 {

 degreeofeachnode[i] = 0 ;

 }

 }

 }

 //This loop determines the degree for each node

 for (int i=0; i < NUMBER_OF_NODES; i++)

 {

 for (int j=0; j < NUMBER_OF_NODES; j++)

 {

 if(edgematrix[i][j] == 1 && i != j && edgematrix[i][j] != 999)

 {

 degreeofeachnode[i]++ ;

 }

 }

 }

 ODCVector.clear() ;

 ODCArray.clear() ;

 ODCNumeratorVector.clear();

 for (int i = 0; i < NUMBER_OF_NODES; i++)

 {

 unsigned int p = 0;

 for (; p < ODCVector.size(); p++)

 {

 if (degreeofeachnode[i] == ODCVector[p])

 {

 break ;

 }

 }

 if (p == ODCVector.size())

 {

 ODCVector.push_back(degreeofeachnode[i]) ;

 }

 }

 size_t ArraySize = ODCVector.size();

 multiDimensionalVector1 initializer;

 for (unsigned int i = 0; i < ArraySize; ++i)

 {

 initializer.push_back(0.0L);

 }

84

 for (unsigned int i = 0; i < ArraySize; ++i)

 {

 ODCArray.push_back(initializer);

 }

 for (unsigned int i = 0; i < ArraySize; i++)

 {

 for (unsigned int j = 0; j < ArraySize; j++)

 {

 ODCArray[i][j] = 0;

 }

 }

 sort (ODCVector.begin(), ODCVector.end()) ;

 for(unsigned int i = 0; i < ODCVector.size(); i++)

 {

 for(int j = 0; j < NUMBER_OF_NODES; j++)

 {

 if (degreeofeachnode[j] == ODCVector[i])

 for(unsigned int k = 0; k < ODCVector.size(); k++)

 {

 for(int l = 0; l < NUMBER_OF_NODES; l++)

 {

 if(l != j && degreeofeachnode[j] == ODCVector[i]

&& (degreeofeachnode[l] == ODCVector[k]) && (edgematrix[l][j] == 1) && (edgematrix[j][l] ==

1))

 {

 ODCArray[i][k] = ODCArray[i][k] + 1 ;

 }

 }

 }

 }

 }

 for (unsigned int i = 0; i < ODCVector.size(); i++)

 {

 for (unsigned int j = 0; j < ODCVector.size(); j++)

 {

 if(i != j)

 {

 ODCArray[i][j] = ODCArray[i][j] + ODCArray[j][i] ;

 }

 }

 }

85

 for (unsigned int i = 0; i < ODCVector.size(); i++)

 {

 for (unsigned int j = 0; j < ODCVector.size(); j++)

 {

 if(i != j)

 {

 ODCArray[j][i] = ODCArray[i][j] ;

 }

 }

 }

 for (unsigned int i = 0; i < ODCVector.size(); i++)

 {

 for (unsigned int j = 0; j < ODCVector.size(); j++)

 {

 ODCArray[i][j] = ODCArray[i][j] / 2 ;

 }

 }

 ODCDenom = 0 ;

 // This calculates the demoninator for the ODC metric

 for (unsigned int i = 0; i < ODCVector.size(); i++)

 {

 for (unsigned int j = 0; j < ODCVector.size(); j++)

 {

 ODCDenom = ODCDenom + ODCArray[i][j] ;

 }

 }

 ODCIncrementor = -1 ;

 while (ODCIncrementor != ODCVector.size())

 {

 ODCIncrementor++ ;

 if (ODCIncrementor != 0)

 {

 ODCNumeratorVector.push_back(ODCNumElement) ;

 }

 ODCNumElement = 0 ;

 for (unsigned int i = 0; i < ODCVector.size(); i++)

 {

 if ((i + ODCIncrementor) < ODCVector.size())

 {

 ODCNumElement = ODCNumElement + ODCArray[i][i +

ODCIncrementor] ;

