
Online Efficient Predictive Safety Analysis of

Multithreaded Programs

Koushik Sen, Grigore Roşu, Gul Agha
Department of Computer Science,

University of Illinois at Urbana-Champaign.
{ksen,grosu,agha}@cs.uiuc.edu

Abstract. An automated and configurable technique for runtime safety
analysis of multithreaded programs is presented, which is able to predict
safety violations from successful executions. Based on a user provided
safety formal specification, the program is automatically instrumented
to emit relevant state update events to an observer, which further checks
them against the safety specification. The events are stamped with dy-
namic vector clocks, enabling the observer to infer a causal partial order
on the state updates. All event traces that are consistent with this partial
order, including the actual execution trace, are analyzed on-line and in
parallel, and a warning is issued whenever there is a trace violating the
specification. This technique can be therefore seen as a bridge between
testing and model checking. To further increase scalability, a window in
the state space can be specified, allowing the observer to infer the most
probable runs. If the size of the window is 1 then only the received ex-
ecution trace is analyzed, like in testing; if the size of the window is ∞
then all the execution traces are analyzed, such as in model checking.

1 Introduction

In multithreaded systems, threads can execute concurrently communicating with
each other through a set of shared variables, yielding an inherent potential for
subtle errors due to unexpected interleavings. Both heavy and lighter techniques
to detect errors in multithreaded systems have been extensively investigated. The
heavy techniques include traditional formal methods based approaches, such as
model checking and theorem proving, guaranteeing that a formal model of the
system satisfies its safety requirements by exploring, directly or indirectly, all
possible thread interleavings. On the other hand, the lighter techniques include
testing, that scales well and is one of the most used approaches to validate
software products today.

As part of our overall effort in merging testing and formal methods, aiming
at getting some of the benefits of both while avoiding the pitfalls of ad hoc
testing and the complexity of full-blown model checking or theorem proving,
in this paper we present a runtime verification technique for safety analysis of
multithreaded systems, that can be tuned to analyze from one trace to all traces
that are consistent with an actual execution of the program. If all traces are
checked, then it becomes equivalent to online model checking of an abstract
model of the computation, called the multithreaded computation lattice, which
is extracted from the actual execution trace of the program, like in POTA [10]
or JMPaX [14]. If only one trace is considered, then our technique becomes
equivalent to checking just the actual execution of the multithreaded program,

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2005

2. REPORT TYPE
N/A

3. DATES COVERED

4. TITLE AND SUBTITLE
Online Efficient Predictive Safety Analysis of Multithreaded Programs

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Illinois at Urbana-Champaign Department of Computer
Science 201 N. Goodwin Avenue Urbana, IL 61801

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
An automated and configurable technique for runtime safety analysis of multithreaded programs is
presented, which is able to predict safety violations from successful executions. Based on a user provided
safety formal specification, the program is automatically instrumented to emit relevant state update events
to an observer, which further checks them against the safety specification. The events are stamped with
dynamic vector clocks, enabling the observer to infer a causal partial order on the state updates. All event
traces that are consistent with this partial order, including the actual execution trace, are analyzed on-line
and in parallel, and a warning is issued whenever there is a trace violating the specification. This technique
can be therefore seen as a bridge between testing and model checking. To further increase scalability, a
window in the state space can be specified, allowing the observer to infer the most probable runs. If the size
of the window is 1 then only the received execution trace is analyzed, like in testing; if the size of the
window is (then all the execution traces are analyzed, such as in model checking.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER
OF PAGES

15

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

like in testing or like in other runtime analysis tools like MaC [7] and PaX [5,
1]. In general, depending on the application, one can configure a window within
the state space to be explored, called causality cone, intuitively giving a causal
“distance” from the observed execution within which all traces are exhaustively
verified. An appealing aspect of our technique is that all these traces can be
analyzed online, as the events are received from the running program, and all in
parallel at a cost which in the worst case is proportional with both the size of
the window and the size of the state space of the monitor.

There are three important interrelated components of the proposed runtime
verification technique namely instrumentor, observer and monitor. The code
instrumentor, based on the safety specification, entirely automatically adds code
to emit events when relevant state updates occur. The observer receives the
events from the instrumented program as they are generated, enqueues them and
then builds a configurable abstract model of the system, known as a computation
lattice, on a layer-by-layer basis. As layers are completed, the monitor, which is
synthesized automatically from the safety specification, checks them against the
safety specification and then discards them.

The concepts and notions presented in this paper have been experimented
and tested on a practical monitoring system for Java programs, JMPaX 2.0,
that extends its predecessor JMPaX [12] in at least four non-trivial novel ways.
First, it introduces the technical notion of dynamic vector clock, allowing it to
properly deal with dynamic creation and destruction of threads. Second, the
variables shared between threads do not need to be static anymore: an auto-
matic instrumentation technique has been devised that detects automatically
when a variable is shared. Thirdly, and perhaps most importantly, the notion
of cone heuristic, or global state window, is introduced for the first time in JM-
PaX 2.0 to increase the runtime efficiency by analyzing the most likely states
in the computation lattice. Lastly, the presented runtime prediction paradigm
is safety formalism independent, in the sense that it allows the user to specify
any safety property whose bad prefixes can be expressed as a non-deterministic
finite automaton (NFA).

2 Monitors for Safety Properties

Safety properties are a very important, if not the most important, class of prop-
erties that one should consider in monitoring. This is because once a system
violates a safety property, there is no way to continue its execution to satisfy
the safety property later. Therefore, a monitor for a safety property can pre-
cisely say at runtime when the property has been violated, so that an external
recovery action can be taken. From a monitoring perspective, what is needed
from a safety formula is a succinct representation of its bad prefixes, which are
finite sequences of states leading to a violation of the property. Therefore, one
can abstract away safety properties by languages over finite words.

Automata are a standard means to succinctly represent languages over finite
words. In what follows we define a suitable version of automata, called monitor,
with the property that it has a “bad” state from which it never gets out:

2

Definition 1. Let S be a finite or infinite set, that can be thought of as the
set of states of the program to be monitored. Then an S-monitor or simply a
monitor, is a tuple Mon = 〈M, m0, b, ρ〉, where

– M is the set of states of the monitor;
– m0 ∈M is the initial state of the monitor;
– b ∈M is the final state of the monitor, also called bad state; and
– ρ : M×S → 2M is a non-deterministic transition relation with the property

that ρ(b, Σ) = {b} for any Σ ∈ S.

Sequences in S⋆, where ǫ is the empty one, are called (execution) traces. A trace
π is said to be a bad prefix inMon iff b ∈ ρ({m0}, π), where ρ : 2M×S⋆ → 2M

is recursively defined as ρ(M, ǫ) = M and ρ(M, πΣ) = ρ(ρ(M, π), Σ), where
ρ : 2M×S → 2M is defined as ρ({m}∪M, Σ) = ρ(m, Σ)∪ρ(M, Σ) and ρ(∅, Σ) =
∅, for all finite M ⊆M and Σ ∈ S.

M is not required to be finite in the above definition, but 2M represents the
set of finite subsets of M. In practical situations it is often the case that the
monitor is not explicitly provided in a mathematical form as above. For example,
a monitor can be just any program whose execution is triggered by receiving
events from the monitored program; its state can be given by the values of its
local variables, and the bad state has some easy to detect property, such as a
specific variable having a negative value.

There are fortunate situations in which monitors can be automatically gen-
erated from formal specifications, thus requiring the user to focus on system’s
formal safety requirements rather than on low level implementation details. In
fact, this was the case in all the experiments that we have performed so far. We
have so far experimented with requirements expressed either in extended regular
expressions (ERE) or various variants of temporal logics, with both future and
past time. For example, [11, 13] show coinductive techniques to generate min-
imal static monitors from EREs and from future time linear temporal logics,
respectively, and [6, 1] show how to generate dynamic monitors, i.e., monitors
that generate their states on-the-fly, as they receive the events, for the safety
segment of temporal logic.

Example 1. Consider a reactive controller that maintains the water level of a
reservoir within safe bounds. It consists of a water level reader and a valve
controller. The water level reader reads the current level of the water, calculates
the quantity of water in the reservoir and stores it in a shared variable w. The
valve controller controls the opening of a valve by looking at the current quantity
of water in the reservoir. A very simple and naive implementation of this system
contains two threads: T1, the valve controller, and T2, the water level reader.
The code snippet for the implementation is given in Fig. 1. Here w is in some
proper units such as mega gallons and v is in percentage. The implementation
is poorly synchronized and it relies on ideal thread scheduling.

A sample run of the system can be {w = 20, v = 40}, {w = 24}, {v =
50}, {w = 27}, {v = 60}, {w = 31}, {v = 70}. As we will see later in the paper,
by a run we here mean a sequence of relevant variable writes. Suppose we are

3

Thread T1: Thread T2:

while(true) { while(true) {
if(w > 18) delta = 10; l = readLevel();

else delta = -10; w = calcVolume(l);

for(i=0; i<2; i++) { sleep(100);

v = v + delta; }
setValveOpening(v);

sleep(100);

}
}

5

0 {}

1

{~p}

2

{p,~q}

{q,~r}

{p,~q}

3

{p,~q,~r}

4

{q}

{q}

{p,~q}

{q,~r}

{q}

Fig. 1. Two threads (T1 controls the valve and T2 reads the water level) and a monitor.

interested in a safety property that says “If the water quantity is more than
30 mega gallons, then it is the case that sometime in the past water quantity
exceeded 26 mega gallons and since then the valve is open by more than 55%
and the water quantity never went down below 26 mega gallon”. We can express
this safety property in two different formalisms: linear temporal logic (LTL) with
both past-time and future-time, or extended regular expressions (EREs) for bad
prefixes. The atomic propositions that we will consider are p : (w > 26), q : (w >

30), r : (v > 55). The properties can be written as follows:

F1 = �(q → ((r ∧ p)S ↑p)) (1)

F2 = {}∗{¬p}{p,¬q}+({p,¬q,¬r}{p,¬q}∗{q}+ {q}∗{q,¬r}){}∗ (2)

The formula F1 in LTL (↑p is a shorthand for “p and previously not p”) states
that “It is always the case that if (w > 30) then at some time in the past
(w > 26) started to be true and since then (r > 55) and (w > 26).” The formula
F2 characterizes the prefixes that make F1 false. In F2 we use {p,¬q} to denote a
state where p and ¬q holds and r may or may not hold. Similarly, {} represents
any state of the system. The monitor automaton for F2 is given also in Fig. 1.