86

 }

 }

 }

 /*cout << "\n\nODCNUM Vector 1 Printed Below\n\n" ;

 for (unsigned int i = 0; i < ODCVector.size(); i++)

 {

 cout << ODCNumeratorVector[i] << endl ;

 }*/

 for (unsigned int i = 0; i < ODCVector.size(); i++)

 {

 ODCNumeratorVector[i] = ODCNumeratorVector[i] / ODCDenom ;

 if (ODCNumeratorVector[i] != 0)

 {

 ODCNumeratorVector[i] = (ODCNumeratorVector[i] *

log(ODCNumeratorVector[i])) ;

 }

 }

 ODCNumeratorTotal = 0 ;

 for (unsigned int i = 0; i < ODCVector.size(); i++)

 {

 ODCNumeratorTotal = ODCNumeratorTotal + ODCNumeratorVector[i] ;

 }

 ODComplexity = - (ODCNumeratorTotal) ;

 //cout << "\n\nThe offdiagonal complexity is " << ODComplexity ;

 /*cout << "\n\nODCNUM Vector Printed Below\n\n" ;

 for (unsigned int i = 0; i < ODCVector.size(); i++)

 {

 cout << ODCNumeratorVector[i] << endl ;

 }

 cout << "\n\nThis is the ODC Part\n\n" ;

 for (unsigned int q = 0; q < ODCVector.size() ; q++)

 {

 cout << ODCVector[q] << endl ;

87

 }

 cout << "\n\nThis is the next part of ODC\n\n" ;

 for (unsigned int i = 0; i < ODCVector.size(); i++)

 {

 for (unsigned int j = 0; j < ODCVector.size(); j++)

 {

 cout << " " << ODCArray[i][j] ;

 }

 cout << "\n" ;

 }

*/

return ODComplexity;

}

88

Appendix B

Sample Data File Output

Number

Of

Nodes

Node

Capacity

Generator

Seed

Square

Length

Of Field

Network

Diameter

Offdiagonal

Complexity

Highest

Degree

Congestion

150 193 5 100 25.3 1.20754 0.274

150 193 20 100 24.8 1.14537 0.253333

150 193 1 100 22.5 1.17753 0.175333

150 150 10 100 23.5 1.16442 0.201333

150 100 1 100 21.5 1.17494 0.3

150 60 20 100 22.5 1.15866 0.357333

150 60 30 100 23.1 1.18808 0.301333

150 60 5 100 22.4 1.15074 0.292

150 100 20 100 21.4 1.16806 0.332

150 100 30 100 22.4 1.16603 0.228

It should be noted that this represents a very small subset of the actual data that

was collected from the simulation runs. A selected number of columns and rows

were selected for formatting purposes.

89

Bibliography

[1] P. Basu, N. Khan, and T.D.C. Little. A Mobility Based Metric for

Clustering in Mobile Ad Hoc Networks. In Proceedings of IEEE

International Conference on Distributed Computing Systems Workshops,

Mesa, Arizona, 2001.

 [2] J.C. Claussen. Characterization of networks by the Offdiagonal

Complexity. Physica A: Statistical Mechanics and its Applications, 375(1):

365-373, 2007.

[3] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. (1990). Introduction to

Algorithms, first edition, MIT Press and McGraw-Hill.

[4] M. Gerla and J.T.C. Tsai. Multicluster, mobile, multimedia radio network.

Wireless Networks, 1(3) : 255-265, 1995.

[5] Z.J. Hass and S. Tabrizi. On some challenges and design choice in ad hoc

 communication. In Proceeding of IEEE MILCOM’98, 1998.

[6] C.R. Lin and M. Gerla. Adaptive clustering for mobile wireless networks.

IEEE Journal on Selected Areas in Communications, 15(7): 1265-1275,

1997.

[7] A.K. Parekh. Selecting routers in ad hoc wireless networks. Proceeding of

 the IEEE International Telecommunication Symposium, 1994.

[8] D.J. Watts and S. Strogatz. Collective dynamics of 'small-world' networks.

Nature, 393: 440-442, 1998.