3 Multithreaded Programs

We consider multithreaded systems in which threads communicate with each
other via shared variables. A crucial point is that some variable updates can
causally depend on others. We will describe an efficient dynamic vector clock
algorithm which, given an executing multithreaded program, generates appro-
priate messages to be sent to an external observer. Section 4 will show how
the observer, in order to perform its more elaborated analysis, extracts the state
update information from such messages together with the causality partial order.

3.1 Multithreaded Executions and Shared Variables

A multithreaded program consists of n threads t1, t2, ..., tn that execute con-
currently and communicate with each other through a set of shared variables. A

4

multithreaded execution is a sequence of events e1e2 . . . er generated by the run-
ning multithreaded program, each belonging to one of the n threads and having
type internal, read or write of a shared variable. We use e

j
i to represent the j-th

event generated by thread ti since the start of its execution. When the thread or
position of an event is not important we can refer to it generically, such as e, e′,
etc.; we may write e ∈ ti when event e is generated by thread ti. Let us fix an
arbitrary but fixed multithreaded execution, say M, and let S be the set of all
variables that were shared by more than one thread in the execution. There is an
immediate notion of variable access precedence for each shared variable x ∈ S:
we say e x-precedes e′, written e <x e′, iff e and e′ are variable access events
(reads or writes) to the same variable x, and e “happens before” e′, that is, e

occurs before e′ inM. This can be realized in practice by keeping a counter for
each shared variable, which is incremented at each variable access.

3.2 Causality and Multithreaded Computations
Let E be the set of events occurring inM and let ≺ be the partial order on E :

– ek
i ≺ el

i if k < l;
– e ≺ e′ if there is x ∈ S with e <x e′ and at least one of e, e′ is a write;
– e ≺ e′′ if e ≺ e′ and e′ ≺ e′′.

We write e||e′ if e 6≺ e′ and e′ 6≺ e. The tuple (E ,≺) is called the multi-
threaded computation associated with the original multithreaded execution M.
Synchronization of threads can be easily and elegantly taken into consideration
by just generating dummy read/write events when synchronization objects are
acquired/released, so the simple notion of multithreaded computation as defined
above is as general as practically needed. A permutation of all events e1, e2, . . .,
er that does not violate the multithreaded computation, in the sense that the
order of events in the permutation is consistent with ≺, is called a consistent
multithreaded run, or simply, a multithreaded run.

A multithreaded computation can be thought of as the most general assump-
tion that an observer of the multithreaded execution can make about the system
without knowing what it is supposed to do. Indeed, an external observer sim-
ply cannot disregard the order in which the same variable is modified and used
within the observed execution, because this order can be part of the intrinsic
semantics of the multithreaded program. However, multiple consecutive reads
of the same variable can be permuted, and the particular order observed in the
given execution is not critical. As seen in Section 4, by allowing an observer to
analyze multithreaded computations rather than just multithreaded executions,
one gets the benefit of not only properly dealing with potential re-orderings of
delivered messages (e.g., due to using multiple channels in order to reduce the
monitoring overhead), but especially of predicting errors from analyzing success-
ful executions, errors which can occur under a different thread scheduling.

3.3 Relevant Causality
Some of the variables in S may be of no importance at all for an external observer.
For example, consider an observer whose purpose is to check the property “if
(x > 0) then (y = 0) has been true in the past, and since then (y > z) was

5

always false”; formally, using the interval temporal logic notation in [6], this
can be compactly written as (x > 0) → [y = 0, y > z). All the other variables
in S except x, y and z are essentially irrelevant for this observer. To minimize
the number of messages, like in [8] which suggests a similar technique but for
distributed systems in which reads and writes are not distinguished, we consider
a subset R ⊆ E of relevant events and define the R-relevant causality on E as the
relation ⊳ :=≺ ∩(R×R), so that e⊳ e′ iff e, e′ ∈ R and e ≺ e′. It is important to
notice though that the other variables can also indirectly influence the relation
⊳, because they can influence the relation ≺. We next provide a technique based
on vector clocks that correctly implements the relevant causality relation.

3.4 Dynamic Vector Clock Algorithm
We provide a technique based on vector clocks [4, 9] that correctly and efficiently
implements the relevant causality relation. Let V : ThreadId → Nat be a partial
map from thread identifiers to natural numbers. We call such a map a dynamic
vector clock (DVC) because its partiality reflects the intuition that threads are
dynamically created and destroyed. To simplify the exposition and the imple-
mentation, we assume that each DVC V is a total map, where V [t] = 0 whenever
V is not defined on thread t.

We associate a DVC with every thread ti and denote it by Vi. Moreover, we
associate two DVCs V a

x and V w
x with every shared variable x; we call the former

access DVC and the latter write DVC. All the DVCs Vi are kept empty at the
beginning of the computation, so they do not consume any space. For DVCs V

and V ′, we say that V ≤ V ′ if and only if V [j] ≤ V ′[j] for all j, and we say that
V < V ′ iff V ≤ V ′ and there is some j such that V [j] < V ′[j]; also, max{V, V ′} is
the DVC with max{V, V ′}[j] = max{V [j], V ′[j]} for each j. Whenever a thread
ti with current DVC Vi processes event ek

i , the following algorithm is executed:

1. if ek
i is relevant, i.e., if ek

i ∈ R, then
Vi[i]← Vi[i] + 1

2. if ek
i is a read of a variable x then
Vi ← max{Vi, V

w
x }

V a
x ← max{V a

x , Vi}
3. if ek

i is a write of a variable x then
V w

x ← V a
x ← Vi ← max{V a

x , Vi}
4. if ek

i is relevant then
send message 〈ek

i , i, Vi〉 to observer.

The following theorem states that the DVC algorithm correctly implements
causality in multithreaded programs. This algorithm has been previously pre-
sented by the authors in [14, 15] in a less general context, where the number of
threads is fixed and known a priori. Its proof is similar to that in [15].

Theorem 1. After event ek
i is processed by thread ti,

– Vi[j] equals the number of relevant events of tj that causally precede ek
i ; if

j = i and ek
i is relevant then this number also includes ek

i ;
– V a

x [j] equals the number of relevant events of tj that causally precede the most
recent event that accessed (read or wrote) x; if i = j and ek

i is a relevant
read or write of x event then this number also includes ek

i ;

6

– V w
x [j] equals the number of relevant events of tj that causally precede the

most recent write event of x; if i = j and ek
i is a relevant write of x then

this number also includes ek
i .

Therefore, if 〈e, i, V 〉 and 〈e′, j, V ′〉 are two messages sent by dynamic vector
clock algorithm, then e ⊳ e′ if and only if V [i] ≤ V ′[i]. Moreover, if i and j are
not given, then e ⊳ e′ if and only if V < V ′.

4 Runtime Model Generation and Predictive Analysis

In this section we consider what happens at the observer’s site. The observer re-
ceives messages of the form 〈e, i, V 〉. Because of Theorem 1, the observer can infer
the causal dependency between the relevant events emitted by the multithreaded
system. We show how the observer can be configured to effectively analyze all
possible interleavings of events that do not violate the observed causal depen-
dency online and in parallel. Only one of these interleavings corresponds to the
real execution, the others being all potential executions. Hence, the presented
technique can predict safety violations from successful executions.

4.1 Multithreaded Computation Lattice

Inspired by related definitions in [2], we define the important notions of relevant
multithreaded computation and run as follows. A relevant multithreaded compu-
tation, simply called multithreaded computation from now on, is the partial order
on events that the observer can infer, which is nothing but the relation ⊳. A rel-
evant multithreaded run, also simply called multithreaded run from now on, is
any permutation of the received events which does not violate the multithreaded
computation. Our major purpose in this paper is to check safety requirements
against all (relevant) multithreaded runs of a multithreaded system.

We assume that the relevant events are only writes of shared variables that
appear in the safety formulae to be monitored, and that these events contain a
pair of the name of the corresponding variable and the value which was written
to it. We call these variables relevant variables. Note that events can change
the state of the multithreaded system as seen by the observer; this is formalized
next. A relevant program state, or simply a program state is a map from relevant
variables to concrete values. Any permutation of events generates a sequence
of program states in the obvious way, however, not all permutations of events
are valid multithreaded runs. A program state is called consistent if and only if
there is a multithreaded run containing that state in its sequence of generated
program states. We next formalize these concepts.

We letR denote the set of received relevant events. For a given permutation of
events in R, say e1e2 . . . e|R|, we let ek

i denote the k-th event of thread ti. Then

the relevant program state after the events ek1

1 , ek2

2 , ..., ekn
n is called a relevant

global multithreaded state, or simply a relevant global state or even just state,
and is denoted by Σk1k2...kn . A state Σk1k2...kn is called consistent if and only if
for any 1 ≤ i ≤ n and any li ≤ ki, it is the case that lj ≤ kj for any 1 ≤ j ≤ n

and any lj such that e
lj
j ⊳ eli

i . Let ΣK0 be the initial global state, Σ00...0. An
important observation is that e1e2 . . . e|R| is a multithreaded run if and only if

7

it generates a sequence of global states ΣK0ΣK1 . . . ΣK|R| such that each ΣKr

is consistent and for any two consecutive ΣKr and ΣKr+1 , Kr and Kr+1 differ
in exactly one index, say i, where the i-th element in Kr+1 is larger by 1 than
the i-th element in Kr. For that reason, we will identify the sequences of states
ΣK0ΣK1 . . . ΣK|R| as above with multithreaded runs, and simply call them runs.

We say that Σ leads-to Σ′, written Σ Σ′, when there is some run in which
Σ and Σ′ are consecutive states. Let ∗ be the reflexive transitive closure of
the relation . The set of all consistent global states together with the relation

∗ forms a lattice with n mutually orthogonal axes representing each thread.
For a state Σk1k2...kn , we call k1 + k1 + · · · kn its level. A path in the lattice is a
sequence of consistent global states on increasing level, where the level increases
by 1 between any two consecutive states in the path. Therefore, a run is just
a path starting with Σ00...0 and ending with Σr1r2...rn , where ri is the total
number of events of thread ti. Note that in the above discussion we assumed
a fixed number of threads n. In a program where threads can be created and
destroyed dynamically, only those threads are considered that at the end of the
computation have causally affected the final values of the relevant variables.

Therefore, a multithreaded computation can be seen as a lattice. This lattice,
which is called computation lattice and referred to as L, should be seen as an
abstract model of the running multithreaded program, containing the relevant
information needed in order to analyze the program. Supposing that one is able
to store the computation lattice of a multithreaded program, which is a non-
trivial matter because it can have an exponential number of states in the length
of the execution, one can mechanically model-check it against the safety property.

Example 2. Figure 2 shows the causal partial order on relevant events ex-
tracted by the observer from the multithreaded execution in Example 1,
together with the generated computation lattice. The actual execution,
Σ00Σ01Σ11Σ12Σ22Σ23Σ33, is marked with solid edges in the lattice. Besides
its DVC, each global state in the lattice stores its values for the relevant vari-
ables, w and v. It can be readily seen on Fig. 2 that the LTL property F1

defined in Example 1 holds on the sample run of the system, and also that it is
not in the language of bad prefixes, F2. However, F1 is violated on some other
consistent runs, such as Σ00Σ01Σ02Σ12Σ13Σ23Σ33. On this particular run ↑ p

holds at Σ02; however, r does not hold at the next state Σ12. This makes the
formula F1 false at the state Σ13. The run can also be symbolically written as
{}{}{p}{p}{p, q}{p, q, r}{p, q, r}. In the automaton in Fig. 1, this corresponds
to a possible sequence of states 00123555. Hence, this string is accepted by F2

as a bad prefix.

Therefore, by carefully analyzing the computation lattice extracted from a
successful execution one can infer safety violations in other possible consistent
executions. Such violations give informative feedback to users, such as the lack of
synchronization in the example above, and may be hard to find by just ordinary
testing. In what follows we propose effective techniques to analyze the computa-
tion lattice. A first important observation is that one can generate it on-the-fly
and analyze it on a level-by-level basis, discarding the previous levels. However,

8

e6
:<v=70,
 T1
,(3,3)>

e4
:<v=60,
 T1
,(2,1)>

e3
:<
w
=27,
 T2
,(0,2)>

e2
:<v=50,
 T1
,(1,1)>

e1
:<
w
=24,
 T2
,(0,1)>

e5
:<
w
=31,
 T2
,(0,3)>

)
40
,
20
(

{}
)
(

00

=
=

=

v
w

S
L

)
70
,
31
(

}
,
,
{
)
(

33

=
=

=

v
w

r
q
p
S
L

)
60
,
31
(

}
,
,
{
)
(

23

=
=

=

v
w

r
q
p
S
L

)
50
,
31
(

}
,
{
)
(

13

=
=

=

v
w

q
p
S
L

)
60
,
27
(

}
,
{
)
(

22

=
=

=

v
w

r
p
S
L

)
40
,
31
(

}
,
{
)
(

03

=
=

=

v
w

q
p
S
L

)
50
,
27
(

}
{
)
(

12

=
=

=

v
w

p
S
L

)
60
,
24
(

}
{
)
(

21

=
=

=

v
w

r
S
L

)
40
,
27
(

}
{
)
(

02

=
=

=

v
w

p
S
L

)
50
,
24
(

{}
)
(

11

=
=

=

v
w

S
L

)
40
,
24
(

{}
)
(

01

=
=

=

v
w

S
L

Fig. 2. Computation Lattice

even if one considers only one level, that can still contain an exponential number
of states in the length of the current execution. A second important observation
is that the states in the computation lattice are not all equiprobable in prac-
tice. By allowing a user configurable window of most likely states in the lattice
centered around the observed execution trace, the presented technique becomes
quite scalable, requiring O(wm) space and O(twm) time, where w is the size of
the window, m is the size of the bad prefix monitor of the safety property, and
t is the size of the monitored execution trace.

4.2 Level By Level Analysis of the Computation Lattice
A naive observer of an execution trace of a multithreaded program would just
check the observed execution trace against the monitor for the safety property,
sayMon like in Definition 1, and would maintain at each moment a set of states,
say MonStates inM. When a new event generating a new global state Σ arrives,
it would replace MonStates by ρ(MonStates, Σ). If the bad state b will ever be in
MonStates then a property violation error would be reported, meaning that the
current execution trace led to a bad prefix of the safety property. Here we assume
that the events are received in the order in which they are emitted, and also that
the monitor works over the global states of the multithreaded programs.

A smart observer, as said before, will analyze not only the observed execution
trace, but also all the other consistent runs of the multithreaded system, thus
being able to predict violations from successful executions. The observer receives
the events from the running multithreaded program in real-time and enqueues

9

them in an event queue Q. At the same time, it traverses the computation lattice
level by level and checks whether the bad state of the monitor can be hit by any
of the runs up to the current level. We next provide the algorithm that the
observer uses to construct the lattice level by level from the sequence of events
it receives from the running program.

The observer maintains a list of global states (CurrLevel), that are present
in the current level of the lattice. For each event e in the event queue, it tries to
construct a new global state from the set of states in the current level and the
event e. If the global state is created successfully then it is added to the list of
global states (NextLevel) for the next level of the lattice. The process continues
until certain condition, levelComplete?() holds. At that time the observer says
that the level is complete and starts constructing the next level by setting Cur-
rLevel to NextLevel and reallocating the space previously occupied by CurrLevel.
Here the predicate levelComplete?() is crucial for generating only those states
in the level that are most likely to occur in other executions, namely those in
the window, or the causality cone, that is described in the next subsection. The
levelComplete? predicate is also discussed and defined in the next subsection.
The pseudo-code for the lattice traversal is given in Fig. 3.

Every global state Σ contains the value of all relevant shared variables in the
program, a DVC VC (Σ) to represent the latest events from each thread that
resulted in that global state. Here the predicate nextState? (Σ, e), checks if the
event e can convert the state Σ to a state Σ′ in the next level of the lattice,
where threadId(e) returns the index of the thread that generated the event e,
VC (Σ) returns the DVC of the global state Σ, and VC(e) returns the DVC
of the event e. It essentially says that event e can generate a consecutive state
for a state Σ, if and only if Σ “knows” everything e knows about the current
evolution of the multithreaded system except for the event e itself. Note that e

may know less than Σ knows with respect to the evolution of other threads in
the system, because Σ has global information.

The function createState(Σ, e) creates a new global state Σ′, where Σ′ is a
possible consistent global state that can result from Σ after the event e. Together
with each state Σ in the lattice, a set of states of the monitor, MonStates(Σ),
also needs to be maintained, which keeps all the states of the monitor in which
any of the partial runs ending in Σ can lead to. In the function createState,
we set the MonStates of Σ′ with the set of monitor states to which any of the
current states in MonStates(Σ) can transit within the monitor when the state
Σ′ is observed. pgmState(Σ′) returns the value of all relevant program shared
variables in state Σ′, var(e) returns the name of the relevant variable that is
written at the time of event e, value(e) is the value that is written to var(e), and
pgmState(Σ′)[var(e)← value(e)] means that in pgmState(Σ′), var(e) is updated
with value(e).

The merging operation nextLevel ⊎ Σ adds the global state Σ to the set
nextLevel. If Σ is already present in nextLevel, it updates the existing state’s
MonStates with the union of the existing state’s MonStates and the Monstates
of Σ. Two global states are same if their DVCs are equal. Because of the function

10

levelComplete?, it may be often the case that the analysis procedure moves from
the current level to the next one before it is exhaustively explored. That means
that several events in the queue, which were waiting for other events to arrive in
order to generate new states in the current level, become unnecessary so they can
be discarded. The function removeUselessEvents(CurrLevel,Q) removes from Q

all the events that cannot contribute to the construction of any state at the next
level. To do so, it creates a DVC Vmin whose each component is the minimum
of the corresponding component of the DVCs of all the global states in the set
CurrLevel. It then removes all the events in Q whose DVCs are less than or equal
to Vmin. This function makes sure that we do not store any unnecessary events.

while(not end of computation){

Q← enqueue(Q, NextEvent())

while(constructLevel()){}

}

boolean constructLevel(){

for each e ∈ Q {

if Σ ∈ CurrLevel and nextState?(Σ, e) {

NextLevel ← NextLevel ⊎ createState(Σ, e)

if levelComplete?(NextLevel , e, Q) {

Q← removeUselessEvents(CurrLevel , Q)

CurrLevel ← NextLevel

return true}}}

return false

}

boolean nextState?(Σ, e){

i← threadId(e);

if (∀j 6= i : VC (Σ)[j] ≥ VC (e)[j] and

VC (Σ)[i] + 1 = VC (e)[i]) return true

return false

}

State createState(Σ, e){

Σ′ ← new copy of Σ

j ← threadId(e); VC (Σ′)[j]← VC (Σ)[j]+1

pgmState(Σ′)[var(e)← value(e)]

MonStates(Σ′)← ρ(MonStates(Σ), Σ′)

if b ∈ MonStates(Σ′) {

output ′property may be violated′}

return Σ′

}
Fig. 3. Level-by-level traversal.

The observer runs in a loop
till the computation ends. In the
loop the observer waits for the
next event from the running in-
strumented program and enqueues
it in Q whenever it becomes avail-
able. After that the observer runs
the function constructLevel in a
loop till it returns false. If the func-
tion constructLevel returns false
then the observer knows that the
level is not completed and it
needs more events to complete the
level. At that point the observer
again starts waiting for the next
event from the running program
and continues with the loop. The
pseudo-code for the observer is
given at the top of Fig. 3.

4.3 Causality Cone

Heuristic

In a given level of a computation
lattice, the number of states can
be large; in fact, exponential in the
length of the trace. In online anal-
ysis, generating all the states in a
level may not be feasible. However,
note that some states in a level can
be considered more likely to occur
in a consistent run than others. For
example, two independent events

that can possibly permute may have a huge time difference. Permuting these
two events would give a consistent run, but that run may not be likely to take
place in a real execution of the multithreaded program. So we can ignore such a

11

permutation. We formalize this concept as causality cone, or window, and exploit
it in restricting our attention to a small set of states in a given level.

In what follows we assume that the events are received in an order in which
they happen in the computation. This is easily ensured by proper instrumen-
tation. Note that this ordering gives the real execution of the program and it
respects the partial order associated with the computation. This execution will
be taken as a reference in order to compute the most probable consistent runs
of the system.

If we consider all the events generated by the executing distributed program
as a finite sequence of events, then a lattice formed by any prefix of this sequence
is a sublattice of the computation lattice L. This sublattice, say L′ has the
following property: if Σ ∈ L′, then for any Σ′ ∈ L if Σ′

∗ Σ then Σ′ ∈ L′. We

can see this sublattice as a portion of the computation lattice L enclosed by a
cone. The height of this cone is determined by the length of the current sequence
of events. We call this causality cone. All the states in L that are outside this
cone cannot be determined from the current sequence of events. Hence, they are
outside the causal scope of the current sequence of events. As we get more events
this cone moves down by one level.

w
=3

<
 w
=3

w

Fig. 4. Causality Cones

If we compute a DVC Vmax whose each component is the maximum of the
corresponding component of the DVCs of all the events in the event queue, then
this represents the DVC of the global state appearing at the tip of the cone. The
tip of the cone traverses the actual execution run of the program.

To avoid the generation of possibly exponential number of states in a given
level, we consider a fixed number, say w, most probable states in a given level. In

12

a level construction we say the level is complete once we have generated w states
in that level. However, a level may contain less than w states. Then the level
construction algorithm gets stuck. Moreover, we cannot determine if a level has
less than w states unless we see all the events in the complete computation. This
is because we do not know the total number of threads that participate in the
computation beforehand. To avoid this scenario we introduce another parameter
l, the length of the current event queue. We say that a level is complete if we have
used all the events in the event queue for the construction of the states in the
current level and the length of the queue is l and we have not crossed the limit w

on the number of states. The pseudo-code for levelComplete? is given in Fig. 5

boolean levelComplete?(NextLevel, e, Q){

if size(NextLevel) ≥ w then

return true;

else if e is the last event in Q

and size(Q) == l then

return true;

else return false;

}

Fig. 5. levelComplete? predicate

Note, here l corresponds to the
number of levels of the sublat-
tice that be constructed from the
events in the event queue Q. On the
other hand, the level of this sublat-
tice with the largest level number
and having at least w global states
refers to the CurrLevel in the al-
gorithm.

5 Implementation
We have implemented these new techniques, in version 2.0 of the tool Java Mul-
tiPathExplorer (JMPaX)[12], which has been designed to monitor multithreaded
Java programs. The current implementation is written in Java and it removes the
restriction that all the shared variables of the multithreaded program are static
variables of type int. The tool has three main modules, the instrumentation
module, the observer module and the monitor module.

The instrumentation program, named instrument, takes a specification file
and a list of class files as command line arguments. An example is

java instrument spec A.class B.class C.class

where the specification file spec contains a list of named formulae written in
a suitable logic. The program instrument extracts the name of the relevant
variables from the specification and instruments the classes, provided in the
argument, as follows:

i) For each variable x of primitive type in each class it adds access and write
DVCs, namely _access_dvc_x and _write_dvc_x, as new fields in the class.

ii) It adds code to associate a DVC with every newly created thread;
iii) For each read and write access of a variable of primitive type in any class,

it adds codes to update the DVCs according to the algorithm mentioned in
Section 3.4;

iv) It adds code to call a method handleEvent of the observer module at every
write of a relevant variable.

The instrumentation module uses BCEL [3] Java library to modify Java class
files. We use the BCEL library to get a better handle for a Java classfile.

13

The observer module, that takes two parameters w and l, generates the
lattice level by level when the instrumented program is executed. Whenever the
handleEvent method is invoked it enqueues the event passed as argument to
the method handleEvent. Based on the event queue and the current level of
the lattice it generates the next level of the lattice. In the process it invokes
nextStates method (corresponding to ρ in a monitor) of the monitor module.

The monitor module reads the specification file written either as an LTL
formula or a regular expression and generates the non-deterministic automaton
corresponding to the formula or the regular expression. It provides the method
nextStates as an interface to the observer module. The method raises an excep-
tion if at any point the set of states returned by nextStates contain the “bad”
state of the automaton. The system being modular, user can plug in his/her own
monitor module for his/her logic of choice.

Since in Java synchronized blocks cannot be interleaved, so corresponding
events cannot be permuted, locks are considered as shared variables and a write
event is generated whenever a lock is acquired or released. This way, a causal
dependency is generated between any exit and any entry of a synchronized block,
namely the expected happens-before relation. Java synchronization statements
are handled exactly the same way, that is, the shared variable associated to
the synchronization object is written at the entrance and at the exit of the
synchronized region. Condition synchronizations (wait/notify) can be handled
similarly, by generating a write of a dummy shared variable by both the notifying
thread before notification and by the notified thread after notification.

6 Conclusion and Future Work

A formal runtime predictive analysis technique for multithreaded systems has
been presented in this paper, in which multiple threads communicating by shared
variables are automatically instrumented to send relevant events, stamped by
dynamic vector clocks, to an external observer which extracts a causal partial
order on the global state, updates and thereby builds an abstract runtime model
of the running multithreaded system. Analyzing this model on a level by level
basis, the observer can infer effectively from successful execution of the observed
system when basic safety properties can be violated by other executions. At-
tractive future work includes predictions of liveness violations and predictions
of datarace and deadlock conditions.

7 Acknowledgments

The work is supported in part by the Defense Advanced Research Projects Agency (the
DARPA IPTO TASK Program, contract number F30602-00-2-0586, the DARPA IXO
NEST Program, contract number F33615-01-C-1907), the ONR Grant N00014-02-1-
0715, the Motorola Grant MOTOROLA RPS #23 ANT, and the joint NSF/NASA
grant CCR-0234524.

References

1. H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-Based Run-
time Verification. In Proceedings of Fifth International VMCAI con-

14

ference (VMCAI’04) (To appear in LNCS), January 2004. Download:
http://www.cs.man.ac.uk/cspreprints/PrePrints/cspp24.pdf.

2. H. W. Cain and M. H. Lipasti. Verifying sequential consistency using vector clocks.
In Proceedings of the 14th annual ACM Symposium on Parallel Algorithms and
Architectures, pages 153–154. ACM, 2002.

3. M. Dahm. Byte code engineering with the bcel api. Technical Report B-17-98,
Freie Universit at Berlin, Institut für Informatik, April 2001.

4. C. J. Fidge. Partial orders for parallel debugging. In Proceedings of the 1988 ACM
SIGPLAN and SIGOPS workshop on Parallel and Distributed debugging, pages
183–194. ACM, 1988.

5. K. Havelund and G. Roşu. Monitoring Java Programs with Java PathExplorer. In
Proceedings of the 1st Workshop on Runtime Verification (RV’01), volume 55 of
Electronic Notes in Theoretical Computer Science. Elsevier Science, 2001.

6. K. Havelund and G. Roşu. Synthesizing monitors for safety properties. In Tools
and Algorithms for Construction and Analysis of Systems (TACAS’02), volume
2280 of Lecture Notes in Computer Science, pages 342–356. Springer, 2002.

7. M. Kim, S. Kannan, I. Lee, and O. Sokolsky. Java-MaC: a Run-time Assurance
Tool for Java. In Proceedings of the 1st Workshop on Runtime Verification (RV’01),
volume 55 of Electronic Notes in Theoretical Computer Science. Elsevier Science,
2001.

8. K. Marzullo and G. Neiger. Detection of global state predicates. In Proceedings
of the 5th International Workshop on Distributed Algorithms (WADG’91), volume
579 of Lecture Notes in Computer Science, pages 254–272. Springer-Verlag, 1991.

9. F. Mattern. Virtual time and global states of distributed systems. In Parallel and
Distributed Algorithms: proceedings of the International Workshop on Parallel and
Distributed Algorithms, pages 215–226. Elsevier, 1989.

10. A. Sen and V. K. .Garg. Partial order trace analyzer (pota) for distrubted pro-
grams. In Proceedings of the 3rd Workshop on Runtime Verification (RV’03),
Electronic Notes in Theoretical Computer Science, 2003.

11. K. Sen and G. Roşu. Generating optimal monitors for extended regular expressions.
In Proceedings of the 3rd Workshop on Runtime Verification (RV’03), volume 89
of ENTCS, pages 162–181. Elsevier Science, 2003.

12. K. Sen, G. Roşu, and G. Agha. Java MultiPathExplorer (JMPaX 2.0). Download:
http://fsl.cs.uiuc.edu/jmpax.

13. K. Sen, G. Roşu, and G. Agha. Generating Optimal Linear Temporal Logic Mon-
itors by Coinduction. In Proceedings of 8th Asian Computing Science Conference
(ASIAN’03), volume 2896 of Lecture Notes in Computer Science, pages 260–275.
Springer-Verlag, December 2003.

14. K. Sen, G. Roşu, and G. Agha. Runtime safety analysis of multithreaded pro-
grams. In Proceedings of 4th joint European Software Engineering Conference
and ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE’03). ACM, 2003.

15. K. Sen, G. Roşu, and G. Agha. Runtime safety analysis of multithreaded pro-
grams. Technical Report UIUCDCS-R-2003-2334, University of Illinois at Urnaba
Champaign, April 2003.

15

